]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/xdp/xdp_umem.c
Merge tag 'tags/bcm2835-drivers-next-2019-03-12' into soc/fixes
[thirdparty/kernel/stable.git] / net / xdp / xdp_umem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP user-space packet buffer
3 * Copyright(c) 2018 Intel Corporation.
4 */
5
6 #include <linux/init.h>
7 #include <linux/sched/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/uaccess.h>
11 #include <linux/slab.h>
12 #include <linux/bpf.h>
13 #include <linux/mm.h>
14 #include <linux/netdevice.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/idr.h>
17
18 #include "xdp_umem.h"
19 #include "xsk_queue.h"
20
21 #define XDP_UMEM_MIN_CHUNK_SIZE 2048
22
23 static DEFINE_IDA(umem_ida);
24
25 void xdp_add_sk_umem(struct xdp_umem *umem, struct xdp_sock *xs)
26 {
27 unsigned long flags;
28
29 spin_lock_irqsave(&umem->xsk_list_lock, flags);
30 list_add_rcu(&xs->list, &umem->xsk_list);
31 spin_unlock_irqrestore(&umem->xsk_list_lock, flags);
32 }
33
34 void xdp_del_sk_umem(struct xdp_umem *umem, struct xdp_sock *xs)
35 {
36 unsigned long flags;
37
38 spin_lock_irqsave(&umem->xsk_list_lock, flags);
39 list_del_rcu(&xs->list);
40 spin_unlock_irqrestore(&umem->xsk_list_lock, flags);
41 }
42
43 /* The umem is stored both in the _rx struct and the _tx struct as we do
44 * not know if the device has more tx queues than rx, or the opposite.
45 * This might also change during run time.
46 */
47 static int xdp_reg_umem_at_qid(struct net_device *dev, struct xdp_umem *umem,
48 u16 queue_id)
49 {
50 if (queue_id >= max_t(unsigned int,
51 dev->real_num_rx_queues,
52 dev->real_num_tx_queues))
53 return -EINVAL;
54
55 if (queue_id < dev->real_num_rx_queues)
56 dev->_rx[queue_id].umem = umem;
57 if (queue_id < dev->real_num_tx_queues)
58 dev->_tx[queue_id].umem = umem;
59
60 return 0;
61 }
62
63 struct xdp_umem *xdp_get_umem_from_qid(struct net_device *dev,
64 u16 queue_id)
65 {
66 if (queue_id < dev->real_num_rx_queues)
67 return dev->_rx[queue_id].umem;
68 if (queue_id < dev->real_num_tx_queues)
69 return dev->_tx[queue_id].umem;
70
71 return NULL;
72 }
73 EXPORT_SYMBOL(xdp_get_umem_from_qid);
74
75 static void xdp_clear_umem_at_qid(struct net_device *dev, u16 queue_id)
76 {
77 if (queue_id < dev->real_num_rx_queues)
78 dev->_rx[queue_id].umem = NULL;
79 if (queue_id < dev->real_num_tx_queues)
80 dev->_tx[queue_id].umem = NULL;
81 }
82
83 int xdp_umem_assign_dev(struct xdp_umem *umem, struct net_device *dev,
84 u16 queue_id, u16 flags)
85 {
86 bool force_zc, force_copy;
87 struct netdev_bpf bpf;
88 int err = 0;
89
90 force_zc = flags & XDP_ZEROCOPY;
91 force_copy = flags & XDP_COPY;
92
93 if (force_zc && force_copy)
94 return -EINVAL;
95
96 rtnl_lock();
97 if (xdp_get_umem_from_qid(dev, queue_id)) {
98 err = -EBUSY;
99 goto out_rtnl_unlock;
100 }
101
102 err = xdp_reg_umem_at_qid(dev, umem, queue_id);
103 if (err)
104 goto out_rtnl_unlock;
105
106 umem->dev = dev;
107 umem->queue_id = queue_id;
108 if (force_copy)
109 /* For copy-mode, we are done. */
110 goto out_rtnl_unlock;
111
112 if (!dev->netdev_ops->ndo_bpf ||
113 !dev->netdev_ops->ndo_xsk_async_xmit) {
114 err = -EOPNOTSUPP;
115 goto err_unreg_umem;
116 }
117
118 bpf.command = XDP_SETUP_XSK_UMEM;
119 bpf.xsk.umem = umem;
120 bpf.xsk.queue_id = queue_id;
121
122 err = dev->netdev_ops->ndo_bpf(dev, &bpf);
123 if (err)
124 goto err_unreg_umem;
125 rtnl_unlock();
