]> git.ipfire.org Git - thirdparty/linux.git/blob - net/tls/tls_sw.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / net / tls / tls_sw.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
47 {
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
51 int elt = 0;
52
53 if (unlikely(recursion_level >= 24))
54 return -EMSGSIZE;
55
56 if (chunk > 0) {
57 if (chunk > len)
58 chunk = len;
59 elt++;
60 len -= chunk;
61 if (len == 0)
62 return elt;
63 offset += chunk;
64 }
65
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67 int end;
68
69 WARN_ON(start > offset + len);
70
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72 chunk = end - offset;
73 if (chunk > 0) {
74 if (chunk > len)
75 chunk = len;
76 elt++;
77 len -= chunk;
78 if (len == 0)
79 return elt;
80 offset += chunk;
81 }
82 start = end;
83 }
84
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
87 int end, ret;
88
89 WARN_ON(start > offset + len);
90
91 end = start + frag_iter->len;
92 chunk = end - offset;
93 if (chunk > 0) {
94 if (chunk > len)
95 chunk = len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
97 recursion_level + 1);
98 if (unlikely(ret < 0))
99 return ret;
100 elt += ret;
101 len -= chunk;
102 if (len == 0)
103 return elt;
104 offset += chunk;
105 }
106 start = end;
107 }
108 }
109 BUG_ON(len);
110 return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
115 */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118 return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 struct strp_msg *rxm = strp_msg(skb);
125 int sub = 0;
126
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
130 int err;
131 int back = 17;
132
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
135 return -EBADMSG;
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
138 &content_type, 1);
139 if (err)
140 return err;
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
160 struct sk_buff *skb;
161 unsigned int pages;
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
168
169 /* Propagate if there was an err */
170 if (err) {
171 if (err == -EBADMSG)
172 TLS_INC_STATS(sock_net(skb->sk),
173 LINUX_MIB_TLSDECRYPTERROR);
174 ctx->async_wait.err = err;
175 tls_err_abort(skb->sk, err);
176 } else {
177 struct strp_msg *rxm = strp_msg(skb);
178 int pad;
179
180 pad = padding_length(ctx, prot, skb);
181 if (pad < 0) {
182 ctx->async_wait.err = pad;
183 tls_err_abort(skb->sk, pad);
184 } else {
185 rxm->full_len -= pad;
186 rxm->offset += prot->prepend_size;
187 rxm->full_len -= prot->overhead_size;
188 }
189 }
190
191 /* After using skb->sk to propagate sk through crypto async callback
192 * we need to NULL it again.
193 */
194 skb->sk = NULL;
195
196
197 /* Free the destination pages if skb was not decrypted inplace */
198 if (sgout != sgin) {
199 /* Skip the first S/G entry as it points to AAD */
200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201 if (!sg)
202 break;
203 put_page(sg_page(sg));
204 }
205 }
206
207 kfree(aead_req);
208
209 pending = atomic_dec_return(&ctx->decrypt_pending);
210
211 if (!pending && READ_ONCE(ctx->async_notify))
212 complete(&ctx->async_wait.completion);
213 }
214
215 static int tls_do_decryption(struct sock *sk,
216 struct sk_buff *skb,
217 struct scatterlist *sgin,
218 struct scatterlist *sgout,
219 char *iv_recv,
220 size_t data_len,
221 struct aead_request *aead_req,
222 bool async)
223 {
224 struct tls_context *tls_ctx = tls_get_ctx(sk);
225 struct tls_prot_info *prot = &tls_ctx->prot_info;
226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
227 int ret;
228
229 aead_request_set_tfm(aead_req, ctx->aead_recv);
230 aead_request_set_ad(aead_req, prot->aad_size);
231 aead_request_set_crypt(aead_req, sgin, sgout,
232 data_len + prot->tag_size,
233 (u8 *)iv_recv);
234
235 if (async) {
236 /* Using skb->sk to push sk through to crypto async callback
237 * handler. This allows propagating errors up to the socket
238 * if needed. It _must_ be cleared in the async handler
239 * before consume_skb is called. We _know_ skb->sk is NULL
240 * because it is a clone from strparser.
241 */
242 skb->sk = sk;
243 aead_request_set_callback(aead_req,
244 CRYPTO_TFM_REQ_MAY_BACKLOG,
245 tls_decrypt_done, skb);
246 atomic_inc(&ctx->decrypt_pending);
247 } else {
248 aead_request_set_callback(aead_req,
249 CRYPTO_TFM_REQ_MAY_BACKLOG,
250 crypto_req_done, &ctx->async_wait);
251 }
252
253 ret = crypto_aead_decrypt(aead_req);
254 if (ret == -EINPROGRESS) {
255 if (async)
256 return ret;
257
258 ret = crypto_wait_req(ret, &ctx->async_wait);
259 }
260
261 if (async)
262 atomic_dec(&ctx->decrypt_pending);
263
264 return ret;
265 }
266
267 static void tls_trim_both_msgs(struct sock *sk, int target_size)
268 {
269 struct tls_context *tls_ctx = tls_get_ctx(sk);
270 struct tls_prot_info *prot = &tls_ctx->prot_info;
271 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
272 struct tls_rec *rec = ctx->open_rec;
273
274 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
275 if (target_size > 0)
276 target_size += prot->overhead_size;
277 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
278 }
279
280 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
281 {
282 struct tls_context *tls_ctx = tls_get_ctx(sk);
283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 struct tls_rec *rec = ctx->open_rec;
285 struct sk_msg *msg_en = &rec->msg_encrypted;
286
287 return sk_msg_alloc(sk, msg_en, len, 0);
288 }
289
290 static int tls_clone_plaintext_msg(struct sock *sk, int required)
291 {
292 struct tls_context *tls_ctx = tls_get_ctx(sk);
293 struct tls_prot_info *prot = &tls_ctx->prot_info;
294 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
295 struct tls_rec *rec = ctx->open_rec;
296 struct sk_msg *msg_pl = &rec->msg_plaintext;
297 struct sk_msg *msg_en = &rec->msg_encrypted;
298 int skip, len;
299
300 /* We add page references worth len bytes from encrypted sg
301 * at the end of plaintext sg. It is guaranteed that msg_en
302 * has enough required room (ensured by caller).
303 */
304 len = required - msg_pl->sg.size;
305
306 /* Skip initial bytes in msg_en's data to be able to use
307 * same offset of both plain and encrypted data.
308 */
309 skip = prot->prepend_size + msg_pl->sg.size;
310
311 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
312 }
313
314 static struct tls_rec *tls_get_rec(struct sock *sk)
315 {
316 struct tls_context *tls_ctx = tls_get_ctx(sk);
317 struct tls_prot_info *prot = &tls_ctx->prot_info;
318 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
319 struct sk_msg *msg_pl, *msg_en;
320 struct tls_rec *rec;
321 int mem_size;
322
323 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
324
325 rec = kzalloc(mem_size, sk->sk_allocation);
326 if (!rec)
327 return NULL;
328
329 msg_pl = &rec->msg_plaintext;
330 msg_en = &rec->msg_encrypted;
331
332 sk_msg_init(msg_pl);
333 sk_msg_init(msg_en);
334
335 sg_init_table(rec->sg_aead_in, 2);
336 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
337 sg_unmark_end(&rec->sg_aead_in[1]);
338
339 sg_init_table(rec->sg_aead_out, 2);
340 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
341 sg_unmark_end(&rec->sg_aead_out[1]);
342
343 return rec;
344 }
345
346 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
347 {
348 sk_msg_free(sk, &rec->msg_encrypted);
349 sk_msg_free(sk, &rec->msg_plaintext);
350 kfree(rec);
351 }
352
353 static void tls_free_open_rec(struct sock *sk)
354 {
355 struct tls_context *tls_ctx = tls_get_ctx(sk);
356 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
357 struct tls_rec *rec = ctx->open_rec;
358
359 if (rec) {
360 tls_free_rec(sk, rec);
361 ctx->open_rec = NULL;
362 }
363 }
364
365 int tls_tx_records(struct sock *sk, int flags)
366 {
367 struct tls_context *tls_ctx = tls_get_ctx(sk);
368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 struct tls_rec *rec, *tmp;
370 struct sk_msg *msg_en;
371 int tx_flags, rc = 0;
372
373 if (tls_is_partially_sent_record(tls_ctx)) {
374 rec = list_first_entry(&ctx->tx_list,
375 struct tls_rec, list);
376
377 if (flags == -1)
378 tx_flags = rec->tx_flags;
379 else
380 tx_flags = flags;
381
382 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
383 if (rc)
384 goto tx_err;
385
386 /* Full record has been transmitted.
