]> git.ipfire.org Git - thirdparty/git.git/blob - refs/files-backend.c
6d0fcc88f92d2b7d8e813e7738f510f581921459
[thirdparty/git.git] / refs / files-backend.c
1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
7 #include "../object.h"
8 #include "../dir.h"
9
10 struct ref_lock {
11 char *ref_name;
12 struct lock_file *lk;
13 struct object_id old_oid;
14 };
15
16 struct ref_entry;
17
18 /*
19 * Information used (along with the information in ref_entry) to
20 * describe a single cached reference. This data structure only
21 * occurs embedded in a union in struct ref_entry, and only when
22 * (ref_entry->flag & REF_DIR) is zero.
23 */
24 struct ref_value {
25 /*
26 * The name of the object to which this reference resolves
27 * (which may be a tag object). If REF_ISBROKEN, this is
28 * null. If REF_ISSYMREF, then this is the name of the object
29 * referred to by the last reference in the symlink chain.
30 */
31 struct object_id oid;
32
33 /*
34 * If REF_KNOWS_PEELED, then this field holds the peeled value
35 * of this reference, or null if the reference is known not to
36 * be peelable. See the documentation for peel_ref() for an
37 * exact definition of "peelable".
38 */
39 struct object_id peeled;
40 };
41
42 struct files_ref_store;
43
44 /*
45 * Information used (along with the information in ref_entry) to
46 * describe a level in the hierarchy of references. This data
47 * structure only occurs embedded in a union in struct ref_entry, and
48 * only when (ref_entry.flag & REF_DIR) is set. In that case,
49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50 * in the directory have already been read:
51 *
52 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53 * or packed references, already read.
54 *
55 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56 * references that hasn't been read yet (nor has any of its
57 * subdirectories).
58 *
59 * Entries within a directory are stored within a growable array of
60 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
61 * sorted are sorted by their component name in strcmp() order and the
62 * remaining entries are unsorted.
63 *
64 * Loose references are read lazily, one directory at a time. When a
65 * directory of loose references is read, then all of the references
66 * in that directory are stored, and REF_INCOMPLETE stubs are created
67 * for any subdirectories, but the subdirectories themselves are not
68 * read. The reading is triggered by get_ref_dir().
69 */
70 struct ref_dir {
71 int nr, alloc;
72
73 /*
74 * Entries with index 0 <= i < sorted are sorted by name. New
75 * entries are appended to the list unsorted, and are sorted
76 * only when required; thus we avoid the need to sort the list
77 * after the addition of every reference.
78 */
79 int sorted;
80
81 /* A pointer to the files_ref_store that contains this ref_dir. */
82 struct files_ref_store *ref_store;
83
84 struct ref_entry **entries;
85 };
86
87 /*
88 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90 * public values; see refs.h.
91 */
92
93 /*
94 * The field ref_entry->u.value.peeled of this value entry contains
95 * the correct peeled value for the reference, which might be
96 * null_sha1 if the reference is not a tag or if it is broken.
97 */
98 #define REF_KNOWS_PEELED 0x10
99
100 /* ref_entry represents a directory of references */
101 #define REF_DIR 0x20
102
103 /*
104 * Entry has not yet been read from disk (used only for REF_DIR
105 * entries representing loose references)
106 */
107 #define REF_INCOMPLETE 0x40
108
109 /*
110 * A ref_entry represents either a reference or a "subdirectory" of
111 * references.
112 *
113 * Each directory in the reference namespace is represented by a
114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
115 * that holds the entries in that directory that have been read so
116 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
117 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
118 * used for loose reference directories.
119 *
120 * References are represented by a ref_entry with (flags & REF_DIR)
121 * unset and a value member that describes the reference's value. The
122 * flag member is at the ref_entry level, but it is also needed to
123 * interpret the contents of the value field (in other words, a
124 * ref_value object is not very much use without the enclosing
125 * ref_entry).
126 *
127 * Reference names cannot end with slash and directories' names are
128 * always stored with a trailing slash (except for the top-level
129 * directory, which is always denoted by ""). This has two nice
130 * consequences: (1) when the entries in each subdir are sorted
131 * lexicographically by name (as they usually are), the references in
132 * a whole tree can be generated in lexicographic order by traversing
133 * the tree in left-to-right, depth-first order; (2) the names of
134 * references and subdirectories cannot conflict, and therefore the
135 * presence of an empty subdirectory does not block the creation of a
136 * similarly-named reference. (The fact that reference names with the
137 * same leading components can conflict *with each other* is a
138 * separate issue that is regulated by verify_refname_available().)
139 *
140 * Please note that the name field contains the fully-qualified
141 * reference (or subdirectory) name. Space could be saved by only
142 * storing the relative names. But that would require the full names
143 * to be generated on the fly when iterating in do_for_each_ref(), and
144 * would break callback functions, who have always been able to assume
145 * that the name strings that they are passed will not be freed during
146 * the iteration.
147 */
148 struct ref_entry {
149 unsigned char flag; /* ISSYMREF? ISPACKED? */
150 union {
151 struct ref_value value; /* if not (flags&REF_DIR) */
152 struct ref_dir subdir; /* if (flags&REF_DIR) */
153 } u;
154 /*
155 * The full name of the reference (e.g., "refs/heads/master")
156 * or the full name of the directory with a trailing slash
157 * (e.g., "refs/heads/"):
158 */
159 char name[FLEX_ARRAY];
160 };
161
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165 const char *dirname, size_t len,
166 int incomplete);
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168 static int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
169 const unsigned char *new_sha1, const char *msg,
170 int flags, struct strbuf *err);
171
172 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
173 {
174 struct ref_dir *dir;
175 assert(entry->flag & REF_DIR);
176 dir = &entry->u.subdir;
177 if (entry->flag & REF_INCOMPLETE) {
178 read_loose_refs(entry->name, dir);
179
180 /*
181 * Manually add refs/bisect, which, being
182 * per-worktree, might not appear in the directory
183 * listing for refs/ in the main repo.
184 */
185 if (!strcmp(entry->name, "refs/")) {
186 int pos = search_ref_dir(dir, "refs/bisect/", 12);
187 if (pos < 0) {
188 struct ref_entry *child_entry;
189 child_entry = create_dir_entry(dir->ref_store,
190 "refs/bisect/",
191 12, 1);
192 add_entry_to_dir(dir, child_entry);
193 read_loose_refs("refs/bisect",
194 &child_entry->u.subdir);
195 }
196 }
197 entry->flag &= ~REF_INCOMPLETE;
198 }
199 return dir;
200 }
201
202 static struct ref_entry *create_ref_entry(const char *refname,
203 const unsigned char *sha1, int flag,
204 int check_name)
205 {
206 struct ref_entry *ref;
207
208 if (check_name &&
209 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
210 die("Reference has invalid format: '%s'", refname);
211 FLEX_ALLOC_STR(ref, name, refname);
212 hashcpy(ref->u.value.oid.hash, sha1);
213 oidclr(&ref->u.value.peeled);
214 ref->flag = flag;
215 return ref;
216 }
217
218 static void clear_ref_dir(struct ref_dir *dir);
219
220 static void free_ref_entry(struct ref_entry *entry)
221 {
222 if (entry->flag & REF_DIR) {
223 /*
224 * Do not use get_ref_dir() here, as that might
225 * trigger the reading of loose refs.
226 */
227 clear_ref_dir(&entry->u.subdir);
228 }
229 free(entry);
230 }
231
232 /*
233 * Add a ref_entry to the end of dir (unsorted). Entry is always
234 * stored directly in dir; no recursion into subdirectories is
235 * done.
236 */
237 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
238 {
239 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
240 dir->entries[dir->nr++] = entry;
241 /* optimize for the case that entries are added in order */
242 if (dir->nr == 1 ||
243 (dir->nr == dir->sorted + 1 &&
244 strcmp(dir->entries[dir->nr - 2]->name,
245 dir->entries[dir->nr - 1]->name) < 0))
246 dir->sorted = dir->nr;
247 }
248
249 /*
250 * Clear and free all entries in dir, recursively.
251 */
252 static void clear_ref_dir(struct ref_dir *dir)
253 {
254 int i;
255 for (i = 0; i < dir->nr; i++)
256 free_ref_entry(dir->entries[i]);
257 free(dir->entries);
258 dir->sorted = dir->nr = dir->alloc = 0;
259 dir->entries = NULL;
260 }
261
262 /*
263 * Create a struct ref_entry object for the specified dirname.
264 * dirname is the name of the directory with a trailing slash (e.g.,
265 * "refs/heads/") or "" for the top-level directory.
266 */
267 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
268 const char *dirname, size_t len,
269 int incomplete)
270 {
271 struct ref_entry *direntry;
272 FLEX_ALLOC_MEM(direntry, name, dirname, len);
273 direntry->u.subdir.ref_store = ref_store;
274 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
275 return direntry;
276 }
277
278 static int ref_entry_cmp(const void *a, const void *b)
279 {
280 struct ref_entry *one = *(struct ref_entry **)a;
281 struct ref_entry *two = *(struct ref_entry **)b;
282 return strcmp(one->name, two->name);
283 }
284
285 static void sort_ref_dir(struct ref_dir *dir);
286
287 struct string_slice {
288 size_t len;
289 const char *str;
290 };
291
292 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
293 {
294 const struct string_slice *key = key_;
295 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
296 int cmp = strncmp(key->str, ent->name, key->len);
297 if (cmp)
298 return cmp;
299 return '\0' - (unsigned char)ent->name[key->len];
300 }
301
302 /*
303 * Return the index of the entry with the given refname from the
304 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
305 * no such entry is found. dir must already be complete.
306 */
307 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
308 {
309 struct ref_entry **r;
310 struct string_slice key;
311
312 if (refname == NULL || !dir->nr)
313 return -1;
314
315 sort_ref_dir(dir);
316 key.len = len;
317 key.str = refname;
318 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
319 ref_entry_cmp_sslice);
320
321 if (r == NULL)
322 return -1;
323
324 return r - dir->entries;
325 }
326
327 /*
328 * Search for a directory entry directly within dir (without
329 * recursing). Sort dir if necessary. subdirname must be a directory
330 * name (i.e., end in '/'). If mkdir is set, then create the
331 * directory if it is missing; otherwise, return NULL if the desired
332 * directory cannot be found. dir must already be complete.
333 */
334 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
335 const char *subdirname, size_t len,
336 int mkdir)
337 {
338 int entry_index = search_ref_dir(dir, subdirname, len);
339 struct ref_entry *entry;
340 if (entry_index == -1) {
341 if (!mkdir)
342 return NULL;
343 /*
344 * Since dir is complete, the absence of a subdir
345 * means that the subdir really doesn't exist;
346 * therefore, create an empty record for it but mark
347 * the record complete.
348 */
349 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
350 add_entry_to_dir(dir, entry);
351 } else {
352 entry = dir->entries[entry_index];
353 }
354 return get_ref_dir(entry);
355 }
356
357 /*
358 * If refname is a reference name, find the ref_dir within the dir
359 * tree that should hold refname. If refname is a directory name
360 * (i.e., ends in '/'), then return that ref_dir itself. dir must
361 * represent the top-level directory and must already be complete.
362 * Sort ref_dirs and recurse into subdirectories as necessary. If
363 * mkdir is set, then create any missing directories; otherwise,
364 * return NULL if the desired directory cannot be found.
365 */
366 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
367 const char *refname, int mkdir)
368 {
369 const char *slash;
370 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
371 size_t dirnamelen = slash - refname + 1;
372 struct ref_dir *subdir;
373 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
374 if (!subdir) {
375 dir = NULL;
376 break;
377 }
378 dir = subdir;
379 }
380
381 return dir;
382 }
383
384 /*
385 * Find the value entry with the given name in dir, sorting ref_dirs
386 * and recursing into subdirectories as necessary. If the name is not
387 * found or it corresponds to a directory entry, return NULL.
388 */
389 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
390 {
391 int entry_index;
392 struct ref_entry *entry;
393 dir = find_containing_dir(dir, refname, 0);
394 if (!dir)
395 return NULL;
396 entry_index = search_ref_dir(dir, refname, strlen(refname));
397 if (entry_index == -1)
398 return NULL;
399 entry = dir->entries[entry_index];
400 return (entry->flag & REF_DIR) ? NULL : entry;
401 }
402
403 /*
404 * Remove the entry with the given name from dir, recursing into
405 * subdirectories as necessary. If refname is the name of a directory
406 * (i.e., ends with '/'), then remove the directory and its contents.
407 * If the removal was successful, return the number of entries
408 * remaining in the directory entry that contained the deleted entry.
409 * If the name was not found, return -1. Please note that this
410 * function only deletes the entry from the cache; it does not delete
411 * it from the filesystem or ensure that other cache entries (which
412 * might be symbolic references to the removed entry) are updated.
413 * Nor does it remove any containing dir entries that might be made
414 * empty by the removal. dir must represent the top-level directory
415 * and must already be complete.
416 */
417 static int remove_entry(struct ref_dir *dir, const char *refname)
418 {
419 int refname_len = strlen(refname);
420 int entry_index;
421 struct ref_entry *entry;
422 int is_dir = refname[refname_len - 1] == '/';
423 if (is_dir) {
424 /*
425 * refname represents a reference directory. Remove
426 * the trailing slash; otherwise we will get the
427 * directory *representing* refname rather than the
428 * one *containing* it.
429 */
430 char *dirname = xmemdupz(refname, refname_len - 1);
431 dir = find_containing_dir(dir, dirname, 0);
432 free(dirname);
433 } else {
434 dir = find_containing_dir(dir, refname, 0);
435 }
436 if (!dir)
437 return -1;
438 entry_index = search_ref_dir(dir, refname, refname_len);
439 if (entry_index == -1)
440 return -1;
441 entry = dir->entries[entry_index];
442
443 memmove(&dir->entries[entry_index],
444 &dir->entries[entry_index + 1],
445 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
446 );
447 dir->nr--;
448 if (dir->sorted > entry_index)
449 dir->sorted--;
450 free_ref_entry(entry);
451 return dir->nr;
452 }
453
454 /*
455 * Add a ref_entry to the ref_dir (unsorted), recursing into
456 * subdirectories as necessary. dir must represent the top-level
457 * directory. Return 0 on success.
458 */
459 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
460 {
461 dir = find_containing_dir(dir, ref->name, 1);
462 if (!dir)
463 return -1;
464 add_entry_to_dir(dir, ref);
465 return 0;
466 }
467
468 /*
469 * Emit a warning and return true iff ref1 and ref2 have the same name
470 * and the same sha1. Die if they have the same name but different
471 * sha1s.
472 */
473 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
474 {
475 if (strcmp(ref1->name, ref2->name))
476 return 0;
477
478 /* Duplicate name; make sure that they don't conflict: */
479
480 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
481 /* This is impossible by construction */
482 die("Reference directory conflict: %s", ref1->name);
483
484 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
485 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
486
487 warning("Duplicated ref: %s", ref1->name);
488 return 1;
489 }
490
491 /*
492 * Sort the entries in dir non-recursively (if they are not already
493 * sorted) and remove any duplicate entries.
494 */
495 static void sort_ref_dir(struct ref_dir *dir)
496 {
497 int i, j;
498 struct ref_entry *last = NULL;
499
500 /*
501 * This check also prevents passing a zero-length array to qsort(),
502 * which is a problem on some platforms.
503 */
504 if (dir->sorted == dir->nr)
505 return;
506
507 QSORT(dir->entries, dir->nr, ref_entry_cmp);
508
509 /* Remove any duplicates: */
510 for (i = 0, j = 0; j < dir->nr; j++) {
511 struct ref_entry *entry = dir->entries[j];
512 if (last && is_dup_ref(last, entry))
513 free_ref_entry(entry);
514 else
515 last = dir->entries[i++] = entry;
516 }
517 dir->sorted = dir->nr = i;
518 }
519
520 /*
521 * Return true if refname, which has the specified oid and flags, can
522 * be resolved to an object in the database. If the referred-to object
523 * does not exist, emit a warning and return false.
524 */
525 static int ref_resolves_to_object(const char *refname,
526 const struct object_id *oid,
527 unsigned int flags)
528 {
529 if (flags & REF_ISBROKEN)
530 return 0;
531 if (!has_sha1_file(oid->hash)) {
532 error("%s does not point to a valid object!", refname);
533 return 0;
534 }
535 return 1;
536 }
537
538 /*
539 * Return true if the reference described by entry can be resolved to
540 * an object in the database; otherwise, emit a warning and return
541 * false.
