]> git.ipfire.org Git - thirdparty/qemu.git/blob - qapi/misc.json
configure: Check if we can use ibv_reg_mr_iova
[thirdparty/qemu.git] / qapi / misc.json
1 # -*- Mode: Python -*-
2 #
3
4 ##
5 # = Miscellanea
6 ##
7
8 { 'include': 'common.json' }
9
10 ##
11 # @qmp_capabilities:
12 #
13 # Enable QMP capabilities.
14 #
15 # Arguments:
16 #
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
21 # (since 2.12)
22 #
23 # Example:
24 #
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
27 # <- { "return": {} }
28 #
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32 #
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
35 #
36 # Since: 0.13
37 #
38 ##
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
42
43 ##
44 # @QMPCapability:
45 #
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
48 #
49 # @oob: QMP ability to support out-of-band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
51 #
52 # Since: 2.12
53 #
54 ##
55 { 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
57
58 ##
59 # @VersionTriple:
60 #
61 # A three-part version number.
62 #
63 # @major: The major version number.
64 #
65 # @minor: The minor version number.
66 #
67 # @micro: The micro version number.
68 #
69 # Since: 2.4
70 ##
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75 ##
76 # @VersionInfo:
77 #
78 # A description of QEMU's version.
79 #
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
85 #
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
90 #
91 # Since: 0.14.0
92 ##
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96 ##
97 # @query-version:
98 #
99 # Returns the current version of QEMU.
100 #
101 # Returns: A @VersionInfo object describing the current version of QEMU.
102 #
103 # Since: 0.14.0
104 #
105 # Example:
106 #
107 # -> { "execute": "query-version" }
108 # <- {
109 # "return":{
110 # "qemu":{
111 # "major":0,
112 # "minor":11,
113 # "micro":5
114 # },
115 # "package":""
116 # }
117 # }
118 #
119 ##
120 { 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
122
123 ##
124 # @CommandInfo:
125 #
126 # Information about a QMP command
127 #
128 # @name: The command name
129 #
130 # Since: 0.14.0
131 ##
132 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134 ##
135 # @query-commands:
136 #
137 # Return a list of supported QMP commands by this server
138 #
139 # Returns: A list of @CommandInfo for all supported commands
140 #
141 # Since: 0.14.0
142 #
143 # Example:
144 #
145 # -> { "execute": "query-commands" }
146 # <- {
147 # "return":[
148 # {
149 # "name":"query-balloon"
150 # },
151 # {
152 # "name":"system_powerdown"
153 # }
154 # ]
155 # }
156 #
157 # Note: This example has been shortened as the real response is too long.
158 #
159 ##
160 { 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
162
163 ##
164 # @LostTickPolicy:
165 #
166 # Policy for handling lost ticks in timer devices.
167 #
168 # @discard: throw away the missed tick(s) and continue with future injection
169 # normally. Guest time may be delayed, unless the OS has explicit
170 # handling of lost ticks
171 #
172 # @delay: continue to deliver ticks at the normal rate. Guest time will be
173 # delayed due to the late tick
174 #
175 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
176 # guest time should not be delayed once catchup is complete.
177 #
178 # Since: 2.0
179 ##
180 { 'enum': 'LostTickPolicy',
181 'data': ['discard', 'delay', 'slew' ] }
182
183 ##
184 # @add_client:
185 #
186 # Allow client connections for VNC, Spice and socket based
187 # character devices to be passed in to QEMU via SCM_RIGHTS.
188 #
189 # @protocol: protocol name. Valid names are "vnc", "spice" or the
190 # name of a character device (eg. from -chardev id=XXXX)
191 #
192 # @fdname: file descriptor name previously passed via 'getfd' command
193 #
194 # @skipauth: whether to skip authentication. Only applies
195 # to "vnc" and "spice" protocols
196 #
197 # @tls: whether to perform TLS. Only applies to the "spice"
198 # protocol
199 #
200 # Returns: nothing on success.
201 #
202 # Since: 0.14.0
203 #
204 # Example:
205 #
206 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
207 # "fdname": "myclient" } }
208 # <- { "return": {} }
209 #
210 ##
211 { 'command': 'add_client',
212 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
213 '*tls': 'bool' } }
214
215 ##
216 # @NameInfo:
217 #
218 # Guest name information.
219 #
220 # @name: The name of the guest
221 #
222 # Since: 0.14.0
223 ##
224 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
225
226 ##
227 # @query-name:
228 #
229 # Return the name information of a guest.
230 #
231 # Returns: @NameInfo of the guest
232 #
233 # Since: 0.14.0
234 #
235 # Example:
236 #
237 # -> { "execute": "query-name" }
238 # <- { "return": { "name": "qemu-name" } }
239 #
240 ##
241 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
242
243 ##
244 # @KvmInfo:
245 #
246 # Information about support for KVM acceleration
247 #
248 # @enabled: true if KVM acceleration is active
249 #
250 # @present: true if KVM acceleration is built into this executable
251 #
252 # Since: 0.14.0
253 ##
254 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
255
256 ##
257 # @query-kvm:
258 #
259 # Returns information about KVM acceleration
260 #
261 # Returns: @KvmInfo
262 #
263 # Since: 0.14.0
264 #
265 # Example:
266 #
267 # -> { "execute": "query-kvm" }
268 # <- { "return": { "enabled": true, "present": true } }
269 #
270 ##
271 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
272
273 ##
274 # @UuidInfo:
275 #
276 # Guest UUID information (Universally Unique Identifier).
277 #
278 # @UUID: the UUID of the guest
279 #
280 # Since: 0.14.0
281 #
282 # Notes: If no UUID was specified for the guest, a null UUID is returned.
283 ##
284 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
285
286 ##
287 # @query-uuid:
288 #
289 # Query the guest UUID information.
