]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
Merge branch 'lm/squelch-bg-progress'
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
8
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
15 };
16
17 /*
18 * How to handle various characters in refnames:
19 * 0: An acceptable character for refs
20 * 1: End-of-component
21 * 2: ., look for a preceding . to reject .. in refs
22 * 3: {, look for a preceding @ to reject @{ in refs
23 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
24 */
25 static unsigned char refname_disposition[256] = {
26 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
27 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
29 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
34 };
35
36 /*
37 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
38 * refs (i.e., because the reference is about to be deleted anyway).
39 */
40 #define REF_DELETING 0x02
41
42 /*
43 * Used as a flag in ref_update::flags when a loose ref is being
44 * pruned.
45 */
46 #define REF_ISPRUNING 0x04
47
48 /*
49 * Used as a flag in ref_update::flags when the reference should be
50 * updated to new_sha1.
51 */
52 #define REF_HAVE_NEW 0x08
53
54 /*
55 * Used as a flag in ref_update::flags when old_sha1 should be
56 * checked.
57 */
58 #define REF_HAVE_OLD 0x10
59
60 /*
61 * Try to read one refname component from the front of refname.
62 * Return the length of the component found, or -1 if the component is
63 * not legal. It is legal if it is something reasonable to have under
64 * ".git/refs/"; We do not like it if:
65 *
66 * - any path component of it begins with ".", or
67 * - it has double dots "..", or
68 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
69 * - it ends with a "/".
70 * - it ends with ".lock"
71 * - it contains a "\" (backslash)
72 */
73 static int check_refname_component(const char *refname, int flags)
74 {
75 const char *cp;
76 char last = '\0';
77
78 for (cp = refname; ; cp++) {
79 int ch = *cp & 255;
80 unsigned char disp = refname_disposition[ch];
81 switch (disp) {
82 case 1:
83 goto out;
84 case 2:
85 if (last == '.')
86 return -1; /* Refname contains "..". */
87 break;
88 case 3:
89 if (last == '@')
90 return -1; /* Refname contains "@{". */
91 break;
92 case 4:
93 return -1;
94 }
95 last = ch;
96 }
97 out:
98 if (cp == refname)
99 return 0; /* Component has zero length. */
100 if (refname[0] == '.')
101 return -1; /* Component starts with '.'. */
102 if (cp - refname >= LOCK_SUFFIX_LEN &&
103 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
104 return -1; /* Refname ends with ".lock". */
105 return cp - refname;
106 }
107
108 int check_refname_format(const char *refname, int flags)
109 {
110 int component_len, component_count = 0;
111
112 if (!strcmp(refname, "@"))
113 /* Refname is a single character '@'. */
114 return -1;
115
116 while (1) {
117 /* We are at the start of a path component. */
118 component_len = check_refname_component(refname, flags);
119 if (component_len <= 0) {
120 if ((flags & REFNAME_REFSPEC_PATTERN) &&
121 refname[0] == '*' &&
122 (refname[1] == '\0' || refname[1] == '/')) {
123 /* Accept one wildcard as a full refname component. */
124 flags &= ~REFNAME_REFSPEC_PATTERN;
125 component_len = 1;
126 } else {
127 return -1;
128 }
129 }
130 component_count++;
131 if (refname[component_len] == '\0')
132 break;
133 /* Skip to next component. */
134 refname += component_len + 1;
135 }
136
137 if (refname[component_len - 1] == '.')
138 return -1; /* Refname ends with '.'. */
139 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
140 return -1; /* Refname has only one component. */
141 return 0;
142 }
143
144 struct ref_entry;
145
146 /*
147 * Information used (along with the information in ref_entry) to
148 * describe a single cached reference. This data structure only
149 * occurs embedded in a union in struct ref_entry, and only when
150 * (ref_entry->flag & REF_DIR) is zero.
151 */
152 struct ref_value {
153 /*
154 * The name of the object to which this reference resolves
155 * (which may be a tag object). If REF_ISBROKEN, this is
156 * null. If REF_ISSYMREF, then this is the name of the object
157 * referred to by the last reference in the symlink chain.
158 */
159 unsigned char sha1[20];
160
161 /*
162 * If REF_KNOWS_PEELED, then this field holds the peeled value
163 * of this reference, or null if the reference is known not to
164 * be peelable. See the documentation for peel_ref() for an
165 * exact definition of "peelable".
166 */
167 unsigned char peeled[20];
168 };
169
170 struct ref_cache;
171
172 /*
173 * Information used (along with the information in ref_entry) to
174 * describe a level in the hierarchy of references. This data
175 * structure only occurs embedded in a union in struct ref_entry, and
176 * only when (ref_entry.flag & REF_DIR) is set. In that case,
177 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
178 * in the directory have already been read:
179 *
180 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
181 * or packed references, already read.
182 *
183 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
184 * references that hasn't been read yet (nor has any of its
185 * subdirectories).
186 *
187 * Entries within a directory are stored within a growable array of
188 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
189 * sorted are sorted by their component name in strcmp() order and the
190 * remaining entries are unsorted.
191 *
192 * Loose references are read lazily, one directory at a time. When a
193 * directory of loose references is read, then all of the references
194 * in that directory are stored, and REF_INCOMPLETE stubs are created
195 * for any subdirectories, but the subdirectories themselves are not
196 * read. The reading is triggered by get_ref_dir().
197 */
198 struct ref_dir {
199 int nr, alloc;
200
201 /*
202 * Entries with index 0 <= i < sorted are sorted by name. New
203 * entries are appended to the list unsorted, and are sorted
204 * only when required; thus we avoid the need to sort the list
205 * after the addition of every reference.
206 */
207 int sorted;
208
209 /* A pointer to the ref_cache that contains this ref_dir. */
210 struct ref_cache *ref_cache;
211
212 struct ref_entry **entries;
213 };
214
215 /*
216 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
217 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
218 * public values; see refs.h.
219 */
220
221 /*
222 * The field ref_entry->u.value.peeled of this value entry contains
223 * the correct peeled value for the reference, which might be
224 * null_sha1 if the reference is not a tag or if it is broken.
225 */
226 #define REF_KNOWS_PEELED 0x10
227
228 /* ref_entry represents a directory of references */
229 #define REF_DIR 0x20
230
231 /*
232 * Entry has not yet been read from disk (used only for REF_DIR
233 * entries representing loose references)
234 */
235 #define REF_INCOMPLETE 0x40
236
237 /*
238 * A ref_entry represents either a reference or a "subdirectory" of
239 * references.
240 *
241 * Each directory in the reference namespace is represented by a
242 * ref_entry with (flags & REF_DIR) set and containing a subdir member
243 * that holds the entries in that directory that have been read so
244 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
245 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
246 * used for loose reference directories.
247 *
248 * References are represented by a ref_entry with (flags & REF_DIR)
249 * unset and a value member that describes the reference's value. The
250 * flag member is at the ref_entry level, but it is also needed to
251 * interpret the contents of the value field (in other words, a
252 * ref_value object is not very much use without the enclosing
253 * ref_entry).
254 *
255 * Reference names cannot end with slash and directories' names are
256 * always stored with a trailing slash (except for the top-level
257 * directory, which is always denoted by ""). This has two nice
258 * consequences: (1) when the entries in each subdir are sorted
259 * lexicographically by name (as they usually are), the references in
260 * a whole tree can be generated in lexicographic order by traversing
261 * the tree in left-to-right, depth-first order; (2) the names of
262 * references and subdirectories cannot conflict, and therefore the
263 * presence of an empty subdirectory does not block the creation of a
264 * similarly-named reference. (The fact that reference names with the
265 * same leading components can conflict *with each other* is a
266 * separate issue that is regulated by is_refname_available().)
267 *
268 * Please note that the name field contains the fully-qualified
269 * reference (or subdirectory) name. Space could be saved by only
270 * storing the relative names. But that would require the full names
271 * to be generated on the fly when iterating in do_for_each_ref(), and
272 * would break callback functions, who have always been able to assume
273 * that the name strings that they are passed will not be freed during
274 * the iteration.
275 */
276 struct ref_entry {
277 unsigned char flag; /* ISSYMREF? ISPACKED? */
278 union {
279 struct ref_value value; /* if not (flags&REF_DIR) */
280 struct ref_dir subdir; /* if (flags&REF_DIR) */
281 } u;
282 /*
283 * The full name of the reference (e.g., "refs/heads/master")
284 * or the full name of the directory with a trailing slash
285 * (e.g., "refs/heads/"):
286 */
287 char name[FLEX_ARRAY];
288 };
289
290 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
291
292 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
293 {
294 struct ref_dir *dir;
295 assert(entry->flag & REF_DIR);
296 dir = &entry->u.subdir;
297 if (entry->flag & REF_INCOMPLETE) {
298 read_loose_refs(entry->name, dir);
299 entry->flag &= ~REF_INCOMPLETE;
300 }
301 return dir;
302 }
303
304 /*
305 * Check if a refname is safe.
306 * For refs that start with "refs/" we consider it safe as long they do
307 * not try to resolve to outside of refs/.
308 *
309 * For all other refs we only consider them safe iff they only contain
310 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
311 * "config").
312 */
313 static int refname_is_safe(const char *refname)
314 {
315 if (starts_with(refname, "refs/")) {
316 char *buf;
317 int result;
318
319 buf = xmalloc(strlen(refname) + 1);
320 /*
321 * Does the refname try to escape refs/?
322 * For example: refs/foo/../bar is safe but refs/foo/../../bar
323 * is not.
324 */
325 result = !normalize_path_copy(buf, refname + strlen("refs/"));
326 free(buf);
327 return result;
328 }
329 while (*refname) {
330 if (!isupper(*refname) && *refname != '_')
331 return 0;
332 refname++;
333 }
334 return 1;
335 }
336
337 static struct ref_entry *create_ref_entry(const char *refname,
338 const unsigned char *sha1, int flag,
339 int check_name)
340 {
341 int len;
342 struct ref_entry *ref;
343
344 if (check_name &&
345 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
346 die("Reference has invalid format: '%s'", refname);
347 if (!check_name && !refname_is_safe(refname))
348 die("Reference has invalid name: '%s'", refname);
349 len = strlen(refname) + 1;
350 ref = xmalloc(sizeof(struct ref_entry) + len);
351 hashcpy(ref->u.value.sha1, sha1);
352 hashclr(ref->u.value.peeled);
353 memcpy(ref->name, refname, len);
354 ref->flag = flag;
355 return ref;
356 }
357
358 static void clear_ref_dir(struct ref_dir *dir);
359
360 static void free_ref_entry(struct ref_entry *entry)
361 {
362 if (entry->flag & REF_DIR) {
363 /*
364 * Do not use get_ref_dir() here, as that might
365 * trigger the reading of loose refs.
366 */
367 clear_ref_dir(&entry->u.subdir);
368 }
369 free(entry);
370 }
371
372 /*
373 * Add a ref_entry to the end of dir (unsorted). Entry is always
374 * stored directly in dir; no recursion into subdirectories is
375 * done.
376 */
377 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
378 {
379 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
380 dir->entries[dir->nr++] = entry;
381 /* optimize for the case that entries are added in order */
382 if (dir->nr == 1 ||
383 (dir->nr == dir->sorted + 1 &&
384 strcmp(dir->entries[dir->nr - 2]->name,
385 dir->entries[dir->nr - 1]->name) < 0))
386 dir->sorted = dir->nr;
387 }
388
389 /*
390 * Clear and free all entries in dir, recursively.
391 */
392 static void clear_ref_dir(struct ref_dir *dir)
393 {
394 int i;
395 for (i = 0; i < dir->nr; i++)
396 free_ref_entry(dir->entries[i]);
397 free(dir->entries);
398 dir->sorted = dir->nr = dir->alloc = 0;
399 dir->entries = NULL;
400 }
401
402 /*
403 * Create a struct ref_entry object for the specified dirname.
404 * dirname is the name of the directory with a trailing slash (e.g.,
405 * "refs/heads/") or "" for the top-level directory.
406 */
407 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
408 const char *dirname, size_t len,
409 int incomplete)
410 {
411 struct ref_entry *direntry;
412 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
413 memcpy(direntry->name, dirname, len);
414 direntry->name[len] = '\0';
415 direntry->u.subdir.ref_cache = ref_cache;
416 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
417 return direntry;
418 }
419
420 static int ref_entry_cmp(const void *a, const void *b)
421 {
422 struct ref_entry *one = *(struct ref_entry **)a;
423 struct ref_entry *two = *(struct ref_entry **)b;
424 return strcmp(one->name, two->name);
425 }
426
427 static void sort_ref_dir(struct ref_dir *dir);
428
429 struct string_slice {
430 size_t len;
431 const char *str;
432 };
433
434 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
435 {
436 const struct string_slice *key = key_;
437 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
438 int cmp = strncmp(key->str, ent->name, key->len);
439 if (cmp)
440 return cmp;
441 return '\0' - (unsigned char)ent->name[key->len];
442 }
443
444 /*
445 * Return the index of the entry with the given refname from the
446 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
447 * no such entry is found. dir must already be complete.
448 */
449 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
450 {
451 struct ref_entry **r;
452 struct string_slice key;
453
454 if (refname == NULL || !dir->nr)
455 return -1;
456
457 sort_ref_dir(dir);
458 key.len = len;
459 key.str = refname;
460 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
461 ref_entry_cmp_sslice);
462
463 if (r == NULL)
464 return -1;
465
466 return r - dir->entries;
467 }
468
469 /*
470 * Search for a directory entry directly within dir (without
471 * recursing). Sort dir if necessary. subdirname must be a directory
472 * name (i.e., end in '/'). If mkdir is set, then create the
473 * directory if it is missing; otherwise, return NULL if the desired
474 * directory cannot be found. dir must already be complete.
475 */
476 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
477 const char *subdirname, size_t len,
478 int mkdir)
479 {
480 int entry_index = search_ref_dir(dir, subdirname, len);
481 struct ref_entry *entry;
482 if (entry_index == -1) {
483 if (!mkdir)
484 return NULL;
485 /*
486 * Since dir is complete, the absence of a subdir
487 * means that the subdir really doesn't exist;
488 * therefore, create an empty record for it but mark
489 * the record complete.
490 */
491 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
492 add_entry_to_dir(dir, entry);
493 } else {
494 entry = dir->entries[entry_index];
495 }
496 return get_ref_dir(entry);
497 }
498
499 /*
500 * If refname is a reference name, find the ref_dir within the dir
501 * tree that should hold refname. If refname is a directory name
502 * (i.e., ends in '/'), then return that ref_dir itself. dir must
503 * represent the top-level directory and must already be complete.
504 * Sort ref_dirs and recurse into subdirectories as necessary. If
505 * mkdir is set, then create any missing directories; otherwise,
506 * return NULL if the desired directory cannot be found.
507 */
508 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
509 const char *refname, int mkdir)
510 {
511 const char *slash;
512 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
513 size_t dirnamelen = slash - refname + 1;
514 struct ref_dir *subdir;
515 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
516 if (!subdir) {
517 dir = NULL;
518 break;
519 }
520 dir = subdir;
521 }
522
523 return dir;
524 }
525
526 /*
527 * Find the value entry with the given name in dir, sorting ref_dirs
528 * and recursing into subdirectories as necessary. If the name is not
529 * found or it corresponds to a directory entry, return NULL.
