]> git.ipfire.org Git - thirdparty/linux.git/blob - net/xdp/xsk.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / net / xdp / xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3 *
4 * AF_XDP sockets allows a channel between XDP programs and userspace
5 * applications.
6 * Copyright(c) 2018 Intel Corporation.
7 *
8 * Author(s): Björn Töpel <bjorn.topel@intel.com>
9 * Magnus Karlsson <magnus.karlsson@intel.com>
10 */
11
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <net/xdp_sock.h>
26 #include <net/xdp.h>
27
28 #include "xsk_queue.h"
29 #include "xdp_umem.h"
30 #include "xsk.h"
31
32 #define TX_BATCH_SIZE 16
33
34 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
35
36 bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs)
37 {
38 return READ_ONCE(xs->rx) && READ_ONCE(xs->umem) &&
39 READ_ONCE(xs->umem->fq);
40 }
41
42 bool xsk_umem_has_addrs(struct xdp_umem *umem, u32 cnt)
43 {
44 return xskq_cons_has_entries(umem->fq, cnt);
45 }
46 EXPORT_SYMBOL(xsk_umem_has_addrs);
47
48 bool xsk_umem_peek_addr(struct xdp_umem *umem, u64 *addr)
49 {
50 return xskq_cons_peek_addr(umem->fq, addr, umem);
51 }
52 EXPORT_SYMBOL(xsk_umem_peek_addr);
53
54 void xsk_umem_release_addr(struct xdp_umem *umem)
55 {
56 xskq_cons_release(umem->fq);
57 }
58 EXPORT_SYMBOL(xsk_umem_release_addr);
59
60 void xsk_set_rx_need_wakeup(struct xdp_umem *umem)
61 {
62 if (umem->need_wakeup & XDP_WAKEUP_RX)
63 return;
64
65 umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
66 umem->need_wakeup |= XDP_WAKEUP_RX;
67 }
68 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
69
70 void xsk_set_tx_need_wakeup(struct xdp_umem *umem)
71 {
72 struct xdp_sock *xs;
73
74 if (umem->need_wakeup & XDP_WAKEUP_TX)
75 return;
76
77 rcu_read_lock();
78 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
79 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
80 }
81 rcu_read_unlock();
82
83 umem->need_wakeup |= XDP_WAKEUP_TX;
84 }
85 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
86
87 void xsk_clear_rx_need_wakeup(struct xdp_umem *umem)
88 {
89 if (!(umem->need_wakeup & XDP_WAKEUP_RX))
90 return;
91
92 umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
93 umem->need_wakeup &= ~XDP_WAKEUP_RX;
94 }
95 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
96
97 void xsk_clear_tx_need_wakeup(struct xdp_umem *umem)
98 {
99 struct xdp_sock *xs;
100
101 if (!(umem->need_wakeup & XDP_WAKEUP_TX))
102 return;
103
104 rcu_read_lock();
105 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
106 xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
107 }
108 rcu_read_unlock();
109
110 umem->need_wakeup &= ~XDP_WAKEUP_TX;
111 }
112 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
113
114 bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem)
115 {
116 return umem->flags & XDP_UMEM_USES_NEED_WAKEUP;
117 }
118 EXPORT_SYMBOL(xsk_umem_uses_need_wakeup);
119
120 /* If a buffer crosses a page boundary, we need to do 2 memcpy's, one for
121 * each page. This is only required in copy mode.
