]> git.ipfire.org Git - thirdparty/linux.git/blob - net/tls/tls_sw.c
net: tls, update curr on splice as well
[thirdparty/linux.git] / net / tls / tls_sw.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 u8 tail;
56 );
57
58 struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62 struct sock *sk;
63 u8 iv[TLS_MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
65 u8 tail;
66 struct scatterlist sg[];
67 };
68
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
75 smp_wmb();
76 sk_error_report(sk);
77 }
78
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
81 {
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
85 int elt = 0;
86
87 if (unlikely(recursion_level >= 24))
88 return -EMSGSIZE;
89
90 if (chunk > 0) {
91 if (chunk > len)
92 chunk = len;
93 elt++;
94 len -= chunk;
95 if (len == 0)
96 return elt;
97 offset += chunk;
98 }
99
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101 int end;
102
103 WARN_ON(start > offset + len);
104
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
107 if (chunk > 0) {
108 if (chunk > len)
109 chunk = len;
110 elt++;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
121 int end, ret;
122
123 WARN_ON(start > offset + len);
124
125 end = start + frag_iter->len;
126 chunk = end - offset;
127 if (chunk > 0) {
128 if (chunk > len)
129 chunk = len;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
133 return ret;
134 elt += ret;
135 len -= chunk;
136 if (len == 0)
137 return elt;
138 offset += chunk;
139 }
140 start = end;
141 }
142 }
143 BUG_ON(len);
144 return elt;
145 }
146
147 /* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
149 */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152 return __skb_nsg(skb, offset, len, 0);
153 }
154
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
157 {
158 struct strp_msg *rxm = strp_msg(skb);
159 struct tls_msg *tlm = tls_msg(skb);
160 int sub = 0;
161
162 /* Determine zero-padding length */
163 if (prot->version == TLS_1_3_VERSION) {
164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 char content_type = darg->zc ? darg->tail : 0;
166 int err;
167
168 while (content_type == 0) {
169 if (offset < prot->prepend_size)
170 return -EBADMSG;
171 err = skb_copy_bits(skb, rxm->offset + offset,
172 &content_type, 1);
173 if (err)
174 return err;
175 if (content_type)
176 break;
177 sub++;
178 offset--;
179 }
180 tlm->control = content_type;
181 }
182 return sub;
183 }
184
185 static void tls_decrypt_done(void *data, int err)
186 {
187 struct aead_request *aead_req = data;
188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 struct scatterlist *sgout = aead_req->dst;
190 struct scatterlist *sgin = aead_req->src;
191 struct tls_sw_context_rx *ctx;
192 struct tls_decrypt_ctx *dctx;
193 struct tls_context *tls_ctx;
194 struct scatterlist *sg;
195 unsigned int pages;
196 struct sock *sk;
197 int aead_size;
198
199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 dctx = (void *)((u8 *)aead_req + aead_size);
202
203 sk = dctx->sk;
204 tls_ctx = tls_get_ctx(sk);
205 ctx = tls_sw_ctx_rx(tls_ctx);
206
207 /* Propagate if there was an err */
208 if (err) {
209 if (err == -EBADMSG)
210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 ctx->async_wait.err = err;
212 tls_err_abort(sk, err);
213 }
214
215 /* Free the destination pages if skb was not decrypted inplace */
216 if (sgout != sgin) {
217 /* Skip the first S/G entry as it points to AAD */
218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219 if (!sg)
220 break;
221 put_page(sg_page(sg));
222 }
223 }
224
225 kfree(aead_req);
226
227 spin_lock_bh(&ctx->decrypt_compl_lock);
228 if (!atomic_dec_return(&ctx->decrypt_pending))
229 complete(&ctx->async_wait.completion);
230 spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232
233 static int tls_do_decryption(struct sock *sk,
234 struct scatterlist *sgin,
235 struct scatterlist *sgout,
236 char *iv_recv,
237 size_t data_len,
238 struct aead_request *aead_req,
239 struct tls_decrypt_arg *darg)
240 {
241 struct tls_context *tls_ctx = tls_get_ctx(sk);
242 struct tls_prot_info *prot = &tls_ctx->prot_info;
243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244 int ret;
245
246 aead_request_set_tfm(aead_req, ctx->aead_recv);
247 aead_request_set_ad(aead_req, prot->aad_size);
248 aead_request_set_crypt(aead_req, sgin, sgout,
249 data_len + prot->tag_size,
250 (u8 *)iv_recv);
251
252 if (darg->async) {
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
255 tls_decrypt_done, aead_req);
256 atomic_inc(&ctx->decrypt_pending);
257 } else {
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
261 }
262
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
265 if (darg->async)
266 return 0;
267
268 ret = crypto_wait_req(ret, &ctx->async_wait);
269 }
270 darg->async = false;
271
272 return ret;
273 }
274
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
278 struct tls_prot_info *prot = &tls_ctx->prot_info;
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
281
282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283 if (target_size > 0)
284 target_size += prot->overhead_size;
285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
294
295 return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
301 struct tls_prot_info *prot = &tls_ctx->prot_info;
302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 struct tls_rec *rec = ctx->open_rec;
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
306 int skip, len;
307
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
310 * has enough required room (ensured by caller).
311 */
312 len = required - msg_pl->sg.size;
313
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
316 */
317 skip = prot->prepend_size + msg_pl->sg.size;
318
319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_prot_info *prot = &tls_ctx->prot_info;
326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 struct sk_msg *msg_pl, *msg_en;
328 struct tls_rec *rec;
329 int mem_size;
330
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333 rec = kzalloc(mem_size, sk->sk_allocation);
334 if (!rec)
335 return NULL;
336
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
339
340 sk_msg_init(msg_pl);
341 sk_msg_init(msg_en);
342
343 sg_init_table(rec->sg_aead_in, 2);
344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 sg_unmark_end(&rec->sg_aead_in[1]);
346
347 sg_init_table(rec->sg_aead_out, 2);
348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_out[1]);
350
351 rec->sk = sk;
352
353 return rec;
354 }
355
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358 sk_msg_free(sk, &rec->msg_encrypted);
359 sk_msg_free(sk, &rec->msg_plaintext);
360 kfree(rec);
361 }
362
363 static void tls_free_open_rec(struct sock *sk)
364 {
365 struct tls_context *tls_ctx = tls_get_ctx(sk);
366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 struct tls_rec *rec = ctx->open_rec;
368
369 if (rec) {
370 tls_free_rec(sk, rec);
371 ctx->open_rec = NULL;
372 }
373 }
374
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377 struct tls_context *tls_ctx = tls_get_ctx(sk);
378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 struct tls_rec *rec, *tmp;
380 struct sk_msg *msg_en;
381 int tx_flags, rc = 0;
382
383 if (tls_is_partially_sent_record(tls_ctx)) {
384 rec = list_first_entry(&ctx->tx_list,
385 struct tls_rec, list);
386
387 if (flags == -1)
388 tx_flags = rec->tx_flags;
389 else
390 tx_flags = flags;
391
392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393 if (rc)
394 goto tx_err;
395
396 /* Full record has been transmitted.
