]> git.ipfire.org Git - thirdparty/linux.git/blob - net/sunrpc/auth_gss/gss_krb5_wrap.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / net / sunrpc / auth_gss / gss_krb5_wrap.c
1 /*
2 * COPYRIGHT (c) 2008
3 * The Regents of the University of Michigan
4 * ALL RIGHTS RESERVED
5 *
6 * Permission is granted to use, copy, create derivative works
7 * and redistribute this software and such derivative works
8 * for any purpose, so long as the name of The University of
9 * Michigan is not used in any advertising or publicity
10 * pertaining to the use of distribution of this software
11 * without specific, written prior authorization. If the
12 * above copyright notice or any other identification of the
13 * University of Michigan is included in any copy of any
14 * portion of this software, then the disclaimer below must
15 * also be included.
16 *
17 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
18 * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
19 * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
20 * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
21 * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
23 * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
24 * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
25 * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
26 * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
27 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGES.
29 */
30
31 #include <crypto/skcipher.h>
32 #include <linux/types.h>
33 #include <linux/jiffies.h>
34 #include <linux/sunrpc/gss_krb5.h>
35 #include <linux/random.h>
36 #include <linux/pagemap.h>
37
38 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
39 # define RPCDBG_FACILITY RPCDBG_AUTH
40 #endif
41
42 static inline int
43 gss_krb5_padding(int blocksize, int length)
44 {
45 return blocksize - (length % blocksize);
46 }
47
48 static inline void
49 gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize)
50 {
51 int padding = gss_krb5_padding(blocksize, buf->len - offset);
52 char *p;
53 struct kvec *iov;
54
55 if (buf->page_len || buf->tail[0].iov_len)
56 iov = &buf->tail[0];
57 else
58 iov = &buf->head[0];
59 p = iov->iov_base + iov->iov_len;
60 iov->iov_len += padding;
61 buf->len += padding;
62 memset(p, padding, padding);
63 }
64
65 static inline int
66 gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize)
67 {
68 u8 *ptr;
69 u8 pad;
70 size_t len = buf->len;
71
72 if (len <= buf->head[0].iov_len) {
73 pad = *(u8 *)(buf->head[0].iov_base + len - 1);
74 if (pad > buf->head[0].iov_len)
75 return -EINVAL;
76 buf->head[0].iov_len -= pad;
77 goto out;
78 } else
79 len -= buf->head[0].iov_len;
80 if (len <= buf->page_len) {
81 unsigned int last = (buf->page_base + len - 1)
82 >>PAGE_SHIFT;
83 unsigned int offset = (buf->page_base + len - 1)
84 & (PAGE_SIZE - 1);
85 ptr = kmap_atomic(buf->pages[last]);
86 pad = *(ptr + offset);
87 kunmap_atomic(ptr);
88 goto out;
89 } else
90 len -= buf->page_len;
91 BUG_ON(len > buf->tail[0].iov_len);
92 pad = *(u8 *)(buf->tail[0].iov_base + len - 1);
93 out:
94 /* XXX: NOTE: we do not adjust the page lengths--they represent
95 * a range of data in the real filesystem page cache, and we need
96 * to know that range so the xdr code can properly place read data.
97 * However adjusting the head length, as we do above, is harmless.
98 * In the case of a request that fits into a single page, the server
99 * also uses length and head length together to determine the original
100 * start of the request to copy the request for deferal; so it's
101 * easier on the server if we adjust head and tail length in tandem.
102 * It's not really a problem that we don't fool with the page and
103 * tail lengths, though--at worst badly formed xdr might lead the
104 * server to attempt to parse the padding.