122 */
123 static void __xsk_rcv_memcpy(struct xdp_umem *umem, u64 addr, void *from_buf,
124 u32 len, u32 metalen)
125 {
126 void *to_buf = xdp_umem_get_data(umem, addr);
127
128 addr = xsk_umem_add_offset_to_addr(addr);
129 if (xskq_cons_crosses_non_contig_pg(umem, addr, len + metalen)) {
130 void *next_pg_addr = umem->pages[(addr >> PAGE_SHIFT) + 1].addr;
131 u64 page_start = addr & ~(PAGE_SIZE - 1);
132 u64 first_len = PAGE_SIZE - (addr - page_start);
133
134 memcpy(to_buf, from_buf, first_len + metalen);
135 memcpy(next_pg_addr, from_buf + first_len, len - first_len);
136
137 return;
138 }
139
140 memcpy(to_buf, from_buf, len + metalen);
141 }
142
143 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
144 {
145 u64 offset = xs->umem->headroom;
146 u64 addr, memcpy_addr;
147 void *from_buf;
148 u32 metalen;
149 int err;
150
151 if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
152 len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
153 xs->rx_dropped++;
154 return -ENOSPC;
155 }
156
157 if (unlikely(xdp_data_meta_unsupported(xdp))) {
158 from_buf = xdp->data;
159 metalen = 0;
160 } else {
161 from_buf = xdp->data_meta;
162 metalen = xdp->data - xdp->data_meta;
163 }
164
165 memcpy_addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
166 __xsk_rcv_memcpy(xs->umem, memcpy_addr, from_buf, len, metalen);
167
168 offset += metalen;
169 addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
170 err = xskq_prod_reserve_desc(xs->rx, addr, len);
171 if (!err) {
172 xskq_cons_release(xs->umem->fq);
173 xdp_return_buff(xdp);
174 return 0;
175 }
176
177 xs->rx_dropped++;
178 return err;
179 }
180
181 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
182 {
183 int err = xskq_prod_reserve_desc(xs->rx, xdp->handle, len);
184
185 if (err)
186 xs->rx_dropped++;
187
188 return err;
189 }
190
191 static bool xsk_is_bound(struct xdp_sock *xs)
192 {
193 if (READ_ONCE(xs->state) == XSK_BOUND) {
194 /* Matches smp_wmb() in bind(). */
195 smp_rmb();
196 return true;
197 }
198 return false;
199 }
200
201 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
202 {
203 u32 len;
204
205 if (!xsk_is_bound(xs))
206 return -EINVAL;
207
208 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
209 return -EINVAL;
210
211 len = xdp->data_end - xdp->data;
212
213 return (xdp->rxq->mem.type == MEM_TYPE_ZERO_COPY) ?
214 __xsk_rcv_zc(xs, xdp, len) : __xsk_rcv(xs, xdp, len);
215 }
216
217 static void xsk_flush(struct xdp_sock *xs)
218 {
219 xskq_prod_submit(xs->rx);
220 __xskq_cons_release(xs->umem->fq);
221 sock_def_readable(&xs->sk);
222 }
223
224 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
225 {
226 u32 metalen = xdp->data - xdp->data_meta;
227 u32 len = xdp->data_end - xdp->data;
228 u64 offset = xs->umem->headroom;
229 void *buffer;
230 u64 addr;
231 int err;
232
233 spin_lock_bh(&xs->rx_lock);
234
235 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) {
236 err = -EINVAL;
237 goto out_unlock;
238 }
239
240 if (!xskq_cons_peek_addr(xs->umem->fq, &addr, xs->umem) ||
241 len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) {
242 err = -ENOSPC;
243 goto out_drop;
244 }
245
246 addr = xsk_umem_adjust_offset(xs->umem, addr, offset);
247 buffer = xdp_umem_get_data(xs->umem, addr);
248 memcpy(buffer, xdp->data_meta, len + metalen);
249
250 addr = xsk_umem_adjust_offset(xs->umem, addr, metalen);
251 err = xskq_prod_reserve_desc(xs->rx, addr, len);
252 if (err)
253 goto out_drop;
254
255 xskq_cons_release(xs->umem->fq);
256 xskq_prod_submit(xs->rx);
257
258 spin_unlock_bh(&xs->rx_lock);
259
260 xs->sk.sk_data_ready(&xs->sk);
261 return 0;
262
263 out_drop:
264 xs->rx_dropped++;
265 out_unlock:
266 spin_unlock_bh(&xs->rx_lock);
267 return err;
268 }
269
270 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
271 {
272 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
273 int err;
274
275 err = xsk_rcv(xs, xdp);
276 if (err)
277 return err;
278
279 if (!xs->flush_node.prev)
280 list_add(&xs->flush_node, flush_list);
281
282 return 0;
283 }
284
285 void __xsk_map_flush(void)
286 {
287 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
288 struct xdp_sock *xs, *tmp;
289
290 list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
291 xsk_flush(xs);
292 __list_del_clearprev(&xs->flush_node);
293 }
294 }
295
296 void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries)
297 {
298 xskq_prod_submit_n(umem->cq, nb_entries);
299 }
300 EXPORT_SYMBOL(xsk_umem_complete_tx);
301
302 void xsk_umem_consume_tx_done(struct xdp_umem *umem)
303 {
304 struct xdp_sock *xs;
305
306 rcu_read_lock();
307 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
308 __xskq_cons_release(xs->tx);
309 xs->sk.sk_write_space(&xs->sk);
310 }
311 rcu_read_unlock();
312 }
313 EXPORT_SYMBOL(xsk_umem_consume_tx_done);
314
315 bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc)
316 {
317 struct xdp_sock *xs;
318
319 rcu_read_lock();
320 list_for_each_entry_rcu(xs, &umem->xsk_list, list) {
321 if (!xskq_cons_peek_desc(xs->tx, desc, umem))
322 continue;
323
324 /* This is the backpreassure mechanism for the Tx path.
325 * Reserve space in the completion queue and only proceed
326 * if there is space in it. This avoids having to implement
327 * any buffering in the Tx path.
