]> git.ipfire.org Git - thirdparty/bird.git/blob - proto/bgp/bgp.c
b99672f55ca8f6d8c653b0641847d640d22de563
[thirdparty/bird.git] / proto / bgp / bgp.c
1 /*
2 * BIRD -- The Border Gateway Protocol
3 *
4 * (c) 2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Border Gateway Protocol
11 *
12 * The BGP protocol is implemented in three parts: |bgp.c| which takes care of the
13 * connection and most of the interface with BIRD core, |packets.c| handling
14 * both incoming and outgoing BGP packets and |attrs.c| containing functions for
15 * manipulation with BGP attribute lists.
16 *
17 * As opposed to the other existing routing daemons, BIRD has a sophisticated core
18 * architecture which is able to keep all the information needed by BGP in the
19 * primary routing table, therefore no complex data structures like a central
20 * BGP table are needed. This increases memory footprint of a BGP router with
21 * many connections, but not too much and, which is more important, it makes
22 * BGP much easier to implement.
23 *
24 * Each instance of BGP (corresponding to a single BGP peer) is described by a &bgp_proto
25 * structure to which are attached individual connections represented by &bgp_connection
26 * (usually, there exists only one connection, but during BGP session setup, there
27 * can be more of them). The connections are handled according to the BGP state machine
28 * defined in the RFC with all the timers and all the parameters configurable.
29 *
30 * In incoming direction, we listen on the connection's socket and each time we receive
31 * some input, we pass it to bgp_rx(). It decodes packet headers and the markers and
32 * passes complete packets to bgp_rx_packet() which distributes the packet according
33 * to its type.
34 *
35 * In outgoing direction, we gather all the routing updates and sort them to buckets
36 * (&bgp_bucket) according to their attributes (we keep a hash table for fast comparison
37 * of &rta's and a &fib which helps us to find if we already have another route for
38 * the same destination queued for sending, so that we can replace it with the new one
39 * immediately instead of sending both updates). There also exists a special bucket holding
40 * all the route withdrawals which cannot be queued anywhere else as they don't have any
41 * attributes. If we have any packet to send (due to either new routes or the connection
42 * tracking code wanting to send a Open, Keepalive or Notification message), we call
43 * bgp_schedule_packet() which sets the corresponding bit in a @packet_to_send
44 * bit field in &bgp_conn and as soon as the transmit socket buffer becomes empty,
45 * we call bgp_fire_tx(). It inspects state of all the packet type bits and calls
46 * the corresponding bgp_create_xx() functions, eventually rescheduling the same packet
47 * type if we have more data of the same type to send.
48 *
49 * The processing of attributes consists of two functions: bgp_decode_attrs() for checking
50 * of the attribute blocks and translating them to the language of BIRD's extended attributes
51 * and bgp_encode_attrs() which does the converse. Both functions are built around a
52 * @bgp_attr_table array describing all important characteristics of all known attributes.
53 * Unknown transitive attributes are attached to the route as %EAF_TYPE_OPAQUE byte streams.
54 *
55 * BGP protocol implements graceful restart in both restarting (local restart)
56 * and receiving (neighbor restart) roles. The first is handled mostly by the
57 * graceful restart code in the nest, BGP protocol just handles capabilities,
58 * sets @gr_wait and locks graceful restart until end-of-RIB mark is received.
59 * The second is implemented by internal restart of the BGP state to %BS_IDLE
60 * and protocol state to %PS_START, but keeping the protocol up from the core
61 * point of view and therefore maintaining received routes. Routing table
62 * refresh cycle (rt_refresh_begin(), rt_refresh_end()) is used for removing
63 * stale routes after reestablishment of BGP session during graceful restart.
64 */
65
66 #undef LOCAL_DEBUG
67
68 #include "nest/bird.h"
69 #include "nest/iface.h"
70 #include "nest/protocol.h"
71 #include "nest/route.h"
72 #include "nest/cli.h"
73 #include "nest/locks.h"
74 #include "conf/conf.h"
75 #include "lib/socket.h"
76 #include "lib/resource.h"
77 #include "lib/string.h"
78
79 #include "bgp.h"
80
81
82 struct linpool *bgp_linpool; /* Global temporary pool */
83 static sock *bgp_listen_sk; /* Global listening socket */
84 static int bgp_counter; /* Number of protocol instances using the listening socket */
85
86 static void bgp_close(struct bgp_proto *p, int apply_md5);
87 static void bgp_connect(struct bgp_proto *p);
88 static void bgp_active(struct bgp_proto *p);
89 static sock *bgp_setup_listen_sk(ip_addr addr, unsigned port, u32 flags);
90 static void bgp_update_bfd(struct bgp_proto *p, int use_bfd);
91
92
93 /**
94 * bgp_open - open a BGP instance
95 * @p: BGP instance
96 *
97 * This function allocates and configures shared BGP resources.
98 * Should be called as the last step during initialization
99 * (when lock is acquired and neighbor is ready).
100 * When error, state changed to PS_DOWN, -1 is returned and caller
101 * should return immediately.
102 */
103 static int
104 bgp_open(struct bgp_proto *p)
105 {
106 struct config *cfg = p->cf->c.global;
107 int errcode;
108
109 if (!bgp_listen_sk)
110 bgp_listen_sk = bgp_setup_listen_sk(cfg->listen_bgp_addr, cfg->listen_bgp_port, cfg->listen_bgp_flags);
111
112 if (!bgp_listen_sk)
113 {
114 errcode = BEM_NO_SOCKET;
115 goto err;
116 }
117
118 if (!bgp_linpool)
119 bgp_linpool = lp_new(&root_pool, 4080);
120
121 bgp_counter++;
122
123 if (p->cf->password)
124 if (sk_set_md5_auth(bgp_listen_sk, p->cf->source_addr, p->cf->remote_ip,
125 p->cf->iface, p->cf->password, p->cf->setkey) < 0)
126 {
127 sk_log_error(bgp_listen_sk, p->p.name);
128 bgp_close(p, 0);
129 errcode = BEM_INVALID_MD5;
130 goto err;
131 }
132
133 return 0;
134
135 err:
136 p->p.disabled = 1;
137 bgp_store_error(p, NULL, BE_MISC, errcode);
138 proto_notify_state(&p->p, PS_DOWN);
139 return -1;
140 }
141
142 static void
143 bgp_startup(struct bgp_proto *p)
144 {
145 BGP_TRACE(D_EVENTS, "Started");
146 p->start_state = p->cf->capabilities ? BSS_CONNECT : BSS_CONNECT_NOCAP;
147
148 if (!p->cf->passive)
149 bgp_active(p);
150 }
151
152 static void
153 bgp_startup_timeout(timer *t)
154 {
155 bgp_startup(t->data);
156 }
157
158
159 static void
160 bgp_initiate(struct bgp_proto *p)
161 {
162 int rv = bgp_open(p);
163 if (rv < 0)
164 return;
165
166 if (p->cf->bfd)
167 bgp_update_bfd(p, p->cf->bfd);
168
169 if (p->startup_delay)
170 {
171 p->start_state = BSS_DELAY;
172 BGP_TRACE(D_EVENTS, "Startup delayed by %d seconds due to errors", p->startup_delay);
173 bgp_start_timer(p->startup_timer, p->startup_delay);
174 }
175 else
176 bgp_startup(p);
177 }
178
179 /**
180 * bgp_close - close a BGP instance
181 * @p: BGP instance
182 * @apply_md5: 0 to disable unsetting MD5 auth
183 *
184 * This function frees and deconfigures shared BGP resources.
185 * @apply_md5 is set to 0 when bgp_close is called as a cleanup
186 * from failed bgp_open().