397 * Remove the head of tx_list
398 */
399 list_del(&rec->list);
400 sk_msg_free(sk, &rec->msg_plaintext);
401 kfree(rec);
402 }
403
404 /* Tx all ready records */
405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 if (READ_ONCE(rec->tx_ready)) {
407 if (flags == -1)
408 tx_flags = rec->tx_flags;
409 else
410 tx_flags = flags;
411
412 msg_en = &rec->msg_encrypted;
413 rc = tls_push_sg(sk, tls_ctx,
414 &msg_en->sg.data[msg_en->sg.curr],
415 0, tx_flags);
416 if (rc)
417 goto tx_err;
418
419 list_del(&rec->list);
420 sk_msg_free(sk, &rec->msg_plaintext);
421 kfree(rec);
422 } else {
423 break;
424 }
425 }
426
427 tx_err:
428 if (rc < 0 && rc != -EAGAIN)
429 tls_err_abort(sk, -EBADMSG);
430
431 return rc;
432 }
433
434 static void tls_encrypt_done(void *data, int err)
435 {
436 struct tls_sw_context_tx *ctx;
437 struct tls_context *tls_ctx;
438 struct tls_prot_info *prot;
439 struct tls_rec *rec = data;
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
442 bool ready = false;
443 struct sock *sk;
444 int pending;
445
446 msg_en = &rec->msg_encrypted;
447
448 sk = rec->sk;
449 tls_ctx = tls_get_ctx(sk);
450 prot = &tls_ctx->prot_info;
451 ctx = tls_sw_ctx_tx(tls_ctx);
452
453 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 sge->offset -= prot->prepend_size;
455 sge->length += prot->prepend_size;
456
457 /* Check if error is previously set on socket */
458 if (err || sk->sk_err) {
459 rec = NULL;
460
461 /* If err is already set on socket, return the same code */
462 if (sk->sk_err) {
463 ctx->async_wait.err = -sk->sk_err;
464 } else {
465 ctx->async_wait.err = err;
466 tls_err_abort(sk, err);
467 }
468 }
469
470 if (rec) {
471 struct tls_rec *first_rec;
472
473 /* Mark the record as ready for transmission */
474 smp_store_mb(rec->tx_ready, true);
475
476 /* If received record is at head of tx_list, schedule tx */
477 first_rec = list_first_entry(&ctx->tx_list,
478 struct tls_rec, list);
479 if (rec == first_rec)
480 ready = true;
481 }
482
483 spin_lock_bh(&ctx->encrypt_compl_lock);
484 pending = atomic_dec_return(&ctx->encrypt_pending);
485
486 if (!pending && ctx->async_notify)
487 complete(&ctx->async_wait.completion);
488 spin_unlock_bh(&ctx->encrypt_compl_lock);
489
490 if (!ready)
491 return;
492
493 /* Schedule the transmission */
494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497
498 static int tls_do_encryption(struct sock *sk,
499 struct tls_context *tls_ctx,
500 struct tls_sw_context_tx *ctx,
501 struct aead_request *aead_req,
502 size_t data_len, u32 start)
503 {
504 struct tls_prot_info *prot = &tls_ctx->prot_info;
505 struct tls_rec *rec = ctx->open_rec;
506 struct sk_msg *msg_en = &rec->msg_encrypted;
507 struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 int rc, iv_offset = 0;
509
510 /* For CCM based ciphers, first byte of IV is a constant */
511 switch (prot->cipher_type) {
512 case TLS_CIPHER_AES_CCM_128:
513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514 iv_offset = 1;
515 break;
516 case TLS_CIPHER_SM4_CCM:
517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518 iv_offset = 1;
519 break;
520 }
521
522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 prot->iv_size + prot->salt_size);
524
525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 tls_ctx->tx.rec_seq);
527
528 sge->offset += prot->prepend_size;
529 sge->length -= prot->prepend_size;
530
531 msg_en->sg.curr = start;
532
533 aead_request_set_tfm(aead_req, ctx->aead_send);
534 aead_request_set_ad(aead_req, prot->aad_size);
535 aead_request_set_crypt(aead_req, rec->sg_aead_in,
536 rec->sg_aead_out,
537 data_len, rec->iv_data);
538
539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 tls_encrypt_done, rec);
541
542 /* Add the record in tx_list */
543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 atomic_inc(&ctx->encrypt_pending);
545
546 rc = crypto_aead_encrypt(aead_req);
547 if (!rc || rc != -EINPROGRESS) {
548 atomic_dec(&ctx->encrypt_pending);
549 sge->offset -= prot->prepend_size;
550 sge->length += prot->prepend_size;
551 }
552
553 if (!rc) {
554 WRITE_ONCE(rec->tx_ready, true);
555 } else if (rc != -EINPROGRESS) {
556 list_del(&rec->list);
557 return rc;
558 }
559
560 /* Unhook the record from context if encryption is not failure */
561 ctx->open_rec = NULL;
562 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563 return rc;
564 }
565
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 struct tls_rec **to, struct sk_msg *msg_opl,
568 struct sk_msg *msg_oen, u32 split_point,
569 u32 tx_overhead_size, u32 *orig_end)
570 {
571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 struct scatterlist *sge, *osge, *nsge;
573 u32 orig_size = msg_opl->sg.size;
574 struct scatterlist tmp = { };
575 struct sk_msg *msg_npl;
576 struct tls_rec *new;
577 int ret;
578
579 new = tls_get_rec(sk);
580 if (!new)
581 return -ENOMEM;
582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 tx_overhead_size, 0);
584 if (ret < 0) {
585 tls_free_rec(sk, new);
586 return ret;
587 }
588
589 *orig_end = msg_opl->sg.end;
590 i = msg_opl->sg.start;
591 sge = sk_msg_elem(msg_opl, i);
592 while (apply && sge->length) {
593 if (sge->length > apply) {
594 u32 len = sge->length - apply;
595
596 get_page(sg_page(sge));
597 sg_set_page(&tmp, sg_page(sge), len,
598 sge->offset + apply);
599 sge->length = apply;
600 bytes += apply;
601 apply = 0;
602 } else {
603 apply -= sge->length;
604 bytes += sge->length;
605 }
606
607 sk_msg_iter_var_next(i);
608 if (i == msg_opl->sg.end)
609 break;
610 sge = sk_msg_elem(msg_opl, i);
611 }
612
613 msg_opl->sg.end = i;
614 msg_opl->sg.curr = i;
615 msg_opl->sg.copybreak = 0;
616 msg_opl->apply_bytes = 0;
617 msg_opl->sg.size = bytes;
618
619 msg_npl = &new->msg_plaintext;
620 msg_npl->apply_bytes = apply;
621 msg_npl->sg.size = orig_size - bytes;
622
623 j = msg_npl->sg.start;
624 nsge = sk_msg_elem(msg_npl, j);
625 if (tmp.length) {
626 memcpy(nsge, &tmp, sizeof(*nsge));
627 sk_msg_iter_var_next(j);
628 nsge = sk_msg_elem(msg_npl, j);
629 }
630
631 osge = sk_msg_elem(msg_opl, i);
632 while (osge->length) {
633 memcpy(nsge, osge, sizeof(*nsge));
634 sg_unmark_end(nsge);
635 sk_msg_iter_var_next(i);
636 sk_msg_iter_var_next(j);
637 if (i == *orig_end)
638 break;
639 osge = sk_msg_elem(msg_opl, i);
640 nsge = sk_msg_elem(msg_npl, j);
641 }
642
643 msg_npl->sg.end = j;
644 msg_npl->sg.curr = j;
645 msg_npl->sg.copybreak = 0;
646
647 *to = new;
648 return 0;
649 }
650
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 struct tls_rec *from, u32 orig_end)
653 {
654 struct sk_msg *msg_npl = &from->msg_plaintext;
655 struct sk_msg *msg_opl = &to->msg_plaintext;
656 struct scatterlist *osge, *nsge;
657 u32 i, j;
658
659 i = msg_opl->sg.end;
660 sk_msg_iter_var_prev(i);
661 j = msg_npl->sg.start;
662
663 osge = sk_msg_elem(msg_opl, i);
664 nsge = sk_msg_elem(msg_npl, j);
665
666 if (sg_page(osge) == sg_page(nsge) &&
667 osge->offset + osge->length == nsge->offset) {
668 osge->length += nsge->length;
669 put_page(sg_page(nsge));
670 }
671
672 msg_opl->sg.end = orig_end;
673 msg_opl->sg.curr = orig_end;
674 msg_opl->sg.copybreak = 0;
675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 msg_opl->sg.size += msg_npl->sg.size;
677
678 sk_msg_free(sk, &to->msg_encrypted);
679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680
681 kfree(from);
682 }
683
684 static int tls_push_record(struct sock *sk, int flags,
685 unsigned char record_type)
686 {
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
688 struct tls_prot_info *prot = &tls_ctx->prot_info;
689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 u32 i, split_point, orig_end;
692 struct sk_msg *msg_pl, *msg_en;
693 struct aead_request *req;
694 bool split;
695 int rc;
696
697 if (!rec)
698 return 0;
699
700 msg_pl = &rec->msg_plaintext;
701 msg_en = &rec->msg_encrypted;
702
703 split_point = msg_pl->apply_bytes;
704 split = split_point && split_point < msg_pl->sg.size;
705 if (unlikely((!split &&
706 msg_pl->sg.size +
707 prot->overhead_size > msg_en->sg.size) ||
708 (split &&
709 split_point +
710 prot->overhead_size > msg_en->sg.size))) {
711 split = true;
712 split_point = msg_en->sg.size;
713 }
714 if (split) {
715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 split_point, prot->overhead_size,
717 &orig_end);
718 if (rc < 0)
719 return rc;
720 /* This can happen if above tls_split_open_record allocates
721 * a single large encryption buffer instead of two smaller
722 * ones. In this case adjust pointers and continue without
723 * split.