328 */
329 if (xskq_prod_reserve_addr(umem->cq, desc->addr))
330 goto out;
331
332 xskq_cons_release(xs->tx);
333 rcu_read_unlock();
334 return true;
335 }
336
337 out:
338 rcu_read_unlock();
339 return false;
340 }
341 EXPORT_SYMBOL(xsk_umem_consume_tx);
342
343 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
344 {
345 struct net_device *dev = xs->dev;
346 int err;
347
348 rcu_read_lock();
349 err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
350 rcu_read_unlock();
351
352 return err;
353 }
354
355 static int xsk_zc_xmit(struct xdp_sock *xs)
356 {
357 return xsk_wakeup(xs, XDP_WAKEUP_TX);
358 }
359
360 static void xsk_destruct_skb(struct sk_buff *skb)
361 {
362 u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
363 struct xdp_sock *xs = xdp_sk(skb->sk);
364 unsigned long flags;
365
366 spin_lock_irqsave(&xs->tx_completion_lock, flags);
367 xskq_prod_submit_addr(xs->umem->cq, addr);
368 spin_unlock_irqrestore(&xs->tx_completion_lock, flags);
369
370 sock_wfree(skb);
371 }
372
373 static int xsk_generic_xmit(struct sock *sk)
374 {
375 struct xdp_sock *xs = xdp_sk(sk);
376 u32 max_batch = TX_BATCH_SIZE;
377 bool sent_frame = false;
378 struct xdp_desc desc;
379 struct sk_buff *skb;
380 int err = 0;
381
382 mutex_lock(&xs->mutex);
383
384 if (xs->queue_id >= xs->dev->real_num_tx_queues)
385 goto out;
386
387 while (xskq_cons_peek_desc(xs->tx, &desc, xs->umem)) {
388 char *buffer;
389 u64 addr;
390 u32 len;
391
392 if (max_batch-- == 0) {
393 err = -EAGAIN;
394 goto out;
395 }
396
397 len = desc.len;
398 skb = sock_alloc_send_skb(sk, len, 1, &err);
399 if (unlikely(!skb)) {
400 err = -EAGAIN;
401 goto out;
402 }
403
404 skb_put(skb, len);
405 addr = desc.addr;
406 buffer = xdp_umem_get_data(xs->umem, addr);
407 err = skb_store_bits(skb, 0, buffer, len);
408 /* This is the backpreassure mechanism for the Tx path.
409 * Reserve space in the completion queue and only proceed
410 * if there is space in it. This avoids having to implement
411 * any buffering in the Tx path.
412 */
413 if (unlikely(err) || xskq_prod_reserve(xs->umem->cq)) {
414 kfree_skb(skb);
415 goto out;
416 }
417
418 skb->dev = xs->dev;
419 skb->priority = sk->sk_priority;
420 skb->mark = sk->sk_mark;
421 skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr;
422 skb->destructor = xsk_destruct_skb;
423
424 err = dev_direct_xmit(skb, xs->queue_id);
425 xskq_cons_release(xs->tx);
426 /* Ignore NET_XMIT_CN as packet might have been sent */
427 if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) {
428 /* SKB completed but not sent */
429 err = -EBUSY;
430 goto out;
431 }
432
433 sent_frame = true;
434 }
435
436 out:
437 if (sent_frame)
438 sk->sk_write_space(sk);
439
440 mutex_unlock(&xs->mutex);
441 return err;
442 }
443
444 static int __xsk_sendmsg(struct sock *sk)
445 {
446 struct xdp_sock *xs = xdp_sk(sk);
447
448 if (unlikely(!(xs->dev->flags & IFF_UP)))
449 return -ENETDOWN;
450 if (unlikely(!xs->tx))
451 return -ENOBUFS;
452
453 return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk);
454 }
455
456 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
457 {
458 bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
459 struct sock *sk = sock->sk;
460 struct xdp_sock *xs = xdp_sk(sk);
461
462 if (unlikely(!xsk_is_bound(xs)))
463 return -ENXIO;
464 if (unlikely(need_wait))
465 return -EOPNOTSUPP;
466
467 return __xsk_sendmsg(sk);
468 }
469
470 static __poll_t xsk_poll(struct file *file, struct socket *sock,
471 struct poll_table_struct *wait)
472 {
473 __poll_t mask = datagram_poll(file, sock, wait);
474 struct sock *sk = sock->sk;
475 struct xdp_sock *xs = xdp_sk(sk);
476 struct xdp_umem *umem;
477
478 if (unlikely(!xsk_is_bound(xs)))
479 return mask;
480
481 umem = xs->umem;
482
483 if (umem->need_wakeup) {
484 if (xs->zc)
485 xsk_wakeup(xs, umem->need_wakeup);
486 else
487 /* Poll needs to drive Tx also in copy mode */
