]> git.ipfire.org Git - thirdparty/qemu.git/blob - qmp-commands.hx
monitor: add query-vnc-servers command
[thirdparty/qemu.git] / qmp-commands.hx
1 HXCOMM QMP dispatch table and documentation
2 HXCOMM Text between SQMP and EQMP is copied to the QMP documention file and
3 HXCOMM does not show up in the other formats.
4
5 SQMP
6 QMP Supported Commands
7 ----------------------
8
9 This document describes all commands currently supported by QMP.
10
11 Most of the time their usage is exactly the same as in the user Monitor, this
12 means that any other document which also describe commands (the manpage,
13 QEMU's manual, etc) can and should be consulted.
14
15 QMP has two types of commands: regular and query commands. Regular commands
16 usually change the Virtual Machine's state someway, while query commands just
17 return information. The sections below are divided accordingly.
18
19 It's important to observe that all communication examples are formatted in
20 a reader-friendly way, so that they're easier to understand. However, in real
21 protocol usage, they're emitted as a single line.
22
23 Also, the following notation is used to denote data flow:
24
25 -> data issued by the Client
26 <- Server data response
27
28 Please, refer to the QMP specification (QMP/qmp-spec.txt) for detailed
29 information on the Server command and response formats.
30
31 NOTE: This document is temporary and will be replaced soon.
32
33 1. Stability Considerations
34 ===========================
35
36 The current QMP command set (described in this file) may be useful for a
37 number of use cases, however it's limited and several commands have bad
38 defined semantics, specially with regard to command completion.
39
40 These problems are going to be solved incrementally in the next QEMU releases
41 and we're going to establish a deprecation policy for badly defined commands.
42
43 If you're planning to adopt QMP, please observe the following:
44
45 1. The deprecation policy will take effect and be documented soon, please
46 check the documentation of each used command as soon as a new release of
47 QEMU is available
48
49 2. DO NOT rely on anything which is not explicit documented
50
51 3. Errors, in special, are not documented. Applications should NOT check
52 for specific errors classes or data (it's strongly recommended to only
53 check for the "error" key)
54
55 2. Regular Commands
56 ===================
57
58 Server's responses in the examples below are always a success response, please
59 refer to the QMP specification for more details on error responses.
60
61 EQMP
62
63 {
64 .name = "quit",
65 .args_type = "",
66 .mhandler.cmd_new = qmp_marshal_input_quit,
67 },
68
69 SQMP
70 quit
71 ----
72
73 Quit the emulator.
74
75 Arguments: None.
76
77 Example:
78
79 -> { "execute": "quit" }
80 <- { "return": {} }
81
82 EQMP
83
84 {
85 .name = "eject",
86 .args_type = "force:-f,device:B",
87 .mhandler.cmd_new = qmp_marshal_input_eject,
88 },
89
90 SQMP
91 eject
92 -----
93
94 Eject a removable medium.
95
96 Arguments:
97
98 - force: force ejection (json-bool, optional)
99 - device: device name (json-string)
100
101 Example:
102
103 -> { "execute": "eject", "arguments": { "device": "ide1-cd0" } }
104 <- { "return": {} }
105
106 Note: The "force" argument defaults to false.
107
108 EQMP
109
110 {
111 .name = "change",
112 .args_type = "device:B,target:F,arg:s?",
113 .mhandler.cmd_new = qmp_marshal_input_change,
114 },
115
116 SQMP
117 change
118 ------
119
120 Change a removable medium or VNC configuration.
121
122 Arguments:
123
124 - "device": device name (json-string)
125 - "target": filename or item (json-string)
126 - "arg": additional argument (json-string, optional)
127
128 Examples:
129
130 1. Change a removable medium
131
132 -> { "execute": "change",
133 "arguments": { "device": "ide1-cd0",
134 "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
135 <- { "return": {} }
136
137 2. Change VNC password
138
139 -> { "execute": "change",
140 "arguments": { "device": "vnc", "target": "password",
141 "arg": "foobar1" } }
142 <- { "return": {} }
143
144 EQMP
145
146 {
147 .name = "screendump",
148 .args_type = "filename:F",
149 .mhandler.cmd_new = qmp_marshal_input_screendump,
150 },
151
152 SQMP
153 screendump
154 ----------
155
156 Save screen into PPM image.
157
158 Arguments:
159
160 - "filename": file path (json-string)
161
162 Example:
163
164 -> { "execute": "screendump", "arguments": { "filename": "/tmp/image" } }
165 <- { "return": {} }
166
167 EQMP
168
169 {
170 .name = "stop",
171 .args_type = "",
172 .mhandler.cmd_new = qmp_marshal_input_stop,
173 },
174
175 SQMP
176 stop
177 ----
178
179 Stop the emulator.
180
181 Arguments: None.
182
183 Example:
184
185 -> { "execute": "stop" }
186 <- { "return": {} }
187
188 EQMP
189
190 {
191 .name = "cont",
192 .args_type = "",
193 .mhandler.cmd_new = qmp_marshal_input_cont,
194 },
195
196 SQMP
197 cont
198 ----
199
200 Resume emulation.
201
202 Arguments: None.
203
204 Example:
205
206 -> { "execute": "cont" }
207 <- { "return": {} }
208
209 EQMP
210
211 {
212 .name = "system_wakeup",
213 .args_type = "",
214 .mhandler.cmd_new = qmp_marshal_input_system_wakeup,
215 },
216
217 SQMP
218 system_wakeup
219 -------------
220
221 Wakeup guest from suspend.
222
223 Arguments: None.
224
225 Example:
226
227 -> { "execute": "system_wakeup" }
228 <- { "return": {} }
229
230 EQMP
231
232 {
233 .name = "system_reset",
234 .args_type = "",
235 .mhandler.cmd_new = qmp_marshal_input_system_reset,
236 },
237
238 SQMP
239 system_reset
240 ------------
241
242 Reset the system.
243
244 Arguments: None.
245
246 Example:
247
248 -> { "execute": "system_reset" }
249 <- { "return": {} }
250
251 EQMP
252
253 {
254 .name = "system_powerdown",
255 .args_type = "",
256 .mhandler.cmd_new = qmp_marshal_input_system_powerdown,
257 },
258
259 SQMP
260 system_powerdown
261 ----------------
262
263 Send system power down event.
264
265 Arguments: None.
266
267 Example:
268
269 -> { "execute": "system_powerdown" }
270 <- { "return": {} }
271
272 EQMP
273
274 {
275 .name = "device_add",
276 .args_type = "device:O",
277 .params = "driver[,prop=value][,...]",
278 .help = "add device, like -device on the command line",
279 .user_print = monitor_user_noop,
280 .mhandler.cmd_new = do_device_add,
281 },
282
283 SQMP
284 device_add
285 ----------
286
287 Add a device.
288
289 Arguments:
290
291 - "driver": the name of the new device's driver (json-string)
292 - "bus": the device's parent bus (device tree path, json-string, optional)
293 - "id": the device's ID, must be unique (json-string)
294 - device properties
295
296 Example:
297
298 -> { "execute": "device_add", "arguments": { "driver": "e1000", "id": "net1" } }
299 <- { "return": {} }
300
301 Notes:
302
303 (1) For detailed information about this command, please refer to the
304 'docs/qdev-device-use.txt' file.
305
306 (2) It's possible to list device properties by running QEMU with the
307 "-device DEVICE,\?" command-line argument, where DEVICE is the device's name
308
309 EQMP
310
311 {
312 .name = "device_del",
313 .args_type = "id:s",
314 .mhandler.cmd_new = qmp_marshal_input_device_del,
315 },
316
317 SQMP
318 device_del
319 ----------
320
321 Remove a device.
322
323 Arguments:
324
325 - "id": the device's ID (json-string)
326
327 Example:
328
329 -> { "execute": "device_del", "arguments": { "id": "net1" } }
330 <- { "return": {} }
331
332 EQMP
333
334 {
335 .name = "send-key",
336 .args_type = "keys:O,hold-time:i?",
337 .mhandler.cmd_new = qmp_marshal_input_send_key,
338 },
339
340 SQMP
341 send-key
342 ----------
343
344 Send keys to VM.
345
346 Arguments:
347
348 keys array:
349 - "key": key sequence (a json-array of key union values,
350 union can be number or qcode enum)
351
352 - hold-time: time to delay key up events, milliseconds. Defaults to 100
353 (json-int, optional)
354
355 Example:
356
357 -> { "execute": "send-key",
358 "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
359 { "type": "qcode", "data": "alt" },
360 { "type": "qcode", "data": "delete" } ] } }
361 <- { "return": {} }
362
363 EQMP
364
365 {
366 .name = "cpu",
367 .args_type = "index:i",
368 .mhandler.cmd_new = qmp_marshal_input_cpu,
369 },
370
371 SQMP
372 cpu
373 ---
374
375 Set the default CPU.
376
377 Arguments:
378
379 - "index": the CPU's index (json-int)
380
381 Example:
382
383 -> { "execute": "cpu", "arguments": { "index": 0 } }
384 <- { "return": {} }
385
386 Note: CPUs' indexes are obtained with the 'query-cpus' command.
387
388 EQMP
389
390 {
391 .name = "cpu-add",
392 .args_type = "id:i",
393 .mhandler.cmd_new = qmp_marshal_input_cpu_add,
394 },
395
396 SQMP
397 cpu-add
398 -------
399
400 Adds virtual cpu
401
402 Arguments:
403
404 - "id": cpu id (json-int)
405
406 Example:
407
408 -> { "execute": "cpu-add", "arguments": { "id": 2 } }
409 <- { "return": {} }
410
411 EQMP
412
413 {
414 .name = "memsave",
415 .args_type = "val:l,size:i,filename:s,cpu:i?",
416 .mhandler.cmd_new = qmp_marshal_input_memsave,
417 },
418
419 SQMP
420 memsave
421 -------
422
423 Save to disk virtual memory dump starting at 'val' of size 'size'.
424
425 Arguments:
426
427 - "val": the starting address (json-int)
428 - "size": the memory size, in bytes (json-int)
429 - "filename": file path (json-string)
430 - "cpu": virtual CPU index (json-int, optional)
431
432 Example:
433
434 -> { "execute": "memsave",
435 "arguments": { "val": 10,
436 "size": 100,
437 "filename": "/tmp/virtual-mem-dump" } }
438 <- { "return": {} }
439
440 EQMP
441
442 {
443 .name = "pmemsave",
444 .args_type = "val:l,size:i,filename:s",
445 .mhandler.cmd_new = qmp_marshal_input_pmemsave,
446 },
447
448 SQMP
449 pmemsave
450 --------
451
452 Save to disk physical memory dump starting at 'val' of size 'size'.
453
454 Arguments:
455
456 - "val": the starting address (json-int)
457 - "size": the memory size, in bytes (json-int)
458 - "filename": file path (json-string)
459
460 Example:
461
462 -> { "execute": "pmemsave",
463 "arguments": { "val": 10,
464 "size": 100,
465 "filename": "/tmp/physical-mem-dump" } }
466 <- { "return": {} }
467
468 EQMP
469
470 {
471 .name = "inject-nmi",
472 .args_type = "",
473 .mhandler.cmd_new = qmp_marshal_input_inject_nmi,
474 },
475
476 SQMP
477 inject-nmi
478 ----------
479
480 Inject an NMI on the default CPU (x86/s390) or all CPUs (ppc64).
481
482 Arguments: None.
483
484 Example:
485
486 -> { "execute": "inject-nmi" }
487 <- { "return": {} }
488
489 Note: inject-nmi fails when the guest doesn't support injecting.
490
491 EQMP
492
493 {
494 .name = "ringbuf-write",
495 .args_type = "device:s,data:s,format:s?",
496 .mhandler.cmd_new = qmp_marshal_input_ringbuf_write,
497 },
498
499 SQMP
500 ringbuf-write
501 -------------
502
503 Write to a ring buffer character device.
504
505 Arguments:
506
507 - "device": ring buffer character device name (json-string)
508 - "data": data to write (json-string)
509 - "format": data format (json-string, optional)
510 - Possible values: "utf8" (default), "base64"
511 Bug: invalid base64 is currently not rejected.
512 Whitespace *is* invalid.
513
514 Example:
515
516 -> { "execute": "ringbuf-write",
517 "arguments": { "device": "foo",
518 "data": "abcdefgh",
519 "format": "utf8" } }
520 <- { "return": {} }
521
522 EQMP
523
524 {
525 .name = "ringbuf-read",
526 .args_type = "device:s,size:i,format:s?",
527 .mhandler.cmd_new = qmp_marshal_input_ringbuf_read,
528 },
529
530 SQMP
531 ringbuf-read
532 -------------
533
534 Read from a ring buffer character device.
535
536 Arguments:
537
538 - "device": ring buffer character device name (json-string)
539 - "size": how many bytes to read at most (json-int)
540 - Number of data bytes, not number of characters in encoded data
541 - "format": data format (json-string, optional)
542 - Possible values: "utf8" (default), "base64"
543 - Naturally, format "utf8" works only when the ring buffer
544 contains valid UTF-8 text. Invalid UTF-8 sequences get
545 replaced. Bug: replacement doesn't work. Bug: can screw
546 up on encountering NUL characters, after the ring buffer
547 lost data, and when reading stops because the size limit
548 is reached.
549
550 Example:
551
552 -> { "execute": "ringbuf-read",
553 "arguments": { "device": "foo",
554 "size": 1000,
555 "format": "utf8" } }
556 <- {"return": "abcdefgh"}
557
558 EQMP
559
560 {
561 .name = "xen-save-devices-state",
562 .args_type = "filename:F",
563 .mhandler.cmd_new = qmp_marshal_input_xen_save_devices_state,
564 },
565
566 SQMP
567 xen-save-devices-state
568 -------
569
570 Save the state of all devices to file. The RAM and the block devices
571 of the VM are not saved by this command.
572
573 Arguments:
574
575 - "filename": the file to save the state of the devices to as binary
576 data. See xen-save-devices-state.txt for a description of the binary
577 format.
