]> git.ipfire.org Git - thirdparty/git.git/blob - refs/files-backend.c
refs: make read_raw_ref() virtual
[thirdparty/git.git] / refs / files-backend.c
1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
7 #include "../object.h"
8 #include "../dir.h"
9
10 struct ref_lock {
11 char *ref_name;
12 struct lock_file *lk;
13 struct object_id old_oid;
14 };
15
16 struct ref_entry;
17
18 /*
19 * Information used (along with the information in ref_entry) to
20 * describe a single cached reference. This data structure only
21 * occurs embedded in a union in struct ref_entry, and only when
22 * (ref_entry->flag & REF_DIR) is zero.
23 */
24 struct ref_value {
25 /*
26 * The name of the object to which this reference resolves
27 * (which may be a tag object). If REF_ISBROKEN, this is
28 * null. If REF_ISSYMREF, then this is the name of the object
29 * referred to by the last reference in the symlink chain.
30 */
31 struct object_id oid;
32
33 /*
34 * If REF_KNOWS_PEELED, then this field holds the peeled value
35 * of this reference, or null if the reference is known not to
36 * be peelable. See the documentation for peel_ref() for an
37 * exact definition of "peelable".
38 */
39 struct object_id peeled;
40 };
41
42 struct files_ref_store;
43
44 /*
45 * Information used (along with the information in ref_entry) to
46 * describe a level in the hierarchy of references. This data
47 * structure only occurs embedded in a union in struct ref_entry, and
48 * only when (ref_entry.flag & REF_DIR) is set. In that case,
49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50 * in the directory have already been read:
51 *
52 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53 * or packed references, already read.
54 *
55 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56 * references that hasn't been read yet (nor has any of its
57 * subdirectories).
58 *
59 * Entries within a directory are stored within a growable array of
60 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
61 * sorted are sorted by their component name in strcmp() order and the
62 * remaining entries are unsorted.
63 *
64 * Loose references are read lazily, one directory at a time. When a
65 * directory of loose references is read, then all of the references
66 * in that directory are stored, and REF_INCOMPLETE stubs are created
67 * for any subdirectories, but the subdirectories themselves are not
68 * read. The reading is triggered by get_ref_dir().
69 */
70 struct ref_dir {
71 int nr, alloc;
72
73 /*
74 * Entries with index 0 <= i < sorted are sorted by name. New
75 * entries are appended to the list unsorted, and are sorted
76 * only when required; thus we avoid the need to sort the list
77 * after the addition of every reference.
78 */
79 int sorted;
80
81 /* A pointer to the files_ref_store that contains this ref_dir. */
82 struct files_ref_store *ref_store;
83
84 struct ref_entry **entries;
85 };
86
87 /*
88 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90 * public values; see refs.h.
91 */
92
93 /*
94 * The field ref_entry->u.value.peeled of this value entry contains
95 * the correct peeled value for the reference, which might be
96 * null_sha1 if the reference is not a tag or if it is broken.
97 */
98 #define REF_KNOWS_PEELED 0x10
99
100 /* ref_entry represents a directory of references */
101 #define REF_DIR 0x20
102
103 /*
104 * Entry has not yet been read from disk (used only for REF_DIR
105 * entries representing loose references)
106 */
107 #define REF_INCOMPLETE 0x40
108
109 /*
110 * A ref_entry represents either a reference or a "subdirectory" of
111 * references.
112 *
113 * Each directory in the reference namespace is represented by a
114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
115 * that holds the entries in that directory that have been read so
116 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
117 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
118 * used for loose reference directories.
119 *
120 * References are represented by a ref_entry with (flags & REF_DIR)
121 * unset and a value member that describes the reference's value. The
122 * flag member is at the ref_entry level, but it is also needed to
123 * interpret the contents of the value field (in other words, a
124 * ref_value object is not very much use without the enclosing
125 * ref_entry).
126 *
127 * Reference names cannot end with slash and directories' names are
128 * always stored with a trailing slash (except for the top-level
129 * directory, which is always denoted by ""). This has two nice
130 * consequences: (1) when the entries in each subdir are sorted
131 * lexicographically by name (as they usually are), the references in
132 * a whole tree can be generated in lexicographic order by traversing
133 * the tree in left-to-right, depth-first order; (2) the names of
134 * references and subdirectories cannot conflict, and therefore the
135 * presence of an empty subdirectory does not block the creation of a
136 * similarly-named reference. (The fact that reference names with the
137 * same leading components can conflict *with each other* is a
138 * separate issue that is regulated by verify_refname_available().)
139 *
140 * Please note that the name field contains the fully-qualified
141 * reference (or subdirectory) name. Space could be saved by only
142 * storing the relative names. But that would require the full names
143 * to be generated on the fly when iterating in do_for_each_ref(), and
144 * would break callback functions, who have always been able to assume
145 * that the name strings that they are passed will not be freed during
146 * the iteration.
147 */
148 struct ref_entry {
149 unsigned char flag; /* ISSYMREF? ISPACKED? */
150 union {
151 struct ref_value value; /* if not (flags&REF_DIR) */
152 struct ref_dir subdir; /* if (flags&REF_DIR) */
153 } u;
154 /*
155 * The full name of the reference (e.g., "refs/heads/master")
156 * or the full name of the directory with a trailing slash
157 * (e.g., "refs/heads/"):
158 */
159 char name[FLEX_ARRAY];
160 };
161
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165 const char *dirname, size_t len,
166 int incomplete);
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168
169 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
170 {
171 struct ref_dir *dir;
172 assert(entry->flag & REF_DIR);
173 dir = &entry->u.subdir;
174 if (entry->flag & REF_INCOMPLETE) {
175 read_loose_refs(entry->name, dir);
176
177 /*
178 * Manually add refs/bisect, which, being
179 * per-worktree, might not appear in the directory
180 * listing for refs/ in the main repo.
181 */
182 if (!strcmp(entry->name, "refs/")) {
183 int pos = search_ref_dir(dir, "refs/bisect/", 12);
184 if (pos < 0) {
185 struct ref_entry *child_entry;
186 child_entry = create_dir_entry(dir->ref_store,
187 "refs/bisect/",
188 12, 1);
189 add_entry_to_dir(dir, child_entry);
190 read_loose_refs("refs/bisect",
191 &child_entry->u.subdir);
192 }
193 }
194 entry->flag &= ~REF_INCOMPLETE;
195 }
196 return dir;
197 }
198
199 static struct ref_entry *create_ref_entry(const char *refname,
200 const unsigned char *sha1, int flag,
201 int check_name)
202 {
203 struct ref_entry *ref;
204
205 if (check_name &&
206 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
207 die("Reference has invalid format: '%s'", refname);
208 FLEX_ALLOC_STR(ref, name, refname);
209 hashcpy(ref->u.value.oid.hash, sha1);
210 oidclr(&ref->u.value.peeled);
211 ref->flag = flag;
212 return ref;
213 }
214
215 static void clear_ref_dir(struct ref_dir *dir);
216
217 static void free_ref_entry(struct ref_entry *entry)
218 {
219 if (entry->flag & REF_DIR) {
220 /*
221 * Do not use get_ref_dir() here, as that might
222 * trigger the reading of loose refs.
223 */
224 clear_ref_dir(&entry->u.subdir);
225 }
226 free(entry);
227 }
228
229 /*
230 * Add a ref_entry to the end of dir (unsorted). Entry is always
231 * stored directly in dir; no recursion into subdirectories is
232 * done.
233 */
234 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
235 {
236 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
237 dir->entries[dir->nr++] = entry;
238 /* optimize for the case that entries are added in order */
239 if (dir->nr == 1 ||
240 (dir->nr == dir->sorted + 1 &&
241 strcmp(dir->entries[dir->nr - 2]->name,
242 dir->entries[dir->nr - 1]->name) < 0))
243 dir->sorted = dir->nr;
244 }
245
246 /*
247 * Clear and free all entries in dir, recursively.
248 */
249 static void clear_ref_dir(struct ref_dir *dir)
250 {
251 int i;
252 for (i = 0; i < dir->nr; i++)
253 free_ref_entry(dir->entries[i]);
254 free(dir->entries);
255 dir->sorted = dir->nr = dir->alloc = 0;
256 dir->entries = NULL;
257 }
258
259 /*
260 * Create a struct ref_entry object for the specified dirname.
261 * dirname is the name of the directory with a trailing slash (e.g.,
262 * "refs/heads/") or "" for the top-level directory.
263 */
264 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
265 const char *dirname, size_t len,
266 int incomplete)
267 {
268 struct ref_entry *direntry;
269 FLEX_ALLOC_MEM(direntry, name, dirname, len);
270 direntry->u.subdir.ref_store = ref_store;
271 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
272 return direntry;
273 }
274
275 static int ref_entry_cmp(const void *a, const void *b)
276 {
277 struct ref_entry *one = *(struct ref_entry **)a;
278 struct ref_entry *two = *(struct ref_entry **)b;
279 return strcmp(one->name, two->name);
280 }
281
282 static void sort_ref_dir(struct ref_dir *dir);
283
284 struct string_slice {
285 size_t len;
286 const char *str;
287 };
288
289 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
290 {
291 const struct string_slice *key = key_;
292 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
293 int cmp = strncmp(key->str, ent->name, key->len);
294 if (cmp)
295 return cmp;
296 return '\0' - (unsigned char)ent->name[key->len];
297 }
298
299 /*
300 * Return the index of the entry with the given refname from the
301 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
302 * no such entry is found. dir must already be complete.
303 */
304 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
305 {
306 struct ref_entry **r;
307 struct string_slice key;
308
309 if (refname == NULL || !dir->nr)
310 return -1;
311
312 sort_ref_dir(dir);
313 key.len = len;
314 key.str = refname;
315 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
316 ref_entry_cmp_sslice);
317
318 if (r == NULL)
319 return -1;
320
321 return r - dir->entries;
322 }
323
324 /*
325 * Search for a directory entry directly within dir (without
326 * recursing). Sort dir if necessary. subdirname must be a directory
327 * name (i.e., end in '/'). If mkdir is set, then create the
328 * directory if it is missing; otherwise, return NULL if the desired
329 * directory cannot be found. dir must already be complete.
330 */
331 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
332 const char *subdirname, size_t len,
333 int mkdir)
334 {
335 int entry_index = search_ref_dir(dir, subdirname, len);
336 struct ref_entry *entry;
337 if (entry_index == -1) {
338 if (!mkdir)
339 return NULL;
340 /*
341 * Since dir is complete, the absence of a subdir
342 * means that the subdir really doesn't exist;
343 * therefore, create an empty record for it but mark
344 * the record complete.
345 */
346 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
347 add_entry_to_dir(dir, entry);
348 } else {
349 entry = dir->entries[entry_index];
350 }
351 return get_ref_dir(entry);
352 }
353
354 /*
355 * If refname is a reference name, find the ref_dir within the dir
356 * tree that should hold refname. If refname is a directory name
357 * (i.e., ends in '/'), then return that ref_dir itself. dir must
358 * represent the top-level directory and must already be complete.
359 * Sort ref_dirs and recurse into subdirectories as necessary. If
360 * mkdir is set, then create any missing directories; otherwise,
361 * return NULL if the desired directory cannot be found.
362 */
363 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
364 const char *refname, int mkdir)
365 {
366 const char *slash;
367 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
368 size_t dirnamelen = slash - refname + 1;
369 struct ref_dir *subdir;
370 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
371 if (!subdir) {
372 dir = NULL;
373 break;
374 }
375 dir = subdir;
376 }
377
378 return dir;
379 }
380
381 /*
382 * Find the value entry with the given name in dir, sorting ref_dirs
383 * and recursing into subdirectories as necessary. If the name is not
384 * found or it corresponds to a directory entry, return NULL.
385 */
386 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
387 {
388 int entry_index;
389 struct ref_entry *entry;
390 dir = find_containing_dir(dir, refname, 0);
391 if (!dir)
392 return NULL;
393 entry_index = search_ref_dir(dir, refname, strlen(refname));
394 if (entry_index == -1)
395 return NULL;
396 entry = dir->entries[entry_index];
397 return (entry->flag & REF_DIR) ? NULL : entry;
398 }
399
400 /*
401 * Remove the entry with the given name from dir, recursing into
402 * subdirectories as necessary. If refname is the name of a directory
403 * (i.e., ends with '/'), then remove the directory and its contents.
404 * If the removal was successful, return the number of entries
405 * remaining in the directory entry that contained the deleted entry.
406 * If the name was not found, return -1. Please note that this
407 * function only deletes the entry from the cache; it does not delete
408 * it from the filesystem or ensure that other cache entries (which
409 * might be symbolic references to the removed entry) are updated.
410 * Nor does it remove any containing dir entries that might be made
411 * empty by the removal. dir must represent the top-level directory
412 * and must already be complete.
413 */
414 static int remove_entry(struct ref_dir *dir, const char *refname)
415 {
416 int refname_len = strlen(refname);
417 int entry_index;
418 struct ref_entry *entry;
419 int is_dir = refname[refname_len - 1] == '/';
420 if (is_dir) {
421 /*
422 * refname represents a reference directory. Remove
423 * the trailing slash; otherwise we will get the
424 * directory *representing* refname rather than the
425 * one *containing* it.
426 */
427 char *dirname = xmemdupz(refname, refname_len - 1);
428 dir = find_containing_dir(dir, dirname, 0);
429 free(dirname);
430 } else {
431 dir = find_containing_dir(dir, refname, 0);
432 }
433 if (!dir)
434 return -1;
435 entry_index = search_ref_dir(dir, refname, refname_len);
436 if (entry_index == -1)
437 return -1;
438 entry = dir->entries[entry_index];
439
440 memmove(&dir->entries[entry_index],
441 &dir->entries[entry_index + 1],
442 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
443 );
444 dir->nr--;
445 if (dir->sorted > entry_index)
446 dir->sorted--;
447 free_ref_entry(entry);
448 return dir->nr;
449 }
450
451 /*
452 * Add a ref_entry to the ref_dir (unsorted), recursing into
453 * subdirectories as necessary. dir must represent the top-level
454 * directory. Return 0 on success.
455 */
456 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
457 {
458 dir = find_containing_dir(dir, ref->name, 1);
459 if (!dir)
460 return -1;
461 add_entry_to_dir(dir, ref);
462 return 0;
463 }
464
465 /*
466 * Emit a warning and return true iff ref1 and ref2 have the same name
467 * and the same sha1. Die if they have the same name but different
468 * sha1s.
469 */
470 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
471 {
472 if (strcmp(ref1->name, ref2->name))
473 return 0;
474
475 /* Duplicate name; make sure that they don't conflict: */
476
477 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
478 /* This is impossible by construction */
479 die("Reference directory conflict: %s", ref1->name);
480
481 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
482 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
483
484 warning("Duplicated ref: %s", ref1->name);
485 return 1;
486 }
487
488 /*
489 * Sort the entries in dir non-recursively (if they are not already
490 * sorted) and remove any duplicate entries.
491 */
492 static void sort_ref_dir(struct ref_dir *dir)
493 {
494 int i, j;
495 struct ref_entry *last = NULL;
496
497 /*
498 * This check also prevents passing a zero-length array to qsort(),
499 * which is a problem on some platforms.
500 */
501 if (dir->sorted == dir->nr)
502 return;
503
504 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
505
506 /* Remove any duplicates: */
507 for (i = 0, j = 0; j < dir->nr; j++) {
508 struct ref_entry *entry = dir->entries[j];
509 if (last && is_dup_ref(last, entry))
510 free_ref_entry(entry);
511 else
512 last = dir->entries[i++] = entry;
513 }
514 dir->sorted = dir->nr = i;
515 }
516
517 /*
518 * Return true if refname, which has the specified oid and flags, can
519 * be resolved to an object in the database. If the referred-to object
520 * does not exist, emit a warning and return false.