105 * XXX: Document all these weird requirements for gss mechanism
106 * wrap/unwrap functions. */
107 if (pad > blocksize)
108 return -EINVAL;
109 if (buf->len > pad)
110 buf->len -= pad;
111 else
112 return -EINVAL;
113 return 0;
114 }
115
116 void
117 gss_krb5_make_confounder(char *p, u32 conflen)
118 {
119 static u64 i = 0;
120 u64 *q = (u64 *)p;
121
122 /* rfc1964 claims this should be "random". But all that's really
123 * necessary is that it be unique. And not even that is necessary in
124 * our case since our "gssapi" implementation exists only to support
125 * rpcsec_gss, so we know that the only buffers we will ever encrypt
126 * already begin with a unique sequence number. Just to hedge my bets
127 * I'll make a half-hearted attempt at something unique, but ensuring
128 * uniqueness would mean worrying about atomicity and rollover, and I
129 * don't care enough. */
130
131 /* initialize to random value */
132 if (i == 0) {
133 i = prandom_u32();
134 i = (i << 32) | prandom_u32();
135 }
136
137 switch (conflen) {
138 case 16:
139 *q++ = i++;
140 /* fall through */
141 case 8:
142 *q++ = i++;
143 break;
144 default:
145 BUG();
146 }
147 }
148
149 /* Assumptions: the head and tail of inbuf are ours to play with.
150 * The pages, however, may be real pages in the page cache and we replace
151 * them with scratch pages from **pages before writing to them. */
152 /* XXX: obviously the above should be documentation of wrap interface,
153 * and shouldn't be in this kerberos-specific file. */
154
155 /* XXX factor out common code with seal/unseal. */
156
157 static u32
158 gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset,
159 struct xdr_buf *buf, struct page **pages)
160 {
161 char cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
162 struct xdr_netobj md5cksum = {.len = sizeof(cksumdata),
163 .data = cksumdata};
164 int blocksize = 0, plainlen;
165 unsigned char *ptr, *msg_start;
166 time64_t now;
167 int headlen;
168 struct page **tmp_pages;
169 u32 seq_send;
170 u8 *cksumkey;
171 u32 conflen = kctx->gk5e->conflen;
172
173 dprintk("RPC: %s\n", __func__);
174
175 now = ktime_get_real_seconds();
176
177 blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
178 gss_krb5_add_padding(buf, offset, blocksize);
179 BUG_ON((buf->len - offset) % blocksize);
180 plainlen = conflen + buf->len - offset;
181
182 headlen = g_token_size(&kctx->mech_used,
183 GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) -
184 (buf->len - offset);
185
186 ptr = buf->head[0].iov_base + offset;
187 /* shift data to make room for header. */
188 xdr_extend_head(buf, offset, headlen);
189
190 /* XXX Would be cleverer to encrypt while copying. */
191 BUG_ON((buf->len - offset - headlen) % blocksize);
192
193 g_make_token_header(&kctx->mech_used,
194 GSS_KRB5_TOK_HDR_LEN +
195 kctx->gk5e->cksumlength + plainlen, &ptr);
196
197
198 /* ptr now at header described in rfc 1964, section 1.2.1: */
199 ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff);
200 ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff);
201
202 msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength;
203
204 /*
205 * signalg and sealalg are stored as if they were converted from LE
206 * to host endian, even though they're opaque pairs of bytes according
207 * to the RFC.
208 */
209 *(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg);
210 *(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg);
211 ptr[6] = 0xff;
212 ptr[7] = 0xff;
213
214 gss_krb5_make_confounder(msg_start, conflen);
215
216 if (kctx->gk5e->keyed_cksum)
217 cksumkey = kctx->cksum;
218 else
219 cksumkey = NULL;
220
221 /* XXXJBF: UGH!: */
222 tmp_pages = buf->pages;
223 buf->pages = pages;
224 if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen,
225 cksumkey, KG_USAGE_SEAL, &md5cksum))
226 return GSS_S_FAILURE;
227 buf->pages = tmp_pages;
228
229 memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len);
230
231 seq_send = atomic_fetch_inc(&kctx->seq_send);
232
233 /* XXX would probably be more efficient to compute checksum
234 * and encrypt at the same time: */
235 if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff,
236 seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8)))
237 return GSS_S_FAILURE;
238
239 if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
240 struct crypto_sync_skcipher *cipher;
241 int err;
242 cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
243 0, 0);
244 if (IS_ERR(cipher))
245 return GSS_S_FAILURE;
246
247 krb5_rc4_setup_enc_key(kctx, cipher, seq_send);
248
249 err = gss_encrypt_xdr_buf(cipher, buf,