578
579 Example:
580
581 -> { "execute": "xen-save-devices-state",
582 "arguments": { "filename": "/tmp/save" } }
583 <- { "return": {} }
584
585 EQMP
586
587 {
588 .name = "xen-set-global-dirty-log",
589 .args_type = "enable:b",
590 .mhandler.cmd_new = qmp_marshal_input_xen_set_global_dirty_log,
591 },
592
593 SQMP
594 xen-set-global-dirty-log
595 -------
596
597 Enable or disable the global dirty log mode.
598
599 Arguments:
600
601 - "enable": Enable it or disable it.
602
603 Example:
604
605 -> { "execute": "xen-set-global-dirty-log",
606 "arguments": { "enable": true } }
607 <- { "return": {} }
608
609 EQMP
610
611 {
612 .name = "migrate",
613 .args_type = "detach:-d,blk:-b,inc:-i,uri:s",
614 .mhandler.cmd_new = qmp_marshal_input_migrate,
615 },
616
617 SQMP
618 migrate
619 -------
620
621 Migrate to URI.
622
623 Arguments:
624
625 - "blk": block migration, full disk copy (json-bool, optional)
626 - "inc": incremental disk copy (json-bool, optional)
627 - "uri": Destination URI (json-string)
628
629 Example:
630
631 -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
632 <- { "return": {} }
633
634 Notes:
635
636 (1) The 'query-migrate' command should be used to check migration's progress
637 and final result (this information is provided by the 'status' member)
638 (2) All boolean arguments default to false
639 (3) The user Monitor's "detach" argument is invalid in QMP and should not
640 be used
641
642 EQMP
643
644 {
645 .name = "migrate_cancel",
646 .args_type = "",
647 .mhandler.cmd_new = qmp_marshal_input_migrate_cancel,
648 },
649
650 SQMP
651 migrate_cancel
652 --------------
653
654 Cancel the current migration.
655
656 Arguments: None.
657
658 Example:
659
660 -> { "execute": "migrate_cancel" }
661 <- { "return": {} }
662
663 EQMP
664 {
665 .name = "migrate-set-cache-size",
666 .args_type = "value:o",
667 .mhandler.cmd_new = qmp_marshal_input_migrate_set_cache_size,
668 },
669
670 SQMP
671 migrate-set-cache-size
672 ----------------------
673
674 Set cache size to be used by XBZRLE migration, the cache size will be rounded
675 down to the nearest power of 2
676
677 Arguments:
678
679 - "value": cache size in bytes (json-int)
680
681 Example:
682
683 -> { "execute": "migrate-set-cache-size", "arguments": { "value": 536870912 } }
684 <- { "return": {} }
685
686 EQMP
687 {
688 .name = "query-migrate-cache-size",
689 .args_type = "",
690 .mhandler.cmd_new = qmp_marshal_input_query_migrate_cache_size,
691 },
692
693 SQMP
694 query-migrate-cache-size
695 ------------------------
696
697 Show cache size to be used by XBZRLE migration
698
699 returns a json-object with the following information:
700 - "size" : json-int
701
702 Example:
703
704 -> { "execute": "query-migrate-cache-size" }
705 <- { "return": 67108864 }
706
707 EQMP
708
709 {
710 .name = "migrate_set_speed",
711 .args_type = "value:o",
712 .mhandler.cmd_new = qmp_marshal_input_migrate_set_speed,
713 },
714
715 SQMP
716 migrate_set_speed
717 -----------------
718
719 Set maximum speed for migrations.
720
721 Arguments:
722
723 - "value": maximum speed, in bytes per second (json-int)
724
725 Example:
726
727 -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
728 <- { "return": {} }
729
730 EQMP
731
732 {
733 .name = "migrate_set_downtime",
734 .args_type = "value:T",
735 .mhandler.cmd_new = qmp_marshal_input_migrate_set_downtime,
736 },
737
738 SQMP
739 migrate_set_downtime
740 --------------------
741
742 Set maximum tolerated downtime (in seconds) for migrations.
743
744 Arguments:
745
746 - "value": maximum downtime (json-number)
747
748 Example:
749
750 -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
751 <- { "return": {} }
752
753 EQMP
754
755 {
756 .name = "client_migrate_info",
757 .args_type = "protocol:s,hostname:s,port:i?,tls-port:i?,cert-subject:s?",
758 .params = "protocol hostname port tls-port cert-subject",
759 .help = "send migration info to spice/vnc client",
760 .user_print = monitor_user_noop,
761 .mhandler.cmd_async = client_migrate_info,
762 .flags = MONITOR_CMD_ASYNC,
763 },
764
765 SQMP
766 client_migrate_info
767 ------------------
768
769 Set the spice/vnc connection info for the migration target. The spice/vnc
770 server will ask the spice/vnc client to automatically reconnect using the
771 new parameters (if specified) once the vm migration finished successfully.
772
773 Arguments:
774
775 - "protocol": protocol: "spice" or "vnc" (json-string)
776 - "hostname": migration target hostname (json-string)
777 - "port": spice/vnc tcp port for plaintext channels (json-int, optional)
778 - "tls-port": spice tcp port for tls-secured channels (json-int, optional)
779 - "cert-subject": server certificate subject (json-string, optional)
780
781 Example:
782
783 -> { "execute": "client_migrate_info",
784 "arguments": { "protocol": "spice",
785 "hostname": "virt42.lab.kraxel.org",
786 "port": 1234 } }
787 <- { "return": {} }
788
789 EQMP
790
791 {
792 .name = "dump-guest-memory",
793 .args_type = "paging:b,protocol:s,begin:i?,end:i?,format:s?",
794 .params = "-p protocol [begin] [length] [format]",
795 .help = "dump guest memory to file",
796 .user_print = monitor_user_noop,
797 .mhandler.cmd_new = qmp_marshal_input_dump_guest_memory,
798 },
799
800 SQMP
801 dump
802
803
804 Dump guest memory to file. The file can be processed with crash or gdb.
805
806 Arguments:
807
808 - "paging": do paging to get guest's memory mapping (json-bool)
809 - "protocol": destination file(started with "file:") or destination file
810 descriptor (started with "fd:") (json-string)
811 - "begin": the starting physical address. It's optional, and should be specified
812 with length together (json-int)
813 - "length": the memory size, in bytes. It's optional, and should be specified
814 with begin together (json-int)
815 - "format": the format of guest memory dump. It's optional, and can be
816 elf|kdump-zlib|kdump-lzo|kdump-snappy, but non-elf formats will
817 conflict with paging and filter, ie. begin and length (json-string)
818
819 Example:
820
821 -> { "execute": "dump-guest-memory", "arguments": { "protocol": "fd:dump" } }
822 <- { "return": {} }
823
824 Notes:
825
826 (1) All boolean arguments default to false
827
828 EQMP
829
830 {
831 .name = "query-dump-guest-memory-capability",
832 .args_type = "",
833 .mhandler.cmd_new = qmp_marshal_input_query_dump_guest_memory_capability,
834 },
835
836 SQMP
837 query-dump-guest-memory-capability
838 ----------
839
840 Show available formats for 'dump-guest-memory'
841
842 Example:
843
844 -> { "execute": "query-dump-guest-memory-capability" }
845 <- { "return": { "formats":
846 ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
847
848 EQMP
849
850 {
851 .name = "netdev_add",
852 .args_type = "netdev:O",
853 .mhandler.cmd_new = qmp_netdev_add,
854 },
855
856 SQMP
857 netdev_add
858 ----------
859
860 Add host network device.
861
862 Arguments:
863
864 - "type": the device type, "tap", "user", ... (json-string)
865 - "id": the device's ID, must be unique (json-string)
866 - device options
867
868 Example:
869
870 -> { "execute": "netdev_add", "arguments": { "type": "user", "id": "netdev1" } }
871 <- { "return": {} }
872
873 Note: The supported device options are the same ones supported by the '-netdev'
874 command-line argument, which are listed in the '-help' output or QEMU's
875 manual
876
877 EQMP
878
879 {
880 .name = "netdev_del",
881 .args_type = "id:s",
882 .mhandler.cmd_new = qmp_marshal_input_netdev_del,
883 },
884
885 SQMP
886 netdev_del
887 ----------
888
889 Remove host network device.
890
891 Arguments:
892
893 - "id": the device's ID, must be unique (json-string)
894
895 Example:
896
897 -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
898 <- { "return": {} }
899
900
901 EQMP
902
903 {
904 .name = "object-add",
905 .args_type = "qom-type:s,id:s,props:q?",
906 .mhandler.cmd_new = qmp_object_add,
907 },
908
909 SQMP
910 object-add
911 ----------
912
913 Create QOM object.
914
915 Arguments:
916
917 - "qom-type": the object's QOM type, i.e. the class name (json-string)
918 - "id": the object's ID, must be unique (json-string)
919 - "props": a dictionary of object property values (optional, json-dict)
920
921 Example:
922
923 -> { "execute": "object-add", "arguments": { "qom-type": "rng-random", "id": "rng1",
924 "props": { "filename": "/dev/hwrng" } } }
925 <- { "return": {} }
926
927 EQMP
928
929 {
930 .name = "object-del",
931 .args_type = "id:s",
932 .mhandler.cmd_new = qmp_marshal_input_object_del,
933 },
934
935 SQMP
936 object-del
937 ----------
938
939 Remove QOM object.
940
941 Arguments:
942
943 - "id": the object's ID (json-string)
944
945 Example:
946
947 -> { "execute": "object-del", "arguments": { "id": "rng1" } }
948 <- { "return": {} }
949
950
951 EQMP
952
953
954 {
955 .name = "block_resize",
956 .args_type = "device:s?,node-name:s?,size:o",
957 .mhandler.cmd_new = qmp_marshal_input_block_resize,
958 },
959
960 SQMP
961 block_resize
962 ------------
963
964 Resize a block image while a guest is running.
965
966 Arguments:
967
968 - "device": the device's ID, must be unique (json-string)
969 - "node-name": the node name in the block driver state graph (json-string)
970 - "size": new size
971
972 Example:
973
974 -> { "execute": "block_resize", "arguments": { "device": "scratch", "size": 1073741824 } }
975 <- { "return": {} }
976
977 EQMP
978
979 {
980 .name = "block-stream",
981 .args_type = "device:B,base:s?,speed:o?,backing-file:s?,on-error:s?",
982 .mhandler.cmd_new = qmp_marshal_input_block_stream,
983 },
984
985 {
986 .name = "block-commit",
987 .args_type = "device:B,base:s?,top:s?,backing-file:s?,speed:o?",
988 .mhandler.cmd_new = qmp_marshal_input_block_commit,
989 },
990
991 SQMP
992 block-commit
993 ------------
994
995 Live commit of data from overlay image nodes into backing nodes - i.e., writes
996 data between 'top' and 'base' into 'base'.
997
998 Arguments:
999
1000 - "device": The device's ID, must be unique (json-string)
1001 - "base": The file name of the backing image to write data into.
1002 If not specified, this is the deepest backing image
1003 (json-string, optional)
1004 - "top": The file name of the backing image within the image chain,
1005 which contains the topmost data to be committed down. If
1006 not specified, this is the active layer. (json-string, optional)
1007
1008 - backing-file: The backing file string to write into the overlay
1009 image of 'top'. If 'top' is the active layer,
1010 specifying a backing file string is an error. This
1011 filename is not validated.
1012
1013 If a pathname string is such that it cannot be
1014 resolved by QEMU, that means that subsequent QMP or
1015 HMP commands must use node-names for the image in
1016 question, as filename lookup methods will fail.
1017
1018 If not specified, QEMU will automatically determine
1019 the backing file string to use, or error out if
1020 there is no obvious choice. Care should be taken
1021 when specifying the string, to specify a valid
1022 filename or protocol.
1023 (json-string, optional) (Since 2.1)
1024
1025 If top == base, that is an error.
1026 If top == active, the job will not be completed by itself,
1027 user needs to complete the job with the block-job-complete
1028 command after getting the ready event. (Since 2.0)
1029
1030 If the base image is smaller than top, then the base image
1031 will be resized to be the same size as top. If top is
1032 smaller than the base image, the base will not be
1033 truncated. If you want the base image size to match the
1034 size of the smaller top, you can safely truncate it
1035 yourself once the commit operation successfully completes.
1036 (json-string)
1037 - "speed": the maximum speed, in bytes per second (json-int, optional)
1038
1039
1040 Example:
1041
1042 -> { "execute": "block-commit", "arguments": { "device": "virtio0",
1043 "top": "/tmp/snap1.qcow2" } }
1044 <- { "return": {} }
1045
1046 EQMP
1047
1048 {
1049 .name = "drive-backup",
1050 .args_type = "sync:s,device:B,target:s,speed:i?,mode:s?,format:s?,"
1051 "on-source-error:s?,on-target-error:s?",
1052 .mhandler.cmd_new = qmp_marshal_input_drive_backup,
1053 },
1054
1055 SQMP
1056 drive-backup
1057 ------------
1058
1059 Start a point-in-time copy of a block device to a new destination. The
1060 status of ongoing drive-backup operations can be checked with
1061 query-block-jobs where the BlockJobInfo.type field has the value 'backup'.
1062 The operation can be stopped before it has completed using the
1063 block-job-cancel command.
1064
1065 Arguments:
1066
1067 - "device": the name of the device which should be copied.
1068 (json-string)
1069 - "target": the target of the new image. If the file exists, or if it is a
1070 device, the existing file/device will be used as the new
1071 destination. If it does not exist, a new file will be created.
1072 (json-string)
1073 - "format": the format of the new destination, default is to probe if 'mode' is
1074 'existing', else the format of the source
1075 (json-string, optional)
1076 - "sync": what parts of the disk image should be copied to the destination;
1077 possibilities include "full" for all the disk, "top" for only the sectors
1078 allocated in the topmost image, or "none" to only replicate new I/O
1079 (MirrorSyncMode).
1080 - "mode": whether and how QEMU should create a new image
1081 (NewImageMode, optional, default 'absolute-paths')
1082 - "speed": the maximum speed, in bytes per second (json-int, optional)
1083 - "on-source-error": the action to take on an error on the source, default
1084 'report'. 'stop' and 'enospc' can only be used
1085 if the block device supports io-status.
1086 (BlockdevOnError, optional)
1087 - "on-target-error": the action to take on an error on the target, default
1088 'report' (no limitations, since this applies to
1089 a different block device than device).