530 */
531 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
532 {
533 int entry_index;
534 struct ref_entry *entry;
535 dir = find_containing_dir(dir, refname, 0);
536 if (!dir)
537 return NULL;
538 entry_index = search_ref_dir(dir, refname, strlen(refname));
539 if (entry_index == -1)
540 return NULL;
541 entry = dir->entries[entry_index];
542 return (entry->flag & REF_DIR) ? NULL : entry;
543 }
544
545 /*
546 * Remove the entry with the given name from dir, recursing into
547 * subdirectories as necessary. If refname is the name of a directory
548 * (i.e., ends with '/'), then remove the directory and its contents.
549 * If the removal was successful, return the number of entries
550 * remaining in the directory entry that contained the deleted entry.
551 * If the name was not found, return -1. Please note that this
552 * function only deletes the entry from the cache; it does not delete
553 * it from the filesystem or ensure that other cache entries (which
554 * might be symbolic references to the removed entry) are updated.
555 * Nor does it remove any containing dir entries that might be made
556 * empty by the removal. dir must represent the top-level directory
557 * and must already be complete.
558 */
559 static int remove_entry(struct ref_dir *dir, const char *refname)
560 {
561 int refname_len = strlen(refname);
562 int entry_index;
563 struct ref_entry *entry;
564 int is_dir = refname[refname_len - 1] == '/';
565 if (is_dir) {
566 /*
567 * refname represents a reference directory. Remove
568 * the trailing slash; otherwise we will get the
569 * directory *representing* refname rather than the
570 * one *containing* it.
571 */
572 char *dirname = xmemdupz(refname, refname_len - 1);
573 dir = find_containing_dir(dir, dirname, 0);
574 free(dirname);
575 } else {
576 dir = find_containing_dir(dir, refname, 0);
577 }
578 if (!dir)
579 return -1;
580 entry_index = search_ref_dir(dir, refname, refname_len);
581 if (entry_index == -1)
582 return -1;
583 entry = dir->entries[entry_index];
584
585 memmove(&dir->entries[entry_index],
586 &dir->entries[entry_index + 1],
587 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
588 );
589 dir->nr--;
590 if (dir->sorted > entry_index)
591 dir->sorted--;
592 free_ref_entry(entry);
593 return dir->nr;
594 }
595
596 /*
597 * Add a ref_entry to the ref_dir (unsorted), recursing into
598 * subdirectories as necessary. dir must represent the top-level
599 * directory. Return 0 on success.
600 */
601 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
602 {
603 dir = find_containing_dir(dir, ref->name, 1);
604 if (!dir)
605 return -1;
606 add_entry_to_dir(dir, ref);
607 return 0;
608 }
609
610 /*
611 * Emit a warning and return true iff ref1 and ref2 have the same name
612 * and the same sha1. Die if they have the same name but different
613 * sha1s.
614 */
615 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
616 {
617 if (strcmp(ref1->name, ref2->name))
618 return 0;
619
620 /* Duplicate name; make sure that they don't conflict: */
621
622 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
623 /* This is impossible by construction */
624 die("Reference directory conflict: %s", ref1->name);
625
626 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
627 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
628
629 warning("Duplicated ref: %s", ref1->name);
630 return 1;
631 }
632
633 /*
634 * Sort the entries in dir non-recursively (if they are not already
635 * sorted) and remove any duplicate entries.
636 */
637 static void sort_ref_dir(struct ref_dir *dir)
638 {
639 int i, j;
640 struct ref_entry *last = NULL;
641
642 /*
643 * This check also prevents passing a zero-length array to qsort(),
644 * which is a problem on some platforms.
645 */
646 if (dir->sorted == dir->nr)
647 return;
648
649 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
650
651 /* Remove any duplicates: */
652 for (i = 0, j = 0; j < dir->nr; j++) {
653 struct ref_entry *entry = dir->entries[j];
654 if (last && is_dup_ref(last, entry))
655 free_ref_entry(entry);
656 else
657 last = dir->entries[i++] = entry;
658 }
659 dir->sorted = dir->nr = i;
660 }
661
662 /* Include broken references in a do_for_each_ref*() iteration: */
663 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
664
665 /*
666 * Return true iff the reference described by entry can be resolved to
667 * an object in the database. Emit a warning if the referred-to
668 * object does not exist.
669 */
670 static int ref_resolves_to_object(struct ref_entry *entry)
671 {
672 if (entry->flag & REF_ISBROKEN)
673 return 0;
674 if (!has_sha1_file(entry->u.value.sha1)) {
675 error("%s does not point to a valid object!", entry->name);
676 return 0;
677 }
678 return 1;
679 }
680
681 /*
682 * current_ref is a performance hack: when iterating over references
683 * using the for_each_ref*() functions, current_ref is set to the
684 * current reference's entry before calling the callback function. If
685 * the callback function calls peel_ref(), then peel_ref() first
686 * checks whether the reference to be peeled is the current reference
687 * (it usually is) and if so, returns that reference's peeled version
688 * if it is available. This avoids a refname lookup in a common case.
689 */
690 static struct ref_entry *current_ref;
691
692 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
693
694 struct ref_entry_cb {
695 const char *base;
696 int trim;
697 int flags;
698 each_ref_fn *fn;
699 void *cb_data;
700 };
701
702 /*
703 * Handle one reference in a do_for_each_ref*()-style iteration,
704 * calling an each_ref_fn for each entry.
705 */
706 static int do_one_ref(struct ref_entry *entry, void *cb_data)
707 {
708 struct ref_entry_cb *data = cb_data;
709 struct ref_entry *old_current_ref;
710 int retval;
711
712 if (!starts_with(entry->name, data->base))
713 return 0;
714
715 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
716 !ref_resolves_to_object(entry))
717 return 0;
718
719 /* Store the old value, in case this is a recursive call: */
720 old_current_ref = current_ref;
721 current_ref = entry;
722 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
723 entry->flag, data->cb_data);
724 current_ref = old_current_ref;
725 return retval;
726 }
727
728 /*
729 * Call fn for each reference in dir that has index in the range
730 * offset <= index < dir->nr. Recurse into subdirectories that are in
731 * that index range, sorting them before iterating. This function
732 * does not sort dir itself; it should be sorted beforehand. fn is
733 * called for all references, including broken ones.
734 */
735 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
736 each_ref_entry_fn fn, void *cb_data)
737 {
738 int i;
739 assert(dir->sorted == dir->nr);
740 for (i = offset; i < dir->nr; i++) {
741 struct ref_entry *entry = dir->entries[i];
742 int retval;
743 if (entry->flag & REF_DIR) {
744 struct ref_dir *subdir = get_ref_dir(entry);
745 sort_ref_dir(subdir);
746 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
747 } else {
748 retval = fn(entry, cb_data);
749 }
750 if (retval)
751 return retval;
752 }
753 return 0;
754 }
755
756 /*
757 * Call fn for each reference in the union of dir1 and dir2, in order
758 * by refname. Recurse into subdirectories. If a value entry appears
759 * in both dir1 and dir2, then only process the version that is in
760 * dir2. The input dirs must already be sorted, but subdirs will be
761 * sorted as needed. fn is called for all references, including
762 * broken ones.
763 */
764 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
765 struct ref_dir *dir2,
766 each_ref_entry_fn fn, void *cb_data)
767 {
768 int retval;
769 int i1 = 0, i2 = 0;
770
771 assert(dir1->sorted == dir1->nr);
772 assert(dir2->sorted == dir2->nr);
773 while (1) {
774 struct ref_entry *e1, *e2;
775 int cmp;
776 if (i1 == dir1->nr) {
777 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
778 }
779 if (i2 == dir2->nr) {
780 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
781 }
782 e1 = dir1->entries[i1];
783 e2 = dir2->entries[i2];
784 cmp = strcmp(e1->name, e2->name);
785 if (cmp == 0) {
786 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
787 /* Both are directories; descend them in parallel. */
788 struct ref_dir *subdir1 = get_ref_dir(e1);
789 struct ref_dir *subdir2 = get_ref_dir(e2);
790 sort_ref_dir(subdir1);
791 sort_ref_dir(subdir2);
792 retval = do_for_each_entry_in_dirs(
793 subdir1, subdir2, fn, cb_data);
794 i1++;
795 i2++;
796 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
797 /* Both are references; ignore the one from dir1. */
798 retval = fn(e2, cb_data);
799 i1++;
800 i2++;
801 } else {
802 die("conflict between reference and directory: %s",
803 e1->name);
804 }
805 } else {
806 struct ref_entry *e;
807 if (cmp < 0) {
808 e = e1;
809 i1++;
810 } else {
811 e = e2;
812 i2++;
813 }
814 if (e->flag & REF_DIR) {
815 struct ref_dir *subdir = get_ref_dir(e);
816 sort_ref_dir(subdir);
817 retval = do_for_each_entry_in_dir(
818 subdir, 0, fn, cb_data);
819 } else {
820 retval = fn(e, cb_data);
821 }
822 }
823 if (retval)
824 return retval;
825 }
826 }
827
828 /*
829 * Load all of the refs from the dir into our in-memory cache. The hard work
830 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
831 * through all of the sub-directories. We do not even need to care about
832 * sorting, as traversal order does not matter to us.
833 */
834 static void prime_ref_dir(struct ref_dir *dir)
835 {
836 int i;
837 for (i = 0; i < dir->nr; i++) {
838 struct ref_entry *entry = dir->entries[i];
839 if (entry->flag & REF_DIR)
840 prime_ref_dir(get_ref_dir(entry));
841 }
842 }
843
844 static int entry_matches(struct ref_entry *entry, const struct string_list *list)
845 {
846 return list && string_list_has_string(list, entry->name);
847 }
848
849 struct nonmatching_ref_data {
850 const struct string_list *skip;
851 struct ref_entry *found;
852 };
853
854 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
855 {
856 struct nonmatching_ref_data *data = vdata;
857
858 if (entry_matches(entry, data->skip))
859 return 0;
860
861 data->found = entry;
862 return 1;
863 }
864
865 static void report_refname_conflict(struct ref_entry *entry,
866 const char *refname)
867 {
868 error("'%s' exists; cannot create '%s'", entry->name, refname);
869 }
870
871 /*
872 * Return true iff a reference named refname could be created without
873 * conflicting with the name of an existing reference in dir. If
874 * skip is non-NULL, ignore potential conflicts with refs in skip
875 * (e.g., because they are scheduled for deletion in the same
876 * operation).
877 *
878 * Two reference names conflict if one of them exactly matches the
879 * leading components of the other; e.g., "foo/bar" conflicts with
880 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
881 * "foo/barbados".
882 *
883 * skip must be sorted.
884 */
885 static int is_refname_available(const char *refname,
886 const struct string_list *skip,
887 struct ref_dir *dir)
888 {
889 const char *slash;
890 size_t len;
891 int pos;
892 char *dirname;
893
894 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
895 /*
896 * We are still at a leading dir of the refname; we are
897 * looking for a conflict with a leaf entry.
898 *
899 * If we find one, we still must make sure it is
900 * not in "skip".
901 */
902 pos = search_ref_dir(dir, refname, slash - refname);
903 if (pos >= 0) {
904 struct ref_entry *entry = dir->entries[pos];
905 if (entry_matches(entry, skip))
906 return 1;
907 report_refname_conflict(entry, refname);
908 return 0;
909 }
910
911
912 /*
913 * Otherwise, we can try to continue our search with
914 * the next component; if we come up empty, we know
915 * there is nothing under this whole prefix.
916 */
917 pos = search_ref_dir(dir, refname, slash + 1 - refname);
918 if (pos < 0)
919 return 1;
920
921 dir = get_ref_dir(dir->entries[pos]);
922 }
923
924 /*
925 * We are at the leaf of our refname; we want to
926 * make sure there are no directories which match it.
927 */
928 len = strlen(refname);
929 dirname = xmallocz(len + 1);
930 sprintf(dirname, "%s/", refname);
931 pos = search_ref_dir(dir, dirname, len + 1);
932 free(dirname);
933
934 if (pos >= 0) {
935 /*
936 * We found a directory named "refname". It is a
937 * problem iff it contains any ref that is not
938 * in "skip".
939 */
940 struct ref_entry *entry = dir->entries[pos];
941 struct ref_dir *dir = get_ref_dir(entry);
942 struct nonmatching_ref_data data;
943
944 data.skip = skip;
945 sort_ref_dir(dir);
946 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
947 return 1;
948
949 report_refname_conflict(data.found, refname);
950 return 0;
951 }
952
953 /*
954 * There is no point in searching for another leaf
955 * node which matches it; such an entry would be the
956 * ref we are looking for, not a conflict.
957 */
958 return 1;
959 }
960
961 struct packed_ref_cache {
962 struct ref_entry *root;
963
964 /*
965 * Count of references to the data structure in this instance,
966 * including the pointer from ref_cache::packed if any. The
967 * data will not be freed as long as the reference count is
968 * nonzero.
969 */
970 unsigned int referrers;
971
972 /*
973 * Iff the packed-refs file associated with this instance is
974 * currently locked for writing, this points at the associated
975 * lock (which is owned by somebody else). The referrer count
976 * is also incremented when the file is locked and decremented
977 * when it is unlocked.
978 */
979 struct lock_file *lock;
980
981 /* The metadata from when this packed-refs cache was read */
982 struct stat_validity validity;
983 };
984
985 /*
986 * Future: need to be in "struct repository"
987 * when doing a full libification.
988 */
989 static struct ref_cache {
990 struct ref_cache *next;
991 struct ref_entry *loose;
992 struct packed_ref_cache *packed;
993 /*
994 * The submodule name, or "" for the main repo. We allocate
995 * length 1 rather than FLEX_ARRAY so that the main ref_cache
996 * is initialized correctly.
997 */
998 char name[1];
999 } ref_cache, *submodule_ref_caches;
1000
1001 /* Lock used for the main packed-refs file: */
1002 static struct lock_file packlock;
1003
1004 /*
1005 * Increment the reference count of *packed_refs.
1006 */
1007 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
1008 {
1009 packed_refs->referrers++;
1010 }
1011
1012 /*
1013 * Decrease the reference count of *packed_refs. If it goes to zero,
1014 * free *packed_refs and return true; otherwise return false.
1015 */
1016 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
1017 {
1018 if (!--packed_refs->referrers) {
1019 free_ref_entry(packed_refs->root);
1020 stat_validity_clear(&packed_refs->validity);
1021 free(packed_refs);
1022 return 1;
1023 } else {
1024 return 0;
1025 }
1026 }
1027
1028 static void clear_packed_ref_cache(struct ref_cache *refs)
1029 {
1030 if (refs->packed) {
1031 struct packed_ref_cache *packed_refs = refs->packed;
1032
1033 if (packed_refs->lock)
1034 die("internal error: packed-ref cache cleared while locked");
1035 refs->packed = NULL;
1036 release_packed_ref_cache(packed_refs);
1037 }
1038 }
1039
1040 static void clear_loose_ref_cache(struct ref_cache *refs)
1041 {
1042 if (refs->loose) {
1043 free_ref_entry(refs->loose);
1044 refs->loose = NULL;
1045 }
1046 }
1047
1048 static struct ref_cache *create_ref_cache(const char *submodule)
1049 {
1050 int len;
1051 struct ref_cache *refs;
1052 if (!submodule)
1053 submodule = "";
1054 len = strlen(submodule) + 1;
1055 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1056 memcpy(refs->name, submodule, len);
1057 return refs;
1058 }
1059
1060 /*
1061 * Return a pointer to a ref_cache for the specified submodule. For
1062 * the main repository, use submodule==NULL. The returned structure
1063 * will be allocated and initialized but not necessarily populated; it
1064 * should not be freed.