187 */
188 static void
189 bgp_close(struct bgp_proto *p, int apply_md5)
190 {
191 ASSERT(bgp_counter);
192 bgp_counter--;
193
194 if (p->cf->password && apply_md5)
195 if (sk_set_md5_auth(bgp_listen_sk, p->cf->source_addr, p->cf->remote_ip,
196 p->cf->iface, NULL, p->cf->setkey) < 0)
197 sk_log_error(bgp_listen_sk, p->p.name);
198
199 if (!bgp_counter)
200 {
201 rfree(bgp_listen_sk);
202 bgp_listen_sk = NULL;
203 rfree(bgp_linpool);
204 bgp_linpool = NULL;
205 }
206 }
207
208 /**
209 * bgp_start_timer - start a BGP timer
210 * @t: timer
211 * @value: time to fire (0 to disable the timer)
212 *
213 * This functions calls tm_start() on @t with time @value and the
214 * amount of randomization suggested by the BGP standard. Please use
215 * it for all BGP timers.
216 */
217 void
218 bgp_start_timer(timer *t, int value)
219 {
220 if (value)
221 {
222 /* The randomization procedure is specified in RFC 1771: 9.2.3.3 */
223 t->randomize = value / 4;
224 tm_start(t, value - t->randomize);
225 }
226 else
227 tm_stop(t);
228 }
229
230 /**
231 * bgp_close_conn - close a BGP connection
232 * @conn: connection to close
233 *
234 * This function takes a connection described by the &bgp_conn structure,
235 * closes its socket and frees all resources associated with it.
236 */
237 void
238 bgp_close_conn(struct bgp_conn *conn)
239 {
240 // struct bgp_proto *p = conn->bgp;
241
242 DBG("BGP: Closing connection\n");
243 conn->packets_to_send = 0;
244 rfree(conn->connect_retry_timer);
245 conn->connect_retry_timer = NULL;
246 rfree(conn->keepalive_timer);
247 conn->keepalive_timer = NULL;
248 rfree(conn->hold_timer);
249 conn->hold_timer = NULL;
250 rfree(conn->sk);
251 conn->sk = NULL;
252 rfree(conn->tx_ev);
253 conn->tx_ev = NULL;
254 }
255
256
257 /**
258 * bgp_update_startup_delay - update a startup delay
259 * @p: BGP instance
260 *
261 * This function updates a startup delay that is used to postpone next BGP connect.
262 * It also handles disable_after_error and might stop BGP instance when error
263 * happened and disable_after_error is on.
264 *
265 * It should be called when BGP protocol error happened.
266 */
267 void
268 bgp_update_startup_delay(struct bgp_proto *p)
269 {
270 struct bgp_config *cf = p->cf;
271
272 DBG("BGP: Updating startup delay\n");
273
274 if (p->last_proto_error && ((now - p->last_proto_error) >= (int) cf->error_amnesia_time))
275 p->startup_delay = 0;
276
277 p->last_proto_error = now;
278
279 if (cf->disable_after_error)
280 {
281 p->startup_delay = 0;
282 p->p.disabled = 1;
283 return;
284 }
285
286 if (!p->startup_delay)
287 p->startup_delay = cf->error_delay_time_min;
288 else
289 p->startup_delay = MIN(2 * p->startup_delay, cf->error_delay_time_max);
290 }
291
292 static void
293 bgp_graceful_close_conn(struct bgp_conn *conn, uint subcode, byte *data, uint len)
294 {
295 switch (conn->state)
296 {
297 case BS_IDLE:
298 case BS_CLOSE:
299 return;
300 case BS_CONNECT:
301 case BS_ACTIVE:
302 bgp_conn_enter_idle_state(conn);
303 return;
304 case BS_OPENSENT:
305 case BS_OPENCONFIRM:
306 case BS_ESTABLISHED:
307 bgp_error(conn, 6, subcode, data, len);
308 return;
309 default:
310 bug("bgp_graceful_close_conn: Unknown state %d", conn->state);
311 }
312 }
313
314 static void
315 bgp_down(struct bgp_proto *p)
316 {
317 if (p->start_state > BSS_PREPARE)
318 bgp_close(p, 1);
319
320 BGP_TRACE(D_EVENTS, "Down");
321 proto_notify_state(&p->p, PS_DOWN);
322 }
323
324 static void
325 bgp_decision(void *vp)
326 {
327 struct bgp_proto *p = vp;
328
329 DBG("BGP: Decision start\n");
330 if ((p->p.proto_state == PS_START)
331 && (p->outgoing_conn.state == BS_IDLE)
332 && (p->incoming_conn.state != BS_OPENCONFIRM)
333 && (!p->cf->passive))
334 bgp_active(p);
335
336 if ((p->p.proto_state == PS_STOP)
337 && (p->outgoing_conn.state == BS_IDLE)
338 && (p->incoming_conn.state == BS_IDLE))
339 bgp_down(p);
340 }
341
342 void
343 bgp_stop(struct bgp_proto *p, uint subcode, byte *data, uint len)
344 {
345 proto_notify_state(&p->p, PS_STOP);
346 bgp_graceful_close_conn(&p->outgoing_conn, subcode, data, len);
347 bgp_graceful_close_conn(&p->incoming_conn, subcode, data, len);
348 ev_schedule(p->event);
349 }
350
351 static inline void
352 bgp_conn_set_state(struct bgp_conn *conn, unsigned new_state)
353 {
354 if (conn->bgp->p.mrtdump & MD_STATES)
355 mrt_dump_bgp_state_change(conn, conn->state, new_state);
356
357 conn->state = new_state;
358 }
359
360 void
361 bgp_conn_enter_openconfirm_state(struct bgp_conn *conn)
362 {
363 /* Really, most of the work is done in bgp_rx_open(). */
364 bgp_conn_set_state(conn, BS_OPENCONFIRM);
365 }
366
367 void
368 bgp_conn_enter_established_state(struct bgp_conn *conn)
369 {
370 struct bgp_proto *p = conn->bgp;
371
372 BGP_TRACE(D_EVENTS, "BGP session established");
373 DBG("BGP: UP!!!\n");
374
375 /* For multi-hop BGP sessions */
376 if (ipa_zero(p->source_addr))
377 p->source_addr = conn->sk->saddr;
378
379 conn->sk->fast_rx = 0;
380
381 p->conn = conn;
382 p->last_error_class = 0;
383 p->last_error_code = 0;
384 p->feed_state = BFS_NONE;
385 p->load_state = BFS_NONE;
386 bgp_init_bucket_table(p);
387 bgp_init_prefix_table(p, 8);
388
389 int peer_gr_ready = conn->peer_gr_aware && !(conn->peer_gr_flags & BGP_GRF_RESTART);
390
391 if (p->p.gr_recovery && !peer_gr_ready)
392 proto_graceful_restart_unlock(&p->p);
393
394 if (p->p.gr_recovery && (p->cf->gr_mode == BGP_GR_ABLE) && peer_gr_ready)
395 p->p.gr_wait = 1;
396
397 if (p->gr_active)
398 tm_stop(p->gr_timer);
399
400 if (p->gr_active && (!conn->peer_gr_able || !(conn->peer_gr_aflags & BGP_GRF_FORWARDING)))
401 bgp_graceful_restart_done(p);
402
403 /* GR capability implies that neighbor will send End-of-RIB */
404 if (conn->peer_gr_aware)
405 p->load_state = BFS_LOADING;
406
407 /* proto_notify_state() will likely call bgp_feed_begin(), setting p->feed_state */
408
409 bgp_conn_set_state(conn, BS_ESTABLISHED);
410 proto_notify_state(&p->p, PS_UP);
411 }
412
413 static void
414 bgp_conn_leave_established_state(struct bgp_proto *p)
415 {
416 BGP_TRACE(D_EVENTS, "BGP session closed");
417 p->conn = NULL;
418
419 bgp_free_prefix_table(p);
420 bgp_free_bucket_table(p);
421
422 if (p->p.proto_state == PS_UP)
423 bgp_stop(p, 0, NULL, 0);
424 }
425
426 void
427 bgp_conn_enter_close_state(struct bgp_conn *conn)
428 {
429 struct bgp_proto *p = conn->bgp;
430 int os = conn->state;
431
432 bgp_conn_set_state(conn, BS_CLOSE);
433 tm_stop(conn->keepalive_timer);
434 conn->sk->rx_hook = NULL;
435
436 /* Timeout for CLOSE state, if we cannot send notification soon then we just hangup */
437 bgp_start_timer(conn->hold_timer, 10);
438
439 if (os == BS_ESTABLISHED)
440 bgp_conn_leave_established_state(p);
441 }
442
443 void
444 bgp_conn_enter_idle_state(struct bgp_conn *conn)
445 {
446 struct bgp_proto *p = conn->bgp;
447 int os = conn->state;
448
449 bgp_close_conn(conn);
450 bgp_conn_set_state(conn, BS_IDLE);
451 ev_schedule(p->event);
452
453 if (os == BS_ESTABLISHED)
454 bgp_conn_leave_established_state(p);
455 }
456
457 /**
458 * bgp_handle_graceful_restart - handle detected BGP graceful restart
459 * @p: BGP instance
460 *
461 * This function is called when a BGP graceful restart of the neighbor is
462 * detected (when the TCP connection fails or when a new TCP connection
463 * appears). The function activates processing of the restart - starts routing
464 * table refresh cycle and activates BGP restart timer. The protocol state goes
465 * back to %PS_START, but changing BGP state back to %BS_IDLE is left for the
466 * caller.