290 #
291 # Returns: The @UuidInfo for the guest
292 #
293 # Since: 0.14.0
294 #
295 # Example:
296 #
297 # -> { "execute": "query-uuid" }
298 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
299 #
300 ##
301 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
302
303 ##
304 # @EventInfo:
305 #
306 # Information about a QMP event
307 #
308 # @name: The event name
309 #
310 # Since: 1.2.0
311 ##
312 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
313
314 ##
315 # @query-events:
316 #
317 # Return information on QMP events.
318 #
319 # Returns: A list of @EventInfo.
320 #
321 # Since: 1.2.0
322 #
323 # Note: This command is deprecated, because its output doesn't reflect
324 # compile-time configuration. Use query-qmp-schema instead.
325 #
326 # Example:
327 #
328 # -> { "execute": "query-events" }
329 # <- {
330 # "return": [
331 # {
332 # "name":"SHUTDOWN"
333 # },
334 # {
335 # "name":"RESET"
336 # }
337 # ]
338 # }
339 #
340 # Note: This example has been shortened as the real response is too long.
341 #
342 ##
343 { 'command': 'query-events', 'returns': ['EventInfo'] }
344
345 ##
346 # @IOThreadInfo:
347 #
348 # Information about an iothread
349 #
350 # @id: the identifier of the iothread
351 #
352 # @thread-id: ID of the underlying host thread
353 #
354 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
355 # (since 2.9)
356 #
357 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
358 # configured (since 2.9)
359 #
360 # @poll-shrink: how many ns will be removed from polling time, 0 means that
361 # it's not configured (since 2.9)
362 #
363 # Since: 2.0
364 ##
365 { 'struct': 'IOThreadInfo',
366 'data': {'id': 'str',
367 'thread-id': 'int',
368 'poll-max-ns': 'int',
369 'poll-grow': 'int',
370 'poll-shrink': 'int' } }
371
372 ##
373 # @query-iothreads:
374 #
375 # Returns a list of information about each iothread.
376 #
377 # Note: this list excludes the QEMU main loop thread, which is not declared
378 # using the -object iothread command-line option. It is always the main thread
379 # of the process.
380 #
381 # Returns: a list of @IOThreadInfo for each iothread
382 #
383 # Since: 2.0
384 #
385 # Example:
386 #
387 # -> { "execute": "query-iothreads" }
388 # <- { "return": [
389 # {
390 # "id":"iothread0",
391 # "thread-id":3134
392 # },
393 # {
394 # "id":"iothread1",
395 # "thread-id":3135
396 # }
397 # ]
398 # }
399 #
400 ##
401 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
402 'allow-preconfig': true }
403
404 ##
405 # @BalloonInfo:
406 #
407 # Information about the guest balloon device.
408 #
409 # @actual: the number of bytes the balloon currently contains
410 #
411 # Since: 0.14.0
412 #
413 ##
414 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
415
416 ##
417 # @query-balloon:
418 #
419 # Return information about the balloon device.
420 #
421 # Returns: @BalloonInfo on success
422 #
423 # If the balloon driver is enabled but not functional because the KVM
424 # kernel module cannot support it, KvmMissingCap
425 #
426 # If no balloon device is present, DeviceNotActive
427 #
428 # Since: 0.14.0
429 #
430 # Example:
431 #
432 # -> { "execute": "query-balloon" }
433 # <- { "return": {
434 # "actual": 1073741824,
435 # }
436 # }
437 #
438 ##
439 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
440
441 ##
442 # @BALLOON_CHANGE:
443 #
444 # Emitted when the guest changes the actual BALLOON level. This value is
445 # equivalent to the @actual field return by the 'query-balloon' command
446 #
447 # @actual: actual level of the guest memory balloon in bytes
448 #
449 # Note: this event is rate-limited.
450 #
451 # Since: 1.2
452 #
453 # Example:
454 #
455 # <- { "event": "BALLOON_CHANGE",
456 # "data": { "actual": 944766976 },
457 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
458 #
459 ##
460 { 'event': 'BALLOON_CHANGE',
461 'data': { 'actual': 'int' } }
462
463 ##
464 # @PciMemoryRange:
465 #
466 # A PCI device memory region
467 #
468 # @base: the starting address (guest physical)
469 #
470 # @limit: the ending address (guest physical)
471 #
472 # Since: 0.14.0
473 ##
474 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
475
476 ##
477 # @PciMemoryRegion:
478 #
479 # Information about a PCI device I/O region.
480 #
481 # @bar: the index of the Base Address Register for this region
482 #
483 # @type: 'io' if the region is a PIO region
484 # 'memory' if the region is a MMIO region
485 #
486 # @size: memory size
487 #
488 # @prefetch: if @type is 'memory', true if the memory is prefetchable
489 #
490 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
491 #
492 # Since: 0.14.0
493 ##
494 { 'struct': 'PciMemoryRegion',
495 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
496 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
497
498 ##
499 # @PciBusInfo:
500 #
501 # Information about a bus of a PCI Bridge device
502 #
503 # @number: primary bus interface number. This should be the number of the
504 # bus the device resides on.
505 #
506 # @secondary: secondary bus interface number. This is the number of the
507 # main bus for the bridge
508 #
509 # @subordinate: This is the highest number bus that resides below the
510 # bridge.