521 */
522 static int ref_resolves_to_object(const char *refname,
523 const struct object_id *oid,
524 unsigned int flags)
525 {
526 if (flags & REF_ISBROKEN)
527 return 0;
528 if (!has_sha1_file(oid->hash)) {
529 error("%s does not point to a valid object!", refname);
530 return 0;
531 }
532 return 1;
533 }
534
535 /*
536 * Return true if the reference described by entry can be resolved to
537 * an object in the database; otherwise, emit a warning and return
538 * false.
539 */
540 static int entry_resolves_to_object(struct ref_entry *entry)
541 {
542 return ref_resolves_to_object(entry->name,
543 &entry->u.value.oid, entry->flag);
544 }
545
546 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
547
548 /*
549 * Call fn for each reference in dir that has index in the range
550 * offset <= index < dir->nr. Recurse into subdirectories that are in
551 * that index range, sorting them before iterating. This function
552 * does not sort dir itself; it should be sorted beforehand. fn is
553 * called for all references, including broken ones.
554 */
555 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
556 each_ref_entry_fn fn, void *cb_data)
557 {
558 int i;
559 assert(dir->sorted == dir->nr);
560 for (i = offset; i < dir->nr; i++) {
561 struct ref_entry *entry = dir->entries[i];
562 int retval;
563 if (entry->flag & REF_DIR) {
564 struct ref_dir *subdir = get_ref_dir(entry);
565 sort_ref_dir(subdir);
566 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
567 } else {
568 retval = fn(entry, cb_data);
569 }
570 if (retval)
571 return retval;
572 }
573 return 0;
574 }
575
576 /*
577 * Load all of the refs from the dir into our in-memory cache. The hard work
578 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
579 * through all of the sub-directories. We do not even need to care about
580 * sorting, as traversal order does not matter to us.
581 */
582 static void prime_ref_dir(struct ref_dir *dir)
583 {
584 int i;
585 for (i = 0; i < dir->nr; i++) {
586 struct ref_entry *entry = dir->entries[i];
587 if (entry->flag & REF_DIR)
588 prime_ref_dir(get_ref_dir(entry));
589 }
590 }
591
592 /*
593 * A level in the reference hierarchy that is currently being iterated
594 * through.
595 */
596 struct cache_ref_iterator_level {
597 /*
598 * The ref_dir being iterated over at this level. The ref_dir
599 * is sorted before being stored here.
600 */
601 struct ref_dir *dir;
602
603 /*
604 * The index of the current entry within dir (which might
605 * itself be a directory). If index == -1, then the iteration
606 * hasn't yet begun. If index == dir->nr, then the iteration
607 * through this level is over.
608 */
609 int index;
610 };
611
612 /*
613 * Represent an iteration through a ref_dir in the memory cache. The
614 * iteration recurses through subdirectories.
615 */
616 struct cache_ref_iterator {
617 struct ref_iterator base;
618
619 /*
620 * The number of levels currently on the stack. This is always
621 * at least 1, because when it becomes zero the iteration is
622 * ended and this struct is freed.
623 */
624 size_t levels_nr;
625
626 /* The number of levels that have been allocated on the stack */
627 size_t levels_alloc;
628
629 /*
630 * A stack of levels. levels[0] is the uppermost level that is
631 * being iterated over in this iteration. (This is not
632 * necessary the top level in the references hierarchy. If we
633 * are iterating through a subtree, then levels[0] will hold
634 * the ref_dir for that subtree, and subsequent levels will go
635 * on from there.)
636 */
637 struct cache_ref_iterator_level *levels;
638 };
639
640 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
641 {
642 struct cache_ref_iterator *iter =
643 (struct cache_ref_iterator *)ref_iterator;
644
645 while (1) {
646 struct cache_ref_iterator_level *level =
647 &iter->levels[iter->levels_nr - 1];
648 struct ref_dir *dir = level->dir;
649 struct ref_entry *entry;
650
651 if (level->index == -1)
652 sort_ref_dir(dir);
653
654 if (++level->index == level->dir->nr) {
655 /* This level is exhausted; pop up a level */
656 if (--iter->levels_nr == 0)
657 return ref_iterator_abort(ref_iterator);
658
659 continue;
660 }
661
662 entry = dir->entries[level->index];
663
664 if (entry->flag & REF_DIR) {
665 /* push down a level */
666 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
667 iter->levels_alloc);
668
669 level = &iter->levels[iter->levels_nr++];
670 level->dir = get_ref_dir(entry);
671 level->index = -1;
672 } else {
673 iter->base.refname = entry->name;
674 iter->base.oid = &entry->u.value.oid;
675 iter->base.flags = entry->flag;
676 return ITER_OK;
677 }
678 }
679 }
680
681 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
682
683 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
684 struct object_id *peeled)
685 {
686 struct cache_ref_iterator *iter =
687 (struct cache_ref_iterator *)ref_iterator;
688 struct cache_ref_iterator_level *level;
689 struct ref_entry *entry;
690
691 level = &iter->levels[iter->levels_nr - 1];
692
693 if (level->index == -1)
694 die("BUG: peel called before advance for cache iterator");
695
696 entry = level->dir->entries[level->index];
697
698 if (peel_entry(entry, 0))
699 return -1;
700 hashcpy(peeled->hash, entry->u.value.peeled.hash);
701 return 0;
702 }
703
704 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
705 {
706 struct cache_ref_iterator *iter =
707 (struct cache_ref_iterator *)ref_iterator;
708
709 free(iter->levels);
710 base_ref_iterator_free(ref_iterator);
711 return ITER_DONE;
712 }
713
714 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
715 cache_ref_iterator_advance,
716 cache_ref_iterator_peel,
717 cache_ref_iterator_abort
718 };
719
720 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
721 {
722 struct cache_ref_iterator *iter;
723 struct ref_iterator *ref_iterator;
724 struct cache_ref_iterator_level *level;
725
726 iter = xcalloc(1, sizeof(*iter));
727 ref_iterator = &iter->base;
728 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
729 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
730
731 iter->levels_nr = 1;
732 level = &iter->levels[0];
733 level->index = -1;
734 level->dir = dir;
735
736 return ref_iterator;
737 }
738
739 struct nonmatching_ref_data {
740 const struct string_list *skip;
741 const char *conflicting_refname;
742 };
743
744 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
745 {
746 struct nonmatching_ref_data *data = vdata;
747
748 if (data->skip && string_list_has_string(data->skip, entry->name))
749 return 0;
750
751 data->conflicting_refname = entry->name;
752 return 1;
753 }
754
755 /*
756 * Return 0 if a reference named refname could be created without
757 * conflicting with the name of an existing reference in dir.
758 * See verify_refname_available for more information.
759 */
760 static int verify_refname_available_dir(const char *refname,
761 const struct string_list *extras,
762 const struct string_list *skip,
763 struct ref_dir *dir,
764 struct strbuf *err)
765 {
766 const char *slash;
767 const char *extra_refname;
768 int pos;
769 struct strbuf dirname = STRBUF_INIT;
770 int ret = -1;
771
772 /*
773 * For the sake of comments in this function, suppose that
774 * refname is "refs/foo/bar".
775 */
776
777 assert(err);
778
779 strbuf_grow(&dirname, strlen(refname) + 1);
780 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
781 /* Expand dirname to the new prefix, not including the trailing slash: */
782 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
783
784 /*
785 * We are still at a leading dir of the refname (e.g.,
786 * "refs/foo"; if there is a reference with that name,
787 * it is a conflict, *unless* it is in skip.
788 */
789 if (dir) {
790 pos = search_ref_dir(dir, dirname.buf, dirname.len);
791 if (pos >= 0 &&
792 (!skip || !string_list_has_string(skip, dirname.buf))) {
793 /*
794 * We found a reference whose name is
795 * a proper prefix of refname; e.g.,
796 * "refs/foo", and is not in skip.
797 */
798 strbuf_addf(err, "'%s' exists; cannot create '%s'",
799 dirname.buf, refname);
800 goto cleanup;
801 }
802 }
803
804 if (extras && string_list_has_string(extras, dirname.buf) &&
805 (!skip || !string_list_has_string(skip, dirname.buf))) {
806 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
807 refname, dirname.buf);
808 goto cleanup;
809 }
810
811 /*
812 * Otherwise, we can try to continue our search with
813 * the next component. So try to look up the
814 * directory, e.g., "refs/foo/". If we come up empty,
815 * we know there is nothing under this whole prefix,
816 * but even in that case we still have to continue the
817 * search for conflicts with extras.
818 */
819 strbuf_addch(&dirname, '/');
820 if (dir) {
821 pos = search_ref_dir(dir, dirname.buf, dirname.len);
822 if (pos < 0) {
823 /*
824 * There was no directory "refs/foo/",
825 * so there is nothing under this
826 * whole prefix. So there is no need
827 * to continue looking for conflicting
828 * references. But we need to continue
829 * looking for conflicting extras.
830 */
831 dir = NULL;
832 } else {
833 dir = get_ref_dir(dir->entries[pos]);
834 }
835 }
836 }
837
838 /*
839 * We are at the leaf of our refname (e.g., "refs/foo/bar").
840 * There is no point in searching for a reference with that
841 * name, because a refname isn't considered to conflict with
842 * itself. But we still need to check for references whose
843 * names are in the "refs/foo/bar/" namespace, because they
844 * *do* conflict.
845 */
846 strbuf_addstr(&dirname, refname + dirname.len);
847 strbuf_addch(&dirname, '/');
848
849 if (dir) {
850 pos = search_ref_dir(dir, dirname.buf, dirname.len);
851
852 if (pos >= 0) {
853 /*
854 * We found a directory named "$refname/"
855 * (e.g., "refs/foo/bar/"). It is a problem
856 * iff it contains any ref that is not in
857 * "skip".
858 */
859 struct nonmatching_ref_data data;
860
861 data.skip = skip;
862 data.conflicting_refname = NULL;
863 dir = get_ref_dir(dir->entries[pos]);
864 sort_ref_dir(dir);
865 if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
866 strbuf_addf(err, "'%s' exists; cannot create '%s'",
867 data.conflicting_refname, refname);
868 goto cleanup;
869 }
870 }
871 }
872
873 extra_refname = find_descendant_ref(dirname.buf, extras, skip);
874 if (extra_refname)
875 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
876 refname, extra_refname);
877 else
878 ret = 0;
879
880 cleanup:
881 strbuf_release(&dirname);
882 return ret;
883 }
884
885 struct packed_ref_cache {
886 struct ref_entry *root;
887
888 /*
889 * Count of references to the data structure in this instance,
890 * including the pointer from files_ref_store::packed if any.
891 * The data will not be freed as long as the reference count
892 * is nonzero.
893 */
894 unsigned int referrers;
895
896 /*
897 * Iff the packed-refs file associated with this instance is
898 * currently locked for writing, this points at the associated
899 * lock (which is owned by somebody else). The referrer count
900 * is also incremented when the file is locked and decremented
901 * when it is unlocked.
902 */
903 struct lock_file *lock;
904
905 /* The metadata from when this packed-refs cache was read */
906 struct stat_validity validity;
907 };
908
909 /*
910 * Future: need to be in "struct repository"
911 * when doing a full libification.
912 */
913 struct files_ref_store {
914 struct ref_store base;
915 struct ref_entry *loose;
916 struct packed_ref_cache *packed;
917 };
918
919 /* Lock used for the main packed-refs file: */
920 static struct lock_file packlock;
921
922 /*
923 * Increment the reference count of *packed_refs.
924 */
925 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
926 {
927 packed_refs->referrers++;
928 }
929
930 /*
931 * Decrease the reference count of *packed_refs. If it goes to zero,
932 * free *packed_refs and return true; otherwise return false.
933 */
934 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
935 {
936 if (!--packed_refs->referrers) {
937 free_ref_entry(packed_refs->root);
938 stat_validity_clear(&packed_refs->validity);
939 free(packed_refs);
940 return 1;
941 } else {
942 return 0;
943 }
944 }
945
946 static void clear_packed_ref_cache(struct files_ref_store *refs)
947 {
948 if (refs->packed) {
949 struct packed_ref_cache *packed_refs = refs->packed;
950
951 if (packed_refs->lock)
952 die("internal error: packed-ref cache cleared while locked");
953 refs->packed = NULL;
954 release_packed_ref_cache(packed_refs);
955 }
956 }
957
958 static void clear_loose_ref_cache(struct files_ref_store *refs)
959 {
960 if (refs->loose) {
961 free_ref_entry(refs->loose);
962 refs->loose = NULL;
963 }
964 }
965
966 /*
967 * Create a new submodule ref cache and add it to the internal
968 * set of caches.
969 */
970 static struct ref_store *files_ref_store_create(const char *submodule)
971 {
972 struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
973 struct ref_store *ref_store = (struct ref_store *)refs;
974
975 base_ref_store_init(ref_store, &refs_be_files, submodule);
976
977 return ref_store;
978 }
979
980 /*
981 * Downcast ref_store to files_ref_store. Die if ref_store is not a
982 * files_ref_store. If submodule_allowed is not true, then also die if
983 * files_ref_store is for a submodule (i.e., not for the main
984 * repository). caller is used in any necessary error messages.
985 */
986 static struct files_ref_store *files_downcast(
987 struct ref_store *ref_store, int submodule_allowed,
988 const char *caller)
989 {
990 if (ref_store->be != &refs_be_files)
991 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
992 ref_store->be->name, caller);
993
994 if (!submodule_allowed)
995 assert_main_repository(ref_store, caller);
996
997 return (struct files_ref_store *)ref_store;
998 }
999
1000 /*
1001 * Return a pointer to the reference store for the specified
1002 * submodule. For the main repository, use submodule==NULL; such a
1003 * call cannot fail. For a submodule, the submodule must exist and be
1004 * a nonbare repository, otherwise return NULL. Verify that the
1005 * reference store is a files_ref_store, and cast it to that type
1006 * before returning it.
1007 */
1008 static struct files_ref_store *get_files_ref_store(const char *submodule,
1009 const char *caller)
1010 {
1011 struct ref_store *refs = get_ref_store(submodule);
1012
1013 return refs ? files_downcast(refs, 1, caller) : NULL;
1014 }
1015
1016 /* The length of a peeled reference line in packed-refs, including EOL: */
1017 #define PEELED_LINE_LENGTH 42
1018
1019 /*
1020 * The packed-refs header line that we write out. Perhaps other
1021 * traits will be added later. The trailing space is required.
1022 */
1023 static const char PACKED_REFS_HEADER[] =
1024 "# pack-refs with: peeled fully-peeled \n";
1025
1026 /*
1027 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1028 * Return a pointer to the refname within the line (null-terminated),
1029 * or NULL if there was a problem.
1030 */
1031 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1032 {
1033 const char *ref;
1034
1035 /*
1036 * 42: the answer to everything.
1037 *
1038 * In this case, it happens to be the answer to
1039 * 40 (length of sha1 hex representation)
1040 * +1 (space in between hex and name)
1041 * +1 (newline at the end of the line)
1042 */
1043 if (line->len <= 42)
1044 return NULL;
1045
1046 if (get_sha1_hex(line->buf, sha1) < 0)
1047 return NULL;
1048 if (!isspace(line->buf[40]))
1049 return NULL;
1050
1051 ref = line->buf + 41;
1052 if (isspace(*ref))
1053 return NULL;
1054
1055 if (line->buf[line->len - 1] != '\n')
1056 return NULL;
1057 line->buf[--line->len] = 0;
1058
1059 return ref;
1060 }
1061
1062 /*
1063 * Read f, which is a packed-refs file, into dir.
1064 *
1065 * A comment line of the form "# pack-refs with: " may contain zero or
1066 * more traits. We interpret the traits as follows:
1067 *
1068 * No traits:
1069 *
1070 * Probably no references are peeled. But if the file contains a
1071 * peeled value for a reference, we will use it.