1090 (BlockdevOnError, optional)
1091
1092 Example:
1093 -> { "execute": "drive-backup", "arguments": { "device": "drive0",
1094 "sync": "full",
1095 "target": "backup.img" } }
1096 <- { "return": {} }
1097
1098 EQMP
1099
1100 {
1101 .name = "blockdev-backup",
1102 .args_type = "sync:s,device:B,target:B,speed:i?,"
1103 "on-source-error:s?,on-target-error:s?",
1104 .mhandler.cmd_new = qmp_marshal_input_blockdev_backup,
1105 },
1106
1107 SQMP
1108 blockdev-backup
1109 ---------------
1110
1111 The device version of drive-backup: this command takes an existing named device
1112 as backup target.
1113
1114 Arguments:
1115
1116 - "device": the name of the device which should be copied.
1117 (json-string)
1118 - "target": the name of the backup target device. (json-string)
1119 - "sync": what parts of the disk image should be copied to the destination;
1120 possibilities include "full" for all the disk, "top" for only the
1121 sectors allocated in the topmost image, or "none" to only replicate
1122 new I/O (MirrorSyncMode).
1123 - "speed": the maximum speed, in bytes per second (json-int, optional)
1124 - "on-source-error": the action to take on an error on the source, default
1125 'report'. 'stop' and 'enospc' can only be used
1126 if the block device supports io-status.
1127 (BlockdevOnError, optional)
1128 - "on-target-error": the action to take on an error on the target, default
1129 'report' (no limitations, since this applies to
1130 a different block device than device).
1131 (BlockdevOnError, optional)
1132
1133 Example:
1134 -> { "execute": "blockdev-backup", "arguments": { "device": "src-id",
1135 "sync": "full",
1136 "target": "tgt-id" } }
1137 <- { "return": {} }
1138
1139 EQMP
1140
1141 {
1142 .name = "block-job-set-speed",
1143 .args_type = "device:B,speed:o",
1144 .mhandler.cmd_new = qmp_marshal_input_block_job_set_speed,
1145 },
1146
1147 {
1148 .name = "block-job-cancel",
1149 .args_type = "device:B,force:b?",
1150 .mhandler.cmd_new = qmp_marshal_input_block_job_cancel,
1151 },
1152 {
1153 .name = "block-job-pause",
1154 .args_type = "device:B",
1155 .mhandler.cmd_new = qmp_marshal_input_block_job_pause,
1156 },
1157 {
1158 .name = "block-job-resume",
1159 .args_type = "device:B",
1160 .mhandler.cmd_new = qmp_marshal_input_block_job_resume,
1161 },
1162 {
1163 .name = "block-job-complete",
1164 .args_type = "device:B",
1165 .mhandler.cmd_new = qmp_marshal_input_block_job_complete,
1166 },
1167 {
1168 .name = "transaction",
1169 .args_type = "actions:q",
1170 .mhandler.cmd_new = qmp_marshal_input_transaction,
1171 },
1172
1173 SQMP
1174 transaction
1175 -----------
1176
1177 Atomically operate on one or more block devices. The only supported operations
1178 for now are drive-backup, internal and external snapshotting. A list of
1179 dictionaries is accepted, that contains the actions to be performed.
1180 If there is any failure performing any of the operations, all operations
1181 for the group are abandoned.
1182
1183 For external snapshots, the dictionary contains the device, the file to use for
1184 the new snapshot, and the format. The default format, if not specified, is
1185 qcow2.
1186
1187 Each new snapshot defaults to being created by QEMU (wiping any
1188 contents if the file already exists), but it is also possible to reuse
1189 an externally-created file. In the latter case, you should ensure that
1190 the new image file has the same contents as the current one; QEMU cannot
1191 perform any meaningful check. Typically this is achieved by using the
1192 current image file as the backing file for the new image.
1193
1194 On failure, the original disks pre-snapshot attempt will be used.
1195
1196 For internal snapshots, the dictionary contains the device and the snapshot's
1197 name. If an internal snapshot matching name already exists, the request will
1198 be rejected. Only some image formats support it, for example, qcow2, rbd,
1199 and sheepdog.
1200
1201 On failure, qemu will try delete the newly created internal snapshot in the
1202 transaction. When an I/O error occurs during deletion, the user needs to fix
1203 it later with qemu-img or other command.
1204
1205 Arguments:
1206
1207 actions array:
1208 - "type": the operation to perform. The only supported
1209 value is "blockdev-snapshot-sync". (json-string)
1210 - "data": a dictionary. The contents depend on the value
1211 of "type". When "type" is "blockdev-snapshot-sync":
1212 - "device": device name to snapshot (json-string)
1213 - "node-name": graph node name to snapshot (json-string)
1214 - "snapshot-file": name of new image file (json-string)
1215 - "snapshot-node-name": graph node name of the new snapshot (json-string)
1216 - "format": format of new image (json-string, optional)
1217 - "mode": whether and how QEMU should create the snapshot file
1218 (NewImageMode, optional, default "absolute-paths")
1219 When "type" is "blockdev-snapshot-internal-sync":
1220 - "device": device name to snapshot (json-string)
1221 - "name": name of the new snapshot (json-string)
1222
1223 Example:
1224
1225 -> { "execute": "transaction",
1226 "arguments": { "actions": [
1227 { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
1228 "snapshot-file": "/some/place/my-image",
1229 "format": "qcow2" } },
1230 { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
1231 "snapshot-file": "/some/place/my-image2",
1232 "snapshot-node-name": "node3432",
1233 "mode": "existing",
1234 "format": "qcow2" } },
1235 { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
1236 "snapshot-file": "/some/place/my-image2",
1237 "mode": "existing",
1238 "format": "qcow2" } },
1239 { "type": "blockdev-snapshot-internal-sync", "data" : {
1240 "device": "ide-hd2",
1241 "name": "snapshot0" } } ] } }
1242 <- { "return": {} }
1243
1244 EQMP
1245
1246 {
1247 .name = "blockdev-snapshot-sync",
1248 .args_type = "device:s?,node-name:s?,snapshot-file:s,snapshot-node-name:s?,format:s?,mode:s?",
1249 .mhandler.cmd_new = qmp_marshal_input_blockdev_snapshot_sync,
1250 },
1251
1252 SQMP
1253 blockdev-snapshot-sync
1254 ----------------------
1255
1256 Synchronous snapshot of a block device. snapshot-file specifies the
1257 target of the new image. If the file exists, or if it is a device, the
1258 snapshot will be created in the existing file/device. If does not
1259 exist, a new file will be created. format specifies the format of the
1260 snapshot image, default is qcow2.
1261
1262 Arguments:
1263
1264 - "device": device name to snapshot (json-string)
1265 - "node-name": graph node name to snapshot (json-string)
1266 - "snapshot-file": name of new image file (json-string)
1267 - "snapshot-node-name": graph node name of the new snapshot (json-string)
1268 - "mode": whether and how QEMU should create the snapshot file
1269 (NewImageMode, optional, default "absolute-paths")
1270 - "format": format of new image (json-string, optional)
1271
1272 Example:
1273
1274 -> { "execute": "blockdev-snapshot-sync", "arguments": { "device": "ide-hd0",
1275 "snapshot-file":
1276 "/some/place/my-image",
1277 "format": "qcow2" } }
1278 <- { "return": {} }
1279
1280 EQMP
1281
1282 {
1283 .name = "blockdev-snapshot-internal-sync",
1284 .args_type = "device:B,name:s",
1285 .mhandler.cmd_new = qmp_marshal_input_blockdev_snapshot_internal_sync,
1286 },
1287
1288 SQMP
1289 blockdev-snapshot-internal-sync
1290 -------------------------------
1291
1292 Synchronously take an internal snapshot of a block device when the format of
1293 image used supports it. If the name is an empty string, or a snapshot with
1294 name already exists, the operation will fail.
1295
1296 Arguments:
1297
1298 - "device": device name to snapshot (json-string)
1299 - "name": name of the new snapshot (json-string)
1300
1301 Example:
1302
1303 -> { "execute": "blockdev-snapshot-internal-sync",
1304 "arguments": { "device": "ide-hd0",
1305 "name": "snapshot0" }
1306 }
1307 <- { "return": {} }
1308
1309 EQMP
1310
1311 {
1312 .name = "blockdev-snapshot-delete-internal-sync",
1313 .args_type = "device:B,id:s?,name:s?",
1314 .mhandler.cmd_new =
1315 qmp_marshal_input_blockdev_snapshot_delete_internal_sync,
1316 },
1317
1318 SQMP
1319 blockdev-snapshot-delete-internal-sync
1320 --------------------------------------
1321
1322 Synchronously delete an internal snapshot of a block device when the format of
1323 image used supports it. The snapshot is identified by name or id or both. One
1324 of name or id is required. If the snapshot is not found, the operation will
1325 fail.
1326
1327 Arguments:
1328
1329 - "device": device name (json-string)
1330 - "id": ID of the snapshot (json-string, optional)
1331 - "name": name of the snapshot (json-string, optional)
1332
1333 Example:
1334
1335 -> { "execute": "blockdev-snapshot-delete-internal-sync",
1336 "arguments": { "device": "ide-hd0",
1337 "name": "snapshot0" }
1338 }
1339 <- { "return": {
1340 "id": "1",
1341 "name": "snapshot0",
1342 "vm-state-size": 0,
1343 "date-sec": 1000012,
1344 "date-nsec": 10,
1345 "vm-clock-sec": 100,
1346 "vm-clock-nsec": 20
1347 }
1348 }
1349
1350 EQMP
1351
1352 {
1353 .name = "drive-mirror",
1354 .args_type = "sync:s,device:B,target:s,speed:i?,mode:s?,format:s?,"
1355 "node-name:s?,replaces:s?,"
1356 "on-source-error:s?,on-target-error:s?,"
1357 "granularity:i?,buf-size:i?",
1358 .mhandler.cmd_new = qmp_marshal_input_drive_mirror,
1359 },
1360
1361 SQMP
1362 drive-mirror
1363 ------------
1364
1365 Start mirroring a block device's writes to a new destination. target
1366 specifies the target of the new image. If the file exists, or if it is
1367 a device, it will be used as the new destination for writes. If it does not
1368 exist, a new file will be created. format specifies the format of the
1369 mirror image, default is to probe if mode='existing', else the format
1370 of the source.
1371
1372 Arguments:
1373
1374 - "device": device name to operate on (json-string)
1375 - "target": name of new image file (json-string)
1376 - "format": format of new image (json-string, optional)
1377 - "node-name": the name of the new block driver state in the node graph
1378 (json-string, optional)
1379 - "replaces": the block driver node name to replace when finished
1380 (json-string, optional)
1381 - "mode": how an image file should be created into the target
1382 file/device (NewImageMode, optional, default 'absolute-paths')
1383 - "speed": maximum speed of the streaming job, in bytes per second
1384 (json-int)
1385 - "granularity": granularity of the dirty bitmap, in bytes (json-int, optional)
1386 - "buf_size": maximum amount of data in flight from source to target, in bytes
1387 (json-int, default 10M)
1388 - "sync": what parts of the disk image should be copied to the destination;
1389 possibilities include "full" for all the disk, "top" for only the sectors
1390 allocated in the topmost image, or "none" to only replicate new I/O
1391 (MirrorSyncMode).
1392 - "on-source-error": the action to take on an error on the source
1393 (BlockdevOnError, default 'report')
1394 - "on-target-error": the action to take on an error on the target
1395 (BlockdevOnError, default 'report')
1396
1397 The default value of the granularity is the image cluster size clamped
1398 between 4096 and 65536, if the image format defines one. If the format
1399 does not define a cluster size, the default value of the granularity
1400 is 65536.
1401
1402
1403 Example:
1404
1405 -> { "execute": "drive-mirror", "arguments": { "device": "ide-hd0",
1406 "target": "/some/place/my-image",
1407 "sync": "full",
1408 "format": "qcow2" } }
1409 <- { "return": {} }
1410
1411 EQMP
1412
1413 {
1414 .name = "change-backing-file",
1415 .args_type = "device:s,image-node-name:s,backing-file:s",
1416 .mhandler.cmd_new = qmp_marshal_input_change_backing_file,
1417 },
1418
1419 SQMP
1420 change-backing-file
1421 -------------------
1422 Since: 2.1
1423
1424 Change the backing file in the image file metadata. This does not cause
1425 QEMU to reopen the image file to reparse the backing filename (it may,
1426 however, perform a reopen to change permissions from r/o -> r/w -> r/o,
1427 if needed). The new backing file string is written into the image file
1428 metadata, and the QEMU internal strings are updated.
1429
1430 Arguments:
1431
1432 - "image-node-name": The name of the block driver state node of the
1433 image to modify. The "device" is argument is used to
1434 verify "image-node-name" is in the chain described by
1435 "device".
1436 (json-string, optional)
1437
1438 - "device": The name of the device.
1439 (json-string)
1440
1441 - "backing-file": The string to write as the backing file. This string is
1442 not validated, so care should be taken when specifying
1443 the string or the image chain may not be able to be
1444 reopened again.
1445 (json-string)
1446
1447 Returns: Nothing on success
1448 If "device" does not exist or cannot be determined, DeviceNotFound
1449
1450 EQMP
1451
1452 {
1453 .name = "balloon",
1454 .args_type = "value:M",
1455 .mhandler.cmd_new = qmp_marshal_input_balloon,
1456 },
1457
1458 SQMP
1459 balloon
1460 -------
1461
1462 Request VM to change its memory allocation (in bytes).
1463
1464 Arguments:
1465
1466 - "value": New memory allocation (json-int)
1467
1468 Example:
1469
1470 -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1471 <- { "return": {} }
1472
1473 EQMP
1474
1475 {
1476 .name = "set_link",
1477 .args_type = "name:s,up:b",
1478 .mhandler.cmd_new = qmp_marshal_input_set_link,
1479 },
1480
1481 SQMP
1482 set_link
1483 --------
1484
1485 Change the link status of a network adapter.
1486
1487 Arguments:
1488
1489 - "name": network device name (json-string)
1490 - "up": status is up (json-bool)
1491
1492 Example:
1493
1494 -> { "execute": "set_link", "arguments": { "name": "e1000.0", "up": false } }
1495 <- { "return": {} }
1496
1497 EQMP
1498
1499 {
1500 .name = "getfd",
1501 .args_type = "fdname:s",
1502 .params = "getfd name",
1503 .help = "receive a file descriptor via SCM rights and assign it a name",
1504 .mhandler.cmd_new = qmp_marshal_input_getfd,
1505 },
1506
1507 SQMP
1508 getfd
1509 -----
1510
1511 Receive a file descriptor via SCM rights and assign it a name.
1512
1513 Arguments:
1514
1515 - "fdname": file descriptor name (json-string)
1516
1517 Example:
1518
1519 -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1520 <- { "return": {} }
1521
1522 Notes:
1523
1524 (1) If the name specified by the "fdname" argument already exists,
1525 the file descriptor assigned to it will be closed and replaced
1526 by the received file descriptor.