542 */
543 static int entry_resolves_to_object(struct ref_entry *entry)
544 {
545 return ref_resolves_to_object(entry->name,
546 &entry->u.value.oid, entry->flag);
547 }
548
549 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
550
551 /*
552 * Call fn for each reference in dir that has index in the range
553 * offset <= index < dir->nr. Recurse into subdirectories that are in
554 * that index range, sorting them before iterating. This function
555 * does not sort dir itself; it should be sorted beforehand. fn is
556 * called for all references, including broken ones.
557 */
558 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
559 each_ref_entry_fn fn, void *cb_data)
560 {
561 int i;
562 assert(dir->sorted == dir->nr);
563 for (i = offset; i < dir->nr; i++) {
564 struct ref_entry *entry = dir->entries[i];
565 int retval;
566 if (entry->flag & REF_DIR) {
567 struct ref_dir *subdir = get_ref_dir(entry);
568 sort_ref_dir(subdir);
569 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
570 } else {
571 retval = fn(entry, cb_data);
572 }
573 if (retval)
574 return retval;
575 }
576 return 0;
577 }
578
579 /*
580 * Load all of the refs from the dir into our in-memory cache. The hard work
581 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
582 * through all of the sub-directories. We do not even need to care about
583 * sorting, as traversal order does not matter to us.
584 */
585 static void prime_ref_dir(struct ref_dir *dir)
586 {
587 int i;
588 for (i = 0; i < dir->nr; i++) {
589 struct ref_entry *entry = dir->entries[i];
590 if (entry->flag & REF_DIR)
591 prime_ref_dir(get_ref_dir(entry));
592 }
593 }
594
595 /*
596 * A level in the reference hierarchy that is currently being iterated
597 * through.
598 */
599 struct cache_ref_iterator_level {
600 /*
601 * The ref_dir being iterated over at this level. The ref_dir
602 * is sorted before being stored here.
603 */
604 struct ref_dir *dir;
605
606 /*
607 * The index of the current entry within dir (which might
608 * itself be a directory). If index == -1, then the iteration
609 * hasn't yet begun. If index == dir->nr, then the iteration
610 * through this level is over.
611 */
612 int index;
613 };
614
615 /*
616 * Represent an iteration through a ref_dir in the memory cache. The
617 * iteration recurses through subdirectories.
618 */
619 struct cache_ref_iterator {
620 struct ref_iterator base;
621
622 /*
623 * The number of levels currently on the stack. This is always
624 * at least 1, because when it becomes zero the iteration is
625 * ended and this struct is freed.
626 */
627 size_t levels_nr;
628
629 /* The number of levels that have been allocated on the stack */
630 size_t levels_alloc;
631
632 /*
633 * A stack of levels. levels[0] is the uppermost level that is
634 * being iterated over in this iteration. (This is not
635 * necessary the top level in the references hierarchy. If we
636 * are iterating through a subtree, then levels[0] will hold
637 * the ref_dir for that subtree, and subsequent levels will go
638 * on from there.)
639 */
640 struct cache_ref_iterator_level *levels;
641 };
642
643 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
644 {
645 struct cache_ref_iterator *iter =
646 (struct cache_ref_iterator *)ref_iterator;
647
648 while (1) {
649 struct cache_ref_iterator_level *level =
650 &iter->levels[iter->levels_nr - 1];
651 struct ref_dir *dir = level->dir;
652 struct ref_entry *entry;
653
654 if (level->index == -1)
655 sort_ref_dir(dir);
656
657 if (++level->index == level->dir->nr) {
658 /* This level is exhausted; pop up a level */
659 if (--iter->levels_nr == 0)
660 return ref_iterator_abort(ref_iterator);
661
662 continue;
663 }
664
665 entry = dir->entries[level->index];
666
667 if (entry->flag & REF_DIR) {
668 /* push down a level */
669 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
670 iter->levels_alloc);
671
672 level = &iter->levels[iter->levels_nr++];
673 level->dir = get_ref_dir(entry);
674 level->index = -1;
675 } else {
676 iter->base.refname = entry->name;
677 iter->base.oid = &entry->u.value.oid;
678 iter->base.flags = entry->flag;
679 return ITER_OK;
680 }
681 }
682 }
683
684 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
685
686 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
687 struct object_id *peeled)
688 {
689 struct cache_ref_iterator *iter =
690 (struct cache_ref_iterator *)ref_iterator;
691 struct cache_ref_iterator_level *level;
692 struct ref_entry *entry;
693
694 level = &iter->levels[iter->levels_nr - 1];
695
696 if (level->index == -1)
697 die("BUG: peel called before advance for cache iterator");
698
699 entry = level->dir->entries[level->index];
700
701 if (peel_entry(entry, 0))
702 return -1;
703 oidcpy(peeled, &entry->u.value.peeled);
704 return 0;
705 }
706
707 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
708 {
709 struct cache_ref_iterator *iter =
710 (struct cache_ref_iterator *)ref_iterator;
711
712 free(iter->levels);
713 base_ref_iterator_free(ref_iterator);
714 return ITER_DONE;
715 }
716
717 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
718 cache_ref_iterator_advance,
719 cache_ref_iterator_peel,
720 cache_ref_iterator_abort
721 };
722
723 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
724 {
725 struct cache_ref_iterator *iter;
726 struct ref_iterator *ref_iterator;
727 struct cache_ref_iterator_level *level;
728
729 iter = xcalloc(1, sizeof(*iter));
730 ref_iterator = &iter->base;
731 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
732 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
733
734 iter->levels_nr = 1;
735 level = &iter->levels[0];
736 level->index = -1;
737 level->dir = dir;
738
739 return ref_iterator;
740 }
741
742 struct nonmatching_ref_data {
743 const struct string_list *skip;
744 const char *conflicting_refname;
745 };
746
747 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
748 {
749 struct nonmatching_ref_data *data = vdata;
750
751 if (data->skip && string_list_has_string(data->skip, entry->name))
752 return 0;
753
754 data->conflicting_refname = entry->name;
755 return 1;
756 }
757
758 /*
759 * Return 0 if a reference named refname could be created without
760 * conflicting with the name of an existing reference in dir.
761 * See verify_refname_available for more information.
762 */
763 static int verify_refname_available_dir(const char *refname,
764 const struct string_list *extras,
765 const struct string_list *skip,
766 struct ref_dir *dir,
767 struct strbuf *err)
768 {
769 const char *slash;
770 const char *extra_refname;
771 int pos;
772 struct strbuf dirname = STRBUF_INIT;
773 int ret = -1;
774
775 /*
776 * For the sake of comments in this function, suppose that
777 * refname is "refs/foo/bar".
778 */
779
780 assert(err);
781
782 strbuf_grow(&dirname, strlen(refname) + 1);
783 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
784 /* Expand dirname to the new prefix, not including the trailing slash: */
785 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
786
787 /*
788 * We are still at a leading dir of the refname (e.g.,
789 * "refs/foo"; if there is a reference with that name,
790 * it is a conflict, *unless* it is in skip.
791 */
792 if (dir) {
793 pos = search_ref_dir(dir, dirname.buf, dirname.len);
794 if (pos >= 0 &&
795 (!skip || !string_list_has_string(skip, dirname.buf))) {
796 /*
797 * We found a reference whose name is
798 * a proper prefix of refname; e.g.,
799 * "refs/foo", and is not in skip.
800 */
801 strbuf_addf(err, "'%s' exists; cannot create '%s'",
802 dirname.buf, refname);
803 goto cleanup;
804 }
805 }
806
807 if (extras && string_list_has_string(extras, dirname.buf) &&
808 (!skip || !string_list_has_string(skip, dirname.buf))) {
809 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
810 refname, dirname.buf);
811 goto cleanup;
812 }
813
814 /*
815 * Otherwise, we can try to continue our search with
816 * the next component. So try to look up the
817 * directory, e.g., "refs/foo/". If we come up empty,
818 * we know there is nothing under this whole prefix,
819 * but even in that case we still have to continue the
820 * search for conflicts with extras.
821 */
822 strbuf_addch(&dirname, '/');
823 if (dir) {
824 pos = search_ref_dir(dir, dirname.buf, dirname.len);
825 if (pos < 0) {
826 /*
827 * There was no directory "refs/foo/",
828 * so there is nothing under this
829 * whole prefix. So there is no need
830 * to continue looking for conflicting
831 * references. But we need to continue
832 * looking for conflicting extras.
833 */
834 dir = NULL;
835 } else {
836 dir = get_ref_dir(dir->entries[pos]);
837 }
838 }
839 }
840
841 /*
842 * We are at the leaf of our refname (e.g., "refs/foo/bar").
843 * There is no point in searching for a reference with that
844 * name, because a refname isn't considered to conflict with
845 * itself. But we still need to check for references whose
846 * names are in the "refs/foo/bar/" namespace, because they
847 * *do* conflict.
848 */
849 strbuf_addstr(&dirname, refname + dirname.len);
850 strbuf_addch(&dirname, '/');
851
852 if (dir) {
853 pos = search_ref_dir(dir, dirname.buf, dirname.len);
854
855 if (pos >= 0) {
856 /*
857 * We found a directory named "$refname/"
858 * (e.g., "refs/foo/bar/"). It is a problem
859 * iff it contains any ref that is not in
860 * "skip".
861 */
862 struct nonmatching_ref_data data;
863
864 data.skip = skip;
865 data.conflicting_refname = NULL;
866 dir = get_ref_dir(dir->entries[pos]);
867 sort_ref_dir(dir);
868 if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
869 strbuf_addf(err, "'%s' exists; cannot create '%s'",
870 data.conflicting_refname, refname);
871 goto cleanup;
872 }
873 }
874 }
875
876 extra_refname = find_descendant_ref(dirname.buf, extras, skip);
877 if (extra_refname)
878 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
879 refname, extra_refname);
880 else
881 ret = 0;
882
883 cleanup:
884 strbuf_release(&dirname);
885 return ret;
886 }
887
888 struct packed_ref_cache {
889 struct ref_entry *root;
890
891 /*
892 * Count of references to the data structure in this instance,
893 * including the pointer from files_ref_store::packed if any.
894 * The data will not be freed as long as the reference count
895 * is nonzero.
896 */
897 unsigned int referrers;
898
899 /*
900 * Iff the packed-refs file associated with this instance is
901 * currently locked for writing, this points at the associated
902 * lock (which is owned by somebody else). The referrer count
903 * is also incremented when the file is locked and decremented
904 * when it is unlocked.
905 */
906 struct lock_file *lock;
907
908 /* The metadata from when this packed-refs cache was read */
909 struct stat_validity validity;
910 };
911
912 /*
913 * Future: need to be in "struct repository"
914 * when doing a full libification.
915 */
916 struct files_ref_store {
917 struct ref_store base;
918
919 /*
920 * The name of the submodule represented by this object, or
921 * NULL if it represents the main repository's reference
922 * store:
923 */
924 const char *submodule;
925
926 char *packed_refs_path;
927
928 struct ref_entry *loose;
929 struct packed_ref_cache *packed;
930 };
931
932 /* Lock used for the main packed-refs file: */
933 static struct lock_file packlock;
934
935 /*
936 * Increment the reference count of *packed_refs.
937 */
938 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
939 {
940 packed_refs->referrers++;
941 }
942
943 /*
944 * Decrease the reference count of *packed_refs. If it goes to zero,
945 * free *packed_refs and return true; otherwise return false.
946 */
947 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
948 {
949 if (!--packed_refs->referrers) {
950 free_ref_entry(packed_refs->root);
951 stat_validity_clear(&packed_refs->validity);
952 free(packed_refs);
953 return 1;
954 } else {
955 return 0;
956 }
957 }
958
959 static void clear_packed_ref_cache(struct files_ref_store *refs)
960 {
961 if (refs->packed) {
962 struct packed_ref_cache *packed_refs = refs->packed;
963
964 if (packed_refs->lock)
965 die("internal error: packed-ref cache cleared while locked");
966 refs->packed = NULL;
967 release_packed_ref_cache(packed_refs);
968 }
969 }
970
971 static void clear_loose_ref_cache(struct files_ref_store *refs)
972 {
973 if (refs->loose) {
974 free_ref_entry(refs->loose);
975 refs->loose = NULL;
976 }
977 }
978
979 /*
980 * Create a new submodule ref cache and add it to the internal
981 * set of caches.
982 */
983 static struct ref_store *files_ref_store_create(const char *submodule)
984 {
985 struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
986 struct ref_store *ref_store = (struct ref_store *)refs;
987
988 base_ref_store_init(ref_store, &refs_be_files);
989
990 if (submodule) {
991 refs->submodule = xstrdup(submodule);
992 refs->packed_refs_path = git_pathdup_submodule(
993 refs->submodule, "packed-refs");
994 return ref_store;
995 }
996
997 refs->packed_refs_path = git_pathdup("packed-refs");
998
999 return ref_store;
1000 }
1001
1002 /*
1003 * Die if refs is for a submodule (i.e., not for the main repository).
1004 * caller is used in any necessary error messages.
1005 */
1006 static void files_assert_main_repository(struct files_ref_store *refs,
1007 const char *caller)
1008 {
1009 if (refs->submodule)
1010 die("BUG: %s called for a submodule", caller);
1011 }
1012
1013 /*
1014 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1015 * files_ref_store. If submodule_allowed is not true, then also die if
1016 * files_ref_store is for a submodule (i.e., not for the main
1017 * repository). caller is used in any necessary error messages.
1018 */
1019 static struct files_ref_store *files_downcast(
1020 struct ref_store *ref_store, int submodule_allowed,
1021 const char *caller)
1022 {
1023 struct files_ref_store *refs;
1024
1025 if (ref_store->be != &refs_be_files)
1026 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1027 ref_store->be->name, caller);
1028
1029 refs = (struct files_ref_store *)ref_store;
1030
1031 if (!submodule_allowed)
1032 files_assert_main_repository(refs, caller);
1033
1034 return refs;
1035 }
1036
1037 /* The length of a peeled reference line in packed-refs, including EOL: */
1038 #define PEELED_LINE_LENGTH 42
1039
1040 /*
1041 * The packed-refs header line that we write out. Perhaps other
1042 * traits will be added later. The trailing space is required.
1043 */
1044 static const char PACKED_REFS_HEADER[] =
1045 "# pack-refs with: peeled fully-peeled \n";
1046
1047 /*
1048 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1049 * Return a pointer to the refname within the line (null-terminated),
1050 * or NULL if there was a problem.
1051 */
1052 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1053 {
1054 const char *ref;
1055
1056 /*
1057 * 42: the answer to everything.
1058 *
1059 * In this case, it happens to be the answer to
1060 * 40 (length of sha1 hex representation)
1061 * +1 (space in between hex and name)
1062 * +1 (newline at the end of the line)
1063 */
1064 if (line->len <= 42)
1065 return NULL;
1066
1067 if (get_sha1_hex(line->buf, sha1) < 0)
1068 return NULL;
1069 if (!isspace(line->buf[40]))
1070 return NULL;
1071
1072 ref = line->buf + 41;
1073 if (isspace(*ref))
1074 return NULL;
1075
1076 if (line->buf[line->len - 1] != '\n')
1077 return NULL;
1078 line->buf[--line->len] = 0;
1079
1080 return ref;
1081 }
1082
1083 /*
1084 * Read f, which is a packed-refs file, into dir.
1085 *
1086 * A comment line of the form "# pack-refs with: " may contain zero or
1087 * more traits. We interpret the traits as follows:
1088 *
1089 * No traits:
1090 *
1091 * Probably no references are peeled. But if the file contains a
1092 * peeled value for a reference, we will use it.
1093 *
1094 * peeled:
1095 *
1096 * References under "refs/tags/", if they *can* be peeled, *are*
1097 * peeled in this file. References outside of "refs/tags/" are
1098 * probably not peeled even if they could have been, but if we find
1099 * a peeled value for such a reference we will use it.
1100 *
1101 * fully-peeled:
1102 *
1103 * All references in the file that can be peeled are peeled.