488 __xsk_sendmsg(sk);
489 }
490
491 if (xs->rx && !xskq_prod_is_empty(xs->rx))
492 mask |= EPOLLIN | EPOLLRDNORM;
493 if (xs->tx && !xskq_cons_is_full(xs->tx))
494 mask |= EPOLLOUT | EPOLLWRNORM;
495
496 return mask;
497 }
498
499 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
500 bool umem_queue)
501 {
502 struct xsk_queue *q;
503
504 if (entries == 0 || *queue || !is_power_of_2(entries))
505 return -EINVAL;
506
507 q = xskq_create(entries, umem_queue);
508 if (!q)
509 return -ENOMEM;
510
511 /* Make sure queue is ready before it can be seen by others */
512 smp_wmb();
513 WRITE_ONCE(*queue, q);
514 return 0;
515 }
516
517 static void xsk_unbind_dev(struct xdp_sock *xs)
518 {
519 struct net_device *dev = xs->dev;
520
521 if (xs->state != XSK_BOUND)
522 return;
523 WRITE_ONCE(xs->state, XSK_UNBOUND);
524
525 /* Wait for driver to stop using the xdp socket. */
526 xdp_del_sk_umem(xs->umem, xs);
527 xs->dev = NULL;
528 synchronize_net();
529 dev_put(dev);
530 }
531
532 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
533 struct xdp_sock ***map_entry)
534 {
535 struct xsk_map *map = NULL;
536 struct xsk_map_node *node;
537
538 *map_entry = NULL;
539
540 spin_lock_bh(&xs->map_list_lock);
541 node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
542 node);
543 if (node) {
544 WARN_ON(xsk_map_inc(node->map));
545 map = node->map;
546 *map_entry = node->map_entry;
547 }
548 spin_unlock_bh(&xs->map_list_lock);
549 return map;
550 }
551
552 static void xsk_delete_from_maps(struct xdp_sock *xs)
553 {
554 /* This function removes the current XDP socket from all the
555 * maps it resides in. We need to take extra care here, due to
556 * the two locks involved. Each map has a lock synchronizing
557 * updates to the entries, and each socket has a lock that
558 * synchronizes access to the list of maps (map_list). For
559 * deadlock avoidance the locks need to be taken in the order
560 * "map lock"->"socket map list lock". We start off by
561 * accessing the socket map list, and take a reference to the
562 * map to guarantee existence between the
563 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
564 * calls. Then we ask the map to remove the socket, which
565 * tries to remove the socket from the map. Note that there
566 * might be updates to the map between
567 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
568 */
569 struct xdp_sock **map_entry = NULL;
570 struct xsk_map *map;
571
572 while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
573 xsk_map_try_sock_delete(map, xs, map_entry);
574 xsk_map_put(map);
575 }
576 }
577
578 static int xsk_release(struct socket *sock)
579 {
580 struct sock *sk = sock->sk;
581 struct xdp_sock *xs = xdp_sk(sk);
582 struct net *net;
583
584 if (!sk)
585 return 0;
586
587 net = sock_net(sk);
588
589 mutex_lock(&net->xdp.lock);
590 sk_del_node_init_rcu(sk);
591 mutex_unlock(&net->xdp.lock);
592
593 local_bh_disable();
594 sock_prot_inuse_add(net, sk->sk_prot, -1);
595 local_bh_enable();
596
597 xsk_delete_from_maps(xs);
598 mutex_lock(&xs->mutex);
599 xsk_unbind_dev(xs);
600 mutex_unlock(&xs->mutex);
601
602 xskq_destroy(xs->rx);
603 xskq_destroy(xs->tx);
604
605 sock_orphan(sk);
606 sock->sk = NULL;
607
608 sk_refcnt_debug_release(sk);
609 sock_put(sk);
610
611 return 0;
612 }
613
614 static struct socket *xsk_lookup_xsk_from_fd(int fd)
615 {
616 struct socket *sock;
617 int err;
618
619 sock = sockfd_lookup(fd, &err);
620 if (!sock)
621 return ERR_PTR(-ENOTSOCK);
622
623 if (sock->sk->sk_family != PF_XDP) {
624 sockfd_put(sock);
625 return ERR_PTR(-ENOPROTOOPT);
626 }
627
628 return sock;
629 }
630
631 /* Check if umem pages are contiguous.
632 * If zero-copy mode, use the DMA address to do the page contiguity check
633 * For all other modes we use addr (kernel virtual address)
634 * Store the result in the low bits of addr.