1527 (2) The 'closefd' command can be used to explicitly close the file
1528 descriptor when it is no longer needed.
1529
1530 EQMP
1531
1532 {
1533 .name = "closefd",
1534 .args_type = "fdname:s",
1535 .params = "closefd name",
1536 .help = "close a file descriptor previously passed via SCM rights",
1537 .mhandler.cmd_new = qmp_marshal_input_closefd,
1538 },
1539
1540 SQMP
1541 closefd
1542 -------
1543
1544 Close a file descriptor previously passed via SCM rights.
1545
1546 Arguments:
1547
1548 - "fdname": file descriptor name (json-string)
1549
1550 Example:
1551
1552 -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1553 <- { "return": {} }
1554
1555 EQMP
1556
1557 {
1558 .name = "add-fd",
1559 .args_type = "fdset-id:i?,opaque:s?",
1560 .params = "add-fd fdset-id opaque",
1561 .help = "Add a file descriptor, that was passed via SCM rights, to an fd set",
1562 .mhandler.cmd_new = qmp_marshal_input_add_fd,
1563 },
1564
1565 SQMP
1566 add-fd
1567 -------
1568
1569 Add a file descriptor, that was passed via SCM rights, to an fd set.
1570
1571 Arguments:
1572
1573 - "fdset-id": The ID of the fd set to add the file descriptor to.
1574 (json-int, optional)
1575 - "opaque": A free-form string that can be used to describe the fd.
1576 (json-string, optional)
1577
1578 Return a json-object with the following information:
1579
1580 - "fdset-id": The ID of the fd set that the fd was added to. (json-int)
1581 - "fd": The file descriptor that was received via SCM rights and added to the
1582 fd set. (json-int)
1583
1584 Example:
1585
1586 -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
1587 <- { "return": { "fdset-id": 1, "fd": 3 } }
1588
1589 Notes:
1590
1591 (1) The list of fd sets is shared by all monitor connections.
1592 (2) If "fdset-id" is not specified, a new fd set will be created.
1593
1594 EQMP
1595
1596 {
1597 .name = "remove-fd",
1598 .args_type = "fdset-id:i,fd:i?",
1599 .params = "remove-fd fdset-id fd",
1600 .help = "Remove a file descriptor from an fd set",
1601 .mhandler.cmd_new = qmp_marshal_input_remove_fd,
1602 },
1603
1604 SQMP
1605 remove-fd
1606 ---------
1607
1608 Remove a file descriptor from an fd set.
1609
1610 Arguments:
1611
1612 - "fdset-id": The ID of the fd set that the file descriptor belongs to.
1613 (json-int)
1614 - "fd": The file descriptor that is to be removed. (json-int, optional)
1615
1616 Example:
1617
1618 -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
1619 <- { "return": {} }
1620
1621 Notes:
1622
1623 (1) The list of fd sets is shared by all monitor connections.
1624 (2) If "fd" is not specified, all file descriptors in "fdset-id" will be
1625 removed.
1626
1627 EQMP
1628
1629 {
1630 .name = "query-fdsets",
1631 .args_type = "",
1632 .help = "Return information describing all fd sets",
1633 .mhandler.cmd_new = qmp_marshal_input_query_fdsets,
1634 },
1635
1636 SQMP
1637 query-fdsets
1638 -------------
1639
1640 Return information describing all fd sets.
1641
1642 Arguments: None
1643
1644 Example:
1645
1646 -> { "execute": "query-fdsets" }
1647 <- { "return": [
1648 {
1649 "fds": [
1650 {
1651 "fd": 30,
1652 "opaque": "rdonly:/path/to/file"
1653 },
1654 {
1655 "fd": 24,
1656 "opaque": "rdwr:/path/to/file"
1657 }
1658 ],
1659 "fdset-id": 1
1660 },
1661 {
1662 "fds": [
1663 {
1664 "fd": 28
1665 },
1666 {
1667 "fd": 29
1668 }
1669 ],
1670 "fdset-id": 0
1671 }
1672 ]
1673 }
1674
1675 Note: The list of fd sets is shared by all monitor connections.
1676
1677 EQMP
1678
1679 {
1680 .name = "block_passwd",
1681 .args_type = "device:s?,node-name:s?,password:s",
1682 .mhandler.cmd_new = qmp_marshal_input_block_passwd,
1683 },
1684
1685 SQMP
1686 block_passwd
1687 ------------
1688
1689 Set the password of encrypted block devices.
1690
1691 Arguments:
1692
1693 - "device": device name (json-string)
1694 - "node-name": name in the block driver state graph (json-string)
1695 - "password": password (json-string)
1696
1697 Example:
1698
1699 -> { "execute": "block_passwd", "arguments": { "device": "ide0-hd0",
1700 "password": "12345" } }
1701 <- { "return": {} }
1702
1703 EQMP
1704
1705 {
1706 .name = "block_set_io_throttle",
1707 .args_type = "device:B,bps:l,bps_rd:l,bps_wr:l,iops:l,iops_rd:l,iops_wr:l,bps_max:l?,bps_rd_max:l?,bps_wr_max:l?,iops_max:l?,iops_rd_max:l?,iops_wr_max:l?,iops_size:l?",
1708 .mhandler.cmd_new = qmp_marshal_input_block_set_io_throttle,
1709 },
1710
1711 SQMP
1712 block_set_io_throttle
1713 ------------
1714
1715 Change I/O throttle limits for a block drive.
1716
1717 Arguments:
1718
1719 - "device": device name (json-string)
1720 - "bps": total throughput limit in bytes per second (json-int)
1721 - "bps_rd": read throughput limit in bytes per second (json-int)
1722 - "bps_wr": write throughput limit in bytes per second (json-int)
1723 - "iops": total I/O operations per second (json-int)
1724 - "iops_rd": read I/O operations per second (json-int)
1725 - "iops_wr": write I/O operations per second (json-int)
1726 - "bps_max": total max in bytes (json-int)
1727 - "bps_rd_max": read max in bytes (json-int)
1728 - "bps_wr_max": write max in bytes (json-int)
1729 - "iops_max": total I/O operations max (json-int)
1730 - "iops_rd_max": read I/O operations max (json-int)
1731 - "iops_wr_max": write I/O operations max (json-int)
1732 - "iops_size": I/O size in bytes when limiting (json-int)
1733
1734 Example:
1735
1736 -> { "execute": "block_set_io_throttle", "arguments": { "device": "virtio0",
1737 "bps": 1000000,
1738 "bps_rd": 0,
1739 "bps_wr": 0,
1740 "iops": 0,
1741 "iops_rd": 0,
1742 "iops_wr": 0,
1743 "bps_max": 8000000,
1744 "bps_rd_max": 0,
1745 "bps_wr_max": 0,
1746 "iops_max": 0,
1747 "iops_rd_max": 0,
1748 "iops_wr_max": 0,
1749 "iops_size": 0 } }
1750 <- { "return": {} }
1751
1752 EQMP
1753
1754 {
1755 .name = "set_password",
1756 .args_type = "protocol:s,password:s,connected:s?",
1757 .mhandler.cmd_new = qmp_marshal_input_set_password,
1758 },
1759
1760 SQMP
1761 set_password
1762 ------------
1763
1764 Set the password for vnc/spice protocols.
1765
1766 Arguments:
1767
1768 - "protocol": protocol name (json-string)
1769 - "password": password (json-string)
1770 - "connected": [ keep | disconnect | fail ] (josn-string, optional)
1771
1772 Example:
1773
1774 -> { "execute": "set_password", "arguments": { "protocol": "vnc",
1775 "password": "secret" } }
1776 <- { "return": {} }
1777
1778 EQMP
1779
1780 {
1781 .name = "expire_password",
1782 .args_type = "protocol:s,time:s",
1783 .mhandler.cmd_new = qmp_marshal_input_expire_password,
1784 },
1785
1786 SQMP
1787 expire_password
1788 ---------------
1789
1790 Set the password expire time for vnc/spice protocols.
1791
1792 Arguments:
1793
1794 - "protocol": protocol name (json-string)
1795 - "time": [ now | never | +secs | secs ] (json-string)
1796
1797 Example:
1798
1799 -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
1800 "time": "+60" } }
1801 <- { "return": {} }
1802
1803 EQMP
1804
1805 {
1806 .name = "add_client",
1807 .args_type = "protocol:s,fdname:s,skipauth:b?,tls:b?",
1808 .mhandler.cmd_new = qmp_marshal_input_add_client,
1809 },
1810
1811 SQMP
1812 add_client
1813 ----------
1814
1815 Add a graphics client
1816
1817 Arguments:
1818
1819 - "protocol": protocol name (json-string)
1820 - "fdname": file descriptor name (json-string)
1821 - "skipauth": whether to skip authentication (json-bool, optional)
1822 - "tls": whether to perform TLS (json-bool, optional)
1823
1824 Example:
1825
1826 -> { "execute": "add_client", "arguments": { "protocol": "vnc",
1827 "fdname": "myclient" } }
1828 <- { "return": {} }
1829
1830 EQMP
1831 {
1832 .name = "qmp_capabilities",
1833 .args_type = "",
1834 .params = "",
1835 .help = "enable QMP capabilities",
1836 .user_print = monitor_user_noop,
1837 .mhandler.cmd_new = do_qmp_capabilities,
1838 },
1839
1840 SQMP
1841 qmp_capabilities
1842 ----------------
1843
1844 Enable QMP capabilities.
1845
1846 Arguments: None.
1847
1848 Example:
1849
1850 -> { "execute": "qmp_capabilities" }
1851 <- { "return": {} }
1852
1853 Note: This command must be issued before issuing any other command.
1854
1855 EQMP
1856
1857 {
1858 .name = "human-monitor-command",
1859 .args_type = "command-line:s,cpu-index:i?",
1860 .mhandler.cmd_new = qmp_marshal_input_human_monitor_command,
1861 },
1862
1863 SQMP
1864 human-monitor-command
1865 ---------------------
1866
1867 Execute a Human Monitor command.
1868
1869 Arguments:
1870
1871 - command-line: the command name and its arguments, just like the
1872 Human Monitor's shell (json-string)
1873 - cpu-index: select the CPU number to be used by commands which access CPU
1874 data, like 'info registers'. The Monitor selects CPU 0 if this
1875 argument is not provided (json-int, optional)
1876
1877 Example:
1878
1879 -> { "execute": "human-monitor-command", "arguments": { "command-line": "info kvm" } }
1880 <- { "return": "kvm support: enabled\r\n" }
1881
1882 Notes:
1883
1884 (1) The Human Monitor is NOT an stable interface, this means that command
1885 names, arguments and responses can change or be removed at ANY time.
1886 Applications that rely on long term stability guarantees should NOT
1887 use this command
1888
1889 (2) Limitations:
1890
1891 o This command is stateless, this means that commands that depend
1892 on state information (such as getfd) might not work
1893
1894 o Commands that prompt the user for data (eg. 'cont' when the block
1895 device is encrypted) don't currently work
1896
1897 3. Query Commands
1898 =================
1899
1900 HXCOMM Each query command below is inside a SQMP/EQMP section, do NOT change
1901 HXCOMM this! We will possibly move query commands definitions inside those
1902 HXCOMM sections, just like regular commands.
1903
1904 EQMP
1905
1906 SQMP
1907 query-version
1908 -------------
1909
1910 Show QEMU version.
1911
1912 Return a json-object with the following information:
1913
1914 - "qemu": A json-object containing three integer values:
1915 - "major": QEMU's major version (json-int)
1916 - "minor": QEMU's minor version (json-int)
1917 - "micro": QEMU's micro version (json-int)
1918 - "package": package's version (json-string)
1919
1920 Example:
1921
1922 -> { "execute": "query-version" }
1923 <- {
1924 "return":{
1925 "qemu":{
1926 "major":0,
1927 "minor":11,
1928 "micro":5
1929 },
1930 "package":""
1931 }
1932 }
1933
1934 EQMP
1935
1936 {
1937 .name = "query-version",
1938 .args_type = "",
1939 .mhandler.cmd_new = qmp_marshal_input_query_version,
1940 },
1941
1942 SQMP
1943 query-commands
1944 --------------
1945
1946 List QMP available commands.
1947
1948 Each command is represented by a json-object, the returned value is a json-array
1949 of all commands.
1950
1951 Each json-object contain:
1952
1953 - "name": command's name (json-string)
1954
1955 Example:
1956
1957 -> { "execute": "query-commands" }
1958 <- {
1959 "return":[
1960 {
1961 "name":"query-balloon"
1962 },
1963 {
1964 "name":"system_powerdown"
1965 }
1966 ]
1967 }
1968
1969 Note: This example has been shortened as the real response is too long.
1970
1971 EQMP
1972
1973 {
1974 .name = "query-commands",
1975 .args_type = "",
1976 .mhandler.cmd_new = qmp_marshal_input_query_commands,
1977 },
1978
1979 SQMP
1980 query-events
1981 --------------
1982
1983 List QMP available events.
1984
1985 Each event is represented by a json-object, the returned value is a json-array
1986 of all events.