1072 *
1073 * peeled:
1074 *
1075 * References under "refs/tags/", if they *can* be peeled, *are*
1076 * peeled in this file. References outside of "refs/tags/" are
1077 * probably not peeled even if they could have been, but if we find
1078 * a peeled value for such a reference we will use it.
1079 *
1080 * fully-peeled:
1081 *
1082 * All references in the file that can be peeled are peeled.
1083 * Inversely (and this is more important), any references in the
1084 * file for which no peeled value is recorded is not peelable. This
1085 * trait should typically be written alongside "peeled" for
1086 * compatibility with older clients, but we do not require it
1087 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1088 */
1089 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1090 {
1091 struct ref_entry *last = NULL;
1092 struct strbuf line = STRBUF_INIT;
1093 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1094
1095 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1096 unsigned char sha1[20];
1097 const char *refname;
1098 const char *traits;
1099
1100 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1101 if (strstr(traits, " fully-peeled "))
1102 peeled = PEELED_FULLY;
1103 else if (strstr(traits, " peeled "))
1104 peeled = PEELED_TAGS;
1105 /* perhaps other traits later as well */
1106 continue;
1107 }
1108
1109 refname = parse_ref_line(&line, sha1);
1110 if (refname) {
1111 int flag = REF_ISPACKED;
1112
1113 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1114 if (!refname_is_safe(refname))
1115 die("packed refname is dangerous: %s", refname);
1116 hashclr(sha1);
1117 flag |= REF_BAD_NAME | REF_ISBROKEN;
1118 }
1119 last = create_ref_entry(refname, sha1, flag, 0);
1120 if (peeled == PEELED_FULLY ||
1121 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1122 last->flag |= REF_KNOWS_PEELED;
1123 add_ref(dir, last);
1124 continue;
1125 }
1126 if (last &&
1127 line.buf[0] == '^' &&
1128 line.len == PEELED_LINE_LENGTH &&
1129 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1130 !get_sha1_hex(line.buf + 1, sha1)) {
1131 hashcpy(last->u.value.peeled.hash, sha1);
1132 /*
1133 * Regardless of what the file header said,
1134 * we definitely know the value of *this*
1135 * reference:
1136 */
1137 last->flag |= REF_KNOWS_PEELED;
1138 }
1139 }
1140
1141 strbuf_release(&line);
1142 }
1143
1144 /*
1145 * Get the packed_ref_cache for the specified files_ref_store,
1146 * creating it if necessary.
1147 */
1148 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1149 {
1150 char *packed_refs_file;
1151
1152 if (*refs->base.submodule)
1153 packed_refs_file = git_pathdup_submodule(refs->base.submodule,
1154 "packed-refs");
1155 else
1156 packed_refs_file = git_pathdup("packed-refs");
1157
1158 if (refs->packed &&
1159 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1160 clear_packed_ref_cache(refs);
1161
1162 if (!refs->packed) {
1163 FILE *f;
1164
1165 refs->packed = xcalloc(1, sizeof(*refs->packed));
1166 acquire_packed_ref_cache(refs->packed);
1167 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1168 f = fopen(packed_refs_file, "r");
1169 if (f) {
1170 stat_validity_update(&refs->packed->validity, fileno(f));
1171 read_packed_refs(f, get_ref_dir(refs->packed->root));
1172 fclose(f);
1173 }
1174 }
1175 free(packed_refs_file);
1176 return refs->packed;
1177 }
1178
1179 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1180 {
1181 return get_ref_dir(packed_ref_cache->root);
1182 }
1183
1184 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1185 {
1186 return get_packed_ref_dir(get_packed_ref_cache(refs));
1187 }
1188
1189 /*
1190 * Add a reference to the in-memory packed reference cache. This may
1191 * only be called while the packed-refs file is locked (see
1192 * lock_packed_refs()). To actually write the packed-refs file, call
1193 * commit_packed_refs().
1194 */
1195 static void add_packed_ref(struct files_ref_store *refs,
1196 const char *refname, const unsigned char *sha1)
1197 {
1198 struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1199
1200 if (!packed_ref_cache->lock)
1201 die("internal error: packed refs not locked");
1202 add_ref(get_packed_ref_dir(packed_ref_cache),
1203 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1204 }
1205
1206 /*
1207 * Read the loose references from the namespace dirname into dir
1208 * (without recursing). dirname must end with '/'. dir must be the
1209 * directory entry corresponding to dirname.
1210 */
1211 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1212 {
1213 struct files_ref_store *refs = dir->ref_store;
1214 DIR *d;
1215 struct dirent *de;
1216 int dirnamelen = strlen(dirname);
1217 struct strbuf refname;
1218 struct strbuf path = STRBUF_INIT;
1219 size_t path_baselen;
1220
1221 if (*refs->base.submodule)
1222 strbuf_git_path_submodule(&path, refs->base.submodule, "%s", dirname);
1223 else
1224 strbuf_git_path(&path, "%s", dirname);
1225 path_baselen = path.len;
1226
1227 d = opendir(path.buf);
1228 if (!d) {
1229 strbuf_release(&path);
1230 return;
1231 }
1232
1233 strbuf_init(&refname, dirnamelen + 257);
1234 strbuf_add(&refname, dirname, dirnamelen);
1235
1236 while ((de = readdir(d)) != NULL) {
1237 unsigned char sha1[20];
1238 struct stat st;
1239 int flag;
1240
1241 if (de->d_name[0] == '.')
1242 continue;
1243 if (ends_with(de->d_name, ".lock"))
1244 continue;
1245 strbuf_addstr(&refname, de->d_name);
1246 strbuf_addstr(&path, de->d_name);
1247 if (stat(path.buf, &st) < 0) {
1248 ; /* silently ignore */
1249 } else if (S_ISDIR(st.st_mode)) {
1250 strbuf_addch(&refname, '/');
1251 add_entry_to_dir(dir,
1252 create_dir_entry(refs, refname.buf,
1253 refname.len, 1));
1254 } else {
1255 int read_ok;
1256
1257 if (*refs->base.submodule) {
1258 hashclr(sha1);
1259 flag = 0;
1260 read_ok = !resolve_gitlink_ref(refs->base.submodule,
1261 refname.buf, sha1);
1262 } else {
1263 read_ok = !read_ref_full(refname.buf,
1264 RESOLVE_REF_READING,
1265 sha1, &flag);
1266 }
1267
1268 if (!read_ok) {
1269 hashclr(sha1);
1270 flag |= REF_ISBROKEN;
1271 } else if (is_null_sha1(sha1)) {
1272 /*
1273 * It is so astronomically unlikely
1274 * that NULL_SHA1 is the SHA-1 of an
1275 * actual object that we consider its
1276 * appearance in a loose reference
1277 * file to be repo corruption
1278 * (probably due to a software bug).
1279 */
1280 flag |= REF_ISBROKEN;
1281 }
1282
1283 if (check_refname_format(refname.buf,
1284 REFNAME_ALLOW_ONELEVEL)) {
1285 if (!refname_is_safe(refname.buf))
1286 die("loose refname is dangerous: %s", refname.buf);
1287 hashclr(sha1);
1288 flag |= REF_BAD_NAME | REF_ISBROKEN;
1289 }
1290 add_entry_to_dir(dir,
1291 create_ref_entry(refname.buf, sha1, flag, 0));
1292 }
1293 strbuf_setlen(&refname, dirnamelen);
1294 strbuf_setlen(&path, path_baselen);
1295 }
1296 strbuf_release(&refname);
1297 strbuf_release(&path);
1298 closedir(d);
1299 }
1300
1301 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1302 {
1303 if (!refs->loose) {
1304 /*
1305 * Mark the top-level directory complete because we
1306 * are about to read the only subdirectory that can
1307 * hold references:
1308 */
1309 refs->loose = create_dir_entry(refs, "", 0, 0);
1310 /*
1311 * Create an incomplete entry for "refs/":
1312 */
1313 add_entry_to_dir(get_ref_dir(refs->loose),
1314 create_dir_entry(refs, "refs/", 5, 1));
1315 }
1316 return get_ref_dir(refs->loose);
1317 }
1318
1319 /*
1320 * Return the ref_entry for the given refname from the packed
1321 * references. If it does not exist, return NULL.
1322 */
1323 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1324 const char *refname)
1325 {
1326 return find_ref(get_packed_refs(refs), refname);
1327 }
1328
1329 /*
1330 * A loose ref file doesn't exist; check for a packed ref.
1331 */
1332 static int resolve_packed_ref(struct files_ref_store *refs,
1333 const char *refname,
1334 unsigned char *sha1, unsigned int *flags)
1335 {
1336 struct ref_entry *entry;
1337
1338 /*
1339 * The loose reference file does not exist; check for a packed
1340 * reference.
1341 */
1342 entry = get_packed_ref(refs, refname);
1343 if (entry) {
1344 hashcpy(sha1, entry->u.value.oid.hash);
1345 *flags |= REF_ISPACKED;
1346 return 0;
1347 }
1348 /* refname is not a packed reference. */
1349 return -1;
1350 }
1351
1352 static int files_read_raw_ref(struct ref_store *ref_store,
1353 const char *refname, unsigned char *sha1,
1354 struct strbuf *referent, unsigned int *type)
1355 {
1356 struct files_ref_store *refs =
1357 files_downcast(ref_store, 1, "read_raw_ref");
1358 struct strbuf sb_contents = STRBUF_INIT;
1359 struct strbuf sb_path = STRBUF_INIT;
1360 const char *path;
1361 const char *buf;
1362 struct stat st;
1363 int fd;
1364 int ret = -1;
1365 int save_errno;
1366
1367 *type = 0;
1368 strbuf_reset(&sb_path);
1369
1370 if (*refs->base.submodule)
1371 strbuf_git_path_submodule(&sb_path, refs->base.submodule, "%s", refname);
1372 else
1373 strbuf_git_path(&sb_path, "%s", refname);
1374
1375 path = sb_path.buf;
1376
1377 stat_ref:
1378 /*
1379 * We might have to loop back here to avoid a race
1380 * condition: first we lstat() the file, then we try
1381 * to read it as a link or as a file. But if somebody
1382 * changes the type of the file (file <-> directory
1383 * <-> symlink) between the lstat() and reading, then
1384 * we don't want to report that as an error but rather
1385 * try again starting with the lstat().
1386 */
1387
1388 if (lstat(path, &st) < 0) {
1389 if (errno != ENOENT)
1390 goto out;
1391 if (resolve_packed_ref(refs, refname, sha1, type)) {
1392 errno = ENOENT;
1393 goto out;
1394 }
1395 ret = 0;
1396 goto out;
1397 }
1398
1399 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1400 if (S_ISLNK(st.st_mode)) {
1401 strbuf_reset(&sb_contents);
1402 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1403 if (errno == ENOENT || errno == EINVAL)
1404 /* inconsistent with lstat; retry */
1405 goto stat_ref;
1406 else
1407 goto out;
1408 }
1409 if (starts_with(sb_contents.buf, "refs/") &&
1410 !check_refname_format(sb_contents.buf, 0)) {
1411 strbuf_swap(&sb_contents, referent);
1412 *type |= REF_ISSYMREF;
1413 ret = 0;
1414 goto out;
1415 }
1416 }
1417
1418 /* Is it a directory? */
1419 if (S_ISDIR(st.st_mode)) {
1420 /*
1421 * Even though there is a directory where the loose
1422 * ref is supposed to be, there could still be a
1423 * packed ref:
1424 */
1425 if (resolve_packed_ref(refs, refname, sha1, type)) {
1426 errno = EISDIR;
1427 goto out;
1428 }
1429 ret = 0;
1430 goto out;
1431 }
1432
1433 /*
1434 * Anything else, just open it and try to use it as
1435 * a ref
1436 */
1437 fd = open(path, O_RDONLY);
1438 if (fd < 0) {
1439 if (errno == ENOENT)
1440 /* inconsistent with lstat; retry */
1441 goto stat_ref;
1442 else
1443 goto out;
1444 }
1445 strbuf_reset(&sb_contents);
1446 if (strbuf_read(&sb_contents, fd, 256) < 0) {
1447 int save_errno = errno;
1448 close(fd);
1449 errno = save_errno;
1450 goto out;
1451 }
1452 close(fd);
1453 strbuf_rtrim(&sb_contents);
1454 buf = sb_contents.buf;
1455 if (starts_with(buf, "ref:")) {
1456 buf += 4;
1457 while (isspace(*buf))
1458 buf++;
1459
1460 strbuf_reset(referent);
1461 strbuf_addstr(referent, buf);
1462 *type |= REF_ISSYMREF;
1463 ret = 0;
1464 goto out;
1465 }
1466
1467 /*
1468 * Please note that FETCH_HEAD has additional
1469 * data after the sha.
1470 */
1471 if (get_sha1_hex(buf, sha1) ||
1472 (buf[40] != '\0' && !isspace(buf[40]))) {
1473 *type |= REF_ISBROKEN;
1474 errno = EINVAL;
1475 goto out;
1476 }
1477
1478 ret = 0;
1479
1480 out:
1481 save_errno = errno;
1482 strbuf_release(&sb_path);
1483 strbuf_release(&sb_contents);
1484 errno = save_errno;
1485 return ret;
1486 }
1487
1488 static void unlock_ref(struct ref_lock *lock)
1489 {
1490 /* Do not free lock->lk -- atexit() still looks at them */
1491 if (lock->lk)
1492 rollback_lock_file(lock->lk);
1493 free(lock->ref_name);
1494 free(lock);
1495 }
1496
1497 /*
1498 * Lock refname, without following symrefs, and set *lock_p to point
1499 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1500 * and type similarly to read_raw_ref().
1501 *
1502 * The caller must verify that refname is a "safe" reference name (in
1503 * the sense of refname_is_safe()) before calling this function.
1504 *
1505 * If the reference doesn't already exist, verify that refname doesn't
1506 * have a D/F conflict with any existing references. extras and skip
1507 * are passed to verify_refname_available_dir() for this check.
1508 *
1509 * If mustexist is not set and the reference is not found or is
1510 * broken, lock the reference anyway but clear sha1.
1511 *
1512 * Return 0 on success. On failure, write an error message to err and
1513 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1514 *
1515 * Implementation note: This function is basically
1516 *
1517 * lock reference
1518 * read_raw_ref()
1519 *
1520 * but it includes a lot more code to
1521 * - Deal with possible races with other processes
1522 * - Avoid calling verify_refname_available_dir() when it can be
1523 * avoided, namely if we were successfully able to read the ref
1524 * - Generate informative error messages in the case of failure
1525 */
1526 static int lock_raw_ref(const char *refname, int mustexist,
1527 const struct string_list *extras,
1528 const struct string_list *skip,
1529 struct ref_lock **lock_p,
1530 struct strbuf *referent,
1531 unsigned int *type,
1532 struct strbuf *err)
1533 {
1534 struct ref_store *ref_store = get_ref_store(NULL);
1535 struct files_ref_store *refs =
1536 files_downcast(ref_store, 0, "lock_raw_ref");
1537 struct ref_lock *lock;
1538 struct strbuf ref_file = STRBUF_INIT;
1539 int attempts_remaining = 3;
1540 int ret = TRANSACTION_GENERIC_ERROR;
1541
1542 assert(err);
1543 *type = 0;
1544
1545 /* First lock the file so it can't change out from under us. */
1546
1547 *lock_p = lock = xcalloc(1, sizeof(*lock));
1548
1549 lock->ref_name = xstrdup(refname);
1550 strbuf_git_path(&ref_file, "%s", refname);
1551
1552 retry:
1553 switch (safe_create_leading_directories(ref_file.buf)) {
1554 case SCLD_OK:
1555 break; /* success */
1556 case SCLD_EXISTS:
1557 /*
1558 * Suppose refname is "refs/foo/bar". We just failed
1559 * to create the containing directory, "refs/foo",
1560 * because there was a non-directory in the way. This
1561 * indicates a D/F conflict, probably because of
1562 * another reference such as "refs/foo". There is no
1563 * reason to expect this error to be transitory.