387 * Remove the head of tx_list
388 */
389 list_del(&rec->list);
390 sk_msg_free(sk, &rec->msg_plaintext);
391 kfree(rec);
392 }
393
394 /* Tx all ready records */
395 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
396 if (READ_ONCE(rec->tx_ready)) {
397 if (flags == -1)
398 tx_flags = rec->tx_flags;
399 else
400 tx_flags = flags;
401
402 msg_en = &rec->msg_encrypted;
403 rc = tls_push_sg(sk, tls_ctx,
404 &msg_en->sg.data[msg_en->sg.curr],
405 0, tx_flags);
406 if (rc)
407 goto tx_err;
408
409 list_del(&rec->list);
410 sk_msg_free(sk, &rec->msg_plaintext);
411 kfree(rec);
412 } else {
413 break;
414 }
415 }
416
417 tx_err:
418 if (rc < 0 && rc != -EAGAIN)
419 tls_err_abort(sk, EBADMSG);
420
421 return rc;
422 }
423
424 static void tls_encrypt_done(struct crypto_async_request *req, int err)
425 {
426 struct aead_request *aead_req = (struct aead_request *)req;
427 struct sock *sk = req->data;
428 struct tls_context *tls_ctx = tls_get_ctx(sk);
429 struct tls_prot_info *prot = &tls_ctx->prot_info;
430 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
431 struct scatterlist *sge;
432 struct sk_msg *msg_en;
433 struct tls_rec *rec;
434 bool ready = false;
435 int pending;
436
437 rec = container_of(aead_req, struct tls_rec, aead_req);
438 msg_en = &rec->msg_encrypted;
439
440 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
441 sge->offset -= prot->prepend_size;
442 sge->length += prot->prepend_size;
443
444 /* Check if error is previously set on socket */
445 if (err || sk->sk_err) {
446 rec = NULL;
447
448 /* If err is already set on socket, return the same code */
449 if (sk->sk_err) {
450 ctx->async_wait.err = sk->sk_err;
451 } else {
452 ctx->async_wait.err = err;
453 tls_err_abort(sk, err);
454 }
455 }
456
457 if (rec) {
458 struct tls_rec *first_rec;
459
460 /* Mark the record as ready for transmission */
461 smp_store_mb(rec->tx_ready, true);
462
463 /* If received record is at head of tx_list, schedule tx */
464 first_rec = list_first_entry(&ctx->tx_list,
465 struct tls_rec, list);
466 if (rec == first_rec)
467 ready = true;
468 }
469
470 pending = atomic_dec_return(&ctx->encrypt_pending);
471
472 if (!pending && READ_ONCE(ctx->async_notify))
473 complete(&ctx->async_wait.completion);
474
475 if (!ready)
476 return;
477
478 /* Schedule the transmission */
479 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
480 schedule_delayed_work(&ctx->tx_work.work, 1);
481 }
482
483 static int tls_do_encryption(struct sock *sk,
484 struct tls_context *tls_ctx,
485 struct tls_sw_context_tx *ctx,
486 struct aead_request *aead_req,
487 size_t data_len, u32 start)
488 {
489 struct tls_prot_info *prot = &tls_ctx->prot_info;
490 struct tls_rec *rec = ctx->open_rec;
491 struct sk_msg *msg_en = &rec->msg_encrypted;
492 struct scatterlist *sge = sk_msg_elem(msg_en, start);
493 int rc, iv_offset = 0;
494
495 /* For CCM based ciphers, first byte of IV is a constant */
496 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
497 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
498 iv_offset = 1;
499 }
500
501 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
502 prot->iv_size + prot->salt_size);
503
504 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
505
506 sge->offset += prot->prepend_size;
507 sge->length -= prot->prepend_size;
508
509 msg_en->sg.curr = start;
510
511 aead_request_set_tfm(aead_req, ctx->aead_send);
512 aead_request_set_ad(aead_req, prot->aad_size);
513 aead_request_set_crypt(aead_req, rec->sg_aead_in,
514 rec->sg_aead_out,
515 data_len, rec->iv_data);
516
517 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
518 tls_encrypt_done, sk);
519
520 /* Add the record in tx_list */
521 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
522 atomic_inc(&ctx->encrypt_pending);
523
524 rc = crypto_aead_encrypt(aead_req);
525 if (!rc || rc != -EINPROGRESS) {
526 atomic_dec(&ctx->encrypt_pending);
527 sge->offset -= prot->prepend_size;
528 sge->length += prot->prepend_size;
529 }
530
531 if (!rc) {
532 WRITE_ONCE(rec->tx_ready, true);
533 } else if (rc != -EINPROGRESS) {
534 list_del(&rec->list);
535 return rc;
536 }
537
538 /* Unhook the record from context if encryption is not failure */
539 ctx->open_rec = NULL;
540 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
541 return rc;
542 }
543
544 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
545 struct tls_rec **to, struct sk_msg *msg_opl,
546 struct sk_msg *msg_oen, u32 split_point,
547 u32 tx_overhead_size, u32 *orig_end)
548 {
549 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
550 struct scatterlist *sge, *osge, *nsge;
551 u32 orig_size = msg_opl->sg.size;
552 struct scatterlist tmp = { };
553 struct sk_msg *msg_npl;
554 struct tls_rec *new;
555 int ret;
556
557 new = tls_get_rec(sk);
558 if (!new)
559 return -ENOMEM;
560 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
561 tx_overhead_size, 0);
562 if (ret < 0) {
563 tls_free_rec(sk, new);
564 return ret;
565 }
566
567 *orig_end = msg_opl->sg.end;
568 i = msg_opl->sg.start;
569 sge = sk_msg_elem(msg_opl, i);
570 while (apply && sge->length) {
571 if (sge->length > apply) {
572 u32 len = sge->length - apply;
573
574 get_page(sg_page(sge));
575 sg_set_page(&tmp, sg_page(sge), len,
576 sge->offset + apply);
577 sge->length = apply;
578 bytes += apply;
579 apply = 0;
580 } else {
581 apply -= sge->length;
582 bytes += sge->length;
583 }
584
585 sk_msg_iter_var_next(i);
586 if (i == msg_opl->sg.end)
587 break;
588 sge = sk_msg_elem(msg_opl, i);
589 }
590
591 msg_opl->sg.end = i;
592 msg_opl->sg.curr = i;
593 msg_opl->sg.copybreak = 0;
594 msg_opl->apply_bytes = 0;
595 msg_opl->sg.size = bytes;
596
597 msg_npl = &new->msg_plaintext;
598 msg_npl->apply_bytes = apply;
599 msg_npl->sg.size = orig_size - bytes;
600
601 j = msg_npl->sg.start;
602 nsge = sk_msg_elem(msg_npl, j);
603 if (tmp.length) {
604 memcpy(nsge, &tmp, sizeof(*nsge));
605 sk_msg_iter_var_next(j);
606 nsge = sk_msg_elem(msg_npl, j);
607 }
608
609 osge = sk_msg_elem(msg_opl, i);
610 while (osge->length) {
611 memcpy(nsge, osge, sizeof(*nsge));
612 sg_unmark_end(nsge);
613 sk_msg_iter_var_next(i);
614 sk_msg_iter_var_next(j);
615 if (i == *orig_end)
616 break;
617 osge = sk_msg_elem(msg_opl, i);
618 nsge = sk_msg_elem(msg_npl, j);
619 }
620
621 msg_npl->sg.end = j;
622 msg_npl->sg.curr = j;
623 msg_npl->sg.copybreak = 0;
624
625 *to = new;
626 return 0;
627 }
628
629 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
630 struct tls_rec *from, u32 orig_end)
631 {
632 struct sk_msg *msg_npl = &from->msg_plaintext;
633 struct sk_msg *msg_opl = &to->msg_plaintext;
634 struct scatterlist *osge, *nsge;
635 u32 i, j;
636
637 i = msg_opl->sg.end;
638 sk_msg_iter_var_prev(i);
639 j = msg_npl->sg.start;
640
641 osge = sk_msg_elem(msg_opl, i);
642 nsge = sk_msg_elem(msg_npl, j);
643
644 if (sg_page(osge) == sg_page(nsge) &&
645 osge->offset + osge->length == nsge->offset) {
646 osge->length += nsge->length;
647 put_page(sg_page(nsge));
648 }
649
650 msg_opl->sg.end = orig_end;
651 msg_opl->sg.curr = orig_end;
652 msg_opl->sg.copybreak = 0;
653 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
654 msg_opl->sg.size += msg_npl->sg.size;
655
656 sk_msg_free(sk, &to->msg_encrypted);
657 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
658
659 kfree(from);
660 }
661
662 static int tls_push_record(struct sock *sk, int flags,
663 unsigned char record_type)
664 {
665 struct tls_context *tls_ctx = tls_get_ctx(sk);
666 struct tls_prot_info *prot = &tls_ctx->prot_info;
667 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
668 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
669 u32 i, split_point, uninitialized_var(orig_end);
670 struct sk_msg *msg_pl, *msg_en;
671 struct aead_request *req;
672 bool split;
673 int rc;
674
675 if (!rec)
676 return 0;
677
678 msg_pl = &rec->msg_plaintext;
679 msg_en = &rec->msg_encrypted;
680
681 split_point = msg_pl->apply_bytes;
682 split = split_point && split_point < msg_pl->sg.size;
683 if (unlikely((!split &&
684 msg_pl->sg.size +
685 prot->overhead_size > msg_en->sg.size) ||
686 (split &&
687 split_point +
688 prot->overhead_size > msg_en->sg.size))) {
689 split = true;
690 split_point = msg_en->sg.size;
691 }
692 if (split) {
693 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
694 split_point, prot->overhead_size,
695 &orig_end);
696 if (rc < 0)
697 return rc;
698 /* This can happen if above tls_split_open_record allocates
699 * a single large encryption buffer instead of two smaller
700 * ones. In this case adjust pointers and continue without
701 * split.
