]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
read_packed_refs: avoid double-checking sane refs
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
8
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
15 };
16
17 /*
18 * How to handle various characters in refnames:
19 * 0: An acceptable character for refs
20 * 1: End-of-component
21 * 2: ., look for a preceding . to reject .. in refs
22 * 3: {, look for a preceding @ to reject @{ in refs
23 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
24 */
25 static unsigned char refname_disposition[256] = {
26 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
27 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
29 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
34 };
35
36 /*
37 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
38 * refs (i.e., because the reference is about to be deleted anyway).
39 */
40 #define REF_DELETING 0x02
41
42 /*
43 * Used as a flag in ref_update::flags when a loose ref is being
44 * pruned.
45 */
46 #define REF_ISPRUNING 0x04
47
48 /*
49 * Used as a flag in ref_update::flags when the reference should be
50 * updated to new_sha1.
51 */
52 #define REF_HAVE_NEW 0x08
53
54 /*
55 * Used as a flag in ref_update::flags when old_sha1 should be
56 * checked.
57 */
58 #define REF_HAVE_OLD 0x10
59
60 /*
61 * Try to read one refname component from the front of refname.
62 * Return the length of the component found, or -1 if the component is
63 * not legal. It is legal if it is something reasonable to have under
64 * ".git/refs/"; We do not like it if:
65 *
66 * - any path component of it begins with ".", or
67 * - it has double dots "..", or
68 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
69 * - it ends with a "/".
70 * - it ends with ".lock"
71 * - it contains a "\" (backslash)
72 */
73 static int check_refname_component(const char *refname, int flags)
74 {
75 const char *cp;
76 char last = '\0';
77
78 for (cp = refname; ; cp++) {
79 int ch = *cp & 255;
80 unsigned char disp = refname_disposition[ch];
81 switch (disp) {
82 case 1:
83 goto out;
84 case 2:
85 if (last == '.')
86 return -1; /* Refname contains "..". */
87 break;
88 case 3:
89 if (last == '@')
90 return -1; /* Refname contains "@{". */
91 break;
92 case 4:
93 return -1;
94 }
95 last = ch;
96 }
97 out:
98 if (cp == refname)
99 return 0; /* Component has zero length. */
100 if (refname[0] == '.')
101 return -1; /* Component starts with '.'. */
102 if (cp - refname >= LOCK_SUFFIX_LEN &&
103 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
104 return -1; /* Refname ends with ".lock". */
105 return cp - refname;
106 }
107
108 int check_refname_format(const char *refname, int flags)
109 {
110 int component_len, component_count = 0;
111
112 if (!strcmp(refname, "@"))
113 /* Refname is a single character '@'. */
114 return -1;
115
116 while (1) {
117 /* We are at the start of a path component. */
118 component_len = check_refname_component(refname, flags);
119 if (component_len <= 0) {
120 if ((flags & REFNAME_REFSPEC_PATTERN) &&
121 refname[0] == '*' &&
122 (refname[1] == '\0' || refname[1] == '/')) {
123 /* Accept one wildcard as a full refname component. */
124 flags &= ~REFNAME_REFSPEC_PATTERN;
125 component_len = 1;
126 } else {
127 return -1;
128 }
129 }
130 component_count++;
131 if (refname[component_len] == '\0')
132 break;
133 /* Skip to next component. */
134 refname += component_len + 1;
135 }
136
137 if (refname[component_len - 1] == '.')
138 return -1; /* Refname ends with '.'. */
139 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
140 return -1; /* Refname has only one component. */
141 return 0;
142 }
143
144 struct ref_entry;
145
146 /*
147 * Information used (along with the information in ref_entry) to
148 * describe a single cached reference. This data structure only
149 * occurs embedded in a union in struct ref_entry, and only when
150 * (ref_entry->flag & REF_DIR) is zero.
151 */
152 struct ref_value {
153 /*
154 * The name of the object to which this reference resolves
155 * (which may be a tag object). If REF_ISBROKEN, this is
156 * null. If REF_ISSYMREF, then this is the name of the object
157 * referred to by the last reference in the symlink chain.