1065 */
1066 static struct ref_cache *get_ref_cache(const char *submodule)
1067 {
1068 struct ref_cache *refs;
1069
1070 if (!submodule || !*submodule)
1071 return &ref_cache;
1072
1073 for (refs = submodule_ref_caches; refs; refs = refs->next)
1074 if (!strcmp(submodule, refs->name))
1075 return refs;
1076
1077 refs = create_ref_cache(submodule);
1078 refs->next = submodule_ref_caches;
1079 submodule_ref_caches = refs;
1080 return refs;
1081 }
1082
1083 /* The length of a peeled reference line in packed-refs, including EOL: */
1084 #define PEELED_LINE_LENGTH 42
1085
1086 /*
1087 * The packed-refs header line that we write out. Perhaps other
1088 * traits will be added later. The trailing space is required.
1089 */
1090 static const char PACKED_REFS_HEADER[] =
1091 "# pack-refs with: peeled fully-peeled \n";
1092
1093 /*
1094 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1095 * Return a pointer to the refname within the line (null-terminated),
1096 * or NULL if there was a problem.
1097 */
1098 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1099 {
1100 const char *ref;
1101
1102 /*
1103 * 42: the answer to everything.
1104 *
1105 * In this case, it happens to be the answer to
1106 * 40 (length of sha1 hex representation)
1107 * +1 (space in between hex and name)
1108 * +1 (newline at the end of the line)
1109 */
1110 if (line->len <= 42)
1111 return NULL;
1112
1113 if (get_sha1_hex(line->buf, sha1) < 0)
1114 return NULL;
1115 if (!isspace(line->buf[40]))
1116 return NULL;
1117
1118 ref = line->buf + 41;
1119 if (isspace(*ref))
1120 return NULL;
1121
1122 if (line->buf[line->len - 1] != '\n')
1123 return NULL;
1124 line->buf[--line->len] = 0;
1125
1126 return ref;
1127 }
1128
1129 /*
1130 * Read f, which is a packed-refs file, into dir.
1131 *
1132 * A comment line of the form "# pack-refs with: " may contain zero or
1133 * more traits. We interpret the traits as follows:
1134 *
1135 * No traits:
1136 *
1137 * Probably no references are peeled. But if the file contains a
1138 * peeled value for a reference, we will use it.
1139 *
1140 * peeled:
1141 *
1142 * References under "refs/tags/", if they *can* be peeled, *are*
1143 * peeled in this file. References outside of "refs/tags/" are
1144 * probably not peeled even if they could have been, but if we find
1145 * a peeled value for such a reference we will use it.
1146 *
1147 * fully-peeled:
1148 *
1149 * All references in the file that can be peeled are peeled.
1150 * Inversely (and this is more important), any references in the
1151 * file for which no peeled value is recorded is not peelable. This
1152 * trait should typically be written alongside "peeled" for
1153 * compatibility with older clients, but we do not require it
1154 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1155 */
1156 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1157 {
1158 struct ref_entry *last = NULL;
1159 struct strbuf line = STRBUF_INIT;
1160 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1161
1162 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1163 unsigned char sha1[20];
1164 const char *refname;
1165 const char *traits;
1166
1167 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1168 if (strstr(traits, " fully-peeled "))
1169 peeled = PEELED_FULLY;
1170 else if (strstr(traits, " peeled "))
1171 peeled = PEELED_TAGS;
1172 /* perhaps other traits later as well */
1173 continue;
1174 }
1175
1176 refname = parse_ref_line(&line, sha1);
1177 if (refname) {
1178 int flag = REF_ISPACKED;
1179
1180 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1181 hashclr(sha1);
1182 flag |= REF_BAD_NAME | REF_ISBROKEN;
1183 }
1184 last = create_ref_entry(refname, sha1, flag, 0);
1185 if (peeled == PEELED_FULLY ||
1186 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1187 last->flag |= REF_KNOWS_PEELED;
1188 add_ref(dir, last);
1189 continue;
1190 }
1191 if (last &&
1192 line.buf[0] == '^' &&
1193 line.len == PEELED_LINE_LENGTH &&
1194 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1195 !get_sha1_hex(line.buf + 1, sha1)) {
1196 hashcpy(last->u.value.peeled, sha1);
1197 /*
1198 * Regardless of what the file header said,
1199 * we definitely know the value of *this*
1200 * reference:
1201 */
1202 last->flag |= REF_KNOWS_PEELED;
1203 }
1204 }
1205
1206 strbuf_release(&line);
1207 }
1208
1209 /*
1210 * Get the packed_ref_cache for the specified ref_cache, creating it
1211 * if necessary.
1212 */
1213 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1214 {
1215 const char *packed_refs_file;
1216
1217 if (*refs->name)
1218 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1219 else
1220 packed_refs_file = git_path("packed-refs");
1221
1222 if (refs->packed &&
1223 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1224 clear_packed_ref_cache(refs);
1225
1226 if (!refs->packed) {
1227 FILE *f;
1228
1229 refs->packed = xcalloc(1, sizeof(*refs->packed));
1230 acquire_packed_ref_cache(refs->packed);
1231 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1232 f = fopen(packed_refs_file, "r");
1233 if (f) {
1234 stat_validity_update(&refs->packed->validity, fileno(f));
1235 read_packed_refs(f, get_ref_dir(refs->packed->root));
1236 fclose(f);
1237 }
1238 }
1239 return refs->packed;
1240 }
1241
1242 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1243 {
1244 return get_ref_dir(packed_ref_cache->root);
1245 }
1246
1247 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1248 {
1249 return get_packed_ref_dir(get_packed_ref_cache(refs));
1250 }
1251
1252 void add_packed_ref(const char *refname, const unsigned char *sha1)
1253 {
1254 struct packed_ref_cache *packed_ref_cache =
1255 get_packed_ref_cache(&ref_cache);
1256
1257 if (!packed_ref_cache->lock)
1258 die("internal error: packed refs not locked");
1259 add_ref(get_packed_ref_dir(packed_ref_cache),
1260 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1261 }
1262
1263 /*
1264 * Read the loose references from the namespace dirname into dir
1265 * (without recursing). dirname must end with '/'. dir must be the
1266 * directory entry corresponding to dirname.
1267 */
1268 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1269 {
1270 struct ref_cache *refs = dir->ref_cache;
1271 DIR *d;
1272 const char *path;
1273 struct dirent *de;
1274 int dirnamelen = strlen(dirname);
1275 struct strbuf refname;
1276
1277 if (*refs->name)
1278 path = git_path_submodule(refs->name, "%s", dirname);
1279 else
1280 path = git_path("%s", dirname);
1281
1282 d = opendir(path);
1283 if (!d)
1284 return;
1285
1286 strbuf_init(&refname, dirnamelen + 257);
1287 strbuf_add(&refname, dirname, dirnamelen);
1288
1289 while ((de = readdir(d)) != NULL) {
1290 unsigned char sha1[20];
1291 struct stat st;
1292 int flag;
1293 const char *refdir;
1294
1295 if (de->d_name[0] == '.')
1296 continue;
1297 if (ends_with(de->d_name, ".lock"))
1298 continue;
1299 strbuf_addstr(&refname, de->d_name);
1300 refdir = *refs->name
1301 ? git_path_submodule(refs->name, "%s", refname.buf)
1302 : git_path("%s", refname.buf);
1303 if (stat(refdir, &st) < 0) {
1304 ; /* silently ignore */
1305 } else if (S_ISDIR(st.st_mode)) {
1306 strbuf_addch(&refname, '/');
1307 add_entry_to_dir(dir,
1308 create_dir_entry(refs, refname.buf,
1309 refname.len, 1));
1310 } else {
1311 if (*refs->name) {
1312 hashclr(sha1);
1313 flag = 0;
1314 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1315 hashclr(sha1);
1316 flag |= REF_ISBROKEN;
1317 }
1318 } else if (read_ref_full(refname.buf,
1319 RESOLVE_REF_READING,
1320 sha1, &flag)) {
1321 hashclr(sha1);
1322 flag |= REF_ISBROKEN;
1323 }
1324 if (check_refname_format(refname.buf,
1325 REFNAME_ALLOW_ONELEVEL)) {
1326 hashclr(sha1);
1327 flag |= REF_BAD_NAME | REF_ISBROKEN;
1328 }
1329 add_entry_to_dir(dir,
1330 create_ref_entry(refname.buf, sha1, flag, 0));
1331 }
1332 strbuf_setlen(&refname, dirnamelen);
1333 }
1334 strbuf_release(&refname);
1335 closedir(d);
1336 }
1337
1338 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1339 {
1340 if (!refs->loose) {
1341 /*
1342 * Mark the top-level directory complete because we
1343 * are about to read the only subdirectory that can
1344 * hold references:
1345 */
1346 refs->loose = create_dir_entry(refs, "", 0, 0);
1347 /*
1348 * Create an incomplete entry for "refs/":
1349 */
1350 add_entry_to_dir(get_ref_dir(refs->loose),
1351 create_dir_entry(refs, "refs/", 5, 1));
1352 }
1353 return get_ref_dir(refs->loose);
1354 }
1355
1356 /* We allow "recursive" symbolic refs. Only within reason, though */
1357 #define MAXDEPTH 5
1358 #define MAXREFLEN (1024)
1359
1360 /*
1361 * Called by resolve_gitlink_ref_recursive() after it failed to read
1362 * from the loose refs in ref_cache refs. Find <refname> in the
1363 * packed-refs file for the submodule.
1364 */
1365 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1366 const char *refname, unsigned char *sha1)
1367 {
1368 struct ref_entry *ref;
1369 struct ref_dir *dir = get_packed_refs(refs);
1370
1371 ref = find_ref(dir, refname);
1372 if (ref == NULL)
1373 return -1;
1374
1375 hashcpy(sha1, ref->u.value.sha1);
1376 return 0;
1377 }
1378
1379 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1380 const char *refname, unsigned char *sha1,
1381 int recursion)
1382 {
1383 int fd, len;
1384 char buffer[128], *p;
1385 const char *path;
1386
1387 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1388 return -1;
1389 path = *refs->name
1390 ? git_path_submodule(refs->name, "%s", refname)
1391 : git_path("%s", refname);
1392 fd = open(path, O_RDONLY);
1393 if (fd < 0)
1394 return resolve_gitlink_packed_ref(refs, refname, sha1);
1395
1396 len = read(fd, buffer, sizeof(buffer)-1);
1397 close(fd);
1398 if (len < 0)
1399 return -1;
1400 while (len && isspace(buffer[len-1]))
1401 len--;
1402 buffer[len] = 0;
1403
1404 /* Was it a detached head or an old-fashioned symlink? */
1405 if (!get_sha1_hex(buffer, sha1))
1406 return 0;
1407
1408 /* Symref? */
1409 if (strncmp(buffer, "ref:", 4))
1410 return -1;
1411 p = buffer + 4;
1412 while (isspace(*p))
1413 p++;
1414
1415 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1416 }
1417
1418 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1419 {
1420 int len = strlen(path), retval;
1421 char *submodule;
1422 struct ref_cache *refs;
1423
1424 while (len && path[len-1] == '/')
1425 len--;
1426 if (!len)
1427 return -1;
1428 submodule = xstrndup(path, len);
1429 refs = get_ref_cache(submodule);
1430 free(submodule);
1431
1432 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1433 return retval;
1434 }
1435
1436 /*
1437 * Return the ref_entry for the given refname from the packed
1438 * references. If it does not exist, return NULL.
1439 */
1440 static struct ref_entry *get_packed_ref(const char *refname)
1441 {
1442 return find_ref(get_packed_refs(&ref_cache), refname);
1443 }
1444
1445 /*
1446 * A loose ref file doesn't exist; check for a packed ref. The
1447 * options are forwarded from resolve_safe_unsafe().
1448 */
1449 static int resolve_missing_loose_ref(const char *refname,
1450 int resolve_flags,
1451 unsigned char *sha1,
1452 int *flags)
1453 {
1454 struct ref_entry *entry;
1455
1456 /*
1457 * The loose reference file does not exist; check for a packed
1458 * reference.
1459 */
1460 entry = get_packed_ref(refname);
1461 if (entry) {
1462 hashcpy(sha1, entry->u.value.sha1);
1463 if (flags)
1464 *flags |= REF_ISPACKED;
1465 return 0;
1466 }
1467 /* The reference is not a packed reference, either. */
1468 if (resolve_flags & RESOLVE_REF_READING) {
1469 errno = ENOENT;
1470 return -1;
1471 } else {
1472 hashclr(sha1);
1473 return 0;
1474 }
1475 }
1476
1477 /* This function needs to return a meaningful errno on failure */
1478 static const char *resolve_ref_unsafe_1(const char *refname,
1479 int resolve_flags,
1480 unsigned char *sha1,
1481 int *flags,
1482 struct strbuf *sb_path)
1483 {
1484 int depth = MAXDEPTH;
1485 ssize_t len;
1486 char buffer[256];
1487 static char refname_buffer[256];
1488 int bad_name = 0;
1489
1490 if (flags)
1491 *flags = 0;
1492
1493 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1494 if (flags)
1495 *flags |= REF_BAD_NAME;
1496
1497 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1498 !refname_is_safe(refname)) {
1499 errno = EINVAL;
1500 return NULL;
1501 }
1502 /*
1503 * dwim_ref() uses REF_ISBROKEN to distinguish between
1504 * missing refs and refs that were present but invalid,
1505 * to complain about the latter to stderr.
1506 *
1507 * We don't know whether the ref exists, so don't set
1508 * REF_ISBROKEN yet.
1509 */
1510 bad_name = 1;
1511 }
1512 for (;;) {
1513 const char *path;
1514 struct stat st;
1515 char *buf;
1516 int fd;
1517
1518 if (--depth < 0) {
1519 errno = ELOOP;
1520 return NULL;
1521 }
1522
1523 strbuf_reset(sb_path);
1524 strbuf_git_path(sb_path, "%s", refname);
1525 path = sb_path->buf;
1526
1527 /*
1528 * We might have to loop back here to avoid a race
1529 * condition: first we lstat() the file, then we try
1530 * to read it as a link or as a file. But if somebody
1531 * changes the type of the file (file <-> directory
1532 * <-> symlink) between the lstat() and reading, then
1533 * we don't want to report that as an error but rather
1534 * try again starting with the lstat().
1535 */
1536 stat_ref:
1537 if (lstat(path, &st) < 0) {
1538 if (errno != ENOENT)
1539 return NULL;
1540 if (resolve_missing_loose_ref(refname, resolve_flags,
1541 sha1, flags))
1542 return NULL;
1543 if (bad_name) {
1544 hashclr(sha1);
1545 if (flags)
1546 *flags |= REF_ISBROKEN;
1547 }
1548 return refname;
1549 }
1550
1551 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1552 if (S_ISLNK(st.st_mode)) {
1553 len = readlink(path, buffer, sizeof(buffer)-1);
1554 if (len < 0) {
1555 if (errno == ENOENT || errno == EINVAL)
1556 /* inconsistent with lstat; retry */
1557 goto stat_ref;
1558 else
1559 return NULL;
1560 }
1561 buffer[len] = 0;
1562 if (starts_with(buffer, "refs/") &&
1563 !check_refname_format(buffer, 0)) {
1564 strcpy(refname_buffer, buffer);
1565 refname = refname_buffer;
1566 if (flags)
1567 *flags |= REF_ISSYMREF;
1568 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1569 hashclr(sha1);
1570 return refname;
1571 }
1572 continue;
1573 }
1574 }
1575
1576 /* Is it a directory? */
1577 if (S_ISDIR(st.st_mode)) {
1578 errno = EISDIR;
1579 return NULL;
1580 }
1581
1582 /*
1583 * Anything else, just open it and try to use it as
1584 * a ref
1585 */
1586 fd = open(path, O_RDONLY);
1587 if (fd < 0) {
1588 if (errno == ENOENT)
1589 /* inconsistent with lstat; retry */
1590 goto stat_ref;
1591 else
1592 return NULL;
1593 }
1594 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1595 if (len < 0) {
1596 int save_errno = errno;
1597 close(fd);
1598 errno = save_errno;
1599 return NULL;
1600 }
1601 close(fd);
1602 while (len && isspace(buffer[len-1]))
1603 len--;
1604 buffer[len] = '\0';
1605
1606 /*
1607 * Is it a symbolic ref?