724 */
725 if (!msg_pl->sg.size) {
726 tls_merge_open_record(sk, rec, tmp, orig_end);
727 msg_pl = &rec->msg_plaintext;
728 msg_en = &rec->msg_encrypted;
729 split = false;
730 }
731 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 prot->overhead_size);
733 }
734
735 rec->tx_flags = flags;
736 req = &rec->aead_req;
737
738 i = msg_pl->sg.end;
739 sk_msg_iter_var_prev(i);
740
741 rec->content_type = record_type;
742 if (prot->version == TLS_1_3_VERSION) {
743 /* Add content type to end of message. No padding added */
744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 sg_mark_end(&rec->sg_content_type);
746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 &rec->sg_content_type);
748 } else {
749 sg_mark_end(sk_msg_elem(msg_pl, i));
750 }
751
752 if (msg_pl->sg.end < msg_pl->sg.start) {
753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755 msg_pl->sg.data);
756 }
757
758 i = msg_pl->sg.start;
759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760
761 i = msg_en->sg.end;
762 sk_msg_iter_var_prev(i);
763 sg_mark_end(sk_msg_elem(msg_en, i));
764
765 i = msg_en->sg.start;
766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767
768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 tls_ctx->tx.rec_seq, record_type, prot);
770
771 tls_fill_prepend(tls_ctx,
772 page_address(sg_page(&msg_en->sg.data[i])) +
773 msg_en->sg.data[i].offset,
774 msg_pl->sg.size + prot->tail_size,
775 record_type);
776
777 tls_ctx->pending_open_record_frags = false;
778
779 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 msg_pl->sg.size + prot->tail_size, i);
781 if (rc < 0) {
782 if (rc != -EINPROGRESS) {
783 tls_err_abort(sk, -EBADMSG);
784 if (split) {
785 tls_ctx->pending_open_record_frags = true;
786 tls_merge_open_record(sk, rec, tmp, orig_end);
787 }
788 }
789 ctx->async_capable = 1;
790 return rc;
791 } else if (split) {
792 msg_pl = &tmp->msg_plaintext;
793 msg_en = &tmp->msg_encrypted;
794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 tls_ctx->pending_open_record_frags = true;
796 ctx->open_rec = tmp;
797 }
798
799 return tls_tx_records(sk, flags);
800 }
801
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 bool full_record, u8 record_type,
804 ssize_t *copied, int flags)
805 {
806 struct tls_context *tls_ctx = tls_get_ctx(sk);
807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 struct sk_msg msg_redir = { };
809 struct sk_psock *psock;
810 struct sock *sk_redir;
811 struct tls_rec *rec;
812 bool enospc, policy, redir_ingress;
813 int err = 0, send;
814 u32 delta = 0;
815
816 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 psock = sk_psock_get(sk);
818 if (!psock || !policy) {
819 err = tls_push_record(sk, flags, record_type);
820 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
821 *copied -= sk_msg_free(sk, msg);
822 tls_free_open_rec(sk);
823 err = -sk->sk_err;
824 }
825 if (psock)
826 sk_psock_put(sk, psock);
827 return err;
828 }
829 more_data:
830 enospc = sk_msg_full(msg);
831 if (psock->eval == __SK_NONE) {
832 delta = msg->sg.size;
833 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 delta -= msg->sg.size;
835 }
836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 !enospc && !full_record) {
838 err = -ENOSPC;
839 goto out_err;
840 }
841 msg->cork_bytes = 0;
842 send = msg->sg.size;
843 if (msg->apply_bytes && msg->apply_bytes < send)
844 send = msg->apply_bytes;
845
846 switch (psock->eval) {
847 case __SK_PASS:
848 err = tls_push_record(sk, flags, record_type);
849 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
850 *copied -= sk_msg_free(sk, msg);
851 tls_free_open_rec(sk);
852 err = -sk->sk_err;
853 goto out_err;
854 }
855 break;
856 case __SK_REDIRECT:
857 redir_ingress = psock->redir_ingress;
858 sk_redir = psock->sk_redir;
859 memcpy(&msg_redir, msg, sizeof(*msg));
860 if (msg->apply_bytes < send)
861 msg->apply_bytes = 0;
862 else
863 msg->apply_bytes -= send;
864 sk_msg_return_zero(sk, msg, send);
865 msg->sg.size -= send;
866 release_sock(sk);
867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 &msg_redir, send, flags);
869 lock_sock(sk);
870 if (err < 0) {
871 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
872 msg->sg.size = 0;
873 }
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
876 break;
877 case __SK_DROP:
878 default:
879 sk_msg_free_partial(sk, msg, send);
880 if (msg->apply_bytes < send)
881 msg->apply_bytes = 0;
882 else
883 msg->apply_bytes -= send;
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
886 *copied -= (send + delta);
887 err = -EACCES;
888 }
889
890 if (likely(!err)) {
891 bool reset_eval = !ctx->open_rec;
892
893 rec = ctx->open_rec;
894 if (rec) {
895 msg = &rec->msg_plaintext;
896 if (!msg->apply_bytes)
897 reset_eval = true;
898 }
899 if (reset_eval) {
900 psock->eval = __SK_NONE;
901 if (psock->sk_redir) {
902 sock_put(psock->sk_redir);
903 psock->sk_redir = NULL;
904 }
905 }
906 if (rec)
907 goto more_data;
908 }
909 out_err:
910 sk_psock_put(sk, psock);
911 return err;
912 }
913
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916 struct tls_context *tls_ctx = tls_get_ctx(sk);
917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 struct tls_rec *rec = ctx->open_rec;
919 struct sk_msg *msg_pl;
920 size_t copied;
921
922 if (!rec)
923 return 0;
924
925 msg_pl = &rec->msg_plaintext;
926 copied = msg_pl->sg.size;
927 if (!copied)
928 return 0;
929
930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931 &copied, flags);
932 }
933
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 struct sk_msg *msg_pl, size_t try_to_copy,
936 ssize_t *copied)
937 {
938 struct page *page = NULL, **pages = &page;
939
940 do {
941 ssize_t part;
942 size_t off;
943
944 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 try_to_copy, 1, 0, &off);
946 if (part <= 0)
947 return part ?: -EIO;
948
949 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 iov_iter_revert(&msg->msg_iter, part);
951 return -EIO;
952 }
953
954 sk_msg_page_add(msg_pl, page, part, off);
955 msg_pl->sg.copybreak = 0;
956 msg_pl->sg.curr = msg_pl->sg.end;
957 sk_mem_charge(sk, part);
958 *copied += part;
959 try_to_copy -= part;
960 } while (try_to_copy && !sk_msg_full(msg_pl));
961
962 return 0;
963 }
964
965 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
966 size_t size)
967 {
968 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
969 struct tls_context *tls_ctx = tls_get_ctx(sk);
970 struct tls_prot_info *prot = &tls_ctx->prot_info;
971 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
972 bool async_capable = ctx->async_capable;
973 unsigned char record_type = TLS_RECORD_TYPE_DATA;
974 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
975 bool eor = !(msg->msg_flags & MSG_MORE);
976 size_t try_to_copy;
977 ssize_t copied = 0;
978 struct sk_msg *msg_pl, *msg_en;
979 struct tls_rec *rec;
980 int required_size;
981 int num_async = 0;
982 bool full_record;
983 int record_room;
984 int num_zc = 0;
985 int orig_size;
986 int ret = 0;
987 int pending;
988
989 if (!eor && (msg->msg_flags & MSG_EOR))
990 return -EINVAL;
991
992 if (unlikely(msg->msg_controllen)) {
993 ret = tls_process_cmsg(sk, msg, &record_type);
994 if (ret) {
995 if (ret == -EINPROGRESS)
996 num_async++;
997 else if (ret != -EAGAIN)
998 goto send_end;
999 }
1000 }
1001
1002 while (msg_data_left(msg)) {
1003 if (sk->sk_err) {
1004 ret = -sk->sk_err;
1005 goto send_end;
1006 }
1007
1008 if (ctx->open_rec)
1009 rec = ctx->open_rec;
1010 else
1011 rec = ctx->open_rec = tls_get_rec(sk);
1012 if (!rec) {
1013 ret = -ENOMEM;
1014 goto send_end;
1015 }
1016
1017 msg_pl = &rec->msg_plaintext;
1018 msg_en = &rec->msg_encrypted;
1019
1020 orig_size = msg_pl->sg.size;
1021 full_record = false;
1022 try_to_copy = msg_data_left(msg);
1023 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1024 if (try_to_copy >= record_room) {
1025 try_to_copy = record_room;
1026 full_record = true;
1027 }
1028
1029 required_size = msg_pl->sg.size + try_to_copy +
1030 prot->overhead_size;
1031
1032 if (!sk_stream_memory_free(sk))
1033 goto wait_for_sndbuf;
1034
1035 alloc_encrypted:
1036 ret = tls_alloc_encrypted_msg(sk, required_size);
1037 if (ret) {
1038 if (ret != -ENOSPC)
1039 goto wait_for_memory;
1040
1041 /* Adjust try_to_copy according to the amount that was
1042 * actually allocated. The difference is due
1043 * to max sg elements limit
1044 */
1045 try_to_copy -= required_size - msg_en->sg.size;
1046 full_record = true;
1047 }
1048
1049 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1050 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1051 try_to_copy, &copied);
1052 if (ret < 0)
1053 goto send_end;
1054 tls_ctx->pending_open_record_frags = true;
1055 if (full_record || eor || sk_msg_full(msg_pl))
1056 goto copied;
1057 continue;
1058 }
1059
1060 if (!is_kvec && (full_record || eor) && !async_capable) {
1061 u32 first = msg_pl->sg.end;
1062
1063 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1064 msg_pl, try_to_copy);
1065 if (ret)
1066 goto fallback_to_reg_send;
1067
1068 num_zc++;
1069 copied += try_to_copy;
1070
1071 sk_msg_sg_copy_set(msg_pl, first);
1072 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1073 record_type, &copied,
1074 msg->msg_flags);
1075 if (ret) {
1076 if (ret == -EINPROGRESS)
1077 num_async++;
1078 else if (ret == -ENOMEM)
1079 goto wait_for_memory;
1080 else if (ctx->open_rec && ret == -ENOSPC)
1081 goto rollback_iter;
1082 else if (ret != -EAGAIN)
1083 goto send_end;
1084 }
1085 continue;
1086 rollback_iter:
1087 copied -= try_to_copy;
1088 sk_msg_sg_copy_clear(msg_pl, first);
1089 iov_iter_revert(&msg->msg_iter,
1090 msg_pl->sg.size - orig_size);
1091 fallback_to_reg_send:
1092 sk_msg_trim(sk, msg_pl, orig_size);
1093 }
1094
1095 required_size = msg_pl->sg.size + try_to_copy;
1096
1097 ret = tls_clone_plaintext_msg(sk, required_size);
1098 if (ret) {
1099 if (ret != -ENOSPC)
1100 goto send_end;
1101
1102 /* Adjust try_to_copy according to the amount that was
1103 * actually allocated. The difference is due
1104 * to max sg elements limit
1105 */
1106 try_to_copy -= required_size - msg_pl->sg.size;
1107 full_record = true;
1108 sk_msg_trim(sk, msg_en,
1109 msg_pl->sg.size + prot->overhead_size);
1110 }
1111
1112 if (try_to_copy) {
1113 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1114 msg_pl, try_to_copy);
1115 if (ret < 0)
1116 goto trim_sgl;
1117 }
1118
1119 /* Open records defined only if successfully copied, otherwise
1120 * we would trim the sg but not reset the open record frags.