635 */
636 static void xsk_check_page_contiguity(struct xdp_umem *umem, u32 flags)
637 {
638 struct xdp_umem_page *pgs = umem->pages;
639 int i, is_contig;
640
641 for (i = 0; i < umem->npgs - 1; i++) {
642 is_contig = (flags & XDP_ZEROCOPY) ?
643 (pgs[i].dma + PAGE_SIZE == pgs[i + 1].dma) :
644 (pgs[i].addr + PAGE_SIZE == pgs[i + 1].addr);
645 pgs[i].addr += is_contig << XSK_NEXT_PG_CONTIG_SHIFT;
646 }
647 }
648
649 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
650 {
651 struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
652 struct sock *sk = sock->sk;
653 struct xdp_sock *xs = xdp_sk(sk);
654 struct net_device *dev;
655 u32 flags, qid;
656 int err = 0;
657
658 if (addr_len < sizeof(struct sockaddr_xdp))
659 return -EINVAL;
660 if (sxdp->sxdp_family != AF_XDP)
661 return -EINVAL;
662
663 flags = sxdp->sxdp_flags;
664 if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
665 XDP_USE_NEED_WAKEUP))
666 return -EINVAL;
667
668 rtnl_lock();
669 mutex_lock(&xs->mutex);
670 if (xs->state != XSK_READY) {
671 err = -EBUSY;
672 goto out_release;
673 }
674
675 dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
676 if (!dev) {
677 err = -ENODEV;
678 goto out_release;
679 }
680
681 if (!xs->rx && !xs->tx) {
682 err = -EINVAL;
683 goto out_unlock;
684 }
685
686 qid = sxdp->sxdp_queue_id;
687
688 if (flags & XDP_SHARED_UMEM) {
689 struct xdp_sock *umem_xs;
690 struct socket *sock;
691
692 if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
693 (flags & XDP_USE_NEED_WAKEUP)) {
694 /* Cannot specify flags for shared sockets. */
695 err = -EINVAL;
696 goto out_unlock;
697 }
698
699 if (xs->umem) {
700 /* We have already our own. */
701 err = -EINVAL;
702 goto out_unlock;
703 }
704
705 sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
706 if (IS_ERR(sock)) {
707 err = PTR_ERR(sock);
708 goto out_unlock;
709 }
710
711 umem_xs = xdp_sk(sock->sk);
712 if (!xsk_is_bound(umem_xs)) {
713 err = -EBADF;
714 sockfd_put(sock);
715 goto out_unlock;
716 }
717 if (umem_xs->dev != dev || umem_xs->queue_id != qid) {
718 err = -EINVAL;
719 sockfd_put(sock);
720 goto out_unlock;
721 }
722
723 xdp_get_umem(umem_xs->umem);
724 WRITE_ONCE(xs->umem, umem_xs->umem);
725 sockfd_put(sock);
726 } else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) {
727 err = -EINVAL;
728 goto out_unlock;
729 } else {
730 /* This xsk has its own umem. */
731 xskq_set_umem(xs->umem->fq, xs->umem->size,
732 xs->umem->chunk_mask);
733 xskq_set_umem(xs->umem->cq, xs->umem->size,
734 xs->umem->chunk_mask);
735
736 err = xdp_umem_assign_dev(xs->umem, dev, qid, flags);
737 if (err)
738 goto out_unlock;
739
740 xsk_check_page_contiguity(xs->umem, flags);
741 }
742
743 xs->dev = dev;
744 xs->zc = xs->umem->zc;
745 xs->queue_id = qid;
746 xskq_set_umem(xs->rx, xs->umem->size, xs->umem->chunk_mask);
747 xskq_set_umem(xs->tx, xs->umem->size, xs->umem->chunk_mask);
748 xdp_add_sk_umem(xs->umem, xs);
749
750 out_unlock:
751 if (err) {
752 dev_put(dev);
753 } else {
754 /* Matches smp_rmb() in bind() for shared umem
755 * sockets, and xsk_is_bound().