467 */
468 void
469 bgp_handle_graceful_restart(struct bgp_proto *p)
470 {
471 ASSERT(p->conn && (p->conn->state == BS_ESTABLISHED) && p->gr_ready);
472
473 BGP_TRACE(D_EVENTS, "Neighbor graceful restart detected%s",
474 p->gr_active ? " - already pending" : "");
475 proto_notify_state(&p->p, PS_START);
476
477 if (p->gr_active)
478 rt_refresh_end(p->p.main_ahook->table, p->p.main_ahook);
479
480 p->gr_active = 1;
481 bgp_start_timer(p->gr_timer, p->conn->peer_gr_time);
482 rt_refresh_begin(p->p.main_ahook->table, p->p.main_ahook);
483 }
484
485 /**
486 * bgp_graceful_restart_done - finish active BGP graceful restart
487 * @p: BGP instance
488 *
489 * This function is called when the active BGP graceful restart of the neighbor
490 * should be finished - either successfully (the neighbor sends all paths and
491 * reports end-of-RIB on the new session) or unsuccessfully (the neighbor does
492 * not support BGP graceful restart on the new session). The function ends
493 * routing table refresh cycle and stops BGP restart timer.
494 */
495 void
496 bgp_graceful_restart_done(struct bgp_proto *p)
497 {
498 BGP_TRACE(D_EVENTS, "Neighbor graceful restart done");
499 p->gr_active = 0;
500 tm_stop(p->gr_timer);
501 rt_refresh_end(p->p.main_ahook->table, p->p.main_ahook);
502 }
503
504 /**
505 * bgp_graceful_restart_timeout - timeout of graceful restart 'restart timer'
506 * @t: timer
507 *
508 * This function is a timeout hook for @gr_timer, implementing BGP restart time
509 * limit for reestablisment of the BGP session after the graceful restart. When
510 * fired, we just proceed with the usual protocol restart.
511 */
512
513 static void
514 bgp_graceful_restart_timeout(timer *t)
515 {
516 struct bgp_proto *p = t->data;
517
518 BGP_TRACE(D_EVENTS, "Neighbor graceful restart timeout");
519 bgp_stop(p, 0, NULL, 0);
520 }
521
522
523 /**
524 * bgp_refresh_begin - start incoming enhanced route refresh sequence
525 * @p: BGP instance
526 *
527 * This function is called when an incoming enhanced route refresh sequence is
528 * started by the neighbor, demarcated by the BoRR packet. The function updates
529 * the load state and starts the routing table refresh cycle. Note that graceful
530 * restart also uses routing table refresh cycle, but RFC 7313 and load states
531 * ensure that these two sequences do not overlap.
532 */
533 void
534 bgp_refresh_begin(struct bgp_proto *p)
535 {
536 if (p->load_state == BFS_LOADING)
537 { log(L_WARN "%s: BEGIN-OF-RR received before END-OF-RIB, ignoring", p->p.name); return; }
538
539 p->load_state = BFS_REFRESHING;
540 rt_refresh_begin(p->p.main_ahook->table, p->p.main_ahook);
541 }
542
543 /**
544 * bgp_refresh_end - finish incoming enhanced route refresh sequence
545 * @p: BGP instance
546 *
547 * This function is called when an incoming enhanced route refresh sequence is
548 * finished by the neighbor, demarcated by the EoRR packet. The function updates
549 * the load state and ends the routing table refresh cycle. Routes not received
550 * during the sequence are removed by the nest.
551 */
552 void
553 bgp_refresh_end(struct bgp_proto *p)
554 {
555 if (p->load_state != BFS_REFRESHING)
556 { log(L_WARN "%s: END-OF-RR received without prior BEGIN-OF-RR, ignoring", p->p.name); return; }
557
558 p->load_state = BFS_NONE;
559 rt_refresh_end(p->p.main_ahook->table, p->p.main_ahook);
560 }
561
562
563 static void
564 bgp_send_open(struct bgp_conn *conn)
565 {
566 conn->start_state = conn->bgp->start_state;
567
568 // Default values, possibly changed by receiving capabilities.
569 conn->advertised_as = 0;
570 conn->peer_refresh_support = 0;
571 conn->peer_as4_support = 0;
572 conn->peer_add_path = 0;
573 conn->peer_enhanced_refresh_support = 0;
574 conn->peer_gr_aware = 0;
575 conn->peer_gr_able = 0;
576 conn->peer_gr_time = 0;
577 conn->peer_gr_flags = 0;
578 conn->peer_gr_aflags = 0;
579 conn->peer_ext_messages_support = 0;
580
581 DBG("BGP: Sending open\n");
582 conn->sk->rx_hook = bgp_rx;
583 conn->sk->tx_hook = bgp_tx;
584 tm_stop(conn->connect_retry_timer);
585 bgp_schedule_packet(conn, PKT_OPEN);
586 bgp_conn_set_state(conn, BS_OPENSENT);
587 bgp_start_timer(conn->hold_timer, conn->bgp->cf->initial_hold_time);
588 }
589
590 static void
591 bgp_connected(sock *sk)
592 {
593 struct bgp_conn *conn = sk->data;
594 struct bgp_proto *p = conn->bgp;
595
596 BGP_TRACE(D_EVENTS, "Connected");
597 bgp_send_open(conn);
598 }
599
600 static void
601 bgp_connect_timeout(timer *t)
602 {
603 struct bgp_conn *conn = t->data;
604 struct bgp_proto *p = conn->bgp;
605
606 DBG("BGP: connect_timeout\n");
607 if (p->p.proto_state == PS_START)
608 {
609 bgp_close_conn(conn);
610 bgp_connect(p);
611 }
612 else
613 bgp_conn_enter_idle_state(conn);
614 }
615
616 static void
617 bgp_sock_err(sock *sk, int err)
618 {
619 struct bgp_conn *conn = sk->data;
620 struct bgp_proto *p = conn->bgp;
621
622 /*
623 * This error hook may be called either asynchronously from main
624 * loop, or synchronously from sk_send(). But sk_send() is called
625 * only from bgp_tx() and bgp_kick_tx(), which are both called
626 * asynchronously from main loop. Moreover, they end if err hook is
627 * called. Therefore, we could suppose that it is always called
628 * asynchronously.