1104 * Inversely (and this is more important), any references in the
1105 * file for which no peeled value is recorded is not peelable. This
1106 * trait should typically be written alongside "peeled" for
1107 * compatibility with older clients, but we do not require it
1108 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1109 */
1110 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1111 {
1112 struct ref_entry *last = NULL;
1113 struct strbuf line = STRBUF_INIT;
1114 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1115
1116 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1117 unsigned char sha1[20];
1118 const char *refname;
1119 const char *traits;
1120
1121 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1122 if (strstr(traits, " fully-peeled "))
1123 peeled = PEELED_FULLY;
1124 else if (strstr(traits, " peeled "))
1125 peeled = PEELED_TAGS;
1126 /* perhaps other traits later as well */
1127 continue;
1128 }
1129
1130 refname = parse_ref_line(&line, sha1);
1131 if (refname) {
1132 int flag = REF_ISPACKED;
1133
1134 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1135 if (!refname_is_safe(refname))
1136 die("packed refname is dangerous: %s", refname);
1137 hashclr(sha1);
1138 flag |= REF_BAD_NAME | REF_ISBROKEN;
1139 }
1140 last = create_ref_entry(refname, sha1, flag, 0);
1141 if (peeled == PEELED_FULLY ||
1142 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1143 last->flag |= REF_KNOWS_PEELED;
1144 add_ref(dir, last);
1145 continue;
1146 }
1147 if (last &&
1148 line.buf[0] == '^' &&
1149 line.len == PEELED_LINE_LENGTH &&
1150 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1151 !get_sha1_hex(line.buf + 1, sha1)) {
1152 hashcpy(last->u.value.peeled.hash, sha1);
1153 /*
1154 * Regardless of what the file header said,
1155 * we definitely know the value of *this*
1156 * reference:
1157 */
1158 last->flag |= REF_KNOWS_PEELED;
1159 }
1160 }
1161
1162 strbuf_release(&line);
1163 }
1164
1165 static const char *files_packed_refs_path(struct files_ref_store *refs)
1166 {
1167 return refs->packed_refs_path;
1168 }
1169
1170 /*
1171 * Get the packed_ref_cache for the specified files_ref_store,
1172 * creating it if necessary.
1173 */
1174 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1175 {
1176 const char *packed_refs_file = files_packed_refs_path(refs);
1177
1178 if (refs->packed &&
1179 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1180 clear_packed_ref_cache(refs);
1181
1182 if (!refs->packed) {
1183 FILE *f;
1184
1185 refs->packed = xcalloc(1, sizeof(*refs->packed));
1186 acquire_packed_ref_cache(refs->packed);
1187 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1188 f = fopen(packed_refs_file, "r");
1189 if (f) {
1190 stat_validity_update(&refs->packed->validity, fileno(f));
1191 read_packed_refs(f, get_ref_dir(refs->packed->root));
1192 fclose(f);
1193 }
1194 }
1195 return refs->packed;
1196 }
1197
1198 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1199 {
1200 return get_ref_dir(packed_ref_cache->root);
1201 }
1202
1203 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1204 {
1205 return get_packed_ref_dir(get_packed_ref_cache(refs));
1206 }
1207
1208 /*
1209 * Add a reference to the in-memory packed reference cache. This may
1210 * only be called while the packed-refs file is locked (see
1211 * lock_packed_refs()). To actually write the packed-refs file, call
1212 * commit_packed_refs().
1213 */
1214 static void add_packed_ref(struct files_ref_store *refs,
1215 const char *refname, const unsigned char *sha1)
1216 {
1217 struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1218
1219 if (!packed_ref_cache->lock)
1220 die("internal error: packed refs not locked");
1221 add_ref(get_packed_ref_dir(packed_ref_cache),
1222 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1223 }
1224
1225 /*
1226 * Read the loose references from the namespace dirname into dir
1227 * (without recursing). dirname must end with '/'. dir must be the
1228 * directory entry corresponding to dirname.
1229 */
1230 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1231 {
1232 struct files_ref_store *refs = dir->ref_store;
1233 DIR *d;
1234 struct dirent *de;
1235 int dirnamelen = strlen(dirname);
1236 struct strbuf refname;
1237 struct strbuf path = STRBUF_INIT;
1238 size_t path_baselen;
1239 int err = 0;
1240
1241 if (refs->submodule)
1242 err = strbuf_git_path_submodule(&path, refs->submodule, "%s", dirname);
1243 else
1244 strbuf_git_path(&path, "%s", dirname);
1245 path_baselen = path.len;
1246
1247 if (err) {
1248 strbuf_release(&path);
1249 return;
1250 }
1251
1252 d = opendir(path.buf);
1253 if (!d) {
1254 strbuf_release(&path);
1255 return;
1256 }
1257
1258 strbuf_init(&refname, dirnamelen + 257);
1259 strbuf_add(&refname, dirname, dirnamelen);
1260
1261 while ((de = readdir(d)) != NULL) {
1262 unsigned char sha1[20];
1263 struct stat st;
1264 int flag;
1265
1266 if (de->d_name[0] == '.')
1267 continue;
1268 if (ends_with(de->d_name, ".lock"))
1269 continue;
1270 strbuf_addstr(&refname, de->d_name);
1271 strbuf_addstr(&path, de->d_name);
1272 if (stat(path.buf, &st) < 0) {
1273 ; /* silently ignore */
1274 } else if (S_ISDIR(st.st_mode)) {
1275 strbuf_addch(&refname, '/');
1276 add_entry_to_dir(dir,
1277 create_dir_entry(refs, refname.buf,
1278 refname.len, 1));
1279 } else {
1280 if (!resolve_ref_recursively(&refs->base,
1281 refname.buf,
1282 RESOLVE_REF_READING,
1283 sha1, &flag)) {
1284 hashclr(sha1);
1285 flag |= REF_ISBROKEN;
1286 } else if (is_null_sha1(sha1)) {
1287 /*
1288 * It is so astronomically unlikely
1289 * that NULL_SHA1 is the SHA-1 of an
1290 * actual object that we consider its
1291 * appearance in a loose reference
1292 * file to be repo corruption
1293 * (probably due to a software bug).
1294 */
1295 flag |= REF_ISBROKEN;
1296 }
1297
1298 if (check_refname_format(refname.buf,
1299 REFNAME_ALLOW_ONELEVEL)) {
1300 if (!refname_is_safe(refname.buf))
1301 die("loose refname is dangerous: %s", refname.buf);
1302 hashclr(sha1);
1303 flag |= REF_BAD_NAME | REF_ISBROKEN;
1304 }
1305 add_entry_to_dir(dir,
1306 create_ref_entry(refname.buf, sha1, flag, 0));
1307 }
1308 strbuf_setlen(&refname, dirnamelen);
1309 strbuf_setlen(&path, path_baselen);
1310 }
1311 strbuf_release(&refname);
1312 strbuf_release(&path);
1313 closedir(d);
1314 }
1315
1316 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1317 {
1318 if (!refs->loose) {
1319 /*
1320 * Mark the top-level directory complete because we
1321 * are about to read the only subdirectory that can
1322 * hold references:
1323 */
1324 refs->loose = create_dir_entry(refs, "", 0, 0);
1325 /*
1326 * Create an incomplete entry for "refs/":
1327 */
1328 add_entry_to_dir(get_ref_dir(refs->loose),
1329 create_dir_entry(refs, "refs/", 5, 1));
1330 }
1331 return get_ref_dir(refs->loose);
1332 }
1333
1334 /*
1335 * Return the ref_entry for the given refname from the packed
1336 * references. If it does not exist, return NULL.
1337 */
1338 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1339 const char *refname)
1340 {
1341 return find_ref(get_packed_refs(refs), refname);
1342 }
1343
1344 /*
1345 * A loose ref file doesn't exist; check for a packed ref.
1346 */
1347 static int resolve_packed_ref(struct files_ref_store *refs,
1348 const char *refname,
1349 unsigned char *sha1, unsigned int *flags)
1350 {
1351 struct ref_entry *entry;
1352
1353 /*
1354 * The loose reference file does not exist; check for a packed
1355 * reference.
1356 */
1357 entry = get_packed_ref(refs, refname);
1358 if (entry) {
1359 hashcpy(sha1, entry->u.value.oid.hash);
1360 *flags |= REF_ISPACKED;
1361 return 0;
1362 }
1363 /* refname is not a packed reference. */
1364 return -1;
1365 }
1366
1367 static int files_read_raw_ref(struct ref_store *ref_store,
1368 const char *refname, unsigned char *sha1,
1369 struct strbuf *referent, unsigned int *type)
1370 {
1371 struct files_ref_store *refs =
1372 files_downcast(ref_store, 1, "read_raw_ref");
1373 struct strbuf sb_contents = STRBUF_INIT;
1374 struct strbuf sb_path = STRBUF_INIT;
1375 const char *path;
1376 const char *buf;
1377 struct stat st;
1378 int fd;
1379 int ret = -1;
1380 int save_errno;
1381 int remaining_retries = 3;
1382
1383 *type = 0;
1384 strbuf_reset(&sb_path);
1385
1386 if (refs->submodule)
1387 strbuf_git_path_submodule(&sb_path, refs->submodule, "%s", refname);
1388 else
1389 strbuf_git_path(&sb_path, "%s", refname);
1390
1391 path = sb_path.buf;
1392
1393 stat_ref:
1394 /*
1395 * We might have to loop back here to avoid a race
1396 * condition: first we lstat() the file, then we try
1397 * to read it as a link or as a file. But if somebody
1398 * changes the type of the file (file <-> directory
1399 * <-> symlink) between the lstat() and reading, then
1400 * we don't want to report that as an error but rather
1401 * try again starting with the lstat().
1402 *
1403 * We'll keep a count of the retries, though, just to avoid
1404 * any confusing situation sending us into an infinite loop.
1405 */
1406
1407 if (remaining_retries-- <= 0)
1408 goto out;
1409
1410 if (lstat(path, &st) < 0) {
1411 if (errno != ENOENT)
1412 goto out;
1413 if (resolve_packed_ref(refs, refname, sha1, type)) {
1414 errno = ENOENT;
1415 goto out;
1416 }
1417 ret = 0;
1418 goto out;
1419 }
1420
1421 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1422 if (S_ISLNK(st.st_mode)) {
1423 strbuf_reset(&sb_contents);
1424 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1425 if (errno == ENOENT || errno == EINVAL)
1426 /* inconsistent with lstat; retry */
1427 goto stat_ref;
1428 else
1429 goto out;
1430 }
1431 if (starts_with(sb_contents.buf, "refs/") &&
1432 !check_refname_format(sb_contents.buf, 0)) {
1433 strbuf_swap(&sb_contents, referent);
1434 *type |= REF_ISSYMREF;
1435 ret = 0;
1436 goto out;
1437 }
1438 /*
1439 * It doesn't look like a refname; fall through to just
1440 * treating it like a non-symlink, and reading whatever it
1441 * points to.
1442 */
1443 }
1444
1445 /* Is it a directory? */
1446 if (S_ISDIR(st.st_mode)) {
1447 /*
1448 * Even though there is a directory where the loose
1449 * ref is supposed to be, there could still be a
1450 * packed ref:
1451 */
1452 if (resolve_packed_ref(refs, refname, sha1, type)) {
1453 errno = EISDIR;
1454 goto out;
1455 }
1456 ret = 0;
1457 goto out;
1458 }
1459
1460 /*
1461 * Anything else, just open it and try to use it as
1462 * a ref
1463 */
1464 fd = open(path, O_RDONLY);
1465 if (fd < 0) {
1466 if (errno == ENOENT && !S_ISLNK(st.st_mode))
1467 /* inconsistent with lstat; retry */
1468 goto stat_ref;
1469 else
1470 goto out;
1471 }
1472 strbuf_reset(&sb_contents);
1473 if (strbuf_read(&sb_contents, fd, 256) < 0) {
1474 int save_errno = errno;
1475 close(fd);
1476 errno = save_errno;
1477 goto out;
1478 }
1479 close(fd);
1480 strbuf_rtrim(&sb_contents);
1481 buf = sb_contents.buf;
1482 if (starts_with(buf, "ref:")) {
1483 buf += 4;
1484 while (isspace(*buf))
1485 buf++;
1486
1487 strbuf_reset(referent);
1488 strbuf_addstr(referent, buf);
1489 *type |= REF_ISSYMREF;
1490 ret = 0;
1491 goto out;
1492 }
1493
1494 /*
1495 * Please note that FETCH_HEAD has additional
1496 * data after the sha.
1497 */
1498 if (get_sha1_hex(buf, sha1) ||
1499 (buf[40] != '\0' && !isspace(buf[40]))) {
1500 *type |= REF_ISBROKEN;
1501 errno = EINVAL;
1502 goto out;
1503 }
1504
1505 ret = 0;
1506
1507 out:
1508 save_errno = errno;
1509 strbuf_release(&sb_path);
1510 strbuf_release(&sb_contents);
1511 errno = save_errno;
1512 return ret;
1513 }
1514
1515 static void unlock_ref(struct ref_lock *lock)
1516 {
1517 /* Do not free lock->lk -- atexit() still looks at them */
1518 if (lock->lk)
1519 rollback_lock_file(lock->lk);
1520 free(lock->ref_name);
1521 free(lock);
1522 }
1523
1524 /*
1525 * Lock refname, without following symrefs, and set *lock_p to point
1526 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1527 * and type similarly to read_raw_ref().
1528 *
1529 * The caller must verify that refname is a "safe" reference name (in
1530 * the sense of refname_is_safe()) before calling this function.
1531 *
1532 * If the reference doesn't already exist, verify that refname doesn't
1533 * have a D/F conflict with any existing references. extras and skip
1534 * are passed to verify_refname_available_dir() for this check.
1535 *
1536 * If mustexist is not set and the reference is not found or is
1537 * broken, lock the reference anyway but clear sha1.
1538 *
1539 * Return 0 on success. On failure, write an error message to err and
1540 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1541 *
1542 * Implementation note: This function is basically
1543 *
1544 * lock reference
1545 * read_raw_ref()
1546 *
1547 * but it includes a lot more code to
1548 * - Deal with possible races with other processes
1549 * - Avoid calling verify_refname_available_dir() when it can be
1550 * avoided, namely if we were successfully able to read the ref
1551 * - Generate informative error messages in the case of failure
1552 */
1553 static int lock_raw_ref(struct files_ref_store *refs,
1554 const char *refname, int mustexist,
1555 const struct string_list *extras,
1556 const struct string_list *skip,
1557 struct ref_lock **lock_p,
1558 struct strbuf *referent,
1559 unsigned int *type,
1560 struct strbuf *err)
1561 {
1562 struct ref_lock *lock;
1563 struct strbuf ref_file = STRBUF_INIT;
1564 int attempts_remaining = 3;
1565 int ret = TRANSACTION_GENERIC_ERROR;
1566
1567 assert(err);
1568 files_assert_main_repository(refs, "lock_raw_ref");
1569
1570 *type = 0;
1571
1572 /* First lock the file so it can't change out from under us. */
1573
1574 *lock_p = lock = xcalloc(1, sizeof(*lock));
1575
1576 lock->ref_name = xstrdup(refname);
1577 strbuf_git_path(&ref_file, "%s", refname);
1578
1579 retry:
1580 switch (safe_create_leading_directories(ref_file.buf)) {
1581 case SCLD_OK:
1582 break; /* success */
1583 case SCLD_EXISTS:
1584 /*
1585 * Suppose refname is "refs/foo/bar". We just failed
1586 * to create the containing directory, "refs/foo",
1587 * because there was a non-directory in the way. This
1588 * indicates a D/F conflict, probably because of
1589 * another reference such as "refs/foo". There is no
1590 * reason to expect this error to be transitory.
1591 */
1592 if (verify_refname_available(refname, extras, skip, err)) {
1593 if (mustexist) {
1594 /*
1595 * To the user the relevant error is
1596 * that the "mustexist" reference is
1597 * missing:
1598 */
1599 strbuf_reset(err);
1600 strbuf_addf(err, "unable to resolve reference '%s'",
1601 refname);
1602 } else {
1603 /*
1604 * The error message set by
1605 * verify_refname_available_dir() is OK.
1606 */
1607 ret = TRANSACTION_NAME_CONFLICT;
1608 }
1609 } else {
1610 /*
1611 * The file that is in the way isn't a loose
1612 * reference. Report it as a low-level
1613 * failure.
