]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/tls/tls_sw.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / net / tls / tls_sw.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 u8 tail;
56 );
57
58 struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62 struct sock *sk;
63 u8 iv[MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
65 u8 tail;
66 struct scatterlist sg[];
67 };
68
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
75 smp_wmb();
76 sk_error_report(sk);
77 }
78
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
81 {
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
85 int elt = 0;
86
87 if (unlikely(recursion_level >= 24))
88 return -EMSGSIZE;
89
90 if (chunk > 0) {
91 if (chunk > len)
92 chunk = len;
93 elt++;
94 len -= chunk;
95 if (len == 0)
96 return elt;
97 offset += chunk;
98 }
99
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101 int end;
102
103 WARN_ON(start > offset + len);
104
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
107 if (chunk > 0) {
108 if (chunk > len)
109 chunk = len;
110 elt++;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
121 int end, ret;
122
123 WARN_ON(start > offset + len);
124
125 end = start + frag_iter->len;
126 chunk = end - offset;
127 if (chunk > 0) {
128 if (chunk > len)
129 chunk = len;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
133 return ret;
134 elt += ret;
135 len -= chunk;
136 if (len == 0)
137 return elt;
138 offset += chunk;
139 }
140 start = end;
141 }
142 }
143 BUG_ON(len);
144 return elt;
145 }
146
147 /* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
149 */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152 return __skb_nsg(skb, offset, len, 0);
153 }
154
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
157 {
158 struct strp_msg *rxm = strp_msg(skb);
159 struct tls_msg *tlm = tls_msg(skb);
160 int sub = 0;
161
162 /* Determine zero-padding length */
163 if (prot->version == TLS_1_3_VERSION) {
164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 char content_type = darg->zc ? darg->tail : 0;
166 int err;
167
168 while (content_type == 0) {
169 if (offset < prot->prepend_size)
170 return -EBADMSG;
171 err = skb_copy_bits(skb, rxm->offset + offset,
172 &content_type, 1);
173 if (err)
174 return err;
175 if (content_type)
176 break;
177 sub++;
178 offset--;
179 }
180 tlm->control = content_type;
181 }
182 return sub;
183 }
184
185 static void tls_decrypt_done(void *data, int err)
186 {
187 struct aead_request *aead_req = data;
188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 struct scatterlist *sgout = aead_req->dst;
190 struct scatterlist *sgin = aead_req->src;
191 struct tls_sw_context_rx *ctx;
192 struct tls_decrypt_ctx *dctx;
193 struct tls_context *tls_ctx;
194 struct scatterlist *sg;
195 unsigned int pages;
196 struct sock *sk;
197 int aead_size;
198
199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 dctx = (void *)((u8 *)aead_req + aead_size);
202
203 sk = dctx->sk;
204 tls_ctx = tls_get_ctx(sk);
205 ctx = tls_sw_ctx_rx(tls_ctx);
206
207 /* Propagate if there was an err */
208 if (err) {
209 if (err == -EBADMSG)
210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 ctx->async_wait.err = err;
212 tls_err_abort(sk, err);
213 }
214
215 /* Free the destination pages if skb was not decrypted inplace */
216 if (sgout != sgin) {
217 /* Skip the first S/G entry as it points to AAD */
218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219 if (!sg)
220 break;
221 put_page(sg_page(sg));
222 }
223 }
224
225 kfree(aead_req);
226
227 spin_lock_bh(&ctx->decrypt_compl_lock);
228 if (!atomic_dec_return(&ctx->decrypt_pending))
229 complete(&ctx->async_wait.completion);
230 spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232
233 static int tls_do_decryption(struct sock *sk,
234 struct scatterlist *sgin,
235 struct scatterlist *sgout,
236 char *iv_recv,
237 size_t data_len,
238 struct aead_request *aead_req,
239 struct tls_decrypt_arg *darg)
240 {
241 struct tls_context *tls_ctx = tls_get_ctx(sk);
242 struct tls_prot_info *prot = &tls_ctx->prot_info;
243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244 int ret;
245
246 aead_request_set_tfm(aead_req, ctx->aead_recv);
247 aead_request_set_ad(aead_req, prot->aad_size);
248 aead_request_set_crypt(aead_req, sgin, sgout,
249 data_len + prot->tag_size,
250 (u8 *)iv_recv);
251
252 if (darg->async) {
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
255 tls_decrypt_done, aead_req);
256 atomic_inc(&ctx->decrypt_pending);
257 } else {
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
261 }
262
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
265 if (darg->async)
266 return 0;
267
268 ret = crypto_wait_req(ret, &ctx->async_wait);
269 }
270 darg->async = false;
271
272 return ret;
273 }
274
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
278 struct tls_prot_info *prot = &tls_ctx->prot_info;
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
281
282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283 if (target_size > 0)
284 target_size += prot->overhead_size;
285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
294
295 return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
301 struct tls_prot_info *prot = &tls_ctx->prot_info;
302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 struct tls_rec *rec = ctx->open_rec;
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
306 int skip, len;
307
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
310 * has enough required room (ensured by caller).
311 */
312 len = required - msg_pl->sg.size;
313
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
316 */
317 skip = prot->prepend_size + msg_pl->sg.size;
318
319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_prot_info *prot = &tls_ctx->prot_info;
326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 struct sk_msg *msg_pl, *msg_en;
328 struct tls_rec *rec;
329 int mem_size;
330
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333 rec = kzalloc(mem_size, sk->sk_allocation);
334 if (!rec)
335 return NULL;
336
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
339
340 sk_msg_init(msg_pl);
341 sk_msg_init(msg_en);
342
343 sg_init_table(rec->sg_aead_in, 2);
344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 sg_unmark_end(&rec->sg_aead_in[1]);
346
347 sg_init_table(rec->sg_aead_out, 2);
348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_out[1]);
350
351 rec->sk = sk;
352
353 return rec;
354 }
355
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358 sk_msg_free(sk, &rec->msg_encrypted);
359 sk_msg_free(sk, &rec->msg_plaintext);
360 kfree(rec);
361 }
362
363 static void tls_free_open_rec(struct sock *sk)
364 {
365 struct tls_context *tls_ctx = tls_get_ctx(sk);
366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 struct tls_rec *rec = ctx->open_rec;
368
369 if (rec) {
370 tls_free_rec(sk, rec);
371 ctx->open_rec = NULL;
372 }
373 }
374
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377 struct tls_context *tls_ctx = tls_get_ctx(sk);
378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 struct tls_rec *rec, *tmp;
380 struct sk_msg *msg_en;
381 int tx_flags, rc = 0;
382
383 if (tls_is_partially_sent_record(tls_ctx)) {
384 rec = list_first_entry(&ctx->tx_list,
385 struct tls_rec, list);
386
387 if (flags == -1)
388 tx_flags = rec->tx_flags;
389 else
390 tx_flags = flags;
391
392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393 if (rc)
394 goto tx_err;
395
396 /* Full record has been transmitted.