250 offset + headlen - conflen, pages);
251 crypto_free_sync_skcipher(cipher);
252 if (err)
253 return GSS_S_FAILURE;
254 } else {
255 if (gss_encrypt_xdr_buf(kctx->enc, buf,
256 offset + headlen - conflen, pages))
257 return GSS_S_FAILURE;
258 }
259
260 return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
261 }
262
263 static u32
264 gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, int len,
265 struct xdr_buf *buf, unsigned int *slack,
266 unsigned int *align)
267 {
268 int signalg;
269 int sealalg;
270 char cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
271 struct xdr_netobj md5cksum = {.len = sizeof(cksumdata),
272 .data = cksumdata};
273 time64_t now;
274 int direction;
275 s32 seqnum;
276 unsigned char *ptr;
277 int bodysize;
278 void *data_start, *orig_start;
279 int data_len;
280 int blocksize;
281 u32 conflen = kctx->gk5e->conflen;
282 int crypt_offset;
283 u8 *cksumkey;
284 unsigned int saved_len = buf->len;
285
286 dprintk("RPC: gss_unwrap_kerberos\n");
287
288 ptr = (u8 *)buf->head[0].iov_base + offset;
289 if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr,
290 len - offset))
291 return GSS_S_DEFECTIVE_TOKEN;
292
293 if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) ||
294 (ptr[1] != (KG_TOK_WRAP_MSG & 0xff)))
295 return GSS_S_DEFECTIVE_TOKEN;
296
297 /* XXX sanity-check bodysize?? */
298
299 /* get the sign and seal algorithms */
300
301 signalg = ptr[2] + (ptr[3] << 8);
302 if (signalg != kctx->gk5e->signalg)
303 return GSS_S_DEFECTIVE_TOKEN;
304
305 sealalg = ptr[4] + (ptr[5] << 8);
306 if (sealalg != kctx->gk5e->sealalg)
307 return GSS_S_DEFECTIVE_TOKEN;
308
309 if ((ptr[6] != 0xff) || (ptr[7] != 0xff))
310 return GSS_S_DEFECTIVE_TOKEN;
311
312 /*
313 * Data starts after token header and checksum. ptr points
314 * to the beginning of the token header
315 */
316 crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) -
317 (unsigned char *)buf->head[0].iov_base;
318
319 /*
320 * Need plaintext seqnum to derive encryption key for arcfour-hmac
321 */
322 if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN,
323 ptr + 8, &direction, &seqnum))
324 return GSS_S_BAD_SIG;
325
326 if ((kctx->initiate && direction != 0xff) ||
327 (!kctx->initiate && direction != 0))
328 return GSS_S_BAD_SIG;
329
330 buf->len = len;
331 if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
332 struct crypto_sync_skcipher *cipher;
333 int err;
334
335 cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
336 0, 0);
337 if (IS_ERR(cipher))
338 return GSS_S_FAILURE;
339
340 krb5_rc4_setup_enc_key(kctx, cipher, seqnum);
341
342 err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset);
343 crypto_free_sync_skcipher(cipher);
344 if (err)
345 return GSS_S_DEFECTIVE_TOKEN;
346 } else {
347 if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset))
348 return GSS_S_DEFECTIVE_TOKEN;
349 }
350
351 if (kctx->gk5e->keyed_cksum)
352 cksumkey = kctx->cksum;
353 else
354 cksumkey = NULL;
355
356 if (make_checksum(kctx, ptr, 8, buf, crypt_offset,
357 cksumkey, KG_USAGE_SEAL, &md5cksum))
358 return GSS_S_FAILURE;
359
360 if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN,
361 kctx->gk5e->cksumlength))
362 return GSS_S_BAD_SIG;
363
364 /* it got through unscathed. Make sure the context is unexpired */
365
366 now = ktime_get_real_seconds();
367
368 if (now > kctx->endtime)
369 return GSS_S_CONTEXT_EXPIRED;
370
371 /* do sequencing checks */
372
373 /* Copy the data back to the right position. XXX: Would probably be
374 * better to copy and encrypt at the same time. */
375
376 blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
377 data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) +
378 conflen;
379 orig_start = buf->head[0].iov_base + offset;
380 data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start;
381 memmove(orig_start, data_start, data_len);
382 buf->head[0].iov_len -= (data_start - orig_start);
383 buf->len = len - (data_start - orig_start);
384
385 if (gss_krb5_remove_padding(buf, blocksize))
386 return GSS_S_DEFECTIVE_TOKEN;
387
388 /* slack must include room for krb5 padding */
389 *slack = XDR_QUADLEN(saved_len - buf->len);
390 /* The GSS blob always precedes the RPC message payload */
391 *align = *slack;
392 return GSS_S_COMPLETE;
393 }
394
395 /*
396 * We can shift data by up to LOCAL_BUF_LEN bytes in a pass. If we need
397 * to do more than that, we shift repeatedly. Kevin Coffman reports
398 * seeing 28 bytes as the value used by Microsoft clients and servers
399 * with AES, so this constant is chosen to allow handling 28 in one pass
400 * without using too much stack space.