1608 */
1609 if (!starts_with(buffer, "ref:")) {
1610 /*
1611 * Please note that FETCH_HEAD has a second
1612 * line containing other data.
1613 */
1614 if (get_sha1_hex(buffer, sha1) ||
1615 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1616 if (flags)
1617 *flags |= REF_ISBROKEN;
1618 errno = EINVAL;
1619 return NULL;
1620 }
1621 if (bad_name) {
1622 hashclr(sha1);
1623 if (flags)
1624 *flags |= REF_ISBROKEN;
1625 }
1626 return refname;
1627 }
1628 if (flags)
1629 *flags |= REF_ISSYMREF;
1630 buf = buffer + 4;
1631 while (isspace(*buf))
1632 buf++;
1633 refname = strcpy(refname_buffer, buf);
1634 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1635 hashclr(sha1);
1636 return refname;
1637 }
1638 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1639 if (flags)
1640 *flags |= REF_ISBROKEN;
1641
1642 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1643 !refname_is_safe(buf)) {
1644 errno = EINVAL;
1645 return NULL;
1646 }
1647 bad_name = 1;
1648 }
1649 }
1650 }
1651
1652 const char *resolve_ref_unsafe(const char *refname, int resolve_flags,
1653 unsigned char *sha1, int *flags)
1654 {
1655 struct strbuf sb_path = STRBUF_INIT;
1656 const char *ret = resolve_ref_unsafe_1(refname, resolve_flags,
1657 sha1, flags, &sb_path);
1658 strbuf_release(&sb_path);
1659 return ret;
1660 }
1661
1662 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1663 {
1664 return xstrdup_or_null(resolve_ref_unsafe(ref, resolve_flags, sha1, flags));
1665 }
1666
1667 /* The argument to filter_refs */
1668 struct ref_filter {
1669 const char *pattern;
1670 each_ref_fn *fn;
1671 void *cb_data;
1672 };
1673
1674 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1675 {
1676 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1677 return 0;
1678 return -1;
1679 }
1680
1681 int read_ref(const char *refname, unsigned char *sha1)
1682 {
1683 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1684 }
1685
1686 int ref_exists(const char *refname)
1687 {
1688 unsigned char sha1[20];
1689 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1690 }
1691
1692 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1693 void *data)
1694 {
1695 struct ref_filter *filter = (struct ref_filter *)data;
1696 if (wildmatch(filter->pattern, refname, 0, NULL))
1697 return 0;
1698 return filter->fn(refname, sha1, flags, filter->cb_data);
1699 }
1700
1701 enum peel_status {
1702 /* object was peeled successfully: */
1703 PEEL_PEELED = 0,
1704
1705 /*
1706 * object cannot be peeled because the named object (or an
1707 * object referred to by a tag in the peel chain), does not
1708 * exist.
1709 */
1710 PEEL_INVALID = -1,
1711
1712 /* object cannot be peeled because it is not a tag: */
1713 PEEL_NON_TAG = -2,
1714
1715 /* ref_entry contains no peeled value because it is a symref: */
1716 PEEL_IS_SYMREF = -3,
1717
1718 /*
1719 * ref_entry cannot be peeled because it is broken (i.e., the
1720 * symbolic reference cannot even be resolved to an object
1721 * name):
1722 */
1723 PEEL_BROKEN = -4
1724 };
1725
1726 /*
1727 * Peel the named object; i.e., if the object is a tag, resolve the
1728 * tag recursively until a non-tag is found. If successful, store the
1729 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1730 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1731 * and leave sha1 unchanged.
1732 */
1733 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1734 {
1735 struct object *o = lookup_unknown_object(name);
1736
1737 if (o->type == OBJ_NONE) {
1738 int type = sha1_object_info(name, NULL);
1739 if (type < 0 || !object_as_type(o, type, 0))
1740 return PEEL_INVALID;
1741 }
1742
1743 if (o->type != OBJ_TAG)
1744 return PEEL_NON_TAG;
1745
1746 o = deref_tag_noverify(o);
1747 if (!o)
1748 return PEEL_INVALID;
1749
1750 hashcpy(sha1, o->sha1);
1751 return PEEL_PEELED;
1752 }
1753
1754 /*
1755 * Peel the entry (if possible) and return its new peel_status. If
1756 * repeel is true, re-peel the entry even if there is an old peeled
1757 * value that is already stored in it.
1758 *
1759 * It is OK to call this function with a packed reference entry that
1760 * might be stale and might even refer to an object that has since
1761 * been garbage-collected. In such a case, if the entry has
1762 * REF_KNOWS_PEELED then leave the status unchanged and return
1763 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1764 */
1765 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1766 {
1767 enum peel_status status;
1768
1769 if (entry->flag & REF_KNOWS_PEELED) {
1770 if (repeel) {
1771 entry->flag &= ~REF_KNOWS_PEELED;
1772 hashclr(entry->u.value.peeled);
1773 } else {
1774 return is_null_sha1(entry->u.value.peeled) ?
1775 PEEL_NON_TAG : PEEL_PEELED;
1776 }
1777 }
1778 if (entry->flag & REF_ISBROKEN)
1779 return PEEL_BROKEN;
1780 if (entry->flag & REF_ISSYMREF)
1781 return PEEL_IS_SYMREF;
1782
1783 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1784 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1785 entry->flag |= REF_KNOWS_PEELED;
1786 return status;
1787 }
1788
1789 int peel_ref(const char *refname, unsigned char *sha1)
1790 {
1791 int flag;
1792 unsigned char base[20];
1793
1794 if (current_ref && (current_ref->name == refname
1795 || !strcmp(current_ref->name, refname))) {
1796 if (peel_entry(current_ref, 0))
1797 return -1;
1798 hashcpy(sha1, current_ref->u.value.peeled);
1799 return 0;
1800 }
1801
1802 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1803 return -1;
1804
1805 /*
1806 * If the reference is packed, read its ref_entry from the
1807 * cache in the hope that we already know its peeled value.
1808 * We only try this optimization on packed references because
1809 * (a) forcing the filling of the loose reference cache could
1810 * be expensive and (b) loose references anyway usually do not
1811 * have REF_KNOWS_PEELED.
1812 */
1813 if (flag & REF_ISPACKED) {
1814 struct ref_entry *r = get_packed_ref(refname);
1815 if (r) {
1816 if (peel_entry(r, 0))
1817 return -1;
1818 hashcpy(sha1, r->u.value.peeled);
1819 return 0;
1820 }
1821 }
1822
1823 return peel_object(base, sha1);
1824 }
1825
1826 struct warn_if_dangling_data {
1827 FILE *fp;
1828 const char *refname;
1829 const struct string_list *refnames;
1830 const char *msg_fmt;
1831 };
1832
1833 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1834 int flags, void *cb_data)
1835 {
1836 struct warn_if_dangling_data *d = cb_data;
1837 const char *resolves_to;
1838 unsigned char junk[20];
1839
1840 if (!(flags & REF_ISSYMREF))
1841 return 0;
1842
1843 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1844 if (!resolves_to
1845 || (d->refname
1846 ? strcmp(resolves_to, d->refname)
1847 : !string_list_has_string(d->refnames, resolves_to))) {
1848 return 0;
1849 }
1850
1851 fprintf(d->fp, d->msg_fmt, refname);
1852 fputc('\n', d->fp);
1853 return 0;
1854 }
1855
1856 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1857 {
1858 struct warn_if_dangling_data data;
1859
1860 data.fp = fp;
1861 data.refname = refname;
1862 data.refnames = NULL;
1863 data.msg_fmt = msg_fmt;
1864 for_each_rawref(warn_if_dangling_symref, &data);
1865 }
1866
1867 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1868 {
1869 struct warn_if_dangling_data data;
1870
1871 data.fp = fp;
1872 data.refname = NULL;
1873 data.refnames = refnames;
1874 data.msg_fmt = msg_fmt;
1875 for_each_rawref(warn_if_dangling_symref, &data);
1876 }
1877
1878 /*
1879 * Call fn for each reference in the specified ref_cache, omitting
1880 * references not in the containing_dir of base. fn is called for all
1881 * references, including broken ones. If fn ever returns a non-zero
1882 * value, stop the iteration and return that value; otherwise, return
1883 * 0.
1884 */
1885 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1886 each_ref_entry_fn fn, void *cb_data)
1887 {
1888 struct packed_ref_cache *packed_ref_cache;
1889 struct ref_dir *loose_dir;
1890 struct ref_dir *packed_dir;
1891 int retval = 0;
1892
1893 /*
1894 * We must make sure that all loose refs are read before accessing the
1895 * packed-refs file; this avoids a race condition in which loose refs
1896 * are migrated to the packed-refs file by a simultaneous process, but
1897 * our in-memory view is from before the migration. get_packed_ref_cache()
1898 * takes care of making sure our view is up to date with what is on
1899 * disk.
1900 */
1901 loose_dir = get_loose_refs(refs);
1902 if (base && *base) {
1903 loose_dir = find_containing_dir(loose_dir, base, 0);
1904 }
1905 if (loose_dir)
1906 prime_ref_dir(loose_dir);
1907
1908 packed_ref_cache = get_packed_ref_cache(refs);
1909 acquire_packed_ref_cache(packed_ref_cache);
1910 packed_dir = get_packed_ref_dir(packed_ref_cache);
1911 if (base && *base) {
1912 packed_dir = find_containing_dir(packed_dir, base, 0);
1913 }
1914
1915 if (packed_dir && loose_dir) {
1916 sort_ref_dir(packed_dir);
1917 sort_ref_dir(loose_dir);
1918 retval = do_for_each_entry_in_dirs(
1919 packed_dir, loose_dir, fn, cb_data);
1920 } else if (packed_dir) {
1921 sort_ref_dir(packed_dir);
1922 retval = do_for_each_entry_in_dir(
1923 packed_dir, 0, fn, cb_data);
1924 } else if (loose_dir) {
1925 sort_ref_dir(loose_dir);
1926 retval = do_for_each_entry_in_dir(
1927 loose_dir, 0, fn, cb_data);
1928 }
1929
1930 release_packed_ref_cache(packed_ref_cache);
1931 return retval;
1932 }
1933
1934 /*
1935 * Call fn for each reference in the specified ref_cache for which the
1936 * refname begins with base. If trim is non-zero, then trim that many
1937 * characters off the beginning of each refname before passing the
1938 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1939 * broken references in the iteration. If fn ever returns a non-zero
1940 * value, stop the iteration and return that value; otherwise, return
1941 * 0.
1942 */
1943 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1944 each_ref_fn fn, int trim, int flags, void *cb_data)
1945 {
1946 struct ref_entry_cb data;
1947 data.base = base;
1948 data.trim = trim;
1949 data.flags = flags;
1950 data.fn = fn;
1951 data.cb_data = cb_data;
1952
1953 if (ref_paranoia < 0)
1954 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1955 if (ref_paranoia)
1956 data.flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1957
1958 return do_for_each_entry(refs, base, do_one_ref, &data);
1959 }
1960
1961 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1962 {
1963 unsigned char sha1[20];
1964 int flag;
1965
1966 if (submodule) {
1967 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1968 return fn("HEAD", sha1, 0, cb_data);
1969
1970 return 0;
1971 }
1972
1973 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
1974 return fn("HEAD", sha1, flag, cb_data);
1975
1976 return 0;
1977 }
1978
1979 int head_ref(each_ref_fn fn, void *cb_data)
1980 {
1981 return do_head_ref(NULL, fn, cb_data);
1982 }
1983
1984 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1985 {
1986 return do_head_ref(submodule, fn, cb_data);
1987 }
1988
1989 int for_each_ref(each_ref_fn fn, void *cb_data)
1990 {
1991 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1992 }
1993
1994 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1995 {
1996 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1997 }
1998
1999 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
2000 {
2001 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
2002 }
2003
2004 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
2005 each_ref_fn fn, void *cb_data)
2006 {
2007 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
2008 }
2009
2010 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
2011 {
2012 return for_each_ref_in("refs/tags/", fn, cb_data);
2013 }
2014
2015 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2016 {
2017 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
2018 }
2019
2020 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
2021 {
2022 return for_each_ref_in("refs/heads/", fn, cb_data);
2023 }
2024
2025 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2026 {
2027 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
2028 }
2029
2030 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
2031 {
2032 return for_each_ref_in("refs/remotes/", fn, cb_data);
2033 }
2034
2035 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2036 {
2037 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2038 }
2039
2040 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2041 {
2042 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2043 }
2044
2045 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2046 {
2047 struct strbuf buf = STRBUF_INIT;
2048 int ret = 0;
2049 unsigned char sha1[20];
2050 int flag;
2051
2052 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2053 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2054 ret = fn(buf.buf, sha1, flag, cb_data);
2055 strbuf_release(&buf);
2056
2057 return ret;
2058 }
2059
2060 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2061 {
2062 struct strbuf buf = STRBUF_INIT;
2063 int ret;
2064 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2065 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2066 strbuf_release(&buf);
2067 return ret;
2068 }
2069
2070 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2071 const char *prefix, void *cb_data)
2072 {
2073 struct strbuf real_pattern = STRBUF_INIT;
2074 struct ref_filter filter;
2075 int ret;
2076
2077 if (!prefix && !starts_with(pattern, "refs/"))
2078 strbuf_addstr(&real_pattern, "refs/");
2079 else if (prefix)
2080 strbuf_addstr(&real_pattern, prefix);
2081 strbuf_addstr(&real_pattern, pattern);
2082
2083 if (!has_glob_specials(pattern)) {
2084 /* Append implied '/' '*' if not present. */
2085 if (real_pattern.buf[real_pattern.len - 1] != '/')
2086 strbuf_addch(&real_pattern, '/');
2087 /* No need to check for '*', there is none. */
2088 strbuf_addch(&real_pattern, '*');
2089 }
2090
2091 filter.pattern = real_pattern.buf;
2092 filter.fn = fn;
2093 filter.cb_data = cb_data;
2094 ret = for_each_ref(filter_refs, &filter);
2095
2096 strbuf_release(&real_pattern);
2097 return ret;
2098 }
2099
2100 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2101 {
2102 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2103 }
2104
2105 int for_each_rawref(each_ref_fn fn, void *cb_data)
2106 {
2107 return do_for_each_ref(&ref_cache, "", fn, 0,
2108 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2109 }
2110
2111 const char *prettify_refname(const char *name)
2112 {
2113 return name + (
2114 starts_with(name, "refs/heads/") ? 11 :
2115 starts_with(name, "refs/tags/") ? 10 :
2116 starts_with(name, "refs/remotes/") ? 13 :
2117 0);
2118 }
2119
2120 static const char *ref_rev_parse_rules[] = {
2121 "%.*s",
2122 "refs/%.*s",
2123 "refs/tags/%.*s",
2124 "refs/heads/%.*s",
2125 "refs/remotes/%.*s",
2126 "refs/remotes/%.*s/HEAD",
2127 NULL
2128 };
2129
2130 int refname_match(const char *abbrev_name, const char *full_name)
2131 {
2132 const char **p;
2133 const int abbrev_name_len = strlen(abbrev_name);
2134
2135 for (p = ref_rev_parse_rules; *p; p++) {
2136 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2137 return 1;
2138 }
2139 }
2140
2141 return 0;
2142 }
2143
2144 static void unlock_ref(struct ref_lock *lock)
2145 {
2146 /* Do not free lock->lk -- atexit() still looks at them */
2147 if (lock->lk)
2148 rollback_lock_file(lock->lk);
2149 free(lock->ref_name);
2150 free(lock->orig_ref_name);
2151 free(lock);
2152 }
2153
2154 /* This function should make sure errno is meaningful on error */
2155 static struct ref_lock *verify_lock(struct ref_lock *lock,
2156 const unsigned char *old_sha1, int mustexist)
2157 {
2158 if (read_ref_full(lock->ref_name,
2159 mustexist ? RESOLVE_REF_READING : 0,
2160 lock->old_sha1, NULL)) {
2161 int save_errno = errno;
2162 error("Can't verify ref %s", lock->ref_name);
2163 unlock_ref(lock);
2164 errno = save_errno;
2165 return NULL;
2166 }
2167 if (hashcmp(lock->old_sha1, old_sha1)) {
2168 error("Ref %s is at %s but expected %s", lock->ref_name,
2169 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2170 unlock_ref(lock);
2171 errno = EBUSY;
2172 return NULL;
2173 }
2174 return lock;
2175 }
2176
2177 static int remove_empty_directories(const char *file)
2178 {
2179 /* we want to create a file but there is a directory there;
2180 * if that is an empty directory (or a directory that contains
2181 * only empty directories), remove them.