397 * Remove the head of tx_list
398 */
399 list_del(&rec->list);
400 sk_msg_free(sk, &rec->msg_plaintext);
401 kfree(rec);
402 }
403
404 /* Tx all ready records */
405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 if (READ_ONCE(rec->tx_ready)) {
407 if (flags == -1)
408 tx_flags = rec->tx_flags;
409 else
410 tx_flags = flags;
411
412 msg_en = &rec->msg_encrypted;
413 rc = tls_push_sg(sk, tls_ctx,
414 &msg_en->sg.data[msg_en->sg.curr],
415 0, tx_flags);
416 if (rc)
417 goto tx_err;
418
419 list_del(&rec->list);
420 sk_msg_free(sk, &rec->msg_plaintext);
421 kfree(rec);
422 } else {
423 break;
424 }
425 }
426
427 tx_err:
428 if (rc < 0 && rc != -EAGAIN)
429 tls_err_abort(sk, -EBADMSG);
430
431 return rc;
432 }
433
434 static void tls_encrypt_done(void *data, int err)
435 {
436 struct tls_sw_context_tx *ctx;
437 struct tls_context *tls_ctx;
438 struct tls_prot_info *prot;
439 struct tls_rec *rec = data;
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
442 bool ready = false;
443 struct sock *sk;
444 int pending;
445
446 msg_en = &rec->msg_encrypted;
447
448 sk = rec->sk;
449 tls_ctx = tls_get_ctx(sk);
450 prot = &tls_ctx->prot_info;
451 ctx = tls_sw_ctx_tx(tls_ctx);
452
453 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 sge->offset -= prot->prepend_size;
455 sge->length += prot->prepend_size;
456
457 /* Check if error is previously set on socket */
458 if (err || sk->sk_err) {
459 rec = NULL;
460
461 /* If err is already set on socket, return the same code */
462 if (sk->sk_err) {
463 ctx->async_wait.err = -sk->sk_err;
464 } else {
465 ctx->async_wait.err = err;
466 tls_err_abort(sk, err);
467 }
468 }
469
470 if (rec) {
471 struct tls_rec *first_rec;
472
473 /* Mark the record as ready for transmission */
474 smp_store_mb(rec->tx_ready, true);
475
476 /* If received record is at head of tx_list, schedule tx */
477 first_rec = list_first_entry(&ctx->tx_list,
478 struct tls_rec, list);
479 if (rec == first_rec)
480 ready = true;
481 }
482
483 spin_lock_bh(&ctx->encrypt_compl_lock);
484 pending = atomic_dec_return(&ctx->encrypt_pending);
485
486 if (!pending && ctx->async_notify)
487 complete(&ctx->async_wait.completion);
488 spin_unlock_bh(&ctx->encrypt_compl_lock);
489
490 if (!ready)
491 return;
492
493 /* Schedule the transmission */
494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497
498 static int tls_do_encryption(struct sock *sk,
499 struct tls_context *tls_ctx,
500 struct tls_sw_context_tx *ctx,
501 struct aead_request *aead_req,
502 size_t data_len, u32 start)
503 {
504 struct tls_prot_info *prot = &tls_ctx->prot_info;
505 struct tls_rec *rec = ctx->open_rec;
506 struct sk_msg *msg_en = &rec->msg_encrypted;
507 struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 int rc, iv_offset = 0;
509
510 /* For CCM based ciphers, first byte of IV is a constant */
511 switch (prot->cipher_type) {
512 case TLS_CIPHER_AES_CCM_128:
513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514 iv_offset = 1;
515 break;
516 case TLS_CIPHER_SM4_CCM:
517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518 iv_offset = 1;
519 break;
520 }
521
522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 prot->iv_size + prot->salt_size);
524
525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 tls_ctx->tx.rec_seq);
527
528 sge->offset += prot->prepend_size;
529 sge->length -= prot->prepend_size;
530
531 msg_en->sg.curr = start;
532
533 aead_request_set_tfm(aead_req, ctx->aead_send);
534 aead_request_set_ad(aead_req, prot->aad_size);
535 aead_request_set_crypt(aead_req, rec->sg_aead_in,
536 rec->sg_aead_out,
537 data_len, rec->iv_data);
538
539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 tls_encrypt_done, rec);
541
542 /* Add the record in tx_list */
543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 atomic_inc(&ctx->encrypt_pending);
545
546 rc = crypto_aead_encrypt(aead_req);
547 if (!rc || rc != -EINPROGRESS) {
548 atomic_dec(&ctx->encrypt_pending);
549 sge->offset -= prot->prepend_size;
550 sge->length += prot->prepend_size;
551 }
552
553 if (!rc) {
554 WRITE_ONCE(rec->tx_ready, true);
555 } else if (rc != -EINPROGRESS) {
556 list_del(&rec->list);
557 return rc;
558 }
559
560 /* Unhook the record from context if encryption is not failure */
561 ctx->open_rec = NULL;
562 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563 return rc;
564 }
565
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 struct tls_rec **to, struct sk_msg *msg_opl,
568 struct sk_msg *msg_oen, u32 split_point,
569 u32 tx_overhead_size, u32 *orig_end)
570 {
571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 struct scatterlist *sge, *osge, *nsge;
573 u32 orig_size = msg_opl->sg.size;
574 struct scatterlist tmp = { };
575 struct sk_msg *msg_npl;
576 struct tls_rec *new;
577 int ret;
578
579 new = tls_get_rec(sk);
580 if (!new)
581 return -ENOMEM;
582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 tx_overhead_size, 0);
584 if (ret < 0) {
585 tls_free_rec(sk, new);
586 return ret;
587 }
588
589 *orig_end = msg_opl->sg.end;
590 i = msg_opl->sg.start;
591 sge = sk_msg_elem(msg_opl, i);
592 while (apply && sge->length) {
593 if (sge->length > apply) {
594 u32 len = sge->length - apply;
595
596 get_page(sg_page(sge));
597 sg_set_page(&tmp, sg_page(sge), len,
598 sge->offset + apply);
599 sge->length = apply;
600 bytes += apply;
601 apply = 0;
602 } else {
603 apply -= sge->length;
604 bytes += sge->length;
605 }
606
607 sk_msg_iter_var_next(i);
608 if (i == msg_opl->sg.end)
609 break;
610 sge = sk_msg_elem(msg_opl, i);
611 }
612
613 msg_opl->sg.end = i;
614 msg_opl->sg.curr = i;
615 msg_opl->sg.copybreak = 0;
616 msg_opl->apply_bytes = 0;
617 msg_opl->sg.size = bytes;
618
619 msg_npl = &new->msg_plaintext;
620 msg_npl->apply_bytes = apply;
621 msg_npl->sg.size = orig_size - bytes;
622
623 j = msg_npl->sg.start;
624 nsge = sk_msg_elem(msg_npl, j);
625 if (tmp.length) {
626 memcpy(nsge, &tmp, sizeof(*nsge));
627 sk_msg_iter_var_next(j);
628 nsge = sk_msg_elem(msg_npl, j);
629 }
630
631 osge = sk_msg_elem(msg_opl, i);
632 while (osge->length) {
633 memcpy(nsge, osge, sizeof(*nsge));
634 sg_unmark_end(nsge);
635 sk_msg_iter_var_next(i);
636 sk_msg_iter_var_next(j);
637 if (i == *orig_end)
638 break;
639 osge = sk_msg_elem(msg_opl, i);
640 nsge = sk_msg_elem(msg_npl, j);
641 }
642
643 msg_npl->sg.end = j;
644 msg_npl->sg.curr = j;
645 msg_npl->sg.copybreak = 0;
646
647 *to = new;
648 return 0;
649 }
650
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 struct tls_rec *from, u32 orig_end)
653 {
654 struct sk_msg *msg_npl = &from->msg_plaintext;
655 struct sk_msg *msg_opl = &to->msg_plaintext;
656 struct scatterlist *osge, *nsge;
657 u32 i, j;
658
659 i = msg_opl->sg.end;
660 sk_msg_iter_var_prev(i);
661 j = msg_npl->sg.start;
662
663 osge = sk_msg_elem(msg_opl, i);
664 nsge = sk_msg_elem(msg_npl, j);
665
666 if (sg_page(osge) == sg_page(nsge) &&
667 osge->offset + osge->length == nsge->offset) {
668 osge->length += nsge->length;
669 put_page(sg_page(nsge));
670 }
671
672 msg_opl->sg.end = orig_end;
673 msg_opl->sg.curr = orig_end;
674 msg_opl->sg.copybreak = 0;
675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 msg_opl->sg.size += msg_npl->sg.size;
677
678 sk_msg_free(sk, &to->msg_encrypted);
679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680
681 kfree(from);
682 }
683
684 static int tls_push_record(struct sock *sk, int flags,
685 unsigned char record_type)
686 {
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
688 struct tls_prot_info *prot = &tls_ctx->prot_info;
689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 u32 i, split_point, orig_end;
692 struct sk_msg *msg_pl, *msg_en;
693 struct aead_request *req;
694 bool split;
695 int rc;
696
697 if (!rec)
698 return 0;
699
700 msg_pl = &rec->msg_plaintext;
701 msg_en = &rec->msg_encrypted;
702
703 split_point = msg_pl->apply_bytes;
704 split = split_point && split_point < msg_pl->sg.size;
705 if (unlikely((!split &&
706 msg_pl->sg.size +
707 prot->overhead_size > msg_en->sg.size) ||
708 (split &&
709 split_point +
710 prot->overhead_size > msg_en->sg.size))) {
711 split = true;
712 split_point = msg_en->sg.size;
713 }
714 if (split) {
715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 split_point, prot->overhead_size,
717 &orig_end);
718 if (rc < 0)
719 return rc;
720 /* This can happen if above tls_split_open_record allocates
721 * a single large encryption buffer instead of two smaller
722 * ones. In this case adjust pointers and continue without
723 * split.