511 #
512 # @io_range: The PIO range for all devices on this bridge
513 #
514 # @memory_range: The MMIO range for all devices on this bridge
515 #
516 # @prefetchable_range: The range of prefetchable MMIO for all devices on
517 # this bridge
518 #
519 # Since: 2.4
520 ##
521 { 'struct': 'PciBusInfo',
522 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
523 'io_range': 'PciMemoryRange',
524 'memory_range': 'PciMemoryRange',
525 'prefetchable_range': 'PciMemoryRange' } }
526
527 ##
528 # @PciBridgeInfo:
529 #
530 # Information about a PCI Bridge device
531 #
532 # @bus: information about the bus the device resides on
533 #
534 # @devices: a list of @PciDeviceInfo for each device on this bridge
535 #
536 # Since: 0.14.0
537 ##
538 { 'struct': 'PciBridgeInfo',
539 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
540
541 ##
542 # @PciDeviceClass:
543 #
544 # Information about the Class of a PCI device
545 #
546 # @desc: a string description of the device's class
547 #
548 # @class: the class code of the device
549 #
550 # Since: 2.4
551 ##
552 { 'struct': 'PciDeviceClass',
553 'data': {'*desc': 'str', 'class': 'int'} }
554
555 ##
556 # @PciDeviceId:
557 #
558 # Information about the Id of a PCI device
559 #
560 # @device: the PCI device id
561 #
562 # @vendor: the PCI vendor id
563 #
564 # @subsystem: the PCI subsystem id (since 3.1)
565 #
566 # @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
567 #
568 # Since: 2.4
569 ##
570 { 'struct': 'PciDeviceId',
571 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
572 '*subsystem-vendor': 'int'} }
573
574 ##
575 # @PciDeviceInfo:
576 #
577 # Information about a PCI device
578 #
579 # @bus: the bus number of the device
580 #
581 # @slot: the slot the device is located in
582 #
583 # @function: the function of the slot used by the device
584 #
585 # @class_info: the class of the device
586 #
587 # @id: the PCI device id
588 #
589 # @irq: if an IRQ is assigned to the device, the IRQ number
590 #
591 # @qdev_id: the device name of the PCI device
592 #
593 # @pci_bridge: if the device is a PCI bridge, the bridge information
594 #
595 # @regions: a list of the PCI I/O regions associated with the device
596 #
597 # Notes: the contents of @class_info.desc are not stable and should only be
598 # treated as informational.
599 #
600 # Since: 0.14.0
601 ##
602 { 'struct': 'PciDeviceInfo',
603 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
604 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
605 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
606 'regions': ['PciMemoryRegion']} }
607
608 ##
609 # @PciInfo:
610 #
611 # Information about a PCI bus
612 #
613 # @bus: the bus index
614 #
615 # @devices: a list of devices on this bus
616 #
617 # Since: 0.14.0
618 ##
619 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
620
621 ##
622 # @query-pci:
623 #
624 # Return information about the PCI bus topology of the guest.
625 #
626 # Returns: a list of @PciInfo for each PCI bus. Each bus is
627 # represented by a json-object, which has a key with a json-array of
628 # all PCI devices attached to it. Each device is represented by a
629 # json-object.
630 #
631 # Since: 0.14.0
632 #
633 # Example:
634 #
635 # -> { "execute": "query-pci" }
636 # <- { "return": [
637 # {
638 # "bus": 0,
639 # "devices": [
640 # {
641 # "bus": 0,
642 # "qdev_id": "",
643 # "slot": 0,
644 # "class_info": {
645 # "class": 1536,
646 # "desc": "Host bridge"
647 # },
648 # "id": {
649 # "device": 32902,
650 # "vendor": 4663
651 # },
652 # "function": 0,
653 # "regions": [
654 # ]
655 # },
656 # {
657 # "bus": 0,
658 # "qdev_id": "",
659 # "slot": 1,
660 # "class_info": {
661 # "class": 1537,
662 # "desc": "ISA bridge"
663 # },
664 # "id": {
665 # "device": 32902,
666 # "vendor": 28672
667 # },
668 # "function": 0,
669 # "regions": [
670 # ]
671 # },
672 # {
673 # "bus": 0,
674 # "qdev_id": "",
675 # "slot": 1,
676 # "class_info": {
677 # "class": 257,
678 # "desc": "IDE controller"
679 # },
680 # "id": {
681 # "device": 32902,
682 # "vendor": 28688
683 # },
684 # "function": 1,
685 # "regions": [
686 # {
687 # "bar": 4,
688 # "size": 16,
689 # "address": 49152,
690 # "type": "io"
691 # }
692 # ]
693 # },
694 # {
695 # "bus": 0,
696 # "qdev_id": "",
697 # "slot": 2,
698 # "class_info": {
699 # "class": 768,
700 # "desc": "VGA controller"
701 # },
702 # "id": {
703 # "device": 4115,
704 # "vendor": 184
705 # },
706 # "function": 0,
707 # "regions": [
708 # {
709 # "prefetch": true,
710 # "mem_type_64": false,
711 # "bar": 0,
712 # "size": 33554432,
713 # "address": 4026531840,
714 # "type": "memory"
715 # },
716 # {
717 # "prefetch": false,
718 # "mem_type_64": false,
719 # "bar": 1,
720 # "size": 4096,
721 # "address": 4060086272,
722 # "type": "memory"
723 # },
724 # {
725 # "prefetch": false,
726 # "mem_type_64": false,
727 # "bar": 6,
728 # "size": 65536,
729 # "address": -1,
730 # "type": "memory"
731 # }
732 # ]
733 # },
734 # {
735 # "bus": 0,
736 # "qdev_id": "",
737 # "irq": 11,
738 # "slot": 4,
739 # "class_info": {
740 # "class": 1280,
741 # "desc": "RAM controller"
742 # },
743 # "id": {
744 # "device": 6900,
745 # "vendor": 4098
746 # },
747 # "function": 0,
748 # "regions": [
749 # {
750 # "bar": 0,
751 # "size": 32,
752 # "address": 49280,
753 # "type": "io"
754 # }
755 # ]
756 # }
757 # ]
758 # }
759 # ]
760 # }
761 #
762 # Note: This example has been shortened as the real response is too long.