158 */
159 unsigned char sha1[20];
160
161 /*
162 * If REF_KNOWS_PEELED, then this field holds the peeled value
163 * of this reference, or null if the reference is known not to
164 * be peelable. See the documentation for peel_ref() for an
165 * exact definition of "peelable".
166 */
167 unsigned char peeled[20];
168 };
169
170 struct ref_cache;
171
172 /*
173 * Information used (along with the information in ref_entry) to
174 * describe a level in the hierarchy of references. This data
175 * structure only occurs embedded in a union in struct ref_entry, and
176 * only when (ref_entry.flag & REF_DIR) is set. In that case,
177 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
178 * in the directory have already been read:
179 *
180 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
181 * or packed references, already read.
182 *
183 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
184 * references that hasn't been read yet (nor has any of its
185 * subdirectories).
186 *
187 * Entries within a directory are stored within a growable array of
188 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
189 * sorted are sorted by their component name in strcmp() order and the
190 * remaining entries are unsorted.
191 *
192 * Loose references are read lazily, one directory at a time. When a
193 * directory of loose references is read, then all of the references
194 * in that directory are stored, and REF_INCOMPLETE stubs are created
195 * for any subdirectories, but the subdirectories themselves are not
196 * read. The reading is triggered by get_ref_dir().
197 */
198 struct ref_dir {
199 int nr, alloc;
200
201 /*
202 * Entries with index 0 <= i < sorted are sorted by name. New
203 * entries are appended to the list unsorted, and are sorted
204 * only when required; thus we avoid the need to sort the list
205 * after the addition of every reference.
206 */
207 int sorted;
208
209 /* A pointer to the ref_cache that contains this ref_dir. */
210 struct ref_cache *ref_cache;
211
212 struct ref_entry **entries;
213 };
214
215 /*
216 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
217 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
218 * public values; see refs.h.
219 */
220
221 /*
222 * The field ref_entry->u.value.peeled of this value entry contains
223 * the correct peeled value for the reference, which might be
224 * null_sha1 if the reference is not a tag or if it is broken.
225 */
226 #define REF_KNOWS_PEELED 0x10
227
228 /* ref_entry represents a directory of references */
229 #define REF_DIR 0x20
230
231 /*
232 * Entry has not yet been read from disk (used only for REF_DIR
233 * entries representing loose references)
234 */
235 #define REF_INCOMPLETE 0x40
236
237 /*
238 * A ref_entry represents either a reference or a "subdirectory" of
239 * references.
240 *
241 * Each directory in the reference namespace is represented by a
242 * ref_entry with (flags & REF_DIR) set and containing a subdir member
243 * that holds the entries in that directory that have been read so
244 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
245 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
246 * used for loose reference directories.
247 *
248 * References are represented by a ref_entry with (flags & REF_DIR)
249 * unset and a value member that describes the reference's value. The
250 * flag member is at the ref_entry level, but it is also needed to
251 * interpret the contents of the value field (in other words, a
252 * ref_value object is not very much use without the enclosing
253 * ref_entry).
254 *
255 * Reference names cannot end with slash and directories' names are
256 * always stored with a trailing slash (except for the top-level
257 * directory, which is always denoted by ""). This has two nice
258 * consequences: (1) when the entries in each subdir are sorted
259 * lexicographically by name (as they usually are), the references in
260 * a whole tree can be generated in lexicographic order by traversing
261 * the tree in left-to-right, depth-first order; (2) the names of
262 * references and subdirectories cannot conflict, and therefore the
263 * presence of an empty subdirectory does not block the creation of a
264 * similarly-named reference. (The fact that reference names with the
265 * same leading components can conflict *with each other* is a
266 * separate issue that is regulated by is_refname_available().)
267 *
268 * Please note that the name field contains the fully-qualified
269 * reference (or subdirectory) name. Space could be saved by only
270 * storing the relative names. But that would require the full names
271 * to be generated on the fly when iterating in do_for_each_ref(), and
272 * would break callback functions, who have always been able to assume
273 * that the name strings that they are passed will not be freed during
274 * the iteration.