724 */
725 if (!msg_pl->sg.size) {
726 tls_merge_open_record(sk, rec, tmp, orig_end);
727 msg_pl = &rec->msg_plaintext;
728 msg_en = &rec->msg_encrypted;
729 split = false;
730 }
731 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 prot->overhead_size);
733 }
734
735 rec->tx_flags = flags;
736 req = &rec->aead_req;
737
738 i = msg_pl->sg.end;
739 sk_msg_iter_var_prev(i);
740
741 rec->content_type = record_type;
742 if (prot->version == TLS_1_3_VERSION) {
743 /* Add content type to end of message. No padding added */
744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 sg_mark_end(&rec->sg_content_type);
746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 &rec->sg_content_type);
748 } else {
749 sg_mark_end(sk_msg_elem(msg_pl, i));
750 }
751
752 if (msg_pl->sg.end < msg_pl->sg.start) {
753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755 msg_pl->sg.data);
756 }
757
758 i = msg_pl->sg.start;
759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760
761 i = msg_en->sg.end;
762 sk_msg_iter_var_prev(i);
763 sg_mark_end(sk_msg_elem(msg_en, i));
764
765 i = msg_en->sg.start;
766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767
768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 tls_ctx->tx.rec_seq, record_type, prot);
770
771 tls_fill_prepend(tls_ctx,
772 page_address(sg_page(&msg_en->sg.data[i])) +
773 msg_en->sg.data[i].offset,
774 msg_pl->sg.size + prot->tail_size,
775 record_type);
776
777 tls_ctx->pending_open_record_frags = false;
778
779 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 msg_pl->sg.size + prot->tail_size, i);
781 if (rc < 0) {
782 if (rc != -EINPROGRESS) {
783 tls_err_abort(sk, -EBADMSG);
784 if (split) {
785 tls_ctx->pending_open_record_frags = true;
786 tls_merge_open_record(sk, rec, tmp, orig_end);
787 }
788 }
789 ctx->async_capable = 1;
790 return rc;
791 } else if (split) {
792 msg_pl = &tmp->msg_plaintext;
793 msg_en = &tmp->msg_encrypted;
794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 tls_ctx->pending_open_record_frags = true;
796 ctx->open_rec = tmp;
797 }
798
799 return tls_tx_records(sk, flags);
800 }
801
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 bool full_record, u8 record_type,
804 ssize_t *copied, int flags)
805 {
806 struct tls_context *tls_ctx = tls_get_ctx(sk);
807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 struct sk_msg msg_redir = { };
809 struct sk_psock *psock;
810 struct sock *sk_redir;
811 struct tls_rec *rec;
812 bool enospc, policy, redir_ingress;
813 int err = 0, send;
814 u32 delta = 0;
815
816 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 psock = sk_psock_get(sk);
818 if (!psock || !policy) {
819 err = tls_push_record(sk, flags, record_type);
820 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
821 *copied -= sk_msg_free(sk, msg);
822 tls_free_open_rec(sk);
823 err = -sk->sk_err;
824 }
825 if (psock)
826 sk_psock_put(sk, psock);
827 return err;
828 }
829 more_data:
830 enospc = sk_msg_full(msg);
831 if (psock->eval == __SK_NONE) {
832 delta = msg->sg.size;
833 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 delta -= msg->sg.size;
835 }
836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 !enospc && !full_record) {
838 err = -ENOSPC;
839 goto out_err;
840 }
841 msg->cork_bytes = 0;
842 send = msg->sg.size;
843 if (msg->apply_bytes && msg->apply_bytes < send)
844 send = msg->apply_bytes;
845
846 switch (psock->eval) {
847 case __SK_PASS:
848 err = tls_push_record(sk, flags, record_type);
849 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
850 *copied -= sk_msg_free(sk, msg);
851 tls_free_open_rec(sk);
852 err = -sk->sk_err;
853 goto out_err;
854 }
855 break;
856 case __SK_REDIRECT:
857 redir_ingress = psock->redir_ingress;
858 sk_redir = psock->sk_redir;
859 memcpy(&msg_redir, msg, sizeof(*msg));
860 if (msg->apply_bytes < send)
861 msg->apply_bytes = 0;
862 else
863 msg->apply_bytes -= send;
864 sk_msg_return_zero(sk, msg, send);
865 msg->sg.size -= send;
866 release_sock(sk);
867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 &msg_redir, send, flags);
869 lock_sock(sk);
870 if (err < 0) {
871 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
872 msg->sg.size = 0;
873 }
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
876 break;
877 case __SK_DROP:
878 default:
879 sk_msg_free_partial(sk, msg, send);
880 if (msg->apply_bytes < send)
881 msg->apply_bytes = 0;
882 else
883 msg->apply_bytes -= send;
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
886 *copied -= (send + delta);
887 err = -EACCES;
888 }
889
890 if (likely(!err)) {
891 bool reset_eval = !ctx->open_rec;
892
893 rec = ctx->open_rec;
894 if (rec) {
895 msg = &rec->msg_plaintext;
896 if (!msg->apply_bytes)
897 reset_eval = true;
898 }
899 if (reset_eval) {
900 psock->eval = __SK_NONE;
901 if (psock->sk_redir) {
902 sock_put(psock->sk_redir);
903 psock->sk_redir = NULL;
904 }
905 }
906 if (rec)
907 goto more_data;
908 }
909 out_err:
910 sk_psock_put(sk, psock);
911 return err;
912 }
913
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916 struct tls_context *tls_ctx = tls_get_ctx(sk);
917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 struct tls_rec *rec = ctx->open_rec;
919 struct sk_msg *msg_pl;
920 size_t copied;
921
922 if (!rec)
923 return 0;
924
925 msg_pl = &rec->msg_plaintext;
926 copied = msg_pl->sg.size;
927 if (!copied)
928 return 0;
929
930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931 &copied, flags);
932 }
933
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 struct sk_msg *msg_pl, size_t try_to_copy,
936 ssize_t *copied)
937 {
938 struct page *page = NULL, **pages = &page;
939
940 do {
941 ssize_t part;
942 size_t off;
943
944 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 try_to_copy, 1, 0, &off);
946 if (part <= 0)
947 return part ?: -EIO;
948
949 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 iov_iter_revert(&msg->msg_iter, part);
951 return -EIO;
952 }
953
954 sk_msg_page_add(msg_pl, page, part, off);
955 sk_mem_charge(sk, part);
956 *copied += part;
957 try_to_copy -= part;
958 } while (try_to_copy && !sk_msg_full(msg_pl));
959
960 return 0;
961 }
962
963 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
964 size_t size)
965 {
966 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
967 struct tls_context *tls_ctx = tls_get_ctx(sk);
968 struct tls_prot_info *prot = &tls_ctx->prot_info;
969 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
970 bool async_capable = ctx->async_capable;
971 unsigned char record_type = TLS_RECORD_TYPE_DATA;
972 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
973 bool eor = !(msg->msg_flags & MSG_MORE);
974 size_t try_to_copy;
975 ssize_t copied = 0;
976 struct sk_msg *msg_pl, *msg_en;
977 struct tls_rec *rec;
978 int required_size;
979 int num_async = 0;
980 bool full_record;
981 int record_room;
982 int num_zc = 0;
983 int orig_size;
984 int ret = 0;
985 int pending;
986
987 if (!eor && (msg->msg_flags & MSG_EOR))
988 return -EINVAL;
989
990 if (unlikely(msg->msg_controllen)) {
991 ret = tls_process_cmsg(sk, msg, &record_type);
992 if (ret) {
993 if (ret == -EINPROGRESS)
994 num_async++;
995 else if (ret != -EAGAIN)
996 goto send_end;
997 }
998 }
999
1000 while (msg_data_left(msg)) {
1001 if (sk->sk_err) {
1002 ret = -sk->sk_err;
1003 goto send_end;
1004 }
1005
1006 if (ctx->open_rec)
1007 rec = ctx->open_rec;
1008 else
1009 rec = ctx->open_rec = tls_get_rec(sk);
1010 if (!rec) {
1011 ret = -ENOMEM;
1012 goto send_end;
1013 }
1014
1015 msg_pl = &rec->msg_plaintext;
1016 msg_en = &rec->msg_encrypted;
1017
1018 orig_size = msg_pl->sg.size;
1019 full_record = false;
1020 try_to_copy = msg_data_left(msg);
1021 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1022 if (try_to_copy >= record_room) {
1023 try_to_copy = record_room;
1024 full_record = true;
1025 }
1026
1027 required_size = msg_pl->sg.size + try_to_copy +
1028 prot->overhead_size;
1029
1030 if (!sk_stream_memory_free(sk))
1031 goto wait_for_sndbuf;
1032
1033 alloc_encrypted:
1034 ret = tls_alloc_encrypted_msg(sk, required_size);
1035 if (ret) {
1036 if (ret != -ENOSPC)
1037 goto wait_for_memory;
1038
1039 /* Adjust try_to_copy according to the amount that was
1040 * actually allocated. The difference is due
1041 * to max sg elements limit
1042 */
1043 try_to_copy -= required_size - msg_en->sg.size;
1044 full_record = true;
1045 }
1046
1047 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1048 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1049 try_to_copy, &copied);
1050 if (ret < 0)
1051 goto send_end;
1052 tls_ctx->pending_open_record_frags = true;
1053 if (full_record || eor || sk_msg_full(msg_pl))
1054 goto copied;
1055 continue;
1056 }
1057
1058 if (!is_kvec && (full_record || eor) && !async_capable) {
1059 u32 first = msg_pl->sg.end;
1060
1061 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1062 msg_pl, try_to_copy);
1063 if (ret)
1064 goto fallback_to_reg_send;
1065
1066 num_zc++;
1067 copied += try_to_copy;
1068
1069 sk_msg_sg_copy_set(msg_pl, first);
1070 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1071 record_type, &copied,
1072 msg->msg_flags);
1073 if (ret) {
1074 if (ret == -EINPROGRESS)
1075 num_async++;
1076 else if (ret == -ENOMEM)
1077 goto wait_for_memory;
1078 else if (ctx->open_rec && ret == -ENOSPC)
1079 goto rollback_iter;
1080 else if (ret != -EAGAIN)
1081 goto send_end;
1082 }
1083 continue;
1084 rollback_iter:
1085 copied -= try_to_copy;
1086 sk_msg_sg_copy_clear(msg_pl, first);
1087 iov_iter_revert(&msg->msg_iter,
1088 msg_pl->sg.size - orig_size);
1089 fallback_to_reg_send:
1090 sk_msg_trim(sk, msg_pl, orig_size);
1091 }
1092
1093 required_size = msg_pl->sg.size + try_to_copy;
1094
1095 ret = tls_clone_plaintext_msg(sk, required_size);
1096 if (ret) {
1097 if (ret != -ENOSPC)
1098 goto send_end;
1099
1100 /* Adjust try_to_copy according to the amount that was
1101 * actually allocated. The difference is due
1102 * to max sg elements limit
1103 */
1104 try_to_copy -= required_size - msg_pl->sg.size;
1105 full_record = true;
1106 sk_msg_trim(sk, msg_en,
1107 msg_pl->sg.size + prot->overhead_size);
1108 }
1109
1110 if (try_to_copy) {
1111 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1112 msg_pl, try_to_copy);
1113 if (ret < 0)
1114 goto trim_sgl;
1115 }
1116
1117 /* Open records defined only if successfully copied, otherwise
1118 * we would trim the sg but not reset the open record frags.