1564 */
1565 if (verify_refname_available(refname, extras, skip, err)) {
1566 if (mustexist) {
1567 /*
1568 * To the user the relevant error is
1569 * that the "mustexist" reference is
1570 * missing:
1571 */
1572 strbuf_reset(err);
1573 strbuf_addf(err, "unable to resolve reference '%s'",
1574 refname);
1575 } else {
1576 /*
1577 * The error message set by
1578 * verify_refname_available_dir() is OK.
1579 */
1580 ret = TRANSACTION_NAME_CONFLICT;
1581 }
1582 } else {
1583 /*
1584 * The file that is in the way isn't a loose
1585 * reference. Report it as a low-level
1586 * failure.
1587 */
1588 strbuf_addf(err, "unable to create lock file %s.lock; "
1589 "non-directory in the way",
1590 ref_file.buf);
1591 }
1592 goto error_return;
1593 case SCLD_VANISHED:
1594 /* Maybe another process was tidying up. Try again. */
1595 if (--attempts_remaining > 0)
1596 goto retry;
1597 /* fall through */
1598 default:
1599 strbuf_addf(err, "unable to create directory for %s",
1600 ref_file.buf);
1601 goto error_return;
1602 }
1603
1604 if (!lock->lk)
1605 lock->lk = xcalloc(1, sizeof(struct lock_file));
1606
1607 if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1608 if (errno == ENOENT && --attempts_remaining > 0) {
1609 /*
1610 * Maybe somebody just deleted one of the
1611 * directories leading to ref_file. Try
1612 * again:
1613 */
1614 goto retry;
1615 } else {
1616 unable_to_lock_message(ref_file.buf, errno, err);
1617 goto error_return;
1618 }
1619 }
1620
1621 /*
1622 * Now we hold the lock and can read the reference without
1623 * fear that its value will change.
1624 */
1625
1626 if (files_read_raw_ref(ref_store, refname,
1627 lock->old_oid.hash, referent, type)) {
1628 if (errno == ENOENT) {
1629 if (mustexist) {
1630 /* Garden variety missing reference. */
1631 strbuf_addf(err, "unable to resolve reference '%s'",
1632 refname);
1633 goto error_return;
1634 } else {
1635 /*
1636 * Reference is missing, but that's OK. We
1637 * know that there is not a conflict with
1638 * another loose reference because
1639 * (supposing that we are trying to lock
1640 * reference "refs/foo/bar"):
1641 *
1642 * - We were successfully able to create
1643 * the lockfile refs/foo/bar.lock, so we
1644 * know there cannot be a loose reference
1645 * named "refs/foo".
1646 *
1647 * - We got ENOENT and not EISDIR, so we
1648 * know that there cannot be a loose
1649 * reference named "refs/foo/bar/baz".
1650 */
1651 }
1652 } else if (errno == EISDIR) {
1653 /*
1654 * There is a directory in the way. It might have
1655 * contained references that have been deleted. If
1656 * we don't require that the reference already
1657 * exists, try to remove the directory so that it
1658 * doesn't cause trouble when we want to rename the
1659 * lockfile into place later.
1660 */
1661 if (mustexist) {
1662 /* Garden variety missing reference. */
1663 strbuf_addf(err, "unable to resolve reference '%s'",
1664 refname);
1665 goto error_return;
1666 } else if (remove_dir_recursively(&ref_file,
1667 REMOVE_DIR_EMPTY_ONLY)) {
1668 if (verify_refname_available_dir(
1669 refname, extras, skip,
1670 get_loose_refs(refs),
1671 err)) {
1672 /*
1673 * The error message set by
1674 * verify_refname_available() is OK.
1675 */
1676 ret = TRANSACTION_NAME_CONFLICT;
1677 goto error_return;
1678 } else {
1679 /*
1680 * We can't delete the directory,
1681 * but we also don't know of any
1682 * references that it should
1683 * contain.
1684 */
1685 strbuf_addf(err, "there is a non-empty directory '%s' "
1686 "blocking reference '%s'",
1687 ref_file.buf, refname);
1688 goto error_return;
1689 }
1690 }
1691 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1692 strbuf_addf(err, "unable to resolve reference '%s': "
1693 "reference broken", refname);
1694 goto error_return;
1695 } else {
1696 strbuf_addf(err, "unable to resolve reference '%s': %s",
1697 refname, strerror(errno));
1698 goto error_return;
1699 }
1700
1701 /*
1702 * If the ref did not exist and we are creating it,
1703 * make sure there is no existing packed ref whose
1704 * name begins with our refname, nor a packed ref
1705 * whose name is a proper prefix of our refname.
1706 */
1707 if (verify_refname_available_dir(
1708 refname, extras, skip,
1709 get_packed_refs(refs),
1710 err)) {
1711 goto error_return;
1712 }
1713 }
1714
1715 ret = 0;
1716 goto out;
1717
1718 error_return:
1719 unlock_ref(lock);
1720 *lock_p = NULL;
1721
1722 out:
1723 strbuf_release(&ref_file);
1724 return ret;
1725 }
1726
1727 /*
1728 * Peel the entry (if possible) and return its new peel_status. If
1729 * repeel is true, re-peel the entry even if there is an old peeled
1730 * value that is already stored in it.
1731 *
1732 * It is OK to call this function with a packed reference entry that
1733 * might be stale and might even refer to an object that has since
1734 * been garbage-collected. In such a case, if the entry has
1735 * REF_KNOWS_PEELED then leave the status unchanged and return
1736 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1737 */
1738 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1739 {
1740 enum peel_status status;
1741
1742 if (entry->flag & REF_KNOWS_PEELED) {
1743 if (repeel) {
1744 entry->flag &= ~REF_KNOWS_PEELED;
1745 oidclr(&entry->u.value.peeled);
1746 } else {
1747 return is_null_oid(&entry->u.value.peeled) ?
1748 PEEL_NON_TAG : PEEL_PEELED;
1749 }
1750 }
1751 if (entry->flag & REF_ISBROKEN)
1752 return PEEL_BROKEN;
1753 if (entry->flag & REF_ISSYMREF)
1754 return PEEL_IS_SYMREF;
1755
1756 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1757 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1758 entry->flag |= REF_KNOWS_PEELED;
1759 return status;
1760 }
1761
1762 int peel_ref(const char *refname, unsigned char *sha1)
1763 {
1764 struct files_ref_store *refs = get_files_ref_store(NULL, "peel_ref");
1765 int flag;
1766 unsigned char base[20];
1767
1768 if (current_ref_iter && current_ref_iter->refname == refname) {
1769 struct object_id peeled;
1770
1771 if (ref_iterator_peel(current_ref_iter, &peeled))
1772 return -1;
1773 hashcpy(sha1, peeled.hash);
1774 return 0;
1775 }
1776
1777 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1778 return -1;
1779
1780 /*
1781 * If the reference is packed, read its ref_entry from the
1782 * cache in the hope that we already know its peeled value.
1783 * We only try this optimization on packed references because
1784 * (a) forcing the filling of the loose reference cache could
1785 * be expensive and (b) loose references anyway usually do not
1786 * have REF_KNOWS_PEELED.
1787 */
1788 if (flag & REF_ISPACKED) {
1789 struct ref_entry *r = get_packed_ref(refs, refname);
1790 if (r) {
1791 if (peel_entry(r, 0))
1792 return -1;
1793 hashcpy(sha1, r->u.value.peeled.hash);
1794 return 0;
1795 }
1796 }
1797
1798 return peel_object(base, sha1);
1799 }
1800
1801 struct files_ref_iterator {
1802 struct ref_iterator base;
1803
1804 struct packed_ref_cache *packed_ref_cache;
1805 struct ref_iterator *iter0;
1806 unsigned int flags;
1807 };
1808
1809 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1810 {
1811 struct files_ref_iterator *iter =
1812 (struct files_ref_iterator *)ref_iterator;
1813 int ok;
1814
1815 while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1816 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1817 !ref_resolves_to_object(iter->iter0->refname,
1818 iter->iter0->oid,
1819 iter->iter0->flags))
1820 continue;
1821
1822 iter->base.refname = iter->iter0->refname;
1823 iter->base.oid = iter->iter0->oid;
1824 iter->base.flags = iter->iter0->flags;
1825 return ITER_OK;
1826 }
1827
1828 iter->iter0 = NULL;
1829 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1830 ok = ITER_ERROR;
1831
1832 return ok;
1833 }
1834
1835 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1836 struct object_id *peeled)
1837 {
1838 struct files_ref_iterator *iter =
1839 (struct files_ref_iterator *)ref_iterator;
1840
1841 return ref_iterator_peel(iter->iter0, peeled);
1842 }
1843
1844 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1845 {
1846 struct files_ref_iterator *iter =
1847 (struct files_ref_iterator *)ref_iterator;
1848 int ok = ITER_DONE;
1849
1850 if (iter->iter0)
1851 ok = ref_iterator_abort(iter->iter0);
1852
1853 release_packed_ref_cache(iter->packed_ref_cache);
1854 base_ref_iterator_free(ref_iterator);
1855 return ok;
1856 }
1857
1858 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1859 files_ref_iterator_advance,
1860 files_ref_iterator_peel,
1861 files_ref_iterator_abort
1862 };
1863
1864 struct ref_iterator *files_ref_iterator_begin(
1865 const char *submodule,
1866 const char *prefix, unsigned int flags)
1867 {
1868 struct files_ref_store *refs =
1869 get_files_ref_store(submodule, "ref_iterator_begin");
1870 struct ref_dir *loose_dir, *packed_dir;
1871 struct ref_iterator *loose_iter, *packed_iter;
1872 struct files_ref_iterator *iter;
1873 struct ref_iterator *ref_iterator;
1874
1875 if (!refs)
1876 return empty_ref_iterator_begin();
1877
1878 if (ref_paranoia < 0)
1879 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1880 if (ref_paranoia)
1881 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1882
1883 iter = xcalloc(1, sizeof(*iter));
1884 ref_iterator = &iter->base;
1885 base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1886
1887 /*
1888 * We must make sure that all loose refs are read before
1889 * accessing the packed-refs file; this avoids a race
1890 * condition if loose refs are migrated to the packed-refs
1891 * file by a simultaneous process, but our in-memory view is
1892 * from before the migration. We ensure this as follows:
1893 * First, we call prime_ref_dir(), which pre-reads the loose
1894 * references for the subtree into the cache. (If they've
1895 * already been read, that's OK; we only need to guarantee
1896 * that they're read before the packed refs, not *how much*
1897 * before.) After that, we call get_packed_ref_cache(), which
1898 * internally checks whether the packed-ref cache is up to
1899 * date with what is on disk, and re-reads it if not.
1900 */
1901
1902 loose_dir = get_loose_refs(refs);
1903
1904 if (prefix && *prefix)
1905 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1906
1907 if (loose_dir) {
1908 prime_ref_dir(loose_dir);
1909 loose_iter = cache_ref_iterator_begin(loose_dir);
1910 } else {
1911 /* There's nothing to iterate over. */
1912 loose_iter = empty_ref_iterator_begin();
1913 }
1914
1915 iter->packed_ref_cache = get_packed_ref_cache(refs);
1916 acquire_packed_ref_cache(iter->packed_ref_cache);
1917 packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1918
1919 if (prefix && *prefix)
1920 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1921
1922 if (packed_dir) {
1923 packed_iter = cache_ref_iterator_begin(packed_dir);
1924 } else {
1925 /* There's nothing to iterate over. */
1926 packed_iter = empty_ref_iterator_begin();
1927 }
1928
1929 iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1930 iter->flags = flags;
1931
1932 return ref_iterator;
1933 }
1934
1935 /*
1936 * Verify that the reference locked by lock has the value old_sha1.
1937 * Fail if the reference doesn't exist and mustexist is set. Return 0
1938 * on success. On error, write an error message to err, set errno, and
1939 * return a negative value.
1940 */
1941 static int verify_lock(struct ref_lock *lock,
1942 const unsigned char *old_sha1, int mustexist,
1943 struct strbuf *err)
1944 {
1945 assert(err);
1946
1947 if (read_ref_full(lock->ref_name,
1948 mustexist ? RESOLVE_REF_READING : 0,
1949 lock->old_oid.hash, NULL)) {
1950 if (old_sha1) {
1951 int save_errno = errno;
1952 strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
1953 errno = save_errno;
1954 return -1;
1955 } else {
1956 hashclr(lock->old_oid.hash);
1957 return 0;
1958 }
1959 }
1960 if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
1961 strbuf_addf(err, "ref '%s' is at %s but expected %s",
1962 lock->ref_name,
1963 sha1_to_hex(lock->old_oid.hash),
1964 sha1_to_hex(old_sha1));
1965 errno = EBUSY;
1966 return -1;
1967 }
1968 return 0;
1969 }
1970
1971 static int remove_empty_directories(struct strbuf *path)
1972 {
1973 /*
1974 * we want to create a file but there is a directory there;
1975 * if that is an empty directory (or a directory that contains
1976 * only empty directories), remove them.
1977 */
1978 return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
1979 }
1980
1981 /*
1982 * Locks a ref returning the lock on success and NULL on failure.
1983 * On failure errno is set to something meaningful.
1984 */
1985 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
1986 const unsigned char *old_sha1,
1987 const struct string_list *extras,
1988 const struct string_list *skip,
1989 unsigned int flags, int *type,
1990 struct strbuf *err)
1991 {
1992 struct files_ref_store *refs =
1993 get_files_ref_store(NULL, "lock_ref_sha1_basic");
1994 struct strbuf ref_file = STRBUF_INIT;
1995 struct ref_lock *lock;
1996 int last_errno = 0;
1997 int lflags = LOCK_NO_DEREF;
1998 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
1999 int resolve_flags = RESOLVE_REF_NO_RECURSE;
2000 int attempts_remaining = 3;
2001 int resolved;
2002
2003 assert(err);
2004
2005 lock = xcalloc(1, sizeof(struct ref_lock));
2006
2007 if (mustexist)
2008 resolve_flags |= RESOLVE_REF_READING;
2009 if (flags & REF_DELETING)
2010 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2011
2012 strbuf_git_path(&ref_file, "%s", refname);
2013 resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2014 lock->old_oid.hash, type);
2015 if (!resolved && errno == EISDIR) {
2016 /*
2017 * we are trying to lock foo but we used to
2018 * have foo/bar which now does not exist;
2019 * it is normal for the empty directory 'foo'
2020 * to remain.
2021 */
2022 if (remove_empty_directories(&ref_file)) {
2023 last_errno = errno;
2024 if (!verify_refname_available_dir(
2025 refname, extras, skip,
2026 get_loose_refs(refs), err))
2027 strbuf_addf(err, "there are still refs under '%s'",
2028 refname);
2029 goto error_return;
2030 }
2031 resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2032 lock->old_oid.hash, type);
2033 }
2034 if (!resolved) {
2035 last_errno = errno;
2036 if (last_errno != ENOTDIR ||
2037 !verify_refname_available_dir(
2038 refname, extras, skip,
2039 get_loose_refs(refs), err))
2040 strbuf_addf(err, "unable to resolve reference '%s': %s",
2041 refname, strerror(last_errno));
2042
2043 goto error_return;
2044 }
2045
2046 /*
2047 * If the ref did not exist and we are creating it, make sure
2048 * there is no existing packed ref whose name begins with our
2049 * refname, nor a packed ref whose name is a proper prefix of
2050 * our refname.