629 */
630
631 bgp_store_error(p, conn, BE_SOCKET, err);
632
633 if (err)
634 BGP_TRACE(D_EVENTS, "Connection lost (%M)", err);
635 else
636 BGP_TRACE(D_EVENTS, "Connection closed");
637
638 if ((conn->state == BS_ESTABLISHED) && p->gr_ready)
639 bgp_handle_graceful_restart(p);
640
641 bgp_conn_enter_idle_state(conn);
642 }
643
644 static void
645 bgp_hold_timeout(timer *t)
646 {
647 struct bgp_conn *conn = t->data;
648 struct bgp_proto *p = conn->bgp;
649
650 DBG("BGP: Hold timeout\n");
651
652 /* We are already closing the connection - just do hangup */
653 if (conn->state == BS_CLOSE)
654 {
655 BGP_TRACE(D_EVENTS, "Connection stalled");
656 bgp_conn_enter_idle_state(conn);
657 return;
658 }
659
660 /* If there is something in input queue, we are probably congested
661 and perhaps just not processed BGP packets in time. */
662
663 if (sk_rx_ready(conn->sk) > 0)
664 bgp_start_timer(conn->hold_timer, 10);
665 else
666 bgp_error(conn, 4, 0, NULL, 0);
667 }
668
669 static void
670 bgp_keepalive_timeout(timer *t)
671 {
672 struct bgp_conn *conn = t->data;
673
674 DBG("BGP: Keepalive timer\n");
675 bgp_schedule_packet(conn, PKT_KEEPALIVE);
676
677 /* Kick TX a bit faster */
678 if (ev_active(conn->tx_ev))
679 ev_run(conn->tx_ev);
680 }
681
682 static void
683 bgp_setup_conn(struct bgp_proto *p, struct bgp_conn *conn)
684 {
685 timer *t;
686
687 conn->sk = NULL;
688 conn->bgp = p;
689 conn->packets_to_send = 0;
690
691 t = conn->connect_retry_timer = tm_new(p->p.pool);
692 t->hook = bgp_connect_timeout;
693 t->data = conn;
694 t = conn->hold_timer = tm_new(p->p.pool);
695 t->hook = bgp_hold_timeout;
696 t->data = conn;
697 t = conn->keepalive_timer = tm_new(p->p.pool);
698 t->hook = bgp_keepalive_timeout;
699 t->data = conn;
700 conn->tx_ev = ev_new(p->p.pool);
701 conn->tx_ev->hook = bgp_kick_tx;
702 conn->tx_ev->data = conn;
703 }
704
705 static void
706 bgp_setup_sk(struct bgp_conn *conn, sock *s)
707 {
708 s->data = conn;
709 s->err_hook = bgp_sock_err;
710 s->fast_rx = 1;
711 conn->sk = s;
712 }
713
714 static void
715 bgp_active(struct bgp_proto *p)
716 {
717 int delay = MAX(1, p->cf->connect_delay_time);
718 struct bgp_conn *conn = &p->outgoing_conn;
719
720 BGP_TRACE(D_EVENTS, "Connect delayed by %d seconds", delay);
721 bgp_setup_conn(p, conn);
722 bgp_conn_set_state(conn, BS_ACTIVE);
723 bgp_start_timer(conn->connect_retry_timer, delay);
724 }
725
726 /**
727 * bgp_connect - initiate an outgoing connection
728 * @p: BGP instance
729 *
730 * The bgp_connect() function creates a new &bgp_conn and initiates
731 * a TCP connection to the peer. The rest of connection setup is governed
732 * by the BGP state machine as described in the standard.
733 */
734 static void
735 bgp_connect(struct bgp_proto *p) /* Enter Connect state and start establishing connection */
736 {
737 sock *s;
738 struct bgp_conn *conn = &p->outgoing_conn;
739 int hops = p->cf->multihop ? : 1;
740
741 DBG("BGP: Connecting\n");
742 s = sk_new(p->p.pool);
743 s->type = SK_TCP_ACTIVE;
744 s->saddr = p->source_addr;
745 s->daddr = p->cf->remote_ip;
746 s->dport = p->cf->remote_port;
747 s->iface = p->neigh ? p->neigh->iface : NULL;
748 s->vrf = p->p.vrf;
749 s->ttl = p->cf->ttl_security ? 255 : hops;
750 s->rbsize = p->cf->enable_extended_messages ? BGP_RX_BUFFER_EXT_SIZE : BGP_RX_BUFFER_SIZE;
751 s->tbsize = p->cf->enable_extended_messages ? BGP_TX_BUFFER_EXT_SIZE : BGP_TX_BUFFER_SIZE;
752 s->tos = IP_PREC_INTERNET_CONTROL;
753 s->password = p->cf->password;
754 s->tx_hook = bgp_connected;
755 BGP_TRACE(D_EVENTS, "Connecting to %I%J from local address %I%J", s->daddr, p->cf->iface,
756 s->saddr, ipa_is_link_local(s->saddr) ? s->iface : NULL);
757 bgp_setup_conn(p, conn);
758 bgp_setup_sk(conn, s);
759 bgp_conn_set_state(conn, BS_CONNECT);
760
761 if (sk_open(s) < 0)
762 goto err;
763
764 /* Set minimal receive TTL if needed */
765 if (p->cf->ttl_security)
766 if (sk_set_min_ttl(s, 256 - hops) < 0)
767 goto err;
768
769 DBG("BGP: Waiting for connect success\n");
770 bgp_start_timer(conn->connect_retry_timer, p->cf->connect_retry_time);
771 return;
772
773 err:
774 sk_log_error(s, p->p.name);
775 bgp_sock_err(s, 0);
776 return;
777 }
778
779 /**
780 * bgp_find_proto - find existing proto for incoming connection
781 * @sk: TCP socket
782 *
783 */
784 static struct bgp_proto *
785 bgp_find_proto(sock *sk)
786 {
787 struct proto_config *pc;
788
789 WALK_LIST(pc, config->protos)
790 if ((pc->protocol == &proto_bgp) && pc->proto)
791 {
792 struct bgp_proto *p = (struct bgp_proto *) pc->proto;
793 if (ipa_equal(p->cf->remote_ip, sk->daddr) &&
794 (!p->cf->iface || (p->cf->iface == sk->iface)))
795 return p;
796 }
797
798 return NULL;
799 }
800
801 /**
802 * bgp_incoming_connection - handle an incoming connection
803 * @sk: TCP socket
804 * @dummy: unused
805 *
806 * This function serves as a socket hook for accepting of new BGP
807 * connections. It searches a BGP instance corresponding to the peer
808 * which has connected and if such an instance exists, it creates a
809 * &bgp_conn structure, attaches it to the instance and either sends
810 * an Open message or (if there already is an active connection) it
811 * closes the new connection by sending a Notification message.
812 */
813 static int
814 bgp_incoming_connection(sock *sk, uint dummy UNUSED)
815 {
816 struct bgp_proto *p;
817 int acc, hops;
818
819 DBG("BGP: Incoming connection from %I port %d\n", sk->daddr, sk->dport);
820 p = bgp_find_proto(sk);
821 if (!p)
822 {
823 log(L_WARN "BGP: Unexpected connect from unknown address %I%J (port %d)",
824 sk->daddr, ipa_is_link_local(sk->daddr) ? sk->iface : NULL, sk->dport);
825 rfree(sk);
826 return 0;
827 }
828
829 /*
830 * BIRD should keep multiple incoming connections in OpenSent state (for
831 * details RFC 4271 8.2.1 par 3), but it keeps just one. Duplicate incoming
832 * connections are rejected istead. The exception is the case where an
833 * incoming connection triggers a graceful restart.