1119 */
1120 tls_ctx->pending_open_record_frags = true;
1121 copied += try_to_copy;
1122 copied:
1123 if (full_record || eor) {
1124 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1125 record_type, &copied,
1126 msg->msg_flags);
1127 if (ret) {
1128 if (ret == -EINPROGRESS)
1129 num_async++;
1130 else if (ret == -ENOMEM)
1131 goto wait_for_memory;
1132 else if (ret != -EAGAIN) {
1133 if (ret == -ENOSPC)
1134 ret = 0;
1135 goto send_end;
1136 }
1137 }
1138 }
1139
1140 continue;
1141
1142 wait_for_sndbuf:
1143 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1144 wait_for_memory:
1145 ret = sk_stream_wait_memory(sk, &timeo);
1146 if (ret) {
1147 trim_sgl:
1148 if (ctx->open_rec)
1149 tls_trim_both_msgs(sk, orig_size);
1150 goto send_end;
1151 }
1152
1153 if (ctx->open_rec && msg_en->sg.size < required_size)
1154 goto alloc_encrypted;
1155 }
1156
1157 if (!num_async) {
1158 goto send_end;
1159 } else if (num_zc) {
1160 /* Wait for pending encryptions to get completed */
1161 spin_lock_bh(&ctx->encrypt_compl_lock);
1162 ctx->async_notify = true;
1163
1164 pending = atomic_read(&ctx->encrypt_pending);
1165 spin_unlock_bh(&ctx->encrypt_compl_lock);
1166 if (pending)
1167 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1168 else
1169 reinit_completion(&ctx->async_wait.completion);
1170
1171 /* There can be no concurrent accesses, since we have no
1172 * pending encrypt operations
1173 */
1174 WRITE_ONCE(ctx->async_notify, false);
1175
1176 if (ctx->async_wait.err) {
1177 ret = ctx->async_wait.err;
1178 copied = 0;
1179 }
1180 }
1181
1182 /* Transmit if any encryptions have completed */
1183 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1184 cancel_delayed_work(&ctx->tx_work.work);
1185 tls_tx_records(sk, msg->msg_flags);
1186 }
1187
1188 send_end:
1189 ret = sk_stream_error(sk, msg->msg_flags, ret);
1190 return copied > 0 ? copied : ret;
1191 }
1192
1193 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1194 {
1195 struct tls_context *tls_ctx = tls_get_ctx(sk);
1196 int ret;
1197
1198 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1199 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1200 MSG_SENDPAGE_NOPOLICY))
1201 return -EOPNOTSUPP;
1202
1203 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1204 if (ret)
1205 return ret;
1206 lock_sock(sk);
1207 ret = tls_sw_sendmsg_locked(sk, msg, size);
1208 release_sock(sk);
1209 mutex_unlock(&tls_ctx->tx_lock);
1210 return ret;
1211 }
1212
1213 /*
1214 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1215 */
1216 void tls_sw_splice_eof(struct socket *sock)
1217 {
1218 struct sock *sk = sock->sk;
1219 struct tls_context *tls_ctx = tls_get_ctx(sk);
1220 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1221 struct tls_rec *rec;
1222 struct sk_msg *msg_pl;
1223 ssize_t copied = 0;
1224 bool retrying = false;
1225 int ret = 0;
1226 int pending;
1227
1228 if (!ctx->open_rec)
1229 return;
1230
1231 mutex_lock(&tls_ctx->tx_lock);
1232 lock_sock(sk);
1233
1234 retry:
1235 rec = ctx->open_rec;
1236 if (!rec)
1237 goto unlock;
1238
1239 msg_pl = &rec->msg_plaintext;
1240
1241 /* Check the BPF advisor and perform transmission. */
1242 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1243 &copied, 0);
1244 switch (ret) {
1245 case 0:
1246 case -EAGAIN:
1247 if (retrying)
1248 goto unlock;
1249 retrying = true;
1250 goto retry;
1251 case -EINPROGRESS:
1252 break;
1253 default:
1254 goto unlock;
1255 }
1256
1257 /* Wait for pending encryptions to get completed */
1258 spin_lock_bh(&ctx->encrypt_compl_lock);
1259 ctx->async_notify = true;
1260
1261 pending = atomic_read(&ctx->encrypt_pending);
1262 spin_unlock_bh(&ctx->encrypt_compl_lock);
1263 if (pending)
1264 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1265 else
1266 reinit_completion(&ctx->async_wait.completion);
1267
1268 /* There can be no concurrent accesses, since we have no pending
1269 * encrypt operations
1270 */
1271 WRITE_ONCE(ctx->async_notify, false);
1272
1273 if (ctx->async_wait.err)
1274 goto unlock;
1275
1276 /* Transmit if any encryptions have completed */
1277 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1278 cancel_delayed_work(&ctx->tx_work.work);
1279 tls_tx_records(sk, 0);
1280 }
1281
1282 unlock:
1283 release_sock(sk);
1284 mutex_unlock(&tls_ctx->tx_lock);
1285 }
1286
1287 static int
1288 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1289 bool released)
1290 {
1291 struct tls_context *tls_ctx = tls_get_ctx(sk);
1292 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1293 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1294 int ret = 0;
1295 long timeo;
1296
1297 timeo = sock_rcvtimeo(sk, nonblock);
1298
1299 while (!tls_strp_msg_ready(ctx)) {
1300 if (!sk_psock_queue_empty(psock))
1301 return 0;
1302
1303 if (sk->sk_err)
1304 return sock_error(sk);
1305
1306 if (ret < 0)
1307 return ret;
1308
1309 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1310 tls_strp_check_rcv(&ctx->strp);
1311 if (tls_strp_msg_ready(ctx))
1312 break;
1313 }
1314
1315 if (sk->sk_shutdown & RCV_SHUTDOWN)
1316 return 0;
1317
1318 if (sock_flag(sk, SOCK_DONE))
1319 return 0;
1320
1321 if (!timeo)
1322 return -EAGAIN;
1323
1324 released = true;
1325 add_wait_queue(sk_sleep(sk), &wait);
1326 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1327 ret = sk_wait_event(sk, &timeo,
1328 tls_strp_msg_ready(ctx) ||
1329 !sk_psock_queue_empty(psock),
1330 &wait);
1331 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1332 remove_wait_queue(sk_sleep(sk), &wait);
1333
1334 /* Handle signals */
1335 if (signal_pending(current))
1336 return sock_intr_errno(timeo);
1337 }
1338
1339 tls_strp_msg_load(&ctx->strp, released);
1340
1341 return 1;
1342 }
1343
1344 static int tls_setup_from_iter(struct iov_iter *from,
1345 int length, int *pages_used,
1346 struct scatterlist *to,
1347 int to_max_pages)
1348 {
1349 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1350 struct page *pages[MAX_SKB_FRAGS];
1351 unsigned int size = 0;
1352 ssize_t copied, use;
1353 size_t offset;
1354
1355 while (length > 0) {
1356 i = 0;
1357 maxpages = to_max_pages - num_elem;
1358 if (maxpages == 0) {
1359 rc = -EFAULT;
1360 goto out;
1361 }
1362 copied = iov_iter_get_pages2(from, pages,
1363 length,
1364 maxpages, &offset);
1365 if (copied <= 0) {
1366 rc = -EFAULT;
1367 goto out;
1368 }
1369
1370 length -= copied;
1371 size += copied;
1372 while (copied) {
1373 use = min_t(int, copied, PAGE_SIZE - offset);
1374
1375 sg_set_page(&to[num_elem],
1376 pages[i], use, offset);
1377 sg_unmark_end(&to[num_elem]);
1378 /* We do not uncharge memory from this API */
1379
1380 offset = 0;
1381 copied -= use;
1382
1383 i++;
1384 num_elem++;
1385 }
1386 }
1387 /* Mark the end in the last sg entry if newly added */
1388 if (num_elem > *pages_used)
1389 sg_mark_end(&to[num_elem - 1]);
1390 out:
1391 if (rc)
1392 iov_iter_revert(from, size);
1393 *pages_used = num_elem;
1394
1395 return rc;
1396 }
1397
1398 static struct sk_buff *
1399 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1400 unsigned int full_len)
1401 {
1402 struct strp_msg *clr_rxm;
1403 struct sk_buff *clr_skb;
1404 int err;
1405
1406 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1407 &err, sk->sk_allocation);
1408 if (!clr_skb)
1409 return NULL;
1410
1411 skb_copy_header(clr_skb, skb);
1412 clr_skb->len = full_len;
1413 clr_skb->data_len = full_len;
1414
1415 clr_rxm = strp_msg(clr_skb);
1416 clr_rxm->offset = 0;
1417
1418 return clr_skb;
1419 }
1420
1421 /* Decrypt handlers
1422 *
1423 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1424 * They must transform the darg in/out argument are as follows:
1425 * | Input | Output
1426 * -------------------------------------------------------------------
1427 * zc | Zero-copy decrypt allowed | Zero-copy performed
1428 * async | Async decrypt allowed | Async crypto used / in progress
1429 * skb | * | Output skb
1430 *
1431 * If ZC decryption was performed darg.skb will point to the input skb.
1432 */
1433
1434 /* This function decrypts the input skb into either out_iov or in out_sg
1435 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1436 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1437 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1438 * NULL, then the decryption happens inside skb buffers itself, i.e.
1439 * zero-copy gets disabled and 'darg->zc' is updated.