2051 */
2052 if (is_null_oid(&lock->old_oid) &&
2053 verify_refname_available_dir(refname, extras, skip,
2054 get_packed_refs(refs),
2055 err)) {
2056 last_errno = ENOTDIR;
2057 goto error_return;
2058 }
2059
2060 lock->lk = xcalloc(1, sizeof(struct lock_file));
2061
2062 lock->ref_name = xstrdup(refname);
2063
2064 retry:
2065 switch (safe_create_leading_directories_const(ref_file.buf)) {
2066 case SCLD_OK:
2067 break; /* success */
2068 case SCLD_VANISHED:
2069 if (--attempts_remaining > 0)
2070 goto retry;
2071 /* fall through */
2072 default:
2073 last_errno = errno;
2074 strbuf_addf(err, "unable to create directory for '%s'",
2075 ref_file.buf);
2076 goto error_return;
2077 }
2078
2079 if (hold_lock_file_for_update(lock->lk, ref_file.buf, lflags) < 0) {
2080 last_errno = errno;
2081 if (errno == ENOENT && --attempts_remaining > 0)
2082 /*
2083 * Maybe somebody just deleted one of the
2084 * directories leading to ref_file. Try
2085 * again:
2086 */
2087 goto retry;
2088 else {
2089 unable_to_lock_message(ref_file.buf, errno, err);
2090 goto error_return;
2091 }
2092 }
2093 if (verify_lock(lock, old_sha1, mustexist, err)) {
2094 last_errno = errno;
2095 goto error_return;
2096 }
2097 goto out;
2098
2099 error_return:
2100 unlock_ref(lock);
2101 lock = NULL;
2102
2103 out:
2104 strbuf_release(&ref_file);
2105 errno = last_errno;
2106 return lock;
2107 }
2108
2109 /*
2110 * Write an entry to the packed-refs file for the specified refname.
2111 * If peeled is non-NULL, write it as the entry's peeled value.
2112 */
2113 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2114 unsigned char *peeled)
2115 {
2116 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2117 if (peeled)
2118 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2119 }
2120
2121 /*
2122 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2123 */
2124 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2125 {
2126 enum peel_status peel_status = peel_entry(entry, 0);
2127
2128 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2129 error("internal error: %s is not a valid packed reference!",
2130 entry->name);
2131 write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2132 peel_status == PEEL_PEELED ?
2133 entry->u.value.peeled.hash : NULL);
2134 return 0;
2135 }
2136
2137 /*
2138 * Lock the packed-refs file for writing. Flags is passed to
2139 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2140 * errno appropriately and return a nonzero value.
2141 */
2142 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2143 {
2144 static int timeout_configured = 0;
2145 static int timeout_value = 1000;
2146 struct packed_ref_cache *packed_ref_cache;
2147
2148 assert_main_repository(&refs->base, "lock_packed_refs");
2149
2150 if (!timeout_configured) {
2151 git_config_get_int("core.packedrefstimeout", &timeout_value);
2152 timeout_configured = 1;
2153 }
2154
2155 if (hold_lock_file_for_update_timeout(
2156 &packlock, git_path("packed-refs"),
2157 flags, timeout_value) < 0)
2158 return -1;
2159 /*
2160 * Get the current packed-refs while holding the lock. If the
2161 * packed-refs file has been modified since we last read it,
2162 * this will automatically invalidate the cache and re-read
2163 * the packed-refs file.
2164 */
2165 packed_ref_cache = get_packed_ref_cache(refs);
2166 packed_ref_cache->lock = &packlock;
2167 /* Increment the reference count to prevent it from being freed: */
2168 acquire_packed_ref_cache(packed_ref_cache);
2169 return 0;
2170 }
2171
2172 /*
2173 * Write the current version of the packed refs cache from memory to
2174 * disk. The packed-refs file must already be locked for writing (see
2175 * lock_packed_refs()). Return zero on success. On errors, set errno
2176 * and return a nonzero value
2177 */
2178 static int commit_packed_refs(struct files_ref_store *refs)
2179 {
2180 struct packed_ref_cache *packed_ref_cache =
2181 get_packed_ref_cache(refs);
2182 int error = 0;
2183 int save_errno = 0;
2184 FILE *out;
2185
2186 assert_main_repository(&refs->base, "commit_packed_refs");
2187
2188 if (!packed_ref_cache->lock)
2189 die("internal error: packed-refs not locked");
2190
2191 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2192 if (!out)
2193 die_errno("unable to fdopen packed-refs descriptor");
2194
2195 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2196 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2197 0, write_packed_entry_fn, out);
2198
2199 if (commit_lock_file(packed_ref_cache->lock)) {
2200 save_errno = errno;
2201 error = -1;
2202 }
2203 packed_ref_cache->lock = NULL;
2204 release_packed_ref_cache(packed_ref_cache);
2205 errno = save_errno;
2206 return error;
2207 }
2208
2209 /*
2210 * Rollback the lockfile for the packed-refs file, and discard the
2211 * in-memory packed reference cache. (The packed-refs file will be
2212 * read anew if it is needed again after this function is called.)
2213 */
2214 static void rollback_packed_refs(struct files_ref_store *refs)
2215 {
2216 struct packed_ref_cache *packed_ref_cache =
2217 get_packed_ref_cache(refs);
2218
2219 assert_main_repository(&refs->base, "rollback_packed_refs");
2220
2221 if (!packed_ref_cache->lock)
2222 die("internal error: packed-refs not locked");
2223 rollback_lock_file(packed_ref_cache->lock);
2224 packed_ref_cache->lock = NULL;
2225 release_packed_ref_cache(packed_ref_cache);
2226 clear_packed_ref_cache(refs);
2227 }
2228
2229 struct ref_to_prune {
2230 struct ref_to_prune *next;
2231 unsigned char sha1[20];
2232 char name[FLEX_ARRAY];
2233 };
2234
2235 struct pack_refs_cb_data {
2236 unsigned int flags;
2237 struct ref_dir *packed_refs;
2238 struct ref_to_prune *ref_to_prune;
2239 };
2240
2241 /*
2242 * An each_ref_entry_fn that is run over loose references only. If
2243 * the loose reference can be packed, add an entry in the packed ref
2244 * cache. If the reference should be pruned, also add it to
2245 * ref_to_prune in the pack_refs_cb_data.
2246 */
2247 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2248 {
2249 struct pack_refs_cb_data *cb = cb_data;
2250 enum peel_status peel_status;
2251 struct ref_entry *packed_entry;
2252 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2253
2254 /* Do not pack per-worktree refs: */
2255 if (ref_type(entry->name) != REF_TYPE_NORMAL)
2256 return 0;
2257
2258 /* ALWAYS pack tags */
2259 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2260 return 0;
2261
2262 /* Do not pack symbolic or broken refs: */
2263 if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2264 return 0;
2265
2266 /* Add a packed ref cache entry equivalent to the loose entry. */
2267 peel_status = peel_entry(entry, 1);
2268 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2269 die("internal error peeling reference %s (%s)",
2270 entry->name, oid_to_hex(&entry->u.value.oid));
2271 packed_entry = find_ref(cb->packed_refs, entry->name);
2272 if (packed_entry) {
2273 /* Overwrite existing packed entry with info from loose entry */
2274 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2275 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2276 } else {
2277 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2278 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2279 add_ref(cb->packed_refs, packed_entry);
2280 }
2281 oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2282
2283 /* Schedule the loose reference for pruning if requested. */
2284 if ((cb->flags & PACK_REFS_PRUNE)) {
2285 struct ref_to_prune *n;
2286 FLEX_ALLOC_STR(n, name, entry->name);
2287 hashcpy(n->sha1, entry->u.value.oid.hash);
2288 n->next = cb->ref_to_prune;
2289 cb->ref_to_prune = n;
2290 }
2291 return 0;
2292 }
2293
2294 /*
2295 * Remove empty parents, but spare refs/ and immediate subdirs.
2296 * Note: munges *name.
2297 */
2298 static void try_remove_empty_parents(char *name)
2299 {
2300 char *p, *q;
2301 int i;
2302 p = name;
2303 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2304 while (*p && *p != '/')
2305 p++;
2306 /* tolerate duplicate slashes; see check_refname_format() */
2307 while (*p == '/')
2308 p++;
2309 }
2310 for (q = p; *q; q++)
2311 ;
2312 while (1) {
2313 while (q > p && *q != '/')
2314 q--;
2315 while (q > p && *(q-1) == '/')
2316 q--;
2317 if (q == p)
2318 break;
2319 *q = '\0';
2320 if (rmdir(git_path("%s", name)))
2321 break;
2322 }
2323 }
2324
2325 /* make sure nobody touched the ref, and unlink */
2326 static void prune_ref(struct ref_to_prune *r)
2327 {
2328 struct ref_transaction *transaction;
2329 struct strbuf err = STRBUF_INIT;
2330
2331 if (check_refname_format(r->name, 0))
2332 return;
2333
2334 transaction = ref_transaction_begin(&err);
2335 if (!transaction ||
2336 ref_transaction_delete(transaction, r->name, r->sha1,
2337 REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2338 ref_transaction_commit(transaction, &err)) {
2339 ref_transaction_free(transaction);
2340 error("%s", err.buf);
2341 strbuf_release(&err);
2342 return;
2343 }
2344 ref_transaction_free(transaction);
2345 strbuf_release(&err);
2346 try_remove_empty_parents(r->name);
2347 }
2348
2349 static void prune_refs(struct ref_to_prune *r)
2350 {
2351 while (r) {
2352 prune_ref(r);
2353 r = r->next;
2354 }
2355 }
2356
2357 int pack_refs(unsigned int flags)
2358 {
2359 struct files_ref_store *refs =
2360 get_files_ref_store(NULL, "pack_refs");
2361 struct pack_refs_cb_data cbdata;
2362
2363 memset(&cbdata, 0, sizeof(cbdata));
2364 cbdata.flags = flags;
2365
2366 lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2367 cbdata.packed_refs = get_packed_refs(refs);
2368
2369 do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2370 pack_if_possible_fn, &cbdata);
2371
2372 if (commit_packed_refs(refs))
2373 die_errno("unable to overwrite old ref-pack file");
2374
2375 prune_refs(cbdata.ref_to_prune);
2376 return 0;
2377 }
2378
2379 /*
2380 * Rewrite the packed-refs file, omitting any refs listed in
2381 * 'refnames'. On error, leave packed-refs unchanged, write an error
2382 * message to 'err', and return a nonzero value.
2383 *
2384 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2385 */
2386 static int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2387 {
2388 struct files_ref_store *refs =
2389 get_files_ref_store(NULL, "repack_without_refs");
2390 struct ref_dir *packed;
2391 struct string_list_item *refname;
2392 int ret, needs_repacking = 0, removed = 0;
2393
2394 assert(err);
2395
2396 /* Look for a packed ref */
2397 for_each_string_list_item(refname, refnames) {
2398 if (get_packed_ref(refs, refname->string)) {
2399 needs_repacking = 1;
2400 break;
2401 }
2402 }
2403
2404 /* Avoid locking if we have nothing to do */
2405 if (!needs_repacking)
2406 return 0; /* no refname exists in packed refs */
2407
2408 if (lock_packed_refs(refs, 0)) {
2409 unable_to_lock_message(git_path("packed-refs"), errno, err);
2410 return -1;
2411 }
2412 packed = get_packed_refs(refs);
2413
2414 /* Remove refnames from the cache */
2415 for_each_string_list_item(refname, refnames)
2416 if (remove_entry(packed, refname->string) != -1)
2417 removed = 1;
2418 if (!removed) {
2419 /*
2420 * All packed entries disappeared while we were
2421 * acquiring the lock.
2422 */
2423 rollback_packed_refs(refs);
2424 return 0;
2425 }
2426
2427 /* Write what remains */
2428 ret = commit_packed_refs(refs);
2429 if (ret)
2430 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2431 strerror(errno));
2432 return ret;
2433 }
2434
2435 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2436 {
2437 assert(err);
2438
2439 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2440 /*
2441 * loose. The loose file name is the same as the
2442 * lockfile name, minus ".lock":
2443 */
2444 char *loose_filename = get_locked_file_path(lock->lk);
2445 int res = unlink_or_msg(loose_filename, err);
2446 free(loose_filename);
2447 if (res)
2448 return 1;
2449 }
2450 return 0;
2451 }
2452
2453 int delete_refs(struct string_list *refnames, unsigned int flags)
2454 {
2455 struct strbuf err = STRBUF_INIT;
2456 int i, result = 0;
2457
2458 if (!refnames->nr)
2459 return 0;
2460
2461 result = repack_without_refs(refnames, &err);
2462 if (result) {
2463 /*
2464 * If we failed to rewrite the packed-refs file, then
2465 * it is unsafe to try to remove loose refs, because
2466 * doing so might expose an obsolete packed value for
2467 * a reference that might even point at an object that
2468 * has been garbage collected.
2469 */
2470 if (refnames->nr == 1)
2471 error(_("could not delete reference %s: %s"),
2472 refnames->items[0].string, err.buf);
2473 else
2474 error(_("could not delete references: %s"), err.buf);
2475
2476 goto out;
2477 }
2478
2479 for (i = 0; i < refnames->nr; i++) {
2480 const char *refname = refnames->items[i].string;
2481
2482 if (delete_ref(refname, NULL, flags))
2483 result |= error(_("could not remove reference %s"), refname);
2484 }
2485
2486 out:
2487 strbuf_release(&err);
2488 return result;
2489 }
2490
2491 /*
2492 * People using contrib's git-new-workdir have .git/logs/refs ->
2493 * /some/other/path/.git/logs/refs, and that may live on another device.
2494 *
2495 * IOW, to avoid cross device rename errors, the temporary renamed log must
2496 * live into logs/refs.
2497 */
2498 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2499
2500 static int rename_tmp_log(const char *newrefname)
2501 {
2502 int attempts_remaining = 4;
2503 struct strbuf path = STRBUF_INIT;
2504 int ret = -1;
2505
2506 retry:
2507 strbuf_reset(&path);
2508 strbuf_git_path(&path, "logs/%s", newrefname);
2509 switch (safe_create_leading_directories_const(path.buf)) {
2510 case SCLD_OK:
2511 break; /* success */
2512 case SCLD_VANISHED:
2513 if (--attempts_remaining > 0)
2514 goto retry;
2515 /* fall through */
2516 default:
2517 error("unable to create directory for %s", newrefname);
2518 goto out;
2519 }
2520
2521 if (rename(git_path(TMP_RENAMED_LOG), path.buf)) {
2522 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2523 /*
2524 * rename(a, b) when b is an existing
2525 * directory ought to result in ISDIR, but
2526 * Solaris 5.8 gives ENOTDIR. Sheesh.
2527 */
2528 if (remove_empty_directories(&path)) {
2529 error("Directory not empty: logs/%s", newrefname);
2530 goto out;
2531 }
2532 goto retry;
2533 } else if (errno == ENOENT && --attempts_remaining > 0) {
2534 /*
2535 * Maybe another process just deleted one of
2536 * the directories in the path to newrefname.
2537 * Try again from the beginning.