1987
1988 Each json-object contains:
1989
1990 - "name": event's name (json-string)
1991
1992 Example:
1993
1994 -> { "execute": "query-events" }
1995 <- {
1996 "return":[
1997 {
1998 "name":"SHUTDOWN"
1999 },
2000 {
2001 "name":"RESET"
2002 }
2003 ]
2004 }
2005
2006 Note: This example has been shortened as the real response is too long.
2007
2008 EQMP
2009
2010 {
2011 .name = "query-events",
2012 .args_type = "",
2013 .mhandler.cmd_new = qmp_marshal_input_query_events,
2014 },
2015
2016 SQMP
2017 query-chardev
2018 -------------
2019
2020 Each device is represented by a json-object. The returned value is a json-array
2021 of all devices.
2022
2023 Each json-object contain the following:
2024
2025 - "label": device's label (json-string)
2026 - "filename": device's file (json-string)
2027 - "frontend-open": open/closed state of the frontend device attached to this
2028 backend (json-bool)
2029
2030 Example:
2031
2032 -> { "execute": "query-chardev" }
2033 <- {
2034 "return": [
2035 {
2036 "label": "charchannel0",
2037 "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
2038 "frontend-open": false
2039 },
2040 {
2041 "label": "charmonitor",
2042 "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
2043 "frontend-open": true
2044 },
2045 {
2046 "label": "charserial0",
2047 "filename": "pty:/dev/pts/2",
2048 "frontend-open": true
2049 }
2050 ]
2051 }
2052
2053 EQMP
2054
2055 {
2056 .name = "query-chardev",
2057 .args_type = "",
2058 .mhandler.cmd_new = qmp_marshal_input_query_chardev,
2059 },
2060
2061 SQMP
2062 query-chardev-backends
2063 -------------
2064
2065 List available character device backends.
2066
2067 Each backend is represented by a json-object, the returned value is a json-array
2068 of all backends.
2069
2070 Each json-object contains:
2071
2072 - "name": backend name (json-string)
2073
2074 Example:
2075
2076 -> { "execute": "query-chardev-backends" }
2077 <- {
2078 "return":[
2079 {
2080 "name":"udp"
2081 },
2082 {
2083 "name":"tcp"
2084 },
2085 {
2086 "name":"unix"
2087 },
2088 {
2089 "name":"spiceport"
2090 }
2091 ]
2092 }
2093
2094 EQMP
2095
2096 {
2097 .name = "query-chardev-backends",
2098 .args_type = "",
2099 .mhandler.cmd_new = qmp_marshal_input_query_chardev_backends,
2100 },
2101
2102 SQMP
2103 query-block
2104 -----------
2105
2106 Show the block devices.
2107
2108 Each block device information is stored in a json-object and the returned value
2109 is a json-array of all devices.
2110
2111 Each json-object contain the following:
2112
2113 - "device": device name (json-string)
2114 - "type": device type (json-string)
2115 - deprecated, retained for backward compatibility
2116 - Possible values: "unknown"
2117 - "removable": true if the device is removable, false otherwise (json-bool)
2118 - "locked": true if the device is locked, false otherwise (json-bool)
2119 - "tray_open": only present if removable, true if the device has a tray,
2120 and it is open (json-bool)
2121 - "inserted": only present if the device is inserted, it is a json-object
2122 containing the following:
2123 - "file": device file name (json-string)
2124 - "ro": true if read-only, false otherwise (json-bool)
2125 - "drv": driver format name (json-string)
2126 - Possible values: "blkdebug", "bochs", "cloop", "dmg",
2127 "file", "file", "ftp", "ftps", "host_cdrom",
2128 "host_device", "host_floppy", "http", "https",
2129 "nbd", "parallels", "qcow", "qcow2", "raw",
2130 "tftp", "vdi", "vmdk", "vpc", "vvfat"
2131 - "backing_file": backing file name (json-string, optional)
2132 - "backing_file_depth": number of files in the backing file chain (json-int)
2133 - "encrypted": true if encrypted, false otherwise (json-bool)
2134 - "bps": limit total bytes per second (json-int)
2135 - "bps_rd": limit read bytes per second (json-int)
2136 - "bps_wr": limit write bytes per second (json-int)
2137 - "iops": limit total I/O operations per second (json-int)
2138 - "iops_rd": limit read operations per second (json-int)
2139 - "iops_wr": limit write operations per second (json-int)
2140 - "bps_max": total max in bytes (json-int)
2141 - "bps_rd_max": read max in bytes (json-int)
2142 - "bps_wr_max": write max in bytes (json-int)
2143 - "iops_max": total I/O operations max (json-int)
2144 - "iops_rd_max": read I/O operations max (json-int)
2145 - "iops_wr_max": write I/O operations max (json-int)
2146 - "iops_size": I/O size when limiting by iops (json-int)
2147 - "detect_zeroes": detect and optimize zero writing (json-string)
2148 - Possible values: "off", "on", "unmap"
2149 - "image": the detail of the image, it is a json-object containing
2150 the following:
2151 - "filename": image file name (json-string)
2152 - "format": image format (json-string)
2153 - "virtual-size": image capacity in bytes (json-int)
2154 - "dirty-flag": true if image is not cleanly closed, not present
2155 means clean (json-bool, optional)
2156 - "actual-size": actual size on disk in bytes of the image, not
2157 present when image does not support thin
2158 provision (json-int, optional)
2159 - "cluster-size": size of a cluster in bytes, not present if image
2160 format does not support it (json-int, optional)
2161 - "encrypted": true if the image is encrypted, not present means
2162 false or the image format does not support
2163 encryption (json-bool, optional)
2164 - "backing_file": backing file name, not present means no backing
2165 file is used or the image format does not
2166 support backing file chain
2167 (json-string, optional)
2168 - "full-backing-filename": full path of the backing file, not
2169 present if it equals backing_file or no
2170 backing file is used
2171 (json-string, optional)
2172 - "backing-filename-format": the format of the backing file, not
2173 present means unknown or no backing
2174 file (json-string, optional)
2175 - "snapshots": the internal snapshot info, it is an optional list
2176 of json-object containing the following:
2177 - "id": unique snapshot id (json-string)
2178 - "name": snapshot name (json-string)
2179 - "vm-state-size": size of the VM state in bytes (json-int)
2180 - "date-sec": UTC date of the snapshot in seconds (json-int)
2181 - "date-nsec": fractional part in nanoseconds to be used with
2182 date-sec (json-int)
2183 - "vm-clock-sec": VM clock relative to boot in seconds
2184 (json-int)
2185 - "vm-clock-nsec": fractional part in nanoseconds to be used
2186 with vm-clock-sec (json-int)
2187 - "backing-image": the detail of the backing image, it is an
2188 optional json-object only present when a
2189 backing image present for this image
2190
2191 - "io-status": I/O operation status, only present if the device supports it
2192 and the VM is configured to stop on errors. It's always reset
2193 to "ok" when the "cont" command is issued (json_string, optional)
2194 - Possible values: "ok", "failed", "nospace"
2195
2196 Example:
2197
2198 -> { "execute": "query-block" }
2199 <- {
2200 "return":[
2201 {
2202 "io-status": "ok",
2203 "device":"ide0-hd0",
2204 "locked":false,
2205 "removable":false,
2206 "inserted":{
2207 "ro":false,
2208 "drv":"qcow2",
2209 "encrypted":false,
2210 "file":"disks/test.qcow2",
2211 "backing_file_depth":1,
2212 "bps":1000000,
2213 "bps_rd":0,
2214 "bps_wr":0,
2215 "iops":1000000,
2216 "iops_rd":0,
2217 "iops_wr":0,
2218 "bps_max": 8000000,
2219 "bps_rd_max": 0,
2220 "bps_wr_max": 0,
2221 "iops_max": 0,
2222 "iops_rd_max": 0,
2223 "iops_wr_max": 0,
2224 "iops_size": 0,
2225 "detect_zeroes": "on",
2226 "image":{
2227 "filename":"disks/test.qcow2",
2228 "format":"qcow2",
2229 "virtual-size":2048000,
2230 "backing_file":"base.qcow2",
2231 "full-backing-filename":"disks/base.qcow2",
2232 "backing-filename-format:"qcow2",
2233 "snapshots":[
2234 {
2235 "id": "1",
2236 "name": "snapshot1",
2237 "vm-state-size": 0,
2238 "date-sec": 10000200,
2239 "date-nsec": 12,
2240 "vm-clock-sec": 206,
2241 "vm-clock-nsec": 30
2242 }
2243 ],
2244 "backing-image":{
2245 "filename":"disks/base.qcow2",
2246 "format":"qcow2",
2247 "virtual-size":2048000
2248 }
2249 }
2250 },
2251 "type":"unknown"
2252 },
2253 {
2254 "io-status": "ok",
2255 "device":"ide1-cd0",
2256 "locked":false,
2257 "removable":true,
2258 "type":"unknown"
2259 },
2260 {
2261 "device":"floppy0",
2262 "locked":false,
2263 "removable":true,
2264 "type":"unknown"
2265 },
2266 {
2267 "device":"sd0",
2268 "locked":false,
2269 "removable":true,
2270 "type":"unknown"
2271 }
2272 ]
2273 }
2274
2275 EQMP
2276
2277 {
2278 .name = "query-block",
2279 .args_type = "",
2280 .mhandler.cmd_new = qmp_marshal_input_query_block,
2281 },
2282
2283 SQMP
2284 query-blockstats
2285 ----------------
2286
2287 Show block device statistics.
2288
2289 Each device statistic information is stored in a json-object and the returned
2290 value is a json-array of all devices.
2291
2292 Each json-object contain the following:
2293
2294 - "device": device name (json-string)
2295 - "stats": A json-object with the statistics information, it contains:
2296 - "rd_bytes": bytes read (json-int)
2297 - "wr_bytes": bytes written (json-int)
2298 - "rd_operations": read operations (json-int)
2299 - "wr_operations": write operations (json-int)
2300 - "flush_operations": cache flush operations (json-int)
2301 - "wr_total_time_ns": total time spend on writes in nano-seconds (json-int)
2302 - "rd_total_time_ns": total time spend on reads in nano-seconds (json-int)
2303 - "flush_total_time_ns": total time spend on cache flushes in nano-seconds (json-int)
2304 - "wr_highest_offset": Highest offset of a sector written since the
2305 BlockDriverState has been opened (json-int)
2306 - "parent": Contains recursively the statistics of the underlying
2307 protocol (e.g. the host file for a qcow2 image). If there is
2308 no underlying protocol, this field is omitted
2309 (json-object, optional)
2310
2311 Example:
2312
2313 -> { "execute": "query-blockstats" }
2314 <- {
2315 "return":[
2316 {
2317 "device":"ide0-hd0",
2318 "parent":{
2319 "stats":{
2320 "wr_highest_offset":3686448128,
2321 "wr_bytes":9786368,
2322 "wr_operations":751,
2323 "rd_bytes":122567168,
2324 "rd_operations":36772
2325 "wr_total_times_ns":313253456
2326 "rd_total_times_ns":3465673657
2327 "flush_total_times_ns":49653
2328 "flush_operations":61,
2329 }
2330 },
2331 "stats":{
2332 "wr_highest_offset":2821110784,
2333 "wr_bytes":9786368,
2334 "wr_operations":692,
2335 "rd_bytes":122739200,
2336 "rd_operations":36604
2337 "flush_operations":51,
2338 "wr_total_times_ns":313253456
2339 "rd_total_times_ns":3465673657
2340 "flush_total_times_ns":49653
2341 }
2342 },
2343 {
2344 "device":"ide1-cd0",
2345 "stats":{
2346 "wr_highest_offset":0,
2347 "wr_bytes":0,
2348 "wr_operations":0,
2349 "rd_bytes":0,
2350 "rd_operations":0
2351 "flush_operations":0,
2352 "wr_total_times_ns":0
2353 "rd_total_times_ns":0
2354 "flush_total_times_ns":0
2355 }
2356 },
2357 {
2358 "device":"floppy0",
2359 "stats":{
2360 "wr_highest_offset":0,
2361 "wr_bytes":0,
2362 "wr_operations":0,
2363 "rd_bytes":0,
2364 "rd_operations":0
2365 "flush_operations":0,
2366 "wr_total_times_ns":0
2367 "rd_total_times_ns":0
2368 "flush_total_times_ns":0
2369 }
2370 },
2371 {
2372 "device":"sd0",
2373 "stats":{
2374 "wr_highest_offset":0,
2375 "wr_bytes":0,
2376 "wr_operations":0,
2377 "rd_bytes":0,
2378 "rd_operations":0
2379 "flush_operations":0,
2380 "wr_total_times_ns":0
2381 "rd_total_times_ns":0
2382 "flush_total_times_ns":0
2383 }
2384 }
2385 ]
2386 }
2387
2388 EQMP
2389
2390 {
2391 .name = "query-blockstats",
2392 .args_type = "query-nodes:b?",
2393 .mhandler.cmd_new = qmp_marshal_input_query_blockstats,
2394 },
2395
2396 SQMP
2397 query-cpus
2398 ----------
2399
2400 Show CPU information.
2401
2402 Return a json-array. Each CPU is represented by a json-object, which contains:
2403
2404 - "CPU": CPU index (json-int)
2405 - "current": true if this is the current CPU, false otherwise (json-bool)
2406 - "halted": true if the cpu is halted, false otherwise (json-bool)
2407 - Current program counter. The key's name depends on the architecture:
2408 "pc": i386/x86_64 (json-int)
2409 "nip": PPC (json-int)
2410 "pc" and "npc": sparc (json-int)
2411 "PC": mips (json-int)
2412 - "thread_id": ID of the underlying host thread (json-int)
2413
2414 Example:
2415
2416 -> { "execute": "query-cpus" }
2417 <- {
2418 "return":[
2419 {
2420 "CPU":0,
2421 "current":true,
2422 "halted":false,
2423 "pc":3227107138
2424 "thread_id":3134
2425 },
2426 {
2427 "CPU":1,
2428 "current":false,
2429 "halted":true,
2430 "pc":7108165
2431 "thread_id":3135
2432 }
2433 ]
2434 }
2435
2436 EQMP
2437
2438 {
2439 .name = "query-cpus",
2440 .args_type = "",
2441 .mhandler.cmd_new = qmp_marshal_input_query_cpus,
2442 },
2443
2444 SQMP
2445 query-iothreads
2446 ---------------
2447
2448 Returns a list of information about each iothread.
2449
2450 Note this list excludes the QEMU main loop thread, which is not declared
2451 using the -object iothread command-line option. It is always the main thread
2452 of the process.