126
127 dev_hold(dev);
128 umem->zc = true;
129 return 0;
130
131 err_unreg_umem:
132 if (!force_zc)
133 err = 0; /* fallback to copy mode */
134 if (err)
135 xdp_clear_umem_at_qid(dev, queue_id);
136 out_rtnl_unlock:
137 rtnl_unlock();
138 return err;
139 }
140
141 static void xdp_umem_clear_dev(struct xdp_umem *umem)
142 {
143 struct netdev_bpf bpf;
144 int err;
145
146 if (umem->zc) {
147 bpf.command = XDP_SETUP_XSK_UMEM;
148 bpf.xsk.umem = NULL;
149 bpf.xsk.queue_id = umem->queue_id;
150
151 rtnl_lock();
152 err = umem->dev->netdev_ops->ndo_bpf(umem->dev, &bpf);
153 rtnl_unlock();
154
155 if (err)
156 WARN(1, "failed to disable umem!\n");
157 }
158
159 if (umem->dev) {
160 rtnl_lock();
161 xdp_clear_umem_at_qid(umem->dev, umem->queue_id);
162 rtnl_unlock();
163 }
164
165 if (umem->zc) {
166 dev_put(umem->dev);
167 umem->zc = false;
168 }
169 }
170
171 static void xdp_umem_unpin_pages(struct xdp_umem *umem)
172 {
173 unsigned int i;
174
175 for (i = 0; i < umem->npgs; i++) {
176 struct page *page = umem->pgs[i];
177
178 set_page_dirty_lock(page);
179 put_page(page);
180 }
181
182 kfree(umem->pgs);
183 umem->pgs = NULL;
184 }
185
186 static void xdp_umem_unaccount_pages(struct xdp_umem *umem)
187 {
188 if (umem->user) {
189 atomic_long_sub(umem->npgs, &umem->user->locked_vm);
190 free_uid(umem->user);
191 }
192 }
193
194 static void xdp_umem_release(struct xdp_umem *umem)
195 {
196 struct task_struct *task;
197 struct mm_struct *mm;
198
199 xdp_umem_clear_dev(umem);
200
201 ida_simple_remove(&umem_ida, umem->id);
202
203 if (umem->fq) {
204 xskq_destroy(umem->fq);
205 umem->fq = NULL;
206 }
207
208 if (umem->cq) {
209 xskq_destroy(umem->cq);
210 umem->cq = NULL;
211 }
212
213 xsk_reuseq_destroy(umem);
214
215 xdp_umem_unpin_pages(umem);
216
217 task = get_pid_task(umem->pid, PIDTYPE_PID);
218 put_pid(umem->pid);
219 if (!task)
220 goto out;
221 mm = get_task_mm(task);
222 put_task_struct(task);
223 if (!mm)
224 goto out;
225
226 mmput(mm);
227 kfree(umem->pages);
228 umem->pages = NULL;
229
230 xdp_umem_unaccount_pages(umem);
231 out:
232 kfree(umem);
233 }
234
235 static void xdp_umem_release_deferred(struct work_struct *work)
236 {
237 struct xdp_umem *umem = container_of(work, struct xdp_umem, work);
238
239 xdp_umem_release(umem);
240 }
241
242 void xdp_get_umem(struct xdp_umem *umem)
243 {
244 refcount_inc(&umem->users);
245 }
246
247 void xdp_put_umem(struct xdp_umem *umem)
248 {
249 if (!umem)
250 return;
251
252 if (refcount_dec_and_test(&umem->users)) {
253 INIT_WORK(&umem->work, xdp_umem_release_deferred);
254 schedule_work(&umem->work);
255 }
256 }
257
258 static int xdp_umem_pin_pages(struct xdp_umem *umem)
259 {
260 unsigned int gup_flags = FOLL_WRITE;
261 long npgs;
262 int err;
263
264 umem->pgs = kcalloc(umem->npgs, sizeof(*umem->pgs),
265 GFP_KERNEL | __GFP_NOWARN);
266 if (!umem->pgs)
267 return -ENOMEM;
268
269 down_read(&current->mm->mmap_sem);
270 npgs = get_user_pages_longterm(umem->address, umem->npgs,
271 gup_flags, &umem->pgs[0], NULL);
272 up_read(&current->mm->mmap_sem);
273
274 if (npgs != umem->npgs) {
275 if (npgs >= 0) {
276 umem->npgs = npgs;
277 err = -ENOMEM;
278 goto out_pin;
279 }
280 err = npgs;
281 goto out_pgs;
282 }
283 return 0;
284
285 out_pin:
286 xdp_umem_unpin_pages(umem);
287 out_pgs:
288 kfree(umem->pgs);
289 umem->pgs = NULL;
290 return err;
291 }
292