275 */
276 struct ref_entry {
277 unsigned char flag; /* ISSYMREF? ISPACKED? */
278 union {
279 struct ref_value value; /* if not (flags&REF_DIR) */
280 struct ref_dir subdir; /* if (flags&REF_DIR) */
281 } u;
282 /*
283 * The full name of the reference (e.g., "refs/heads/master")
284 * or the full name of the directory with a trailing slash
285 * (e.g., "refs/heads/"):
286 */
287 char name[FLEX_ARRAY];
288 };
289
290 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
291
292 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
293 {
294 struct ref_dir *dir;
295 assert(entry->flag & REF_DIR);
296 dir = &entry->u.subdir;
297 if (entry->flag & REF_INCOMPLETE) {
298 read_loose_refs(entry->name, dir);
299 entry->flag &= ~REF_INCOMPLETE;
300 }
301 return dir;
302 }
303
304 /*
305 * Check if a refname is safe.
306 * For refs that start with "refs/" we consider it safe as long they do
307 * not try to resolve to outside of refs/.
308 *
309 * For all other refs we only consider them safe iff they only contain
310 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
311 * "config").
312 */
313 static int refname_is_safe(const char *refname)
314 {
315 if (starts_with(refname, "refs/")) {
316 char *buf;
317 int result;
318
319 buf = xmalloc(strlen(refname) + 1);
320 /*
321 * Does the refname try to escape refs/?
322 * For example: refs/foo/../bar is safe but refs/foo/../../bar
323 * is not.
324 */
325 result = !normalize_path_copy(buf, refname + strlen("refs/"));
326 free(buf);
327 return result;
328 }
329 while (*refname) {
330 if (!isupper(*refname) && *refname != '_')
331 return 0;
332 refname++;
333 }
334 return 1;
335 }
336
337 static struct ref_entry *create_ref_entry(const char *refname,
338 const unsigned char *sha1, int flag,
339 int check_name)
340 {
341 int len;
342 struct ref_entry *ref;
343
344 if (check_name &&
345 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
346 die("Reference has invalid format: '%s'", refname);
347 len = strlen(refname) + 1;
348 ref = xmalloc(sizeof(struct ref_entry) + len);
349 hashcpy(ref->u.value.sha1, sha1);
350 hashclr(ref->u.value.peeled);
351 memcpy(ref->name, refname, len);
352 ref->flag = flag;
353 return ref;
354 }
355
356 static void clear_ref_dir(struct ref_dir *dir);
357
358 static void free_ref_entry(struct ref_entry *entry)
359 {
360 if (entry->flag & REF_DIR) {
361 /*
362 * Do not use get_ref_dir() here, as that might
363 * trigger the reading of loose refs.
364 */
365 clear_ref_dir(&entry->u.subdir);
366 }
367 free(entry);
368 }
369
370 /*
371 * Add a ref_entry to the end of dir (unsorted). Entry is always
372 * stored directly in dir; no recursion into subdirectories is
373 * done.
374 */
375 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
376 {
377 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
378 dir->entries[dir->nr++] = entry;
379 /* optimize for the case that entries are added in order */
380 if (dir->nr == 1 ||
381 (dir->nr == dir->sorted + 1 &&
382 strcmp(dir->entries[dir->nr - 2]->name,
383 dir->entries[dir->nr - 1]->name) < 0))
384 dir->sorted = dir->nr;
385 }
386
387 /*
388 * Clear and free all entries in dir, recursively.
389 */
390 static void clear_ref_dir(struct ref_dir *dir)
391 {
392 int i;
393 for (i = 0; i < dir->nr; i++)
394 free_ref_entry(dir->entries[i]);
395 free(dir->entries);
396 dir->sorted = dir->nr = dir->alloc = 0;
397 dir->entries = NULL;
398 }
399
400 /*
401 * Create a struct ref_entry object for the specified dirname.
402 * dirname is the name of the directory with a trailing slash (e.g.,
403 * "refs/heads/") or "" for the top-level directory.