1440 */
1441 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1442 struct scatterlist *out_sg,
1443 struct tls_decrypt_arg *darg)
1444 {
1445 struct tls_context *tls_ctx = tls_get_ctx(sk);
1446 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1447 struct tls_prot_info *prot = &tls_ctx->prot_info;
1448 int n_sgin, n_sgout, aead_size, err, pages = 0;
1449 struct sk_buff *skb = tls_strp_msg(ctx);
1450 const struct strp_msg *rxm = strp_msg(skb);
1451 const struct tls_msg *tlm = tls_msg(skb);
1452 struct aead_request *aead_req;
1453 struct scatterlist *sgin = NULL;
1454 struct scatterlist *sgout = NULL;
1455 const int data_len = rxm->full_len - prot->overhead_size;
1456 int tail_pages = !!prot->tail_size;
1457 struct tls_decrypt_ctx *dctx;
1458 struct sk_buff *clear_skb;
1459 int iv_offset = 0;
1460 u8 *mem;
1461
1462 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1463 rxm->full_len - prot->prepend_size);
1464 if (n_sgin < 1)
1465 return n_sgin ?: -EBADMSG;
1466
1467 if (darg->zc && (out_iov || out_sg)) {
1468 clear_skb = NULL;
1469
1470 if (out_iov)
1471 n_sgout = 1 + tail_pages +
1472 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1473 else
1474 n_sgout = sg_nents(out_sg);
1475 } else {
1476 darg->zc = false;
1477
1478 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1479 if (!clear_skb)
1480 return -ENOMEM;
1481
1482 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1483 }
1484
1485 /* Increment to accommodate AAD */
1486 n_sgin = n_sgin + 1;
1487
1488 /* Allocate a single block of memory which contains
1489 * aead_req || tls_decrypt_ctx.
1490 * Both structs are variable length.
1491 */
1492 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1493 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1494 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1495 sk->sk_allocation);
1496 if (!mem) {
1497 err = -ENOMEM;
1498 goto exit_free_skb;
1499 }
1500
1501 /* Segment the allocated memory */
1502 aead_req = (struct aead_request *)mem;
1503 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1504 dctx->sk = sk;
1505 sgin = &dctx->sg[0];
1506 sgout = &dctx->sg[n_sgin];
1507
1508 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1509 switch (prot->cipher_type) {
1510 case TLS_CIPHER_AES_CCM_128:
1511 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1512 iv_offset = 1;
1513 break;
1514 case TLS_CIPHER_SM4_CCM:
1515 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1516 iv_offset = 1;
1517 break;
1518 }
1519
1520 /* Prepare IV */
1521 if (prot->version == TLS_1_3_VERSION ||
1522 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1523 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1524 prot->iv_size + prot->salt_size);
1525 } else {
1526 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1527 &dctx->iv[iv_offset] + prot->salt_size,
1528 prot->iv_size);
1529 if (err < 0)
1530 goto exit_free;
1531 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1532 }
1533 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1534
1535 /* Prepare AAD */
1536 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1537 prot->tail_size,
1538 tls_ctx->rx.rec_seq, tlm->control, prot);
1539
1540 /* Prepare sgin */
1541 sg_init_table(sgin, n_sgin);
1542 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1543 err = skb_to_sgvec(skb, &sgin[1],
1544 rxm->offset + prot->prepend_size,
1545 rxm->full_len - prot->prepend_size);
1546 if (err < 0)
1547 goto exit_free;
1548
1549 if (clear_skb) {
1550 sg_init_table(sgout, n_sgout);
1551 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1552
1553 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1554 data_len + prot->tail_size);
1555 if (err < 0)
1556 goto exit_free;
1557 } else if (out_iov) {
1558 sg_init_table(sgout, n_sgout);
1559 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1560
1561 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1562 (n_sgout - 1 - tail_pages));
1563 if (err < 0)
1564 goto exit_free_pages;
1565
1566 if (prot->tail_size) {
1567 sg_unmark_end(&sgout[pages]);
1568 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1569 prot->tail_size);
1570 sg_mark_end(&sgout[pages + 1]);
1571 }
1572 } else if (out_sg) {
1573 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1574 }
1575
1576 /* Prepare and submit AEAD request */
1577 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1578 data_len + prot->tail_size, aead_req, darg);
1579 if (err)
1580 goto exit_free_pages;
1581
1582 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1583 clear_skb = NULL;
1584
1585 if (unlikely(darg->async)) {
1586 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1587 if (err)
1588 __skb_queue_tail(&ctx->async_hold, darg->skb);
1589 return err;
1590 }
1591
1592 if (prot->tail_size)
1593 darg->tail = dctx->tail;
1594
1595 exit_free_pages:
1596 /* Release the pages in case iov was mapped to pages */
1597 for (; pages > 0; pages--)
1598 put_page(sg_page(&sgout[pages]));
1599 exit_free:
1600 kfree(mem);
1601 exit_free_skb:
1602 consume_skb(clear_skb);
1603 return err;
1604 }
1605
1606 static int
1607 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1608 struct msghdr *msg, struct tls_decrypt_arg *darg)
1609 {
1610 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1611 struct tls_prot_info *prot = &tls_ctx->prot_info;
1612 struct strp_msg *rxm;
1613 int pad, err;
1614
1615 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1616 if (err < 0) {
1617 if (err == -EBADMSG)
1618 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1619 return err;
1620 }
1621 /* keep going even for ->async, the code below is TLS 1.3 */
1622
1623 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1624 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1625 darg->tail != TLS_RECORD_TYPE_DATA)) {
1626 darg->zc = false;
1627 if (!darg->tail)
1628 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1629 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1630 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1631 }
1632
1633 pad = tls_padding_length(prot, darg->skb, darg);
1634 if (pad < 0) {
1635 if (darg->skb != tls_strp_msg(ctx))
1636 consume_skb(darg->skb);
1637 return pad;
1638 }
1639
1640 rxm = strp_msg(darg->skb);
1641 rxm->full_len -= pad;
1642
1643 return 0;
1644 }
1645
1646 static int
1647 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1648 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1649 {
1650 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1651 struct tls_prot_info *prot = &tls_ctx->prot_info;
1652 struct strp_msg *rxm;
1653 int pad, err;
1654
1655 if (tls_ctx->rx_conf != TLS_HW)
1656 return 0;
1657
1658 err = tls_device_decrypted(sk, tls_ctx);
1659 if (err <= 0)
1660 return err;
1661
1662 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1663 if (pad < 0)
1664 return pad;
1665
1666 darg->async = false;
1667 darg->skb = tls_strp_msg(ctx);
1668 /* ->zc downgrade check, in case TLS 1.3 gets here */
1669 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1670 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1671
1672 rxm = strp_msg(darg->skb);
1673 rxm->full_len -= pad;
1674
1675 if (!darg->zc) {
1676 /* Non-ZC case needs a real skb */
1677 darg->skb = tls_strp_msg_detach(ctx);
1678 if (!darg->skb)
1679 return -ENOMEM;
1680 } else {
1681 unsigned int off, len;
1682
1683 /* In ZC case nobody cares about the output skb.
1684 * Just copy the data here. Note the skb is not fully trimmed.
1685 */
1686 off = rxm->offset + prot->prepend_size;
1687 len = rxm->full_len - prot->overhead_size;
1688
1689 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1690 if (err)
1691 return err;
1692 }
1693 return 1;
1694 }
1695
1696 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1697 struct tls_decrypt_arg *darg)
1698 {
1699 struct tls_context *tls_ctx = tls_get_ctx(sk);
1700 struct tls_prot_info *prot = &tls_ctx->prot_info;
1701 struct strp_msg *rxm;
1702 int err;
1703
1704 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1705 if (!err)
1706 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1707 if (err < 0)
1708 return err;
1709
1710 rxm = strp_msg(darg->skb);
1711 rxm->offset += prot->prepend_size;
1712 rxm->full_len -= prot->overhead_size;
1713 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1714
1715 return 0;
1716 }
1717
1718 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1719 {
1720 struct tls_decrypt_arg darg = { .zc = true, };
1721
1722 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1723 }
1724
1725 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1726 u8 *control)
1727 {
1728 int err;
1729
1730 if (!*control) {
1731 *control = tlm->control;
1732 if (!*control)
1733 return -EBADMSG;
1734
1735 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1736 sizeof(*control), control);
1737 if (*control != TLS_RECORD_TYPE_DATA) {
1738 if (err || msg->msg_flags & MSG_CTRUNC)
1739 return -EIO;
1740 }
1741 } else if (*control != tlm->control) {
1742 return 0;
1743 }
1744
1745 return 1;
1746 }
1747
1748 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1749 {
1750 tls_strp_msg_done(&ctx->strp);
1751 }
1752
1753 /* This function traverses the rx_list in tls receive context to copies the
1754 * decrypted records into the buffer provided by caller zero copy is not
1755 * true. Further, the records are removed from the rx_list if it is not a peek
1756 * case and the record has been consumed completely.
1757 */
1758 static int process_rx_list(struct tls_sw_context_rx *ctx,
1759 struct msghdr *msg,
1760 u8 *control,
1761 size_t skip,
1762 size_t len,
1763 bool is_peek)
1764 {
1765 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1766 struct tls_msg *tlm;
1767 ssize_t copied = 0;
1768 int err;
1769
1770 while (skip && skb) {
1771 struct strp_msg *rxm = strp_msg(skb);
1772 tlm = tls_msg(skb);
1773
1774 err = tls_record_content_type(msg, tlm, control);
1775 if (err <= 0)
1776 goto out;
1777
1778 if (skip < rxm->full_len)
1779 break;
1780
1781 skip = skip - rxm->full_len;
1782 skb = skb_peek_next(skb, &ctx->rx_list);
1783 }
1784
1785 while (len && skb) {
1786 struct sk_buff *next_skb;
1787 struct strp_msg *rxm = strp_msg(skb);
1788 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1789
1790 tlm = tls_msg(skb);
1791
1792 err = tls_record_content_type(msg, tlm, control);
1793 if (err <= 0)
1794 goto out;
1795
1796 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1797 msg, chunk);
1798 if (err < 0)
1799 goto out;
1800
1801 len = len - chunk;
1802 copied = copied + chunk;
1803
1804 /* Consume the data from record if it is non-peek case*/
1805 if (!is_peek) {
1806 rxm->offset = rxm->offset + chunk;
1807 rxm->full_len = rxm->full_len - chunk;
1808
1809 /* Return if there is unconsumed data in the record */
1810 if (rxm->full_len - skip)
1811 break;
1812 }
1813
1814 /* The remaining skip-bytes must lie in 1st record in rx_list.