1121 */
1122 tls_ctx->pending_open_record_frags = true;
1123 copied += try_to_copy;
1124 copied:
1125 if (full_record || eor) {
1126 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1127 record_type, &copied,
1128 msg->msg_flags);
1129 if (ret) {
1130 if (ret == -EINPROGRESS)
1131 num_async++;
1132 else if (ret == -ENOMEM)
1133 goto wait_for_memory;
1134 else if (ret != -EAGAIN) {
1135 if (ret == -ENOSPC)
1136 ret = 0;
1137 goto send_end;
1138 }
1139 }
1140 }
1141
1142 continue;
1143
1144 wait_for_sndbuf:
1145 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1146 wait_for_memory:
1147 ret = sk_stream_wait_memory(sk, &timeo);
1148 if (ret) {
1149 trim_sgl:
1150 if (ctx->open_rec)
1151 tls_trim_both_msgs(sk, orig_size);
1152 goto send_end;
1153 }
1154
1155 if (ctx->open_rec && msg_en->sg.size < required_size)
1156 goto alloc_encrypted;
1157 }
1158
1159 if (!num_async) {
1160 goto send_end;
1161 } else if (num_zc) {
1162 /* Wait for pending encryptions to get completed */
1163 spin_lock_bh(&ctx->encrypt_compl_lock);
1164 ctx->async_notify = true;
1165
1166 pending = atomic_read(&ctx->encrypt_pending);
1167 spin_unlock_bh(&ctx->encrypt_compl_lock);
1168 if (pending)
1169 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1170 else
1171 reinit_completion(&ctx->async_wait.completion);
1172
1173 /* There can be no concurrent accesses, since we have no
1174 * pending encrypt operations
1175 */
1176 WRITE_ONCE(ctx->async_notify, false);
1177
1178 if (ctx->async_wait.err) {
1179 ret = ctx->async_wait.err;
1180 copied = 0;
1181 }
1182 }
1183
1184 /* Transmit if any encryptions have completed */
1185 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1186 cancel_delayed_work(&ctx->tx_work.work);
1187 tls_tx_records(sk, msg->msg_flags);
1188 }
1189
1190 send_end:
1191 ret = sk_stream_error(sk, msg->msg_flags, ret);
1192 return copied > 0 ? copied : ret;
1193 }
1194
1195 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1196 {
1197 struct tls_context *tls_ctx = tls_get_ctx(sk);
1198 int ret;
1199
1200 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1201 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1202 MSG_SENDPAGE_NOPOLICY))
1203 return -EOPNOTSUPP;
1204
1205 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1206 if (ret)
1207 return ret;
1208 lock_sock(sk);
1209 ret = tls_sw_sendmsg_locked(sk, msg, size);
1210 release_sock(sk);
1211 mutex_unlock(&tls_ctx->tx_lock);
1212 return ret;
1213 }
1214
1215 /*
1216 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1217 */
1218 void tls_sw_splice_eof(struct socket *sock)
1219 {
1220 struct sock *sk = sock->sk;
1221 struct tls_context *tls_ctx = tls_get_ctx(sk);
1222 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1223 struct tls_rec *rec;
1224 struct sk_msg *msg_pl;
1225 ssize_t copied = 0;
1226 bool retrying = false;
1227 int ret = 0;
1228 int pending;
1229
1230 if (!ctx->open_rec)
1231 return;
1232
1233 mutex_lock(&tls_ctx->tx_lock);
1234 lock_sock(sk);
1235
1236 retry:
1237 /* same checks as in tls_sw_push_pending_record() */
1238 rec = ctx->open_rec;
1239 if (!rec)
1240 goto unlock;
1241
1242 msg_pl = &rec->msg_plaintext;
1243 if (msg_pl->sg.size == 0)
1244 goto unlock;
1245
1246 /* Check the BPF advisor and perform transmission. */
1247 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1248 &copied, 0);
1249 switch (ret) {
1250 case 0:
1251 case -EAGAIN:
1252 if (retrying)
1253 goto unlock;
1254 retrying = true;
1255 goto retry;
1256 case -EINPROGRESS:
1257 break;
1258 default:
1259 goto unlock;
1260 }
1261
1262 /* Wait for pending encryptions to get completed */
1263 spin_lock_bh(&ctx->encrypt_compl_lock);
1264 ctx->async_notify = true;
1265
1266 pending = atomic_read(&ctx->encrypt_pending);
1267 spin_unlock_bh(&ctx->encrypt_compl_lock);
1268 if (pending)
1269 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1270 else
1271 reinit_completion(&ctx->async_wait.completion);
1272
1273 /* There can be no concurrent accesses, since we have no pending
1274 * encrypt operations
1275 */
1276 WRITE_ONCE(ctx->async_notify, false);
1277
1278 if (ctx->async_wait.err)
1279 goto unlock;
1280
1281 /* Transmit if any encryptions have completed */
1282 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1283 cancel_delayed_work(&ctx->tx_work.work);
1284 tls_tx_records(sk, 0);
1285 }
1286
1287 unlock:
1288 release_sock(sk);
1289 mutex_unlock(&tls_ctx->tx_lock);
1290 }
1291
1292 static int
1293 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1294 bool released)
1295 {
1296 struct tls_context *tls_ctx = tls_get_ctx(sk);
1297 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1298 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1299 int ret = 0;
1300 long timeo;
1301
1302 timeo = sock_rcvtimeo(sk, nonblock);
1303
1304 while (!tls_strp_msg_ready(ctx)) {
1305 if (!sk_psock_queue_empty(psock))
1306 return 0;
1307
1308 if (sk->sk_err)
1309 return sock_error(sk);
1310
1311 if (ret < 0)
1312 return ret;
1313
1314 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1315 tls_strp_check_rcv(&ctx->strp);
1316 if (tls_strp_msg_ready(ctx))
1317 break;
1318 }
1319
1320 if (sk->sk_shutdown & RCV_SHUTDOWN)
1321 return 0;
1322
1323 if (sock_flag(sk, SOCK_DONE))
1324 return 0;
1325
1326 if (!timeo)
1327 return -EAGAIN;
1328
1329 released = true;
1330 add_wait_queue(sk_sleep(sk), &wait);
1331 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1332 ret = sk_wait_event(sk, &timeo,
1333 tls_strp_msg_ready(ctx) ||
1334 !sk_psock_queue_empty(psock),
1335 &wait);
1336 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1337 remove_wait_queue(sk_sleep(sk), &wait);
1338
1339 /* Handle signals */
1340 if (signal_pending(current))
1341 return sock_intr_errno(timeo);
1342 }
1343
1344 tls_strp_msg_load(&ctx->strp, released);
1345
1346 return 1;
1347 }
1348
1349 static int tls_setup_from_iter(struct iov_iter *from,
1350 int length, int *pages_used,
1351 struct scatterlist *to,
1352 int to_max_pages)
1353 {
1354 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1355 struct page *pages[MAX_SKB_FRAGS];
1356 unsigned int size = 0;
1357 ssize_t copied, use;
1358 size_t offset;
1359
1360 while (length > 0) {
1361 i = 0;
1362 maxpages = to_max_pages - num_elem;
1363 if (maxpages == 0) {
1364 rc = -EFAULT;
1365 goto out;
1366 }
1367 copied = iov_iter_get_pages2(from, pages,
1368 length,
1369 maxpages, &offset);
1370 if (copied <= 0) {
1371 rc = -EFAULT;
1372 goto out;
1373 }
1374
1375 length -= copied;
1376 size += copied;
1377 while (copied) {
1378 use = min_t(int, copied, PAGE_SIZE - offset);
1379
1380 sg_set_page(&to[num_elem],
1381 pages[i], use, offset);
1382 sg_unmark_end(&to[num_elem]);
1383 /* We do not uncharge memory from this API */
1384
1385 offset = 0;
1386 copied -= use;
1387
1388 i++;
1389 num_elem++;
1390 }
1391 }
1392 /* Mark the end in the last sg entry if newly added */
1393 if (num_elem > *pages_used)
1394 sg_mark_end(&to[num_elem - 1]);
1395 out:
1396 if (rc)
1397 iov_iter_revert(from, size);
1398 *pages_used = num_elem;
1399
1400 return rc;
1401 }
1402
1403 static struct sk_buff *
1404 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1405 unsigned int full_len)
1406 {
1407 struct strp_msg *clr_rxm;
1408 struct sk_buff *clr_skb;
1409 int err;
1410
1411 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1412 &err, sk->sk_allocation);
1413 if (!clr_skb)
1414 return NULL;
1415
1416 skb_copy_header(clr_skb, skb);
1417 clr_skb->len = full_len;
1418 clr_skb->data_len = full_len;
1419
1420 clr_rxm = strp_msg(clr_skb);
1421 clr_rxm->offset = 0;
1422
1423 return clr_skb;
1424 }
1425
1426 /* Decrypt handlers
1427 *
1428 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1429 * They must transform the darg in/out argument are as follows:
1430 * | Input | Output
1431 * -------------------------------------------------------------------
1432 * zc | Zero-copy decrypt allowed | Zero-copy performed
1433 * async | Async decrypt allowed | Async crypto used / in progress
1434 * skb | * | Output skb
1435 *
1436 * If ZC decryption was performed darg.skb will point to the input skb.
1437 */
1438
1439 /* This function decrypts the input skb into either out_iov or in out_sg
1440 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1441 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1442 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1443 * NULL, then the decryption happens inside skb buffers itself, i.e.
1444 * zero-copy gets disabled and 'darg->zc' is updated.