404 */
405 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
406 const char *dirname, size_t len,
407 int incomplete)
408 {
409 struct ref_entry *direntry;
410 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
411 memcpy(direntry->name, dirname, len);
412 direntry->name[len] = '\0';
413 direntry->u.subdir.ref_cache = ref_cache;
414 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
415 return direntry;
416 }
417
418 static int ref_entry_cmp(const void *a, const void *b)
419 {
420 struct ref_entry *one = *(struct ref_entry **)a;
421 struct ref_entry *two = *(struct ref_entry **)b;
422 return strcmp(one->name, two->name);
423 }
424
425 static void sort_ref_dir(struct ref_dir *dir);
426
427 struct string_slice {
428 size_t len;
429 const char *str;
430 };
431
432 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
433 {
434 const struct string_slice *key = key_;
435 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
436 int cmp = strncmp(key->str, ent->name, key->len);
437 if (cmp)
438 return cmp;
439 return '\0' - (unsigned char)ent->name[key->len];
440 }
441
442 /*
443 * Return the index of the entry with the given refname from the
444 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
445 * no such entry is found. dir must already be complete.
446 */
447 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
448 {
449 struct ref_entry **r;
450 struct string_slice key;
451
452 if (refname == NULL || !dir->nr)
453 return -1;
454
455 sort_ref_dir(dir);
456 key.len = len;
457 key.str = refname;
458 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
459 ref_entry_cmp_sslice);
460
461 if (r == NULL)
462 return -1;
463
464 return r - dir->entries;
465 }
466
467 /*
468 * Search for a directory entry directly within dir (without
469 * recursing). Sort dir if necessary. subdirname must be a directory
470 * name (i.e., end in '/'). If mkdir is set, then create the
471 * directory if it is missing; otherwise, return NULL if the desired
472 * directory cannot be found. dir must already be complete.
473 */
474 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
475 const char *subdirname, size_t len,
476 int mkdir)
477 {
478 int entry_index = search_ref_dir(dir, subdirname, len);
479 struct ref_entry *entry;
480 if (entry_index == -1) {
481 if (!mkdir)
482 return NULL;
483 /*
484 * Since dir is complete, the absence of a subdir
485 * means that the subdir really doesn't exist;
486 * therefore, create an empty record for it but mark
487 * the record complete.
488 */
489 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
490 add_entry_to_dir(dir, entry);
491 } else {
492 entry = dir->entries[entry_index];
493 }
494 return get_ref_dir(entry);
495 }
496
497 /*
498 * If refname is a reference name, find the ref_dir within the dir
499 * tree that should hold refname. If refname is a directory name
500 * (i.e., ends in '/'), then return that ref_dir itself. dir must
501 * represent the top-level directory and must already be complete.
502 * Sort ref_dirs and recurse into subdirectories as necessary. If
503 * mkdir is set, then create any missing directories; otherwise,
504 * return NULL if the desired directory cannot be found.
505 */
506 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
507 const char *refname, int mkdir)
508 {
509 const char *slash;
510 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
511 size_t dirnamelen = slash - refname + 1;
512 struct ref_dir *subdir;
513 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
514 if (!subdir) {
515 dir = NULL;
516 break;
517 }
518 dir = subdir;
519 }
520
521 return dir;
522 }
523
524 /*
525 * Find the value entry with the given name in dir, sorting ref_dirs
526 * and recursing into subdirectories as necessary. If the name is not
527 * found or it corresponds to a directory entry, return NULL.
528 */
529 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
530 {
531 int entry_index;
532 struct ref_entry *entry;
533 dir = find_containing_dir(dir, refname, 0);
534 if (!dir)
535 return NULL;
536 entry_index = search_ref_dir(dir, refname, strlen(refname));
537 if (entry_index == -1)
538 return NULL;
539 entry = dir->entries[entry_index];
540 return (entry->flag & REF_DIR) ? NULL : entry;
541 }
542
543 /*
544 * Remove the entry with the given name from dir, recursing into
545 * subdirectories as necessary. If refname is the name of a directory
546 * (i.e., ends with '/'), then remove the directory and its contents.