834 */
835
836 acc = (p->p.proto_state == PS_START || p->p.proto_state == PS_UP) &&
837 (p->start_state >= BSS_CONNECT) && (!p->incoming_conn.sk);
838
839 if (p->conn && (p->conn->state == BS_ESTABLISHED) && p->gr_ready)
840 {
841 bgp_store_error(p, NULL, BE_MISC, BEM_GRACEFUL_RESTART);
842 bgp_handle_graceful_restart(p);
843 bgp_conn_enter_idle_state(p->conn);
844 acc = 1;
845
846 /* There might be separate incoming connection in OpenSent state */
847 if (p->incoming_conn.state > BS_ACTIVE)
848 bgp_close_conn(&p->incoming_conn);
849 }
850
851 BGP_TRACE(D_EVENTS, "Incoming connection from %I%J (port %d) %s",
852 sk->daddr, ipa_is_link_local(sk->daddr) ? sk->iface : NULL,
853 sk->dport, acc ? "accepted" : "rejected");
854
855 if (!acc)
856 {
857 rfree(sk);
858 return 0;
859 }
860
861 hops = p->cf->multihop ? : 1;
862
863 if (sk_set_ttl(sk, p->cf->ttl_security ? 255 : hops) < 0)
864 goto err;
865
866 if (p->cf->ttl_security)
867 if (sk_set_min_ttl(sk, 256 - hops) < 0)
868 goto err;
869
870 if (p->cf->enable_extended_messages)
871 {
872 sk->rbsize = BGP_RX_BUFFER_EXT_SIZE;
873 sk->tbsize = BGP_TX_BUFFER_EXT_SIZE;
874 sk_reallocate(sk);
875 }
876
877 bgp_setup_conn(p, &p->incoming_conn);
878 bgp_setup_sk(&p->incoming_conn, sk);
879 bgp_send_open(&p->incoming_conn);
880 return 0;
881
882 err:
883 sk_log_error(sk, p->p.name);
884 log(L_ERR "%s: Incoming connection aborted", p->p.name);
885 rfree(sk);
886 return 0;
887 }
888
889 static void
890 bgp_listen_sock_err(sock *sk UNUSED, int err)
891 {
892 if (err == ECONNABORTED)
893 log(L_WARN "BGP: Incoming connection aborted");
894 else
895 log(L_ERR "BGP: Error on listening socket: %M", err);
896 }
897
898 static sock *
899 bgp_setup_listen_sk(ip_addr addr, unsigned port, u32 flags)
900 {
901 sock *s = sk_new(&root_pool);
902 DBG("BGP: Creating listening socket\n");
903 s->type = SK_TCP_PASSIVE;
904 s->ttl = 255;
905 s->saddr = addr;
906 s->sport = port ? port : BGP_PORT;
907 s->flags = flags ? 0 : SKF_V6ONLY;
908 s->tos = IP_PREC_INTERNET_CONTROL;
909 s->rbsize = BGP_RX_BUFFER_SIZE;
910 s->tbsize = BGP_TX_BUFFER_SIZE;
911 s->rx_hook = bgp_incoming_connection;
912 s->err_hook = bgp_listen_sock_err;
913
914 if (sk_open(s) < 0)
915 goto err;
916
917 return s;
918
919 err:
920 sk_log_error(s, "BGP");
921 log(L_ERR "BGP: Cannot open listening socket");
922 rfree(s);
923 return NULL;
924 }
925
926 static void
927 bgp_start_neighbor(struct bgp_proto *p)
928 {
929 /* Called only for single-hop BGP sessions */
930
931 if (ipa_zero(p->source_addr))
932 p->source_addr = p->neigh->ifa->ip;
933
934 #ifdef IPV6
935 {
936 struct ifa *a;
937 p->local_link = IPA_NONE;
938 WALK_LIST(a, p->neigh->iface->addrs)
939 if (a->scope == SCOPE_LINK)
940 {
941 p->local_link = a->ip;
942 break;
943 }
944
945 if (! ipa_nonzero(p->local_link))
946 log(L_WARN "%s: Missing link local address on interface %s", p->p.name, p->neigh->iface->name);
947
948 DBG("BGP: Selected link-level address %I\n", p->local_link);
949 }
950 #endif
951
952 bgp_initiate(p);
953 }
954
955 static void
956 bgp_neigh_notify(neighbor *n)
957 {
958 struct bgp_proto *p = (struct bgp_proto *) n->proto;
959 int ps = p->p.proto_state;
960
961 if (n != p->neigh)
962 return;
963
964 if ((ps == PS_DOWN) || (ps == PS_STOP))
965 return;
966
967 int prepare = (ps == PS_START) && (p->start_state == BSS_PREPARE);
968
969 if (n->scope <= 0)
970 {
971 if (!prepare)
972 {
973 BGP_TRACE(D_EVENTS, "Neighbor lost");
974 bgp_store_error(p, NULL, BE_MISC, BEM_NEIGHBOR_LOST);
975 /* Perhaps also run bgp_update_startup_delay(p)? */
976 bgp_stop(p, 0, NULL, 0);
977 }
978 }
979 else if (p->cf->check_link && !(n->iface->flags & IF_LINK_UP))
980 {
981 if (!prepare)
982 {
983 BGP_TRACE(D_EVENTS, "Link down");
984 bgp_store_error(p, NULL, BE_MISC, BEM_LINK_DOWN);
985 if (ps == PS_UP)
986 bgp_update_startup_delay(p);
987 bgp_stop(p, 0, NULL, 0);
988 }
989 }
990 else
991 {
992 if (prepare)
993 {
994 BGP_TRACE(D_EVENTS, "Neighbor ready");
995 bgp_start_neighbor(p);
996 }
997 }
998 }
999
1000 static void
1001 bgp_bfd_notify(struct bfd_request *req)
1002 {
1003 struct bgp_proto *p = req->data;
1004 int ps = p->p.proto_state;
1005
1006 if (req->down && ((ps == PS_START) || (ps == PS_UP)))
1007 {
1008 BGP_TRACE(D_EVENTS, "BFD session down");
1009 bgp_store_error(p, NULL, BE_MISC, BEM_BFD_DOWN);
1010 if (ps == PS_UP)
1011 bgp_update_startup_delay(p);
1012 bgp_stop(p, 0, NULL, 0);
1013 }
1014 }
1015
1016 static void
1017 bgp_update_bfd(struct bgp_proto *p, int use_bfd)
1018 {
1019 if (use_bfd && !p->bfd_req)
1020 p->bfd_req = bfd_request_session(p->p.pool, p->cf->remote_ip, p->source_addr,
1021 p->cf->multihop ? NULL : p->neigh->iface,
1022 bgp_bfd_notify, p);
1023
1024 if (!use_bfd && p->bfd_req)
1025 {
1026 rfree(p->bfd_req);
1027 p->bfd_req = NULL;
1028 }
1029 }
1030
1031 static int
1032 bgp_reload_routes(struct proto *P)
1033 {
1034 struct bgp_proto *p = (struct bgp_proto *) P;
1035 if (!p->conn || !p->conn->peer_refresh_support)
1036 return 0;
1037
1038 bgp_schedule_packet(p->conn, PKT_ROUTE_REFRESH);
1039 return 1;
1040 }
1041
1042 static void
1043 bgp_feed_begin(struct proto *P, int initial)
1044 {
1045 struct bgp_proto *p = (struct bgp_proto *) P;
1046
1047 /* This should not happen */
1048 if (!p->conn)
1049 return;
1050
1051 if (initial && p->cf->gr_mode)
1052 p->feed_state = BFS_LOADING;
1053
1054 /* It is refeed and both sides support enhanced route refresh */
1055 if (!initial && p->cf->enable_refresh &&
1056 p->conn->peer_enhanced_refresh_support)
1057 {
1058 /* BoRR must not be sent before End-of-RIB */