293 static int xdp_umem_account_pages(struct xdp_umem *umem)
294 {
295 unsigned long lock_limit, new_npgs, old_npgs;
296
297 if (capable(CAP_IPC_LOCK))
298 return 0;
299
300 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
301 umem->user = get_uid(current_user());
302
303 do {
304 old_npgs = atomic_long_read(&umem->user->locked_vm);
305 new_npgs = old_npgs + umem->npgs;
306 if (new_npgs > lock_limit) {
307 free_uid(umem->user);
308 umem->user = NULL;
309 return -ENOBUFS;
310 }
311 } while (atomic_long_cmpxchg(&umem->user->locked_vm, old_npgs,
312 new_npgs) != old_npgs);
313 return 0;
314 }
315
316 static int xdp_umem_reg(struct xdp_umem *umem, struct xdp_umem_reg *mr)
317 {
318 u32 chunk_size = mr->chunk_size, headroom = mr->headroom;
319 unsigned int chunks, chunks_per_page;
320 u64 addr = mr->addr, size = mr->len;
321 int size_chk, err, i;
322
323 if (chunk_size < XDP_UMEM_MIN_CHUNK_SIZE || chunk_size > PAGE_SIZE) {
324 /* Strictly speaking we could support this, if:
325 * - huge pages, or*
326 * - using an IOMMU, or
327 * - making sure the memory area is consecutive
328 * but for now, we simply say "computer says no".
329 */
330 return -EINVAL;
331 }
332
333 if (!is_power_of_2(chunk_size))
334 return -EINVAL;
335
336 if (!PAGE_ALIGNED(addr)) {
337 /* Memory area has to be page size aligned. For
338 * simplicity, this might change.
339 */
340 return -EINVAL;
341 }
342
343 if ((addr + size) < addr)
344 return -EINVAL;
345
346 chunks = (unsigned int)div_u64(size, chunk_size);
347 if (chunks == 0)
348 return -EINVAL;
349
350 chunks_per_page = PAGE_SIZE / chunk_size;
351 if (chunks < chunks_per_page || chunks % chunks_per_page)
352 return -EINVAL;
353
354 headroom = ALIGN(headroom, 64);
355
356 size_chk = chunk_size - headroom - XDP_PACKET_HEADROOM;
357 if (size_chk < 0)
358 return -EINVAL;
359
360 umem->pid = get_task_pid(current, PIDTYPE_PID);
361 umem->address = (unsigned long)addr;
362 umem->chunk_mask = ~((u64)chunk_size - 1);
363 umem->size = size;
364 umem->headroom = headroom;
365 umem->chunk_size_nohr = chunk_size - headroom;
366 umem->npgs = size / PAGE_SIZE;
367 umem->pgs = NULL;
368 umem->user = NULL;
369 INIT_LIST_HEAD(&umem->xsk_list);
370 spin_lock_init(&umem->xsk_list_lock);
371
372 refcount_set(&umem->users, 1);
373
374 err = xdp_umem_account_pages(umem);
375 if (err)
376 goto out;
377
378 err = xdp_umem_pin_pages(umem);
379 if (err)
380 goto out_account;
381
382 umem->pages = kcalloc(umem->npgs, sizeof(*umem->pages), GFP_KERNEL);
383 if (!umem->pages) {
384 err = -ENOMEM;
385 goto out_account;
386 }
387
388 for (i = 0; i < umem->npgs; i++)
389 umem->pages[i].addr = page_address(umem->pgs[i]);
390
391 return 0;
392
393 out_account:
394 xdp_umem_unaccount_pages(umem);
395 out:
396 put_pid(umem->pid);
397 return err;
398 }
399
400 struct xdp_umem *xdp_umem_create(struct xdp_umem_reg *mr)
401 {
402 struct xdp_umem *umem;
403 int err;
404
405 umem = kzalloc(sizeof(*umem), GFP_KERNEL);
406 if (!umem)
407 return ERR_PTR(-ENOMEM);
408
409 err = ida_simple_get(&umem_ida, 0, 0, GFP_KERNEL);
410 if (err < 0) {
411 kfree(umem);
412 return ERR_PTR(err);
413 }
414 umem->id = err;
415
416 err = xdp_umem_reg(umem, mr);
417 if (err) {
418 ida_simple_remove(&umem_ida, umem->id);
419 kfree(umem);
420 return ERR_PTR(err);
421 }
422
423 return umem;
424 }
425
426 bool xdp_umem_validate_queues(struct xdp_umem *umem)
427 {
428 return umem->fq && umem->cq;
429 }