702 */
703 if (!msg_pl->sg.size) {
704 tls_merge_open_record(sk, rec, tmp, orig_end);
705 msg_pl = &rec->msg_plaintext;
706 msg_en = &rec->msg_encrypted;
707 split = false;
708 }
709 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
710 prot->overhead_size);
711 }
712
713 rec->tx_flags = flags;
714 req = &rec->aead_req;
715
716 i = msg_pl->sg.end;
717 sk_msg_iter_var_prev(i);
718
719 rec->content_type = record_type;
720 if (prot->version == TLS_1_3_VERSION) {
721 /* Add content type to end of message. No padding added */
722 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
723 sg_mark_end(&rec->sg_content_type);
724 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
725 &rec->sg_content_type);
726 } else {
727 sg_mark_end(sk_msg_elem(msg_pl, i));
728 }
729
730 if (msg_pl->sg.end < msg_pl->sg.start) {
731 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
732 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
733 msg_pl->sg.data);
734 }
735
736 i = msg_pl->sg.start;
737 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
738
739 i = msg_en->sg.end;
740 sk_msg_iter_var_prev(i);
741 sg_mark_end(sk_msg_elem(msg_en, i));
742
743 i = msg_en->sg.start;
744 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
745
746 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
747 tls_ctx->tx.rec_seq, prot->rec_seq_size,
748 record_type, prot->version);
749
750 tls_fill_prepend(tls_ctx,
751 page_address(sg_page(&msg_en->sg.data[i])) +
752 msg_en->sg.data[i].offset,
753 msg_pl->sg.size + prot->tail_size,
754 record_type, prot->version);
755
756 tls_ctx->pending_open_record_frags = false;
757
758 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
759 msg_pl->sg.size + prot->tail_size, i);
760 if (rc < 0) {
761 if (rc != -EINPROGRESS) {
762 tls_err_abort(sk, EBADMSG);
763 if (split) {
764 tls_ctx->pending_open_record_frags = true;
765 tls_merge_open_record(sk, rec, tmp, orig_end);
766 }
767 }
768 ctx->async_capable = 1;
769 return rc;
770 } else if (split) {
771 msg_pl = &tmp->msg_plaintext;
772 msg_en = &tmp->msg_encrypted;
773 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
774 tls_ctx->pending_open_record_frags = true;
775 ctx->open_rec = tmp;
776 }
777
778 return tls_tx_records(sk, flags);
779 }
780
781 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
782 bool full_record, u8 record_type,
783 size_t *copied, int flags)
784 {
785 struct tls_context *tls_ctx = tls_get_ctx(sk);
786 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
787 struct sk_msg msg_redir = { };
788 struct sk_psock *psock;
789 struct sock *sk_redir;
790 struct tls_rec *rec;
791 bool enospc, policy;
792 int err = 0, send;
793 u32 delta = 0;
794
795 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
796 psock = sk_psock_get(sk);
797 if (!psock || !policy) {
798 err = tls_push_record(sk, flags, record_type);
799 if (err && err != -EINPROGRESS) {
800 *copied -= sk_msg_free(sk, msg);
801 tls_free_open_rec(sk);
802 }
803 return err;
804 }
805 more_data:
806 enospc = sk_msg_full(msg);
807 if (psock->eval == __SK_NONE) {
808 delta = msg->sg.size;
809 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
810 delta -= msg->sg.size;
811 }
812 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
813 !enospc && !full_record) {
814 err = -ENOSPC;
815 goto out_err;
816 }
817 msg->cork_bytes = 0;
818 send = msg->sg.size;
819 if (msg->apply_bytes && msg->apply_bytes < send)
820 send = msg->apply_bytes;
821
822 switch (psock->eval) {
823 case __SK_PASS:
824 err = tls_push_record(sk, flags, record_type);
825 if (err && err != -EINPROGRESS) {
826 *copied -= sk_msg_free(sk, msg);
827 tls_free_open_rec(sk);
828 goto out_err;
829 }
830 break;
831 case __SK_REDIRECT:
832 sk_redir = psock->sk_redir;
833 memcpy(&msg_redir, msg, sizeof(*msg));
834 if (msg->apply_bytes < send)
835 msg->apply_bytes = 0;
836 else
837 msg->apply_bytes -= send;
838 sk_msg_return_zero(sk, msg, send);
839 msg->sg.size -= send;
840 release_sock(sk);
841 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
842 lock_sock(sk);
843 if (err < 0) {
844 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
845 msg->sg.size = 0;
846 }
847 if (msg->sg.size == 0)
848 tls_free_open_rec(sk);
849 break;
850 case __SK_DROP:
851 default:
852 sk_msg_free_partial(sk, msg, send);
853 if (msg->apply_bytes < send)
854 msg->apply_bytes = 0;
855 else
856 msg->apply_bytes -= send;
857 if (msg->sg.size == 0)
858 tls_free_open_rec(sk);
859 *copied -= (send + delta);
860 err = -EACCES;
861 }
862
863 if (likely(!err)) {
864 bool reset_eval = !ctx->open_rec;
865
866 rec = ctx->open_rec;
867 if (rec) {
868 msg = &rec->msg_plaintext;
869 if (!msg->apply_bytes)
870 reset_eval = true;
871 }
872 if (reset_eval) {
873 psock->eval = __SK_NONE;
874 if (psock->sk_redir) {
875 sock_put(psock->sk_redir);
876 psock->sk_redir = NULL;
877 }
878 }
879 if (rec)
880 goto more_data;
881 }
882 out_err:
883 sk_psock_put(sk, psock);
884 return err;
885 }
886
887 static int tls_sw_push_pending_record(struct sock *sk, int flags)
888 {
889 struct tls_context *tls_ctx = tls_get_ctx(sk);
890 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
891 struct tls_rec *rec = ctx->open_rec;
892 struct sk_msg *msg_pl;
893 size_t copied;
894
895 if (!rec)
896 return 0;
897
898 msg_pl = &rec->msg_plaintext;
899 copied = msg_pl->sg.size;
900 if (!copied)
901 return 0;
902
903 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
904 &copied, flags);
905 }
906
907 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
908 {
909 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
910 struct tls_context *tls_ctx = tls_get_ctx(sk);
911 struct tls_prot_info *prot = &tls_ctx->prot_info;
912 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
913 bool async_capable = ctx->async_capable;
914 unsigned char record_type = TLS_RECORD_TYPE_DATA;
915 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
916 bool eor = !(msg->msg_flags & MSG_MORE);
917 size_t try_to_copy, copied = 0;
918 struct sk_msg *msg_pl, *msg_en;
919 struct tls_rec *rec;
920 int required_size;
921 int num_async = 0;
922 bool full_record;
923 int record_room;
924 int num_zc = 0;
925 int orig_size;
926 int ret = 0;
927
928 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
929 return -EOPNOTSUPP;
930
931 mutex_lock(&tls_ctx->tx_lock);
932 lock_sock(sk);
933
934 if (unlikely(msg->msg_controllen)) {
935 ret = tls_proccess_cmsg(sk, msg, &record_type);
936 if (ret) {
937 if (ret == -EINPROGRESS)
938 num_async++;
939 else if (ret != -EAGAIN)
940 goto send_end;
941 }
942 }
943
944 while (msg_data_left(msg)) {
945 if (sk->sk_err) {
946 ret = -sk->sk_err;
947 goto send_end;
948 }
949
950 if (ctx->open_rec)
951 rec = ctx->open_rec;
952 else
953 rec = ctx->open_rec = tls_get_rec(sk);
954 if (!rec) {
955 ret = -ENOMEM;
956 goto send_end;
957 }
958
959 msg_pl = &rec->msg_plaintext;
960 msg_en = &rec->msg_encrypted;
961
962 orig_size = msg_pl->sg.size;
963 full_record = false;
964 try_to_copy = msg_data_left(msg);
965 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
966 if (try_to_copy >= record_room) {
967 try_to_copy = record_room;
968 full_record = true;
969 }
970
971 required_size = msg_pl->sg.size + try_to_copy +
972 prot->overhead_size;
973
974 if (!sk_stream_memory_free(sk))
975 goto wait_for_sndbuf;
976
977 alloc_encrypted:
978 ret = tls_alloc_encrypted_msg(sk, required_size);
979 if (ret) {
980 if (ret != -ENOSPC)
981 goto wait_for_memory;
982
983 /* Adjust try_to_copy according to the amount that was
984 * actually allocated. The difference is due
985 * to max sg elements limit
986 */
987 try_to_copy -= required_size - msg_en->sg.size;
988 full_record = true;
989 }
990
991 if (!is_kvec && (full_record || eor) && !async_capable) {
992 u32 first = msg_pl->sg.end;
993
994 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
995 msg_pl, try_to_copy);
996 if (ret)
997 goto fallback_to_reg_send;
998
999 num_zc++;
1000 copied += try_to_copy;
1001
1002 sk_msg_sg_copy_set(msg_pl, first);
1003 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1004 record_type, &copied,
1005 msg->msg_flags);
1006 if (ret) {
1007 if (ret == -EINPROGRESS)