2453
2454 Return a json-array. Each iothread is represented by a json-object, which contains:
2455
2456 - "id": name of iothread (json-str)
2457 - "thread-id": ID of the underlying host thread (json-int)
2458
2459 Example:
2460
2461 -> { "execute": "query-iothreads" }
2462 <- {
2463 "return":[
2464 {
2465 "id":"iothread0",
2466 "thread-id":3134
2467 },
2468 {
2469 "id":"iothread1",
2470 "thread-id":3135
2471 }
2472 ]
2473 }
2474
2475 EQMP
2476
2477 {
2478 .name = "query-iothreads",
2479 .args_type = "",
2480 .mhandler.cmd_new = qmp_marshal_input_query_iothreads,
2481 },
2482
2483 SQMP
2484 query-pci
2485 ---------
2486
2487 PCI buses and devices information.
2488
2489 The returned value is a json-array of all buses. Each bus is represented by
2490 a json-object, which has a key with a json-array of all PCI devices attached
2491 to it. Each device is represented by a json-object.
2492
2493 The bus json-object contains the following:
2494
2495 - "bus": bus number (json-int)
2496 - "devices": a json-array of json-objects, each json-object represents a
2497 PCI device
2498
2499 The PCI device json-object contains the following:
2500
2501 - "bus": identical to the parent's bus number (json-int)
2502 - "slot": slot number (json-int)
2503 - "function": function number (json-int)
2504 - "class_info": a json-object containing:
2505 - "desc": device class description (json-string, optional)
2506 - "class": device class number (json-int)
2507 - "id": a json-object containing:
2508 - "device": device ID (json-int)
2509 - "vendor": vendor ID (json-int)
2510 - "irq": device's IRQ if assigned (json-int, optional)
2511 - "qdev_id": qdev id string (json-string)
2512 - "pci_bridge": It's a json-object, only present if this device is a
2513 PCI bridge, contains:
2514 - "bus": bus number (json-int)
2515 - "secondary": secondary bus number (json-int)
2516 - "subordinate": subordinate bus number (json-int)
2517 - "io_range": I/O memory range information, a json-object with the
2518 following members:
2519 - "base": base address, in bytes (json-int)
2520 - "limit": limit address, in bytes (json-int)
2521 - "memory_range": memory range information, a json-object with the
2522 following members:
2523 - "base": base address, in bytes (json-int)
2524 - "limit": limit address, in bytes (json-int)
2525 - "prefetchable_range": Prefetchable memory range information, a
2526 json-object with the following members:
2527 - "base": base address, in bytes (json-int)
2528 - "limit": limit address, in bytes (json-int)
2529 - "devices": a json-array of PCI devices if there's any attached, each
2530 each element is represented by a json-object, which contains
2531 the same members of the 'PCI device json-object' described
2532 above (optional)
2533 - "regions": a json-array of json-objects, each json-object represents a
2534 memory region of this device
2535
2536 The memory range json-object contains the following:
2537
2538 - "base": base memory address (json-int)
2539 - "limit": limit value (json-int)
2540
2541 The region json-object can be an I/O region or a memory region, an I/O region
2542 json-object contains the following:
2543
2544 - "type": "io" (json-string, fixed)
2545 - "bar": BAR number (json-int)
2546 - "address": memory address (json-int)
2547 - "size": memory size (json-int)
2548
2549 A memory region json-object contains the following:
2550
2551 - "type": "memory" (json-string, fixed)
2552 - "bar": BAR number (json-int)
2553 - "address": memory address (json-int)
2554 - "size": memory size (json-int)
2555 - "mem_type_64": true or false (json-bool)
2556 - "prefetch": true or false (json-bool)
2557
2558 Example:
2559
2560 -> { "execute": "query-pci" }
2561 <- {
2562 "return":[
2563 {
2564 "bus":0,
2565 "devices":[
2566 {
2567 "bus":0,
2568 "qdev_id":"",
2569 "slot":0,
2570 "class_info":{
2571 "class":1536,
2572 "desc":"Host bridge"
2573 },
2574 "id":{
2575 "device":32902,
2576 "vendor":4663
2577 },
2578 "function":0,
2579 "regions":[
2580
2581 ]
2582 },
2583 {
2584 "bus":0,
2585 "qdev_id":"",
2586 "slot":1,
2587 "class_info":{
2588 "class":1537,
2589 "desc":"ISA bridge"
2590 },
2591 "id":{
2592 "device":32902,
2593 "vendor":28672
2594 },
2595 "function":0,
2596 "regions":[
2597
2598 ]
2599 },
2600 {
2601 "bus":0,
2602 "qdev_id":"",
2603 "slot":1,
2604 "class_info":{
2605 "class":257,
2606 "desc":"IDE controller"
2607 },
2608 "id":{
2609 "device":32902,
2610 "vendor":28688
2611 },
2612 "function":1,
2613 "regions":[
2614 {
2615 "bar":4,
2616 "size":16,
2617 "address":49152,
2618 "type":"io"
2619 }
2620 ]
2621 },
2622 {
2623 "bus":0,
2624 "qdev_id":"",
2625 "slot":2,
2626 "class_info":{
2627 "class":768,
2628 "desc":"VGA controller"
2629 },
2630 "id":{
2631 "device":4115,
2632 "vendor":184
2633 },
2634 "function":0,
2635 "regions":[
2636 {
2637 "prefetch":true,
2638 "mem_type_64":false,
2639 "bar":0,
2640 "size":33554432,
2641 "address":4026531840,
2642 "type":"memory"
2643 },
2644 {
2645 "prefetch":false,
2646 "mem_type_64":false,
2647 "bar":1,
2648 "size":4096,
2649 "address":4060086272,
2650 "type":"memory"
2651 },
2652 {
2653 "prefetch":false,
2654 "mem_type_64":false,
2655 "bar":6,
2656 "size":65536,
2657 "address":-1,
2658 "type":"memory"
2659 }
2660 ]
2661 },
2662 {
2663 "bus":0,
2664 "qdev_id":"",
2665 "irq":11,
2666 "slot":4,
2667 "class_info":{
2668 "class":1280,
2669 "desc":"RAM controller"
2670 },
2671 "id":{
2672 "device":6900,
2673 "vendor":4098
2674 },
2675 "function":0,
2676 "regions":[
2677 {
2678 "bar":0,
2679 "size":32,
2680 "address":49280,
2681 "type":"io"
2682 }
2683 ]
2684 }
2685 ]
2686 }
2687 ]
2688 }
2689
2690 Note: This example has been shortened as the real response is too long.
2691
2692 EQMP
2693
2694 {
2695 .name = "query-pci",
2696 .args_type = "",
2697 .mhandler.cmd_new = qmp_marshal_input_query_pci,
2698 },
2699
2700 SQMP
2701 query-kvm
2702 ---------
2703
2704 Show KVM information.
2705
2706 Return a json-object with the following information:
2707
2708 - "enabled": true if KVM support is enabled, false otherwise (json-bool)
2709 - "present": true if QEMU has KVM support, false otherwise (json-bool)
2710
2711 Example:
2712
2713 -> { "execute": "query-kvm" }
2714 <- { "return": { "enabled": true, "present": true } }
2715
2716 EQMP
2717
2718 {
2719 .name = "query-kvm",
2720 .args_type = "",
2721 .mhandler.cmd_new = qmp_marshal_input_query_kvm,
2722 },
2723
2724 SQMP
2725 query-status
2726 ------------
2727
2728 Return a json-object with the following information:
2729
2730 - "running": true if the VM is running, or false if it is paused (json-bool)
2731 - "singlestep": true if the VM is in single step mode,
2732 false otherwise (json-bool)
2733 - "status": one of the following values (json-string)
2734 "debug" - QEMU is running on a debugger
2735 "inmigrate" - guest is paused waiting for an incoming migration
2736 "internal-error" - An internal error that prevents further guest
2737 execution has occurred
2738 "io-error" - the last IOP has failed and the device is configured
2739 to pause on I/O errors
2740 "paused" - guest has been paused via the 'stop' command
2741 "postmigrate" - guest is paused following a successful 'migrate'
2742 "prelaunch" - QEMU was started with -S and guest has not started
2743 "finish-migrate" - guest is paused to finish the migration process
2744 "restore-vm" - guest is paused to restore VM state
2745 "running" - guest is actively running
2746 "save-vm" - guest is paused to save the VM state
2747 "shutdown" - guest is shut down (and -no-shutdown is in use)
2748 "watchdog" - the watchdog action is configured to pause and
2749 has been triggered
2750
2751 Example:
2752
2753 -> { "execute": "query-status" }
2754 <- { "return": { "running": true, "singlestep": false, "status": "running" } }
2755
2756 EQMP
2757
2758 {
2759 .name = "query-status",
2760 .args_type = "",
2761 .mhandler.cmd_new = qmp_marshal_input_query_status,
2762 },
2763
2764 SQMP
2765 query-mice
2766 ----------
2767
2768 Show VM mice information.
2769
2770 Each mouse is represented by a json-object, the returned value is a json-array
2771 of all mice.
2772
2773 The mouse json-object contains the following:
2774
2775 - "name": mouse's name (json-string)
2776 - "index": mouse's index (json-int)
2777 - "current": true if this mouse is receiving events, false otherwise (json-bool)
2778 - "absolute": true if the mouse generates absolute input events (json-bool)
2779
2780 Example:
2781
2782 -> { "execute": "query-mice" }
2783 <- {
2784 "return":[
2785 {
2786 "name":"QEMU Microsoft Mouse",
2787 "index":0,
2788 "current":false,
2789 "absolute":false
2790 },
2791 {
2792 "name":"QEMU PS/2 Mouse",
2793 "index":1,
2794 "current":true,
2795 "absolute":true
2796 }
2797 ]
2798 }
2799
2800 EQMP
2801
2802 {
2803 .name = "query-mice",
2804 .args_type = "",
2805 .mhandler.cmd_new = qmp_marshal_input_query_mice,
2806 },
2807
2808 SQMP
2809 query-vnc
2810 ---------
2811
2812 Show VNC server information.
2813
2814 Return a json-object with server information. Connected clients are returned
2815 as a json-array of json-objects.
2816
2817 The main json-object contains the following:
2818
2819 - "enabled": true or false (json-bool)
2820 - "host": server's IP address (json-string)
2821 - "family": address family (json-string)
2822 - Possible values: "ipv4", "ipv6", "unix", "unknown"
2823 - "service": server's port number (json-string)
2824 - "auth": authentication method (json-string)
2825 - Possible values: "invalid", "none", "ra2", "ra2ne", "sasl", "tight",
2826 "tls", "ultra", "unknown", "vencrypt", "vencrypt",
2827 "vencrypt+plain", "vencrypt+tls+none",
2828 "vencrypt+tls+plain", "vencrypt+tls+sasl",
2829 "vencrypt+tls+vnc", "vencrypt+x509+none",
2830 "vencrypt+x509+plain", "vencrypt+x509+sasl",
2831 "vencrypt+x509+vnc", "vnc"
2832 - "clients": a json-array of all connected clients
2833
2834 Clients are described by a json-object, each one contain the following:
2835
2836 - "host": client's IP address (json-string)
2837 - "family": address family (json-string)
2838 - Possible values: "ipv4", "ipv6", "unix", "unknown"
2839 - "service": client's port number (json-string)
2840 - "x509_dname": TLS dname (json-string, optional)
2841 - "sasl_username": SASL username (json-string, optional)
2842
2843 Example:
2844
2845 -> { "execute": "query-vnc" }
2846 <- {
2847 "return":{
2848 "enabled":true,
2849 "host":"0.0.0.0",
2850 "service":"50402",
2851 "auth":"vnc",
2852 "family":"ipv4",
2853 "clients":[
2854 {
2855 "host":"127.0.0.1",
2856 "service":"50401",
2857 "family":"ipv4"
2858 }
2859 ]
2860 }
2861 }
2862
2863 EQMP
2864
2865 {
2866 .name = "query-vnc",
2867 .args_type = "",
2868 .mhandler.cmd_new = qmp_marshal_input_query_vnc,
2869 },
2870 {
2871 .name = "query-vnc-servers",
2872 .args_type = "",
2873 .mhandler.cmd_new = qmp_marshal_input_query_vnc_servers,
2874 },
2875
2876 SQMP
2877 query-spice
2878 -----------
2879
2880 Show SPICE server information.
2881
2882 Return a json-object with server information. Connected clients are returned
2883 as a json-array of json-objects.