401 *
402 * If that proves to a problem perhaps we could use a more clever
403 * algorithm.
404 */
405 #define LOCAL_BUF_LEN 32u
406
407 static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift)
408 {
409 char head[LOCAL_BUF_LEN];
410 char tmp[LOCAL_BUF_LEN];
411 unsigned int this_len, i;
412
413 BUG_ON(shift > LOCAL_BUF_LEN);
414
415 read_bytes_from_xdr_buf(buf, 0, head, shift);
416 for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) {
417 this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift));
418 read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len);
419 write_bytes_to_xdr_buf(buf, i, tmp, this_len);
420 }
421 write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift);
422 }
423
424 static void _rotate_left(struct xdr_buf *buf, unsigned int shift)
425 {
426 int shifted = 0;
427 int this_shift;
428
429 shift %= buf->len;
430 while (shifted < shift) {
431 this_shift = min(shift - shifted, LOCAL_BUF_LEN);
432 rotate_buf_a_little(buf, this_shift);
433 shifted += this_shift;
434 }
435 }
436
437 static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift)
438 {
439 struct xdr_buf subbuf;
440
441 xdr_buf_subsegment(buf, &subbuf, base, buf->len - base);
442 _rotate_left(&subbuf, shift);
443 }
444
445 static u32
446 gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset,
447 struct xdr_buf *buf, struct page **pages)
448 {
449 u8 *ptr, *plainhdr;
450 time64_t now;
451 u8 flags = 0x00;
452 __be16 *be16ptr;
453 __be64 *be64ptr;
454 u32 err;
455
456 dprintk("RPC: %s\n", __func__);
457
458 if (kctx->gk5e->encrypt_v2 == NULL)
459 return GSS_S_FAILURE;
460
461 /* make room for gss token header */
462 if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN))
463 return GSS_S_FAILURE;
464
465 /* construct gss token header */
466 ptr = plainhdr = buf->head[0].iov_base + offset;
467 *ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff);
468 *ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff);
469
470 if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0)
471 flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR;
472 if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0)
473 flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY;
474 /* We always do confidentiality in wrap tokens */
475 flags |= KG2_TOKEN_FLAG_SEALED;
476
477 *ptr++ = flags;
478 *ptr++ = 0xff;
479 be16ptr = (__be16 *)ptr;
480
481 *be16ptr++ = 0;
482 /* "inner" token header always uses 0 for RRC */
483 *be16ptr++ = 0;
484
485 be64ptr = (__be64 *)be16ptr;
486 *be64ptr = cpu_to_be64(atomic64_fetch_inc(&kctx->seq_send64));
487
488 err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages);
489 if (err)
490 return err;
491
492 now = ktime_get_real_seconds();
493 return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
494 }
495
496 static u32
497 gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, int len,
498 struct xdr_buf *buf, unsigned int *slack,
499 unsigned int *align)
500 {
501 time64_t now;
502 u8 *ptr;
503 u8 flags = 0x00;
504 u16 ec, rrc;
505 int err;
506 u32 headskip, tailskip;
507 u8 decrypted_hdr[GSS_KRB5_TOK_HDR_LEN];
508 unsigned int movelen;
509
510
511 dprintk("RPC: %s\n", __func__);
512
513 if (kctx->gk5e->decrypt_v2 == NULL)
514 return GSS_S_FAILURE;
515
516 ptr = buf->head[0].iov_base + offset;
517
518 if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP)
519 return GSS_S_DEFECTIVE_TOKEN;
520
521 flags = ptr[2];
522 if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) ||
523 (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)))
524 return GSS_S_BAD_SIG;
525
526 if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) {
527 dprintk("%s: token missing expected sealed flag\n", __func__);
528 return GSS_S_DEFECTIVE_TOKEN;
529 }
530
531 if (ptr[3] != 0xff)
532 return GSS_S_DEFECTIVE_TOKEN;
533
534 ec = be16_to_cpup((__be16 *)(ptr + 4));
535 rrc = be16_to_cpup((__be16 *)(ptr + 6));
536
537 /*
538 * NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss
539 * doesn't want it checked; see page 6 of rfc 2203.