2182 */
2183 struct strbuf path;
2184 int result, save_errno;
2185
2186 strbuf_init(&path, 20);
2187 strbuf_addstr(&path, file);
2188
2189 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2190 save_errno = errno;
2191
2192 strbuf_release(&path);
2193 errno = save_errno;
2194
2195 return result;
2196 }
2197
2198 /*
2199 * *string and *len will only be substituted, and *string returned (for
2200 * later free()ing) if the string passed in is a magic short-hand form
2201 * to name a branch.
2202 */
2203 static char *substitute_branch_name(const char **string, int *len)
2204 {
2205 struct strbuf buf = STRBUF_INIT;
2206 int ret = interpret_branch_name(*string, *len, &buf);
2207
2208 if (ret == *len) {
2209 size_t size;
2210 *string = strbuf_detach(&buf, &size);
2211 *len = size;
2212 return (char *)*string;
2213 }
2214
2215 return NULL;
2216 }
2217
2218 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2219 {
2220 char *last_branch = substitute_branch_name(&str, &len);
2221 const char **p, *r;
2222 int refs_found = 0;
2223
2224 *ref = NULL;
2225 for (p = ref_rev_parse_rules; *p; p++) {
2226 char fullref[PATH_MAX];
2227 unsigned char sha1_from_ref[20];
2228 unsigned char *this_result;
2229 int flag;
2230
2231 this_result = refs_found ? sha1_from_ref : sha1;
2232 mksnpath(fullref, sizeof(fullref), *p, len, str);
2233 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2234 this_result, &flag);
2235 if (r) {
2236 if (!refs_found++)
2237 *ref = xstrdup(r);
2238 if (!warn_ambiguous_refs)
2239 break;
2240 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2241 warning("ignoring dangling symref %s.", fullref);
2242 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2243 warning("ignoring broken ref %s.", fullref);
2244 }
2245 }
2246 free(last_branch);
2247 return refs_found;
2248 }
2249
2250 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2251 {
2252 char *last_branch = substitute_branch_name(&str, &len);
2253 const char **p;
2254 int logs_found = 0;
2255
2256 *log = NULL;
2257 for (p = ref_rev_parse_rules; *p; p++) {
2258 unsigned char hash[20];
2259 char path[PATH_MAX];
2260 const char *ref, *it;
2261
2262 mksnpath(path, sizeof(path), *p, len, str);
2263 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2264 hash, NULL);
2265 if (!ref)
2266 continue;
2267 if (reflog_exists(path))
2268 it = path;
2269 else if (strcmp(ref, path) && reflog_exists(ref))
2270 it = ref;
2271 else
2272 continue;
2273 if (!logs_found++) {
2274 *log = xstrdup(it);
2275 hashcpy(sha1, hash);
2276 }
2277 if (!warn_ambiguous_refs)
2278 break;
2279 }
2280 free(last_branch);
2281 return logs_found;
2282 }
2283
2284 /*
2285 * Locks a ref returning the lock on success and NULL on failure.
2286 * On failure errno is set to something meaningful.
2287 */
2288 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2289 const unsigned char *old_sha1,
2290 const struct string_list *skip,
2291 unsigned int flags, int *type_p)
2292 {
2293 const char *ref_file;
2294 const char *orig_refname = refname;
2295 struct ref_lock *lock;
2296 int last_errno = 0;
2297 int type, lflags;
2298 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2299 int resolve_flags = 0;
2300 int attempts_remaining = 3;
2301
2302 lock = xcalloc(1, sizeof(struct ref_lock));
2303 lock->lock_fd = -1;
2304
2305 if (mustexist)
2306 resolve_flags |= RESOLVE_REF_READING;
2307 if (flags & REF_DELETING) {
2308 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2309 if (flags & REF_NODEREF)
2310 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2311 }
2312
2313 refname = resolve_ref_unsafe(refname, resolve_flags,
2314 lock->old_sha1, &type);
2315 if (!refname && errno == EISDIR) {
2316 /* we are trying to lock foo but we used to
2317 * have foo/bar which now does not exist;
2318 * it is normal for the empty directory 'foo'
2319 * to remain.
2320 */
2321 ref_file = git_path("%s", orig_refname);
2322 if (remove_empty_directories(ref_file)) {
2323 last_errno = errno;
2324 error("there are still refs under '%s'", orig_refname);
2325 goto error_return;
2326 }
2327 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2328 lock->old_sha1, &type);
2329 }
2330 if (type_p)
2331 *type_p = type;
2332 if (!refname) {
2333 last_errno = errno;
2334 error("unable to resolve reference %s: %s",
2335 orig_refname, strerror(errno));
2336 goto error_return;
2337 }
2338 /*
2339 * If the ref did not exist and we are creating it, make sure
2340 * there is no existing packed ref whose name begins with our
2341 * refname, nor a packed ref whose name is a proper prefix of
2342 * our refname.
2343 */
2344 if (is_null_sha1(lock->old_sha1) &&
2345 !is_refname_available(refname, skip, get_packed_refs(&ref_cache))) {
2346 last_errno = ENOTDIR;
2347 goto error_return;
2348 }
2349
2350 lock->lk = xcalloc(1, sizeof(struct lock_file));
2351
2352 lflags = 0;
2353 if (flags & REF_NODEREF) {
2354 refname = orig_refname;
2355 lflags |= LOCK_NO_DEREF;
2356 }
2357 lock->ref_name = xstrdup(refname);
2358 lock->orig_ref_name = xstrdup(orig_refname);
2359 ref_file = git_path("%s", refname);
2360
2361 retry:
2362 switch (safe_create_leading_directories_const(ref_file)) {
2363 case SCLD_OK:
2364 break; /* success */
2365 case SCLD_VANISHED:
2366 if (--attempts_remaining > 0)
2367 goto retry;
2368 /* fall through */
2369 default:
2370 last_errno = errno;
2371 error("unable to create directory for %s", ref_file);
2372 goto error_return;
2373 }
2374
2375 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2376 if (lock->lock_fd < 0) {
2377 last_errno = errno;
2378 if (errno == ENOENT && --attempts_remaining > 0)
2379 /*
2380 * Maybe somebody just deleted one of the
2381 * directories leading to ref_file. Try
2382 * again:
2383 */
2384 goto retry;
2385 else {
2386 struct strbuf err = STRBUF_INIT;
2387 unable_to_lock_message(ref_file, errno, &err);
2388 error("%s", err.buf);
2389 strbuf_release(&err);
2390 goto error_return;
2391 }
2392 }
2393 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2394
2395 error_return:
2396 unlock_ref(lock);
2397 errno = last_errno;
2398 return NULL;
2399 }
2400
2401 /*
2402 * Write an entry to the packed-refs file for the specified refname.
2403 * If peeled is non-NULL, write it as the entry's peeled value.
2404 */
2405 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2406 unsigned char *peeled)
2407 {
2408 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2409 if (peeled)
2410 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2411 }
2412
2413 /*
2414 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2415 */
2416 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2417 {
2418 enum peel_status peel_status = peel_entry(entry, 0);
2419
2420 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2421 error("internal error: %s is not a valid packed reference!",
2422 entry->name);
2423 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2424 peel_status == PEEL_PEELED ?
2425 entry->u.value.peeled : NULL);
2426 return 0;
2427 }
2428
2429 /* This should return a meaningful errno on failure */
2430 int lock_packed_refs(int flags)
2431 {
2432 struct packed_ref_cache *packed_ref_cache;
2433
2434 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2435 return -1;
2436 /*
2437 * Get the current packed-refs while holding the lock. If the
2438 * packed-refs file has been modified since we last read it,
2439 * this will automatically invalidate the cache and re-read
2440 * the packed-refs file.
2441 */
2442 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2443 packed_ref_cache->lock = &packlock;
2444 /* Increment the reference count to prevent it from being freed: */
2445 acquire_packed_ref_cache(packed_ref_cache);
2446 return 0;
2447 }
2448
2449 /*
2450 * Commit the packed refs changes.
2451 * On error we must make sure that errno contains a meaningful value.
2452 */
2453 int commit_packed_refs(void)
2454 {
2455 struct packed_ref_cache *packed_ref_cache =
2456 get_packed_ref_cache(&ref_cache);
2457 int error = 0;
2458 int save_errno = 0;
2459 FILE *out;
2460
2461 if (!packed_ref_cache->lock)
2462 die("internal error: packed-refs not locked");
2463
2464 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2465 if (!out)
2466 die_errno("unable to fdopen packed-refs descriptor");
2467
2468 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2469 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2470 0, write_packed_entry_fn, out);
2471
2472 if (commit_lock_file(packed_ref_cache->lock)) {
2473 save_errno = errno;
2474 error = -1;
2475 }
2476 packed_ref_cache->lock = NULL;
2477 release_packed_ref_cache(packed_ref_cache);
2478 errno = save_errno;
2479 return error;
2480 }
2481
2482 void rollback_packed_refs(void)
2483 {
2484 struct packed_ref_cache *packed_ref_cache =
2485 get_packed_ref_cache(&ref_cache);
2486
2487 if (!packed_ref_cache->lock)
2488 die("internal error: packed-refs not locked");
2489 rollback_lock_file(packed_ref_cache->lock);
2490 packed_ref_cache->lock = NULL;
2491 release_packed_ref_cache(packed_ref_cache);
2492 clear_packed_ref_cache(&ref_cache);
2493 }
2494
2495 struct ref_to_prune {
2496 struct ref_to_prune *next;
2497 unsigned char sha1[20];
2498 char name[FLEX_ARRAY];
2499 };
2500
2501 struct pack_refs_cb_data {
2502 unsigned int flags;
2503 struct ref_dir *packed_refs;
2504 struct ref_to_prune *ref_to_prune;
2505 };
2506
2507 /*
2508 * An each_ref_entry_fn that is run over loose references only. If
2509 * the loose reference can be packed, add an entry in the packed ref
2510 * cache. If the reference should be pruned, also add it to
2511 * ref_to_prune in the pack_refs_cb_data.
2512 */
2513 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2514 {
2515 struct pack_refs_cb_data *cb = cb_data;
2516 enum peel_status peel_status;
2517 struct ref_entry *packed_entry;
2518 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2519
2520 /* ALWAYS pack tags */
2521 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2522 return 0;
2523
2524 /* Do not pack symbolic or broken refs: */
2525 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2526 return 0;
2527
2528 /* Add a packed ref cache entry equivalent to the loose entry. */
2529 peel_status = peel_entry(entry, 1);
2530 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2531 die("internal error peeling reference %s (%s)",
2532 entry->name, sha1_to_hex(entry->u.value.sha1));
2533 packed_entry = find_ref(cb->packed_refs, entry->name);
2534 if (packed_entry) {
2535 /* Overwrite existing packed entry with info from loose entry */
2536 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2537 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2538 } else {
2539 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2540 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2541 add_ref(cb->packed_refs, packed_entry);
2542 }
2543 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2544
2545 /* Schedule the loose reference for pruning if requested. */
2546 if ((cb->flags & PACK_REFS_PRUNE)) {
2547 int namelen = strlen(entry->name) + 1;
2548 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2549 hashcpy(n->sha1, entry->u.value.sha1);
2550 strcpy(n->name, entry->name);
2551 n->next = cb->ref_to_prune;
2552 cb->ref_to_prune = n;
2553 }
2554 return 0;
2555 }
2556
2557 /*
2558 * Remove empty parents, but spare refs/ and immediate subdirs.
2559 * Note: munges *name.
2560 */
2561 static void try_remove_empty_parents(char *name)
2562 {
2563 char *p, *q;
2564 int i;
2565 p = name;
2566 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2567 while (*p && *p != '/')
2568 p++;
2569 /* tolerate duplicate slashes; see check_refname_format() */
2570 while (*p == '/')
2571 p++;
2572 }
2573 for (q = p; *q; q++)
2574 ;
2575 while (1) {
2576 while (q > p && *q != '/')
2577 q--;
2578 while (q > p && *(q-1) == '/')
2579 q--;
2580 if (q == p)
2581 break;
2582 *q = '\0';
2583 if (rmdir(git_path("%s", name)))
2584 break;
2585 }
2586 }
2587
2588 /* make sure nobody touched the ref, and unlink */
2589 static void prune_ref(struct ref_to_prune *r)
2590 {
2591 struct ref_transaction *transaction;
2592 struct strbuf err = STRBUF_INIT;
2593
2594 if (check_refname_format(r->name, 0))
2595 return;
2596
2597 transaction = ref_transaction_begin(&err);
2598 if (!transaction ||
2599 ref_transaction_delete(transaction, r->name, r->sha1,
2600 REF_ISPRUNING, NULL, &err) ||
2601 ref_transaction_commit(transaction, &err)) {
2602 ref_transaction_free(transaction);
2603 error("%s", err.buf);
2604 strbuf_release(&err);
2605 return;
2606 }
2607 ref_transaction_free(transaction);
2608 strbuf_release(&err);
2609 try_remove_empty_parents(r->name);
2610 }
2611
2612 static void prune_refs(struct ref_to_prune *r)
2613 {
2614 while (r) {
2615 prune_ref(r);
2616 r = r->next;
2617 }
2618 }
2619
2620 int pack_refs(unsigned int flags)
2621 {
2622 struct pack_refs_cb_data cbdata;
2623
2624 memset(&cbdata, 0, sizeof(cbdata));
2625 cbdata.flags = flags;
2626
2627 lock_packed_refs(LOCK_DIE_ON_ERROR);
2628 cbdata.packed_refs = get_packed_refs(&ref_cache);
2629
2630 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2631 pack_if_possible_fn, &cbdata);
2632
2633 if (commit_packed_refs())
2634 die_errno("unable to overwrite old ref-pack file");
2635
2636 prune_refs(cbdata.ref_to_prune);
2637 return 0;
2638 }
2639
2640 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2641 {
2642 struct ref_dir *packed;
2643 struct string_list_item *refname;
2644 int ret, needs_repacking = 0, removed = 0;
2645
2646 assert(err);
2647
2648 /* Look for a packed ref */
2649 for_each_string_list_item(refname, refnames) {
2650 if (get_packed_ref(refname->string)) {
2651 needs_repacking = 1;
2652 break;
2653 }
2654 }
2655
2656 /* Avoid locking if we have nothing to do */
2657 if (!needs_repacking)
2658 return 0; /* no refname exists in packed refs */
2659
2660 if (lock_packed_refs(0)) {
2661 unable_to_lock_message(git_path("packed-refs"), errno, err);
2662 return -1;
2663 }
2664 packed = get_packed_refs(&ref_cache);
2665
2666 /* Remove refnames from the cache */
2667 for_each_string_list_item(refname, refnames)
2668 if (remove_entry(packed, refname->string) != -1)
2669 removed = 1;
2670 if (!removed) {
2671 /*
2672 * All packed entries disappeared while we were
2673 * acquiring the lock.