1815 * So from the 2nd record, 'skip' should be 0.
1816 */
1817 skip = 0;
1818
1819 if (msg)
1820 msg->msg_flags |= MSG_EOR;
1821
1822 next_skb = skb_peek_next(skb, &ctx->rx_list);
1823
1824 if (!is_peek) {
1825 __skb_unlink(skb, &ctx->rx_list);
1826 consume_skb(skb);
1827 }
1828
1829 skb = next_skb;
1830 }
1831 err = 0;
1832
1833 out:
1834 return copied ? : err;
1835 }
1836
1837 static bool
1838 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1839 size_t len_left, size_t decrypted, ssize_t done,
1840 size_t *flushed_at)
1841 {
1842 size_t max_rec;
1843
1844 if (len_left <= decrypted)
1845 return false;
1846
1847 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1848 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1849 return false;
1850
1851 *flushed_at = done;
1852 return sk_flush_backlog(sk);
1853 }
1854
1855 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1856 bool nonblock)
1857 {
1858 long timeo;
1859 int ret;
1860
1861 timeo = sock_rcvtimeo(sk, nonblock);
1862
1863 while (unlikely(ctx->reader_present)) {
1864 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1865
1866 ctx->reader_contended = 1;
1867
1868 add_wait_queue(&ctx->wq, &wait);
1869 ret = sk_wait_event(sk, &timeo,
1870 !READ_ONCE(ctx->reader_present), &wait);
1871 remove_wait_queue(&ctx->wq, &wait);
1872
1873 if (timeo <= 0)
1874 return -EAGAIN;
1875 if (signal_pending(current))
1876 return sock_intr_errno(timeo);
1877 if (ret < 0)
1878 return ret;
1879 }
1880
1881 WRITE_ONCE(ctx->reader_present, 1);
1882
1883 return 0;
1884 }
1885
1886 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1887 bool nonblock)
1888 {
1889 int err;
1890
1891 lock_sock(sk);
1892 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1893 if (err)
1894 release_sock(sk);
1895 return err;
1896 }
1897
1898 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1899 {
1900 if (unlikely(ctx->reader_contended)) {
1901 if (wq_has_sleeper(&ctx->wq))
1902 wake_up(&ctx->wq);
1903 else
1904 ctx->reader_contended = 0;
1905
1906 WARN_ON_ONCE(!ctx->reader_present);
1907 }
1908
1909 WRITE_ONCE(ctx->reader_present, 0);
1910 }
1911
1912 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1913 {
1914 tls_rx_reader_release(sk, ctx);
1915 release_sock(sk);
1916 }
1917
1918 int tls_sw_recvmsg(struct sock *sk,
1919 struct msghdr *msg,
1920 size_t len,
1921 int flags,
1922 int *addr_len)
1923 {
1924 struct tls_context *tls_ctx = tls_get_ctx(sk);
1925 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1926 struct tls_prot_info *prot = &tls_ctx->prot_info;
1927 ssize_t decrypted = 0, async_copy_bytes = 0;
1928 struct sk_psock *psock;
1929 unsigned char control = 0;
1930 size_t flushed_at = 0;
1931 struct strp_msg *rxm;
1932 struct tls_msg *tlm;
1933 ssize_t copied = 0;
1934 bool async = false;
1935 int target, err;
1936 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1937 bool is_peek = flags & MSG_PEEK;
1938 bool released = true;
1939 bool bpf_strp_enabled;
1940 bool zc_capable;
1941
1942 if (unlikely(flags & MSG_ERRQUEUE))
1943 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1944
1945 psock = sk_psock_get(sk);
1946 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1947 if (err < 0)
1948 return err;
1949 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1950
1951 /* If crypto failed the connection is broken */
1952 err = ctx->async_wait.err;
1953 if (err)
1954 goto end;
1955
1956 /* Process pending decrypted records. It must be non-zero-copy */
1957 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1958 if (err < 0)
1959 goto end;
1960
1961 copied = err;
1962 if (len <= copied)
1963 goto end;
1964
1965 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1966 len = len - copied;
1967
1968 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1969 ctx->zc_capable;
1970 decrypted = 0;
1971 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1972 struct tls_decrypt_arg darg;
1973 int to_decrypt, chunk;
1974
1975 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1976 released);
1977 if (err <= 0) {
1978 if (psock) {
1979 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1980 flags);
1981 if (chunk > 0) {
1982 decrypted += chunk;
1983 len -= chunk;
1984 continue;
1985 }
1986 }
1987 goto recv_end;
1988 }
1989
1990 memset(&darg.inargs, 0, sizeof(darg.inargs));
1991
1992 rxm = strp_msg(tls_strp_msg(ctx));
1993 tlm = tls_msg(tls_strp_msg(ctx));
1994
1995 to_decrypt = rxm->full_len - prot->overhead_size;
1996
1997 if (zc_capable && to_decrypt <= len &&
1998 tlm->control == TLS_RECORD_TYPE_DATA)
1999 darg.zc = true;
2000
2001 /* Do not use async mode if record is non-data */
2002 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2003 darg.async = ctx->async_capable;
2004 else
2005 darg.async = false;
2006
2007 err = tls_rx_one_record(sk, msg, &darg);
2008 if (err < 0) {
2009 tls_err_abort(sk, -EBADMSG);
2010 goto recv_end;
2011 }
2012
2013 async |= darg.async;
2014
2015 /* If the type of records being processed is not known yet,
2016 * set it to record type just dequeued. If it is already known,
2017 * but does not match the record type just dequeued, go to end.
2018 * We always get record type here since for tls1.2, record type
2019 * is known just after record is dequeued from stream parser.
2020 * For tls1.3, we disable async.
2021 */
2022 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2023 if (err <= 0) {
2024 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2025 tls_rx_rec_done(ctx);
2026 put_on_rx_list_err:
2027 __skb_queue_tail(&ctx->rx_list, darg.skb);
2028 goto recv_end;
2029 }
2030
2031 /* periodically flush backlog, and feed strparser */
2032 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2033 decrypted + copied,
2034 &flushed_at);
2035
2036 /* TLS 1.3 may have updated the length by more than overhead */
2037 rxm = strp_msg(darg.skb);
2038 chunk = rxm->full_len;
2039 tls_rx_rec_done(ctx);
2040
2041 if (!darg.zc) {
2042 bool partially_consumed = chunk > len;
2043 struct sk_buff *skb = darg.skb;
2044
2045 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2046
2047 if (async) {
2048 /* TLS 1.2-only, to_decrypt must be text len */
2049 chunk = min_t(int, to_decrypt, len);
2050 async_copy_bytes += chunk;
2051 put_on_rx_list:
2052 decrypted += chunk;
2053 len -= chunk;
2054 __skb_queue_tail(&ctx->rx_list, skb);
2055 continue;
2056 }
2057
2058 if (bpf_strp_enabled) {
2059 released = true;
2060 err = sk_psock_tls_strp_read(psock, skb);
2061 if (err != __SK_PASS) {
2062 rxm->offset = rxm->offset + rxm->full_len;
2063 rxm->full_len = 0;
2064 if (err == __SK_DROP)
2065 consume_skb(skb);
2066 continue;
2067 }
2068 }
2069
2070 if (partially_consumed)
2071 chunk = len;
2072
2073 err = skb_copy_datagram_msg(skb, rxm->offset,
2074 msg, chunk);
2075 if (err < 0)
2076 goto put_on_rx_list_err;
2077
2078 if (is_peek)
2079 goto put_on_rx_list;
2080
2081 if (partially_consumed) {
2082 rxm->offset += chunk;
2083 rxm->full_len -= chunk;
2084 goto put_on_rx_list;
2085 }
2086
2087 consume_skb(skb);
2088 }
2089
2090 decrypted += chunk;
2091 len -= chunk;
2092
2093 /* Return full control message to userspace before trying
2094 * to parse another message type
2095 */
2096 msg->msg_flags |= MSG_EOR;
2097 if (control != TLS_RECORD_TYPE_DATA)
2098 break;
2099 }
2100
2101 recv_end:
2102 if (async) {
2103 int ret, pending;
2104
2105 /* Wait for all previously submitted records to be decrypted */
2106 spin_lock_bh(&ctx->decrypt_compl_lock);
2107 reinit_completion(&ctx->async_wait.completion);
2108 pending = atomic_read(&ctx->decrypt_pending);
2109 spin_unlock_bh(&ctx->decrypt_compl_lock);
2110 ret = 0;
2111 if (pending)
2112 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2113 __skb_queue_purge(&ctx->async_hold);
2114
2115 if (ret) {
2116 if (err >= 0 || err == -EINPROGRESS)
2117 err = ret;
2118 decrypted = 0;
2119 goto end;
2120 }
2121
2122 /* Drain records from the rx_list & copy if required */
2123 if (is_peek || is_kvec)
2124 err = process_rx_list(ctx, msg, &control, copied,
2125 decrypted, is_peek);
2126 else
2127 err = process_rx_list(ctx, msg, &control, 0,
2128 async_copy_bytes, is_peek);
2129 decrypted += max(err, 0);
2130 }
2131
2132 copied += decrypted;
2133
2134 end:
2135 tls_rx_reader_unlock(sk, ctx);
2136 if (psock)
2137 sk_psock_put(sk, psock);