756 */
757 smp_wmb();
758 WRITE_ONCE(xs->state, XSK_BOUND);
759 }
760 out_release:
761 mutex_unlock(&xs->mutex);
762 rtnl_unlock();
763 return err;
764 }
765
766 struct xdp_umem_reg_v1 {
767 __u64 addr; /* Start of packet data area */
768 __u64 len; /* Length of packet data area */
769 __u32 chunk_size;
770 __u32 headroom;
771 };
772
773 static int xsk_setsockopt(struct socket *sock, int level, int optname,
774 char __user *optval, unsigned int optlen)
775 {
776 struct sock *sk = sock->sk;
777 struct xdp_sock *xs = xdp_sk(sk);
778 int err;
779
780 if (level != SOL_XDP)
781 return -ENOPROTOOPT;
782
783 switch (optname) {
784 case XDP_RX_RING:
785 case XDP_TX_RING:
786 {
787 struct xsk_queue **q;
788 int entries;
789
790 if (optlen < sizeof(entries))
791 return -EINVAL;
792 if (copy_from_user(&entries, optval, sizeof(entries)))
793 return -EFAULT;
794
795 mutex_lock(&xs->mutex);
796 if (xs->state != XSK_READY) {
797 mutex_unlock(&xs->mutex);
798 return -EBUSY;
799 }
800 q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
801 err = xsk_init_queue(entries, q, false);
802 if (!err && optname == XDP_TX_RING)
803 /* Tx needs to be explicitly woken up the first time */
804 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
805 mutex_unlock(&xs->mutex);
806 return err;
807 }
808 case XDP_UMEM_REG:
809 {
810 size_t mr_size = sizeof(struct xdp_umem_reg);
811 struct xdp_umem_reg mr = {};
812 struct xdp_umem *umem;
813
814 if (optlen < sizeof(struct xdp_umem_reg_v1))
815 return -EINVAL;
816 else if (optlen < sizeof(mr))
817 mr_size = sizeof(struct xdp_umem_reg_v1);
818
819 if (copy_from_user(&mr, optval, mr_size))
820 return -EFAULT;
821
822 mutex_lock(&xs->mutex);
823 if (xs->state != XSK_READY || xs->umem) {
824 mutex_unlock(&xs->mutex);
825 return -EBUSY;
826 }
827
828 umem = xdp_umem_create(&mr);
829 if (IS_ERR(umem)) {
830 mutex_unlock(&xs->mutex);
831 return PTR_ERR(umem);
832 }
833
834 /* Make sure umem is ready before it can be seen by others */
835 smp_wmb();
836 WRITE_ONCE(xs->umem, umem);
837 mutex_unlock(&xs->mutex);
838 return 0;
839 }
840 case XDP_UMEM_FILL_RING:
841 case XDP_UMEM_COMPLETION_RING:
842 {
843 struct xsk_queue **q;
844 int entries;
845
846 if (copy_from_user(&entries, optval, sizeof(entries)))
847 return -EFAULT;
848
849 mutex_lock(&xs->mutex);
850 if (xs->state != XSK_READY) {
851 mutex_unlock(&xs->mutex);
852 return -EBUSY;
853 }
854 if (!xs->umem) {
855 mutex_unlock(&xs->mutex);
856 return -EINVAL;
857 }
858
859 q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq :
860 &xs->umem->cq;
861 err = xsk_init_queue(entries, q, true);
862 mutex_unlock(&xs->mutex);
863 return err;
864 }
865 default:
866 break;
867 }
868
869 return -ENOPROTOOPT;
870 }
871
872 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
873 {
874 ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
875 ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
876 ring->desc = offsetof(struct xdp_rxtx_ring, desc);
877 }
878
879 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
880 {
881 ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
882 ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
883 ring->desc = offsetof(struct xdp_umem_ring, desc);
884 }
885
886 static int xsk_getsockopt(struct socket *sock, int level, int optname,
887 char __user *optval, int __user *optlen)
888 {
889 struct sock *sk = sock->sk;
890 struct xdp_sock *xs = xdp_sk(sk);
891 int len;
892
893 if (level != SOL_XDP)
894 return -ENOPROTOOPT;
895
896 if (get_user(len, optlen))
897 return -EFAULT;
898 if (len < 0)
899 return -EINVAL;
900
901 switch (optname) {
902 case XDP_STATISTICS:
903 {
904 struct xdp_statistics stats;
905
906 if (len < sizeof(stats))
907 return -EINVAL;
908
909 mutex_lock(&xs->mutex);
910 stats.rx_dropped = xs->rx_dropped;
911 stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
912 stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
913 mutex_unlock(&xs->mutex);
914
915 if (copy_to_user(optval, &stats, sizeof(stats)))
916 return -EFAULT;
917 if (put_user(sizeof(stats), optlen))
918 return -EFAULT;
919
920 return 0;
921 }
922 case XDP_MMAP_OFFSETS:
923 {
924 struct xdp_mmap_offsets off;
925 struct xdp_mmap_offsets_v1 off_v1;
926 bool flags_supported = true;
927 void *to_copy;
928
929 if (len < sizeof(off_v1))
930 return -EINVAL;
931 else if (len < sizeof(off))
932 flags_supported = false;
933
934 if (flags_supported) {
935 /* xdp_ring_offset is identical to xdp_ring_offset_v1
936 * except for the flags field added to the end.