1445 */
1446 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1447 struct scatterlist *out_sg,
1448 struct tls_decrypt_arg *darg)
1449 {
1450 struct tls_context *tls_ctx = tls_get_ctx(sk);
1451 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1452 struct tls_prot_info *prot = &tls_ctx->prot_info;
1453 int n_sgin, n_sgout, aead_size, err, pages = 0;
1454 struct sk_buff *skb = tls_strp_msg(ctx);
1455 const struct strp_msg *rxm = strp_msg(skb);
1456 const struct tls_msg *tlm = tls_msg(skb);
1457 struct aead_request *aead_req;
1458 struct scatterlist *sgin = NULL;
1459 struct scatterlist *sgout = NULL;
1460 const int data_len = rxm->full_len - prot->overhead_size;
1461 int tail_pages = !!prot->tail_size;
1462 struct tls_decrypt_ctx *dctx;
1463 struct sk_buff *clear_skb;
1464 int iv_offset = 0;
1465 u8 *mem;
1466
1467 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1468 rxm->full_len - prot->prepend_size);
1469 if (n_sgin < 1)
1470 return n_sgin ?: -EBADMSG;
1471
1472 if (darg->zc && (out_iov || out_sg)) {
1473 clear_skb = NULL;
1474
1475 if (out_iov)
1476 n_sgout = 1 + tail_pages +
1477 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1478 else
1479 n_sgout = sg_nents(out_sg);
1480 } else {
1481 darg->zc = false;
1482
1483 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1484 if (!clear_skb)
1485 return -ENOMEM;
1486
1487 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1488 }
1489
1490 /* Increment to accommodate AAD */
1491 n_sgin = n_sgin + 1;
1492
1493 /* Allocate a single block of memory which contains
1494 * aead_req || tls_decrypt_ctx.
1495 * Both structs are variable length.
1496 */
1497 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1498 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1499 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1500 sk->sk_allocation);
1501 if (!mem) {
1502 err = -ENOMEM;
1503 goto exit_free_skb;
1504 }
1505
1506 /* Segment the allocated memory */
1507 aead_req = (struct aead_request *)mem;
1508 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1509 dctx->sk = sk;
1510 sgin = &dctx->sg[0];
1511 sgout = &dctx->sg[n_sgin];
1512
1513 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1514 switch (prot->cipher_type) {
1515 case TLS_CIPHER_AES_CCM_128:
1516 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1517 iv_offset = 1;
1518 break;
1519 case TLS_CIPHER_SM4_CCM:
1520 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1521 iv_offset = 1;
1522 break;
1523 }
1524
1525 /* Prepare IV */
1526 if (prot->version == TLS_1_3_VERSION ||
1527 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1528 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1529 prot->iv_size + prot->salt_size);
1530 } else {
1531 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1532 &dctx->iv[iv_offset] + prot->salt_size,
1533 prot->iv_size);
1534 if (err < 0)
1535 goto exit_free;
1536 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1537 }
1538 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1539
1540 /* Prepare AAD */
1541 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1542 prot->tail_size,
1543 tls_ctx->rx.rec_seq, tlm->control, prot);
1544
1545 /* Prepare sgin */
1546 sg_init_table(sgin, n_sgin);
1547 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1548 err = skb_to_sgvec(skb, &sgin[1],
1549 rxm->offset + prot->prepend_size,
1550 rxm->full_len - prot->prepend_size);
1551 if (err < 0)
1552 goto exit_free;
1553
1554 if (clear_skb) {
1555 sg_init_table(sgout, n_sgout);
1556 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1557
1558 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1559 data_len + prot->tail_size);
1560 if (err < 0)
1561 goto exit_free;
1562 } else if (out_iov) {
1563 sg_init_table(sgout, n_sgout);
1564 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1565
1566 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1567 (n_sgout - 1 - tail_pages));
1568 if (err < 0)
1569 goto exit_free_pages;
1570
1571 if (prot->tail_size) {
1572 sg_unmark_end(&sgout[pages]);
1573 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1574 prot->tail_size);
1575 sg_mark_end(&sgout[pages + 1]);
1576 }
1577 } else if (out_sg) {
1578 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1579 }
1580
1581 /* Prepare and submit AEAD request */
1582 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1583 data_len + prot->tail_size, aead_req, darg);
1584 if (err)
1585 goto exit_free_pages;
1586
1587 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1588 clear_skb = NULL;
1589
1590 if (unlikely(darg->async)) {
1591 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1592 if (err)
1593 __skb_queue_tail(&ctx->async_hold, darg->skb);
1594 return err;
1595 }
1596
1597 if (prot->tail_size)
1598 darg->tail = dctx->tail;
1599
1600 exit_free_pages:
1601 /* Release the pages in case iov was mapped to pages */
1602 for (; pages > 0; pages--)
1603 put_page(sg_page(&sgout[pages]));
1604 exit_free:
1605 kfree(mem);
1606 exit_free_skb:
1607 consume_skb(clear_skb);
1608 return err;
1609 }
1610
1611 static int
1612 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1613 struct msghdr *msg, struct tls_decrypt_arg *darg)
1614 {
1615 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1616 struct tls_prot_info *prot = &tls_ctx->prot_info;
1617 struct strp_msg *rxm;
1618 int pad, err;
1619
1620 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1621 if (err < 0) {
1622 if (err == -EBADMSG)
1623 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1624 return err;
1625 }
1626 /* keep going even for ->async, the code below is TLS 1.3 */
1627
1628 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1629 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1630 darg->tail != TLS_RECORD_TYPE_DATA)) {
1631 darg->zc = false;
1632 if (!darg->tail)
1633 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1634 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1635 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1636 }
1637
1638 pad = tls_padding_length(prot, darg->skb, darg);
1639 if (pad < 0) {
1640 if (darg->skb != tls_strp_msg(ctx))
1641 consume_skb(darg->skb);
1642 return pad;
1643 }
1644
1645 rxm = strp_msg(darg->skb);
1646 rxm->full_len -= pad;
1647
1648 return 0;
1649 }
1650
1651 static int
1652 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1653 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1654 {
1655 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1656 struct tls_prot_info *prot = &tls_ctx->prot_info;
1657 struct strp_msg *rxm;
1658 int pad, err;
1659
1660 if (tls_ctx->rx_conf != TLS_HW)
1661 return 0;
1662
1663 err = tls_device_decrypted(sk, tls_ctx);
1664 if (err <= 0)
1665 return err;
1666
1667 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1668 if (pad < 0)
1669 return pad;
1670
1671 darg->async = false;
1672 darg->skb = tls_strp_msg(ctx);
1673 /* ->zc downgrade check, in case TLS 1.3 gets here */
1674 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1675 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1676
1677 rxm = strp_msg(darg->skb);
1678 rxm->full_len -= pad;
1679
1680 if (!darg->zc) {
1681 /* Non-ZC case needs a real skb */
1682 darg->skb = tls_strp_msg_detach(ctx);
1683 if (!darg->skb)
1684 return -ENOMEM;
1685 } else {
1686 unsigned int off, len;
1687
1688 /* In ZC case nobody cares about the output skb.
1689 * Just copy the data here. Note the skb is not fully trimmed.
1690 */
1691 off = rxm->offset + prot->prepend_size;
1692 len = rxm->full_len - prot->overhead_size;
1693
1694 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1695 if (err)
1696 return err;
1697 }
1698 return 1;
1699 }
1700
1701 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1702 struct tls_decrypt_arg *darg)
1703 {
1704 struct tls_context *tls_ctx = tls_get_ctx(sk);
1705 struct tls_prot_info *prot = &tls_ctx->prot_info;
1706 struct strp_msg *rxm;
1707 int err;
1708
1709 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1710 if (!err)
1711 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1712 if (err < 0)
1713 return err;
1714
1715 rxm = strp_msg(darg->skb);
1716 rxm->offset += prot->prepend_size;
1717 rxm->full_len -= prot->overhead_size;
1718 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1719
1720 return 0;
1721 }
1722
1723 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1724 {
1725 struct tls_decrypt_arg darg = { .zc = true, };
1726
1727 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1728 }
1729
1730 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1731 u8 *control)
1732 {
1733 int err;
1734
1735 if (!*control) {
1736 *control = tlm->control;
1737 if (!*control)
1738 return -EBADMSG;
1739
1740 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1741 sizeof(*control), control);
1742 if (*control != TLS_RECORD_TYPE_DATA) {
1743 if (err || msg->msg_flags & MSG_CTRUNC)
1744 return -EIO;
1745 }
1746 } else if (*control != tlm->control) {
1747 return 0;
1748 }
1749
1750 return 1;
1751 }
1752
1753 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1754 {
1755 tls_strp_msg_done(&ctx->strp);
1756 }
1757
1758 /* This function traverses the rx_list in tls receive context to copies the
1759 * decrypted records into the buffer provided by caller zero copy is not
1760 * true. Further, the records are removed from the rx_list if it is not a peek
1761 * case and the record has been consumed completely.