1614 */
1615 strbuf_addf(err, "unable to create lock file %s.lock; "
1616 "non-directory in the way",
1617 ref_file.buf);
1618 }
1619 goto error_return;
1620 case SCLD_VANISHED:
1621 /* Maybe another process was tidying up. Try again. */
1622 if (--attempts_remaining > 0)
1623 goto retry;
1624 /* fall through */
1625 default:
1626 strbuf_addf(err, "unable to create directory for %s",
1627 ref_file.buf);
1628 goto error_return;
1629 }
1630
1631 if (!lock->lk)
1632 lock->lk = xcalloc(1, sizeof(struct lock_file));
1633
1634 if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1635 if (errno == ENOENT && --attempts_remaining > 0) {
1636 /*
1637 * Maybe somebody just deleted one of the
1638 * directories leading to ref_file. Try
1639 * again:
1640 */
1641 goto retry;
1642 } else {
1643 unable_to_lock_message(ref_file.buf, errno, err);
1644 goto error_return;
1645 }
1646 }
1647
1648 /*
1649 * Now we hold the lock and can read the reference without
1650 * fear that its value will change.
1651 */
1652
1653 if (files_read_raw_ref(&refs->base, refname,
1654 lock->old_oid.hash, referent, type)) {
1655 if (errno == ENOENT) {
1656 if (mustexist) {
1657 /* Garden variety missing reference. */
1658 strbuf_addf(err, "unable to resolve reference '%s'",
1659 refname);
1660 goto error_return;
1661 } else {
1662 /*
1663 * Reference is missing, but that's OK. We
1664 * know that there is not a conflict with
1665 * another loose reference because
1666 * (supposing that we are trying to lock
1667 * reference "refs/foo/bar"):
1668 *
1669 * - We were successfully able to create
1670 * the lockfile refs/foo/bar.lock, so we
1671 * know there cannot be a loose reference
1672 * named "refs/foo".
1673 *
1674 * - We got ENOENT and not EISDIR, so we
1675 * know that there cannot be a loose
1676 * reference named "refs/foo/bar/baz".
1677 */
1678 }
1679 } else if (errno == EISDIR) {
1680 /*
1681 * There is a directory in the way. It might have
1682 * contained references that have been deleted. If
1683 * we don't require that the reference already
1684 * exists, try to remove the directory so that it
1685 * doesn't cause trouble when we want to rename the
1686 * lockfile into place later.
1687 */
1688 if (mustexist) {
1689 /* Garden variety missing reference. */
1690 strbuf_addf(err, "unable to resolve reference '%s'",
1691 refname);
1692 goto error_return;
1693 } else if (remove_dir_recursively(&ref_file,
1694 REMOVE_DIR_EMPTY_ONLY)) {
1695 if (verify_refname_available_dir(
1696 refname, extras, skip,
1697 get_loose_refs(refs),
1698 err)) {
1699 /*
1700 * The error message set by
1701 * verify_refname_available() is OK.
1702 */
1703 ret = TRANSACTION_NAME_CONFLICT;
1704 goto error_return;
1705 } else {
1706 /*
1707 * We can't delete the directory,
1708 * but we also don't know of any
1709 * references that it should
1710 * contain.
1711 */
1712 strbuf_addf(err, "there is a non-empty directory '%s' "
1713 "blocking reference '%s'",
1714 ref_file.buf, refname);
1715 goto error_return;
1716 }
1717 }
1718 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1719 strbuf_addf(err, "unable to resolve reference '%s': "
1720 "reference broken", refname);
1721 goto error_return;
1722 } else {
1723 strbuf_addf(err, "unable to resolve reference '%s': %s",
1724 refname, strerror(errno));
1725 goto error_return;
1726 }
1727
1728 /*
1729 * If the ref did not exist and we are creating it,
1730 * make sure there is no existing packed ref whose
1731 * name begins with our refname, nor a packed ref
1732 * whose name is a proper prefix of our refname.
1733 */
1734 if (verify_refname_available_dir(
1735 refname, extras, skip,
1736 get_packed_refs(refs),
1737 err)) {
1738 goto error_return;
1739 }
1740 }
1741
1742 ret = 0;
1743 goto out;
1744
1745 error_return:
1746 unlock_ref(lock);
1747 *lock_p = NULL;
1748
1749 out:
1750 strbuf_release(&ref_file);
1751 return ret;
1752 }
1753
1754 /*
1755 * Peel the entry (if possible) and return its new peel_status. If
1756 * repeel is true, re-peel the entry even if there is an old peeled
1757 * value that is already stored in it.
1758 *
1759 * It is OK to call this function with a packed reference entry that
1760 * might be stale and might even refer to an object that has since
1761 * been garbage-collected. In such a case, if the entry has
1762 * REF_KNOWS_PEELED then leave the status unchanged and return
1763 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1764 */
1765 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1766 {
1767 enum peel_status status;
1768
1769 if (entry->flag & REF_KNOWS_PEELED) {
1770 if (repeel) {
1771 entry->flag &= ~REF_KNOWS_PEELED;
1772 oidclr(&entry->u.value.peeled);
1773 } else {
1774 return is_null_oid(&entry->u.value.peeled) ?
1775 PEEL_NON_TAG : PEEL_PEELED;
1776 }
1777 }
1778 if (entry->flag & REF_ISBROKEN)
1779 return PEEL_BROKEN;
1780 if (entry->flag & REF_ISSYMREF)
1781 return PEEL_IS_SYMREF;
1782
1783 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1784 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1785 entry->flag |= REF_KNOWS_PEELED;
1786 return status;
1787 }
1788
1789 static int files_peel_ref(struct ref_store *ref_store,
1790 const char *refname, unsigned char *sha1)
1791 {
1792 struct files_ref_store *refs = files_downcast(ref_store, 0, "peel_ref");
1793 int flag;
1794 unsigned char base[20];
1795
1796 if (current_ref_iter && current_ref_iter->refname == refname) {
1797 struct object_id peeled;
1798
1799 if (ref_iterator_peel(current_ref_iter, &peeled))
1800 return -1;
1801 hashcpy(sha1, peeled.hash);
1802 return 0;
1803 }
1804
1805 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1806 return -1;
1807
1808 /*
1809 * If the reference is packed, read its ref_entry from the
1810 * cache in the hope that we already know its peeled value.
1811 * We only try this optimization on packed references because
1812 * (a) forcing the filling of the loose reference cache could
1813 * be expensive and (b) loose references anyway usually do not
1814 * have REF_KNOWS_PEELED.
1815 */
1816 if (flag & REF_ISPACKED) {
1817 struct ref_entry *r = get_packed_ref(refs, refname);
1818 if (r) {
1819 if (peel_entry(r, 0))
1820 return -1;
1821 hashcpy(sha1, r->u.value.peeled.hash);
1822 return 0;
1823 }
1824 }
1825
1826 return peel_object(base, sha1);
1827 }
1828
1829 struct files_ref_iterator {
1830 struct ref_iterator base;
1831
1832 struct packed_ref_cache *packed_ref_cache;
1833 struct ref_iterator *iter0;
1834 unsigned int flags;
1835 };
1836
1837 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1838 {
1839 struct files_ref_iterator *iter =
1840 (struct files_ref_iterator *)ref_iterator;
1841 int ok;
1842
1843 while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1844 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1845 ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1846 continue;
1847
1848 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1849 !ref_resolves_to_object(iter->iter0->refname,
1850 iter->iter0->oid,
1851 iter->iter0->flags))
1852 continue;
1853
1854 iter->base.refname = iter->iter0->refname;
1855 iter->base.oid = iter->iter0->oid;
1856 iter->base.flags = iter->iter0->flags;
1857 return ITER_OK;
1858 }
1859
1860 iter->iter0 = NULL;
1861 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1862 ok = ITER_ERROR;
1863
1864 return ok;
1865 }
1866
1867 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1868 struct object_id *peeled)
1869 {
1870 struct files_ref_iterator *iter =
1871 (struct files_ref_iterator *)ref_iterator;
1872
1873 return ref_iterator_peel(iter->iter0, peeled);
1874 }
1875
1876 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1877 {
1878 struct files_ref_iterator *iter =
1879 (struct files_ref_iterator *)ref_iterator;
1880 int ok = ITER_DONE;
1881
1882 if (iter->iter0)
1883 ok = ref_iterator_abort(iter->iter0);
1884
1885 release_packed_ref_cache(iter->packed_ref_cache);
1886 base_ref_iterator_free(ref_iterator);
1887 return ok;
1888 }
1889
1890 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1891 files_ref_iterator_advance,
1892 files_ref_iterator_peel,
1893 files_ref_iterator_abort
1894 };
1895
1896 static struct ref_iterator *files_ref_iterator_begin(
1897 struct ref_store *ref_store,
1898 const char *prefix, unsigned int flags)
1899 {
1900 struct files_ref_store *refs =
1901 files_downcast(ref_store, 1, "ref_iterator_begin");
1902 struct ref_dir *loose_dir, *packed_dir;
1903 struct ref_iterator *loose_iter, *packed_iter;
1904 struct files_ref_iterator *iter;
1905 struct ref_iterator *ref_iterator;
1906
1907 if (ref_paranoia < 0)
1908 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1909 if (ref_paranoia)
1910 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1911
1912 iter = xcalloc(1, sizeof(*iter));
1913 ref_iterator = &iter->base;
1914 base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1915
1916 /*
1917 * We must make sure that all loose refs are read before
1918 * accessing the packed-refs file; this avoids a race
1919 * condition if loose refs are migrated to the packed-refs
1920 * file by a simultaneous process, but our in-memory view is
1921 * from before the migration. We ensure this as follows:
1922 * First, we call prime_ref_dir(), which pre-reads the loose
1923 * references for the subtree into the cache. (If they've
1924 * already been read, that's OK; we only need to guarantee
1925 * that they're read before the packed refs, not *how much*
1926 * before.) After that, we call get_packed_ref_cache(), which
1927 * internally checks whether the packed-ref cache is up to
1928 * date with what is on disk, and re-reads it if not.
1929 */
1930
1931 loose_dir = get_loose_refs(refs);
1932
1933 if (prefix && *prefix)
1934 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1935
1936 if (loose_dir) {
1937 prime_ref_dir(loose_dir);
1938 loose_iter = cache_ref_iterator_begin(loose_dir);
1939 } else {
1940 /* There's nothing to iterate over. */
1941 loose_iter = empty_ref_iterator_begin();
1942 }
1943
1944 iter->packed_ref_cache = get_packed_ref_cache(refs);
1945 acquire_packed_ref_cache(iter->packed_ref_cache);
1946 packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1947
1948 if (prefix && *prefix)
1949 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1950
1951 if (packed_dir) {
1952 packed_iter = cache_ref_iterator_begin(packed_dir);
1953 } else {
1954 /* There's nothing to iterate over. */
1955 packed_iter = empty_ref_iterator_begin();
1956 }
1957
1958 iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1959 iter->flags = flags;
1960
1961 return ref_iterator;
1962 }
1963
1964 /*
1965 * Verify that the reference locked by lock has the value old_sha1.
1966 * Fail if the reference doesn't exist and mustexist is set. Return 0
1967 * on success. On error, write an error message to err, set errno, and
1968 * return a negative value.
1969 */
1970 static int verify_lock(struct ref_lock *lock,
1971 const unsigned char *old_sha1, int mustexist,
1972 struct strbuf *err)
1973 {
1974 assert(err);
1975
1976 if (read_ref_full(lock->ref_name,
1977 mustexist ? RESOLVE_REF_READING : 0,
1978 lock->old_oid.hash, NULL)) {
1979 if (old_sha1) {
1980 int save_errno = errno;
1981 strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
1982 errno = save_errno;
1983 return -1;
1984 } else {
1985 oidclr(&lock->old_oid);
1986 return 0;
1987 }
1988 }
1989 if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
1990 strbuf_addf(err, "ref '%s' is at %s but expected %s",
1991 lock->ref_name,
1992 oid_to_hex(&lock->old_oid),
1993 sha1_to_hex(old_sha1));
1994 errno = EBUSY;
1995 return -1;
1996 }
1997 return 0;
1998 }
1999
2000 static int remove_empty_directories(struct strbuf *path)
2001 {
2002 /*
2003 * we want to create a file but there is a directory there;
2004 * if that is an empty directory (or a directory that contains
2005 * only empty directories), remove them.
2006 */
2007 return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2008 }
2009
2010 static int create_reflock(const char *path, void *cb)
2011 {
2012 struct lock_file *lk = cb;
2013
2014 return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2015 }
2016
2017 /*
2018 * Locks a ref returning the lock on success and NULL on failure.
2019 * On failure errno is set to something meaningful.
2020 */
2021 static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2022 const char *refname,
2023 const unsigned char *old_sha1,
2024 const struct string_list *extras,
2025 const struct string_list *skip,
2026 unsigned int flags, int *type,
2027 struct strbuf *err)
2028 {
2029 struct strbuf ref_file = STRBUF_INIT;
2030 struct ref_lock *lock;
2031 int last_errno = 0;
2032 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2033 int resolve_flags = RESOLVE_REF_NO_RECURSE;
2034 int resolved;
2035
2036 files_assert_main_repository(refs, "lock_ref_sha1_basic");
2037 assert(err);
2038
2039 lock = xcalloc(1, sizeof(struct ref_lock));
2040
2041 if (mustexist)
2042 resolve_flags |= RESOLVE_REF_READING;
2043 if (flags & REF_DELETING)
2044 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2045
2046 strbuf_git_path(&ref_file, "%s", refname);
2047 resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2048 lock->old_oid.hash, type);
2049 if (!resolved && errno == EISDIR) {
2050 /*
2051 * we are trying to lock foo but we used to
2052 * have foo/bar which now does not exist;
2053 * it is normal for the empty directory 'foo'
2054 * to remain.
2055 */
2056 if (remove_empty_directories(&ref_file)) {
2057 last_errno = errno;
2058 if (!verify_refname_available_dir(
2059 refname, extras, skip,
2060 get_loose_refs(refs), err))
2061 strbuf_addf(err, "there are still refs under '%s'",
2062 refname);
2063 goto error_return;
2064 }
2065 resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2066 lock->old_oid.hash, type);
2067 }
2068 if (!resolved) {
2069 last_errno = errno;
2070 if (last_errno != ENOTDIR ||
2071 !verify_refname_available_dir(
2072 refname, extras, skip,
2073 get_loose_refs(refs), err))
2074 strbuf_addf(err, "unable to resolve reference '%s': %s",
2075 refname, strerror(last_errno));
2076
2077 goto error_return;
2078 }
2079
2080 /*
2081 * If the ref did not exist and we are creating it, make sure
2082 * there is no existing packed ref whose name begins with our
2083 * refname, nor a packed ref whose name is a proper prefix of
2084 * our refname.
2085 */
2086 if (is_null_oid(&lock->old_oid) &&
2087 verify_refname_available_dir(refname, extras, skip,
2088 get_packed_refs(refs),
2089 err)) {
2090 last_errno = ENOTDIR;
2091 goto error_return;
2092 }
2093
2094 lock->lk = xcalloc(1, sizeof(struct lock_file));
2095
2096 lock->ref_name = xstrdup(refname);
2097
2098 if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2099 last_errno = errno;
2100 unable_to_lock_message(ref_file.buf, errno, err);
2101 goto error_return;
2102 }
2103
2104 if (verify_lock(lock, old_sha1, mustexist, err)) {
2105 last_errno = errno;
2106 goto error_return;
2107 }
2108 goto out;
2109
2110 error_return:
2111 unlock_ref(lock);
2112 lock = NULL;
2113
2114 out:
2115 strbuf_release(&ref_file);
2116 errno = last_errno;
2117 return lock;
2118 }
2119
2120 /*
2121 * Write an entry to the packed-refs file for the specified refname.
2122 * If peeled is non-NULL, write it as the entry's peeled value.
2123 */
2124 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2125 unsigned char *peeled)
2126 {
2127 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2128 if (peeled)
2129 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2130 }
2131
2132 /*
2133 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2134 */
2135 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2136 {
2137 enum peel_status peel_status = peel_entry(entry, 0);
2138
2139 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2140 error("internal error: %s is not a valid packed reference!",
2141 entry->name);
2142 write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2143 peel_status == PEEL_PEELED ?