2884
2885 The main json-object contains the following:
2886
2887 - "enabled": true or false (json-bool)
2888 - "host": server's IP address (json-string)
2889 - "port": server's port number (json-int, optional)
2890 - "tls-port": server's port number (json-int, optional)
2891 - "auth": authentication method (json-string)
2892 - Possible values: "none", "spice"
2893 - "channels": a json-array of all active channels clients
2894
2895 Channels are described by a json-object, each one contain the following:
2896
2897 - "host": client's IP address (json-string)
2898 - "family": address family (json-string)
2899 - Possible values: "ipv4", "ipv6", "unix", "unknown"
2900 - "port": client's port number (json-string)
2901 - "connection-id": spice connection id. All channels with the same id
2902 belong to the same spice session (json-int)
2903 - "channel-type": channel type. "1" is the main control channel, filter for
2904 this one if you want track spice sessions only (json-int)
2905 - "channel-id": channel id. Usually "0", might be different needed when
2906 multiple channels of the same type exist, such as multiple
2907 display channels in a multihead setup (json-int)
2908 - "tls": whevener the channel is encrypted (json-bool)
2909
2910 Example:
2911
2912 -> { "execute": "query-spice" }
2913 <- {
2914 "return": {
2915 "enabled": true,
2916 "auth": "spice",
2917 "port": 5920,
2918 "tls-port": 5921,
2919 "host": "0.0.0.0",
2920 "channels": [
2921 {
2922 "port": "54924",
2923 "family": "ipv4",
2924 "channel-type": 1,
2925 "connection-id": 1804289383,
2926 "host": "127.0.0.1",
2927 "channel-id": 0,
2928 "tls": true
2929 },
2930 {
2931 "port": "36710",
2932 "family": "ipv4",
2933 "channel-type": 4,
2934 "connection-id": 1804289383,
2935 "host": "127.0.0.1",
2936 "channel-id": 0,
2937 "tls": false
2938 },
2939 [ ... more channels follow ... ]
2940 ]
2941 }
2942 }
2943
2944 EQMP
2945
2946 #if defined(CONFIG_SPICE)
2947 {
2948 .name = "query-spice",
2949 .args_type = "",
2950 .mhandler.cmd_new = qmp_marshal_input_query_spice,
2951 },
2952 #endif
2953
2954 SQMP
2955 query-name
2956 ----------
2957
2958 Show VM name.
2959
2960 Return a json-object with the following information:
2961
2962 - "name": VM's name (json-string, optional)
2963
2964 Example:
2965
2966 -> { "execute": "query-name" }
2967 <- { "return": { "name": "qemu-name" } }
2968
2969 EQMP
2970
2971 {
2972 .name = "query-name",
2973 .args_type = "",
2974 .mhandler.cmd_new = qmp_marshal_input_query_name,
2975 },
2976
2977 SQMP
2978 query-uuid
2979 ----------
2980
2981 Show VM UUID.
2982
2983 Return a json-object with the following information:
2984
2985 - "UUID": Universally Unique Identifier (json-string)
2986
2987 Example:
2988
2989 -> { "execute": "query-uuid" }
2990 <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
2991
2992 EQMP
2993
2994 {
2995 .name = "query-uuid",
2996 .args_type = "",
2997 .mhandler.cmd_new = qmp_marshal_input_query_uuid,
2998 },
2999
3000 SQMP
3001 query-command-line-options
3002 --------------------------
3003
3004 Show command line option schema.
3005
3006 Return a json-array of command line option schema for all options (or for
3007 the given option), returning an error if the given option doesn't exist.
3008
3009 Each array entry contains the following:
3010
3011 - "option": option name (json-string)
3012 - "parameters": a json-array describes all parameters of the option:
3013 - "name": parameter name (json-string)
3014 - "type": parameter type (one of 'string', 'boolean', 'number',
3015 or 'size')
3016 - "help": human readable description of the parameter
3017 (json-string, optional)
3018 - "default": default value string for the parameter
3019 (json-string, optional)
3020
3021 Example:
3022
3023 -> { "execute": "query-command-line-options", "arguments": { "option": "option-rom" } }
3024 <- { "return": [
3025 {
3026 "parameters": [
3027 {
3028 "name": "romfile",
3029 "type": "string"
3030 },
3031 {
3032 "name": "bootindex",
3033 "type": "number"
3034 }
3035 ],
3036 "option": "option-rom"
3037 }
3038 ]
3039 }
3040
3041 EQMP
3042
3043 {
3044 .name = "query-command-line-options",
3045 .args_type = "option:s?",
3046 .mhandler.cmd_new = qmp_marshal_input_query_command_line_options,
3047 },
3048
3049 SQMP
3050 query-migrate
3051 -------------
3052
3053 Migration status.
3054
3055 Return a json-object. If migration is active there will be another json-object
3056 with RAM migration status and if block migration is active another one with
3057 block migration status.
3058
3059 The main json-object contains the following:
3060
3061 - "status": migration status (json-string)
3062 - Possible values: "setup", "active", "completed", "failed", "cancelled"
3063 - "total-time": total amount of ms since migration started. If
3064 migration has ended, it returns the total migration
3065 time (json-int)
3066 - "setup-time" amount of setup time in milliseconds _before_ the
3067 iterations begin but _after_ the QMP command is issued.
3068 This is designed to provide an accounting of any activities
3069 (such as RDMA pinning) which may be expensive, but do not
3070 actually occur during the iterative migration rounds
3071 themselves. (json-int)
3072 - "downtime": only present when migration has finished correctly
3073 total amount in ms for downtime that happened (json-int)
3074 - "expected-downtime": only present while migration is active
3075 total amount in ms for downtime that was calculated on
3076 the last bitmap round (json-int)
3077 - "ram": only present if "status" is "active", it is a json-object with the
3078 following RAM information:
3079 - "transferred": amount transferred in bytes (json-int)
3080 - "remaining": amount remaining to transfer in bytes (json-int)
3081 - "total": total amount of memory in bytes (json-int)
3082 - "duplicate": number of pages filled entirely with the same
3083 byte (json-int)
3084 These are sent over the wire much more efficiently.
3085 - "skipped": number of skipped zero pages (json-int)
3086 - "normal" : number of whole pages transferred. I.e. they
3087 were not sent as duplicate or xbzrle pages (json-int)
3088 - "normal-bytes" : number of bytes transferred in whole
3089 pages. This is just normal pages times size of one page,
3090 but this way upper levels don't need to care about page
3091 size (json-int)
3092 - "dirty-sync-count": times that dirty ram was synchronized (json-int)
3093 - "disk": only present if "status" is "active" and it is a block migration,
3094 it is a json-object with the following disk information:
3095 - "transferred": amount transferred in bytes (json-int)
3096 - "remaining": amount remaining to transfer in bytes json-int)
3097 - "total": total disk size in bytes (json-int)
3098 - "xbzrle-cache": only present if XBZRLE is active.
3099 It is a json-object with the following XBZRLE information:
3100 - "cache-size": XBZRLE cache size in bytes
3101 - "bytes": number of bytes transferred for XBZRLE compressed pages
3102 - "pages": number of XBZRLE compressed pages
3103 - "cache-miss": number of XBRZRLE page cache misses
3104 - "cache-miss-rate": rate of XBRZRLE page cache misses
3105 - "overflow": number of times XBZRLE overflows. This means
3106 that the XBZRLE encoding was bigger than just sent the
3107 whole page, and then we sent the whole page instead (as as
3108 normal page).
3109
3110 Examples:
3111
3112 1. Before the first migration
3113
3114 -> { "execute": "query-migrate" }
3115 <- { "return": {} }
3116
3117 2. Migration is done and has succeeded
3118
3119 -> { "execute": "query-migrate" }
3120 <- { "return": {
3121 "status": "completed",
3122 "ram":{
3123 "transferred":123,
3124 "remaining":123,
3125 "total":246,
3126 "total-time":12345,
3127 "setup-time":12345,
3128 "downtime":12345,
3129 "duplicate":123,
3130 "normal":123,
3131 "normal-bytes":123456,
3132 "dirty-sync-count":15
3133 }
3134 }
3135 }
3136
3137 3. Migration is done and has failed
3138
3139 -> { "execute": "query-migrate" }
3140 <- { "return": { "status": "failed" } }
3141
3142 4. Migration is being performed and is not a block migration:
3143
3144 -> { "execute": "query-migrate" }
3145 <- {
3146 "return":{
3147 "status":"active",
3148 "ram":{
3149 "transferred":123,
3150 "remaining":123,
3151 "total":246,
3152 "total-time":12345,
3153 "setup-time":12345,
3154 "expected-downtime":12345,
3155 "duplicate":123,
3156 "normal":123,
3157 "normal-bytes":123456,
3158 "dirty-sync-count":15
3159 }
3160 }
3161 }
3162
3163 5. Migration is being performed and is a block migration:
3164
3165 -> { "execute": "query-migrate" }
3166 <- {
3167 "return":{
3168 "status":"active",
3169 "ram":{
3170 "total":1057024,
3171 "remaining":1053304,
3172 "transferred":3720,
3173 "total-time":12345,
3174 "setup-time":12345,
3175 "expected-downtime":12345,
3176 "duplicate":123,
3177 "normal":123,
3178 "normal-bytes":123456,
3179 "dirty-sync-count":15
3180 },
3181 "disk":{
3182 "total":20971520,
3183 "remaining":20880384,
3184 "transferred":91136
3185 }
3186 }
3187 }
3188
3189 6. Migration is being performed and XBZRLE is active:
3190
3191 -> { "execute": "query-migrate" }
3192 <- {
3193 "return":{
3194 "status":"active",
3195 "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
3196 "ram":{
3197 "total":1057024,
3198 "remaining":1053304,
3199 "transferred":3720,
3200 "total-time":12345,
3201 "setup-time":12345,
3202 "expected-downtime":12345,
3203 "duplicate":10,
3204 "normal":3333,
3205 "normal-bytes":3412992,
3206 "dirty-sync-count":15
3207 },
3208 "xbzrle-cache":{
3209 "cache-size":67108864,
3210 "bytes":20971520,
3211 "pages":2444343,
3212 "cache-miss":2244,
3213 "cache-miss-rate":0.123,
3214 "overflow":34434
3215 }
3216 }
3217 }
3218
3219 EQMP
3220
3221 {
3222 .name = "query-migrate",
3223 .args_type = "",
3224 .mhandler.cmd_new = qmp_marshal_input_query_migrate,
3225 },
3226
3227 SQMP
3228 migrate-set-capabilities
3229 ------------------------
3230
3231 Enable/Disable migration capabilities
3232
3233 - "xbzrle": XBZRLE support
3234 - "rdma-pin-all": pin all pages when using RDMA during migration
3235 - "auto-converge": throttle down guest to help convergence of migration
3236 - "zero-blocks": compress zero blocks during block migration
3237
3238 Arguments:
3239
3240 Example:
3241
3242 -> { "execute": "migrate-set-capabilities" , "arguments":
3243 { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
3244
3245 EQMP
3246
3247 {
3248 .name = "migrate-set-capabilities",
3249 .args_type = "capabilities:O",
3250 .params = "capability:s,state:b",
3251 .mhandler.cmd_new = qmp_marshal_input_migrate_set_capabilities,
3252 },
3253 SQMP
3254 query-migrate-capabilities
3255 --------------------------
3256
3257 Query current migration capabilities
3258
3259 - "capabilities": migration capabilities state
3260 - "xbzrle" : XBZRLE state (json-bool)
3261 - "rdma-pin-all" : RDMA Pin Page state (json-bool)
3262 - "auto-converge" : Auto Converge state (json-bool)
3263 - "zero-blocks" : Zero Blocks state (json-bool)
3264
3265 Arguments:
3266
3267 Example:
3268
3269 -> { "execute": "query-migrate-capabilities" }
3270 <- { "return": [ { "state": false, "capability": "xbzrle" } ] }
3271
3272 EQMP
3273
3274 {
3275 .name = "query-migrate-capabilities",
3276 .args_type = "",
3277 .mhandler.cmd_new = qmp_marshal_input_query_migrate_capabilities,
3278 },
3279
3280 SQMP
3281 query-balloon
3282 -------------
3283
3284 Show balloon information.
3285
3286 Make an asynchronous request for balloon info. When the request completes a
3287 json-object will be returned containing the following data:
3288
3289 - "actual": current balloon value in bytes (json-int)
3290
3291 Example:
3292
3293 -> { "execute": "query-balloon" }
3294 <- {
3295 "return":{
3296 "actual":1073741824,
3297 }
3298 }
3299
3300 EQMP
3301
3302 {
3303 .name = "query-balloon",
3304 .args_type = "",
3305 .mhandler.cmd_new = qmp_marshal_input_query_balloon,
3306 },
3307
3308 {
3309 .name = "query-block-jobs",
3310 .args_type = "",
3311 .mhandler.cmd_new = qmp_marshal_input_query_block_jobs,
3312 },
3313
3314 {
3315 .name = "qom-list",
3316 .args_type = "path:s",
3317 .mhandler.cmd_new = qmp_marshal_input_qom_list,
3318 },
3319
3320 {
3321 .name = "qom-set",
3322 .args_type = "path:s,property:s,value:q",
3323 .mhandler.cmd_new = qmp_qom_set,
3324 },
3325
3326 {
3327 .name = "qom-get",
3328 .args_type = "path:s,property:s",
3329 .mhandler.cmd_new = qmp_qom_get,
3330 },
3331
3332 {
3333 .name = "nbd-server-start",
3334 .args_type = "addr:q",
3335 .mhandler.cmd_new = qmp_marshal_input_nbd_server_start,
3336 },
3337 {
3338 .name = "nbd-server-add",
3339 .args_type = "device:B,writable:b?",
3340 .mhandler.cmd_new = qmp_marshal_input_nbd_server_add,
3341 },
3342 {
3343 .name = "nbd-server-stop",
3344 .args_type = "",
3345 .mhandler.cmd_new = qmp_marshal_input_nbd_server_stop,
3346 },
3347
3348 {
3349 .name = "change-vnc-password",
3350 .args_type = "password:s",
3351 .mhandler.cmd_new = qmp_marshal_input_change_vnc_password,
3352 },
3353 {
3354 .name = "qom-list-types",
3355 .args_type = "implements:s?,abstract:b?",
3356 .mhandler.cmd_new = qmp_marshal_input_qom_list_types,
3357 },
3358
3359 {
3360 .name = "device-list-properties",
3361 .args_type = "typename:s",
3362 .mhandler.cmd_new = qmp_marshal_input_device_list_properties,
3363 },
3364
3365 {
3366 .name = "query-machines",
3367 .args_type = "",
3368 .mhandler.cmd_new = qmp_marshal_input_query_machines,
3369 },
3370
3371 {
3372 .name = "query-cpu-definitions",
3373 .args_type = "",
3374 .mhandler.cmd_new = qmp_marshal_input_query_cpu_definitions,
3375 },
3376
3377 {
3378 .name = "query-target",
3379 .args_type = "",
3380 .mhandler.cmd_new = qmp_marshal_input_query_target,
3381 },
3382
3383 {
3384 .name = "query-tpm",
3385 .args_type = "",
3386 .mhandler.cmd_new = qmp_marshal_input_query_tpm,
3387 },
3388
3389 SQMP
3390 query-tpm
3391 ---------
3392
3393 Return information about the TPM device.
3394
3395 Arguments: None
3396
3397 Example:
3398
3399 -> { "execute": "query-tpm" }
3400 <- { "return":
3401 [
3402 { "model": "tpm-tis",
3403 "options":
3404 { "type": "passthrough",
3405 "data":
3406 { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
3407 "path": "/dev/tpm0"
3408 }
3409 },
3410 "id": "tpm0"
3411 }
3412 ]