937 */
938 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
939 &off.rx);
940 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
941 &off.tx);
942 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
943 &off.fr);
944 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
945 &off.cr);
946 off.rx.flags = offsetof(struct xdp_rxtx_ring,
947 ptrs.flags);
948 off.tx.flags = offsetof(struct xdp_rxtx_ring,
949 ptrs.flags);
950 off.fr.flags = offsetof(struct xdp_umem_ring,
951 ptrs.flags);
952 off.cr.flags = offsetof(struct xdp_umem_ring,
953 ptrs.flags);
954
955 len = sizeof(off);
956 to_copy = &off;
957 } else {
958 xsk_enter_rxtx_offsets(&off_v1.rx);
959 xsk_enter_rxtx_offsets(&off_v1.tx);
960 xsk_enter_umem_offsets(&off_v1.fr);
961 xsk_enter_umem_offsets(&off_v1.cr);
962
963 len = sizeof(off_v1);
964 to_copy = &off_v1;
965 }
966
967 if (copy_to_user(optval, to_copy, len))
968 return -EFAULT;
969 if (put_user(len, optlen))
970 return -EFAULT;
971
972 return 0;
973 }
974 case XDP_OPTIONS:
975 {
976 struct xdp_options opts = {};
977
978 if (len < sizeof(opts))
979 return -EINVAL;
980
981 mutex_lock(&xs->mutex);
982 if (xs->zc)
983 opts.flags |= XDP_OPTIONS_ZEROCOPY;
984 mutex_unlock(&xs->mutex);
985
986 len = sizeof(opts);
987 if (copy_to_user(optval, &opts, len))
988 return -EFAULT;
989 if (put_user(len, optlen))
990 return -EFAULT;
991
992 return 0;
993 }
994 default:
995 break;
996 }
997
998 return -EOPNOTSUPP;
999 }
1000
1001 static int xsk_mmap(struct file *file, struct socket *sock,
1002 struct vm_area_struct *vma)
1003 {
1004 loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1005 unsigned long size = vma->vm_end - vma->vm_start;
1006 struct xdp_sock *xs = xdp_sk(sock->sk);
1007 struct xsk_queue *q = NULL;
1008 struct xdp_umem *umem;
1009 unsigned long pfn;
1010 struct page *qpg;
1011
1012 if (READ_ONCE(xs->state) != XSK_READY)
1013 return -EBUSY;
1014
1015 if (offset == XDP_PGOFF_RX_RING) {
1016 q = READ_ONCE(xs->rx);
1017 } else if (offset == XDP_PGOFF_TX_RING) {
1018 q = READ_ONCE(xs->tx);
1019 } else {
1020 umem = READ_ONCE(xs->umem);
1021 if (!umem)
1022 return -EINVAL;
1023
1024 /* Matches the smp_wmb() in XDP_UMEM_REG */
1025 smp_rmb();
1026 if (offset == XDP_UMEM_PGOFF_FILL_RING)
1027 q = READ_ONCE(umem->fq);
1028 else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1029 q = READ_ONCE(umem->cq);
1030 }
1031
1032 if (!q)
1033 return -EINVAL;
1034
1035 /* Matches the smp_wmb() in xsk_init_queue */
1036 smp_rmb();
1037 qpg = virt_to_head_page(q->ring);
1038 if (size > page_size(qpg))
1039 return -EINVAL;
1040
1041 pfn = virt_to_phys(q->ring) >> PAGE_SHIFT;
1042 return remap_pfn_range(vma, vma->vm_start, pfn,
1043 size, vma->vm_page_prot);
1044 }
1045
1046 static int xsk_notifier(struct notifier_block *this,
1047 unsigned long msg, void *ptr)
1048 {
1049 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1050 struct net *net = dev_net(dev);
1051 struct sock *sk;
1052
1053 switch (msg) {
1054 case NETDEV_UNREGISTER:
1055 mutex_lock(&net->xdp.lock);
1056 sk_for_each(sk, &net->xdp.list) {
1057 struct xdp_sock *xs = xdp_sk(sk);
1058
1059 mutex_lock(&xs->mutex);
1060 if (xs->dev == dev) {
1061 sk->sk_err = ENETDOWN;
1062 if (!sock_flag(sk, SOCK_DEAD))
1063 sk->sk_error_report(sk);
1064
1065 xsk_unbind_dev(xs);
1066
1067 /* Clear device references in umem. */
1068 xdp_umem_clear_dev(xs->umem);
1069 }
1070 mutex_unlock(&xs->mutex);
1071 }
1072 mutex_unlock(&net->xdp.lock);
1073 break;
1074 }
1075 return NOTIFY_DONE;
1076 }
1077
1078 static struct proto xsk_proto = {