2144 entry->u.value.peeled.hash : NULL);
2145 return 0;
2146 }
2147
2148 /*
2149 * Lock the packed-refs file for writing. Flags is passed to
2150 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2151 * errno appropriately and return a nonzero value.
2152 */
2153 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2154 {
2155 static int timeout_configured = 0;
2156 static int timeout_value = 1000;
2157 struct packed_ref_cache *packed_ref_cache;
2158
2159 files_assert_main_repository(refs, "lock_packed_refs");
2160
2161 if (!timeout_configured) {
2162 git_config_get_int("core.packedrefstimeout", &timeout_value);
2163 timeout_configured = 1;
2164 }
2165
2166 if (hold_lock_file_for_update_timeout(
2167 &packlock, files_packed_refs_path(refs),
2168 flags, timeout_value) < 0)
2169 return -1;
2170 /*
2171 * Get the current packed-refs while holding the lock. If the
2172 * packed-refs file has been modified since we last read it,
2173 * this will automatically invalidate the cache and re-read
2174 * the packed-refs file.
2175 */
2176 packed_ref_cache = get_packed_ref_cache(refs);
2177 packed_ref_cache->lock = &packlock;
2178 /* Increment the reference count to prevent it from being freed: */
2179 acquire_packed_ref_cache(packed_ref_cache);
2180 return 0;
2181 }
2182
2183 /*
2184 * Write the current version of the packed refs cache from memory to
2185 * disk. The packed-refs file must already be locked for writing (see
2186 * lock_packed_refs()). Return zero on success. On errors, set errno
2187 * and return a nonzero value
2188 */
2189 static int commit_packed_refs(struct files_ref_store *refs)
2190 {
2191 struct packed_ref_cache *packed_ref_cache =
2192 get_packed_ref_cache(refs);
2193 int error = 0;
2194 int save_errno = 0;
2195 FILE *out;
2196
2197 files_assert_main_repository(refs, "commit_packed_refs");
2198
2199 if (!packed_ref_cache->lock)
2200 die("internal error: packed-refs not locked");
2201
2202 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2203 if (!out)
2204 die_errno("unable to fdopen packed-refs descriptor");
2205
2206 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2207 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2208 0, write_packed_entry_fn, out);
2209
2210 if (commit_lock_file(packed_ref_cache->lock)) {
2211 save_errno = errno;
2212 error = -1;
2213 }
2214 packed_ref_cache->lock = NULL;
2215 release_packed_ref_cache(packed_ref_cache);
2216 errno = save_errno;
2217 return error;
2218 }
2219
2220 /*
2221 * Rollback the lockfile for the packed-refs file, and discard the
2222 * in-memory packed reference cache. (The packed-refs file will be
2223 * read anew if it is needed again after this function is called.)
2224 */
2225 static void rollback_packed_refs(struct files_ref_store *refs)
2226 {
2227 struct packed_ref_cache *packed_ref_cache =
2228 get_packed_ref_cache(refs);
2229
2230 files_assert_main_repository(refs, "rollback_packed_refs");
2231
2232 if (!packed_ref_cache->lock)
2233 die("internal error: packed-refs not locked");
2234 rollback_lock_file(packed_ref_cache->lock);
2235 packed_ref_cache->lock = NULL;
2236 release_packed_ref_cache(packed_ref_cache);
2237 clear_packed_ref_cache(refs);
2238 }
2239
2240 struct ref_to_prune {
2241 struct ref_to_prune *next;
2242 unsigned char sha1[20];
2243 char name[FLEX_ARRAY];
2244 };
2245
2246 struct pack_refs_cb_data {
2247 unsigned int flags;
2248 struct ref_dir *packed_refs;
2249 struct ref_to_prune *ref_to_prune;
2250 };
2251
2252 /*
2253 * An each_ref_entry_fn that is run over loose references only. If
2254 * the loose reference can be packed, add an entry in the packed ref
2255 * cache. If the reference should be pruned, also add it to
2256 * ref_to_prune in the pack_refs_cb_data.
2257 */
2258 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2259 {
2260 struct pack_refs_cb_data *cb = cb_data;
2261 enum peel_status peel_status;
2262 struct ref_entry *packed_entry;
2263 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2264
2265 /* Do not pack per-worktree refs: */
2266 if (ref_type(entry->name) != REF_TYPE_NORMAL)
2267 return 0;
2268
2269 /* ALWAYS pack tags */
2270 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2271 return 0;
2272
2273 /* Do not pack symbolic or broken refs: */
2274 if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2275 return 0;
2276
2277 /* Add a packed ref cache entry equivalent to the loose entry. */
2278 peel_status = peel_entry(entry, 1);
2279 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2280 die("internal error peeling reference %s (%s)",
2281 entry->name, oid_to_hex(&entry->u.value.oid));
2282 packed_entry = find_ref(cb->packed_refs, entry->name);
2283 if (packed_entry) {
2284 /* Overwrite existing packed entry with info from loose entry */
2285 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2286 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2287 } else {
2288 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2289 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2290 add_ref(cb->packed_refs, packed_entry);
2291 }
2292 oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2293
2294 /* Schedule the loose reference for pruning if requested. */
2295 if ((cb->flags & PACK_REFS_PRUNE)) {
2296 struct ref_to_prune *n;
2297 FLEX_ALLOC_STR(n, name, entry->name);
2298 hashcpy(n->sha1, entry->u.value.oid.hash);
2299 n->next = cb->ref_to_prune;
2300 cb->ref_to_prune = n;
2301 }
2302 return 0;
2303 }
2304
2305 enum {
2306 REMOVE_EMPTY_PARENTS_REF = 0x01,
2307 REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2308 };
2309
2310 /*
2311 * Remove empty parent directories associated with the specified
2312 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2313 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2314 * REMOVE_EMPTY_PARENTS_REFLOG.
2315 */
2316 static void try_remove_empty_parents(const char *refname, unsigned int flags)
2317 {
2318 struct strbuf buf = STRBUF_INIT;
2319 char *p, *q;
2320 int i;
2321
2322 strbuf_addstr(&buf, refname);
2323 p = buf.buf;
2324 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2325 while (*p && *p != '/')
2326 p++;
2327 /* tolerate duplicate slashes; see check_refname_format() */
2328 while (*p == '/')
2329 p++;
2330 }
2331 q = buf.buf + buf.len;
2332 while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2333 while (q > p && *q != '/')
2334 q--;
2335 while (q > p && *(q-1) == '/')
2336 q--;
2337 if (q == p)
2338 break;
2339 strbuf_setlen(&buf, q - buf.buf);
2340 if ((flags & REMOVE_EMPTY_PARENTS_REF) &&
2341 rmdir(git_path("%s", buf.buf)))
2342 flags &= ~REMOVE_EMPTY_PARENTS_REF;
2343 if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) &&
2344 rmdir(git_path("logs/%s", buf.buf)))
2345 flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2346 }
2347 strbuf_release(&buf);
2348 }
2349
2350 /* make sure nobody touched the ref, and unlink */
2351 static void prune_ref(struct ref_to_prune *r)
2352 {
2353 struct ref_transaction *transaction;
2354 struct strbuf err = STRBUF_INIT;
2355
2356 if (check_refname_format(r->name, 0))
2357 return;
2358
2359 transaction = ref_transaction_begin(&err);
2360 if (!transaction ||
2361 ref_transaction_delete(transaction, r->name, r->sha1,
2362 REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2363 ref_transaction_commit(transaction, &err)) {
2364 ref_transaction_free(transaction);
2365 error("%s", err.buf);
2366 strbuf_release(&err);
2367 return;
2368 }
2369 ref_transaction_free(transaction);
2370 strbuf_release(&err);
2371 }
2372
2373 static void prune_refs(struct ref_to_prune *r)
2374 {
2375 while (r) {
2376 prune_ref(r);
2377 r = r->next;
2378 }
2379 }
2380
2381 static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2382 {
2383 struct files_ref_store *refs =
2384 files_downcast(ref_store, 0, "pack_refs");
2385 struct pack_refs_cb_data cbdata;
2386
2387 memset(&cbdata, 0, sizeof(cbdata));
2388 cbdata.flags = flags;
2389
2390 lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2391 cbdata.packed_refs = get_packed_refs(refs);
2392
2393 do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2394 pack_if_possible_fn, &cbdata);
2395
2396 if (commit_packed_refs(refs))
2397 die_errno("unable to overwrite old ref-pack file");
2398
2399 prune_refs(cbdata.ref_to_prune);
2400 return 0;
2401 }
2402
2403 /*
2404 * Rewrite the packed-refs file, omitting any refs listed in
2405 * 'refnames'. On error, leave packed-refs unchanged, write an error
2406 * message to 'err', and return a nonzero value.
2407 *
2408 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2409 */
2410 static int repack_without_refs(struct files_ref_store *refs,
2411 struct string_list *refnames, struct strbuf *err)
2412 {
2413 struct ref_dir *packed;
2414 struct string_list_item *refname;
2415 int ret, needs_repacking = 0, removed = 0;
2416
2417 files_assert_main_repository(refs, "repack_without_refs");
2418 assert(err);
2419
2420 /* Look for a packed ref */
2421 for_each_string_list_item(refname, refnames) {
2422 if (get_packed_ref(refs, refname->string)) {
2423 needs_repacking = 1;
2424 break;
2425 }
2426 }
2427
2428 /* Avoid locking if we have nothing to do */
2429 if (!needs_repacking)
2430 return 0; /* no refname exists in packed refs */
2431
2432 if (lock_packed_refs(refs, 0)) {
2433 unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2434 return -1;
2435 }
2436 packed = get_packed_refs(refs);
2437
2438 /* Remove refnames from the cache */
2439 for_each_string_list_item(refname, refnames)
2440 if (remove_entry(packed, refname->string) != -1)
2441 removed = 1;
2442 if (!removed) {
2443 /*
2444 * All packed entries disappeared while we were
2445 * acquiring the lock.
2446 */
2447 rollback_packed_refs(refs);
2448 return 0;
2449 }
2450
2451 /* Write what remains */
2452 ret = commit_packed_refs(refs);
2453 if (ret)
2454 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2455 strerror(errno));
2456 return ret;
2457 }
2458
2459 static int files_delete_refs(struct ref_store *ref_store,
2460 struct string_list *refnames, unsigned int flags)
2461 {
2462 struct files_ref_store *refs =
2463 files_downcast(ref_store, 0, "delete_refs");
2464 struct strbuf err = STRBUF_INIT;
2465 int i, result = 0;
2466
2467 if (!refnames->nr)
2468 return 0;
2469
2470 result = repack_without_refs(refs, refnames, &err);
2471 if (result) {
2472 /*
2473 * If we failed to rewrite the packed-refs file, then
2474 * it is unsafe to try to remove loose refs, because
2475 * doing so might expose an obsolete packed value for
2476 * a reference that might even point at an object that
2477 * has been garbage collected.
2478 */
2479 if (refnames->nr == 1)
2480 error(_("could not delete reference %s: %s"),
2481 refnames->items[0].string, err.buf);
2482 else
2483 error(_("could not delete references: %s"), err.buf);
2484
2485 goto out;
2486 }
2487
2488 for (i = 0; i < refnames->nr; i++) {
2489 const char *refname = refnames->items[i].string;
2490
2491 if (delete_ref(NULL, refname, NULL, flags))
2492 result |= error(_("could not remove reference %s"), refname);
2493 }
2494
2495 out:
2496 strbuf_release(&err);
2497 return result;
2498 }
2499
2500 /*
2501 * People using contrib's git-new-workdir have .git/logs/refs ->
2502 * /some/other/path/.git/logs/refs, and that may live on another device.
2503 *
2504 * IOW, to avoid cross device rename errors, the temporary renamed log must
2505 * live into logs/refs.
2506 */
2507 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2508
2509 static int rename_tmp_log_callback(const char *path, void *cb)
2510 {
2511 int *true_errno = cb;
2512
2513 if (rename(git_path(TMP_RENAMED_LOG), path)) {
2514 /*
2515 * rename(a, b) when b is an existing directory ought
2516 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2517 * Sheesh. Record the true errno for error reporting,
2518 * but report EISDIR to raceproof_create_file() so
2519 * that it knows to retry.
2520 */
2521 *true_errno = errno;
2522 if (errno == ENOTDIR)
2523 errno = EISDIR;
2524 return -1;
2525 } else {
2526 return 0;
2527 }
2528 }
2529
2530 static int rename_tmp_log(const char *newrefname)
2531 {
2532 char *path = git_pathdup("logs/%s", newrefname);
2533 int ret, true_errno;
2534
2535 ret = raceproof_create_file(path, rename_tmp_log_callback, &true_errno);
2536 if (ret) {
2537 if (errno == EISDIR)
2538 error("directory not empty: %s", path);
2539 else
2540 error("unable to move logfile %s to %s: %s",
2541 git_path(TMP_RENAMED_LOG), path,
2542 strerror(true_errno));
2543 }
2544
2545 free(path);
2546 return ret;
2547 }
2548
2549 static int files_verify_refname_available(struct ref_store *ref_store,
2550 const char *newname,
2551 const struct string_list *extras,
2552 const struct string_list *skip,
2553 struct strbuf *err)
2554 {
2555 struct files_ref_store *refs =
2556 files_downcast(ref_store, 1, "verify_refname_available");
2557 struct ref_dir *packed_refs = get_packed_refs(refs);
2558 struct ref_dir *loose_refs = get_loose_refs(refs);
2559
2560 if (verify_refname_available_dir(newname, extras, skip,
2561 packed_refs, err) ||
2562 verify_refname_available_dir(newname, extras, skip,
2563 loose_refs, err))
2564 return -1;
2565
2566 return 0;
2567 }
2568
2569 static int write_ref_to_lockfile(struct ref_lock *lock,
2570 const unsigned char *sha1, struct strbuf *err);
2571 static int commit_ref_update(struct files_ref_store *refs,
2572 struct ref_lock *lock,
2573 const unsigned char *sha1, const char *logmsg,
2574 struct strbuf *err);
2575
2576 static int files_rename_ref(struct ref_store *ref_store,
2577 const char *oldrefname, const char *newrefname,
2578 const char *logmsg)
2579 {
2580 struct files_ref_store *refs =
2581 files_downcast(ref_store, 0, "rename_ref");
2582 unsigned char sha1[20], orig_sha1[20];
2583 int flag = 0, logmoved = 0;
2584 struct ref_lock *lock;
2585 struct stat loginfo;
2586 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2587 struct strbuf err = STRBUF_INIT;
2588 int ret;
2589
2590 if (log && S_ISLNK(loginfo.st_mode)) {
2591 ret = error("reflog for %s is a symlink", oldrefname);
2592 goto out;
2593 }
2594
2595 if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2596 orig_sha1, &flag)) {
2597 ret = error("refname %s not found", oldrefname);
2598 goto out;
2599 }
2600
2601 if (flag & REF_ISSYMREF) {
2602 ret = error("refname %s is a symbolic ref, renaming it is not supported",
2603 oldrefname);
2604 goto out;
2605 }
2606 if (!rename_ref_available(oldrefname, newrefname)) {
2607 ret = 1;
2608 goto out;
2609 }
2610
2611 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG))) {
2612 ret = error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2613 oldrefname, strerror(errno));
2614 goto out;
2615 }
2616
2617 if (delete_ref(logmsg, oldrefname, orig_sha1, REF_NODEREF)) {
2618 error("unable to delete old %s", oldrefname);
2619 goto rollback;
2620 }
2621
2622 /*
2623 * Since we are doing a shallow lookup, sha1 is not the
2624 * correct value to pass to delete_ref as old_sha1. But that
2625 * doesn't matter, because an old_sha1 check wouldn't add to
2626 * the safety anyway; we want to delete the reference whatever
2627 * its current value.