1008 num_async++;
1009 else if (ret == -ENOMEM)
1010 goto wait_for_memory;
1011 else if (ctx->open_rec && ret == -ENOSPC)
1012 goto rollback_iter;
1013 else if (ret != -EAGAIN)
1014 goto send_end;
1015 }
1016 continue;
1017 rollback_iter:
1018 copied -= try_to_copy;
1019 sk_msg_sg_copy_clear(msg_pl, first);
1020 iov_iter_revert(&msg->msg_iter,
1021 msg_pl->sg.size - orig_size);
1022 fallback_to_reg_send:
1023 sk_msg_trim(sk, msg_pl, orig_size);
1024 }
1025
1026 required_size = msg_pl->sg.size + try_to_copy;
1027
1028 ret = tls_clone_plaintext_msg(sk, required_size);
1029 if (ret) {
1030 if (ret != -ENOSPC)
1031 goto send_end;
1032
1033 /* Adjust try_to_copy according to the amount that was
1034 * actually allocated. The difference is due
1035 * to max sg elements limit
1036 */
1037 try_to_copy -= required_size - msg_pl->sg.size;
1038 full_record = true;
1039 sk_msg_trim(sk, msg_en,
1040 msg_pl->sg.size + prot->overhead_size);
1041 }
1042
1043 if (try_to_copy) {
1044 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1045 msg_pl, try_to_copy);
1046 if (ret < 0)
1047 goto trim_sgl;
1048 }
1049
1050 /* Open records defined only if successfully copied, otherwise
1051 * we would trim the sg but not reset the open record frags.
1052 */
1053 tls_ctx->pending_open_record_frags = true;
1054 copied += try_to_copy;
1055 if (full_record || eor) {
1056 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1057 record_type, &copied,
1058 msg->msg_flags);
1059 if (ret) {
1060 if (ret == -EINPROGRESS)
1061 num_async++;
1062 else if (ret == -ENOMEM)
1063 goto wait_for_memory;
1064 else if (ret != -EAGAIN) {
1065 if (ret == -ENOSPC)
1066 ret = 0;
1067 goto send_end;
1068 }
1069 }
1070 }
1071
1072 continue;
1073
1074 wait_for_sndbuf:
1075 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1076 wait_for_memory:
1077 ret = sk_stream_wait_memory(sk, &timeo);
1078 if (ret) {
1079 trim_sgl:
1080 if (ctx->open_rec)
1081 tls_trim_both_msgs(sk, orig_size);
1082 goto send_end;
1083 }
1084
1085 if (ctx->open_rec && msg_en->sg.size < required_size)
1086 goto alloc_encrypted;
1087 }
1088
1089 if (!num_async) {
1090 goto send_end;
1091 } else if (num_zc) {
1092 /* Wait for pending encryptions to get completed */
1093 smp_store_mb(ctx->async_notify, true);
1094
1095 if (atomic_read(&ctx->encrypt_pending))
1096 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1097 else
1098 reinit_completion(&ctx->async_wait.completion);
1099
1100 WRITE_ONCE(ctx->async_notify, false);
1101
1102 if (ctx->async_wait.err) {
1103 ret = ctx->async_wait.err;
1104 copied = 0;
1105 }
1106 }
1107
1108 /* Transmit if any encryptions have completed */
1109 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1110 cancel_delayed_work(&ctx->tx_work.work);
1111 tls_tx_records(sk, msg->msg_flags);
1112 }
1113
1114 send_end:
1115 ret = sk_stream_error(sk, msg->msg_flags, ret);
1116
1117 release_sock(sk);
1118 mutex_unlock(&tls_ctx->tx_lock);
1119 return copied ? copied : ret;
1120 }
1121
1122 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1123 int offset, size_t size, int flags)
1124 {
1125 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1126 struct tls_context *tls_ctx = tls_get_ctx(sk);
1127 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1128 struct tls_prot_info *prot = &tls_ctx->prot_info;
1129 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1130 struct sk_msg *msg_pl;
1131 struct tls_rec *rec;
1132 int num_async = 0;
1133 size_t copied = 0;
1134 bool full_record;
1135 int record_room;
1136 int ret = 0;
1137 bool eor;
1138
1139 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1140 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1141
1142 /* Call the sk_stream functions to manage the sndbuf mem. */
1143 while (size > 0) {
1144 size_t copy, required_size;
1145
1146 if (sk->sk_err) {
1147 ret = -sk->sk_err;
1148 goto sendpage_end;
1149 }
1150
1151 if (ctx->open_rec)
1152 rec = ctx->open_rec;
1153 else
1154 rec = ctx->open_rec = tls_get_rec(sk);
1155 if (!rec) {
1156 ret = -ENOMEM;
1157 goto sendpage_end;
1158 }
1159
1160 msg_pl = &rec->msg_plaintext;
1161
1162 full_record = false;
1163 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1164 copy = size;
1165 if (copy >= record_room) {
1166 copy = record_room;
1167 full_record = true;
1168 }
1169
1170 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1171
1172 if (!sk_stream_memory_free(sk))
1173 goto wait_for_sndbuf;
1174 alloc_payload:
1175 ret = tls_alloc_encrypted_msg(sk, required_size);
1176 if (ret) {
1177 if (ret != -ENOSPC)
1178 goto wait_for_memory;
1179
1180 /* Adjust copy according to the amount that was
1181 * actually allocated. The difference is due
1182 * to max sg elements limit
1183 */
1184 copy -= required_size - msg_pl->sg.size;
1185 full_record = true;
1186 }
1187
1188 sk_msg_page_add(msg_pl, page, copy, offset);
1189 sk_mem_charge(sk, copy);
1190
1191 offset += copy;
1192 size -= copy;
1193 copied += copy;
1194
1195 tls_ctx->pending_open_record_frags = true;
1196 if (full_record || eor || sk_msg_full(msg_pl)) {
1197 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1198 record_type, &copied, flags);
1199 if (ret) {
1200 if (ret == -EINPROGRESS)
1201 num_async++;
1202 else if (ret == -ENOMEM)
1203 goto wait_for_memory;
1204 else if (ret != -EAGAIN) {
1205 if (ret == -ENOSPC)
1206 ret = 0;
1207 goto sendpage_end;
1208 }
1209 }
1210 }
1211 continue;
1212 wait_for_sndbuf:
1213 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1214 wait_for_memory:
1215 ret = sk_stream_wait_memory(sk, &timeo);
1216 if (ret) {
1217 if (ctx->open_rec)
1218 tls_trim_both_msgs(sk, msg_pl->sg.size);
1219 goto sendpage_end;
1220 }
1221
1222 if (ctx->open_rec)
1223 goto alloc_payload;
1224 }
1225
1226 if (num_async) {
1227 /* Transmit if any encryptions have completed */
1228 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1229 cancel_delayed_work(&ctx->tx_work.work);
1230 tls_tx_records(sk, flags);
1231 }
1232 }
1233 sendpage_end:
1234 ret = sk_stream_error(sk, flags, ret);
1235 return copied ? copied : ret;
1236 }
1237
1238 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1239 int offset, size_t size, int flags)
1240 {
1241 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1242 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1243 MSG_NO_SHARED_FRAGS))
1244 return -EOPNOTSUPP;
1245
1246 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1247 }
1248
1249 int tls_sw_sendpage(struct sock *sk, struct page *page,
1250 int offset, size_t size, int flags)
1251 {
1252 struct tls_context *tls_ctx = tls_get_ctx(sk);
1253 int ret;
1254
1255 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1256 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1257 return -EOPNOTSUPP;
1258
1259 mutex_lock(&tls_ctx->tx_lock);
1260 lock_sock(sk);
1261 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1262 release_sock(sk);
1263 mutex_unlock(&tls_ctx->tx_lock);
1264 return ret;
1265 }
1266
1267 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1268 int flags, long timeo, int *err)
1269 {
1270 struct tls_context *tls_ctx = tls_get_ctx(sk);
1271 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1272 struct sk_buff *skb;
1273 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1274
1275 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1276 if (sk->sk_err) {
1277 *err = sock_error(sk);
1278 return NULL;
1279 }
1280
1281 if (sk->sk_shutdown & RCV_SHUTDOWN)
1282 return NULL;
1283
1284 if (sock_flag(sk, SOCK_DONE))
1285 return NULL;
1286
1287 if ((flags & MSG_DONTWAIT) || !timeo) {
1288 *err = -EAGAIN;
1289 return NULL;
1290 }
1291
1292 add_wait_queue(sk_sleep(sk), &wait);
1293 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1294 sk_wait_event(sk, &timeo,
1295 ctx->recv_pkt != skb ||
1296 !sk_psock_queue_empty(psock),
1297 &wait);
1298 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1299 remove_wait_queue(sk_sleep(sk), &wait);
1300
1301 /* Handle signals */
1302 if (signal_pending(current)) {
1303 *err = sock_intr_errno(timeo);
1304 return NULL;
1305 }
1306 }
1307
1308 return skb;
1309 }
1310
1311 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1312 int length, int *pages_used,