2674 */
2675 rollback_packed_refs();
2676 return 0;
2677 }
2678
2679 /* Write what remains */
2680 ret = commit_packed_refs();
2681 if (ret)
2682 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2683 strerror(errno));
2684 return ret;
2685 }
2686
2687 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2688 {
2689 assert(err);
2690
2691 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2692 /*
2693 * loose. The loose file name is the same as the
2694 * lockfile name, minus ".lock":
2695 */
2696 char *loose_filename = get_locked_file_path(lock->lk);
2697 int res = unlink_or_msg(loose_filename, err);
2698 free(loose_filename);
2699 if (res)
2700 return 1;
2701 }
2702 return 0;
2703 }
2704
2705 int delete_ref(const char *refname, const unsigned char *sha1, unsigned int flags)
2706 {
2707 struct ref_transaction *transaction;
2708 struct strbuf err = STRBUF_INIT;
2709
2710 transaction = ref_transaction_begin(&err);
2711 if (!transaction ||
2712 ref_transaction_delete(transaction, refname,
2713 (sha1 && !is_null_sha1(sha1)) ? sha1 : NULL,
2714 flags, NULL, &err) ||
2715 ref_transaction_commit(transaction, &err)) {
2716 error("%s", err.buf);
2717 ref_transaction_free(transaction);
2718 strbuf_release(&err);
2719 return 1;
2720 }
2721 ref_transaction_free(transaction);
2722 strbuf_release(&err);
2723 return 0;
2724 }
2725
2726 /*
2727 * People using contrib's git-new-workdir have .git/logs/refs ->
2728 * /some/other/path/.git/logs/refs, and that may live on another device.
2729 *
2730 * IOW, to avoid cross device rename errors, the temporary renamed log must
2731 * live into logs/refs.
2732 */
2733 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2734
2735 static int rename_tmp_log(const char *newrefname)
2736 {
2737 int attempts_remaining = 4;
2738
2739 retry:
2740 switch (safe_create_leading_directories_const(git_path("logs/%s", newrefname))) {
2741 case SCLD_OK:
2742 break; /* success */
2743 case SCLD_VANISHED:
2744 if (--attempts_remaining > 0)
2745 goto retry;
2746 /* fall through */
2747 default:
2748 error("unable to create directory for %s", newrefname);
2749 return -1;
2750 }
2751
2752 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2753 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2754 /*
2755 * rename(a, b) when b is an existing
2756 * directory ought to result in ISDIR, but
2757 * Solaris 5.8 gives ENOTDIR. Sheesh.
2758 */
2759 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2760 error("Directory not empty: logs/%s", newrefname);
2761 return -1;
2762 }
2763 goto retry;
2764 } else if (errno == ENOENT && --attempts_remaining > 0) {
2765 /*
2766 * Maybe another process just deleted one of
2767 * the directories in the path to newrefname.
2768 * Try again from the beginning.
2769 */
2770 goto retry;
2771 } else {
2772 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2773 newrefname, strerror(errno));
2774 return -1;
2775 }
2776 }
2777 return 0;
2778 }
2779
2780 static int rename_ref_available(const char *oldname, const char *newname)
2781 {
2782 struct string_list skip = STRING_LIST_INIT_NODUP;
2783 int ret;
2784
2785 string_list_insert(&skip, oldname);
2786 ret = is_refname_available(newname, &skip, get_packed_refs(&ref_cache))
2787 && is_refname_available(newname, &skip, get_loose_refs(&ref_cache));
2788 string_list_clear(&skip, 0);
2789 return ret;
2790 }
2791
2792 static int write_ref_sha1(struct ref_lock *lock, const unsigned char *sha1,
2793 const char *logmsg);
2794
2795 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2796 {
2797 unsigned char sha1[20], orig_sha1[20];
2798 int flag = 0, logmoved = 0;
2799 struct ref_lock *lock;
2800 struct stat loginfo;
2801 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2802 const char *symref = NULL;
2803
2804 if (log && S_ISLNK(loginfo.st_mode))
2805 return error("reflog for %s is a symlink", oldrefname);
2806
2807 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2808 orig_sha1, &flag);
2809 if (flag & REF_ISSYMREF)
2810 return error("refname %s is a symbolic ref, renaming it is not supported",
2811 oldrefname);
2812 if (!symref)
2813 return error("refname %s not found", oldrefname);
2814
2815 if (!rename_ref_available(oldrefname, newrefname))
2816 return 1;
2817
2818 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2819 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2820 oldrefname, strerror(errno));
2821
2822 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2823 error("unable to delete old %s", oldrefname);
2824 goto rollback;
2825 }
2826
2827 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2828 delete_ref(newrefname, sha1, REF_NODEREF)) {
2829 if (errno==EISDIR) {
2830 if (remove_empty_directories(git_path("%s", newrefname))) {
2831 error("Directory not empty: %s", newrefname);
2832 goto rollback;
2833 }
2834 } else {
2835 error("unable to delete existing %s", newrefname);
2836 goto rollback;
2837 }
2838 }
2839
2840 if (log && rename_tmp_log(newrefname))
2841 goto rollback;
2842
2843 logmoved = log;
2844
2845 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, 0, NULL);
2846 if (!lock) {
2847 error("unable to lock %s for update", newrefname);
2848 goto rollback;
2849 }
2850 hashcpy(lock->old_sha1, orig_sha1);
2851 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2852 error("unable to write current sha1 into %s", newrefname);
2853 goto rollback;
2854 }
2855
2856 return 0;
2857
2858 rollback:
2859 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, 0, NULL);
2860 if (!lock) {
2861 error("unable to lock %s for rollback", oldrefname);
2862 goto rollbacklog;
2863 }
2864
2865 flag = log_all_ref_updates;
2866 log_all_ref_updates = 0;
2867 if (write_ref_sha1(lock, orig_sha1, NULL))
2868 error("unable to write current sha1 into %s", oldrefname);
2869 log_all_ref_updates = flag;
2870
2871 rollbacklog:
2872 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2873 error("unable to restore logfile %s from %s: %s",
2874 oldrefname, newrefname, strerror(errno));
2875 if (!logmoved && log &&
2876 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2877 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2878 oldrefname, strerror(errno));
2879
2880 return 1;
2881 }
2882
2883 static int close_ref(struct ref_lock *lock)
2884 {
2885 if (close_lock_file(lock->lk))
2886 return -1;
2887 lock->lock_fd = -1;
2888 return 0;
2889 }
2890
2891 static int commit_ref(struct ref_lock *lock)
2892 {
2893 if (commit_lock_file(lock->lk))
2894 return -1;
2895 lock->lock_fd = -1;
2896 return 0;
2897 }
2898
2899 /*
2900 * copy the reflog message msg to buf, which has been allocated sufficiently
2901 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2902 * because reflog file is one line per entry.
2903 */
2904 static int copy_msg(char *buf, const char *msg)
2905 {
2906 char *cp = buf;
2907 char c;
2908 int wasspace = 1;
2909
2910 *cp++ = '\t';
2911 while ((c = *msg++)) {
2912 if (wasspace && isspace(c))
2913 continue;
2914 wasspace = isspace(c);
2915 if (wasspace)
2916 c = ' ';
2917 *cp++ = c;
2918 }
2919 while (buf < cp && isspace(cp[-1]))
2920 cp--;
2921 *cp++ = '\n';
2922 return cp - buf;
2923 }
2924
2925 /* This function must set a meaningful errno on failure */
2926 int log_ref_setup(const char *refname, struct strbuf *sb_logfile)
2927 {
2928 int logfd, oflags = O_APPEND | O_WRONLY;
2929 char *logfile;
2930
2931 strbuf_git_path(sb_logfile, "logs/%s", refname);
2932 logfile = sb_logfile->buf;
2933 /* make sure the rest of the function can't change "logfile" */
2934 sb_logfile = NULL;
2935 if (log_all_ref_updates &&
2936 (starts_with(refname, "refs/heads/") ||
2937 starts_with(refname, "refs/remotes/") ||
2938 starts_with(refname, "refs/notes/") ||
2939 !strcmp(refname, "HEAD"))) {
2940 if (safe_create_leading_directories(logfile) < 0) {
2941 int save_errno = errno;
2942 error("unable to create directory for %s", logfile);
2943 errno = save_errno;
2944 return -1;
2945 }
2946 oflags |= O_CREAT;
2947 }
2948
2949 logfd = open(logfile, oflags, 0666);
2950 if (logfd < 0) {
2951 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2952 return 0;
2953
2954 if (errno == EISDIR) {
2955 if (remove_empty_directories(logfile)) {
2956 int save_errno = errno;
2957 error("There are still logs under '%s'",
2958 logfile);
2959 errno = save_errno;
2960 return -1;
2961 }
2962 logfd = open(logfile, oflags, 0666);
2963 }
2964
2965 if (logfd < 0) {
2966 int save_errno = errno;
2967 error("Unable to append to %s: %s", logfile,
2968 strerror(errno));
2969 errno = save_errno;
2970 return -1;
2971 }
2972 }
2973
2974 adjust_shared_perm(logfile);
2975 close(logfd);
2976 return 0;
2977 }
2978
2979 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2980 const unsigned char *new_sha1,
2981 const char *committer, const char *msg)
2982 {
2983 int msglen, written;
2984 unsigned maxlen, len;
2985 char *logrec;
2986
2987 msglen = msg ? strlen(msg) : 0;
2988 maxlen = strlen(committer) + msglen + 100;
2989 logrec = xmalloc(maxlen);
2990 len = sprintf(logrec, "%s %s %s\n",
2991 sha1_to_hex(old_sha1),
2992 sha1_to_hex(new_sha1),
2993 committer);
2994 if (msglen)
2995 len += copy_msg(logrec + len - 1, msg) - 1;
2996
2997 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2998 free(logrec);
2999 if (written != len)
3000 return -1;
3001
3002 return 0;
3003 }
3004
3005 static int log_ref_write_1(const char *refname, const unsigned char *old_sha1,
3006 const unsigned char *new_sha1, const char *msg,
3007 struct strbuf *sb_log_file)
3008 {
3009 int logfd, result, oflags = O_APPEND | O_WRONLY;
3010 char *log_file;
3011
3012 if (log_all_ref_updates < 0)
3013 log_all_ref_updates = !is_bare_repository();
3014
3015 result = log_ref_setup(refname, sb_log_file);
3016 if (result)
3017 return result;
3018 log_file = sb_log_file->buf;
3019 /* make sure the rest of the function can't change "log_file" */
3020 sb_log_file = NULL;
3021
3022 logfd = open(log_file, oflags);
3023 if (logfd < 0)
3024 return 0;
3025 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3026 git_committer_info(0), msg);
3027 if (result) {
3028 int save_errno = errno;
3029 close(logfd);
3030 error("Unable to append to %s", log_file);
3031 errno = save_errno;
3032 return -1;
3033 }
3034 if (close(logfd)) {
3035 int save_errno = errno;
3036 error("Unable to append to %s", log_file);
3037 errno = save_errno;
3038 return -1;
3039 }
3040 return 0;
3041 }
3042
3043 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
3044 const unsigned char *new_sha1, const char *msg)
3045 {
3046 struct strbuf sb = STRBUF_INIT;
3047 int ret = log_ref_write_1(refname, old_sha1, new_sha1, msg, &sb);
3048 strbuf_release(&sb);
3049 return ret;
3050 }
3051
3052 int is_branch(const char *refname)
3053 {
3054 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3055 }
3056
3057 /*
3058 * Write sha1 into the ref specified by the lock. Make sure that errno
3059 * is sane on error.
3060 */
3061 static int write_ref_sha1(struct ref_lock *lock,
3062 const unsigned char *sha1, const char *logmsg)
3063 {
3064 static char term = '\n';
3065 struct object *o;
3066
3067 o = parse_object(sha1);
3068 if (!o) {
3069 error("Trying to write ref %s with nonexistent object %s",
3070 lock->ref_name, sha1_to_hex(sha1));
3071 unlock_ref(lock);
3072 errno = EINVAL;
3073 return -1;
3074 }
3075 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3076 error("Trying to write non-commit object %s to branch %s",
3077 sha1_to_hex(sha1), lock->ref_name);
3078 unlock_ref(lock);
3079 errno = EINVAL;
3080 return -1;
3081 }
3082 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3083 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3084 close_ref(lock) < 0) {
3085 int save_errno = errno;
3086 error("Couldn't write %s", lock->lk->filename.buf);
3087 unlock_ref(lock);
3088 errno = save_errno;
3089 return -1;
3090 }
3091 clear_loose_ref_cache(&ref_cache);
3092 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3093 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3094 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3095 unlock_ref(lock);
3096 return -1;
3097 }
3098 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3099 /*
3100 * Special hack: If a branch is updated directly and HEAD
3101 * points to it (may happen on the remote side of a push
3102 * for example) then logically the HEAD reflog should be
3103 * updated too.
3104 * A generic solution implies reverse symref information,
3105 * but finding all symrefs pointing to the given branch
3106 * would be rather costly for this rare event (the direct
3107 * update of a branch) to be worth it. So let's cheat and
3108 * check with HEAD only which should cover 99% of all usage
3109 * scenarios (even 100% of the default ones).