547 * If the removal was successful, return the number of entries
548 * remaining in the directory entry that contained the deleted entry.
549 * If the name was not found, return -1. Please note that this
550 * function only deletes the entry from the cache; it does not delete
551 * it from the filesystem or ensure that other cache entries (which
552 * might be symbolic references to the removed entry) are updated.
553 * Nor does it remove any containing dir entries that might be made
554 * empty by the removal. dir must represent the top-level directory
555 * and must already be complete.
556 */
557 static int remove_entry(struct ref_dir *dir, const char *refname)
558 {
559 int refname_len = strlen(refname);
560 int entry_index;
561 struct ref_entry *entry;
562 int is_dir = refname[refname_len - 1] == '/';
563 if (is_dir) {
564 /*
565 * refname represents a reference directory. Remove
566 * the trailing slash; otherwise we will get the
567 * directory *representing* refname rather than the
568 * one *containing* it.
569 */
570 char *dirname = xmemdupz(refname, refname_len - 1);
571 dir = find_containing_dir(dir, dirname, 0);
572 free(dirname);
573 } else {
574 dir = find_containing_dir(dir, refname, 0);
575 }
576 if (!dir)
577 return -1;
578 entry_index = search_ref_dir(dir, refname, refname_len);
579 if (entry_index == -1)
580 return -1;
581 entry = dir->entries[entry_index];
582
583 memmove(&dir->entries[entry_index],
584 &dir->entries[entry_index + 1],
585 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
586 );
587 dir->nr--;
588 if (dir->sorted > entry_index)
589 dir->sorted--;
590 free_ref_entry(entry);
591 return dir->nr;
592 }
593
594 /*
595 * Add a ref_entry to the ref_dir (unsorted), recursing into
596 * subdirectories as necessary. dir must represent the top-level
597 * directory. Return 0 on success.
598 */
599 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
600 {
601 dir = find_containing_dir(dir, ref->name, 1);
602 if (!dir)
603 return -1;
604 add_entry_to_dir(dir, ref);
605 return 0;
606 }
607
608 /*
609 * Emit a warning and return true iff ref1 and ref2 have the same name
610 * and the same sha1. Die if they have the same name but different
611 * sha1s.
612 */
613 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
614 {
615 if (strcmp(ref1->name, ref2->name))
616 return 0;
617
618 /* Duplicate name; make sure that they don't conflict: */
619
620 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
621 /* This is impossible by construction */
622 die("Reference directory conflict: %s", ref1->name);
623
624 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
625 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
626
627 warning("Duplicated ref: %s", ref1->name);
628 return 1;
629 }
630
631 /*
632 * Sort the entries in dir non-recursively (if they are not already
633 * sorted) and remove any duplicate entries.
634 */
635 static void sort_ref_dir(struct ref_dir *dir)
636 {
637 int i, j;
638 struct ref_entry *last = NULL;
639
640 /*
641 * This check also prevents passing a zero-length array to qsort(),
642 * which is a problem on some platforms.
643 */
644 if (dir->sorted == dir->nr)
645 return;
646
647 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
648
649 /* Remove any duplicates: */
650 for (i = 0, j = 0; j < dir->nr; j++) {
651 struct ref_entry *entry = dir->entries[j];
652 if (last && is_dup_ref(last, entry))
653 free_ref_entry(entry);
654 else
655 last = dir->entries[i++] = entry;
656 }
657 dir->sorted = dir->nr = i;
658 }
659
660 /* Include broken references in a do_for_each_ref*() iteration: */
661 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
662
663 /*
664 * Return true iff the reference described by entry can be resolved to
665 * an object in the database. Emit a warning if the referred-to
666 * object does not exist.