2538 */
2539 goto retry;
2540 } else {
2541 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2542 newrefname, strerror(errno));
2543 goto out;
2544 }
2545 }
2546 ret = 0;
2547 out:
2548 strbuf_release(&path);
2549 return ret;
2550 }
2551
2552 int verify_refname_available(const char *newname,
2553 const struct string_list *extras,
2554 const struct string_list *skip,
2555 struct strbuf *err)
2556 {
2557 struct files_ref_store *refs =
2558 get_files_ref_store(NULL, "verify_refname_available");
2559 struct ref_dir *packed_refs = get_packed_refs(refs);
2560 struct ref_dir *loose_refs = get_loose_refs(refs);
2561
2562 if (verify_refname_available_dir(newname, extras, skip,
2563 packed_refs, err) ||
2564 verify_refname_available_dir(newname, extras, skip,
2565 loose_refs, err))
2566 return -1;
2567
2568 return 0;
2569 }
2570
2571 static int write_ref_to_lockfile(struct ref_lock *lock,
2572 const unsigned char *sha1, struct strbuf *err);
2573 static int commit_ref_update(struct ref_lock *lock,
2574 const unsigned char *sha1, const char *logmsg,
2575 struct strbuf *err);
2576
2577 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2578 {
2579 unsigned char sha1[20], orig_sha1[20];
2580 int flag = 0, logmoved = 0;
2581 struct ref_lock *lock;
2582 struct stat loginfo;
2583 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2584 struct strbuf err = STRBUF_INIT;
2585
2586 if (log && S_ISLNK(loginfo.st_mode))
2587 return error("reflog for %s is a symlink", oldrefname);
2588
2589 if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2590 orig_sha1, &flag))
2591 return error("refname %s not found", oldrefname);
2592
2593 if (flag & REF_ISSYMREF)
2594 return error("refname %s is a symbolic ref, renaming it is not supported",
2595 oldrefname);
2596 if (!rename_ref_available(oldrefname, newrefname))
2597 return 1;
2598
2599 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2600 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2601 oldrefname, strerror(errno));
2602
2603 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2604 error("unable to delete old %s", oldrefname);
2605 goto rollback;
2606 }
2607
2608 /*
2609 * Since we are doing a shallow lookup, sha1 is not the
2610 * correct value to pass to delete_ref as old_sha1. But that
2611 * doesn't matter, because an old_sha1 check wouldn't add to
2612 * the safety anyway; we want to delete the reference whatever
2613 * its current value.
2614 */
2615 if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2616 sha1, NULL) &&
2617 delete_ref(newrefname, NULL, REF_NODEREF)) {
2618 if (errno==EISDIR) {
2619 struct strbuf path = STRBUF_INIT;
2620 int result;
2621
2622 strbuf_git_path(&path, "%s", newrefname);
2623 result = remove_empty_directories(&path);
2624 strbuf_release(&path);
2625
2626 if (result) {
2627 error("Directory not empty: %s", newrefname);
2628 goto rollback;
2629 }
2630 } else {
2631 error("unable to delete existing %s", newrefname);
2632 goto rollback;
2633 }
2634 }
2635
2636 if (log && rename_tmp_log(newrefname))
2637 goto rollback;
2638
2639 logmoved = log;
2640
2641 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, NULL, REF_NODEREF,
2642 NULL, &err);
2643 if (!lock) {
2644 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2645 strbuf_release(&err);
2646 goto rollback;
2647 }
2648 hashcpy(lock->old_oid.hash, orig_sha1);
2649
2650 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2651 commit_ref_update(lock, orig_sha1, logmsg, &err)) {
2652 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2653 strbuf_release(&err);
2654 goto rollback;
2655 }
2656
2657 return 0;
2658
2659 rollback:
2660 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, NULL, REF_NODEREF,
2661 NULL, &err);
2662 if (!lock) {
2663 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2664 strbuf_release(&err);
2665 goto rollbacklog;
2666 }
2667
2668 flag = log_all_ref_updates;
2669 log_all_ref_updates = 0;
2670 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2671 commit_ref_update(lock, orig_sha1, NULL, &err)) {
2672 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2673 strbuf_release(&err);
2674 }
2675 log_all_ref_updates = flag;
2676
2677 rollbacklog:
2678 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2679 error("unable to restore logfile %s from %s: %s",
2680 oldrefname, newrefname, strerror(errno));
2681 if (!logmoved && log &&
2682 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2683 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2684 oldrefname, strerror(errno));
2685
2686 return 1;
2687 }
2688
2689 static int close_ref(struct ref_lock *lock)
2690 {
2691 if (close_lock_file(lock->lk))
2692 return -1;
2693 return 0;
2694 }
2695
2696 static int commit_ref(struct ref_lock *lock)
2697 {
2698 char *path = get_locked_file_path(lock->lk);
2699 struct stat st;
2700
2701 if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2702 /*
2703 * There is a directory at the path we want to rename
2704 * the lockfile to. Hopefully it is empty; try to
2705 * delete it.
2706 */
2707 size_t len = strlen(path);
2708 struct strbuf sb_path = STRBUF_INIT;
2709
2710 strbuf_attach(&sb_path, path, len, len);
2711
2712 /*
2713 * If this fails, commit_lock_file() will also fail
2714 * and will report the problem.
2715 */
2716 remove_empty_directories(&sb_path);
2717 strbuf_release(&sb_path);
2718 } else {
2719 free(path);
2720 }
2721
2722 if (commit_lock_file(lock->lk))
2723 return -1;
2724 return 0;
2725 }
2726
2727 /*
2728 * Create a reflog for a ref. If force_create = 0, the reflog will
2729 * only be created for certain refs (those for which
2730 * should_autocreate_reflog returns non-zero. Otherwise, create it
2731 * regardless of the ref name. Fill in *err and return -1 on failure.
2732 */
2733 static int log_ref_setup(const char *refname, struct strbuf *logfile, struct strbuf *err, int force_create)
2734 {
2735 int logfd, oflags = O_APPEND | O_WRONLY;
2736
2737 strbuf_git_path(logfile, "logs/%s", refname);
2738 if (force_create || should_autocreate_reflog(refname)) {
2739 if (safe_create_leading_directories(logfile->buf) < 0) {
2740 strbuf_addf(err, "unable to create directory for '%s': "
2741 "%s", logfile->buf, strerror(errno));
2742 return -1;
2743 }
2744 oflags |= O_CREAT;
2745 }
2746
2747 logfd = open(logfile->buf, oflags, 0666);
2748 if (logfd < 0) {
2749 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2750 return 0;
2751
2752 if (errno == EISDIR) {
2753 if (remove_empty_directories(logfile)) {
2754 strbuf_addf(err, "there are still logs under "
2755 "'%s'", logfile->buf);
2756 return -1;
2757 }
2758 logfd = open(logfile->buf, oflags, 0666);
2759 }
2760
2761 if (logfd < 0) {
2762 strbuf_addf(err, "unable to append to '%s': %s",
2763 logfile->buf, strerror(errno));
2764 return -1;
2765 }
2766 }
2767
2768 adjust_shared_perm(logfile->buf);
2769 close(logfd);
2770 return 0;
2771 }
2772
2773
2774 int safe_create_reflog(const char *refname, int force_create, struct strbuf *err)
2775 {
2776 int ret;
2777 struct strbuf sb = STRBUF_INIT;
2778
2779 ret = log_ref_setup(refname, &sb, err, force_create);
2780 strbuf_release(&sb);
2781 return ret;
2782 }
2783
2784 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2785 const unsigned char *new_sha1,
2786 const char *committer, const char *msg)
2787 {
2788 int msglen, written;
2789 unsigned maxlen, len;
2790 char *logrec;
2791
2792 msglen = msg ? strlen(msg) : 0;
2793 maxlen = strlen(committer) + msglen + 100;
2794 logrec = xmalloc(maxlen);
2795 len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2796 sha1_to_hex(old_sha1),
2797 sha1_to_hex(new_sha1),
2798 committer);
2799 if (msglen)
2800 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2801
2802 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2803 free(logrec);
2804 if (written != len)
2805 return -1;
2806
2807 return 0;
2808 }
2809
2810 static int log_ref_write_1(const char *refname, const unsigned char *old_sha1,
2811 const unsigned char *new_sha1, const char *msg,
2812 struct strbuf *logfile, int flags,
2813 struct strbuf *err)
2814 {
2815 int logfd, result, oflags = O_APPEND | O_WRONLY;
2816
2817 if (log_all_ref_updates < 0)
2818 log_all_ref_updates = !is_bare_repository();
2819
2820 result = log_ref_setup(refname, logfile, err, flags & REF_FORCE_CREATE_REFLOG);
2821
2822 if (result)
2823 return result;
2824
2825 logfd = open(logfile->buf, oflags);
2826 if (logfd < 0)
2827 return 0;
2828 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2829 git_committer_info(0), msg);
2830 if (result) {
2831 strbuf_addf(err, "unable to append to '%s': %s", logfile->buf,
2832 strerror(errno));
2833 close(logfd);
2834 return -1;
2835 }
2836 if (close(logfd)) {
2837 strbuf_addf(err, "unable to append to '%s': %s", logfile->buf,
2838 strerror(errno));
2839 return -1;
2840 }
2841 return 0;
2842 }
2843
2844 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2845 const unsigned char *new_sha1, const char *msg,
2846 int flags, struct strbuf *err)
2847 {
2848 return files_log_ref_write(refname, old_sha1, new_sha1, msg, flags,
2849 err);
2850 }
2851
2852 int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
2853 const unsigned char *new_sha1, const char *msg,
2854 int flags, struct strbuf *err)
2855 {
2856 struct strbuf sb = STRBUF_INIT;
2857 int ret = log_ref_write_1(refname, old_sha1, new_sha1, msg, &sb, flags,
2858 err);
2859 strbuf_release(&sb);
2860 return ret;
2861 }
2862
2863 /*
2864 * Write sha1 into the open lockfile, then close the lockfile. On
2865 * errors, rollback the lockfile, fill in *err and
2866 * return -1.
2867 */
2868 static int write_ref_to_lockfile(struct ref_lock *lock,
2869 const unsigned char *sha1, struct strbuf *err)
2870 {
2871 static char term = '\n';
2872 struct object *o;
2873 int fd;
2874
2875 o = parse_object(sha1);
2876 if (!o) {
2877 strbuf_addf(err,
2878 "trying to write ref '%s' with nonexistent object %s",
2879 lock->ref_name, sha1_to_hex(sha1));
2880 unlock_ref(lock);
2881 return -1;
2882 }
2883 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2884 strbuf_addf(err,
2885 "trying to write non-commit object %s to branch '%s'",
2886 sha1_to_hex(sha1), lock->ref_name);
2887 unlock_ref(lock);
2888 return -1;
2889 }
2890 fd = get_lock_file_fd(lock->lk);
2891 if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2892 write_in_full(fd, &term, 1) != 1 ||
2893 close_ref(lock) < 0) {
2894 strbuf_addf(err,
2895 "couldn't write '%s'", get_lock_file_path(lock->lk));
2896 unlock_ref(lock);
2897 return -1;
2898 }
2899 return 0;
2900 }
2901
2902 /*
2903 * Commit a change to a loose reference that has already been written
2904 * to the loose reference lockfile. Also update the reflogs if
2905 * necessary, using the specified lockmsg (which can be NULL).
2906 */
2907 static int commit_ref_update(struct ref_lock *lock,
2908 const unsigned char *sha1, const char *logmsg,
2909 struct strbuf *err)
2910 {
2911 struct files_ref_store *refs =
2912 get_files_ref_store(NULL, "commit_ref_update");
2913
2914 clear_loose_ref_cache(refs);
2915 if (log_ref_write(lock->ref_name, lock->old_oid.hash, sha1, logmsg, 0, err)) {
2916 char *old_msg = strbuf_detach(err, NULL);
2917 strbuf_addf(err, "cannot update the ref '%s': %s",
2918 lock->ref_name, old_msg);
2919 free(old_msg);
2920 unlock_ref(lock);
2921 return -1;
2922 }
2923
2924 if (strcmp(lock->ref_name, "HEAD") != 0) {
2925 /*
2926 * Special hack: If a branch is updated directly and HEAD
2927 * points to it (may happen on the remote side of a push
2928 * for example) then logically the HEAD reflog should be
2929 * updated too.
2930 * A generic solution implies reverse symref information,
2931 * but finding all symrefs pointing to the given branch
2932 * would be rather costly for this rare event (the direct
2933 * update of a branch) to be worth it. So let's cheat and
2934 * check with HEAD only which should cover 99% of all usage
2935 * scenarios (even 100% of the default ones).
2936 */
2937 unsigned char head_sha1[20];
2938 int head_flag;
2939 const char *head_ref;
2940
2941 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
2942 head_sha1, &head_flag);
2943 if (head_ref && (head_flag & REF_ISSYMREF) &&
2944 !strcmp(head_ref, lock->ref_name)) {
2945 struct strbuf log_err = STRBUF_INIT;
2946 if (log_ref_write("HEAD", lock->old_oid.hash, sha1,
2947 logmsg, 0, &log_err)) {
2948 error("%s", log_err.buf);
2949 strbuf_release(&log_err);
2950 }
2951 }
2952 }
2953
2954 if (commit_ref(lock)) {
2955 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
2956 unlock_ref(lock);
2957 return -1;
2958 }
2959
2960 unlock_ref(lock);
2961 return 0;
2962 }
2963
2964 static int create_ref_symlink(struct ref_lock *lock, const char *target)
2965 {
2966 int ret = -1;
2967 #ifndef NO_SYMLINK_HEAD
2968 char *ref_path = get_locked_file_path(lock->lk);
2969 unlink(ref_path);
2970 ret = symlink(target, ref_path);
2971 free(ref_path);
2972
2973 if (ret)
2974 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2975 #endif
2976 return ret;
2977 }
2978
2979 static void update_symref_reflog(struct ref_lock *lock, const char *refname,
2980 const char *target, const char *logmsg)
2981 {
2982 struct strbuf err = STRBUF_INIT;
2983 unsigned char new_sha1[20];
2984 if (logmsg && !read_ref(target, new_sha1) &&
2985 log_ref_write(refname, lock->old_oid.hash, new_sha1, logmsg, 0, &err)) {
2986 error("%s", err.buf);
2987 strbuf_release(&err);
2988 }
2989 }
2990
2991 static int create_symref_locked(struct ref_lock *lock, const char *refname,
2992 const char *target, const char *logmsg)
2993 {
2994 if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
2995 update_symref_reflog(lock, refname, target, logmsg);
2996 return 0;
2997 }
2998
2999 if (!fdopen_lock_file(lock->lk, "w"))
3000 return error("unable to fdopen %s: %s",
3001 lock->lk->tempfile.filename.buf, strerror(errno));
3002
3003 update_symref_reflog(lock, refname, target, logmsg);
3004
3005 /* no error check; commit_ref will check ferror */
3006 fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3007 if (commit_ref(lock) < 0)
3008 return error("unable to write symref for %s: %s", refname,
3009 strerror(errno));
3010 return 0;
3011 }
3012
3013 int create_symref(const char *refname, const char *target, const char *logmsg)
3014 {
3015 struct strbuf err = STRBUF_INIT;
3016 struct ref_lock *lock;
3017 int ret;
3018
3019 lock = lock_ref_sha1_basic(refname, NULL, NULL, NULL, REF_NODEREF, NULL,
3020 &err);
3021 if (!lock) {
3022 error("%s", err.buf);
3023 strbuf_release(&err);
3024 return -1;
3025 }
3026
3027 ret = create_symref_locked(lock, refname, target, logmsg);
3028 unlock_ref(lock);
3029 return ret;
3030 }
3031
3032 int set_worktree_head_symref(const char *gitdir, const char *target)
3033 {
3034 static struct lock_file head_lock;
3035 struct ref_lock *lock;
3036 struct strbuf head_path = STRBUF_INIT;
3037 const char *head_rel;
3038 int ret;
3039
3040 strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3041 if (hold_lock_file_for_update(&head_lock, head_path.buf,
3042 LOCK_NO_DEREF) < 0) {
3043 struct strbuf err = STRBUF_INIT;
3044 unable_to_lock_message(head_path.buf, errno, &err);
3045 error("%s", err.buf);
3046 strbuf_release(&err);
3047 strbuf_release(&head_path);
3048 return -1;
3049 }
3050
3051 /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3052 linked trees */
3053 head_rel = remove_leading_path(head_path.buf,
3054 absolute_path(get_git_common_dir()));
3055 /* to make use of create_symref_locked(), initialize ref_lock */
3056 lock = xcalloc(1, sizeof(struct ref_lock));
3057 lock->lk = &head_lock;
3058 lock->ref_name = xstrdup(head_rel);
3059
3060 ret = create_symref_locked(lock, head_rel, target, NULL);
3061
3062 unlock_ref(lock); /* will free lock */
3063 strbuf_release(&head_path);
3064 return ret;
3065 }
3066
3067 int reflog_exists(const char *refname)
3068 {
3069 struct stat st;
3070
3071 return !lstat(git_path("logs/%s", refname), &st) &&
3072 S_ISREG(st.st_mode);
3073 }
3074
3075 int delete_reflog(const char *refname)
3076 {
3077 return remove_path(git_path("logs/%s", refname));
3078 }
3079
3080 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3081 {
3082 unsigned char osha1[20], nsha1[20];
3083 char *email_end, *message;
3084 unsigned long timestamp;
3085 int tz;
3086
3087 /* old SP new SP name <email> SP time TAB msg LF */
3088 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3089 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3090 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3091 !(email_end = strchr(sb->buf + 82, '>')) ||
3092 email_end[1] != ' ' ||
3093 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3094 !message || message[0] != ' ' ||
3095 (message[1] != '+' && message[1] != '-') ||
3096 !isdigit(message[2]) || !isdigit(message[3]) ||
3097 !isdigit(message[4]) || !isdigit(message[5]))
3098 return 0; /* corrupt? */
3099 email_end[1] = '\0';
3100 tz = strtol(message + 1, NULL, 10);
3101 if (message[6] != '\t')
3102 message += 6;
3103 else
3104 message += 7;
3105 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3106 }
3107
3108 static char *find_beginning_of_line(char *bob, char *scan)
3109 {
3110 while (bob < scan && *(--scan) != '\n')
3111 ; /* keep scanning backwards */
3112 /*
3113 * Return either beginning of the buffer, or LF at the end of
3114 * the previous line.