1313 unsigned int *size_used,
1314 struct scatterlist *to,
1315 int to_max_pages)
1316 {
1317 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1318 struct page *pages[MAX_SKB_FRAGS];
1319 unsigned int size = *size_used;
1320 ssize_t copied, use;
1321 size_t offset;
1322
1323 while (length > 0) {
1324 i = 0;
1325 maxpages = to_max_pages - num_elem;
1326 if (maxpages == 0) {
1327 rc = -EFAULT;
1328 goto out;
1329 }
1330 copied = iov_iter_get_pages(from, pages,
1331 length,
1332 maxpages, &offset);
1333 if (copied <= 0) {
1334 rc = -EFAULT;
1335 goto out;
1336 }
1337
1338 iov_iter_advance(from, copied);
1339
1340 length -= copied;
1341 size += copied;
1342 while (copied) {
1343 use = min_t(int, copied, PAGE_SIZE - offset);
1344
1345 sg_set_page(&to[num_elem],
1346 pages[i], use, offset);
1347 sg_unmark_end(&to[num_elem]);
1348 /* We do not uncharge memory from this API */
1349
1350 offset = 0;
1351 copied -= use;
1352
1353 i++;
1354 num_elem++;
1355 }
1356 }
1357 /* Mark the end in the last sg entry if newly added */
1358 if (num_elem > *pages_used)
1359 sg_mark_end(&to[num_elem - 1]);
1360 out:
1361 if (rc)
1362 iov_iter_revert(from, size - *size_used);
1363 *size_used = size;
1364 *pages_used = num_elem;
1365
1366 return rc;
1367 }
1368
1369 /* This function decrypts the input skb into either out_iov or in out_sg
1370 * or in skb buffers itself. The input parameter 'zc' indicates if
1371 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1372 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1373 * NULL, then the decryption happens inside skb buffers itself, i.e.
1374 * zero-copy gets disabled and 'zc' is updated.
1375 */
1376
1377 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1378 struct iov_iter *out_iov,
1379 struct scatterlist *out_sg,
1380 int *chunk, bool *zc, bool async)
1381 {
1382 struct tls_context *tls_ctx = tls_get_ctx(sk);
1383 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1384 struct tls_prot_info *prot = &tls_ctx->prot_info;
1385 struct strp_msg *rxm = strp_msg(skb);
1386 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1387 struct aead_request *aead_req;
1388 struct sk_buff *unused;
1389 u8 *aad, *iv, *mem = NULL;
1390 struct scatterlist *sgin = NULL;
1391 struct scatterlist *sgout = NULL;
1392 const int data_len = rxm->full_len - prot->overhead_size +
1393 prot->tail_size;
1394 int iv_offset = 0;
1395
1396 if (*zc && (out_iov || out_sg)) {
1397 if (out_iov)
1398 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1399 else
1400 n_sgout = sg_nents(out_sg);
1401 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1402 rxm->full_len - prot->prepend_size);
1403 } else {
1404 n_sgout = 0;
1405 *zc = false;
1406 n_sgin = skb_cow_data(skb, 0, &unused);
1407 }
1408
1409 if (n_sgin < 1)
1410 return -EBADMSG;
1411
1412 /* Increment to accommodate AAD */
1413 n_sgin = n_sgin + 1;
1414
1415 nsg = n_sgin + n_sgout;
1416
1417 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1418 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1419 mem_size = mem_size + prot->aad_size;
1420 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1421
1422 /* Allocate a single block of memory which contains
1423 * aead_req || sgin[] || sgout[] || aad || iv.
1424 * This order achieves correct alignment for aead_req, sgin, sgout.
1425 */
1426 mem = kmalloc(mem_size, sk->sk_allocation);
1427 if (!mem)
1428 return -ENOMEM;
1429
1430 /* Segment the allocated memory */
1431 aead_req = (struct aead_request *)mem;
1432 sgin = (struct scatterlist *)(mem + aead_size);
1433 sgout = sgin + n_sgin;
1434 aad = (u8 *)(sgout + n_sgout);
1435 iv = aad + prot->aad_size;
1436
1437 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1438 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1439 iv[0] = 2;
1440 iv_offset = 1;
1441 }
1442
1443 /* Prepare IV */
1444 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1445 iv + iv_offset + prot->salt_size,
1446 prot->iv_size);
1447 if (err < 0) {
1448 kfree(mem);
1449 return err;
1450 }
1451 if (prot->version == TLS_1_3_VERSION)
1452 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1453 crypto_aead_ivsize(ctx->aead_recv));
1454 else
1455 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1456
1457 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1458
1459 /* Prepare AAD */
1460 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1461 prot->tail_size,
1462 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1463 ctx->control, prot->version);
1464
1465 /* Prepare sgin */
1466 sg_init_table(sgin, n_sgin);
1467 sg_set_buf(&sgin[0], aad, prot->aad_size);
1468 err = skb_to_sgvec(skb, &sgin[1],
1469 rxm->offset + prot->prepend_size,
1470 rxm->full_len - prot->prepend_size);
1471 if (err < 0) {
1472 kfree(mem);
1473 return err;
1474 }
1475
1476 if (n_sgout) {
1477 if (out_iov) {
1478 sg_init_table(sgout, n_sgout);
1479 sg_set_buf(&sgout[0], aad, prot->aad_size);
1480
1481 *chunk = 0;
1482 err = tls_setup_from_iter(sk, out_iov, data_len,
1483 &pages, chunk, &sgout[1],
1484 (n_sgout - 1));
1485 if (err < 0)
1486 goto fallback_to_reg_recv;
1487 } else if (out_sg) {
1488 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1489 } else {
1490 goto fallback_to_reg_recv;
1491 }
1492 } else {
1493 fallback_to_reg_recv:
1494 sgout = sgin;
1495 pages = 0;
1496 *chunk = data_len;
1497 *zc = false;
1498 }
1499
1500 /* Prepare and submit AEAD request */
1501 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1502 data_len, aead_req, async);
1503 if (err == -EINPROGRESS)
1504 return err;
1505
1506 /* Release the pages in case iov was mapped to pages */
1507 for (; pages > 0; pages--)
1508 put_page(sg_page(&sgout[pages]));
1509
1510 kfree(mem);
1511 return err;
1512 }
1513
1514 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1515 struct iov_iter *dest, int *chunk, bool *zc,
1516 bool async)
1517 {
1518 struct tls_context *tls_ctx = tls_get_ctx(sk);
1519 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1520 struct tls_prot_info *prot = &tls_ctx->prot_info;
1521 struct strp_msg *rxm = strp_msg(skb);
1522 int pad, err = 0;
1523
1524 if (!ctx->decrypted) {
1525 if (tls_ctx->rx_conf == TLS_HW) {
1526 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1527 if (err < 0)
1528 return err;
1529 }
1530
1531 /* Still not decrypted after tls_device */
1532 if (!ctx->decrypted) {
1533 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1534 async);
1535 if (err < 0) {
1536 if (err == -EINPROGRESS)
1537 tls_advance_record_sn(sk, prot,
1538 &tls_ctx->rx);
1539 else if (err == -EBADMSG)
1540 TLS_INC_STATS(sock_net(sk),
1541 LINUX_MIB_TLSDECRYPTERROR);
1542 return err;
1543 }
1544 } else {
1545 *zc = false;
1546 }
1547
1548 pad = padding_length(ctx, prot, skb);
1549 if (pad < 0)
1550 return pad;
1551
1552 rxm->full_len -= pad;
1553 rxm->offset += prot->prepend_size;
1554 rxm->full_len -= prot->overhead_size;
1555 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1556 ctx->decrypted = 1;
1557 ctx->saved_data_ready(sk);
1558 } else {
1559 *zc = false;
1560 }
1561
1562 return err;
1563 }
1564
1565 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1566 struct scatterlist *sgout)
1567 {
1568 bool zc = true;
1569 int chunk;
1570
1571 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1572 }
1573
1574 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1575 unsigned int len)
1576 {
1577 struct tls_context *tls_ctx = tls_get_ctx(sk);
1578 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1579
1580 if (skb) {
1581 struct strp_msg *rxm = strp_msg(skb);
1582
1583 if (len < rxm->full_len) {
1584 rxm->offset += len;
1585 rxm->full_len -= len;
1586 return false;
1587 }
1588 consume_skb(skb);
1589 }
1590
1591 /* Finished with message */
1592 ctx->recv_pkt = NULL;
1593 __strp_unpause(&ctx->strp);
1594
1595 return true;
1596 }
1597
1598 /* This function traverses the rx_list in tls receive context to copies the
1599 * decrypted records into the buffer provided by caller zero copy is not
1600 * true. Further, the records are removed from the rx_list if it is not a peek
1601 * case and the record has been consumed completely.