763 #
764 ##
765 { 'command': 'query-pci', 'returns': ['PciInfo'] }
766
767 ##
768 # @quit:
769 #
770 # This command will cause the QEMU process to exit gracefully. While every
771 # attempt is made to send the QMP response before terminating, this is not
772 # guaranteed. When using this interface, a premature EOF would not be
773 # unexpected.
774 #
775 # Since: 0.14.0
776 #
777 # Example:
778 #
779 # -> { "execute": "quit" }
780 # <- { "return": {} }
781 ##
782 { 'command': 'quit' }
783
784 ##
785 # @stop:
786 #
787 # Stop all guest VCPU execution.
788 #
789 # Since: 0.14.0
790 #
791 # Notes: This function will succeed even if the guest is already in the stopped
792 # state. In "inmigrate" state, it will ensure that the guest
793 # remains paused once migration finishes, as if the -S option was
794 # passed on the command line.
795 #
796 # Example:
797 #
798 # -> { "execute": "stop" }
799 # <- { "return": {} }
800 #
801 ##
802 { 'command': 'stop' }
803
804 ##
805 # @system_reset:
806 #
807 # Performs a hard reset of a guest.
808 #
809 # Since: 0.14.0
810 #
811 # Example:
812 #
813 # -> { "execute": "system_reset" }
814 # <- { "return": {} }
815 #
816 ##
817 { 'command': 'system_reset' }
818
819 ##
820 # @system_powerdown:
821 #
822 # Requests that a guest perform a powerdown operation.
823 #
824 # Since: 0.14.0
825 #
826 # Notes: A guest may or may not respond to this command. This command
827 # returning does not indicate that a guest has accepted the request or
828 # that it has shut down. Many guests will respond to this command by
829 # prompting the user in some way.
830 # Example:
831 #
832 # -> { "execute": "system_powerdown" }
833 # <- { "return": {} }
834 #
835 ##
836 { 'command': 'system_powerdown' }
837
838 ##
839 # @memsave:
840 #
841 # Save a portion of guest memory to a file.
842 #
843 # @val: the virtual address of the guest to start from
844 #
845 # @size: the size of memory region to save
846 #
847 # @filename: the file to save the memory to as binary data
848 #
849 # @cpu-index: the index of the virtual CPU to use for translating the
850 # virtual address (defaults to CPU 0)
851 #
852 # Returns: Nothing on success
853 #
854 # Since: 0.14.0
855 #
856 # Notes: Errors were not reliably returned until 1.1
857 #
858 # Example:
859 #
860 # -> { "execute": "memsave",
861 # "arguments": { "val": 10,
862 # "size": 100,
863 # "filename": "/tmp/virtual-mem-dump" } }
864 # <- { "return": {} }
865 #
866 ##
867 { 'command': 'memsave',
868 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
869
870 ##
871 # @pmemsave:
872 #
873 # Save a portion of guest physical memory to a file.
874 #
875 # @val: the physical address of the guest to start from
876 #
877 # @size: the size of memory region to save
878 #
879 # @filename: the file to save the memory to as binary data
880 #
881 # Returns: Nothing on success
882 #
883 # Since: 0.14.0
884 #
885 # Notes: Errors were not reliably returned until 1.1
886 #
887 # Example:
888 #
889 # -> { "execute": "pmemsave",
890 # "arguments": { "val": 10,
891 # "size": 100,
892 # "filename": "/tmp/physical-mem-dump" } }
893 # <- { "return": {} }
894 #
895 ##
896 { 'command': 'pmemsave',
897 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
898
899 ##
900 # @cont:
901 #
902 # Resume guest VCPU execution.
903 #
904 # Since: 0.14.0
905 #
906 # Returns: If successful, nothing
907 #
908 # Notes: This command will succeed if the guest is currently running. It
909 # will also succeed if the guest is in the "inmigrate" state; in
910 # this case, the effect of the command is to make sure the guest
911 # starts once migration finishes, removing the effect of the -S
912 # command line option if it was passed.
913 #
914 # Example:
915 #
916 # -> { "execute": "cont" }
917 # <- { "return": {} }
918 #
919 ##
920 { 'command': 'cont' }
921
922 ##
923 # @x-exit-preconfig:
924 #
925 # Exit from "preconfig" state
926 #
927 # This command makes QEMU exit the preconfig state and proceed with
928 # VM initialization using configuration data provided on the command line
929 # and via the QMP monitor during the preconfig state. The command is only
930 # available during the preconfig state (i.e. when the --preconfig command
931 # line option was in use).
932 #
933 # Since 3.0
934 #
935 # Returns: nothing
936 #
937 # Example:
938 #
939 # -> { "execute": "x-exit-preconfig" }
940 # <- { "return": {} }
941 #
942 ##
943 { 'command': 'x-exit-preconfig', 'allow-preconfig': true }
944
945 ##
946 # @system_wakeup:
947 #
948 # Wake up guest from suspend. If the guest has wake-up from suspend
949 # support enabled (wakeup-suspend-support flag from
950 # query-current-machine), wake-up guest from suspend if the guest is
951 # in SUSPENDED state. Return an error otherwise.
952 #
953 # Since: 1.1
954 #
955 # Returns: nothing.
956 #
957 # Note: prior to 4.0, this command does nothing in case the guest
958 # isn't suspended.
959 #
960 # Example:
961 #
962 # -> { "execute": "system_wakeup" }
963 # <- { "return": {} }
964 #
965 ##
966 { 'command': 'system_wakeup' }
967
968 ##
969 # @inject-nmi:
970 #
971 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
972 # The command fails when the guest doesn't support injecting.