1059 if (p->feed_state == BFS_LOADING || p->feed_state == BFS_LOADED)
1060 return;
1061
1062 p->feed_state = BFS_REFRESHING;
1063 bgp_schedule_packet(p->conn, PKT_BEGIN_REFRESH);
1064 }
1065 }
1066
1067 static void
1068 bgp_feed_end(struct proto *P)
1069 {
1070 struct bgp_proto *p = (struct bgp_proto *) P;
1071
1072 /* This should not happen */
1073 if (!p->conn)
1074 return;
1075
1076 /* Non-demarcated feed ended, nothing to do */
1077 if (p->feed_state == BFS_NONE)
1078 return;
1079
1080 /* Schedule End-of-RIB packet */
1081 if (p->feed_state == BFS_LOADING)
1082 p->feed_state = BFS_LOADED;
1083
1084 /* Schedule EoRR packet */
1085 if (p->feed_state == BFS_REFRESHING)
1086 p->feed_state = BFS_REFRESHED;
1087
1088 /* Kick TX hook */
1089 bgp_schedule_packet(p->conn, PKT_UPDATE);
1090 }
1091
1092
1093 static void
1094 bgp_start_locked(struct object_lock *lock)
1095 {
1096 struct bgp_proto *p = lock->data;
1097 struct bgp_config *cf = p->cf;
1098
1099 if (p->p.proto_state != PS_START)
1100 {
1101 DBG("BGP: Got lock in different state %d\n", p->p.proto_state);
1102 return;
1103 }
1104
1105 DBG("BGP: Got lock\n");
1106
1107 if (cf->multihop)
1108 {
1109 /* Multi-hop sessions do not use neighbor entries */
1110 bgp_initiate(p);
1111 return;
1112 }
1113
1114 neighbor *n = neigh_find2(&p->p, &cf->remote_ip, cf->iface, NEF_STICKY);
1115 if (!n)
1116 {
1117 log(L_ERR "%s: Invalid remote address %I%J", p->p.name, cf->remote_ip, cf->iface);
1118 /* As we do not start yet, we can just disable protocol */
1119 p->p.disabled = 1;
1120 bgp_store_error(p, NULL, BE_MISC, BEM_INVALID_NEXT_HOP);
1121 proto_notify_state(&p->p, PS_DOWN);
1122 return;
1123 }
1124
1125 p->neigh = n;
1126
1127 if (n->scope <= 0)
1128 BGP_TRACE(D_EVENTS, "Waiting for %I%J to become my neighbor", cf->remote_ip, cf->iface);
1129 else if (p->cf->check_link && !(n->iface->flags & IF_LINK_UP))
1130 BGP_TRACE(D_EVENTS, "Waiting for link on %s", n->iface->name);
1131 else
1132 bgp_start_neighbor(p);
1133 }
1134
1135 static int
1136 bgp_start(struct proto *P)
1137 {
1138 struct bgp_proto *p = (struct bgp_proto *) P;
1139 struct object_lock *lock;
1140
1141 DBG("BGP: Startup.\n");
1142 p->start_state = BSS_PREPARE;
1143 p->outgoing_conn.state = BS_IDLE;
1144 p->incoming_conn.state = BS_IDLE;
1145 p->neigh = NULL;
1146 p->bfd_req = NULL;
1147 p->gr_ready = 0;
1148 p->gr_active = 0;
1149
1150 rt_lock_table(p->igp_table);
1151
1152 p->event = ev_new(p->p.pool);
1153 p->event->hook = bgp_decision;
1154 p->event->data = p;
1155
1156 p->startup_timer = tm_new(p->p.pool);
1157 p->startup_timer->hook = bgp_startup_timeout;
1158 p->startup_timer->data = p;
1159
1160 p->gr_timer = tm_new(p->p.pool);
1161 p->gr_timer->hook = bgp_graceful_restart_timeout;
1162 p->gr_timer->data = p;
1163
1164 p->local_id = proto_get_router_id(P->cf);
1165 if (p->rr_client)
1166 p->rr_cluster_id = p->cf->rr_cluster_id ? p->cf->rr_cluster_id : p->local_id;
1167
1168 p->remote_id = 0;
1169 p->source_addr = p->cf->source_addr;
1170
1171 if (p->p.gr_recovery && p->cf->gr_mode)
1172 proto_graceful_restart_lock(P);
1173
1174 /*
1175 * Before attempting to create the connection, we need to lock the
1176 * port, so that are sure we're the only instance attempting to talk
1177 * with that neighbor.
1178 */
1179
1180 lock = p->lock = olock_new(P->pool);
1181 lock->addr = p->cf->remote_ip;
1182 lock->port = p->cf->remote_port;
1183 lock->iface = p->cf->iface;
1184 lock->vrf = p->cf->iface ? NULL : p->p.vrf;
1185 lock->type = OBJLOCK_TCP;
1186 lock->hook = bgp_start_locked;
1187 lock->data = p;
1188 olock_acquire(lock);
1189
1190 return PS_START;
1191 }
1192
1193 extern int proto_restart;
1194
1195 static int
1196 bgp_shutdown(struct proto *P)
1197 {
1198 struct bgp_proto *p = (struct bgp_proto *) P;
1199 uint subcode = 0;
1200
1201 char *message = NULL;
1202 byte *data = NULL;
1203 uint len = 0;
1204
1205 BGP_TRACE(D_EVENTS, "Shutdown requested");
1206
1207 switch (P->down_code)
1208 {
1209 case PDC_CF_REMOVE:
1210 case PDC_CF_DISABLE:
1211 subcode = 3; // Errcode 6, 3 - peer de-configured
1212 break;
1213
1214 case PDC_CF_RESTART:
1215 subcode = 6; // Errcode 6, 6 - other configuration change
1216 break;
1217
1218 case PDC_CMD_DISABLE:
1219 case PDC_CMD_SHUTDOWN:
1220 subcode = 2; // Errcode 6, 2 - administrative shutdown
1221 message = P->message;
1222 break;
1223
1224 case PDC_CMD_RESTART:
1225 subcode = 4; // Errcode 6, 4 - administrative reset
1226 message = P->message;
1227 break;
1228
1229 case PDC_RX_LIMIT_HIT:
1230 case PDC_IN_LIMIT_HIT:
1231 subcode = 1; // Errcode 6, 1 - max number of prefixes reached
1232 /* log message for compatibility */
1233 log(L_WARN "%s: Route limit exceeded, shutting down", p->p.name);
1234 goto limit;
1235
1236 case PDC_OUT_LIMIT_HIT:
1237 subcode = proto_restart ? 4 : 2; // Administrative reset or shutdown
1238
1239 limit:
1240 bgp_store_error(p, NULL, BE_AUTO_DOWN, BEA_ROUTE_LIMIT_EXCEEDED);
1241 if (proto_restart)
1242 bgp_update_startup_delay(p);
1243 else
1244 p->startup_delay = 0;
1245 goto done;
1246 }
1247
1248 bgp_store_error(p, NULL, BE_MAN_DOWN, 0);
1249 p->startup_delay = 0;
1250
1251 /* RFC 8203 - shutdown communication */
1252 if (message)
1253 {
1254 uint msg_len = strlen(message);
1255 msg_len = MIN(msg_len, 128);
1256
1257 /* Buffer will be freed automatically by protocol shutdown */
1258 data = mb_alloc(p->p.pool, msg_len + 1);
1259 len = msg_len + 1;
1260
1261 data[0] = msg_len;
1262 memcpy(data+1, message, msg_len);
1263 }
1264
1265 done:
1266 bgp_stop(p, subcode, data, len);