2138 return copied ? : err;
2139 }
2140
2141 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2142 struct pipe_inode_info *pipe,
2143 size_t len, unsigned int flags)
2144 {
2145 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2146 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2147 struct strp_msg *rxm = NULL;
2148 struct sock *sk = sock->sk;
2149 struct tls_msg *tlm;
2150 struct sk_buff *skb;
2151 ssize_t copied = 0;
2152 int chunk;
2153 int err;
2154
2155 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2156 if (err < 0)
2157 return err;
2158
2159 if (!skb_queue_empty(&ctx->rx_list)) {
2160 skb = __skb_dequeue(&ctx->rx_list);
2161 } else {
2162 struct tls_decrypt_arg darg;
2163
2164 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2165 true);
2166 if (err <= 0)
2167 goto splice_read_end;
2168
2169 memset(&darg.inargs, 0, sizeof(darg.inargs));
2170
2171 err = tls_rx_one_record(sk, NULL, &darg);
2172 if (err < 0) {
2173 tls_err_abort(sk, -EBADMSG);
2174 goto splice_read_end;
2175 }
2176
2177 tls_rx_rec_done(ctx);
2178 skb = darg.skb;
2179 }
2180
2181 rxm = strp_msg(skb);
2182 tlm = tls_msg(skb);
2183
2184 /* splice does not support reading control messages */
2185 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2186 err = -EINVAL;
2187 goto splice_requeue;
2188 }
2189
2190 chunk = min_t(unsigned int, rxm->full_len, len);
2191 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2192 if (copied < 0)
2193 goto splice_requeue;
2194
2195 if (chunk < rxm->full_len) {
2196 rxm->offset += len;
2197 rxm->full_len -= len;
2198 goto splice_requeue;
2199 }
2200
2201 consume_skb(skb);
2202
2203 splice_read_end:
2204 tls_rx_reader_unlock(sk, ctx);
2205 return copied ? : err;
2206
2207 splice_requeue:
2208 __skb_queue_head(&ctx->rx_list, skb);
2209 goto splice_read_end;
2210 }
2211
2212 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2213 sk_read_actor_t read_actor)
2214 {
2215 struct tls_context *tls_ctx = tls_get_ctx(sk);
2216 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2217 struct tls_prot_info *prot = &tls_ctx->prot_info;
2218 struct strp_msg *rxm = NULL;
2219 struct sk_buff *skb = NULL;
2220 struct sk_psock *psock;
2221 size_t flushed_at = 0;
2222 bool released = true;
2223 struct tls_msg *tlm;
2224 ssize_t copied = 0;
2225 ssize_t decrypted;
2226 int err, used;
2227
2228 psock = sk_psock_get(sk);
2229 if (psock) {
2230 sk_psock_put(sk, psock);
2231 return -EINVAL;
2232 }
2233 err = tls_rx_reader_acquire(sk, ctx, true);
2234 if (err < 0)
2235 return err;
2236
2237 /* If crypto failed the connection is broken */
2238 err = ctx->async_wait.err;
2239 if (err)
2240 goto read_sock_end;
2241
2242 decrypted = 0;
2243 do {
2244 if (!skb_queue_empty(&ctx->rx_list)) {
2245 skb = __skb_dequeue(&ctx->rx_list);
2246 rxm = strp_msg(skb);
2247 tlm = tls_msg(skb);
2248 } else {
2249 struct tls_decrypt_arg darg;
2250
2251 err = tls_rx_rec_wait(sk, NULL, true, released);
2252 if (err <= 0)
2253 goto read_sock_end;
2254
2255 memset(&darg.inargs, 0, sizeof(darg.inargs));
2256
2257 err = tls_rx_one_record(sk, NULL, &darg);
2258 if (err < 0) {
2259 tls_err_abort(sk, -EBADMSG);
2260 goto read_sock_end;
2261 }
2262
2263 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2264 0, decrypted,
2265 &flushed_at);
2266 skb = darg.skb;
2267 rxm = strp_msg(skb);
2268 tlm = tls_msg(skb);
2269 decrypted += rxm->full_len;
2270
2271 tls_rx_rec_done(ctx);
2272 }
2273
2274 /* read_sock does not support reading control messages */
2275 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2276 err = -EINVAL;
2277 goto read_sock_requeue;
2278 }
2279
2280 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2281 if (used <= 0) {
2282 if (!copied)
2283 err = used;
2284 goto read_sock_requeue;
2285 }
2286 copied += used;
2287 if (used < rxm->full_len) {
2288 rxm->offset += used;
2289 rxm->full_len -= used;
2290 if (!desc->count)
2291 goto read_sock_requeue;
2292 } else {
2293 consume_skb(skb);
2294 if (!desc->count)
2295 skb = NULL;
2296 }
2297 } while (skb);
2298
2299 read_sock_end:
2300 tls_rx_reader_release(sk, ctx);
2301 return copied ? : err;
2302
2303 read_sock_requeue:
2304 __skb_queue_head(&ctx->rx_list, skb);
2305 goto read_sock_end;
2306 }
2307
2308 bool tls_sw_sock_is_readable(struct sock *sk)
2309 {
2310 struct tls_context *tls_ctx = tls_get_ctx(sk);
2311 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2312 bool ingress_empty = true;
2313 struct sk_psock *psock;
2314
2315 rcu_read_lock();
2316 psock = sk_psock(sk);
2317 if (psock)
2318 ingress_empty = list_empty(&psock->ingress_msg);
2319 rcu_read_unlock();
2320
2321 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2322 !skb_queue_empty(&ctx->rx_list);
2323 }
2324
2325 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2326 {
2327 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2328 struct tls_prot_info *prot = &tls_ctx->prot_info;
2329 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2330 size_t cipher_overhead;
2331 size_t data_len = 0;
2332 int ret;
2333
2334 /* Verify that we have a full TLS header, or wait for more data */
2335 if (strp->stm.offset + prot->prepend_size > skb->len)
2336 return 0;
2337
2338 /* Sanity-check size of on-stack buffer. */
2339 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2340 ret = -EINVAL;
2341 goto read_failure;
2342 }
2343
2344 /* Linearize header to local buffer */
2345 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2346 if (ret < 0)
2347 goto read_failure;
2348
2349 strp->mark = header[0];
2350
2351 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2352
2353 cipher_overhead = prot->tag_size;
2354 if (prot->version != TLS_1_3_VERSION &&
2355 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2356 cipher_overhead += prot->iv_size;
2357
2358 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2359 prot->tail_size) {
2360 ret = -EMSGSIZE;
2361 goto read_failure;
2362 }
2363 if (data_len < cipher_overhead) {
2364 ret = -EBADMSG;
2365 goto read_failure;
2366 }
2367
2368 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2369 if (header[1] != TLS_1_2_VERSION_MINOR ||
2370 header[2] != TLS_1_2_VERSION_MAJOR) {
2371 ret = -EINVAL;
2372 goto read_failure;
2373 }
2374
2375 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2376 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2377 return data_len + TLS_HEADER_SIZE;
2378
2379 read_failure:
2380 tls_err_abort(strp->sk, ret);
2381
2382 return ret;
2383 }
2384
2385 void tls_rx_msg_ready(struct tls_strparser *strp)
2386 {
2387 struct tls_sw_context_rx *ctx;
2388
2389 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2390 ctx->saved_data_ready(strp->sk);
2391 }
2392
2393 static void tls_data_ready(struct sock *sk)
2394 {
2395 struct tls_context *tls_ctx = tls_get_ctx(sk);
2396 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2397 struct sk_psock *psock;
2398 gfp_t alloc_save;
2399
2400 trace_sk_data_ready(sk);
2401
2402 alloc_save = sk->sk_allocation;
2403 sk->sk_allocation = GFP_ATOMIC;
2404 tls_strp_data_ready(&ctx->strp);
2405 sk->sk_allocation = alloc_save;
2406
2407 psock = sk_psock_get(sk);
2408 if (psock) {
2409 if (!list_empty(&psock->ingress_msg))
2410 ctx->saved_data_ready(sk);
2411 sk_psock_put(sk, psock);
2412 }
2413 }
2414
2415 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2416 {
2417 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2418
2419 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2420 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2421 cancel_delayed_work_sync(&ctx->tx_work.work);
2422 }
2423
2424 void tls_sw_release_resources_tx(struct sock *sk)
2425 {
2426 struct tls_context *tls_ctx = tls_get_ctx(sk);
2427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2428 struct tls_rec *rec, *tmp;
2429 int pending;
2430
2431 /* Wait for any pending async encryptions to complete */
2432 spin_lock_bh(&ctx->encrypt_compl_lock);
2433 ctx->async_notify = true;
2434 pending = atomic_read(&ctx->encrypt_pending);
2435 spin_unlock_bh(&ctx->encrypt_compl_lock);
2436
2437 if (pending)
2438 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2439
2440 tls_tx_records(sk, -1);
2441
2442 /* Free up un-sent records in tx_list. First, free
2443 * the partially sent record if any at head of tx_list.