2628 */
2629 if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2630 sha1, NULL) &&
2631 delete_ref(NULL, newrefname, NULL, REF_NODEREF)) {
2632 if (errno == EISDIR) {
2633 struct strbuf path = STRBUF_INIT;
2634 int result;
2635
2636 strbuf_git_path(&path, "%s", newrefname);
2637 result = remove_empty_directories(&path);
2638 strbuf_release(&path);
2639
2640 if (result) {
2641 error("Directory not empty: %s", newrefname);
2642 goto rollback;
2643 }
2644 } else {
2645 error("unable to delete existing %s", newrefname);
2646 goto rollback;
2647 }
2648 }
2649
2650 if (log && rename_tmp_log(newrefname))
2651 goto rollback;
2652
2653 logmoved = log;
2654
2655 lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2656 REF_NODEREF, NULL, &err);
2657 if (!lock) {
2658 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2659 strbuf_release(&err);
2660 goto rollback;
2661 }
2662 hashcpy(lock->old_oid.hash, orig_sha1);
2663
2664 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2665 commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2666 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2667 strbuf_release(&err);
2668 goto rollback;
2669 }
2670
2671 ret = 0;
2672 goto out;
2673
2674 rollback:
2675 lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2676 REF_NODEREF, NULL, &err);
2677 if (!lock) {
2678 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2679 strbuf_release(&err);
2680 goto rollbacklog;
2681 }
2682
2683 flag = log_all_ref_updates;
2684 log_all_ref_updates = LOG_REFS_NONE;
2685 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2686 commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2687 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2688 strbuf_release(&err);
2689 }
2690 log_all_ref_updates = flag;
2691
2692 rollbacklog:
2693 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2694 error("unable to restore logfile %s from %s: %s",
2695 oldrefname, newrefname, strerror(errno));
2696 if (!logmoved && log &&
2697 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2698 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2699 oldrefname, strerror(errno));
2700
2701 ret = 1;
2702 out:
2703 return ret;
2704 }
2705
2706 static int close_ref(struct ref_lock *lock)
2707 {
2708 if (close_lock_file(lock->lk))
2709 return -1;
2710 return 0;
2711 }
2712
2713 static int commit_ref(struct ref_lock *lock)
2714 {
2715 char *path = get_locked_file_path(lock->lk);
2716 struct stat st;
2717
2718 if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2719 /*
2720 * There is a directory at the path we want to rename
2721 * the lockfile to. Hopefully it is empty; try to
2722 * delete it.
2723 */
2724 size_t len = strlen(path);
2725 struct strbuf sb_path = STRBUF_INIT;
2726
2727 strbuf_attach(&sb_path, path, len, len);
2728
2729 /*
2730 * If this fails, commit_lock_file() will also fail
2731 * and will report the problem.
2732 */
2733 remove_empty_directories(&sb_path);
2734 strbuf_release(&sb_path);
2735 } else {
2736 free(path);
2737 }
2738
2739 if (commit_lock_file(lock->lk))
2740 return -1;
2741 return 0;
2742 }
2743
2744 static int open_or_create_logfile(const char *path, void *cb)
2745 {
2746 int *fd = cb;
2747
2748 *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2749 return (*fd < 0) ? -1 : 0;
2750 }
2751
2752 /*
2753 * Create a reflog for a ref. If force_create = 0, only create the
2754 * reflog for certain refs (those for which should_autocreate_reflog
2755 * returns non-zero). Otherwise, create it regardless of the reference
2756 * name. If the logfile already existed or was created, return 0 and
2757 * set *logfd to the file descriptor opened for appending to the file.
2758 * If no logfile exists and we decided not to create one, return 0 and
2759 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2760 * return -1.
2761 */
2762 static int log_ref_setup(const char *refname, int force_create,
2763 int *logfd, struct strbuf *err)
2764 {
2765 char *logfile = git_pathdup("logs/%s", refname);
2766
2767 if (force_create || should_autocreate_reflog(refname)) {
2768 if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2769 if (errno == ENOENT)
2770 strbuf_addf(err, "unable to create directory for '%s': "
2771 "%s", logfile, strerror(errno));
2772 else if (errno == EISDIR)
2773 strbuf_addf(err, "there are still logs under '%s'",
2774 logfile);
2775 else
2776 strbuf_addf(err, "unable to append to '%s': %s",
2777 logfile, strerror(errno));
2778
2779 goto error;
2780 }
2781 } else {
2782 *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2783 if (*logfd < 0) {
2784 if (errno == ENOENT || errno == EISDIR) {
2785 /*
2786 * The logfile doesn't already exist,
2787 * but that is not an error; it only
2788 * means that we won't write log
2789 * entries to it.
2790 */
2791 ;
2792 } else {
2793 strbuf_addf(err, "unable to append to '%s': %s",
2794 logfile, strerror(errno));
2795 goto error;
2796 }
2797 }
2798 }
2799
2800 if (*logfd >= 0)
2801 adjust_shared_perm(logfile);
2802
2803 free(logfile);
2804 return 0;
2805
2806 error:
2807 free(logfile);
2808 return -1;
2809 }
2810
2811 static int files_create_reflog(struct ref_store *ref_store,
2812 const char *refname, int force_create,
2813 struct strbuf *err)
2814 {
2815 int fd;
2816
2817 /* Check validity (but we don't need the result): */
2818 files_downcast(ref_store, 0, "create_reflog");
2819
2820 if (log_ref_setup(refname, force_create, &fd, err))
2821 return -1;
2822
2823 if (fd >= 0)
2824 close(fd);
2825
2826 return 0;
2827 }
2828
2829 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2830 const unsigned char *new_sha1,
2831 const char *committer, const char *msg)
2832 {
2833 int msglen, written;
2834 unsigned maxlen, len;
2835 char *logrec;
2836
2837 msglen = msg ? strlen(msg) : 0;
2838 maxlen = strlen(committer) + msglen + 100;
2839 logrec = xmalloc(maxlen);
2840 len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2841 sha1_to_hex(old_sha1),
2842 sha1_to_hex(new_sha1),
2843 committer);
2844 if (msglen)
2845 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2846
2847 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2848 free(logrec);
2849 if (written != len)
2850 return -1;
2851
2852 return 0;
2853 }
2854
2855 static int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
2856 const unsigned char *new_sha1, const char *msg,
2857 int flags, struct strbuf *err)
2858 {
2859 int logfd, result;
2860
2861 if (log_all_ref_updates == LOG_REFS_UNSET)
2862 log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2863
2864 result = log_ref_setup(refname, flags & REF_FORCE_CREATE_REFLOG,
2865 &logfd, err);
2866
2867 if (result)
2868 return result;
2869
2870 if (logfd < 0)
2871 return 0;
2872 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2873 git_committer_info(0), msg);
2874 if (result) {
2875 int save_errno = errno;
2876
2877 strbuf_addf(err, "unable to append to '%s': %s",
2878 git_path("logs/%s", refname), strerror(save_errno));
2879 close(logfd);
2880 return -1;
2881 }
2882 if (close(logfd)) {
2883 int save_errno = errno;
2884
2885 strbuf_addf(err, "unable to append to '%s': %s",
2886 git_path("logs/%s", refname), strerror(save_errno));
2887 return -1;
2888 }
2889 return 0;
2890 }
2891
2892 /*
2893 * Write sha1 into the open lockfile, then close the lockfile. On
2894 * errors, rollback the lockfile, fill in *err and
2895 * return -1.
2896 */
2897 static int write_ref_to_lockfile(struct ref_lock *lock,
2898 const unsigned char *sha1, struct strbuf *err)
2899 {
2900 static char term = '\n';
2901 struct object *o;
2902 int fd;
2903
2904 o = parse_object(sha1);
2905 if (!o) {
2906 strbuf_addf(err,
2907 "trying to write ref '%s' with nonexistent object %s",
2908 lock->ref_name, sha1_to_hex(sha1));
2909 unlock_ref(lock);
2910 return -1;
2911 }
2912 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2913 strbuf_addf(err,
2914 "trying to write non-commit object %s to branch '%s'",
2915 sha1_to_hex(sha1), lock->ref_name);
2916 unlock_ref(lock);
2917 return -1;
2918 }
2919 fd = get_lock_file_fd(lock->lk);
2920 if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2921 write_in_full(fd, &term, 1) != 1 ||
2922 close_ref(lock) < 0) {
2923 strbuf_addf(err,
2924 "couldn't write '%s'", get_lock_file_path(lock->lk));
2925 unlock_ref(lock);
2926 return -1;
2927 }
2928 return 0;
2929 }
2930
2931 /*
2932 * Commit a change to a loose reference that has already been written
2933 * to the loose reference lockfile. Also update the reflogs if
2934 * necessary, using the specified lockmsg (which can be NULL).
2935 */
2936 static int commit_ref_update(struct files_ref_store *refs,
2937 struct ref_lock *lock,
2938 const unsigned char *sha1, const char *logmsg,
2939 struct strbuf *err)
2940 {
2941 files_assert_main_repository(refs, "commit_ref_update");
2942
2943 clear_loose_ref_cache(refs);
2944 if (files_log_ref_write(lock->ref_name, lock->old_oid.hash, sha1,
2945 logmsg, 0, err)) {
2946 char *old_msg = strbuf_detach(err, NULL);
2947 strbuf_addf(err, "cannot update the ref '%s': %s",
2948 lock->ref_name, old_msg);
2949 free(old_msg);
2950 unlock_ref(lock);
2951 return -1;
2952 }
2953
2954 if (strcmp(lock->ref_name, "HEAD") != 0) {
2955 /*
2956 * Special hack: If a branch is updated directly and HEAD
2957 * points to it (may happen on the remote side of a push
2958 * for example) then logically the HEAD reflog should be
2959 * updated too.
2960 * A generic solution implies reverse symref information,
2961 * but finding all symrefs pointing to the given branch
2962 * would be rather costly for this rare event (the direct
2963 * update of a branch) to be worth it. So let's cheat and
2964 * check with HEAD only which should cover 99% of all usage
2965 * scenarios (even 100% of the default ones).
2966 */
2967 unsigned char head_sha1[20];
2968 int head_flag;
2969 const char *head_ref;
2970
2971 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
2972 head_sha1, &head_flag);
2973 if (head_ref && (head_flag & REF_ISSYMREF) &&
2974 !strcmp(head_ref, lock->ref_name)) {
2975 struct strbuf log_err = STRBUF_INIT;
2976 if (files_log_ref_write("HEAD", lock->old_oid.hash, sha1,
2977 logmsg, 0, &log_err)) {
2978 error("%s", log_err.buf);
2979 strbuf_release(&log_err);
2980 }
2981 }
2982 }
2983
2984 if (commit_ref(lock)) {
2985 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
2986 unlock_ref(lock);
2987 return -1;
2988 }
2989
2990 unlock_ref(lock);
2991 return 0;
2992 }
2993
2994 static int create_ref_symlink(struct ref_lock *lock, const char *target)
2995 {
2996 int ret = -1;
2997 #ifndef NO_SYMLINK_HEAD
2998 char *ref_path = get_locked_file_path(lock->lk);
2999 unlink(ref_path);
3000 ret = symlink(target, ref_path);
3001 free(ref_path);
3002
3003 if (ret)
3004 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3005 #endif
3006 return ret;
3007 }
3008
3009 static void update_symref_reflog(struct ref_lock *lock, const char *refname,
3010 const char *target, const char *logmsg)
3011 {
3012 struct strbuf err = STRBUF_INIT;
3013 unsigned char new_sha1[20];
3014 if (logmsg && !read_ref(target, new_sha1) &&
3015 files_log_ref_write(refname, lock->old_oid.hash, new_sha1,
3016 logmsg, 0, &err)) {
3017 error("%s", err.buf);
3018 strbuf_release(&err);
3019 }
3020 }
3021
3022 static int create_symref_locked(struct ref_lock *lock, const char *refname,
3023 const char *target, const char *logmsg)
3024 {
3025 if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3026 update_symref_reflog(lock, refname, target, logmsg);
3027 return 0;
3028 }
3029
3030 if (!fdopen_lock_file(lock->lk, "w"))
3031 return error("unable to fdopen %s: %s",
3032 lock->lk->tempfile.filename.buf, strerror(errno));
3033
3034 update_symref_reflog(lock, refname, target, logmsg);
3035
3036 /* no error check; commit_ref will check ferror */
3037 fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3038 if (commit_ref(lock) < 0)
3039 return error("unable to write symref for %s: %s", refname,
3040 strerror(errno));
3041 return 0;
3042 }
3043
3044 static int files_create_symref(struct ref_store *ref_store,
3045 const char *refname, const char *target,
3046 const char *logmsg)
3047 {
3048 struct files_ref_store *refs =
3049 files_downcast(ref_store, 0, "create_symref");
3050 struct strbuf err = STRBUF_INIT;
3051 struct ref_lock *lock;
3052 int ret;
3053
3054 lock = lock_ref_sha1_basic(refs, refname, NULL,
3055 NULL, NULL, REF_NODEREF, NULL,
3056 &err);
3057 if (!lock) {
3058 error("%s", err.buf);
3059 strbuf_release(&err);
3060 return -1;
3061 }
3062
3063 ret = create_symref_locked(lock, refname, target, logmsg);
3064 unlock_ref(lock);
3065 return ret;
3066 }
3067
3068 int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3069 {
3070 static struct lock_file head_lock;
3071 struct ref_lock *lock;
3072 struct strbuf head_path = STRBUF_INIT;
3073 const char *head_rel;
3074 int ret;
3075
3076 strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3077 if (hold_lock_file_for_update(&head_lock, head_path.buf,
3078 LOCK_NO_DEREF) < 0) {
3079 struct strbuf err = STRBUF_INIT;
3080 unable_to_lock_message(head_path.buf, errno, &err);
3081 error("%s", err.buf);
3082 strbuf_release(&err);
3083 strbuf_release(&head_path);
3084 return -1;
3085 }
3086
3087 /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3088 linked trees */
3089 head_rel = remove_leading_path(head_path.buf,
3090 absolute_path(get_git_common_dir()));
3091 /* to make use of create_symref_locked(), initialize ref_lock */
3092 lock = xcalloc(1, sizeof(struct ref_lock));
3093 lock->lk = &head_lock;
3094 lock->ref_name = xstrdup(head_rel);
3095
3096 ret = create_symref_locked(lock, head_rel, target, logmsg);
3097
3098 unlock_ref(lock); /* will free lock */
3099 strbuf_release(&head_path);
3100 return ret;
3101 }
3102
3103 static int files_reflog_exists(struct ref_store *ref_store,
3104 const char *refname)
3105 {
3106 struct stat st;
3107
3108 /* Check validity (but we don't need the result): */
3109 files_downcast(ref_store, 0, "reflog_exists");
3110
3111 return !lstat(git_path("logs/%s", refname), &st) &&
3112 S_ISREG(st.st_mode);
3113 }
3114
3115 static int files_delete_reflog(struct ref_store *ref_store,
3116 const char *refname)
3117 {
3118 /* Check validity (but we don't need the result): */
3119 files_downcast(ref_store, 0, "delete_reflog");
3120
3121 return remove_path(git_path("logs/%s", refname));
3122 }
3123
3124 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3125 {
3126 struct object_id ooid, noid;
3127 char *email_end, *message;
3128 unsigned long timestamp;
3129 int tz;
3130 const char *p = sb->buf;
3131
3132 /* old SP new SP name <email> SP time TAB msg LF */
3133 if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3134 parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3135 parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3136 !(email_end = strchr(p, '>')) ||
3137 email_end[1] != ' ' ||
3138 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3139 !message || message[0] != ' ' ||
3140 (message[1] != '+' && message[1] != '-') ||
3141 !isdigit(message[2]) || !isdigit(message[3]) ||
3142 !isdigit(message[4]) || !isdigit(message[5]))
3143 return 0; /* corrupt? */
3144 email_end[1] = '\0';
3145 tz = strtol(message + 1, NULL, 10);
3146 if (message[6] != '\t')
3147 message += 6;
3148 else
3149 message += 7;
3150 return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3151 }
3152
3153 static char *find_beginning_of_line(char *bob, char *scan)
3154 {
3155 while (bob < scan && *(--scan) != '\n')
3156 ; /* keep scanning backwards */
3157 /*
3158 * Return either beginning of the buffer, or LF at the end of
3159 * the previous line.