3115 */
3116 return scan;
3117 }
3118
3119 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3120 {
3121 struct strbuf sb = STRBUF_INIT;
3122 FILE *logfp;
3123 long pos;
3124 int ret = 0, at_tail = 1;
3125
3126 logfp = fopen(git_path("logs/%s", refname), "r");
3127 if (!logfp)
3128 return -1;
3129
3130 /* Jump to the end */
3131 if (fseek(logfp, 0, SEEK_END) < 0)
3132 return error("cannot seek back reflog for %s: %s",
3133 refname, strerror(errno));
3134 pos = ftell(logfp);
3135 while (!ret && 0 < pos) {
3136 int cnt;
3137 size_t nread;
3138 char buf[BUFSIZ];
3139 char *endp, *scanp;
3140
3141 /* Fill next block from the end */
3142 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3143 if (fseek(logfp, pos - cnt, SEEK_SET))
3144 return error("cannot seek back reflog for %s: %s",
3145 refname, strerror(errno));
3146 nread = fread(buf, cnt, 1, logfp);
3147 if (nread != 1)
3148 return error("cannot read %d bytes from reflog for %s: %s",
3149 cnt, refname, strerror(errno));
3150 pos -= cnt;
3151
3152 scanp = endp = buf + cnt;
3153 if (at_tail && scanp[-1] == '\n')
3154 /* Looking at the final LF at the end of the file */
3155 scanp--;
3156 at_tail = 0;
3157
3158 while (buf < scanp) {
3159 /*
3160 * terminating LF of the previous line, or the beginning
3161 * of the buffer.
3162 */
3163 char *bp;
3164
3165 bp = find_beginning_of_line(buf, scanp);
3166
3167 if (*bp == '\n') {
3168 /*
3169 * The newline is the end of the previous line,
3170 * so we know we have complete line starting
3171 * at (bp + 1). Prefix it onto any prior data
3172 * we collected for the line and process it.
3173 */
3174 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3175 scanp = bp;
3176 endp = bp + 1;
3177 ret = show_one_reflog_ent(&sb, fn, cb_data);
3178 strbuf_reset(&sb);
3179 if (ret)
3180 break;
3181 } else if (!pos) {
3182 /*
3183 * We are at the start of the buffer, and the
3184 * start of the file; there is no previous
3185 * line, and we have everything for this one.
3186 * Process it, and we can end the loop.
3187 */
3188 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3189 ret = show_one_reflog_ent(&sb, fn, cb_data);
3190 strbuf_reset(&sb);
3191 break;
3192 }
3193
3194 if (bp == buf) {
3195 /*
3196 * We are at the start of the buffer, and there
3197 * is more file to read backwards. Which means
3198 * we are in the middle of a line. Note that we
3199 * may get here even if *bp was a newline; that
3200 * just means we are at the exact end of the
3201 * previous line, rather than some spot in the
3202 * middle.
3203 *
3204 * Save away what we have to be combined with
3205 * the data from the next read.
3206 */
3207 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3208 break;
3209 }
3210 }
3211
3212 }
3213 if (!ret && sb.len)
3214 die("BUG: reverse reflog parser had leftover data");
3215
3216 fclose(logfp);
3217 strbuf_release(&sb);
3218 return ret;
3219 }
3220
3221 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3222 {
3223 FILE *logfp;
3224 struct strbuf sb = STRBUF_INIT;
3225 int ret = 0;
3226
3227 logfp = fopen(git_path("logs/%s", refname), "r");
3228 if (!logfp)
3229 return -1;
3230
3231 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3232 ret = show_one_reflog_ent(&sb, fn, cb_data);
3233 fclose(logfp);
3234 strbuf_release(&sb);
3235 return ret;
3236 }
3237
3238 struct files_reflog_iterator {
3239 struct ref_iterator base;
3240
3241 struct dir_iterator *dir_iterator;
3242 struct object_id oid;
3243 };
3244
3245 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3246 {
3247 struct files_reflog_iterator *iter =
3248 (struct files_reflog_iterator *)ref_iterator;
3249 struct dir_iterator *diter = iter->dir_iterator;
3250 int ok;
3251
3252 while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3253 int flags;
3254
3255 if (!S_ISREG(diter->st.st_mode))
3256 continue;
3257 if (diter->basename[0] == '.')
3258 continue;
3259 if (ends_with(diter->basename, ".lock"))
3260 continue;
3261
3262 if (read_ref_full(diter->relative_path, 0,
3263 iter->oid.hash, &flags)) {
3264 error("bad ref for %s", diter->path.buf);
3265 continue;
3266 }
3267
3268 iter->base.refname = diter->relative_path;
3269 iter->base.oid = &iter->oid;
3270 iter->base.flags = flags;
3271 return ITER_OK;
3272 }
3273
3274 iter->dir_iterator = NULL;
3275 if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3276 ok = ITER_ERROR;
3277 return ok;
3278 }
3279
3280 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3281 struct object_id *peeled)
3282 {
3283 die("BUG: ref_iterator_peel() called for reflog_iterator");
3284 }
3285
3286 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3287 {
3288 struct files_reflog_iterator *iter =
3289 (struct files_reflog_iterator *)ref_iterator;
3290 int ok = ITER_DONE;
3291
3292 if (iter->dir_iterator)
3293 ok = dir_iterator_abort(iter->dir_iterator);
3294
3295 base_ref_iterator_free(ref_iterator);
3296 return ok;
3297 }
3298
3299 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3300 files_reflog_iterator_advance,
3301 files_reflog_iterator_peel,
3302 files_reflog_iterator_abort
3303 };
3304
3305 struct ref_iterator *files_reflog_iterator_begin(void)
3306 {
3307 struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3308 struct ref_iterator *ref_iterator = &iter->base;
3309
3310 base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3311 iter->dir_iterator = dir_iterator_begin(git_path("logs"));
3312 return ref_iterator;
3313 }
3314
3315 int for_each_reflog(each_ref_fn fn, void *cb_data)
3316 {
3317 return do_for_each_ref_iterator(files_reflog_iterator_begin(),
3318 fn, cb_data);
3319 }
3320
3321 static int ref_update_reject_duplicates(struct string_list *refnames,
3322 struct strbuf *err)
3323 {
3324 int i, n = refnames->nr;
3325
3326 assert(err);
3327
3328 for (i = 1; i < n; i++)
3329 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3330 strbuf_addf(err,
3331 "multiple updates for ref '%s' not allowed.",
3332 refnames->items[i].string);
3333 return 1;
3334 }
3335 return 0;
3336 }
3337
3338 /*
3339 * If update is a direct update of head_ref (the reference pointed to
3340 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3341 */
3342 static int split_head_update(struct ref_update *update,
3343 struct ref_transaction *transaction,
3344 const char *head_ref,
3345 struct string_list *affected_refnames,
3346 struct strbuf *err)
3347 {
3348 struct string_list_item *item;
3349 struct ref_update *new_update;
3350
3351 if ((update->flags & REF_LOG_ONLY) ||
3352 (update->flags & REF_ISPRUNING) ||
3353 (update->flags & REF_UPDATE_VIA_HEAD))
3354 return 0;
3355
3356 if (strcmp(update->refname, head_ref))
3357 return 0;
3358
3359 /*
3360 * First make sure that HEAD is not already in the
3361 * transaction. This insertion is O(N) in the transaction
3362 * size, but it happens at most once per transaction.
3363 */
3364 item = string_list_insert(affected_refnames, "HEAD");
3365 if (item->util) {
3366 /* An entry already existed */
3367 strbuf_addf(err,
3368 "multiple updates for 'HEAD' (including one "
3369 "via its referent '%s') are not allowed",
3370 update->refname);
3371 return TRANSACTION_NAME_CONFLICT;
3372 }
3373
3374 new_update = ref_transaction_add_update(
3375 transaction, "HEAD",
3376 update->flags | REF_LOG_ONLY | REF_NODEREF,
3377 update->new_sha1, update->old_sha1,
3378 update->msg);
3379
3380 item->util = new_update;
3381
3382 return 0;
3383 }
3384
3385 /*
3386 * update is for a symref that points at referent and doesn't have
3387 * REF_NODEREF set. Split it into two updates:
3388 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3389 * - A new, separate update for the referent reference
3390 * Note that the new update will itself be subject to splitting when
3391 * the iteration gets to it.
3392 */
3393 static int split_symref_update(struct ref_update *update,
3394 const char *referent,
3395 struct ref_transaction *transaction,
3396 struct string_list *affected_refnames,
3397 struct strbuf *err)
3398 {
3399 struct string_list_item *item;
3400 struct ref_update *new_update;
3401 unsigned int new_flags;
3402
3403 /*
3404 * First make sure that referent is not already in the
3405 * transaction. This insertion is O(N) in the transaction
3406 * size, but it happens at most once per symref in a
3407 * transaction.
3408 */
3409 item = string_list_insert(affected_refnames, referent);
3410 if (item->util) {
3411 /* An entry already existed */
3412 strbuf_addf(err,
3413 "multiple updates for '%s' (including one "
3414 "via symref '%s') are not allowed",
3415 referent, update->refname);
3416 return TRANSACTION_NAME_CONFLICT;
3417 }
3418
3419 new_flags = update->flags;
3420 if (!strcmp(update->refname, "HEAD")) {
3421 /*
3422 * Record that the new update came via HEAD, so that
3423 * when we process it, split_head_update() doesn't try
3424 * to add another reflog update for HEAD. Note that
3425 * this bit will be propagated if the new_update
3426 * itself needs to be split.
3427 */
3428 new_flags |= REF_UPDATE_VIA_HEAD;
3429 }
3430
3431 new_update = ref_transaction_add_update(
3432 transaction, referent, new_flags,
3433 update->new_sha1, update->old_sha1,
3434 update->msg);
3435
3436 new_update->parent_update = update;
3437
3438 /*
3439 * Change the symbolic ref update to log only. Also, it
3440 * doesn't need to check its old SHA-1 value, as that will be
3441 * done when new_update is processed.
3442 */
3443 update->flags |= REF_LOG_ONLY | REF_NODEREF;
3444 update->flags &= ~REF_HAVE_OLD;
3445
3446 item->util = new_update;
3447
3448 return 0;
3449 }
3450
3451 /*
3452 * Return the refname under which update was originally requested.
3453 */
3454 static const char *original_update_refname(struct ref_update *update)
3455 {
3456 while (update->parent_update)
3457 update = update->parent_update;
3458
3459 return update->refname;
3460 }
3461
3462 /*
3463 * Prepare for carrying out update:
3464 * - Lock the reference referred to by update.
3465 * - Read the reference under lock.
3466 * - Check that its old SHA-1 value (if specified) is correct, and in
3467 * any case record it in update->lock->old_oid for later use when
3468 * writing the reflog.
3469 * - If it is a symref update without REF_NODEREF, split it up into a
3470 * REF_LOG_ONLY update of the symref and add a separate update for
3471 * the referent to transaction.
3472 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3473 * update of HEAD.
3474 */
3475 static int lock_ref_for_update(struct ref_update *update,
3476 struct ref_transaction *transaction,
3477 const char *head_ref,
3478 struct string_list *affected_refnames,
3479 struct strbuf *err)
3480 {
3481 struct strbuf referent = STRBUF_INIT;
3482 int mustexist = (update->flags & REF_HAVE_OLD) &&
3483 !is_null_sha1(update->old_sha1);
3484 int ret;
3485 struct ref_lock *lock;
3486
3487 if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3488 update->flags |= REF_DELETING;
3489
3490 if (head_ref) {
3491 ret = split_head_update(update, transaction, head_ref,
3492 affected_refnames, err);
3493 if (ret)
3494 return ret;
3495 }
3496
3497 ret = lock_raw_ref(update->refname, mustexist,
3498 affected_refnames, NULL,
3499 &update->lock, &referent,
3500 &update->type, err);
3501
3502 if (ret) {
3503 char *reason;
3504
3505 reason = strbuf_detach(err, NULL);
3506 strbuf_addf(err, "cannot lock ref '%s': %s",
3507 update->refname, reason);
3508 free(reason);
3509 return ret;
3510 }
3511
3512 lock = update->lock;
3513
3514 if (update->type & REF_ISSYMREF) {
3515 if (update->flags & REF_NODEREF) {
3516 /*
3517 * We won't be reading the referent as part of
3518 * the transaction, so we have to read it here
3519 * to record and possibly check old_sha1:
3520 */
3521 if (read_ref_full(update->refname,
3522 mustexist ? RESOLVE_REF_READING : 0,
3523 lock->old_oid.hash, NULL)) {
3524 if (update->flags & REF_HAVE_OLD) {
3525 strbuf_addf(err, "cannot lock ref '%s': "
3526 "can't resolve old value",
3527 update->refname);
3528 return TRANSACTION_GENERIC_ERROR;
3529 } else {
3530 hashclr(lock->old_oid.hash);
3531 }
3532 }
3533 if ((update->flags & REF_HAVE_OLD) &&
3534 hashcmp(lock->old_oid.hash, update->old_sha1)) {
3535 strbuf_addf(err, "cannot lock ref '%s': "
3536 "is at %s but expected %s",
3537 update->refname,
3538 sha1_to_hex(lock->old_oid.hash),
3539 sha1_to_hex(update->old_sha1));
3540 return TRANSACTION_GENERIC_ERROR;
3541 }
3542
3543 } else {
3544 /*
3545 * Create a new update for the reference this
3546 * symref is pointing at. Also, we will record
3547 * and verify old_sha1 for this update as part
3548 * of processing the split-off update, so we
3549 * don't have to do it here.