973 #
974 # Returns: If successful, nothing
975 #
976 # Since: 0.14.0
977 #
978 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
979 #
980 # Example:
981 #
982 # -> { "execute": "inject-nmi" }
983 # <- { "return": {} }
984 #
985 ##
986 { 'command': 'inject-nmi' }
987
988 ##
989 # @balloon:
990 #
991 # Request the balloon driver to change its balloon size.
992 #
993 # @value: the target size of the balloon in bytes
994 #
995 # Returns: Nothing on success
996 # If the balloon driver is enabled but not functional because the KVM
997 # kernel module cannot support it, KvmMissingCap
998 # If no balloon device is present, DeviceNotActive
999 #
1000 # Notes: This command just issues a request to the guest. When it returns,
1001 # the balloon size may not have changed. A guest can change the balloon
1002 # size independent of this command.
1003 #
1004 # Since: 0.14.0
1005 #
1006 # Example:
1007 #
1008 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1009 # <- { "return": {} }
1010 #
1011 ##
1012 { 'command': 'balloon', 'data': {'value': 'int'} }
1013
1014 ##
1015 # @human-monitor-command:
1016 #
1017 # Execute a command on the human monitor and return the output.
1018 #
1019 # @command-line: the command to execute in the human monitor
1020 #
1021 # @cpu-index: The CPU to use for commands that require an implicit CPU
1022 #
1023 # Features:
1024 # @savevm-monitor-nodes: If present, HMP command savevm only snapshots
1025 # monitor-owned nodes if they have no parents.
1026 # This allows the use of 'savevm' with
1027 # -blockdev. (since 4.2)
1028 #
1029 # Returns: the output of the command as a string
1030 #
1031 # Since: 0.14.0
1032 #
1033 # Notes: This command only exists as a stop-gap. Its use is highly
1034 # discouraged. The semantics of this command are not
1035 # guaranteed: this means that command names, arguments and
1036 # responses can change or be removed at ANY time. Applications
1037 # that rely on long term stability guarantees should NOT
1038 # use this command.
1039 #
1040 # Known limitations:
1041 #
1042 # * This command is stateless, this means that commands that depend
1043 # on state information (such as getfd) might not work
1044 #
1045 # * Commands that prompt the user for data don't currently work
1046 #
1047 # Example:
1048 #
1049 # -> { "execute": "human-monitor-command",
1050 # "arguments": { "command-line": "info kvm" } }
1051 # <- { "return": "kvm support: enabled\r\n" }
1052 #
1053 ##
1054 { 'command': 'human-monitor-command',
1055 'data': {'command-line': 'str', '*cpu-index': 'int'},
1056 'returns': 'str',
1057 'features': [ 'savevm-monitor-nodes' ] }
1058
1059 ##
1060 # @change:
1061 #
1062 # This command is multiple commands multiplexed together.
1063 #
1064 # @device: This is normally the name of a block device but it may also be 'vnc'.
1065 # when it's 'vnc', then sub command depends on @target
1066 #
1067 # @target: If @device is a block device, then this is the new filename.
1068 # If @device is 'vnc', then if the value 'password' selects the vnc
1069 # change password command. Otherwise, this specifies a new server URI
1070 # address to listen to for VNC connections.
1071 #
1072 # @arg: If @device is a block device, then this is an optional format to open
1073 # the device with.
1074 # If @device is 'vnc' and @target is 'password', this is the new VNC
1075 # password to set. See change-vnc-password for additional notes.
1076 #
1077 # Returns: Nothing on success.
1078 # If @device is not a valid block device, DeviceNotFound
1079 #
1080 # Notes: This interface is deprecated, and it is strongly recommended that you
1081 # avoid using it. For changing block devices, use
1082 # blockdev-change-medium; for changing VNC parameters, use
1083 # change-vnc-password.
1084 #
1085 # Since: 0.14.0
1086 #
1087 # Example:
1088 #
1089 # 1. Change a removable medium
1090 #
1091 # -> { "execute": "change",
1092 # "arguments": { "device": "ide1-cd0",
1093 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1094 # <- { "return": {} }
1095 #
1096 # 2. Change VNC password
1097 #
1098 # -> { "execute": "change",
1099 # "arguments": { "device": "vnc", "target": "password",
1100 # "arg": "foobar1" } }
1101 # <- { "return": {} }
1102 #
1103 ##
1104 { 'command': 'change',
1105 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1106
1107 ##
1108 # @xen-set-global-dirty-log:
1109 #
1110 # Enable or disable the global dirty log mode.
1111 #
1112 # @enable: true to enable, false to disable.
1113 #
1114 # Returns: nothing
1115 #
1116 # Since: 1.3
1117 #
1118 # Example:
1119 #
1120 # -> { "execute": "xen-set-global-dirty-log",
1121 # "arguments": { "enable": true } }
1122 # <- { "return": {} }
1123 #
1124 ##
1125 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1126
1127 ##
1128 # @getfd:
1129 #
1130 # Receive a file descriptor via SCM rights and assign it a name
1131 #
1132 # @fdname: file descriptor name
1133 #
1134 # Returns: Nothing on success
1135 #
1136 # Since: 0.14.0
1137 #
1138 # Notes: If @fdname already exists, the file descriptor assigned to
1139 # it will be closed and replaced by the received file
1140 # descriptor.
1141 #
1142 # The 'closefd' command can be used to explicitly close the
1143 # file descriptor when it is no longer needed.