3110 */
3111 unsigned char head_sha1[20];
3112 int head_flag;
3113 const char *head_ref;
3114 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3115 head_sha1, &head_flag);
3116 if (head_ref && (head_flag & REF_ISSYMREF) &&
3117 !strcmp(head_ref, lock->ref_name))
3118 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3119 }
3120 if (commit_ref(lock)) {
3121 error("Couldn't set %s", lock->ref_name);
3122 unlock_ref(lock);
3123 return -1;
3124 }
3125 unlock_ref(lock);
3126 return 0;
3127 }
3128
3129 int create_symref(const char *ref_target, const char *refs_heads_master,
3130 const char *logmsg)
3131 {
3132 const char *lockpath;
3133 char ref[1000];
3134 int fd, len, written;
3135 char *git_HEAD = git_pathdup("%s", ref_target);
3136 unsigned char old_sha1[20], new_sha1[20];
3137
3138 if (logmsg && read_ref(ref_target, old_sha1))
3139 hashclr(old_sha1);
3140
3141 if (safe_create_leading_directories(git_HEAD) < 0)
3142 return error("unable to create directory for %s", git_HEAD);
3143
3144 #ifndef NO_SYMLINK_HEAD
3145 if (prefer_symlink_refs) {
3146 unlink(git_HEAD);
3147 if (!symlink(refs_heads_master, git_HEAD))
3148 goto done;
3149 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3150 }
3151 #endif
3152
3153 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3154 if (sizeof(ref) <= len) {
3155 error("refname too long: %s", refs_heads_master);
3156 goto error_free_return;
3157 }
3158 lockpath = mkpath("%s.lock", git_HEAD);
3159 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3160 if (fd < 0) {
3161 error("Unable to open %s for writing", lockpath);
3162 goto error_free_return;
3163 }
3164 written = write_in_full(fd, ref, len);
3165 if (close(fd) != 0 || written != len) {
3166 error("Unable to write to %s", lockpath);
3167 goto error_unlink_return;
3168 }
3169 if (rename(lockpath, git_HEAD) < 0) {
3170 error("Unable to create %s", git_HEAD);
3171 goto error_unlink_return;
3172 }
3173 if (adjust_shared_perm(git_HEAD)) {
3174 error("Unable to fix permissions on %s", lockpath);
3175 error_unlink_return:
3176 unlink_or_warn(lockpath);
3177 error_free_return:
3178 free(git_HEAD);
3179 return -1;
3180 }
3181
3182 #ifndef NO_SYMLINK_HEAD
3183 done:
3184 #endif
3185 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3186 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3187
3188 free(git_HEAD);
3189 return 0;
3190 }
3191
3192 struct read_ref_at_cb {
3193 const char *refname;
3194 unsigned long at_time;
3195 int cnt;
3196 int reccnt;
3197 unsigned char *sha1;
3198 int found_it;
3199
3200 unsigned char osha1[20];
3201 unsigned char nsha1[20];
3202 int tz;
3203 unsigned long date;
3204 char **msg;
3205 unsigned long *cutoff_time;
3206 int *cutoff_tz;
3207 int *cutoff_cnt;
3208 };
3209
3210 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3211 const char *email, unsigned long timestamp, int tz,
3212 const char *message, void *cb_data)
3213 {
3214 struct read_ref_at_cb *cb = cb_data;
3215
3216 cb->reccnt++;
3217 cb->tz = tz;
3218 cb->date = timestamp;
3219
3220 if (timestamp <= cb->at_time || cb->cnt == 0) {
3221 if (cb->msg)
3222 *cb->msg = xstrdup(message);
3223 if (cb->cutoff_time)
3224 *cb->cutoff_time = timestamp;
3225 if (cb->cutoff_tz)
3226 *cb->cutoff_tz = tz;
3227 if (cb->cutoff_cnt)
3228 *cb->cutoff_cnt = cb->reccnt - 1;
3229 /*
3230 * we have not yet updated cb->[n|o]sha1 so they still
3231 * hold the values for the previous record.
3232 */
3233 if (!is_null_sha1(cb->osha1)) {
3234 hashcpy(cb->sha1, nsha1);
3235 if (hashcmp(cb->osha1, nsha1))
3236 warning("Log for ref %s has gap after %s.",
3237 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3238 }
3239 else if (cb->date == cb->at_time)
3240 hashcpy(cb->sha1, nsha1);
3241 else if (hashcmp(nsha1, cb->sha1))
3242 warning("Log for ref %s unexpectedly ended on %s.",
3243 cb->refname, show_date(cb->date, cb->tz,
3244 DATE_RFC2822));
3245 hashcpy(cb->osha1, osha1);
3246 hashcpy(cb->nsha1, nsha1);
3247 cb->found_it = 1;
3248 return 1;
3249 }
3250 hashcpy(cb->osha1, osha1);
3251 hashcpy(cb->nsha1, nsha1);
3252 if (cb->cnt > 0)
3253 cb->cnt--;
3254 return 0;
3255 }
3256
3257 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3258 const char *email, unsigned long timestamp,
3259 int tz, const char *message, void *cb_data)
3260 {
3261 struct read_ref_at_cb *cb = cb_data;
3262
3263 if (cb->msg)
3264 *cb->msg = xstrdup(message);
3265 if (cb->cutoff_time)
3266 *cb->cutoff_time = timestamp;
3267 if (cb->cutoff_tz)
3268 *cb->cutoff_tz = tz;
3269 if (cb->cutoff_cnt)
3270 *cb->cutoff_cnt = cb->reccnt;
3271 hashcpy(cb->sha1, osha1);
3272 if (is_null_sha1(cb->sha1))
3273 hashcpy(cb->sha1, nsha1);
3274 /* We just want the first entry */
3275 return 1;
3276 }
3277
3278 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3279 unsigned char *sha1, char **msg,
3280 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3281 {
3282 struct read_ref_at_cb cb;
3283
3284 memset(&cb, 0, sizeof(cb));
3285 cb.refname = refname;
3286 cb.at_time = at_time;
3287 cb.cnt = cnt;
3288 cb.msg = msg;
3289 cb.cutoff_time = cutoff_time;
3290 cb.cutoff_tz = cutoff_tz;
3291 cb.cutoff_cnt = cutoff_cnt;
3292 cb.sha1 = sha1;
3293
3294 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3295
3296 if (!cb.reccnt) {
3297 if (flags & GET_SHA1_QUIETLY)
3298 exit(128);
3299 else
3300 die("Log for %s is empty.", refname);
3301 }
3302 if (cb.found_it)
3303 return 0;
3304
3305 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3306
3307 return 1;
3308 }
3309
3310 int reflog_exists(const char *refname)
3311 {
3312 struct stat st;
3313
3314 return !lstat(git_path("logs/%s", refname), &st) &&
3315 S_ISREG(st.st_mode);
3316 }
3317
3318 int delete_reflog(const char *refname)
3319 {
3320 return remove_path(git_path("logs/%s", refname));
3321 }
3322
3323 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3324 {
3325 unsigned char osha1[20], nsha1[20];
3326 char *email_end, *message;
3327 unsigned long timestamp;
3328 int tz;
3329
3330 /* old SP new SP name <email> SP time TAB msg LF */
3331 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3332 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3333 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3334 !(email_end = strchr(sb->buf + 82, '>')) ||
3335 email_end[1] != ' ' ||
3336 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3337 !message || message[0] != ' ' ||
3338 (message[1] != '+' && message[1] != '-') ||
3339 !isdigit(message[2]) || !isdigit(message[3]) ||
3340 !isdigit(message[4]) || !isdigit(message[5]))
3341 return 0; /* corrupt? */
3342 email_end[1] = '\0';
3343 tz = strtol(message + 1, NULL, 10);
3344 if (message[6] != '\t')
3345 message += 6;
3346 else
3347 message += 7;
3348 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3349 }
3350
3351 static char *find_beginning_of_line(char *bob, char *scan)
3352 {
3353 while (bob < scan && *(--scan) != '\n')
3354 ; /* keep scanning backwards */
3355 /*
3356 * Return either beginning of the buffer, or LF at the end of
3357 * the previous line.
3358 */
3359 return scan;
3360 }
3361
3362 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3363 {
3364 struct strbuf sb = STRBUF_INIT;
3365 FILE *logfp;
3366 long pos;
3367 int ret = 0, at_tail = 1;
3368
3369 logfp = fopen(git_path("logs/%s", refname), "r");
3370 if (!logfp)
3371 return -1;
3372
3373 /* Jump to the end */
3374 if (fseek(logfp, 0, SEEK_END) < 0)
3375 return error("cannot seek back reflog for %s: %s",
3376 refname, strerror(errno));
3377 pos = ftell(logfp);
3378 while (!ret && 0 < pos) {
3379 int cnt;
3380 size_t nread;
3381 char buf[BUFSIZ];
3382 char *endp, *scanp;
3383
3384 /* Fill next block from the end */
3385 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3386 if (fseek(logfp, pos - cnt, SEEK_SET))
3387 return error("cannot seek back reflog for %s: %s",
3388 refname, strerror(errno));
3389 nread = fread(buf, cnt, 1, logfp);
3390 if (nread != 1)
3391 return error("cannot read %d bytes from reflog for %s: %s",
3392 cnt, refname, strerror(errno));
3393 pos -= cnt;
3394
3395 scanp = endp = buf + cnt;
3396 if (at_tail && scanp[-1] == '\n')
3397 /* Looking at the final LF at the end of the file */
3398 scanp--;
3399 at_tail = 0;
3400
3401 while (buf < scanp) {
3402 /*
3403 * terminating LF of the previous line, or the beginning
3404 * of the buffer.
3405 */
3406 char *bp;
3407
3408 bp = find_beginning_of_line(buf, scanp);
3409
3410 if (*bp == '\n') {
3411 /*
3412 * The newline is the end of the previous line,
3413 * so we know we have complete line starting
3414 * at (bp + 1). Prefix it onto any prior data
3415 * we collected for the line and process it.
3416 */
3417 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3418 scanp = bp;
3419 endp = bp + 1;
3420 ret = show_one_reflog_ent(&sb, fn, cb_data);
3421 strbuf_reset(&sb);
3422 if (ret)
3423 break;
3424 } else if (!pos) {
3425 /*
3426 * We are at the start of the buffer, and the
3427 * start of the file; there is no previous
3428 * line, and we have everything for this one.
3429 * Process it, and we can end the loop.
3430 */
3431 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3432 ret = show_one_reflog_ent(&sb, fn, cb_data);
3433 strbuf_reset(&sb);
3434 break;
3435 }
3436
3437 if (bp == buf) {
3438 /*
3439 * We are at the start of the buffer, and there
3440 * is more file to read backwards. Which means
3441 * we are in the middle of a line. Note that we
3442 * may get here even if *bp was a newline; that
3443 * just means we are at the exact end of the
3444 * previous line, rather than some spot in the
3445 * middle.
3446 *
3447 * Save away what we have to be combined with
3448 * the data from the next read.
3449 */
3450 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3451 break;
3452 }
3453 }
3454
3455 }
3456 if (!ret && sb.len)
3457 die("BUG: reverse reflog parser had leftover data");
3458
3459 fclose(logfp);
3460 strbuf_release(&sb);
3461 return ret;
3462 }
3463
3464 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3465 {
3466 FILE *logfp;
3467 struct strbuf sb = STRBUF_INIT;
3468 int ret = 0;
3469
3470 logfp = fopen(git_path("logs/%s", refname), "r");
3471 if (!logfp)
3472 return -1;
3473
3474 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3475 ret = show_one_reflog_ent(&sb, fn, cb_data);
3476 fclose(logfp);
3477 strbuf_release(&sb);
3478 return ret;
3479 }
3480 /*
3481 * Call fn for each reflog in the namespace indicated by name. name
3482 * must be empty or end with '/'. Name will be used as a scratch
3483 * space, but its contents will be restored before return.
3484 */
3485 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3486 {
3487 DIR *d = opendir(git_path("logs/%s", name->buf));
3488 int retval = 0;
3489 struct dirent *de;
3490 int oldlen = name->len;
3491
3492 if (!d)
3493 return name->len ? errno : 0;
3494
3495 while ((de = readdir(d)) != NULL) {
3496 struct stat st;
3497
3498 if (de->d_name[0] == '.')
3499 continue;
3500 if (ends_with(de->d_name, ".lock"))
3501 continue;
3502 strbuf_addstr(name, de->d_name);
3503 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3504 ; /* silently ignore */
3505 } else {
3506 if (S_ISDIR(st.st_mode)) {
3507 strbuf_addch(name, '/');
3508 retval = do_for_each_reflog(name, fn, cb_data);
3509 } else {
3510 unsigned char sha1[20];
3511 if (read_ref_full(name->buf, 0, sha1, NULL))
3512 retval = error("bad ref for %s", name->buf);
3513 else
3514 retval = fn(name->buf, sha1, 0, cb_data);
3515 }
3516 if (retval)
3517 break;
3518 }
3519 strbuf_setlen(name, oldlen);
3520 }
3521 closedir(d);
3522 return retval;
3523 }
3524
3525 int for_each_reflog(each_ref_fn fn, void *cb_data)
3526 {
3527 int retval;
3528 struct strbuf name;
3529 strbuf_init(&name, PATH_MAX);
3530 retval = do_for_each_reflog(&name, fn, cb_data);
3531 strbuf_release(&name);
3532 return retval;
3533 }
3534
3535 /**
3536 * Information needed for a single ref update. Set new_sha1 to the new
3537 * value or to null_sha1 to delete the ref. To check the old value
3538 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
3539 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
3540 * not exist before update.
3541 */
3542 struct ref_update {
3543 /*
3544 * If (flags & REF_HAVE_NEW), set the reference to this value:
3545 */
3546 unsigned char new_sha1[20];
3547 /*
3548 * If (flags & REF_HAVE_OLD), check that the reference
3549 * previously had this value:
3550 */
3551 unsigned char old_sha1[20];
3552 /*
3553 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
3554 * REF_DELETING, and REF_ISPRUNING:
3555 */
3556 unsigned int flags;
3557 struct ref_lock *lock;
3558 int type;
3559 char *msg;
3560 const char refname[FLEX_ARRAY];
3561 };
3562
3563 /*
3564 * Transaction states.
3565 * OPEN: The transaction is in a valid state and can accept new updates.
3566 * An OPEN transaction can be committed.
3567 * CLOSED: A closed transaction is no longer active and no other operations
3568 * than free can be used on it in this state.
3569 * A transaction can either become closed by successfully committing
3570 * an active transaction or if there is a failure while building
3571 * the transaction thus rendering it failed/inactive.
3572 */
3573 enum ref_transaction_state {
3574 REF_TRANSACTION_OPEN = 0,
3575 REF_TRANSACTION_CLOSED = 1
3576 };
3577
3578 /*
3579 * Data structure for holding a reference transaction, which can
3580 * consist of checks and updates to multiple references, carried out
3581 * as atomically as possible. This structure is opaque to callers.