1267 return p->p.proto_state;
1268 }
1269
1270 static void
1271 bgp_cleanup(struct proto *P)
1272 {
1273 struct bgp_proto *p = (struct bgp_proto *) P;
1274 rt_unlock_table(p->igp_table);
1275 }
1276
1277 static rtable *
1278 get_igp_table(struct bgp_config *cf)
1279 {
1280 return cf->igp_table ? cf->igp_table->table : cf->c.table->table;
1281 }
1282
1283 static struct proto *
1284 bgp_init(struct proto_config *C)
1285 {
1286 struct proto *P = proto_new(C, sizeof(struct bgp_proto));
1287 struct bgp_config *c = (struct bgp_config *) C;
1288 struct bgp_proto *p = (struct bgp_proto *) P;
1289
1290 P->accept_ra_types = c->secondary ? RA_ACCEPTED : RA_OPTIMAL;
1291 P->rt_notify = bgp_rt_notify;
1292 P->import_control = bgp_import_control;
1293 P->neigh_notify = bgp_neigh_notify;
1294 P->reload_routes = bgp_reload_routes;
1295 P->feed_begin = bgp_feed_begin;
1296 P->feed_end = bgp_feed_end;
1297 P->rte_better = bgp_rte_better;
1298 P->rte_mergable = bgp_rte_mergable;
1299 P->rte_recalculate = c->deterministic_med ? bgp_rte_recalculate : NULL;
1300
1301 p->cf = c;
1302 p->local_as = c->local_as;
1303 p->remote_as = c->remote_as;
1304 p->is_internal = (c->local_as == c->remote_as);
1305 p->rs_client = c->rs_client;
1306 p->rr_client = c->rr_client;
1307 p->igp_table = get_igp_table(c);
1308
1309 return P;
1310 }
1311
1312
1313 void
1314 bgp_check_config(struct bgp_config *c)
1315 {
1316 int internal = (c->local_as == c->remote_as);
1317
1318 /* Do not check templates at all */
1319 if (c->c.class == SYM_TEMPLATE)
1320 return;
1321
1322
1323 /* EBGP direct by default, IBGP multihop by default */
1324 if (c->multihop < 0)
1325 c->multihop = internal ? 64 : 0;
1326
1327 /* Different default for gw_mode */
1328 if (!c->gw_mode)
1329 c->gw_mode = c->multihop ? GW_RECURSIVE : GW_DIRECT;
1330
1331 /* Different default based on rs_client */
1332 if (!c->missing_lladdr)
1333 c->missing_lladdr = c->rs_client ? MLL_IGNORE : MLL_SELF;
1334
1335 /* Disable after error incompatible with restart limit action */
1336 if (c->c.in_limit && (c->c.in_limit->action == PLA_RESTART) && c->disable_after_error)
1337 c->c.in_limit->action = PLA_DISABLE;
1338
1339
1340 if (!c->local_as)
1341 cf_error("Local AS number must be set");
1342
1343 if (ipa_zero(c->remote_ip))
1344 cf_error("Neighbor must be configured");
1345
1346 if (!c->remote_as)
1347 cf_error("Remote AS number must be set");
1348
1349 if (ipa_is_link_local(c->remote_ip) && !c->iface)
1350 cf_error("Link-local neighbor address requires specified interface");
1351
1352 if (!(c->capabilities && c->enable_as4) && (c->remote_as > 0xFFFF))
1353 cf_error("Neighbor AS number out of range (AS4 not available)");
1354
1355 if (!internal && c->rr_client)
1356 cf_error("Only internal neighbor can be RR client");
1357
1358 if (internal && c->rs_client)
1359 cf_error("Only external neighbor can be RS client");
1360
1361 if (c->multihop && (c->gw_mode == GW_DIRECT))
1362 cf_error("Multihop BGP cannot use direct gateway mode");
1363
1364 if (c->multihop && (ipa_is_link_local(c->remote_ip) ||
1365 ipa_is_link_local(c->source_addr)))
1366 cf_error("Multihop BGP cannot be used with link-local addresses");
1367
1368 if (c->multihop && c->iface)
1369 cf_error("Multihop BGP cannot be bound to interface");
1370
1371 if (c->multihop && c->check_link)
1372 cf_error("Multihop BGP cannot depend on link state");
1373
1374 if (c->multihop && c->bfd && ipa_zero(c->source_addr))
1375 cf_error("Multihop BGP with BFD requires specified source address");
1376
1377 if ((c->gw_mode == GW_RECURSIVE) && c->c.table->sorted)
1378 cf_error("BGP in recursive mode prohibits sorted table");
1379
1380 if (c->deterministic_med && c->c.table->sorted)
1381 cf_error("BGP with deterministic MED prohibits sorted table");
1382
1383 if (c->secondary && !c->c.table->sorted)
1384 cf_error("BGP with secondary option requires sorted table");
1385 }
1386
1387 static int
1388 bgp_reconfigure(struct proto *P, struct proto_config *C)
1389 {
1390 struct bgp_config *new = (struct bgp_config *) C;
1391 struct bgp_proto *p = (struct bgp_proto *) P;
1392 struct bgp_config *old = p->cf;
1393
1394 if (proto_get_router_id(C) != p->local_id)
1395 return 0;
1396
1397 int same = !memcmp(((byte *) old) + sizeof(struct proto_config),
1398 ((byte *) new) + sizeof(struct proto_config),
1399 // password item is last and must be checked separately
1400 OFFSETOF(struct bgp_config, password) - sizeof(struct proto_config))
1401 && ((!old->password && !new->password)
1402 || (old->password && new->password && !strcmp(old->password, new->password)))
1403 && (get_igp_table(old) == get_igp_table(new));
1404
1405 if (same && (p->start_state > BSS_PREPARE))
1406 bgp_update_bfd(p, new->bfd);
1407
1408 /* We should update our copy of configuration ptr as old configuration will be freed */
1409 if (same)
1410 p->cf = new;
1411
1412 return same;
1413 }
1414
1415 static void
1416 bgp_copy_config(struct proto_config *dest, struct proto_config *src)
1417 {
1418 /* Just a shallow copy */
1419 proto_copy_rest(dest, src, sizeof(struct bgp_config));
1420 }
1421
1422
1423 /**
1424 * bgp_error - report a protocol error
1425 * @c: connection
1426 * @code: error code (according to the RFC)
1427 * @subcode: error sub-code
1428 * @data: data to be passed in the Notification message
1429 * @len: length of the data
1430 *
1431 * bgp_error() sends a notification packet to tell the other side that a protocol
1432 * error has occurred (including the data considered erroneous if possible) and
1433 * closes the connection.