1762 */
1763 static int process_rx_list(struct tls_sw_context_rx *ctx,
1764 struct msghdr *msg,
1765 u8 *control,
1766 size_t skip,
1767 size_t len,
1768 bool is_peek)
1769 {
1770 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1771 struct tls_msg *tlm;
1772 ssize_t copied = 0;
1773 int err;
1774
1775 while (skip && skb) {
1776 struct strp_msg *rxm = strp_msg(skb);
1777 tlm = tls_msg(skb);
1778
1779 err = tls_record_content_type(msg, tlm, control);
1780 if (err <= 0)
1781 goto out;
1782
1783 if (skip < rxm->full_len)
1784 break;
1785
1786 skip = skip - rxm->full_len;
1787 skb = skb_peek_next(skb, &ctx->rx_list);
1788 }
1789
1790 while (len && skb) {
1791 struct sk_buff *next_skb;
1792 struct strp_msg *rxm = strp_msg(skb);
1793 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1794
1795 tlm = tls_msg(skb);
1796
1797 err = tls_record_content_type(msg, tlm, control);
1798 if (err <= 0)
1799 goto out;
1800
1801 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1802 msg, chunk);
1803 if (err < 0)
1804 goto out;
1805
1806 len = len - chunk;
1807 copied = copied + chunk;
1808
1809 /* Consume the data from record if it is non-peek case*/
1810 if (!is_peek) {
1811 rxm->offset = rxm->offset + chunk;
1812 rxm->full_len = rxm->full_len - chunk;
1813
1814 /* Return if there is unconsumed data in the record */
1815 if (rxm->full_len - skip)
1816 break;
1817 }
1818
1819 /* The remaining skip-bytes must lie in 1st record in rx_list.
1820 * So from the 2nd record, 'skip' should be 0.
1821 */
1822 skip = 0;
1823
1824 if (msg)
1825 msg->msg_flags |= MSG_EOR;
1826
1827 next_skb = skb_peek_next(skb, &ctx->rx_list);
1828
1829 if (!is_peek) {
1830 __skb_unlink(skb, &ctx->rx_list);
1831 consume_skb(skb);
1832 }
1833
1834 skb = next_skb;
1835 }
1836 err = 0;
1837
1838 out:
1839 return copied ? : err;
1840 }
1841
1842 static bool
1843 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1844 size_t len_left, size_t decrypted, ssize_t done,
1845 size_t *flushed_at)
1846 {
1847 size_t max_rec;
1848
1849 if (len_left <= decrypted)
1850 return false;
1851
1852 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1853 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1854 return false;
1855
1856 *flushed_at = done;
1857 return sk_flush_backlog(sk);
1858 }
1859
1860 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1861 bool nonblock)
1862 {
1863 long timeo;
1864 int ret;
1865
1866 timeo = sock_rcvtimeo(sk, nonblock);
1867
1868 while (unlikely(ctx->reader_present)) {
1869 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1870
1871 ctx->reader_contended = 1;
1872
1873 add_wait_queue(&ctx->wq, &wait);
1874 ret = sk_wait_event(sk, &timeo,
1875 !READ_ONCE(ctx->reader_present), &wait);
1876 remove_wait_queue(&ctx->wq, &wait);
1877
1878 if (timeo <= 0)
1879 return -EAGAIN;
1880 if (signal_pending(current))
1881 return sock_intr_errno(timeo);
1882 if (ret < 0)
1883 return ret;
1884 }
1885
1886 WRITE_ONCE(ctx->reader_present, 1);
1887
1888 return 0;
1889 }
1890
1891 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1892 bool nonblock)
1893 {
1894 int err;
1895
1896 lock_sock(sk);
1897 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1898 if (err)
1899 release_sock(sk);
1900 return err;
1901 }
1902
1903 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1904 {
1905 if (unlikely(ctx->reader_contended)) {
1906 if (wq_has_sleeper(&ctx->wq))
1907 wake_up(&ctx->wq);
1908 else
1909 ctx->reader_contended = 0;
1910
1911 WARN_ON_ONCE(!ctx->reader_present);
1912 }
1913
1914 WRITE_ONCE(ctx->reader_present, 0);
1915 }
1916
1917 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1918 {
1919 tls_rx_reader_release(sk, ctx);
1920 release_sock(sk);
1921 }
1922
1923 int tls_sw_recvmsg(struct sock *sk,
1924 struct msghdr *msg,
1925 size_t len,
1926 int flags,
1927 int *addr_len)
1928 {
1929 struct tls_context *tls_ctx = tls_get_ctx(sk);
1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1931 struct tls_prot_info *prot = &tls_ctx->prot_info;
1932 ssize_t decrypted = 0, async_copy_bytes = 0;
1933 struct sk_psock *psock;
1934 unsigned char control = 0;
1935 size_t flushed_at = 0;
1936 struct strp_msg *rxm;
1937 struct tls_msg *tlm;
1938 ssize_t copied = 0;
1939 bool async = false;
1940 int target, err;
1941 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1942 bool is_peek = flags & MSG_PEEK;
1943 bool released = true;
1944 bool bpf_strp_enabled;
1945 bool zc_capable;
1946
1947 if (unlikely(flags & MSG_ERRQUEUE))
1948 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1949
1950 psock = sk_psock_get(sk);
1951 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1952 if (err < 0)
1953 return err;
1954 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1955
1956 /* If crypto failed the connection is broken */
1957 err = ctx->async_wait.err;
1958 if (err)
1959 goto end;
1960
1961 /* Process pending decrypted records. It must be non-zero-copy */
1962 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1963 if (err < 0)
1964 goto end;
1965
1966 copied = err;
1967 if (len <= copied)
1968 goto end;
1969
1970 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1971 len = len - copied;
1972
1973 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1974 ctx->zc_capable;
1975 decrypted = 0;
1976 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1977 struct tls_decrypt_arg darg;
1978 int to_decrypt, chunk;
1979
1980 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1981 released);
1982 if (err <= 0) {
1983 if (psock) {
1984 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1985 flags);
1986 if (chunk > 0) {
1987 decrypted += chunk;
1988 len -= chunk;
1989 continue;
1990 }
1991 }
1992 goto recv_end;
1993 }
1994
1995 memset(&darg.inargs, 0, sizeof(darg.inargs));
1996
1997 rxm = strp_msg(tls_strp_msg(ctx));
1998 tlm = tls_msg(tls_strp_msg(ctx));
1999
2000 to_decrypt = rxm->full_len - prot->overhead_size;
2001
2002 if (zc_capable && to_decrypt <= len &&
2003 tlm->control == TLS_RECORD_TYPE_DATA)
2004 darg.zc = true;
2005
2006 /* Do not use async mode if record is non-data */
2007 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2008 darg.async = ctx->async_capable;
2009 else
2010 darg.async = false;
2011
2012 err = tls_rx_one_record(sk, msg, &darg);
2013 if (err < 0) {
2014 tls_err_abort(sk, -EBADMSG);
2015 goto recv_end;
2016 }
2017
2018 async |= darg.async;
2019
2020 /* If the type of records being processed is not known yet,
2021 * set it to record type just dequeued. If it is already known,
2022 * but does not match the record type just dequeued, go to end.
2023 * We always get record type here since for tls1.2, record type
2024 * is known just after record is dequeued from stream parser.
2025 * For tls1.3, we disable async.
2026 */
2027 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2028 if (err <= 0) {
2029 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2030 tls_rx_rec_done(ctx);
2031 put_on_rx_list_err:
2032 __skb_queue_tail(&ctx->rx_list, darg.skb);
2033 goto recv_end;
2034 }
2035
2036 /* periodically flush backlog, and feed strparser */
2037 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2038 decrypted + copied,
2039 &flushed_at);
2040
2041 /* TLS 1.3 may have updated the length by more than overhead */
2042 rxm = strp_msg(darg.skb);
2043 chunk = rxm->full_len;
2044 tls_rx_rec_done(ctx);
2045
2046 if (!darg.zc) {
2047 bool partially_consumed = chunk > len;
2048 struct sk_buff *skb = darg.skb;
2049
2050 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2051
2052 if (async) {
2053 /* TLS 1.2-only, to_decrypt must be text len */
2054 chunk = min_t(int, to_decrypt, len);
2055 async_copy_bytes += chunk;
2056 put_on_rx_list:
2057 decrypted += chunk;
2058 len -= chunk;
2059 __skb_queue_tail(&ctx->rx_list, skb);
2060 continue;
2061 }
2062
2063 if (bpf_strp_enabled) {
2064 released = true;
2065 err = sk_psock_tls_strp_read(psock, skb);
2066 if (err != __SK_PASS) {
2067 rxm->offset = rxm->offset + rxm->full_len;
2068 rxm->full_len = 0;
2069 if (err == __SK_DROP)
2070 consume_skb(skb);
2071 continue;
2072 }
2073 }
2074
2075 if (partially_consumed)
2076 chunk = len;
2077
2078 err = skb_copy_datagram_msg(skb, rxm->offset,
2079 msg, chunk);
2080 if (err < 0)
2081 goto put_on_rx_list_err;
2082
2083 if (is_peek)
2084 goto put_on_rx_list;
2085
2086 if (partially_consumed) {
2087 rxm->offset += chunk;
2088 rxm->full_len -= chunk;
2089 goto put_on_rx_list;
2090 }
2091
2092 consume_skb(skb);
2093 }
2094
2095 decrypted += chunk;
2096 len -= chunk;
2097
2098 /* Return full control message to userspace before trying
2099 * to parse another message type
2100 */
2101 msg->msg_flags |= MSG_EOR;
2102 if (control != TLS_RECORD_TYPE_DATA)
2103 break;
2104 }
2105
2106 recv_end:
2107 if (async) {
2108 int ret, pending;
2109
2110 /* Wait for all previously submitted records to be decrypted */
2111 spin_lock_bh(&ctx->decrypt_compl_lock);
2112 reinit_completion(&ctx->async_wait.completion);
2113 pending = atomic_read(&ctx->decrypt_pending);