1602 */
1603 static int process_rx_list(struct tls_sw_context_rx *ctx,
1604 struct msghdr *msg,
1605 u8 *control,
1606 bool *cmsg,
1607 size_t skip,
1608 size_t len,
1609 bool zc,
1610 bool is_peek)
1611 {
1612 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1613 u8 ctrl = *control;
1614 u8 msgc = *cmsg;
1615 struct tls_msg *tlm;
1616 ssize_t copied = 0;
1617
1618 /* Set the record type in 'control' if caller didn't pass it */
1619 if (!ctrl && skb) {
1620 tlm = tls_msg(skb);
1621 ctrl = tlm->control;
1622 }
1623
1624 while (skip && skb) {
1625 struct strp_msg *rxm = strp_msg(skb);
1626 tlm = tls_msg(skb);
1627
1628 /* Cannot process a record of different type */
1629 if (ctrl != tlm->control)
1630 return 0;
1631
1632 if (skip < rxm->full_len)
1633 break;
1634
1635 skip = skip - rxm->full_len;
1636 skb = skb_peek_next(skb, &ctx->rx_list);
1637 }
1638
1639 while (len && skb) {
1640 struct sk_buff *next_skb;
1641 struct strp_msg *rxm = strp_msg(skb);
1642 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1643
1644 tlm = tls_msg(skb);
1645
1646 /* Cannot process a record of different type */
1647 if (ctrl != tlm->control)
1648 return 0;
1649
1650 /* Set record type if not already done. For a non-data record,
1651 * do not proceed if record type could not be copied.
1652 */
1653 if (!msgc) {
1654 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1655 sizeof(ctrl), &ctrl);
1656 msgc = true;
1657 if (ctrl != TLS_RECORD_TYPE_DATA) {
1658 if (cerr || msg->msg_flags & MSG_CTRUNC)
1659 return -EIO;
1660
1661 *cmsg = msgc;
1662 }
1663 }
1664
1665 if (!zc || (rxm->full_len - skip) > len) {
1666 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1667 msg, chunk);
1668 if (err < 0)
1669 return err;
1670 }
1671
1672 len = len - chunk;
1673 copied = copied + chunk;
1674
1675 /* Consume the data from record if it is non-peek case*/
1676 if (!is_peek) {
1677 rxm->offset = rxm->offset + chunk;
1678 rxm->full_len = rxm->full_len - chunk;
1679
1680 /* Return if there is unconsumed data in the record */
1681 if (rxm->full_len - skip)
1682 break;
1683 }
1684
1685 /* The remaining skip-bytes must lie in 1st record in rx_list.
1686 * So from the 2nd record, 'skip' should be 0.
1687 */
1688 skip = 0;
1689
1690 if (msg)
1691 msg->msg_flags |= MSG_EOR;
1692
1693 next_skb = skb_peek_next(skb, &ctx->rx_list);
1694
1695 if (!is_peek) {
1696 skb_unlink(skb, &ctx->rx_list);
1697 consume_skb(skb);
1698 }
1699
1700 skb = next_skb;
1701 }
1702
1703 *control = ctrl;
1704 return copied;
1705 }
1706
1707 int tls_sw_recvmsg(struct sock *sk,
1708 struct msghdr *msg,
1709 size_t len,
1710 int nonblock,
1711 int flags,
1712 int *addr_len)
1713 {
1714 struct tls_context *tls_ctx = tls_get_ctx(sk);
1715 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1716 struct tls_prot_info *prot = &tls_ctx->prot_info;
1717 struct sk_psock *psock;
1718 unsigned char control = 0;
1719 ssize_t decrypted = 0;
1720 struct strp_msg *rxm;
1721 struct tls_msg *tlm;
1722 struct sk_buff *skb;
1723 ssize_t copied = 0;
1724 bool cmsg = false;
1725 int target, err = 0;
1726 long timeo;
1727 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1728 bool is_peek = flags & MSG_PEEK;
1729 int num_async = 0;
1730
1731 flags |= nonblock;
1732
1733 if (unlikely(flags & MSG_ERRQUEUE))
1734 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1735
1736 psock = sk_psock_get(sk);
1737 lock_sock(sk);
1738
1739 /* Process pending decrypted records. It must be non-zero-copy */
1740 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1741 is_peek);
1742 if (err < 0) {
1743 tls_err_abort(sk, err);
1744 goto end;
1745 } else {
1746 copied = err;
1747 }
1748
1749 if (len <= copied)
1750 goto recv_end;
1751
1752 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1753 len = len - copied;
1754 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1755
1756 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1757 bool retain_skb = false;
1758 bool zc = false;
1759 int to_decrypt;
1760 int chunk = 0;
1761 bool async_capable;
1762 bool async = false;
1763
1764 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1765 if (!skb) {
1766 if (psock) {
1767 int ret = __tcp_bpf_recvmsg(sk, psock,
1768 msg, len, flags);
1769
1770 if (ret > 0) {
1771 decrypted += ret;
1772 len -= ret;
1773 continue;
1774 }
1775 }
1776 goto recv_end;
1777 } else {
1778 tlm = tls_msg(skb);
1779 if (prot->version == TLS_1_3_VERSION)
1780 tlm->control = 0;
1781 else
1782 tlm->control = ctx->control;
1783 }
1784
1785 rxm = strp_msg(skb);
1786
1787 to_decrypt = rxm->full_len - prot->overhead_size;
1788
1789 if (to_decrypt <= len && !is_kvec && !is_peek &&
1790 ctx->control == TLS_RECORD_TYPE_DATA &&
1791 prot->version != TLS_1_3_VERSION)
1792 zc = true;
1793
1794 /* Do not use async mode if record is non-data */
1795 if (ctx->control == TLS_RECORD_TYPE_DATA)
1796 async_capable = ctx->async_capable;
1797 else
1798 async_capable = false;
1799
1800 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1801 &chunk, &zc, async_capable);
1802 if (err < 0 && err != -EINPROGRESS) {
1803 tls_err_abort(sk, EBADMSG);
1804 goto recv_end;
1805 }
1806
1807 if (err == -EINPROGRESS) {
1808 async = true;
1809 num_async++;
1810 } else if (prot->version == TLS_1_3_VERSION) {
1811 tlm->control = ctx->control;
1812 }
1813
1814 /* If the type of records being processed is not known yet,
1815 * set it to record type just dequeued. If it is already known,
1816 * but does not match the record type just dequeued, go to end.
1817 * We always get record type here since for tls1.2, record type
1818 * is known just after record is dequeued from stream parser.
1819 * For tls1.3, we disable async.