1434 */
1435 void
1436 bgp_error(struct bgp_conn *c, unsigned code, unsigned subcode, byte *data, int len)
1437 {
1438 struct bgp_proto *p = c->bgp;
1439
1440 if (c->state == BS_CLOSE)
1441 return;
1442
1443 bgp_log_error(p, BE_BGP_TX, "Error", code, subcode, data, (len > 0) ? len : -len);
1444 bgp_store_error(p, c, BE_BGP_TX, (code << 16) | subcode);
1445 bgp_conn_enter_close_state(c);
1446
1447 c->notify_code = code;
1448 c->notify_subcode = subcode;
1449 c->notify_data = data;
1450 c->notify_size = (len > 0) ? len : 0;
1451 bgp_schedule_packet(c, PKT_NOTIFICATION);
1452
1453 if (code != 6)
1454 {
1455 bgp_update_startup_delay(p);
1456 bgp_stop(p, 0, NULL, 0);
1457 }
1458 }
1459
1460 /**
1461 * bgp_store_error - store last error for status report
1462 * @p: BGP instance
1463 * @c: connection
1464 * @class: error class (BE_xxx constants)
1465 * @code: error code (class specific)
1466 *
1467 * bgp_store_error() decides whether given error is interesting enough
1468 * and store that error to last_error variables of @p
1469 */
1470 void
1471 bgp_store_error(struct bgp_proto *p, struct bgp_conn *c, u8 class, u32 code)
1472 {
1473 /* During PS_UP, we ignore errors on secondary connection */
1474 if ((p->p.proto_state == PS_UP) && c && (c != p->conn))
1475 return;
1476
1477 /* During PS_STOP, we ignore any errors, as we want to report
1478 * the error that caused transition to PS_STOP
1479 */
1480 if (p->p.proto_state == PS_STOP)
1481 return;
1482
1483 p->last_error_class = class;
1484 p->last_error_code = code;
1485 }
1486
1487 static char *bgp_state_names[] = { "Idle", "Connect", "Active", "OpenSent", "OpenConfirm", "Established", "Close" };
1488 static char *bgp_err_classes[] = { "", "Error: ", "Socket: ", "Received: ", "BGP Error: ", "Automatic shutdown: ", ""};
1489 static char *bgp_misc_errors[] = { "", "Neighbor lost", "Invalid next hop", "Kernel MD5 auth failed", "No listening socket", "Link down", "BFD session down", "Graceful restart"};
1490 static char *bgp_auto_errors[] = { "", "Route limit exceeded"};
1491
1492 static const char *
1493 bgp_last_errmsg(struct bgp_proto *p)
1494 {
1495 switch (p->last_error_class)
1496 {
1497 case BE_MISC:
1498 return bgp_misc_errors[p->last_error_code];
1499 case BE_SOCKET:
1500 return (p->last_error_code == 0) ? "Connection closed" : strerror(p->last_error_code);
1501 case BE_BGP_RX:
1502 case BE_BGP_TX:
1503 return bgp_error_dsc(p->last_error_code >> 16, p->last_error_code & 0xFF);
1504 case BE_AUTO_DOWN:
1505 return bgp_auto_errors[p->last_error_code];
1506 default:
1507 return "";
1508 }
1509 }
1510
1511 static const char *
1512 bgp_state_dsc(struct bgp_proto *p)
1513 {
1514 if (p->p.proto_state == PS_DOWN)
1515 return "Down";
1516
1517 int state = MAX(p->incoming_conn.state, p->outgoing_conn.state);
1518 if ((state == BS_IDLE) && (p->start_state >= BSS_CONNECT) && p->cf->passive)
1519 return "Passive";
1520
1521 return bgp_state_names[state];
1522 }
1523
1524 static void
1525 bgp_get_status(struct proto *P, byte *buf)
1526 {
1527 struct bgp_proto *p = (struct bgp_proto *) P;
1528
1529 const char *err1 = bgp_err_classes[p->last_error_class];
1530 const char *err2 = bgp_last_errmsg(p);
1531
1532 if (P->proto_state == PS_DOWN)
1533 bsprintf(buf, "%s%s", err1, err2);
1534 else
1535 bsprintf(buf, "%-14s%s%s", bgp_state_dsc(p), err1, err2);
1536 }
1537
1538 static void
1539 bgp_show_proto_info(struct proto *P)
1540 {
1541 struct bgp_proto *p = (struct bgp_proto *) P;
1542 struct bgp_conn *c = p->conn;
1543
1544 proto_show_basic_info(P);
1545
1546 cli_msg(-1006, " BGP state: %s", bgp_state_dsc(p));
1547 cli_msg(-1006, " Neighbor address: %I%J", p->cf->remote_ip, p->cf->iface);
1548 cli_msg(-1006, " Neighbor AS: %u", p->remote_as);
1549
1550 if (p->gr_active)
1551 cli_msg(-1006, " Neighbor graceful restart active");
1552
1553 if (P->proto_state == PS_START)
1554 {
1555 struct bgp_conn *oc = &p->outgoing_conn;
1556
1557 if ((p->start_state < BSS_CONNECT) &&
1558 (p->startup_timer->expires))
1559 cli_msg(-1006, " Error wait: %d/%d",
1560 p->startup_timer->expires - now, p->startup_delay);
1561
1562 if ((oc->state == BS_ACTIVE) &&
1563 (oc->connect_retry_timer->expires))
1564 cli_msg(-1006, " Connect delay: %d/%d",
1565 oc->connect_retry_timer->expires - now, p->cf->connect_delay_time);
1566
1567 if (p->gr_active && p->gr_timer->expires)
1568 cli_msg(-1006, " Restart timer: %d/-", p->gr_timer->expires - now);
1569 }
1570 else if (P->proto_state == PS_UP)
1571 {
1572 cli_msg(-1006, " Neighbor ID: %R", p->remote_id);
1573 cli_msg(-1006, " Neighbor caps: %s%s%s%s%s%s%s",
1574 c->peer_refresh_support ? " refresh" : "",
1575 c->peer_enhanced_refresh_support ? " enhanced-refresh" : "",
1576 c->peer_gr_able ? " restart-able" : (c->peer_gr_aware ? " restart-aware" : ""),
1577 c->peer_as4_support ? " AS4" : "",
1578 (c->peer_add_path & ADD_PATH_RX) ? " add-path-rx" : "",
1579 (c->peer_add_path & ADD_PATH_TX) ? " add-path-tx" : "",
1580 c->peer_ext_messages_support ? " ext-messages" : "");
1581 cli_msg(-1006, " Session: %s%s%s%s%s%s%s%s",
1582 p->is_internal ? "internal" : "external",
1583 p->cf->multihop ? " multihop" : "",
1584 p->rr_client ? " route-reflector" : "",
1585 p->rs_client ? " route-server" : "",
1586 p->as4_session ? " AS4" : "",
1587 p->add_path_rx ? " add-path-rx" : "",
1588 p->add_path_tx ? " add-path-tx" : "",
1589 p->ext_messages ? " ext-messages" : "");
1590 cli_msg(-1006, " Source address: %I", p->source_addr);
1591 if (P->cf->in_limit)
1592 cli_msg(-1006, " Route limit: %d/%d",
1593 p->p.stats.imp_routes + p->p.stats.filt_routes, P->cf->in_limit->limit);
1594 cli_msg(-1006, " Hold timer: %d/%d",
1595 tm_remains(c->hold_timer), c->hold_time);
1596 cli_msg(-1006, " Keepalive timer: %d/%d",
1597 tm_remains(c->keepalive_timer), c->keepalive_time);
1598 }
1599
1600 if ((p->last_error_class != BE_NONE) &&
1601 (p->last_error_class != BE_MAN_DOWN))
1602 {
1603 const char *err1 = bgp_err_classes[p->last_error_class];
1604 const char *err2 = bgp_last_errmsg(p);
1605 cli_msg(-1006, " Last error: %s%s", err1, err2);
1606 }
1607 }
1608
1609 struct protocol proto_bgp = {
1610 .name = "BGP",
1611 .template = "bgp%d",
1612 .attr_class = EAP_BGP,
1613 .preference = DEF_PREF_BGP,
1614 .config_size = sizeof(struct bgp_config),
1615 .init = bgp_init,
1616 .start = bgp_start,
1617 .shutdown = bgp_shutdown,
1618 .cleanup = bgp_cleanup,
1619 .reconfigure = bgp_reconfigure,
1620 .copy_config = bgp_copy_config,
1621 .get_status = bgp_get_status,
1622 .get_attr = bgp_get_attr,
1623 .get_route_info = bgp_get_route_info,
1624 .show_proto_info = bgp_show_proto_info
1625 };