2114 spin_unlock_bh(&ctx->decrypt_compl_lock);
2115 ret = 0;
2116 if (pending)
2117 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2118 __skb_queue_purge(&ctx->async_hold);
2119
2120 if (ret) {
2121 if (err >= 0 || err == -EINPROGRESS)
2122 err = ret;
2123 decrypted = 0;
2124 goto end;
2125 }
2126
2127 /* Drain records from the rx_list & copy if required */
2128 if (is_peek || is_kvec)
2129 err = process_rx_list(ctx, msg, &control, copied,
2130 decrypted, is_peek);
2131 else
2132 err = process_rx_list(ctx, msg, &control, 0,
2133 async_copy_bytes, is_peek);
2134 decrypted += max(err, 0);
2135 }
2136
2137 copied += decrypted;
2138
2139 end:
2140 tls_rx_reader_unlock(sk, ctx);
2141 if (psock)
2142 sk_psock_put(sk, psock);
2143 return copied ? : err;
2144 }
2145
2146 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2147 struct pipe_inode_info *pipe,
2148 size_t len, unsigned int flags)
2149 {
2150 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2151 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2152 struct strp_msg *rxm = NULL;
2153 struct sock *sk = sock->sk;
2154 struct tls_msg *tlm;
2155 struct sk_buff *skb;
2156 ssize_t copied = 0;
2157 int chunk;
2158 int err;
2159
2160 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2161 if (err < 0)
2162 return err;
2163
2164 if (!skb_queue_empty(&ctx->rx_list)) {
2165 skb = __skb_dequeue(&ctx->rx_list);
2166 } else {
2167 struct tls_decrypt_arg darg;
2168
2169 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2170 true);
2171 if (err <= 0)
2172 goto splice_read_end;
2173
2174 memset(&darg.inargs, 0, sizeof(darg.inargs));
2175
2176 err = tls_rx_one_record(sk, NULL, &darg);
2177 if (err < 0) {
2178 tls_err_abort(sk, -EBADMSG);
2179 goto splice_read_end;
2180 }
2181
2182 tls_rx_rec_done(ctx);
2183 skb = darg.skb;
2184 }
2185
2186 rxm = strp_msg(skb);
2187 tlm = tls_msg(skb);
2188
2189 /* splice does not support reading control messages */
2190 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2191 err = -EINVAL;
2192 goto splice_requeue;
2193 }
2194
2195 chunk = min_t(unsigned int, rxm->full_len, len);
2196 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2197 if (copied < 0)
2198 goto splice_requeue;
2199
2200 if (chunk < rxm->full_len) {
2201 rxm->offset += len;
2202 rxm->full_len -= len;
2203 goto splice_requeue;
2204 }
2205
2206 consume_skb(skb);
2207
2208 splice_read_end:
2209 tls_rx_reader_unlock(sk, ctx);
2210 return copied ? : err;
2211
2212 splice_requeue:
2213 __skb_queue_head(&ctx->rx_list, skb);
2214 goto splice_read_end;
2215 }
2216
2217 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2218 sk_read_actor_t read_actor)
2219 {
2220 struct tls_context *tls_ctx = tls_get_ctx(sk);
2221 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2222 struct tls_prot_info *prot = &tls_ctx->prot_info;
2223 struct strp_msg *rxm = NULL;
2224 struct sk_buff *skb = NULL;
2225 struct sk_psock *psock;
2226 size_t flushed_at = 0;
2227 bool released = true;
2228 struct tls_msg *tlm;
2229 ssize_t copied = 0;
2230 ssize_t decrypted;
2231 int err, used;
2232
2233 psock = sk_psock_get(sk);
2234 if (psock) {
2235 sk_psock_put(sk, psock);
2236 return -EINVAL;
2237 }
2238 err = tls_rx_reader_acquire(sk, ctx, true);
2239 if (err < 0)
2240 return err;
2241
2242 /* If crypto failed the connection is broken */
2243 err = ctx->async_wait.err;
2244 if (err)
2245 goto read_sock_end;
2246
2247 decrypted = 0;
2248 do {
2249 if (!skb_queue_empty(&ctx->rx_list)) {
2250 skb = __skb_dequeue(&ctx->rx_list);
2251 rxm = strp_msg(skb);
2252 tlm = tls_msg(skb);
2253 } else {
2254 struct tls_decrypt_arg darg;
2255
2256 err = tls_rx_rec_wait(sk, NULL, true, released);
2257 if (err <= 0)
2258 goto read_sock_end;
2259
2260 memset(&darg.inargs, 0, sizeof(darg.inargs));
2261
2262 err = tls_rx_one_record(sk, NULL, &darg);
2263 if (err < 0) {
2264 tls_err_abort(sk, -EBADMSG);
2265 goto read_sock_end;
2266 }
2267
2268 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2269 0, decrypted,
2270 &flushed_at);
2271 skb = darg.skb;
2272 rxm = strp_msg(skb);
2273 tlm = tls_msg(skb);
2274 decrypted += rxm->full_len;
2275
2276 tls_rx_rec_done(ctx);
2277 }
2278
2279 /* read_sock does not support reading control messages */
2280 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2281 err = -EINVAL;
2282 goto read_sock_requeue;
2283 }
2284
2285 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2286 if (used <= 0) {
2287 if (!copied)
2288 err = used;
2289 goto read_sock_requeue;
2290 }
2291 copied += used;
2292 if (used < rxm->full_len) {
2293 rxm->offset += used;
2294 rxm->full_len -= used;
2295 if (!desc->count)
2296 goto read_sock_requeue;
2297 } else {
2298 consume_skb(skb);
2299 if (!desc->count)
2300 skb = NULL;
2301 }
2302 } while (skb);
2303
2304 read_sock_end:
2305 tls_rx_reader_release(sk, ctx);
2306 return copied ? : err;
2307
2308 read_sock_requeue:
2309 __skb_queue_head(&ctx->rx_list, skb);
2310 goto read_sock_end;
2311 }
2312
2313 bool tls_sw_sock_is_readable(struct sock *sk)
2314 {
2315 struct tls_context *tls_ctx = tls_get_ctx(sk);
2316 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2317 bool ingress_empty = true;
2318 struct sk_psock *psock;
2319
2320 rcu_read_lock();
2321 psock = sk_psock(sk);
2322 if (psock)
2323 ingress_empty = list_empty(&psock->ingress_msg);
2324 rcu_read_unlock();
2325
2326 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2327 !skb_queue_empty(&ctx->rx_list);
2328 }
2329
2330 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2331 {
2332 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2333 struct tls_prot_info *prot = &tls_ctx->prot_info;
2334 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2335 size_t cipher_overhead;
2336 size_t data_len = 0;
2337 int ret;
2338
2339 /* Verify that we have a full TLS header, or wait for more data */
2340 if (strp->stm.offset + prot->prepend_size > skb->len)
2341 return 0;
2342
2343 /* Sanity-check size of on-stack buffer. */
2344 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2345 ret = -EINVAL;
2346 goto read_failure;
2347 }
2348
2349 /* Linearize header to local buffer */
2350 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2351 if (ret < 0)
2352 goto read_failure;
2353
2354 strp->mark = header[0];
2355
2356 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2357
2358 cipher_overhead = prot->tag_size;
2359 if (prot->version != TLS_1_3_VERSION &&
2360 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2361 cipher_overhead += prot->iv_size;
2362
2363 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2364 prot->tail_size) {
2365 ret = -EMSGSIZE;
2366 goto read_failure;
2367 }
2368 if (data_len < cipher_overhead) {
2369 ret = -EBADMSG;
2370 goto read_failure;
2371 }
2372
2373 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2374 if (header[1] != TLS_1_2_VERSION_MINOR ||
2375 header[2] != TLS_1_2_VERSION_MAJOR) {
2376 ret = -EINVAL;
2377 goto read_failure;
2378 }
2379
2380 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2381 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2382 return data_len + TLS_HEADER_SIZE;
2383
2384 read_failure:
2385 tls_err_abort(strp->sk, ret);
2386
2387 return ret;
2388 }
2389
2390 void tls_rx_msg_ready(struct tls_strparser *strp)
2391 {
2392 struct tls_sw_context_rx *ctx;
2393
2394 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2395 ctx->saved_data_ready(strp->sk);
2396 }
2397
2398 static void tls_data_ready(struct sock *sk)
2399 {
2400 struct tls_context *tls_ctx = tls_get_ctx(sk);
2401 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2402 struct sk_psock *psock;
2403 gfp_t alloc_save;
2404
2405 trace_sk_data_ready(sk);
2406
2407 alloc_save = sk->sk_allocation;
2408 sk->sk_allocation = GFP_ATOMIC;
2409 tls_strp_data_ready(&ctx->strp);
2410 sk->sk_allocation = alloc_save;
2411
2412 psock = sk_psock_get(sk);
2413 if (psock) {
2414 if (!list_empty(&psock->ingress_msg))
2415 ctx->saved_data_ready(sk);
2416 sk_psock_put(sk, psock);
2417 }
2418 }
2419
2420 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2421 {
2422 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2423
2424 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2425 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2426 cancel_delayed_work_sync(&ctx->tx_work.work);
2427 }
2428
2429 void tls_sw_release_resources_tx(struct sock *sk)
2430 {
2431 struct tls_context *tls_ctx = tls_get_ctx(sk);
2432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2433 struct tls_rec *rec, *tmp;
2434 int pending;
2435
2436 /* Wait for any pending async encryptions to complete */
2437 spin_lock_bh(&ctx->encrypt_compl_lock);
2438 ctx->async_notify = true;
2439 pending = atomic_read(&ctx->encrypt_pending);
2440 spin_unlock_bh(&ctx->encrypt_compl_lock);
2441
2442 if (pending)
2443 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2444
2445 tls_tx_records(sk, -1);
2446
2447 /* Free up un-sent records in tx_list. First, free
2448 * the partially sent record if any at head of tx_list.