3160 */
3161 return scan;
3162 }
3163
3164 static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3165 const char *refname,
3166 each_reflog_ent_fn fn,
3167 void *cb_data)
3168 {
3169 struct strbuf sb = STRBUF_INIT;
3170 FILE *logfp;
3171 long pos;
3172 int ret = 0, at_tail = 1;
3173
3174 /* Check validity (but we don't need the result): */
3175 files_downcast(ref_store, 0, "for_each_reflog_ent_reverse");
3176
3177 logfp = fopen(git_path("logs/%s", refname), "r");
3178 if (!logfp)
3179 return -1;
3180
3181 /* Jump to the end */
3182 if (fseek(logfp, 0, SEEK_END) < 0)
3183 return error("cannot seek back reflog for %s: %s",
3184 refname, strerror(errno));
3185 pos = ftell(logfp);
3186 while (!ret && 0 < pos) {
3187 int cnt;
3188 size_t nread;
3189 char buf[BUFSIZ];
3190 char *endp, *scanp;
3191
3192 /* Fill next block from the end */
3193 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3194 if (fseek(logfp, pos - cnt, SEEK_SET))
3195 return error("cannot seek back reflog for %s: %s",
3196 refname, strerror(errno));
3197 nread = fread(buf, cnt, 1, logfp);
3198 if (nread != 1)
3199 return error("cannot read %d bytes from reflog for %s: %s",
3200 cnt, refname, strerror(errno));
3201 pos -= cnt;
3202
3203 scanp = endp = buf + cnt;
3204 if (at_tail && scanp[-1] == '\n')
3205 /* Looking at the final LF at the end of the file */
3206 scanp--;
3207 at_tail = 0;
3208
3209 while (buf < scanp) {
3210 /*
3211 * terminating LF of the previous line, or the beginning
3212 * of the buffer.
3213 */
3214 char *bp;
3215
3216 bp = find_beginning_of_line(buf, scanp);
3217
3218 if (*bp == '\n') {
3219 /*
3220 * The newline is the end of the previous line,
3221 * so we know we have complete line starting
3222 * at (bp + 1). Prefix it onto any prior data
3223 * we collected for the line and process it.
3224 */
3225 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3226 scanp = bp;
3227 endp = bp + 1;
3228 ret = show_one_reflog_ent(&sb, fn, cb_data);
3229 strbuf_reset(&sb);
3230 if (ret)
3231 break;
3232 } else if (!pos) {
3233 /*
3234 * We are at the start of the buffer, and the
3235 * start of the file; there is no previous
3236 * line, and we have everything for this one.
3237 * Process it, and we can end the loop.
3238 */
3239 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3240 ret = show_one_reflog_ent(&sb, fn, cb_data);
3241 strbuf_reset(&sb);
3242 break;
3243 }
3244
3245 if (bp == buf) {
3246 /*
3247 * We are at the start of the buffer, and there
3248 * is more file to read backwards. Which means
3249 * we are in the middle of a line. Note that we
3250 * may get here even if *bp was a newline; that
3251 * just means we are at the exact end of the
3252 * previous line, rather than some spot in the
3253 * middle.
3254 *
3255 * Save away what we have to be combined with
3256 * the data from the next read.
3257 */
3258 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3259 break;
3260 }
3261 }
3262
3263 }
3264 if (!ret && sb.len)
3265 die("BUG: reverse reflog parser had leftover data");
3266
3267 fclose(logfp);
3268 strbuf_release(&sb);
3269 return ret;
3270 }
3271
3272 static int files_for_each_reflog_ent(struct ref_store *ref_store,
3273 const char *refname,
3274 each_reflog_ent_fn fn, void *cb_data)
3275 {
3276 FILE *logfp;
3277 struct strbuf sb = STRBUF_INIT;
3278 int ret = 0;
3279
3280 /* Check validity (but we don't need the result): */
3281 files_downcast(ref_store, 0, "for_each_reflog_ent");
3282
3283 logfp = fopen(git_path("logs/%s", refname), "r");
3284 if (!logfp)
3285 return -1;
3286
3287 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3288 ret = show_one_reflog_ent(&sb, fn, cb_data);
3289 fclose(logfp);
3290 strbuf_release(&sb);
3291 return ret;
3292 }
3293
3294 struct files_reflog_iterator {
3295 struct ref_iterator base;
3296
3297 struct dir_iterator *dir_iterator;
3298 struct object_id oid;
3299 };
3300
3301 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3302 {
3303 struct files_reflog_iterator *iter =
3304 (struct files_reflog_iterator *)ref_iterator;
3305 struct dir_iterator *diter = iter->dir_iterator;
3306 int ok;
3307
3308 while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3309 int flags;
3310
3311 if (!S_ISREG(diter->st.st_mode))
3312 continue;
3313 if (diter->basename[0] == '.')
3314 continue;
3315 if (ends_with(diter->basename, ".lock"))
3316 continue;
3317
3318 if (read_ref_full(diter->relative_path, 0,
3319 iter->oid.hash, &flags)) {
3320 error("bad ref for %s", diter->path.buf);
3321 continue;
3322 }
3323
3324 iter->base.refname = diter->relative_path;
3325 iter->base.oid = &iter->oid;
3326 iter->base.flags = flags;
3327 return ITER_OK;
3328 }
3329
3330 iter->dir_iterator = NULL;
3331 if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3332 ok = ITER_ERROR;
3333 return ok;
3334 }
3335
3336 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3337 struct object_id *peeled)
3338 {
3339 die("BUG: ref_iterator_peel() called for reflog_iterator");
3340 }
3341
3342 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3343 {
3344 struct files_reflog_iterator *iter =
3345 (struct files_reflog_iterator *)ref_iterator;
3346 int ok = ITER_DONE;
3347
3348 if (iter->dir_iterator)
3349 ok = dir_iterator_abort(iter->dir_iterator);
3350
3351 base_ref_iterator_free(ref_iterator);
3352 return ok;
3353 }
3354
3355 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3356 files_reflog_iterator_advance,
3357 files_reflog_iterator_peel,
3358 files_reflog_iterator_abort
3359 };
3360
3361 static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3362 {
3363 struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3364 struct ref_iterator *ref_iterator = &iter->base;
3365
3366 /* Check validity (but we don't need the result): */
3367 files_downcast(ref_store, 0, "reflog_iterator_begin");
3368
3369 base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3370 iter->dir_iterator = dir_iterator_begin(git_path("logs"));
3371 return ref_iterator;
3372 }
3373
3374 static int ref_update_reject_duplicates(struct string_list *refnames,
3375 struct strbuf *err)
3376 {
3377 int i, n = refnames->nr;
3378
3379 assert(err);
3380
3381 for (i = 1; i < n; i++)
3382 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3383 strbuf_addf(err,
3384 "multiple updates for ref '%s' not allowed.",
3385 refnames->items[i].string);
3386 return 1;
3387 }
3388 return 0;
3389 }
3390
3391 /*
3392 * If update is a direct update of head_ref (the reference pointed to
3393 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3394 */
3395 static int split_head_update(struct ref_update *update,
3396 struct ref_transaction *transaction,
3397 const char *head_ref,
3398 struct string_list *affected_refnames,
3399 struct strbuf *err)
3400 {
3401 struct string_list_item *item;
3402 struct ref_update *new_update;
3403
3404 if ((update->flags & REF_LOG_ONLY) ||
3405 (update->flags & REF_ISPRUNING) ||
3406 (update->flags & REF_UPDATE_VIA_HEAD))
3407 return 0;
3408
3409 if (strcmp(update->refname, head_ref))
3410 return 0;
3411
3412 /*
3413 * First make sure that HEAD is not already in the
3414 * transaction. This insertion is O(N) in the transaction
3415 * size, but it happens at most once per transaction.
3416 */
3417 item = string_list_insert(affected_refnames, "HEAD");
3418 if (item->util) {
3419 /* An entry already existed */
3420 strbuf_addf(err,
3421 "multiple updates for 'HEAD' (including one "
3422 "via its referent '%s') are not allowed",
3423 update->refname);
3424 return TRANSACTION_NAME_CONFLICT;
3425 }
3426
3427 new_update = ref_transaction_add_update(
3428 transaction, "HEAD",
3429 update->flags | REF_LOG_ONLY | REF_NODEREF,
3430 update->new_sha1, update->old_sha1,
3431 update->msg);
3432
3433 item->util = new_update;
3434
3435 return 0;
3436 }
3437
3438 /*
3439 * update is for a symref that points at referent and doesn't have
3440 * REF_NODEREF set. Split it into two updates:
3441 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3442 * - A new, separate update for the referent reference
3443 * Note that the new update will itself be subject to splitting when
3444 * the iteration gets to it.
3445 */
3446 static int split_symref_update(struct files_ref_store *refs,
3447 struct ref_update *update,
3448 const char *referent,
3449 struct ref_transaction *transaction,
3450 struct string_list *affected_refnames,
3451 struct strbuf *err)
3452 {
3453 struct string_list_item *item;
3454 struct ref_update *new_update;
3455 unsigned int new_flags;
3456
3457 /*
3458 * First make sure that referent is not already in the
3459 * transaction. This insertion is O(N) in the transaction
3460 * size, but it happens at most once per symref in a
3461 * transaction.
3462 */
3463 item = string_list_insert(affected_refnames, referent);
3464 if (item->util) {
3465 /* An entry already existed */
3466 strbuf_addf(err,
3467 "multiple updates for '%s' (including one "
3468 "via symref '%s') are not allowed",
3469 referent, update->refname);
3470 return TRANSACTION_NAME_CONFLICT;
3471 }
3472
3473 new_flags = update->flags;
3474 if (!strcmp(update->refname, "HEAD")) {
3475 /*
3476 * Record that the new update came via HEAD, so that
3477 * when we process it, split_head_update() doesn't try
3478 * to add another reflog update for HEAD. Note that
3479 * this bit will be propagated if the new_update
3480 * itself needs to be split.
3481 */
3482 new_flags |= REF_UPDATE_VIA_HEAD;
3483 }
3484
3485 new_update = ref_transaction_add_update(
3486 transaction, referent, new_flags,
3487 update->new_sha1, update->old_sha1,
3488 update->msg);
3489
3490 new_update->parent_update = update;
3491
3492 /*
3493 * Change the symbolic ref update to log only. Also, it
3494 * doesn't need to check its old SHA-1 value, as that will be
3495 * done when new_update is processed.
3496 */
3497 update->flags |= REF_LOG_ONLY | REF_NODEREF;
3498 update->flags &= ~REF_HAVE_OLD;
3499
3500 item->util = new_update;
3501
3502 return 0;
3503 }
3504
3505 /*
3506 * Return the refname under which update was originally requested.
3507 */
3508 static const char *original_update_refname(struct ref_update *update)
3509 {
3510 while (update->parent_update)
3511 update = update->parent_update;
3512
3513 return update->refname;
3514 }
3515
3516 /*
3517 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3518 * are consistent with oid, which is the reference's current value. If
3519 * everything is OK, return 0; otherwise, write an error message to
3520 * err and return -1.
3521 */
3522 static int check_old_oid(struct ref_update *update, struct object_id *oid,
3523 struct strbuf *err)
3524 {
3525 if (!(update->flags & REF_HAVE_OLD) ||
3526 !hashcmp(oid->hash, update->old_sha1))
3527 return 0;
3528
3529 if (is_null_sha1(update->old_sha1))
3530 strbuf_addf(err, "cannot lock ref '%s': "
3531 "reference already exists",
3532 original_update_refname(update));
3533 else if (is_null_oid(oid))
3534 strbuf_addf(err, "cannot lock ref '%s': "
3535 "reference is missing but expected %s",
3536 original_update_refname(update),
3537 sha1_to_hex(update->old_sha1));
3538 else
3539 strbuf_addf(err, "cannot lock ref '%s': "
3540 "is at %s but expected %s",
3541 original_update_refname(update),
3542 oid_to_hex(oid),
3543 sha1_to_hex(update->old_sha1));
3544
3545 return -1;
3546 }
3547
3548 /*
3549 * Prepare for carrying out update:
3550 * - Lock the reference referred to by update.
3551 * - Read the reference under lock.
3552 * - Check that its old SHA-1 value (if specified) is correct, and in
3553 * any case record it in update->lock->old_oid for later use when
3554 * writing the reflog.
3555 * - If it is a symref update without REF_NODEREF, split it up into a
3556 * REF_LOG_ONLY update of the symref and add a separate update for
3557 * the referent to transaction.
3558 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3559 * update of HEAD.
3560 */
3561 static int lock_ref_for_update(struct files_ref_store *refs,
3562 struct ref_update *update,
3563 struct ref_transaction *transaction,
3564 const char *head_ref,
3565 struct string_list *affected_refnames,
3566 struct strbuf *err)
3567 {
3568 struct strbuf referent = STRBUF_INIT;
3569 int mustexist = (update->flags & REF_HAVE_OLD) &&
3570 !is_null_sha1(update->old_sha1);
3571 int ret;
3572 struct ref_lock *lock;
3573
3574 files_assert_main_repository(refs, "lock_ref_for_update");
3575
3576 if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3577 update->flags |= REF_DELETING;
3578
3579 if (head_ref) {
3580 ret = split_head_update(update, transaction, head_ref,
3581 affected_refnames, err);
3582 if (ret)
3583 return ret;
3584 }
3585
3586 ret = lock_raw_ref(refs, update->refname, mustexist,
3587 affected_refnames, NULL,
3588 &lock, &referent,
3589 &update->type, err);
3590 if (ret) {
3591 char *reason;
3592
3593 reason = strbuf_detach(err, NULL);
3594 strbuf_addf(err, "cannot lock ref '%s': %s",
3595 original_update_refname(update), reason);
3596 free(reason);
3597 return ret;
3598 }
3599
3600 update->backend_data = lock;
3601
3602 if (update->type & REF_ISSYMREF) {
3603 if (update->flags & REF_NODEREF) {
3604 /*
3605 * We won't be reading the referent as part of
3606 * the transaction, so we have to read it here
3607 * to record and possibly check old_sha1:
3608 */
3609 if (read_ref_full(referent.buf, 0,
3610 lock->old_oid.hash, NULL)) {
3611 if (update->flags & REF_HAVE_OLD) {
3612 strbuf_addf(err, "cannot lock ref '%s': "
3613 "error reading reference",
3614 original_update_refname(update));
3615 return -1;
3616 }
3617 } else if (check_old_oid(update, &lock->old_oid, err)) {
3618 return TRANSACTION_GENERIC_ERROR;
3619 }
3620 } else {
3621 /*
3622 * Create a new update for the reference this
3623 * symref is pointing at. Also, we will record
3624 * and verify old_sha1 for this update as part
3625 * of processing the split-off update, so we
3626 * don't have to do it here.
3627 */
3628 ret = split_symref_update(refs, update,
3629 referent.buf, transaction,
3630 affected_refnames, err);
3631 if (ret)
3632 return ret;
3633 }
3634 } else {
3635 struct ref_update *parent_update;
3636
3637 if (check_old_oid(update, &lock->old_oid, err))
3638 return TRANSACTION_GENERIC_ERROR;
3639
3640 /*
3641 * If this update is happening indirectly because of a
3642 * symref update, record the old SHA-1 in the parent
3643 * update:
3644 */
3645 for (parent_update = update->parent_update;
3646 parent_update;
3647 parent_update = parent_update->parent_update) {
3648 struct ref_lock *parent_lock = parent_update->backend_data;
3649 oidcpy(&parent_lock->old_oid, &lock->old_oid);
3650 }
3651 }
3652
3653 if ((update->flags & REF_HAVE_NEW) &&
3654 !(update->flags & REF_DELETING) &&
3655 !(update->flags & REF_LOG_ONLY)) {
3656 if (!(update->type & REF_ISSYMREF) &&
3657 !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3658 /*
3659 * The reference already has the desired
3660 * value, so we don't need to write it.