1820 */
1821
1822 if (!control)
1823 control = tlm->control;
1824 else if (control != tlm->control)
1825 goto recv_end;
1826
1827 if (!cmsg) {
1828 int cerr;
1829
1830 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1831 sizeof(control), &control);
1832 cmsg = true;
1833 if (control != TLS_RECORD_TYPE_DATA) {
1834 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1835 err = -EIO;
1836 goto recv_end;
1837 }
1838 }
1839 }
1840
1841 if (async)
1842 goto pick_next_record;
1843
1844 if (!zc) {
1845 if (rxm->full_len > len) {
1846 retain_skb = true;
1847 chunk = len;
1848 } else {
1849 chunk = rxm->full_len;
1850 }
1851
1852 err = skb_copy_datagram_msg(skb, rxm->offset,
1853 msg, chunk);
1854 if (err < 0)
1855 goto recv_end;
1856
1857 if (!is_peek) {
1858 rxm->offset = rxm->offset + chunk;
1859 rxm->full_len = rxm->full_len - chunk;
1860 }
1861 }
1862
1863 pick_next_record:
1864 if (chunk > len)
1865 chunk = len;
1866
1867 decrypted += chunk;
1868 len -= chunk;
1869
1870 /* For async or peek case, queue the current skb */
1871 if (async || is_peek || retain_skb) {
1872 skb_queue_tail(&ctx->rx_list, skb);
1873 skb = NULL;
1874 }
1875
1876 if (tls_sw_advance_skb(sk, skb, chunk)) {
1877 /* Return full control message to
1878 * userspace before trying to parse
1879 * another message type
1880 */
1881 msg->msg_flags |= MSG_EOR;
1882 if (ctx->control != TLS_RECORD_TYPE_DATA)
1883 goto recv_end;
1884 } else {
1885 break;
1886 }
1887 }
1888
1889 recv_end:
1890 if (num_async) {
1891 /* Wait for all previously submitted records to be decrypted */
1892 smp_store_mb(ctx->async_notify, true);
1893 if (atomic_read(&ctx->decrypt_pending)) {
1894 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1895 if (err) {
1896 /* one of async decrypt failed */
1897 tls_err_abort(sk, err);
1898 copied = 0;
1899 decrypted = 0;
1900 goto end;
1901 }
1902 } else {
1903 reinit_completion(&ctx->async_wait.completion);
1904 }
1905 WRITE_ONCE(ctx->async_notify, false);
1906
1907 /* Drain records from the rx_list & copy if required */
1908 if (is_peek || is_kvec)
1909 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1910 decrypted, false, is_peek);
1911 else
1912 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1913 decrypted, true, is_peek);
1914 if (err < 0) {
1915 tls_err_abort(sk, err);
1916 copied = 0;
1917 goto end;
1918 }
1919 }
1920
1921 copied += decrypted;
1922
1923 end:
1924 release_sock(sk);
1925 if (psock)
1926 sk_psock_put(sk, psock);
1927 return copied ? : err;
1928 }
1929
1930 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1931 struct pipe_inode_info *pipe,
1932 size_t len, unsigned int flags)
1933 {
1934 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1935 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1936 struct strp_msg *rxm = NULL;
1937 struct sock *sk = sock->sk;
1938 struct sk_buff *skb;
1939 ssize_t copied = 0;
1940 int err = 0;
1941 long timeo;
1942 int chunk;
1943 bool zc = false;
1944
1945 lock_sock(sk);
1946
1947 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1948
1949 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1950 if (!skb)
1951 goto splice_read_end;
1952
1953 if (!ctx->decrypted) {
1954 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1955
1956 /* splice does not support reading control messages */
1957 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1958 err = -EINVAL;
1959 goto splice_read_end;
1960 }
1961
1962 if (err < 0) {
1963 tls_err_abort(sk, EBADMSG);
1964 goto splice_read_end;
1965 }
1966 ctx->decrypted = 1;
1967 }
1968 rxm = strp_msg(skb);
1969
1970 chunk = min_t(unsigned int, rxm->full_len, len);
1971 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1972 if (copied < 0)
1973 goto splice_read_end;
1974
1975 if (likely(!(flags & MSG_PEEK)))
1976 tls_sw_advance_skb(sk, skb, copied);
1977
1978 splice_read_end:
1979 release_sock(sk);
1980 return copied ? : err;
1981 }
1982
1983 bool tls_sw_stream_read(const struct sock *sk)
1984 {
1985 struct tls_context *tls_ctx = tls_get_ctx(sk);
1986 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1987 bool ingress_empty = true;
1988 struct sk_psock *psock;
1989
1990 rcu_read_lock();
1991 psock = sk_psock(sk);
1992 if (psock)
1993 ingress_empty = list_empty(&psock->ingress_msg);
1994 rcu_read_unlock();
1995
1996 return !ingress_empty || ctx->recv_pkt ||
1997 !skb_queue_empty(&ctx->rx_list);
1998 }
1999
2000 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2001 {
2002 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2003 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2004 struct tls_prot_info *prot = &tls_ctx->prot_info;
2005 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2006 struct strp_msg *rxm = strp_msg(skb);
2007 size_t cipher_overhead;
2008 size_t data_len = 0;
2009 int ret;
2010
2011 /* Verify that we have a full TLS header, or wait for more data */
2012 if (rxm->offset + prot->prepend_size > skb->len)
2013 return 0;
2014
2015 /* Sanity-check size of on-stack buffer. */
2016 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2017 ret = -EINVAL;
2018 goto read_failure;
2019 }
2020
2021 /* Linearize header to local buffer */
2022 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2023
2024 if (ret < 0)
2025 goto read_failure;
2026
2027 ctx->control = header[0];
2028
2029 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2030
2031 cipher_overhead = prot->tag_size;
2032 if (prot->version != TLS_1_3_VERSION)
2033 cipher_overhead += prot->iv_size;
2034
2035 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2036 prot->tail_size) {
2037 ret = -EMSGSIZE;
2038 goto read_failure;
2039 }
2040 if (data_len < cipher_overhead) {
2041 ret = -EBADMSG;
2042 goto read_failure;
2043 }
2044
2045 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2046 if (header[1] != TLS_1_2_VERSION_MINOR ||
2047 header[2] != TLS_1_2_VERSION_MAJOR) {
2048 ret = -EINVAL;
2049 goto read_failure;
2050 }
2051
2052 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2053 TCP_SKB_CB(skb)->seq + rxm->offset);
2054 return data_len + TLS_HEADER_SIZE;
2055
2056 read_failure:
2057 tls_err_abort(strp->sk, ret);
2058
2059 return ret;
2060 }
2061
2062 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2063 {
2064 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2065 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2066
2067 ctx->decrypted = 0;
2068
2069 ctx->recv_pkt = skb;
2070 strp_pause(strp);
2071
2072 ctx->saved_data_ready(strp->sk);
2073 }
2074
2075 static void tls_data_ready(struct sock *sk)
2076 {
2077 struct tls_context *tls_ctx = tls_get_ctx(sk);
2078 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2079 struct sk_psock *psock;
2080
2081 strp_data_ready(&ctx->strp);
2082
2083 psock = sk_psock_get(sk);
2084 if (psock && !list_empty(&psock->ingress_msg)) {
2085 ctx->saved_data_ready(sk);
2086 sk_psock_put(sk, psock);
2087 }
2088 }
2089
2090 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2091 {
2092 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2093
2094 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2095 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2096 cancel_delayed_work_sync(&ctx->tx_work.work);
2097 }
2098
2099 void tls_sw_release_resources_tx(struct sock *sk)
2100 {
2101 struct tls_context *tls_ctx = tls_get_ctx(sk);
2102 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2103 struct tls_rec *rec, *tmp;
2104
2105 /* Wait for any pending async encryptions to complete */
2106 smp_store_mb(ctx->async_notify, true);
2107 if (atomic_read(&ctx->encrypt_pending))
2108 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2109
2110 tls_tx_records(sk, -1);
2111
2112 /* Free up un-sent records in tx_list. First, free
2113 * the partially sent record if any at head of tx_list.
2114 */
2115 if (tls_ctx->partially_sent_record) {
2116 tls_free_partial_record(sk, tls_ctx);
2117 rec = list_first_entry(&ctx->tx_list,
2118 struct tls_rec, list);
2119 list_del(&rec->list);
2120 sk_msg_free(sk, &rec->msg_plaintext);
2121 kfree(rec);
2122 }
2123
2124 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2125 list_del(&rec->list);
2126 sk_msg_free(sk, &rec->msg_encrypted);
2127 sk_msg_free(sk, &rec->msg_plaintext);
2128 kfree(rec);
2129 }
2130
2131 crypto_free_aead(ctx->aead_send);
2132 tls_free_open_rec(sk);
2133 }
2134
2135 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2136 {
2137 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2138
2139 kfree(ctx);
2140 }
2141
2142 void tls_sw_release_resources_rx(struct sock *sk)
2143 {
2144 struct tls_context *tls_ctx = tls_get_ctx(sk);
2145 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2146
2147 kfree(tls_ctx->rx.rec_seq);
2148 kfree(tls_ctx->rx.iv);
2149
2150 if (ctx->aead_recv) {
2151 kfree_skb(ctx->recv_pkt);
2152 ctx->recv_pkt = NULL;
2153 skb_queue_purge(&ctx->rx_list);
2154 crypto_free_aead(ctx->aead_recv);
2155 strp_stop(&ctx->strp);
2156 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2157 * we still want to strp_stop(), but sk->sk_data_ready was
2158 * never swapped.