1144 #
1145 # Example:
1146 #
1147 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1148 # <- { "return": {} }
1149 #
1150 ##
1151 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1152
1153 ##
1154 # @closefd:
1155 #
1156 # Close a file descriptor previously passed via SCM rights
1157 #
1158 # @fdname: file descriptor name
1159 #
1160 # Returns: Nothing on success
1161 #
1162 # Since: 0.14.0
1163 #
1164 # Example:
1165 #
1166 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1167 # <- { "return": {} }
1168 #
1169 ##
1170 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1171
1172 ##
1173 # @MemoryInfo:
1174 #
1175 # Actual memory information in bytes.
1176 #
1177 # @base-memory: size of "base" memory specified with command line
1178 # option -m.
1179 #
1180 # @plugged-memory: size of memory that can be hot-unplugged. This field
1181 # is omitted if target doesn't support memory hotplug
1182 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1183 #
1184 # Since: 2.11.0
1185 ##
1186 { 'struct': 'MemoryInfo',
1187 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1188
1189 ##
1190 # @query-memory-size-summary:
1191 #
1192 # Return the amount of initially allocated and present hotpluggable (if
1193 # enabled) memory in bytes.
1194 #
1195 # Example:
1196 #
1197 # -> { "execute": "query-memory-size-summary" }
1198 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1199 #
1200 # Since: 2.11.0
1201 ##
1202 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1203
1204
1205 ##
1206 # @AddfdInfo:
1207 #
1208 # Information about a file descriptor that was added to an fd set.
1209 #
1210 # @fdset-id: The ID of the fd set that @fd was added to.
1211 #
1212 # @fd: The file descriptor that was received via SCM rights and
1213 # added to the fd set.
1214 #
1215 # Since: 1.2.0
1216 ##
1217 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
1218
1219 ##
1220 # @add-fd:
1221 #
1222 # Add a file descriptor, that was passed via SCM rights, to an fd set.
1223 #
1224 # @fdset-id: The ID of the fd set to add the file descriptor to.
1225 #
1226 # @opaque: A free-form string that can be used to describe the fd.
1227 #
1228 # Returns: @AddfdInfo on success
1229 #
1230 # If file descriptor was not received, FdNotSupplied
1231 #
1232 # If @fdset-id is a negative value, InvalidParameterValue
1233 #
1234 # Notes: The list of fd sets is shared by all monitor connections.
1235 #
1236 # If @fdset-id is not specified, a new fd set will be created.
1237 #
1238 # Since: 1.2.0
1239 #
1240 # Example:
1241 #
1242 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
1243 # <- { "return": { "fdset-id": 1, "fd": 3 } }
1244 #
1245 ##
1246 { 'command': 'add-fd',
1247 'data': { '*fdset-id': 'int',
1248 '*opaque': 'str' },
1249 'returns': 'AddfdInfo' }
1250
1251 ##
1252 # @remove-fd:
1253 #
1254 # Remove a file descriptor from an fd set.
1255 #
1256 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
1257 #
1258 # @fd: The file descriptor that is to be removed.
1259 #
1260 # Returns: Nothing on success
1261 # If @fdset-id or @fd is not found, FdNotFound
1262 #
1263 # Since: 1.2.0
1264 #
1265 # Notes: The list of fd sets is shared by all monitor connections.
1266 #
1267 # If @fd is not specified, all file descriptors in @fdset-id
1268 # will be removed.
1269 #
1270 # Example:
1271 #
1272 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
1273 # <- { "return": {} }
1274 #
1275 ##
1276 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
1277
1278 ##
1279 # @FdsetFdInfo:
1280 #
1281 # Information about a file descriptor that belongs to an fd set.
1282 #
1283 # @fd: The file descriptor value.
1284 #
1285 # @opaque: A free-form string that can be used to describe the fd.
1286 #
1287 # Since: 1.2.0
1288 ##
1289 { 'struct': 'FdsetFdInfo',
1290 'data': {'fd': 'int', '*opaque': 'str'} }
1291
1292 ##
1293 # @FdsetInfo:
1294 #
1295 # Information about an fd set.
1296 #
1297 # @fdset-id: The ID of the fd set.
1298 #
1299 # @fds: A list of file descriptors that belong to this fd set.
1300 #
1301 # Since: 1.2.0
1302 ##
1303 { 'struct': 'FdsetInfo',
1304 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
1305
1306 ##
1307 # @query-fdsets:
1308 #
1309 # Return information describing all fd sets.
1310 #
1311 # Returns: A list of @FdsetInfo
1312 #
1313 # Since: 1.2.0
1314 #
1315 # Note: The list of fd sets is shared by all monitor connections.
1316 #
1317 # Example:
1318 #
1319 # -> { "execute": "query-fdsets" }
1320 # <- { "return": [
1321 # {
1322 # "fds": [
1323 # {
1324 # "fd": 30,
1325 # "opaque": "rdonly:/path/to/file"
1326 # },
1327 # {
1328 # "fd": 24,
1329 # "opaque": "rdwr:/path/to/file"
1330 # }
1331 # ],
1332 # "fdset-id": 1
1333 # },
1334 # {
1335 # "fds": [
1336 # {
1337 # "fd": 28
1338 # },
1339 # {
1340 # "fd": 29
1341 # }
1342 # ],
1343 # "fdset-id": 0
1344 # }
1345 # ]
1346 # }
1347 #
1348 ##
1349 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
1350
1351 ##
1352 # @AcpiTableOptions:
1353 #
1354 # Specify an ACPI table on the command line to load.
1355 #
1356 # At most one of @file and @data can be specified. The list of files specified
1357 # by any one of them is loaded and concatenated in order. If both are omitted,
1358 # @data is implied.
1359 #
1360 # Other fields / optargs can be used to override fields of the generic ACPI
1361 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
1362 # Description Table Header. If a header field is not overridden, then the
1363 # corresponding value from the concatenated blob is used (in case of @file), or
1364 # it is filled in with a hard-coded value (in case of @data).