2444 */
2445 if (tls_ctx->partially_sent_record) {
2446 tls_free_partial_record(sk, tls_ctx);
2447 rec = list_first_entry(&ctx->tx_list,
2448 struct tls_rec, list);
2449 list_del(&rec->list);
2450 sk_msg_free(sk, &rec->msg_plaintext);
2451 kfree(rec);
2452 }
2453
2454 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2455 list_del(&rec->list);
2456 sk_msg_free(sk, &rec->msg_encrypted);
2457 sk_msg_free(sk, &rec->msg_plaintext);
2458 kfree(rec);
2459 }
2460
2461 crypto_free_aead(ctx->aead_send);
2462 tls_free_open_rec(sk);
2463 }
2464
2465 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2466 {
2467 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2468
2469 kfree(ctx);
2470 }
2471
2472 void tls_sw_release_resources_rx(struct sock *sk)
2473 {
2474 struct tls_context *tls_ctx = tls_get_ctx(sk);
2475 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2476
2477 kfree(tls_ctx->rx.rec_seq);
2478 kfree(tls_ctx->rx.iv);
2479
2480 if (ctx->aead_recv) {
2481 __skb_queue_purge(&ctx->rx_list);
2482 crypto_free_aead(ctx->aead_recv);
2483 tls_strp_stop(&ctx->strp);
2484 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2485 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2486 * never swapped.
2487 */
2488 if (ctx->saved_data_ready) {
2489 write_lock_bh(&sk->sk_callback_lock);
2490 sk->sk_data_ready = ctx->saved_data_ready;
2491 write_unlock_bh(&sk->sk_callback_lock);
2492 }
2493 }
2494 }
2495
2496 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2497 {
2498 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2499
2500 tls_strp_done(&ctx->strp);
2501 }
2502
2503 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2504 {
2505 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2506
2507 kfree(ctx);
2508 }
2509
2510 void tls_sw_free_resources_rx(struct sock *sk)
2511 {
2512 struct tls_context *tls_ctx = tls_get_ctx(sk);
2513
2514 tls_sw_release_resources_rx(sk);
2515 tls_sw_free_ctx_rx(tls_ctx);
2516 }
2517
2518 /* The work handler to transmitt the encrypted records in tx_list */
2519 static void tx_work_handler(struct work_struct *work)
2520 {
2521 struct delayed_work *delayed_work = to_delayed_work(work);
2522 struct tx_work *tx_work = container_of(delayed_work,
2523 struct tx_work, work);
2524 struct sock *sk = tx_work->sk;
2525 struct tls_context *tls_ctx = tls_get_ctx(sk);
2526 struct tls_sw_context_tx *ctx;
2527
2528 if (unlikely(!tls_ctx))
2529 return;
2530
2531 ctx = tls_sw_ctx_tx(tls_ctx);
2532 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2533 return;
2534
2535 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2536 return;
2537
2538 if (mutex_trylock(&tls_ctx->tx_lock)) {
2539 lock_sock(sk);
2540 tls_tx_records(sk, -1);
2541 release_sock(sk);
2542 mutex_unlock(&tls_ctx->tx_lock);
2543 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2544 /* Someone is holding the tx_lock, they will likely run Tx
2545 * and cancel the work on their way out of the lock section.
2546 * Schedule a long delay just in case.
2547 */
2548 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2549 }
2550 }
2551
2552 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2553 {
2554 struct tls_rec *rec;
2555
2556 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2557 if (!rec)
2558 return false;
2559
2560 return READ_ONCE(rec->tx_ready);
2561 }
2562
2563 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2564 {
2565 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2566
2567 /* Schedule the transmission if tx list is ready */
2568 if (tls_is_tx_ready(tx_ctx) &&
2569 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2570 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2571 }
2572
2573 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2574 {
2575 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2576
2577 write_lock_bh(&sk->sk_callback_lock);
2578 rx_ctx->saved_data_ready = sk->sk_data_ready;
2579 sk->sk_data_ready = tls_data_ready;
2580 write_unlock_bh(&sk->sk_callback_lock);
2581 }
2582
2583 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2584 {
2585 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2586
2587 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2588 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2589 }
2590
2591 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2592 {
2593 struct tls_context *tls_ctx = tls_get_ctx(sk);
2594 struct tls_prot_info *prot = &tls_ctx->prot_info;
2595 struct tls_crypto_info *crypto_info;
2596 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2597 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2598 struct cipher_context *cctx;
2599 struct crypto_aead **aead;
2600 struct crypto_tfm *tfm;
2601 char *iv, *rec_seq, *key, *salt;
2602 const struct tls_cipher_desc *cipher_desc;
2603 u16 nonce_size;
2604 int rc = 0;
2605
2606 if (!ctx) {
2607 rc = -EINVAL;
2608 goto out;
2609 }
2610
2611 if (tx) {
2612 if (!ctx->priv_ctx_tx) {
2613 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2614 if (!sw_ctx_tx) {
2615 rc = -ENOMEM;
2616 goto out;
2617 }
2618 ctx->priv_ctx_tx = sw_ctx_tx;
2619 } else {
2620 sw_ctx_tx =
2621 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2622 }
2623 } else {
2624 if (!ctx->priv_ctx_rx) {
2625 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2626 if (!sw_ctx_rx) {
2627 rc = -ENOMEM;
2628 goto out;
2629 }
2630 ctx->priv_ctx_rx = sw_ctx_rx;
2631 } else {
2632 sw_ctx_rx =
2633 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2634 }
2635 }
2636
2637 if (tx) {
2638 crypto_init_wait(&sw_ctx_tx->async_wait);
2639 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2640 crypto_info = &ctx->crypto_send.info;
2641 cctx = &ctx->tx;
2642 aead = &sw_ctx_tx->aead_send;
2643 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2644 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2645 sw_ctx_tx->tx_work.sk = sk;
2646 } else {
2647 crypto_init_wait(&sw_ctx_rx->async_wait);
2648 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2649 init_waitqueue_head(&sw_ctx_rx->wq);
2650 crypto_info = &ctx->crypto_recv.info;
2651 cctx = &ctx->rx;
2652 skb_queue_head_init(&sw_ctx_rx->rx_list);
2653 skb_queue_head_init(&sw_ctx_rx->async_hold);
2654 aead = &sw_ctx_rx->aead_recv;
2655 }
2656
2657 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2658 if (!cipher_desc) {
2659 rc = -EINVAL;
2660 goto free_priv;
2661 }
2662
2663 nonce_size = cipher_desc->nonce;
2664
2665 iv = crypto_info_iv(crypto_info, cipher_desc);
2666 key = crypto_info_key(crypto_info, cipher_desc);
2667 salt = crypto_info_salt(crypto_info, cipher_desc);
2668 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2669
2670 if (crypto_info->version == TLS_1_3_VERSION) {
2671 nonce_size = 0;
2672 prot->aad_size = TLS_HEADER_SIZE;
2673 prot->tail_size = 1;
2674 } else {
2675 prot->aad_size = TLS_AAD_SPACE_SIZE;
2676 prot->tail_size = 0;
2677 }
2678
2679 /* Sanity-check the sizes for stack allocations. */
2680 if (nonce_size > MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) {
2681 rc = -EINVAL;
2682 goto free_priv;
2683 }
2684
2685 prot->version = crypto_info->version;
2686 prot->cipher_type = crypto_info->cipher_type;
2687 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2688 prot->tag_size = cipher_desc->tag;
2689 prot->overhead_size = prot->prepend_size +
2690 prot->tag_size + prot->tail_size;
2691 prot->iv_size = cipher_desc->iv;
2692 prot->salt_size = cipher_desc->salt;
2693 cctx->iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
2694 if (!cctx->iv) {
2695 rc = -ENOMEM;
2696 goto free_priv;
2697 }
2698 /* Note: 128 & 256 bit salt are the same size */
2699 prot->rec_seq_size = cipher_desc->rec_seq;
2700 memcpy(cctx->iv, salt, cipher_desc->salt);
2701 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2702
2703 cctx->rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL);
2704 if (!cctx->rec_seq) {
2705 rc = -ENOMEM;
2706 goto free_iv;
2707 }
2708
2709 if (!*aead) {
2710 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2711 if (IS_ERR(*aead)) {
2712 rc = PTR_ERR(*aead);
2713 *aead = NULL;
2714 goto free_rec_seq;
2715 }
2716 }
2717
2718 ctx->push_pending_record = tls_sw_push_pending_record;
2719
2720 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2721 if (rc)
2722 goto free_aead;
2723
2724 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2725 if (rc)
2726 goto free_aead;
2727
2728 if (sw_ctx_rx) {
2729 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2730
2731 tls_update_rx_zc_capable(ctx);
2732 sw_ctx_rx->async_capable =
2733 crypto_info->version != TLS_1_3_VERSION &&
2734 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2735
2736 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2737 if (rc)
2738 goto free_aead;
2739 }
2740
2741 goto out;
2742
2743 free_aead:
2744 crypto_free_aead(*aead);
2745 *aead = NULL;
2746 free_rec_seq:
2747 kfree(cctx->rec_seq);
2748 cctx->rec_seq = NULL;
2749 free_iv:
2750 kfree(cctx->iv);
2751 cctx->iv = NULL;
2752 free_priv:
2753 if (tx) {
2754 kfree(ctx->priv_ctx_tx);
2755 ctx->priv_ctx_tx = NULL;
2756 } else {
2757 kfree(ctx->priv_ctx_rx);
2758 ctx->priv_ctx_rx = NULL;
2759 }
2760 out:
2761 return rc;
2762 }