540 */
541
542 if (rrc != 0)
543 rotate_left(offset + 16, buf, rrc);
544
545 err = (*kctx->gk5e->decrypt_v2)(kctx, offset, len, buf,
546 &headskip, &tailskip);
547 if (err)
548 return GSS_S_FAILURE;
549
550 /*
551 * Retrieve the decrypted gss token header and verify
552 * it against the original
553 */
554 err = read_bytes_from_xdr_buf(buf,
555 len - GSS_KRB5_TOK_HDR_LEN - tailskip,
556 decrypted_hdr, GSS_KRB5_TOK_HDR_LEN);
557 if (err) {
558 dprintk("%s: error %u getting decrypted_hdr\n", __func__, err);
559 return GSS_S_FAILURE;
560 }
561 if (memcmp(ptr, decrypted_hdr, 6)
562 || memcmp(ptr + 8, decrypted_hdr + 8, 8)) {
563 dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__);
564 return GSS_S_FAILURE;
565 }
566
567 /* do sequencing checks */
568
569 /* it got through unscathed. Make sure the context is unexpired */
570 now = ktime_get_real_seconds();
571 if (now > kctx->endtime)
572 return GSS_S_CONTEXT_EXPIRED;
573
574 /*
575 * Move the head data back to the right position in xdr_buf.
576 * We ignore any "ec" data since it might be in the head or
577 * the tail, and we really don't need to deal with it.
578 * Note that buf->head[0].iov_len may indicate the available
579 * head buffer space rather than that actually occupied.
580 */
581 movelen = min_t(unsigned int, buf->head[0].iov_len, len);
582 movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip;
583 BUG_ON(offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen >
584 buf->head[0].iov_len);
585 memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen);
586 buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip;
587 buf->len = len - GSS_KRB5_TOK_HDR_LEN + headskip;
588
589 /* Trim off the trailing "extra count" and checksum blob */
590 xdr_buf_trim(buf, ec + GSS_KRB5_TOK_HDR_LEN + tailskip);
591
592 *align = XDR_QUADLEN(GSS_KRB5_TOK_HDR_LEN + headskip);
593 *slack = *align + XDR_QUADLEN(ec + GSS_KRB5_TOK_HDR_LEN + tailskip);
594 return GSS_S_COMPLETE;
595 }
596
597 u32
598 gss_wrap_kerberos(struct gss_ctx *gctx, int offset,
599 struct xdr_buf *buf, struct page **pages)
600 {
601 struct krb5_ctx *kctx = gctx->internal_ctx_id;
602
603 switch (kctx->enctype) {
604 default:
605 BUG();
606 case ENCTYPE_DES_CBC_RAW:
607 case ENCTYPE_DES3_CBC_RAW:
608 case ENCTYPE_ARCFOUR_HMAC:
609 return gss_wrap_kerberos_v1(kctx, offset, buf, pages);
610 case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
611 case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
612 return gss_wrap_kerberos_v2(kctx, offset, buf, pages);
613 }
614 }
615
616 u32
617 gss_unwrap_kerberos(struct gss_ctx *gctx, int offset,
618 int len, struct xdr_buf *buf)
619 {
620 struct krb5_ctx *kctx = gctx->internal_ctx_id;
621
622 switch (kctx->enctype) {
623 default:
624 BUG();
625 case ENCTYPE_DES_CBC_RAW:
626 case ENCTYPE_DES3_CBC_RAW:
627 case ENCTYPE_ARCFOUR_HMAC:
628 return gss_unwrap_kerberos_v1(kctx, offset, len, buf,
629 &gctx->slack, &gctx->align);
630 case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
631 case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
632 return gss_unwrap_kerberos_v2(kctx, offset, len, buf,
633 &gctx->slack, &gctx->align);
634 }
635 }