2159 */
2160 if (ctx->saved_data_ready) {
2161 write_lock_bh(&sk->sk_callback_lock);
2162 sk->sk_data_ready = ctx->saved_data_ready;
2163 write_unlock_bh(&sk->sk_callback_lock);
2164 }
2165 }
2166 }
2167
2168 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2169 {
2170 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2171
2172 strp_done(&ctx->strp);
2173 }
2174
2175 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2176 {
2177 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2178
2179 kfree(ctx);
2180 }
2181
2182 void tls_sw_free_resources_rx(struct sock *sk)
2183 {
2184 struct tls_context *tls_ctx = tls_get_ctx(sk);
2185
2186 tls_sw_release_resources_rx(sk);
2187 tls_sw_free_ctx_rx(tls_ctx);
2188 }
2189
2190 /* The work handler to transmitt the encrypted records in tx_list */
2191 static void tx_work_handler(struct work_struct *work)
2192 {
2193 struct delayed_work *delayed_work = to_delayed_work(work);
2194 struct tx_work *tx_work = container_of(delayed_work,
2195 struct tx_work, work);
2196 struct sock *sk = tx_work->sk;
2197 struct tls_context *tls_ctx = tls_get_ctx(sk);
2198 struct tls_sw_context_tx *ctx;
2199
2200 if (unlikely(!tls_ctx))
2201 return;
2202
2203 ctx = tls_sw_ctx_tx(tls_ctx);
2204 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2205 return;
2206
2207 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2208 return;
2209 mutex_lock(&tls_ctx->tx_lock);
2210 lock_sock(sk);
2211 tls_tx_records(sk, -1);
2212 release_sock(sk);
2213 mutex_unlock(&tls_ctx->tx_lock);
2214 }
2215
2216 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2217 {
2218 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2219
2220 /* Schedule the transmission if tx list is ready */
2221 if (is_tx_ready(tx_ctx) &&
2222 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2223 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2224 }
2225
2226 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2227 {
2228 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2229
2230 write_lock_bh(&sk->sk_callback_lock);
2231 rx_ctx->saved_data_ready = sk->sk_data_ready;
2232 sk->sk_data_ready = tls_data_ready;
2233 write_unlock_bh(&sk->sk_callback_lock);
2234
2235 strp_check_rcv(&rx_ctx->strp);
2236 }
2237
2238 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2239 {
2240 struct tls_context *tls_ctx = tls_get_ctx(sk);
2241 struct tls_prot_info *prot = &tls_ctx->prot_info;
2242 struct tls_crypto_info *crypto_info;
2243 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2244 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2245 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2246 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2247 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2248 struct cipher_context *cctx;
2249 struct crypto_aead **aead;
2250 struct strp_callbacks cb;
2251 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2252 struct crypto_tfm *tfm;
2253 char *iv, *rec_seq, *key, *salt, *cipher_name;
2254 size_t keysize;
2255 int rc = 0;
2256
2257 if (!ctx) {
2258 rc = -EINVAL;
2259 goto out;
2260 }
2261
2262 if (tx) {
2263 if (!ctx->priv_ctx_tx) {
2264 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2265 if (!sw_ctx_tx) {
2266 rc = -ENOMEM;
2267 goto out;
2268 }
2269 ctx->priv_ctx_tx = sw_ctx_tx;
2270 } else {
2271 sw_ctx_tx =
2272 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2273 }
2274 } else {
2275 if (!ctx->priv_ctx_rx) {
2276 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2277 if (!sw_ctx_rx) {
2278 rc = -ENOMEM;
2279 goto out;
2280 }
2281 ctx->priv_ctx_rx = sw_ctx_rx;
2282 } else {
2283 sw_ctx_rx =
2284 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2285 }
2286 }
2287
2288 if (tx) {
2289 crypto_init_wait(&sw_ctx_tx->async_wait);
2290 crypto_info = &ctx->crypto_send.info;
2291 cctx = &ctx->tx;
2292 aead = &sw_ctx_tx->aead_send;
2293 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2294 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2295 sw_ctx_tx->tx_work.sk = sk;
2296 } else {
2297 crypto_init_wait(&sw_ctx_rx->async_wait);
2298 crypto_info = &ctx->crypto_recv.info;
2299 cctx = &ctx->rx;
2300 skb_queue_head_init(&sw_ctx_rx->rx_list);
2301 aead = &sw_ctx_rx->aead_recv;
2302 }
2303
2304 switch (crypto_info->cipher_type) {
2305 case TLS_CIPHER_AES_GCM_128: {
2306 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2307 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2308 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2309 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2310 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2311 rec_seq =
2312 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2313 gcm_128_info =
2314 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2315 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2316 key = gcm_128_info->key;
2317 salt = gcm_128_info->salt;
2318 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2319 cipher_name = "gcm(aes)";
2320 break;
2321 }
2322 case TLS_CIPHER_AES_GCM_256: {
2323 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2324 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2325 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2326 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2327 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2328 rec_seq =
2329 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2330 gcm_256_info =
2331 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2332 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2333 key = gcm_256_info->key;
2334 salt = gcm_256_info->salt;
2335 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2336 cipher_name = "gcm(aes)";
2337 break;
2338 }
2339 case TLS_CIPHER_AES_CCM_128: {
2340 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2341 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2342 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2343 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2344 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2345 rec_seq =
2346 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2347 ccm_128_info =
2348 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2349 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2350 key = ccm_128_info->key;
2351 salt = ccm_128_info->salt;
2352 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2353 cipher_name = "ccm(aes)";
2354 break;
2355 }
2356 default:
2357 rc = -EINVAL;
2358 goto free_priv;
2359 }
2360
2361 /* Sanity-check the sizes for stack allocations. */
2362 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2363 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2364 rc = -EINVAL;
2365 goto free_priv;
2366 }
2367
2368 if (crypto_info->version == TLS_1_3_VERSION) {
2369 nonce_size = 0;
2370 prot->aad_size = TLS_HEADER_SIZE;
2371 prot->tail_size = 1;
2372 } else {
2373 prot->aad_size = TLS_AAD_SPACE_SIZE;
2374 prot->tail_size = 0;
2375 }
2376
2377 prot->version = crypto_info->version;
2378 prot->cipher_type = crypto_info->cipher_type;
2379 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2380 prot->tag_size = tag_size;
2381 prot->overhead_size = prot->prepend_size +
2382 prot->tag_size + prot->tail_size;
2383 prot->iv_size = iv_size;
2384 prot->salt_size = salt_size;
2385 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2386 if (!cctx->iv) {
2387 rc = -ENOMEM;
2388 goto free_priv;
2389 }
2390 /* Note: 128 & 256 bit salt are the same size */
2391 prot->rec_seq_size = rec_seq_size;
2392 memcpy(cctx->iv, salt, salt_size);
2393 memcpy(cctx->iv + salt_size, iv, iv_size);
2394 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2395 if (!cctx->rec_seq) {
2396 rc = -ENOMEM;
2397 goto free_iv;
2398 }
2399
2400 if (!*aead) {
2401 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2402 if (IS_ERR(*aead)) {
2403 rc = PTR_ERR(*aead);
2404 *aead = NULL;
2405 goto free_rec_seq;
2406 }
2407 }
2408
2409 ctx->push_pending_record = tls_sw_push_pending_record;
2410
2411 rc = crypto_aead_setkey(*aead, key, keysize);
2412
2413 if (rc)
2414 goto free_aead;
2415
2416 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2417 if (rc)
2418 goto free_aead;
2419
2420 if (sw_ctx_rx) {
2421 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2422
2423 if (crypto_info->version == TLS_1_3_VERSION)
2424 sw_ctx_rx->async_capable = 0;
2425 else
2426 sw_ctx_rx->async_capable =
2427 !!(tfm->__crt_alg->cra_flags &
2428 CRYPTO_ALG_ASYNC);
2429
2430 /* Set up strparser */
2431 memset(&cb, 0, sizeof(cb));
2432 cb.rcv_msg = tls_queue;
2433 cb.parse_msg = tls_read_size;
2434
2435 strp_init(&sw_ctx_rx->strp, sk, &cb);
2436 }
2437
2438 goto out;
2439
2440 free_aead:
2441 crypto_free_aead(*aead);
2442 *aead = NULL;
2443 free_rec_seq:
2444 kfree(cctx->rec_seq);
2445 cctx->rec_seq = NULL;
2446 free_iv:
2447 kfree(cctx->iv);
2448 cctx->iv = NULL;
2449 free_priv:
2450 if (tx) {
2451 kfree(ctx->priv_ctx_tx);
2452 ctx->priv_ctx_tx = NULL;
2453 } else {
2454 kfree(ctx->priv_ctx_rx);
2455 ctx->priv_ctx_rx = NULL;
2456 }
2457 out:
2458 return rc;
2459 }