1365 #
1366 # String fields are copied into the matching ACPI member from lowest address
1367 # upwards, and silently truncated / NUL-padded to length.
1368 #
1369 # @sig: table signature / identifier (4 bytes)
1370 #
1371 # @rev: table revision number (dependent on signature, 1 byte)
1372 #
1373 # @oem_id: OEM identifier (6 bytes)
1374 #
1375 # @oem_table_id: OEM table identifier (8 bytes)
1376 #
1377 # @oem_rev: OEM-supplied revision number (4 bytes)
1378 #
1379 # @asl_compiler_id: identifier of the utility that created the table
1380 # (4 bytes)
1381 #
1382 # @asl_compiler_rev: revision number of the utility that created the
1383 # table (4 bytes)
1384 #
1385 # @file: colon (:) separated list of pathnames to load and
1386 # concatenate as table data. The resultant binary blob is expected to
1387 # have an ACPI table header. At least one file is required. This field
1388 # excludes @data.
1389 #
1390 # @data: colon (:) separated list of pathnames to load and
1391 # concatenate as table data. The resultant binary blob must not have an
1392 # ACPI table header. At least one file is required. This field excludes
1393 # @file.
1394 #
1395 # Since: 1.5
1396 ##
1397 { 'struct': 'AcpiTableOptions',
1398 'data': {
1399 '*sig': 'str',
1400 '*rev': 'uint8',
1401 '*oem_id': 'str',
1402 '*oem_table_id': 'str',
1403 '*oem_rev': 'uint32',
1404 '*asl_compiler_id': 'str',
1405 '*asl_compiler_rev': 'uint32',
1406 '*file': 'str',
1407 '*data': 'str' }}
1408
1409 ##
1410 # @CommandLineParameterType:
1411 #
1412 # Possible types for an option parameter.
1413 #
1414 # @string: accepts a character string
1415 #
1416 # @boolean: accepts "on" or "off"
1417 #
1418 # @number: accepts a number
1419 #
1420 # @size: accepts a number followed by an optional suffix (K)ilo,
1421 # (M)ega, (G)iga, (T)era
1422 #
1423 # Since: 1.5
1424 ##
1425 { 'enum': 'CommandLineParameterType',
1426 'data': ['string', 'boolean', 'number', 'size'] }
1427
1428 ##
1429 # @CommandLineParameterInfo:
1430 #
1431 # Details about a single parameter of a command line option.
1432 #
1433 # @name: parameter name
1434 #
1435 # @type: parameter @CommandLineParameterType
1436 #
1437 # @help: human readable text string, not suitable for parsing.
1438 #
1439 # @default: default value string (since 2.1)
1440 #
1441 # Since: 1.5
1442 ##
1443 { 'struct': 'CommandLineParameterInfo',
1444 'data': { 'name': 'str',
1445 'type': 'CommandLineParameterType',
1446 '*help': 'str',
1447 '*default': 'str' } }
1448
1449 ##
1450 # @CommandLineOptionInfo:
1451 #
1452 # Details about a command line option, including its list of parameter details
1453 #
1454 # @option: option name
1455 #
1456 # @parameters: an array of @CommandLineParameterInfo
1457 #
1458 # Since: 1.5
1459 ##
1460 { 'struct': 'CommandLineOptionInfo',
1461 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
1462
1463 ##
1464 # @query-command-line-options:
1465 #
1466 # Query command line option schema.
1467 #
1468 # @option: option name
1469 #
1470 # Returns: list of @CommandLineOptionInfo for all options (or for the given
1471 # @option). Returns an error if the given @option doesn't exist.
1472 #
1473 # Since: 1.5
1474 #
1475 # Example:
1476 #
1477 # -> { "execute": "query-command-line-options",
1478 # "arguments": { "option": "option-rom" } }
1479 # <- { "return": [
1480 # {
1481 # "parameters": [
1482 # {
1483 # "name": "romfile",
1484 # "type": "string"
1485 # },
1486 # {
1487 # "name": "bootindex",
1488 # "type": "number"
1489 # }
1490 # ],
1491 # "option": "option-rom"
1492 # }
1493 # ]
1494 # }
1495 #
1496 ##
1497 {'command': 'query-command-line-options',
1498 'data': { '*option': 'str' },
1499 'returns': ['CommandLineOptionInfo'],
1500 'allow-preconfig': true }
1501
1502 ##
1503 # @PCDIMMDeviceInfo:
1504 #
1505 # PCDIMMDevice state information
1506 #
1507 # @id: device's ID
1508 #
1509 # @addr: physical address, where device is mapped
1510 #
1511 # @size: size of memory that the device provides
1512 #
1513 # @slot: slot number at which device is plugged in
1514 #
1515 # @node: NUMA node number where device is plugged in
1516 #
1517 # @memdev: memory backend linked with device
1518 #
1519 # @hotplugged: true if device was hotplugged
1520 #
1521 # @hotpluggable: true if device if could be added/removed while machine is running
1522 #
1523 # Since: 2.1
1524 ##
1525 { 'struct': 'PCDIMMDeviceInfo',
1526 'data': { '*id': 'str',
1527 'addr': 'int',
1528 'size': 'int',
1529 'slot': 'int',
1530 'node': 'int',
1531 'memdev': 'str',
1532 'hotplugged': 'bool',
1533 'hotpluggable': 'bool'
1534 }
1535 }
1536
1537 ##
1538 # @VirtioPMEMDeviceInfo:
1539 #
1540 # VirtioPMEM state information
1541 #
1542 # @id: device's ID
1543 #
1544 # @memaddr: physical address in memory, where device is mapped
1545 #
1546 # @size: size of memory that the device provides
1547 #
1548 # @memdev: memory backend linked with device
1549 #
1550 # Since: 4.1
1551 ##
1552 { 'struct': 'VirtioPMEMDeviceInfo',
1553 'data': { '*id': 'str',
1554 'memaddr': 'size',
1555 'size': 'size',
1556 'memdev': 'str'
1557 }
1558 }
1559
1560 ##
1561 # @MemoryDeviceInfo:
1562 #
1563 # Union containing information about a memory device
1564 #
1565 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1566 #
1567 # Since: 2.1
1568 ##
1569 { 'union': 'MemoryDeviceInfo',
1570 'data': { 'dimm': 'PCDIMMDeviceInfo',
1571 'nvdimm': 'PCDIMMDeviceInfo',
1572 'virtio-pmem': 'VirtioPMEMDeviceInfo'
1573 }
1574 }
1575
1576 ##
1577 # @query-memory-devices:
1578 #
1579 # Lists available memory devices and their state
1580 #
1581 # Since: 2.1
1582 #
1583 # Example:
1584 #
1585 # -> { "execute": "query-memory-devices" }
1586 # <- { "return": [ { "data":
1587 # { "addr": 5368709120,
1588 # "hotpluggable": true,
1589 # "hotplugged": true,
1590 # "id": "d1",
1591 # "memdev": "/objects/memX",
1592 # "node": 0,
1593 # "size": 1073741824,
1594 # "slot": 0},
1595 # "type": "dimm"
1596 # } ] }
1597 #
1598 ##
1599 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1600
1601 ##
1602 # @MEM_UNPLUG_ERROR:
1603 #
1604 # Emitted when memory hot unplug error occurs.