667 */
668 static int ref_resolves_to_object(struct ref_entry *entry)
669 {
670 if (entry->flag & REF_ISBROKEN)
671 return 0;
672 if (!has_sha1_file(entry->u.value.sha1)) {
673 error("%s does not point to a valid object!", entry->name);
674 return 0;
675 }
676 return 1;
677 }
678
679 /*
680 * current_ref is a performance hack: when iterating over references
681 * using the for_each_ref*() functions, current_ref is set to the
682 * current reference's entry before calling the callback function. If
683 * the callback function calls peel_ref(), then peel_ref() first
684 * checks whether the reference to be peeled is the current reference
685 * (it usually is) and if so, returns that reference's peeled version
686 * if it is available. This avoids a refname lookup in a common case.
687 */
688 static struct ref_entry *current_ref;
689
690 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
691
692 struct ref_entry_cb {
693 const char *base;
694 int trim;
695 int flags;
696 each_ref_fn *fn;
697 void *cb_data;
698 };
699
700 /*
701 * Handle one reference in a do_for_each_ref*()-style iteration,
702 * calling an each_ref_fn for each entry.
703 */
704 static int do_one_ref(struct ref_entry *entry, void *cb_data)
705 {
706 struct ref_entry_cb *data = cb_data;
707 struct ref_entry *old_current_ref;
708 int retval;
709
710 if (!starts_with(entry->name, data->base))
711 return 0;
712
713 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
714 !ref_resolves_to_object(entry))
715 return 0;
716
717 /* Store the old value, in case this is a recursive call: */
718 old_current_ref = current_ref;
719 current_ref = entry;
720 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
721 entry->flag, data->cb_data);
722 current_ref = old_current_ref;
723 return retval;
724 }
725
726 /*
727 * Call fn for each reference in dir that has index in the range
728 * offset <= index < dir->nr. Recurse into subdirectories that are in
729 * that index range, sorting them before iterating. This function
730 * does not sort dir itself; it should be sorted beforehand. fn is
731 * called for all references, including broken ones.
732 */
733 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
734 each_ref_entry_fn fn, void *cb_data)
735 {
736 int i;
737 assert(dir->sorted == dir->nr);
738 for (i = offset; i < dir->nr; i++) {
739 struct ref_entry *entry = dir->entries[i];
740 int retval;
741 if (entry->flag & REF_DIR) {
742 struct ref_dir *subdir = get_ref_dir(entry);
743 sort_ref_dir(subdir);
744 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
745 } else {
746 retval = fn(entry, cb_data);
747 }
748 if (retval)
749 return retval;
750 }
751 return 0;
752 }
753
754 /*
755 * Call fn for each reference in the union of dir1 and dir2, in order
756 * by refname. Recurse into subdirectories. If a value entry appears
757 * in both dir1 and dir2, then only process the version that is in
758 * dir2. The input dirs must already be sorted, but subdirs will be
759 * sorted as needed. fn is called for all references, including
760 * broken ones.
761 */
762 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
763 struct ref_dir *dir2,
764 each_ref_entry_fn fn, void *cb_data)
765 {
766 int retval;
767 int i1 = 0, i2 = 0;
768
769 assert(dir1->sorted == dir1->nr);
770 assert(dir2->sorted == dir2->nr);
771 while (1) {
772 struct ref_entry *e1, *e2;
773 int cmp;
774 if (i1 == dir1->nr) {
775 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
776 }
777 if (i2 == dir2->nr) {
778 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
779 }
780 e1 = dir1->entries[i1];
781 e2 = dir2->entries[i2];
782 cmp = strcmp(e1->name, e2->name);
783 if (cmp == 0) {
784 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
785 /* Both are directories; descend them in parallel. */
786 struct ref_dir *subdir1 = get_ref_dir(e1);
787 struct ref_dir *subdir2 = get_ref_dir(e2);
788 sort_ref_dir(subdir1);
789 sort_ref_dir(subdir2);
790 retval = do_for_each_entry_in_dirs(
791 subdir1, subdir2, fn, cb_data);
792 i1++;
793 i2++;
794 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
795 /* Both are references; ignore the one from dir1. */
796 retval = fn(e2, cb_data);
797 i1++;
798 i2++;
799 } else {
800 die("conflict between reference and directory: %s",
801 e1->name);
802 }
803 } else {
804 struct ref_entry *e;
805 if (cmp < 0) {
806 e = e1;
807 i1++;
808 } else {
809 e = e2;
810 i2++;
811 }
812 if (e->flag & REF_DIR) {
813 struct ref_dir *subdir = get_ref_dir(e);
814 sort_ref_dir(subdir);
815 retval = do_for_each_entry_in_dir(
816 subdir, 0, fn, cb_data);
817 } else {
818 retval = fn(e, cb_data);
819 }
820 }
821 if (retval)
822 return retval;
823 }
824 }
825
826 /*
827 * Load all of the refs from the dir into our in-memory cache. The hard work
828 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
829 * through all of the sub-directories. We do not even need to care about
830 * sorting, as traversal order does not matter to us.