3582 */
3583 struct ref_transaction {
3584 struct ref_update **updates;
3585 size_t alloc;
3586 size_t nr;
3587 enum ref_transaction_state state;
3588 };
3589
3590 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3591 {
3592 assert(err);
3593
3594 return xcalloc(1, sizeof(struct ref_transaction));
3595 }
3596
3597 void ref_transaction_free(struct ref_transaction *transaction)
3598 {
3599 int i;
3600
3601 if (!transaction)
3602 return;
3603
3604 for (i = 0; i < transaction->nr; i++) {
3605 free(transaction->updates[i]->msg);
3606 free(transaction->updates[i]);
3607 }
3608 free(transaction->updates);
3609 free(transaction);
3610 }
3611
3612 static struct ref_update *add_update(struct ref_transaction *transaction,
3613 const char *refname)
3614 {
3615 size_t len = strlen(refname);
3616 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3617
3618 strcpy((char *)update->refname, refname);
3619 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3620 transaction->updates[transaction->nr++] = update;
3621 return update;
3622 }
3623
3624 int ref_transaction_update(struct ref_transaction *transaction,
3625 const char *refname,
3626 const unsigned char *new_sha1,
3627 const unsigned char *old_sha1,
3628 unsigned int flags, const char *msg,
3629 struct strbuf *err)
3630 {
3631 struct ref_update *update;
3632
3633 assert(err);
3634
3635 if (transaction->state != REF_TRANSACTION_OPEN)
3636 die("BUG: update called for transaction that is not open");
3637
3638 if (new_sha1 && !is_null_sha1(new_sha1) &&
3639 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3640 strbuf_addf(err, "refusing to update ref with bad name %s",
3641 refname);
3642 return -1;
3643 }
3644
3645 update = add_update(transaction, refname);
3646 if (new_sha1) {
3647 hashcpy(update->new_sha1, new_sha1);
3648 flags |= REF_HAVE_NEW;
3649 }
3650 if (old_sha1) {
3651 hashcpy(update->old_sha1, old_sha1);
3652 flags |= REF_HAVE_OLD;
3653 }
3654 update->flags = flags;
3655 if (msg)
3656 update->msg = xstrdup(msg);
3657 return 0;
3658 }
3659
3660 int ref_transaction_create(struct ref_transaction *transaction,
3661 const char *refname,
3662 const unsigned char *new_sha1,
3663 unsigned int flags, const char *msg,
3664 struct strbuf *err)
3665 {
3666 if (!new_sha1 || is_null_sha1(new_sha1))
3667 die("BUG: create called without valid new_sha1");
3668 return ref_transaction_update(transaction, refname, new_sha1,
3669 null_sha1, flags, msg, err);
3670 }
3671
3672 int ref_transaction_delete(struct ref_transaction *transaction,
3673 const char *refname,
3674 const unsigned char *old_sha1,
3675 unsigned int flags, const char *msg,
3676 struct strbuf *err)
3677 {
3678 if (old_sha1 && is_null_sha1(old_sha1))
3679 die("BUG: delete called with old_sha1 set to zeros");
3680 return ref_transaction_update(transaction, refname,
3681 null_sha1, old_sha1,
3682 flags, msg, err);
3683 }
3684
3685 int ref_transaction_verify(struct ref_transaction *transaction,
3686 const char *refname,
3687 const unsigned char *old_sha1,
3688 unsigned int flags,
3689 struct strbuf *err)
3690 {
3691 if (!old_sha1)
3692 die("BUG: verify called with old_sha1 set to NULL");
3693 return ref_transaction_update(transaction, refname,
3694 NULL, old_sha1,
3695 flags, NULL, err);
3696 }
3697
3698 int update_ref(const char *msg, const char *refname,
3699 const unsigned char *new_sha1, const unsigned char *old_sha1,
3700 unsigned int flags, enum action_on_err onerr)
3701 {
3702 struct ref_transaction *t;
3703 struct strbuf err = STRBUF_INIT;
3704
3705 t = ref_transaction_begin(&err);
3706 if (!t ||
3707 ref_transaction_update(t, refname, new_sha1, old_sha1,
3708 flags, msg, &err) ||
3709 ref_transaction_commit(t, &err)) {
3710 const char *str = "update_ref failed for ref '%s': %s";
3711
3712 ref_transaction_free(t);
3713 switch (onerr) {
3714 case UPDATE_REFS_MSG_ON_ERR:
3715 error(str, refname, err.buf);
3716 break;
3717 case UPDATE_REFS_DIE_ON_ERR:
3718 die(str, refname, err.buf);
3719 break;
3720 case UPDATE_REFS_QUIET_ON_ERR:
3721 break;
3722 }
3723 strbuf_release(&err);
3724 return 1;
3725 }
3726 strbuf_release(&err);
3727 ref_transaction_free(t);
3728 return 0;
3729 }
3730
3731 static int ref_update_compare(const void *r1, const void *r2)
3732 {
3733 const struct ref_update * const *u1 = r1;
3734 const struct ref_update * const *u2 = r2;
3735 return strcmp((*u1)->refname, (*u2)->refname);
3736 }
3737
3738 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3739 struct strbuf *err)
3740 {
3741 int i;
3742
3743 assert(err);
3744
3745 for (i = 1; i < n; i++)
3746 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3747 strbuf_addf(err,
3748 "Multiple updates for ref '%s' not allowed.",
3749 updates[i]->refname);
3750 return 1;
3751 }
3752 return 0;
3753 }
3754
3755 int ref_transaction_commit(struct ref_transaction *transaction,
3756 struct strbuf *err)
3757 {
3758 int ret = 0, i;
3759 int n = transaction->nr;
3760 struct ref_update **updates = transaction->updates;
3761 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3762 struct string_list_item *ref_to_delete;
3763
3764 assert(err);
3765
3766 if (transaction->state != REF_TRANSACTION_OPEN)
3767 die("BUG: commit called for transaction that is not open");
3768
3769 if (!n) {
3770 transaction->state = REF_TRANSACTION_CLOSED;
3771 return 0;
3772 }
3773
3774 /* Copy, sort, and reject duplicate refs */
3775 qsort(updates, n, sizeof(*updates), ref_update_compare);
3776 if (ref_update_reject_duplicates(updates, n, err)) {
3777 ret = TRANSACTION_GENERIC_ERROR;
3778 goto cleanup;
3779 }
3780
3781 /* Acquire all locks while verifying old values */
3782 for (i = 0; i < n; i++) {
3783 struct ref_update *update = updates[i];
3784 unsigned int flags = update->flags;
3785
3786 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3787 flags |= REF_DELETING;
3788 update->lock = lock_ref_sha1_basic(
3789 update->refname,
3790 ((update->flags & REF_HAVE_OLD) ?
3791 update->old_sha1 : NULL),
3792 NULL,
3793 flags,
3794 &update->type);
3795 if (!update->lock) {
3796 ret = (errno == ENOTDIR)
3797 ? TRANSACTION_NAME_CONFLICT
3798 : TRANSACTION_GENERIC_ERROR;
3799 strbuf_addf(err, "Cannot lock the ref '%s'.",
3800 update->refname);
3801 goto cleanup;
3802 }
3803 }
3804
3805 /* Perform updates first so live commits remain referenced */
3806 for (i = 0; i < n; i++) {
3807 struct ref_update *update = updates[i];
3808 int flags = update->flags;
3809
3810 if ((flags & REF_HAVE_NEW) && !is_null_sha1(update->new_sha1)) {
3811 int overwriting_symref = ((update->type & REF_ISSYMREF) &&
3812 (update->flags & REF_NODEREF));
3813
3814 if (!overwriting_symref
3815 && !hashcmp(update->lock->old_sha1, update->new_sha1)) {
3816 /*
3817 * The reference already has the desired
3818 * value, so we don't need to write it.
3819 */
3820 unlock_ref(update->lock);
3821 update->lock = NULL;
3822 } else if (write_ref_sha1(update->lock, update->new_sha1,
3823 update->msg)) {
3824 update->lock = NULL; /* freed by write_ref_sha1 */
3825 strbuf_addf(err, "Cannot update the ref '%s'.",
3826 update->refname);
3827 ret = TRANSACTION_GENERIC_ERROR;
3828 goto cleanup;
3829 } else {
3830 /* freed by write_ref_sha1(): */
3831 update->lock = NULL;
3832 }
3833 }
3834 }
3835
3836 /* Perform deletes now that updates are safely completed */
3837 for (i = 0; i < n; i++) {
3838 struct ref_update *update = updates[i];
3839 int flags = update->flags;
3840
3841 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1)) {
3842 if (delete_ref_loose(update->lock, update->type, err)) {
3843 ret = TRANSACTION_GENERIC_ERROR;
3844 goto cleanup;
3845 }
3846
3847 if (!(flags & REF_ISPRUNING))
3848 string_list_append(&refs_to_delete,
3849 update->lock->ref_name);
3850 }
3851 }
3852
3853 if (repack_without_refs(&refs_to_delete, err)) {
3854 ret = TRANSACTION_GENERIC_ERROR;
3855 goto cleanup;
3856 }
3857 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3858 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3859 clear_loose_ref_cache(&ref_cache);
3860
3861 cleanup:
3862 transaction->state = REF_TRANSACTION_CLOSED;
3863
3864 for (i = 0; i < n; i++)
3865 if (updates[i]->lock)
3866 unlock_ref(updates[i]->lock);
3867 string_list_clear(&refs_to_delete, 0);
3868 return ret;
3869 }
3870
3871 char *shorten_unambiguous_ref(const char *refname, int strict)
3872 {
3873 int i;
3874 static char **scanf_fmts;
3875 static int nr_rules;
3876 char *short_name;
3877
3878 if (!nr_rules) {
3879 /*
3880 * Pre-generate scanf formats from ref_rev_parse_rules[].
3881 * Generate a format suitable for scanf from a
3882 * ref_rev_parse_rules rule by interpolating "%s" at the
3883 * location of the "%.*s".
3884 */
3885 size_t total_len = 0;
3886 size_t offset = 0;
3887
3888 /* the rule list is NULL terminated, count them first */
3889 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3890 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3891 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3892
3893 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3894
3895 offset = 0;
3896 for (i = 0; i < nr_rules; i++) {
3897 assert(offset < total_len);
3898 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3899 offset += snprintf(scanf_fmts[i], total_len - offset,
3900 ref_rev_parse_rules[i], 2, "%s") + 1;
3901 }
3902 }
3903
3904 /* bail out if there are no rules */
3905 if (!nr_rules)
3906 return xstrdup(refname);
3907
3908 /* buffer for scanf result, at most refname must fit */
3909 short_name = xstrdup(refname);
3910
3911 /* skip first rule, it will always match */
3912 for (i = nr_rules - 1; i > 0 ; --i) {
3913 int j;
3914 int rules_to_fail = i;
3915 int short_name_len;
3916
3917 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3918 continue;
3919
3920 short_name_len = strlen(short_name);
3921
3922 /*
3923 * in strict mode, all (except the matched one) rules
3924 * must fail to resolve to a valid non-ambiguous ref
3925 */
3926 if (strict)
3927 rules_to_fail = nr_rules;
3928
3929 /*
3930 * check if the short name resolves to a valid ref,
3931 * but use only rules prior to the matched one
3932 */
3933 for (j = 0; j < rules_to_fail; j++) {
3934 const char *rule = ref_rev_parse_rules[j];
3935 char refname[PATH_MAX];
3936
3937 /* skip matched rule */
3938 if (i == j)
3939 continue;
3940
3941 /*
3942 * the short name is ambiguous, if it resolves
3943 * (with this previous rule) to a valid ref
3944 * read_ref() returns 0 on success
3945 */
3946 mksnpath(refname, sizeof(refname),
3947 rule, short_name_len, short_name);
3948 if (ref_exists(refname))
3949 break;
3950 }
3951
3952 /*
3953 * short name is non-ambiguous if all previous rules
3954 * haven't resolved to a valid ref
3955 */
3956 if (j == rules_to_fail)
3957 return short_name;
3958 }
3959
3960 free(short_name);
3961 return xstrdup(refname);
3962 }
3963
3964 static struct string_list *hide_refs;
3965
3966 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3967 {
3968 if (!strcmp("transfer.hiderefs", var) ||
3969 /* NEEDSWORK: use parse_config_key() once both are merged */
3970 (starts_with(var, section) && var[strlen(section)] == '.' &&
3971 !strcmp(var + strlen(section), ".hiderefs"))) {
3972 char *ref;
3973 int len;
3974
3975 if (!value)
3976 return config_error_nonbool(var);
3977 ref = xstrdup(value);
3978 len = strlen(ref);
3979 while (len && ref[len - 1] == '/')
3980 ref[--len] = '\0';
3981 if (!hide_refs) {
3982 hide_refs = xcalloc(1, sizeof(*hide_refs));
3983 hide_refs->strdup_strings = 1;
3984 }
3985 string_list_append(hide_refs, ref);
3986 }
3987 return 0;
3988 }
3989
3990 int ref_is_hidden(const char *refname)
3991 {
3992 struct string_list_item *item;
3993
3994 if (!hide_refs)
3995 return 0;
3996 for_each_string_list_item(item, hide_refs) {
3997 int len;
3998 if (!starts_with(refname, item->string))
3999 continue;
4000 len = strlen(item->string);
4001 if (!refname[len] || refname[len] == '/')
4002 return 1;
4003 }
4004 return 0;
4005 }
4006
4007 struct expire_reflog_cb {
4008 unsigned int flags;
4009 reflog_expiry_should_prune_fn *should_prune_fn;
4010 void *policy_cb;
4011 FILE *newlog;
4012 unsigned char last_kept_sha1[20];
4013 };
4014
4015 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
4016 const char *email, unsigned long timestamp, int tz,
4017 const char *message, void *cb_data)
4018 {
4019 struct expire_reflog_cb *cb = cb_data;
4020 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4021
4022 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4023 osha1 = cb->last_kept_sha1;
4024
4025 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
4026 message, policy_cb)) {
4027 if (!cb->newlog)
4028 printf("would prune %s", message);
4029 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4030 printf("prune %s", message);
4031 } else {
4032 if (cb->newlog) {
4033 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4034 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4035 email, timestamp, tz, message);
4036 hashcpy(cb->last_kept_sha1, nsha1);
4037 }
4038 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4039 printf("keep %s", message);
4040 }
4041 return 0;
4042 }
4043
4044 int reflog_expire(const char *refname, const unsigned char *sha1,
4045 unsigned int flags,
4046 reflog_expiry_prepare_fn prepare_fn,
4047 reflog_expiry_should_prune_fn should_prune_fn,
4048 reflog_expiry_cleanup_fn cleanup_fn,
4049 void *policy_cb_data)
4050 {
4051 static struct lock_file reflog_lock;
4052 struct expire_reflog_cb cb;
4053 struct ref_lock *lock;
4054 char *log_file;
4055 int status = 0;
4056 int type;
4057
4058 memset(&cb, 0, sizeof(cb));
4059 cb.flags = flags;
4060 cb.policy_cb = policy_cb_data;
4061 cb.should_prune_fn = should_prune_fn;
4062
4063 /*
4064 * The reflog file is locked by holding the lock on the
4065 * reference itself, plus we might need to update the
4066 * reference if --updateref was specified:
4067 */
4068 lock = lock_ref_sha1_basic(refname, sha1, NULL, 0, &type);
4069 if (!lock)
4070 return error("cannot lock ref '%s'", refname);
4071 if (!reflog_exists(refname)) {
4072 unlock_ref(lock);
4073 return 0;
4074 }
4075
4076 log_file = git_pathdup("logs/%s", refname);
4077 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4078 /*
4079 * Even though holding $GIT_DIR/logs/$reflog.lock has
4080 * no locking implications, we use the lock_file
4081 * machinery here anyway because it does a lot of the
4082 * work we need, including cleaning up if the program
4083 * exits unexpectedly.
4084 */
4085 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4086 struct strbuf err = STRBUF_INIT;
4087 unable_to_lock_message(log_file, errno, &err);
4088 error("%s", err.buf);
4089 strbuf_release(&err);
4090 goto failure;
4091 }
4092 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4093 if (!cb.newlog) {
4094 error("cannot fdopen %s (%s)",
4095 reflog_lock.filename.buf, strerror(errno));
4096 goto failure;
4097 }
4098 }
4099
4100 (*prepare_fn)(refname, sha1, cb.policy_cb);
4101 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4102 (*cleanup_fn)(cb.policy_cb);
4103
4104 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4105 /*
4106 * It doesn't make sense to adjust a reference pointed
4107 * to by a symbolic ref based on expiring entries in
4108 * the symbolic reference's reflog. Nor can we update
4109 * a reference if there are no remaining reflog
4110 * entries.
4111 */
4112 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4113 !(type & REF_ISSYMREF) &&
4114 !is_null_sha1(cb.last_kept_sha1);
4115
4116 if (close_lock_file(&reflog_lock)) {
4117 status |= error("couldn't write %s: %s", log_file,
4118 strerror(errno));
4119 } else if (update &&
4120 (write_in_full(lock->lock_fd,
4121 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4122 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4123 close_ref(lock) < 0)) {
4124 status |= error("couldn't write %s",
4125 lock->lk->filename.buf);
4126 rollback_lock_file(&reflog_lock);
4127 } else if (commit_lock_file(&reflog_lock)) {
4128 status |= error("unable to commit reflog '%s' (%s)",
4129 log_file, strerror(errno));
4130 } else if (update && commit_ref(lock)) {
4131 status |= error("couldn't set %s", lock->ref_name);
4132 }
4133 }
4134 free(log_file);
4135 unlock_ref(lock);
4136 return status;
4137
4138 failure:
4139 rollback_lock_file(&reflog_lock);
4140 free(log_file);
4141 unlock_ref(lock);
4142 return -1;
4143 }