3661 */
3662 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3663 err)) {
3664 char *write_err = strbuf_detach(err, NULL);
3665
3666 /*
3667 * The lock was freed upon failure of
3668 * write_ref_to_lockfile():
3669 */
3670 update->backend_data = NULL;
3671 strbuf_addf(err,
3672 "cannot update ref '%s': %s",
3673 update->refname, write_err);
3674 free(write_err);
3675 return TRANSACTION_GENERIC_ERROR;
3676 } else {
3677 update->flags |= REF_NEEDS_COMMIT;
3678 }
3679 }
3680 if (!(update->flags & REF_NEEDS_COMMIT)) {
3681 /*
3682 * We didn't call write_ref_to_lockfile(), so
3683 * the lockfile is still open. Close it to
3684 * free up the file descriptor:
3685 */
3686 if (close_ref(lock)) {
3687 strbuf_addf(err, "couldn't close '%s.lock'",
3688 update->refname);
3689 return TRANSACTION_GENERIC_ERROR;
3690 }
3691 }
3692 return 0;
3693 }
3694
3695 static int files_transaction_commit(struct ref_store *ref_store,
3696 struct ref_transaction *transaction,
3697 struct strbuf *err)
3698 {
3699 struct files_ref_store *refs =
3700 files_downcast(ref_store, 0, "ref_transaction_commit");
3701 int ret = 0, i;
3702 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3703 struct string_list_item *ref_to_delete;
3704 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3705 char *head_ref = NULL;
3706 int head_type;
3707 struct object_id head_oid;
3708
3709 assert(err);
3710
3711 if (transaction->state != REF_TRANSACTION_OPEN)
3712 die("BUG: commit called for transaction that is not open");
3713
3714 if (!transaction->nr) {
3715 transaction->state = REF_TRANSACTION_CLOSED;
3716 return 0;
3717 }
3718
3719 /*
3720 * Fail if a refname appears more than once in the
3721 * transaction. (If we end up splitting up any updates using
3722 * split_symref_update() or split_head_update(), those
3723 * functions will check that the new updates don't have the
3724 * same refname as any existing ones.)
3725 */
3726 for (i = 0; i < transaction->nr; i++) {
3727 struct ref_update *update = transaction->updates[i];
3728 struct string_list_item *item =
3729 string_list_append(&affected_refnames, update->refname);
3730
3731 /*
3732 * We store a pointer to update in item->util, but at
3733 * the moment we never use the value of this field
3734 * except to check whether it is non-NULL.
3735 */
3736 item->util = update;
3737 }
3738 string_list_sort(&affected_refnames);
3739 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3740 ret = TRANSACTION_GENERIC_ERROR;
3741 goto cleanup;
3742 }
3743
3744 /*
3745 * Special hack: If a branch is updated directly and HEAD
3746 * points to it (may happen on the remote side of a push
3747 * for example) then logically the HEAD reflog should be
3748 * updated too.
3749 *
3750 * A generic solution would require reverse symref lookups,
3751 * but finding all symrefs pointing to a given branch would be
3752 * rather costly for this rare event (the direct update of a
3753 * branch) to be worth it. So let's cheat and check with HEAD
3754 * only, which should cover 99% of all usage scenarios (even
3755 * 100% of the default ones).
3756 *
3757 * So if HEAD is a symbolic reference, then record the name of
3758 * the reference that it points to. If we see an update of
3759 * head_ref within the transaction, then split_head_update()
3760 * arranges for the reflog of HEAD to be updated, too.
3761 */
3762 head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3763 head_oid.hash, &head_type);
3764
3765 if (head_ref && !(head_type & REF_ISSYMREF)) {
3766 free(head_ref);
3767 head_ref = NULL;
3768 }
3769
3770 /*
3771 * Acquire all locks, verify old values if provided, check
3772 * that new values are valid, and write new values to the
3773 * lockfiles, ready to be activated. Only keep one lockfile
3774 * open at a time to avoid running out of file descriptors.
3775 */
3776 for (i = 0; i < transaction->nr; i++) {
3777 struct ref_update *update = transaction->updates[i];
3778
3779 ret = lock_ref_for_update(refs, update, transaction,
3780 head_ref, &affected_refnames, err);
3781 if (ret)
3782 goto cleanup;
3783 }
3784
3785 /* Perform updates first so live commits remain referenced */
3786 for (i = 0; i < transaction->nr; i++) {
3787 struct ref_update *update = transaction->updates[i];
3788 struct ref_lock *lock = update->backend_data;
3789
3790 if (update->flags & REF_NEEDS_COMMIT ||
3791 update->flags & REF_LOG_ONLY) {
3792 if (files_log_ref_write(lock->ref_name,
3793 lock->old_oid.hash,
3794 update->new_sha1,
3795 update->msg, update->flags,
3796 err)) {
3797 char *old_msg = strbuf_detach(err, NULL);
3798
3799 strbuf_addf(err, "cannot update the ref '%s': %s",
3800 lock->ref_name, old_msg);
3801 free(old_msg);
3802 unlock_ref(lock);
3803 update->backend_data = NULL;
3804 ret = TRANSACTION_GENERIC_ERROR;
3805 goto cleanup;
3806 }
3807 }
3808 if (update->flags & REF_NEEDS_COMMIT) {
3809 clear_loose_ref_cache(refs);
3810 if (commit_ref(lock)) {
3811 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3812 unlock_ref(lock);
3813 update->backend_data = NULL;
3814 ret = TRANSACTION_GENERIC_ERROR;
3815 goto cleanup;
3816 }
3817 }
3818 }
3819 /* Perform deletes now that updates are safely completed */
3820 for (i = 0; i < transaction->nr; i++) {
3821 struct ref_update *update = transaction->updates[i];
3822 struct ref_lock *lock = update->backend_data;
3823
3824 if (update->flags & REF_DELETING &&
3825 !(update->flags & REF_LOG_ONLY)) {
3826 if (!(update->type & REF_ISPACKED) ||
3827 update->type & REF_ISSYMREF) {
3828 /* It is a loose reference. */
3829 if (unlink_or_msg(git_path("%s", lock->ref_name), err)) {
3830 ret = TRANSACTION_GENERIC_ERROR;
3831 goto cleanup;
3832 }
3833 update->flags |= REF_DELETED_LOOSE;
3834 }
3835
3836 if (!(update->flags & REF_ISPRUNING))
3837 string_list_append(&refs_to_delete,
3838 lock->ref_name);
3839 }
3840 }
3841
3842 if (repack_without_refs(refs, &refs_to_delete, err)) {
3843 ret = TRANSACTION_GENERIC_ERROR;
3844 goto cleanup;
3845 }
3846
3847 /* Delete the reflogs of any references that were deleted: */
3848 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3849 if (!unlink_or_warn(git_path("logs/%s", ref_to_delete->string)))
3850 try_remove_empty_parents(ref_to_delete->string,
3851 REMOVE_EMPTY_PARENTS_REFLOG);
3852 }
3853
3854 clear_loose_ref_cache(refs);
3855
3856 cleanup:
3857 transaction->state = REF_TRANSACTION_CLOSED;
3858
3859 for (i = 0; i < transaction->nr; i++) {
3860 struct ref_update *update = transaction->updates[i];
3861 struct ref_lock *lock = update->backend_data;
3862
3863 if (lock)
3864 unlock_ref(lock);
3865
3866 if (update->flags & REF_DELETED_LOOSE) {
3867 /*
3868 * The loose reference was deleted. Delete any
3869 * empty parent directories. (Note that this
3870 * can only work because we have already
3871 * removed the lockfile.)
3872 */
3873 try_remove_empty_parents(update->refname,
3874 REMOVE_EMPTY_PARENTS_REF);
3875 }
3876 }
3877
3878 string_list_clear(&refs_to_delete, 0);
3879 free(head_ref);
3880 string_list_clear(&affected_refnames, 0);
3881
3882 return ret;
3883 }
3884
3885 static int ref_present(const char *refname,
3886 const struct object_id *oid, int flags, void *cb_data)
3887 {
3888 struct string_list *affected_refnames = cb_data;
3889
3890 return string_list_has_string(affected_refnames, refname);
3891 }
3892
3893 static int files_initial_transaction_commit(struct ref_store *ref_store,
3894 struct ref_transaction *transaction,
3895 struct strbuf *err)
3896 {
3897 struct files_ref_store *refs =
3898 files_downcast(ref_store, 0, "initial_ref_transaction_commit");
3899 int ret = 0, i;
3900 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3901
3902 assert(err);
3903
3904 if (transaction->state != REF_TRANSACTION_OPEN)
3905 die("BUG: commit called for transaction that is not open");
3906
3907 /* Fail if a refname appears more than once in the transaction: */
3908 for (i = 0; i < transaction->nr; i++)
3909 string_list_append(&affected_refnames,
3910 transaction->updates[i]->refname);
3911 string_list_sort(&affected_refnames);
3912 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3913 ret = TRANSACTION_GENERIC_ERROR;
3914 goto cleanup;
3915 }
3916
3917 /*
3918 * It's really undefined to call this function in an active
3919 * repository or when there are existing references: we are
3920 * only locking and changing packed-refs, so (1) any
3921 * simultaneous processes might try to change a reference at
3922 * the same time we do, and (2) any existing loose versions of
3923 * the references that we are setting would have precedence
3924 * over our values. But some remote helpers create the remote
3925 * "HEAD" and "master" branches before calling this function,
3926 * so here we really only check that none of the references
3927 * that we are creating already exists.
3928 */
3929 if (for_each_rawref(ref_present, &affected_refnames))
3930 die("BUG: initial ref transaction called with existing refs");
3931
3932 for (i = 0; i < transaction->nr; i++) {
3933 struct ref_update *update = transaction->updates[i];
3934
3935 if ((update->flags & REF_HAVE_OLD) &&
3936 !is_null_sha1(update->old_sha1))
3937 die("BUG: initial ref transaction with old_sha1 set");
3938 if (verify_refname_available(update->refname,
3939 &affected_refnames, NULL,
3940 err)) {
3941 ret = TRANSACTION_NAME_CONFLICT;
3942 goto cleanup;
3943 }
3944 }
3945
3946 if (lock_packed_refs(refs, 0)) {
3947 strbuf_addf(err, "unable to lock packed-refs file: %s",
3948 strerror(errno));
3949 ret = TRANSACTION_GENERIC_ERROR;
3950 goto cleanup;
3951 }
3952
3953 for (i = 0; i < transaction->nr; i++) {
3954 struct ref_update *update = transaction->updates[i];
3955
3956 if ((update->flags & REF_HAVE_NEW) &&
3957 !is_null_sha1(update->new_sha1))
3958 add_packed_ref(refs, update->refname, update->new_sha1);
3959 }
3960
3961 if (commit_packed_refs(refs)) {
3962 strbuf_addf(err, "unable to commit packed-refs file: %s",
3963 strerror(errno));
3964 ret = TRANSACTION_GENERIC_ERROR;
3965 goto cleanup;
3966 }
3967
3968 cleanup:
3969 transaction->state = REF_TRANSACTION_CLOSED;
3970 string_list_clear(&affected_refnames, 0);
3971 return ret;
3972 }
3973
3974 struct expire_reflog_cb {
3975 unsigned int flags;
3976 reflog_expiry_should_prune_fn *should_prune_fn;
3977 void *policy_cb;
3978 FILE *newlog;
3979 struct object_id last_kept_oid;
3980 };
3981
3982 static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
3983 const char *email, unsigned long timestamp, int tz,
3984 const char *message, void *cb_data)
3985 {
3986 struct expire_reflog_cb *cb = cb_data;
3987 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
3988
3989 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
3990 ooid = &cb->last_kept_oid;
3991
3992 if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
3993 message, policy_cb)) {
3994 if (!cb->newlog)
3995 printf("would prune %s", message);
3996 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3997 printf("prune %s", message);
3998 } else {
3999 if (cb->newlog) {
4000 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4001 oid_to_hex(ooid), oid_to_hex(noid),
4002 email, timestamp, tz, message);
4003 oidcpy(&cb->last_kept_oid, noid);
4004 }
4005 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4006 printf("keep %s", message);
4007 }
4008 return 0;
4009 }
4010
4011 static int files_reflog_expire(struct ref_store *ref_store,
4012 const char *refname, const unsigned char *sha1,
4013 unsigned int flags,
4014 reflog_expiry_prepare_fn prepare_fn,
4015 reflog_expiry_should_prune_fn should_prune_fn,
4016 reflog_expiry_cleanup_fn cleanup_fn,
4017 void *policy_cb_data)
4018 {
4019 struct files_ref_store *refs =
4020 files_downcast(ref_store, 0, "reflog_expire");
4021 static struct lock_file reflog_lock;
4022 struct expire_reflog_cb cb;
4023 struct ref_lock *lock;
4024 char *log_file;
4025 int status = 0;
4026 int type;
4027 struct strbuf err = STRBUF_INIT;
4028
4029 memset(&cb, 0, sizeof(cb));
4030 cb.flags = flags;
4031 cb.policy_cb = policy_cb_data;
4032 cb.should_prune_fn = should_prune_fn;
4033
4034 /*
4035 * The reflog file is locked by holding the lock on the
4036 * reference itself, plus we might need to update the
4037 * reference if --updateref was specified:
4038 */
4039 lock = lock_ref_sha1_basic(refs, refname, sha1,
4040 NULL, NULL, REF_NODEREF,
4041 &type, &err);
4042 if (!lock) {
4043 error("cannot lock ref '%s': %s", refname, err.buf);
4044 strbuf_release(&err);
4045 return -1;
4046 }
4047 if (!reflog_exists(refname)) {
4048 unlock_ref(lock);
4049 return 0;
4050 }
4051
4052 log_file = git_pathdup("logs/%s", refname);
4053 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4054 /*
4055 * Even though holding $GIT_DIR/logs/$reflog.lock has
4056 * no locking implications, we use the lock_file
4057 * machinery here anyway because it does a lot of the
4058 * work we need, including cleaning up if the program
4059 * exits unexpectedly.
4060 */
4061 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4062 struct strbuf err = STRBUF_INIT;
4063 unable_to_lock_message(log_file, errno, &err);
4064 error("%s", err.buf);
4065 strbuf_release(&err);
4066 goto failure;
4067 }
4068 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4069 if (!cb.newlog) {
4070 error("cannot fdopen %s (%s)",
4071 get_lock_file_path(&reflog_lock), strerror(errno));
4072 goto failure;
4073 }
4074 }
4075
4076 (*prepare_fn)(refname, sha1, cb.policy_cb);
4077 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4078 (*cleanup_fn)(cb.policy_cb);
4079
4080 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4081 /*
4082 * It doesn't make sense to adjust a reference pointed
4083 * to by a symbolic ref based on expiring entries in
4084 * the symbolic reference's reflog. Nor can we update
4085 * a reference if there are no remaining reflog
4086 * entries.
4087 */
4088 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4089 !(type & REF_ISSYMREF) &&
4090 !is_null_oid(&cb.last_kept_oid);
4091
4092 if (close_lock_file(&reflog_lock)) {
4093 status |= error("couldn't write %s: %s", log_file,
4094 strerror(errno));
4095 } else if (update &&
4096 (write_in_full(get_lock_file_fd(lock->lk),
4097 oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4098 write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4099 close_ref(lock) < 0)) {
4100 status |= error("couldn't write %s",
4101 get_lock_file_path(lock->lk));
4102 rollback_lock_file(&reflog_lock);
4103 } else if (commit_lock_file(&reflog_lock)) {
4104 status |= error("unable to write reflog '%s' (%s)",
4105 log_file, strerror(errno));
4106 } else if (update && commit_ref(lock)) {
4107 status |= error("couldn't set %s", lock->ref_name);
4108 }
4109 }
4110 free(log_file);
4111 unlock_ref(lock);
4112 return status;
4113
4114 failure:
4115 rollback_lock_file(&reflog_lock);
4116 free(log_file);
4117 unlock_ref(lock);
4118 return -1;
4119 }
4120
4121 static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4122 {
4123 /* Check validity (but we don't need the result): */
4124 files_downcast(ref_store, 0, "init_db");
4125
4126 /*
4127 * Create .git/refs/{heads,tags}
4128 */
4129 safe_create_dir(git_path("refs/heads"), 1);
4130 safe_create_dir(git_path("refs/tags"), 1);
4131 return 0;
4132 }
4133
4134 struct ref_storage_be refs_be_files = {
4135 NULL,
4136 "files",
4137 files_ref_store_create,
4138 files_init_db,
4139 files_transaction_commit,
4140 files_initial_transaction_commit,
4141
4142 files_pack_refs,
4143 files_peel_ref,
4144 files_create_symref,
4145 files_delete_refs,
4146 files_rename_ref,
4147
4148 files_ref_iterator_begin,
4149 files_read_raw_ref,
4150 files_verify_refname_available,
4151
4152 files_reflog_iterator_begin,
4153 files_for_each_reflog_ent,
4154 files_for_each_reflog_ent_reverse,
4155 files_reflog_exists,
4156 files_create_reflog,
4157 files_delete_reflog,
4158 files_reflog_expire
4159 };