831 */
832 static void prime_ref_dir(struct ref_dir *dir)
833 {
834 int i;
835 for (i = 0; i < dir->nr; i++) {
836 struct ref_entry *entry = dir->entries[i];
837 if (entry->flag & REF_DIR)
838 prime_ref_dir(get_ref_dir(entry));
839 }
840 }
841
842 static int entry_matches(struct ref_entry *entry, const struct string_list *list)
843 {
844 return list && string_list_has_string(list, entry->name);
845 }
846
847 struct nonmatching_ref_data {
848 const struct string_list *skip;
849 struct ref_entry *found;
850 };
851
852 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
853 {
854 struct nonmatching_ref_data *data = vdata;
855
856 if (entry_matches(entry, data->skip))
857 return 0;
858
859 data->found = entry;
860 return 1;
861 }
862
863 static void report_refname_conflict(struct ref_entry *entry,
864 const char *refname)
865 {
866 error("'%s' exists; cannot create '%s'", entry->name, refname);
867 }
868
869 /*
870 * Return true iff a reference named refname could be created without
871 * conflicting with the name of an existing reference in dir. If
872 * skip is non-NULL, ignore potential conflicts with refs in skip
873 * (e.g., because they are scheduled for deletion in the same
874 * operation).
875 *
876 * Two reference names conflict if one of them exactly matches the
877 * leading components of the other; e.g., "foo/bar" conflicts with
878 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
879 * "foo/barbados".
880 *
881 * skip must be sorted.
882 */
883 static int is_refname_available(const char *refname,
884 const struct string_list *skip,
885 struct ref_dir *dir)
886 {
887 const char *slash;
888 size_t len;
889 int pos;
890 char *dirname;
891
892 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
893 /*
894 * We are still at a leading dir of the refname; we are
895 * looking for a conflict with a leaf entry.
896 *
897 * If we find one, we still must make sure it is
898 * not in "skip".
899 */
900 pos = search_ref_dir(dir, refname, slash - refname);
901 if (pos >= 0) {
902 struct ref_entry *entry = dir->entries[pos];
903 if (entry_matches(entry, skip))
904 return 1;
905 report_refname_conflict(entry, refname);
906 return 0;
907 }
908
909
910 /*
911 * Otherwise, we can try to continue our search with
912 * the next component; if we come up empty, we know
913 * there is nothing under this whole prefix.
914 */
915 pos = search_ref_dir(dir, refname, slash + 1 - refname);
916 if (pos < 0)
917 return 1;
918
919 dir = get_ref_dir(dir->entries[pos]);
920 }
921
922 /*
923 * We are at the leaf of our refname; we want to
924 * make sure there are no directories which match it.
925 */
926 len = strlen(refname);
927 dirname = xmallocz(len + 1);
928 sprintf(dirname, "%s/", refname);
929 pos = search_ref_dir(dir, dirname, len + 1);
930 free(dirname);
931
932 if (pos >= 0) {
933 /*
934 * We found a directory named "refname". It is a
935 * problem iff it contains any ref that is not
936 * in "skip".