2449 */
2450 if (tls_ctx->partially_sent_record) {
2451 tls_free_partial_record(sk, tls_ctx);
2452 rec = list_first_entry(&ctx->tx_list,
2453 struct tls_rec, list);
2454 list_del(&rec->list);
2455 sk_msg_free(sk, &rec->msg_plaintext);
2456 kfree(rec);
2457 }
2458
2459 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2460 list_del(&rec->list);
2461 sk_msg_free(sk, &rec->msg_encrypted);
2462 sk_msg_free(sk, &rec->msg_plaintext);
2463 kfree(rec);
2464 }
2465
2466 crypto_free_aead(ctx->aead_send);
2467 tls_free_open_rec(sk);
2468 }
2469
2470 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2471 {
2472 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2473
2474 kfree(ctx);
2475 }
2476
2477 void tls_sw_release_resources_rx(struct sock *sk)
2478 {
2479 struct tls_context *tls_ctx = tls_get_ctx(sk);
2480 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2481
2482 if (ctx->aead_recv) {
2483 __skb_queue_purge(&ctx->rx_list);
2484 crypto_free_aead(ctx->aead_recv);
2485 tls_strp_stop(&ctx->strp);
2486 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2487 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2488 * never swapped.
2489 */
2490 if (ctx->saved_data_ready) {
2491 write_lock_bh(&sk->sk_callback_lock);
2492 sk->sk_data_ready = ctx->saved_data_ready;
2493 write_unlock_bh(&sk->sk_callback_lock);
2494 }
2495 }
2496 }
2497
2498 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2499 {
2500 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2501
2502 tls_strp_done(&ctx->strp);
2503 }
2504
2505 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2506 {
2507 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2508
2509 kfree(ctx);
2510 }
2511
2512 void tls_sw_free_resources_rx(struct sock *sk)
2513 {
2514 struct tls_context *tls_ctx = tls_get_ctx(sk);
2515
2516 tls_sw_release_resources_rx(sk);
2517 tls_sw_free_ctx_rx(tls_ctx);
2518 }
2519
2520 /* The work handler to transmitt the encrypted records in tx_list */
2521 static void tx_work_handler(struct work_struct *work)
2522 {
2523 struct delayed_work *delayed_work = to_delayed_work(work);
2524 struct tx_work *tx_work = container_of(delayed_work,
2525 struct tx_work, work);
2526 struct sock *sk = tx_work->sk;
2527 struct tls_context *tls_ctx = tls_get_ctx(sk);
2528 struct tls_sw_context_tx *ctx;
2529
2530 if (unlikely(!tls_ctx))
2531 return;
2532
2533 ctx = tls_sw_ctx_tx(tls_ctx);
2534 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2535 return;
2536
2537 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2538 return;
2539
2540 if (mutex_trylock(&tls_ctx->tx_lock)) {
2541 lock_sock(sk);
2542 tls_tx_records(sk, -1);
2543 release_sock(sk);
2544 mutex_unlock(&tls_ctx->tx_lock);
2545 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2546 /* Someone is holding the tx_lock, they will likely run Tx
2547 * and cancel the work on their way out of the lock section.
2548 * Schedule a long delay just in case.
2549 */
2550 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2551 }
2552 }
2553
2554 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2555 {
2556 struct tls_rec *rec;
2557
2558 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2559 if (!rec)
2560 return false;
2561
2562 return READ_ONCE(rec->tx_ready);
2563 }
2564
2565 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2566 {
2567 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2568
2569 /* Schedule the transmission if tx list is ready */
2570 if (tls_is_tx_ready(tx_ctx) &&
2571 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2572 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2573 }
2574
2575 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2576 {
2577 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2578
2579 write_lock_bh(&sk->sk_callback_lock);
2580 rx_ctx->saved_data_ready = sk->sk_data_ready;
2581 sk->sk_data_ready = tls_data_ready;
2582 write_unlock_bh(&sk->sk_callback_lock);
2583 }
2584
2585 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2586 {
2587 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2588
2589 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2590 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2591 }
2592
2593 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2594 {
2595 struct tls_sw_context_tx *sw_ctx_tx;
2596
2597 if (!ctx->priv_ctx_tx) {
2598 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2599 if (!sw_ctx_tx)
2600 return NULL;
2601 } else {
2602 sw_ctx_tx = ctx->priv_ctx_tx;
2603 }
2604
2605 crypto_init_wait(&sw_ctx_tx->async_wait);
2606 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2607 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2608 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2609 sw_ctx_tx->tx_work.sk = sk;
2610
2611 return sw_ctx_tx;
2612 }
2613
2614 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2615 {
2616 struct tls_sw_context_rx *sw_ctx_rx;
2617
2618 if (!ctx->priv_ctx_rx) {
2619 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2620 if (!sw_ctx_rx)
2621 return NULL;
2622 } else {
2623 sw_ctx_rx = ctx->priv_ctx_rx;
2624 }
2625
2626 crypto_init_wait(&sw_ctx_rx->async_wait);
2627 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2628 init_waitqueue_head(&sw_ctx_rx->wq);
2629 skb_queue_head_init(&sw_ctx_rx->rx_list);
2630 skb_queue_head_init(&sw_ctx_rx->async_hold);
2631
2632 return sw_ctx_rx;
2633 }
2634
2635 int init_prot_info(struct tls_prot_info *prot,
2636 const struct tls_crypto_info *crypto_info,
2637 const struct tls_cipher_desc *cipher_desc)
2638 {
2639 u16 nonce_size = cipher_desc->nonce;
2640
2641 if (crypto_info->version == TLS_1_3_VERSION) {
2642 nonce_size = 0;
2643 prot->aad_size = TLS_HEADER_SIZE;
2644 prot->tail_size = 1;
2645 } else {
2646 prot->aad_size = TLS_AAD_SPACE_SIZE;
2647 prot->tail_size = 0;
2648 }
2649
2650 /* Sanity-check the sizes for stack allocations. */
2651 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2652 return -EINVAL;
2653
2654 prot->version = crypto_info->version;
2655 prot->cipher_type = crypto_info->cipher_type;
2656 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2657 prot->tag_size = cipher_desc->tag;
2658 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2659 prot->iv_size = cipher_desc->iv;
2660 prot->salt_size = cipher_desc->salt;
2661 prot->rec_seq_size = cipher_desc->rec_seq;
2662
2663 return 0;
2664 }
2665
2666 int tls_set_sw_offload(struct sock *sk, int tx)
2667 {
2668 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2669 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2670 const struct tls_cipher_desc *cipher_desc;
2671 struct tls_crypto_info *crypto_info;
2672 char *iv, *rec_seq, *key, *salt;
2673 struct cipher_context *cctx;
2674 struct tls_prot_info *prot;
2675 struct crypto_aead **aead;
2676 struct tls_context *ctx;
2677 struct crypto_tfm *tfm;
2678 int rc = 0;
2679
2680 ctx = tls_get_ctx(sk);
2681 prot = &ctx->prot_info;
2682
2683 if (tx) {
2684 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2685 if (!ctx->priv_ctx_tx)
2686 return -ENOMEM;
2687
2688 sw_ctx_tx = ctx->priv_ctx_tx;
2689 crypto_info = &ctx->crypto_send.info;
2690 cctx = &ctx->tx;
2691 aead = &sw_ctx_tx->aead_send;
2692 } else {
2693 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2694 if (!ctx->priv_ctx_rx)
2695 return -ENOMEM;
2696
2697 sw_ctx_rx = ctx->priv_ctx_rx;
2698 crypto_info = &ctx->crypto_recv.info;
2699 cctx = &ctx->rx;
2700 aead = &sw_ctx_rx->aead_recv;
2701 }
2702
2703 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2704 if (!cipher_desc) {
2705 rc = -EINVAL;
2706 goto free_priv;
2707 }
2708
2709 rc = init_prot_info(prot, crypto_info, cipher_desc);
2710 if (rc)
2711 goto free_priv;
2712
2713 iv = crypto_info_iv(crypto_info, cipher_desc);
2714 key = crypto_info_key(crypto_info, cipher_desc);
2715 salt = crypto_info_salt(crypto_info, cipher_desc);
2716 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2717
2718 memcpy(cctx->iv, salt, cipher_desc->salt);
2719 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2720 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2721
2722 if (!*aead) {
2723 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2724 if (IS_ERR(*aead)) {
2725 rc = PTR_ERR(*aead);
2726 *aead = NULL;
2727 goto free_priv;
2728 }
2729 }
2730
2731 ctx->push_pending_record = tls_sw_push_pending_record;
2732
2733 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2734 if (rc)
2735 goto free_aead;
2736
2737 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2738 if (rc)
2739 goto free_aead;
2740
2741 if (sw_ctx_rx) {
2742 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2743
2744 tls_update_rx_zc_capable(ctx);
2745 sw_ctx_rx->async_capable =
2746 crypto_info->version != TLS_1_3_VERSION &&
2747 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2748
2749 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2750 if (rc)
2751 goto free_aead;
2752 }
2753
2754 goto out;
2755
2756 free_aead:
2757 crypto_free_aead(*aead);
2758 *aead = NULL;
2759 free_priv:
2760 if (tx) {
2761 kfree(ctx->priv_ctx_tx);
2762 ctx->priv_ctx_tx = NULL;
2763 } else {
2764 kfree(ctx->priv_ctx_rx);
2765 ctx->priv_ctx_rx = NULL;
2766 }
2767 out:
2768 return rc;
2769 }