1079 .name = "XDP",
1080 .owner = THIS_MODULE,
1081 .obj_size = sizeof(struct xdp_sock),
1082 };
1083
1084 static const struct proto_ops xsk_proto_ops = {
1085 .family = PF_XDP,
1086 .owner = THIS_MODULE,
1087 .release = xsk_release,
1088 .bind = xsk_bind,
1089 .connect = sock_no_connect,
1090 .socketpair = sock_no_socketpair,
1091 .accept = sock_no_accept,
1092 .getname = sock_no_getname,
1093 .poll = xsk_poll,
1094 .ioctl = sock_no_ioctl,
1095 .listen = sock_no_listen,
1096 .shutdown = sock_no_shutdown,
1097 .setsockopt = xsk_setsockopt,
1098 .getsockopt = xsk_getsockopt,
1099 .sendmsg = xsk_sendmsg,
1100 .recvmsg = sock_no_recvmsg,
1101 .mmap = xsk_mmap,
1102 .sendpage = sock_no_sendpage,
1103 };
1104
1105 static void xsk_destruct(struct sock *sk)
1106 {
1107 struct xdp_sock *xs = xdp_sk(sk);
1108
1109 if (!sock_flag(sk, SOCK_DEAD))
1110 return;
1111
1112 xdp_put_umem(xs->umem);
1113
1114 sk_refcnt_debug_dec(sk);
1115 }
1116
1117 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1118 int kern)
1119 {
1120 struct sock *sk;
1121 struct xdp_sock *xs;
1122
1123 if (!ns_capable(net->user_ns, CAP_NET_RAW))
1124 return -EPERM;
1125 if (sock->type != SOCK_RAW)
1126 return -ESOCKTNOSUPPORT;
1127
1128 if (protocol)
1129 return -EPROTONOSUPPORT;
1130
1131 sock->state = SS_UNCONNECTED;
1132
1133 sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1134 if (!sk)
1135 return -ENOBUFS;
1136
1137 sock->ops = &xsk_proto_ops;
1138
1139 sock_init_data(sock, sk);
1140
1141 sk->sk_family = PF_XDP;
1142
1143 sk->sk_destruct = xsk_destruct;
1144 sk_refcnt_debug_inc(sk);
1145
1146 sock_set_flag(sk, SOCK_RCU_FREE);
1147
1148 xs = xdp_sk(sk);
1149 xs->state = XSK_READY;
1150 mutex_init(&xs->mutex);
1151 spin_lock_init(&xs->rx_lock);
1152 spin_lock_init(&xs->tx_completion_lock);
1153
1154 INIT_LIST_HEAD(&xs->map_list);
1155 spin_lock_init(&xs->map_list_lock);
1156
1157 mutex_lock(&net->xdp.lock);
1158 sk_add_node_rcu(sk, &net->xdp.list);
1159 mutex_unlock(&net->xdp.lock);
1160
1161 local_bh_disable();
1162 sock_prot_inuse_add(net, &xsk_proto, 1);
1163 local_bh_enable();
1164
1165 return 0;
1166 }
1167
1168 static const struct net_proto_family xsk_family_ops = {
1169 .family = PF_XDP,
1170 .create = xsk_create,
1171 .owner = THIS_MODULE,
1172 };
1173
1174 static struct notifier_block xsk_netdev_notifier = {
1175 .notifier_call = xsk_notifier,
1176 };
1177
1178 static int __net_init xsk_net_init(struct net *net)
1179 {
1180 mutex_init(&net->xdp.lock);
1181 INIT_HLIST_HEAD(&net->xdp.list);
1182 return 0;
1183 }
1184
1185 static void __net_exit xsk_net_exit(struct net *net)
1186 {
1187 WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1188 }
1189
1190 static struct pernet_operations xsk_net_ops = {
1191 .init = xsk_net_init,
1192 .exit = xsk_net_exit,
1193 };
1194
1195 static int __init xsk_init(void)
1196 {
1197 int err, cpu;
1198
1199 err = proto_register(&xsk_proto, 0 /* no slab */);
1200 if (err)
1201 goto out;
1202
1203 err = sock_register(&xsk_family_ops);
1204 if (err)
1205 goto out_proto;
1206
1207 err = register_pernet_subsys(&xsk_net_ops);
1208 if (err)
1209 goto out_sk;
1210
1211 err = register_netdevice_notifier(&xsk_netdev_notifier);
1212 if (err)
1213 goto out_pernet;
1214
1215 for_each_possible_cpu(cpu)
1216 INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1217 return 0;
1218
1219 out_pernet:
1220 unregister_pernet_subsys(&xsk_net_ops);
1221 out_sk:
1222 sock_unregister(PF_XDP);
1223 out_proto:
1224 proto_unregister(&xsk_proto);
1225 out:
1226 return err;
1227 }
1228
1229 fs_initcall(xsk_init);