3550 */
3551 ret = split_symref_update(update, referent.buf, transaction,
3552 affected_refnames, err);
3553 if (ret)
3554 return ret;
3555 }
3556 } else {
3557 struct ref_update *parent_update;
3558
3559 /*
3560 * If this update is happening indirectly because of a
3561 * symref update, record the old SHA-1 in the parent
3562 * update:
3563 */
3564 for (parent_update = update->parent_update;
3565 parent_update;
3566 parent_update = parent_update->parent_update) {
3567 oidcpy(&parent_update->lock->old_oid, &lock->old_oid);
3568 }
3569
3570 if ((update->flags & REF_HAVE_OLD) &&
3571 hashcmp(lock->old_oid.hash, update->old_sha1)) {
3572 if (is_null_sha1(update->old_sha1))
3573 strbuf_addf(err, "cannot lock ref '%s': reference already exists",
3574 original_update_refname(update));
3575 else
3576 strbuf_addf(err, "cannot lock ref '%s': is at %s but expected %s",
3577 original_update_refname(update),
3578 sha1_to_hex(lock->old_oid.hash),
3579 sha1_to_hex(update->old_sha1));
3580
3581 return TRANSACTION_GENERIC_ERROR;
3582 }
3583 }
3584
3585 if ((update->flags & REF_HAVE_NEW) &&
3586 !(update->flags & REF_DELETING) &&
3587 !(update->flags & REF_LOG_ONLY)) {
3588 if (!(update->type & REF_ISSYMREF) &&
3589 !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3590 /*
3591 * The reference already has the desired
3592 * value, so we don't need to write it.
3593 */
3594 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3595 err)) {
3596 char *write_err = strbuf_detach(err, NULL);
3597
3598 /*
3599 * The lock was freed upon failure of
3600 * write_ref_to_lockfile():
3601 */
3602 update->lock = NULL;
3603 strbuf_addf(err,
3604 "cannot update the ref '%s': %s",
3605 update->refname, write_err);
3606 free(write_err);
3607 return TRANSACTION_GENERIC_ERROR;
3608 } else {
3609 update->flags |= REF_NEEDS_COMMIT;
3610 }
3611 }
3612 if (!(update->flags & REF_NEEDS_COMMIT)) {
3613 /*
3614 * We didn't call write_ref_to_lockfile(), so
3615 * the lockfile is still open. Close it to
3616 * free up the file descriptor:
3617 */
3618 if (close_ref(lock)) {
3619 strbuf_addf(err, "couldn't close '%s.lock'",
3620 update->refname);
3621 return TRANSACTION_GENERIC_ERROR;
3622 }
3623 }
3624 return 0;
3625 }
3626
3627 static int files_transaction_commit(struct ref_store *ref_store,
3628 struct ref_transaction *transaction,
3629 struct strbuf *err)
3630 {
3631 struct files_ref_store *refs =
3632 files_downcast(ref_store, 0, "ref_transaction_commit");
3633 int ret = 0, i;
3634 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3635 struct string_list_item *ref_to_delete;
3636 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3637 char *head_ref = NULL;
3638 int head_type;
3639 struct object_id head_oid;
3640
3641 assert(err);
3642
3643 if (transaction->state != REF_TRANSACTION_OPEN)
3644 die("BUG: commit called for transaction that is not open");
3645
3646 if (!transaction->nr) {
3647 transaction->state = REF_TRANSACTION_CLOSED;
3648 return 0;
3649 }
3650
3651 /*
3652 * Fail if a refname appears more than once in the
3653 * transaction. (If we end up splitting up any updates using
3654 * split_symref_update() or split_head_update(), those
3655 * functions will check that the new updates don't have the
3656 * same refname as any existing ones.)
3657 */
3658 for (i = 0; i < transaction->nr; i++) {
3659 struct ref_update *update = transaction->updates[i];
3660 struct string_list_item *item =
3661 string_list_append(&affected_refnames, update->refname);
3662
3663 /*
3664 * We store a pointer to update in item->util, but at
3665 * the moment we never use the value of this field
3666 * except to check whether it is non-NULL.
3667 */
3668 item->util = update;
3669 }
3670 string_list_sort(&affected_refnames);
3671 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3672 ret = TRANSACTION_GENERIC_ERROR;
3673 goto cleanup;
3674 }
3675
3676 /*
3677 * Special hack: If a branch is updated directly and HEAD
3678 * points to it (may happen on the remote side of a push
3679 * for example) then logically the HEAD reflog should be
3680 * updated too.
3681 *
3682 * A generic solution would require reverse symref lookups,
3683 * but finding all symrefs pointing to a given branch would be
3684 * rather costly for this rare event (the direct update of a
3685 * branch) to be worth it. So let's cheat and check with HEAD
3686 * only, which should cover 99% of all usage scenarios (even
3687 * 100% of the default ones).
3688 *
3689 * So if HEAD is a symbolic reference, then record the name of
3690 * the reference that it points to. If we see an update of
3691 * head_ref within the transaction, then split_head_update()
3692 * arranges for the reflog of HEAD to be updated, too.
3693 */
3694 head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3695 head_oid.hash, &head_type);
3696
3697 if (head_ref && !(head_type & REF_ISSYMREF)) {
3698 free(head_ref);
3699 head_ref = NULL;
3700 }
3701
3702 /*
3703 * Acquire all locks, verify old values if provided, check
3704 * that new values are valid, and write new values to the
3705 * lockfiles, ready to be activated. Only keep one lockfile
3706 * open at a time to avoid running out of file descriptors.
3707 */
3708 for (i = 0; i < transaction->nr; i++) {
3709 struct ref_update *update = transaction->updates[i];
3710
3711 ret = lock_ref_for_update(update, transaction, head_ref,
3712 &affected_refnames, err);
3713 if (ret)
3714 goto cleanup;
3715 }
3716
3717 /* Perform updates first so live commits remain referenced */
3718 for (i = 0; i < transaction->nr; i++) {
3719 struct ref_update *update = transaction->updates[i];
3720 struct ref_lock *lock = update->lock;
3721
3722 if (update->flags & REF_NEEDS_COMMIT ||
3723 update->flags & REF_LOG_ONLY) {
3724 if (log_ref_write(lock->ref_name, lock->old_oid.hash,
3725 update->new_sha1,
3726 update->msg, update->flags, err)) {
3727 char *old_msg = strbuf_detach(err, NULL);
3728
3729 strbuf_addf(err, "cannot update the ref '%s': %s",
3730 lock->ref_name, old_msg);
3731 free(old_msg);
3732 unlock_ref(lock);
3733 update->lock = NULL;
3734 ret = TRANSACTION_GENERIC_ERROR;
3735 goto cleanup;
3736 }
3737 }
3738 if (update->flags & REF_NEEDS_COMMIT) {
3739 clear_loose_ref_cache(refs);
3740 if (commit_ref(lock)) {
3741 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3742 unlock_ref(lock);
3743 update->lock = NULL;
3744 ret = TRANSACTION_GENERIC_ERROR;
3745 goto cleanup;
3746 }
3747 }
3748 }
3749 /* Perform deletes now that updates are safely completed */
3750 for (i = 0; i < transaction->nr; i++) {
3751 struct ref_update *update = transaction->updates[i];
3752
3753 if (update->flags & REF_DELETING &&
3754 !(update->flags & REF_LOG_ONLY)) {
3755 if (delete_ref_loose(update->lock, update->type, err)) {
3756 ret = TRANSACTION_GENERIC_ERROR;
3757 goto cleanup;
3758 }
3759
3760 if (!(update->flags & REF_ISPRUNING))
3761 string_list_append(&refs_to_delete,
3762 update->lock->ref_name);
3763 }
3764 }
3765
3766 if (repack_without_refs(&refs_to_delete, err)) {
3767 ret = TRANSACTION_GENERIC_ERROR;
3768 goto cleanup;
3769 }
3770 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3771 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3772 clear_loose_ref_cache(refs);
3773
3774 cleanup:
3775 transaction->state = REF_TRANSACTION_CLOSED;
3776
3777 for (i = 0; i < transaction->nr; i++)
3778 if (transaction->updates[i]->lock)
3779 unlock_ref(transaction->updates[i]->lock);
3780 string_list_clear(&refs_to_delete, 0);
3781 free(head_ref);
3782 string_list_clear(&affected_refnames, 0);
3783
3784 return ret;
3785 }
3786
3787 static int ref_present(const char *refname,
3788 const struct object_id *oid, int flags, void *cb_data)
3789 {
3790 struct string_list *affected_refnames = cb_data;
3791
3792 return string_list_has_string(affected_refnames, refname);
3793 }
3794
3795 int initial_ref_transaction_commit(struct ref_transaction *transaction,
3796 struct strbuf *err)
3797 {
3798 struct files_ref_store *refs =
3799 get_files_ref_store(NULL, "initial_ref_transaction_commit");
3800 int ret = 0, i;
3801 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3802
3803 assert(err);
3804
3805 if (transaction->state != REF_TRANSACTION_OPEN)
3806 die("BUG: commit called for transaction that is not open");
3807
3808 /* Fail if a refname appears more than once in the transaction: */
3809 for (i = 0; i < transaction->nr; i++)
3810 string_list_append(&affected_refnames,
3811 transaction->updates[i]->refname);
3812 string_list_sort(&affected_refnames);
3813 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3814 ret = TRANSACTION_GENERIC_ERROR;
3815 goto cleanup;
3816 }
3817
3818 /*
3819 * It's really undefined to call this function in an active
3820 * repository or when there are existing references: we are
3821 * only locking and changing packed-refs, so (1) any
3822 * simultaneous processes might try to change a reference at
3823 * the same time we do, and (2) any existing loose versions of
3824 * the references that we are setting would have precedence
3825 * over our values. But some remote helpers create the remote
3826 * "HEAD" and "master" branches before calling this function,
3827 * so here we really only check that none of the references
3828 * that we are creating already exists.
3829 */
3830 if (for_each_rawref(ref_present, &affected_refnames))
3831 die("BUG: initial ref transaction called with existing refs");
3832
3833 for (i = 0; i < transaction->nr; i++) {
3834 struct ref_update *update = transaction->updates[i];
3835
3836 if ((update->flags & REF_HAVE_OLD) &&
3837 !is_null_sha1(update->old_sha1))
3838 die("BUG: initial ref transaction with old_sha1 set");
3839 if (verify_refname_available(update->refname,
3840 &affected_refnames, NULL,
3841 err)) {
3842 ret = TRANSACTION_NAME_CONFLICT;
3843 goto cleanup;
3844 }
3845 }
3846
3847 if (lock_packed_refs(refs, 0)) {
3848 strbuf_addf(err, "unable to lock packed-refs file: %s",
3849 strerror(errno));
3850 ret = TRANSACTION_GENERIC_ERROR;
3851 goto cleanup;
3852 }
3853
3854 for (i = 0; i < transaction->nr; i++) {
3855 struct ref_update *update = transaction->updates[i];
3856
3857 if ((update->flags & REF_HAVE_NEW) &&
3858 !is_null_sha1(update->new_sha1))
3859 add_packed_ref(refs, update->refname, update->new_sha1);
3860 }
3861
3862 if (commit_packed_refs(refs)) {
3863 strbuf_addf(err, "unable to commit packed-refs file: %s",
3864 strerror(errno));
3865 ret = TRANSACTION_GENERIC_ERROR;
3866 goto cleanup;
3867 }
3868
3869 cleanup:
3870 transaction->state = REF_TRANSACTION_CLOSED;
3871 string_list_clear(&affected_refnames, 0);
3872 return ret;
3873 }
3874
3875 struct expire_reflog_cb {
3876 unsigned int flags;
3877 reflog_expiry_should_prune_fn *should_prune_fn;
3878 void *policy_cb;
3879 FILE *newlog;
3880 unsigned char last_kept_sha1[20];
3881 };
3882
3883 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
3884 const char *email, unsigned long timestamp, int tz,
3885 const char *message, void *cb_data)
3886 {
3887 struct expire_reflog_cb *cb = cb_data;
3888 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
3889
3890 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
3891 osha1 = cb->last_kept_sha1;
3892
3893 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
3894 message, policy_cb)) {
3895 if (!cb->newlog)
3896 printf("would prune %s", message);
3897 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3898 printf("prune %s", message);
3899 } else {
3900 if (cb->newlog) {
3901 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
3902 sha1_to_hex(osha1), sha1_to_hex(nsha1),
3903 email, timestamp, tz, message);
3904 hashcpy(cb->last_kept_sha1, nsha1);
3905 }
3906 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3907 printf("keep %s", message);
3908 }
3909 return 0;
3910 }
3911
3912 int reflog_expire(const char *refname, const unsigned char *sha1,
3913 unsigned int flags,
3914 reflog_expiry_prepare_fn prepare_fn,
3915 reflog_expiry_should_prune_fn should_prune_fn,
3916 reflog_expiry_cleanup_fn cleanup_fn,
3917 void *policy_cb_data)
3918 {
3919 static struct lock_file reflog_lock;
3920 struct expire_reflog_cb cb;
3921 struct ref_lock *lock;
3922 char *log_file;
3923 int status = 0;
3924 int type;
3925 struct strbuf err = STRBUF_INIT;
3926
3927 memset(&cb, 0, sizeof(cb));
3928 cb.flags = flags;
3929 cb.policy_cb = policy_cb_data;
3930 cb.should_prune_fn = should_prune_fn;
3931
3932 /*
3933 * The reflog file is locked by holding the lock on the
3934 * reference itself, plus we might need to update the
3935 * reference if --updateref was specified:
3936 */
3937 lock = lock_ref_sha1_basic(refname, sha1, NULL, NULL, REF_NODEREF,
3938 &type, &err);
3939 if (!lock) {
3940 error("cannot lock ref '%s': %s", refname, err.buf);
3941 strbuf_release(&err);
3942 return -1;
3943 }
3944 if (!reflog_exists(refname)) {
3945 unlock_ref(lock);
3946 return 0;
3947 }
3948
3949 log_file = git_pathdup("logs/%s", refname);
3950 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
3951 /*
3952 * Even though holding $GIT_DIR/logs/$reflog.lock has
3953 * no locking implications, we use the lock_file
3954 * machinery here anyway because it does a lot of the
3955 * work we need, including cleaning up if the program
3956 * exits unexpectedly.
3957 */
3958 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
3959 struct strbuf err = STRBUF_INIT;
3960 unable_to_lock_message(log_file, errno, &err);
3961 error("%s", err.buf);
3962 strbuf_release(&err);
3963 goto failure;
3964 }
3965 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
3966 if (!cb.newlog) {
3967 error("cannot fdopen %s (%s)",
3968 get_lock_file_path(&reflog_lock), strerror(errno));
3969 goto failure;
3970 }
3971 }
3972
3973 (*prepare_fn)(refname, sha1, cb.policy_cb);
3974 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
3975 (*cleanup_fn)(cb.policy_cb);
3976
3977 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
3978 /*
3979 * It doesn't make sense to adjust a reference pointed
3980 * to by a symbolic ref based on expiring entries in
3981 * the symbolic reference's reflog. Nor can we update
3982 * a reference if there are no remaining reflog
3983 * entries.
3984 */
3985 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
3986 !(type & REF_ISSYMREF) &&
3987 !is_null_sha1(cb.last_kept_sha1);
3988
3989 if (close_lock_file(&reflog_lock)) {
3990 status |= error("couldn't write %s: %s", log_file,
3991 strerror(errno));
3992 } else if (update &&
3993 (write_in_full(get_lock_file_fd(lock->lk),
3994 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
3995 write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
3996 close_ref(lock) < 0)) {
3997 status |= error("couldn't write %s",
3998 get_lock_file_path(lock->lk));
3999 rollback_lock_file(&reflog_lock);
4000 } else if (commit_lock_file(&reflog_lock)) {
4001 status |= error("unable to write reflog '%s' (%s)",
4002 log_file, strerror(errno));
4003 } else if (update && commit_ref(lock)) {
4004 status |= error("couldn't set %s", lock->ref_name);
4005 }
4006 }
4007 free(log_file);
4008 unlock_ref(lock);
4009 return status;
4010
4011 failure:
4012 rollback_lock_file(&reflog_lock);
4013 free(log_file);
4014 unlock_ref(lock);
4015 return -1;
4016 }
4017
4018 struct ref_storage_be refs_be_files = {
4019 NULL,
4020 "files",
4021 files_ref_store_create,
4022 files_transaction_commit,
4023
4024 files_read_raw_ref
4025 };