3413 }
3414
3415 EQMP
3416
3417 {
3418 .name = "query-tpm-models",
3419 .args_type = "",
3420 .mhandler.cmd_new = qmp_marshal_input_query_tpm_models,
3421 },
3422
3423 SQMP
3424 query-tpm-models
3425 ----------------
3426
3427 Return a list of supported TPM models.
3428
3429 Arguments: None
3430
3431 Example:
3432
3433 -> { "execute": "query-tpm-models" }
3434 <- { "return": [ "tpm-tis" ] }
3435
3436 EQMP
3437
3438 {
3439 .name = "query-tpm-types",
3440 .args_type = "",
3441 .mhandler.cmd_new = qmp_marshal_input_query_tpm_types,
3442 },
3443
3444 SQMP
3445 query-tpm-types
3446 ---------------
3447
3448 Return a list of supported TPM types.
3449
3450 Arguments: None
3451
3452 Example:
3453
3454 -> { "execute": "query-tpm-types" }
3455 <- { "return": [ "passthrough" ] }
3456
3457 EQMP
3458
3459 {
3460 .name = "chardev-add",
3461 .args_type = "id:s,backend:q",
3462 .mhandler.cmd_new = qmp_marshal_input_chardev_add,
3463 },
3464
3465 SQMP
3466 chardev-add
3467 ----------------
3468
3469 Add a chardev.
3470
3471 Arguments:
3472
3473 - "id": the chardev's ID, must be unique (json-string)
3474 - "backend": chardev backend type + parameters
3475
3476 Examples:
3477
3478 -> { "execute" : "chardev-add",
3479 "arguments" : { "id" : "foo",
3480 "backend" : { "type" : "null", "data" : {} } } }
3481 <- { "return": {} }
3482
3483 -> { "execute" : "chardev-add",
3484 "arguments" : { "id" : "bar",
3485 "backend" : { "type" : "file",
3486 "data" : { "out" : "/tmp/bar.log" } } } }
3487 <- { "return": {} }
3488
3489 -> { "execute" : "chardev-add",
3490 "arguments" : { "id" : "baz",
3491 "backend" : { "type" : "pty", "data" : {} } } }
3492 <- { "return": { "pty" : "/dev/pty/42" } }
3493
3494 EQMP
3495
3496 {
3497 .name = "chardev-remove",
3498 .args_type = "id:s",
3499 .mhandler.cmd_new = qmp_marshal_input_chardev_remove,
3500 },
3501
3502
3503 SQMP
3504 chardev-remove
3505 --------------
3506
3507 Remove a chardev.
3508
3509 Arguments:
3510
3511 - "id": the chardev's ID, must exist and not be in use (json-string)
3512
3513 Example:
3514
3515 -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
3516 <- { "return": {} }
3517
3518 EQMP
3519 {
3520 .name = "query-rx-filter",
3521 .args_type = "name:s?",
3522 .mhandler.cmd_new = qmp_marshal_input_query_rx_filter,
3523 },
3524
3525 SQMP
3526 query-rx-filter
3527 ---------------
3528
3529 Show rx-filter information.
3530
3531 Returns a json-array of rx-filter information for all NICs (or for the
3532 given NIC), returning an error if the given NIC doesn't exist, or
3533 given NIC doesn't support rx-filter querying, or given net client
3534 isn't a NIC.
3535
3536 The query will clear the event notification flag of each NIC, then qemu
3537 will start to emit event to QMP monitor.
3538
3539 Each array entry contains the following:
3540
3541 - "name": net client name (json-string)
3542 - "promiscuous": promiscuous mode is enabled (json-bool)
3543 - "multicast": multicast receive state (one of 'normal', 'none', 'all')
3544 - "unicast": unicast receive state (one of 'normal', 'none', 'all')
3545 - "vlan": vlan receive state (one of 'normal', 'none', 'all') (Since 2.0)
3546 - "broadcast-allowed": allow to receive broadcast (json-bool)
3547 - "multicast-overflow": multicast table is overflowed (json-bool)
3548 - "unicast-overflow": unicast table is overflowed (json-bool)
3549 - "main-mac": main macaddr string (json-string)
3550 - "vlan-table": a json-array of active vlan id
3551 - "unicast-table": a json-array of unicast macaddr string
3552 - "multicast-table": a json-array of multicast macaddr string
3553
3554 Example:
3555
3556 -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
3557 <- { "return": [
3558 {
3559 "promiscuous": true,
3560 "name": "vnet0",
3561 "main-mac": "52:54:00:12:34:56",
3562 "unicast": "normal",
3563 "vlan": "normal",
3564 "vlan-table": [
3565 4,
3566 0
3567 ],
3568 "unicast-table": [
3569 ],
3570 "multicast": "normal",
3571 "multicast-overflow": false,
3572 "unicast-overflow": false,
3573 "multicast-table": [
3574 "01:00:5e:00:00:01",
3575 "33:33:00:00:00:01",
3576 "33:33:ff:12:34:56"
3577 ],
3578 "broadcast-allowed": false
3579 }
3580 ]
3581 }
3582
3583 EQMP
3584
3585 {
3586 .name = "blockdev-add",
3587 .args_type = "options:q",
3588 .mhandler.cmd_new = qmp_marshal_input_blockdev_add,
3589 },
3590
3591 SQMP
3592 blockdev-add
3593 ------------
3594
3595 Add a block device.
3596
3597 Arguments:
3598
3599 - "options": block driver options
3600
3601 Example (1):
3602
3603 -> { "execute": "blockdev-add",
3604 "arguments": { "options" : { "driver": "qcow2",
3605 "file": { "driver": "file",
3606 "filename": "test.qcow2" } } } }
3607 <- { "return": {} }
3608
3609 Example (2):
3610
3611 -> { "execute": "blockdev-add",
3612 "arguments": {
3613 "options": {
3614 "driver": "qcow2",
3615 "id": "my_disk",
3616 "discard": "unmap",
3617 "cache": {
3618 "direct": true,
3619 "writeback": true
3620 },
3621 "file": {
3622 "driver": "file",
3623 "filename": "/tmp/test.qcow2"
3624 },
3625 "backing": {
3626 "driver": "raw",
3627 "file": {
3628 "driver": "file",
3629 "filename": "/dev/fdset/4"
3630 }
3631 }
3632 }
3633 }
3634 }
3635
3636 <- { "return": {} }
3637
3638 EQMP
3639
3640 {
3641 .name = "query-named-block-nodes",
3642 .args_type = "",
3643 .mhandler.cmd_new = qmp_marshal_input_query_named_block_nodes,
3644 },
3645
3646 SQMP
3647 @query-named-block-nodes
3648 ------------------------
3649
3650 Return a list of BlockDeviceInfo for all the named block driver nodes
3651
3652 Example:
3653
3654 -> { "execute": "query-named-block-nodes" }
3655 <- { "return": [ { "ro":false,
3656 "drv":"qcow2",
3657 "encrypted":false,
3658 "file":"disks/test.qcow2",
3659 "node-name": "my-node",
3660 "backing_file_depth":1,
3661 "bps":1000000,
3662 "bps_rd":0,
3663 "bps_wr":0,
3664 "iops":1000000,
3665 "iops_rd":0,
3666 "iops_wr":0,
3667 "bps_max": 8000000,
3668 "bps_rd_max": 0,
3669 "bps_wr_max": 0,
3670 "iops_max": 0,
3671 "iops_rd_max": 0,
3672 "iops_wr_max": 0,
3673 "iops_size": 0,
3674 "image":{
3675 "filename":"disks/test.qcow2",
3676 "format":"qcow2",
3677 "virtual-size":2048000,
3678 "backing_file":"base.qcow2",
3679 "full-backing-filename":"disks/base.qcow2",
3680 "backing-filename-format:"qcow2",
3681 "snapshots":[
3682 {
3683 "id": "1",
3684 "name": "snapshot1",
3685 "vm-state-size": 0,
3686 "date-sec": 10000200,
3687 "date-nsec": 12,
3688 "vm-clock-sec": 206,
3689 "vm-clock-nsec": 30
3690 }
3691 ],
3692 "backing-image":{
3693 "filename":"disks/base.qcow2",
3694 "format":"qcow2",
3695 "virtual-size":2048000
3696 }
3697 } } ] }
3698
3699 EQMP
3700
3701 {
3702 .name = "query-memdev",
3703 .args_type = "",
3704 .mhandler.cmd_new = qmp_marshal_input_query_memdev,
3705 },
3706
3707 SQMP
3708 query-memdev
3709 ------------
3710
3711 Show memory devices information.
3712
3713
3714 Example (1):
3715
3716 -> { "execute": "query-memdev" }
3717 <- { "return": [
3718 {
3719 "size": 536870912,
3720 "merge": false,
3721 "dump": true,
3722 "prealloc": false,
3723 "host-nodes": [0, 1],
3724 "policy": "bind"
3725 },
3726 {
3727 "size": 536870912,
3728 "merge": false,
3729 "dump": true,
3730 "prealloc": true,
3731 "host-nodes": [2, 3],
3732 "policy": "preferred"
3733 }
3734 ]
3735 }
3736
3737 EQMP
3738
3739 {
3740 .name = "query-memory-devices",
3741 .args_type = "",
3742 .mhandler.cmd_new = qmp_marshal_input_query_memory_devices,
3743 },
3744
3745 SQMP
3746 @query-memory-devices
3747 --------------------
3748
3749 Return a list of memory devices.
3750
3751 Example:
3752 -> { "execute": "query-memory-devices" }
3753 <- { "return": [ { "data":
3754 { "addr": 5368709120,
3755 "hotpluggable": true,
3756 "hotplugged": true,
3757 "id": "d1",
3758 "memdev": "/objects/memX",
3759 "node": 0,
3760 "size": 1073741824,
3761 "slot": 0},
3762 "type": "dimm"
3763 } ] }
3764 EQMP
3765
3766 {
3767 .name = "query-acpi-ospm-status",
3768 .args_type = "",
3769 .mhandler.cmd_new = qmp_marshal_input_query_acpi_ospm_status,
3770 },
3771
3772 SQMP
3773 @query-acpi-ospm-status
3774 --------------------
3775
3776 Return list of ACPIOSTInfo for devices that support status reporting
3777 via ACPI _OST method.
3778
3779 Example:
3780 -> { "execute": "query-acpi-ospm-status" }
3781 <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3782 { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3783 { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3784 { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3785 ]}
3786 EQMP
3787
3788 #if defined TARGET_I386
3789 {
3790 .name = "rtc-reset-reinjection",
3791 .args_type = "",
3792 .mhandler.cmd_new = qmp_marshal_input_rtc_reset_reinjection,
3793 },
3794 #endif
3795
3796 SQMP
3797 rtc-reset-reinjection
3798 ---------------------
3799
3800 Reset the RTC interrupt reinjection backlog.
3801
3802 Arguments: None.
3803
3804 Example:
3805
3806 -> { "execute": "rtc-reset-reinjection" }
3807 <- { "return": {} }
3808 EQMP
3809
3810 {
3811 .name = "trace-event-get-state",
3812 .args_type = "name:s",
3813 .mhandler.cmd_new = qmp_marshal_input_trace_event_get_state,
3814 },
3815
3816 SQMP
3817 trace-event-get-state
3818 ---------------------
3819
3820 Query the state of events.
3821
3822 Example:
3823
3824 -> { "execute": "trace-event-get-state", "arguments": { "name": "qemu_memalign" } }
3825 <- { "return": [ { "name": "qemu_memalign", "state": "disabled" } ] }
3826 EQMP
3827
3828 {
3829 .name = "trace-event-set-state",
3830 .args_type = "name:s,enable:b,ignore-unavailable:b?",
3831 .mhandler.cmd_new = qmp_marshal_input_trace_event_set_state,
3832 },
3833
3834 SQMP
3835 trace-event-set-state
3836 ---------------------
3837
3838 Set the state of events.
3839
3840 Example:
3841
3842 -> { "execute": "trace-event-set-state", "arguments": { "name": "qemu_memalign", "enable": "true" } }
3843 <- { "return": {} }
3844 EQMP
3845
3846 {
3847 .name = "x-input-send-event",
3848 .args_type = "console:i?,events:q",
3849 .mhandler.cmd_new = qmp_marshal_input_x_input_send_event,
3850 },
3851
3852 SQMP
3853 @x-input-send-event
3854 -----------------
3855
3856 Send input event to guest.
3857
3858 Arguments:
3859
3860 - "console": console index. (json-int, optional)
3861 - "events": list of input events.
3862
3863 The consoles are visible in the qom tree, under
3864 /backend/console[$index]. They have a device link and head property, so
3865 it is possible to map which console belongs to which device and display.
3866
3867 Note: this command is experimental, and not a stable API.
3868
3869 Example (1):
3870
3871 Press left mouse button.
3872
3873 -> { "execute": "x-input-send-event",
3874 "arguments": { "console": 0,
3875 "events": [ { "type": "btn",
3876 "data" : { "down": true, "button": "Left" } } ] } }
3877 <- { "return": {} }
3878
3879 -> { "execute": "x-input-send-event",
3880 "arguments": { "console": 0,
3881 "events": [ { "type": "btn",
3882 "data" : { "down": false, "button": "Left" } } ] } }
3883 <- { "return": {} }
3884
3885 Example (2):
3886
3887 Press ctrl-alt-del.
3888
3889 -> { "execute": "x-input-send-event",
3890 "arguments": { "console": 0, "events": [
3891 { "type": "key", "data" : { "down": true,
3892 "key": {"type": "qcode", "data": "ctrl" } } },
3893 { "type": "key", "data" : { "down": true,
3894 "key": {"type": "qcode", "data": "alt" } } },
3895 { "type": "key", "data" : { "down": true,
3896 "key": {"type": "qcode", "data": "delete" } } } ] } }
3897 <- { "return": {} }
3898
3899 Example (3):
3900
3901 Move mouse pointer to absolute coordinates (20000, 400).
3902
3903 -> { "execute": "x-input-send-event" ,
3904 "arguments": { "console": 0, "events": [
3905 { "type": "abs", "data" : { "axis": "X", "value" : 20000 } },
3906 { "type": "abs", "data" : { "axis": "Y", "value" : 400 } } ] } }
3907 <- { "return": {} }
3908
3909 EQMP