1605 #
1606 # @device: device name
1607 #
1608 # @msg: Informative message
1609 #
1610 # Since: 2.4
1611 #
1612 # Example:
1613 #
1614 # <- { "event": "MEM_UNPLUG_ERROR"
1615 # "data": { "device": "dimm1",
1616 # "msg": "acpi: device unplug for unsupported device"
1617 # },
1618 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1619 #
1620 ##
1621 { 'event': 'MEM_UNPLUG_ERROR',
1622 'data': { 'device': 'str', 'msg': 'str' } }
1623
1624 ##
1625 # @ACPISlotType:
1626 #
1627 # @DIMM: memory slot
1628 # @CPU: logical CPU slot (since 2.7)
1629 ##
1630 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
1631
1632 ##
1633 # @ACPIOSTInfo:
1634 #
1635 # OSPM Status Indication for a device
1636 # For description of possible values of @source and @status fields
1637 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
1638 #
1639 # @device: device ID associated with slot
1640 #
1641 # @slot: slot ID, unique per slot of a given @slot-type
1642 #
1643 # @slot-type: type of the slot
1644 #
1645 # @source: an integer containing the source event
1646 #
1647 # @status: an integer containing the status code
1648 #
1649 # Since: 2.1
1650 ##
1651 { 'struct': 'ACPIOSTInfo',
1652 'data' : { '*device': 'str',
1653 'slot': 'str',
1654 'slot-type': 'ACPISlotType',
1655 'source': 'int',
1656 'status': 'int' } }
1657
1658 ##
1659 # @query-acpi-ospm-status:
1660 #
1661 # Return a list of ACPIOSTInfo for devices that support status
1662 # reporting via ACPI _OST method.
1663 #
1664 # Since: 2.1
1665 #
1666 # Example:
1667 #
1668 # -> { "execute": "query-acpi-ospm-status" }
1669 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
1670 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
1671 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
1672 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
1673 # ]}
1674 #
1675 ##
1676 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
1677
1678 ##
1679 # @ACPI_DEVICE_OST:
1680 #
1681 # Emitted when guest executes ACPI _OST method.
1682 #
1683 # @info: OSPM Status Indication
1684 #
1685 # Since: 2.1
1686 #
1687 # Example:
1688 #
1689 # <- { "event": "ACPI_DEVICE_OST",
1690 # "data": { "device": "d1", "slot": "0",
1691 # "slot-type": "DIMM", "source": 1, "status": 0 } }
1692 #
1693 ##
1694 { 'event': 'ACPI_DEVICE_OST',
1695 'data': { 'info': 'ACPIOSTInfo' } }
1696
1697 ##
1698 # @ReplayMode:
1699 #
1700 # Mode of the replay subsystem.
1701 #
1702 # @none: normal execution mode. Replay or record are not enabled.
1703 #
1704 # @record: record mode. All non-deterministic data is written into the
1705 # replay log.
1706 #
1707 # @play: replay mode. Non-deterministic data required for system execution
1708 # is read from the log.
1709 #
1710 # Since: 2.5
1711 ##
1712 { 'enum': 'ReplayMode',
1713 'data': [ 'none', 'record', 'play' ] }
1714
1715 ##
1716 # @xen-load-devices-state:
1717 #
1718 # Load the state of all devices from file. The RAM and the block devices
1719 # of the VM are not loaded by this command.
1720 #
1721 # @filename: the file to load the state of the devices from as binary
1722 # data. See xen-save-devices-state.txt for a description of the binary
1723 # format.
1724 #
1725 # Since: 2.7
1726 #
1727 # Example:
1728 #
1729 # -> { "execute": "xen-load-devices-state",
1730 # "arguments": { "filename": "/tmp/resume" } }
1731 # <- { "return": {} }
1732 #
1733 ##
1734 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1735
1736 ##
1737 # @GuidInfo:
1738 #
1739 # GUID information.
1740 #
1741 # @guid: the globally unique identifier
1742 #
1743 # Since: 2.9
1744 ##
1745 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
1746
1747 ##
1748 # @query-vm-generation-id:
1749 #
1750 # Show Virtual Machine Generation ID
1751 #
1752 # Since: 2.9
1753 ##
1754 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
1755