937 */
938 struct ref_entry *entry = dir->entries[pos];
939 struct ref_dir *dir = get_ref_dir(entry);
940 struct nonmatching_ref_data data;
941
942 data.skip = skip;
943 sort_ref_dir(dir);
944 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
945 return 1;
946
947 report_refname_conflict(data.found, refname);
948 return 0;
949 }
950
951 /*
952 * There is no point in searching for another leaf
953 * node which matches it; such an entry would be the
954 * ref we are looking for, not a conflict.
955 */
956 return 1;
957 }
958
959 struct packed_ref_cache {
960 struct ref_entry *root;
961
962 /*
963 * Count of references to the data structure in this instance,
964 * including the pointer from ref_cache::packed if any. The
965 * data will not be freed as long as the reference count is
966 * nonzero.
967 */
968 unsigned int referrers;
969
970 /*
971 * Iff the packed-refs file associated with this instance is
972 * currently locked for writing, this points at the associated
973 * lock (which is owned by somebody else). The referrer count
974 * is also incremented when the file is locked and decremented
975 * when it is unlocked.
976 */
977 struct lock_file *lock;
978
979 /* The metadata from when this packed-refs cache was read */
980 struct stat_validity validity;
981 };
982
983 /*
984 * Future: need to be in "struct repository"
985 * when doing a full libification.
986 */
987 static struct ref_cache {
988 struct ref_cache *next;
989 struct ref_entry *loose;
990 struct packed_ref_cache *packed;
991 /*
992 * The submodule name, or "" for the main repo. We allocate
993 * length 1 rather than FLEX_ARRAY so that the main ref_cache
994 * is initialized correctly.
995 */
996 char name[1];
997 } ref_cache, *submodule_ref_caches;
998
999 /* Lock used for the main packed-refs file: */
1000 static struct lock_file packlock;
1001
1002 /*
1003 * Increment the reference count of *packed_refs.
1004 */
1005 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
1006 {
1007 packed_refs->referrers++;
1008 }
1009
1010 /*
1011 * Decrease the reference count of *packed_refs. If it goes to zero,
1012 * free *packed_refs and return true; otherwise return false.
1013 */
1014 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
1015 {
1016 if (!--packed_refs->referrers) {
1017 free_ref_entry(packed_refs->root);
1018 stat_validity_clear(&packed_refs->validity);
1019 free(packed_refs);
1020 return 1;
1021 } else {
1022 return 0;
1023 }
1024 }
1025
1026 static void clear_packed_ref_cache(struct ref_cache *refs)
1027 {
1028 if (refs->packed) {
1029 struct packed_ref_cache *packed_refs = refs->packed;
1030
1031 if (packed_refs->lock)
1032 die("internal error: packed-ref cache cleared while locked");
1033 refs->packed = NULL;
1034 release_packed_ref_cache(packed_refs);
1035 }
1036 }
1037
1038 static void clear_loose_ref_cache(struct ref_cache *refs)
1039 {
1040 if (refs->loose) {
1041 free_ref_entry(refs->loose);
1042 refs->loose = NULL;
1043 }
1044 }
1045
1046 static struct ref_cache *create_ref_cache(const char *submodule)
1047 {
1048 int len;
1049 struct ref_cache *refs;
1050 if (!submodule)
1051 submodule = "";
1052 len = strlen(submodule) + 1;
1053 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1054 memcpy(refs->name, submodule, len);
1055 return refs;
1056 }
1057
1058 /*
1059 * Return a pointer to a ref_cache for the specified submodule. For
1060 * the main repository, use submodule==NULL. The returned structure
1061 * will be allocated and initialized but not necessarily populated; it
1062 * should not be freed.
1063 */
1064 static struct ref_cache *get_ref_cache(const char *submodule)
1065 {
1066 struct ref_cache *refs;
1067
1068 if (!submodule || !*submodule)
1069 return &ref_cache;
1070
1071 for (refs = submodule_ref_caches; refs; refs = refs->next)
1072 if (!strcmp(submodule, refs->name))
1073 return refs;
1074
1075 refs = create_ref_cache(submodule);
1076 refs->next = submodule_ref_caches;
1077 submodule_ref_caches = refs;
1078 return refs;
1079 }
1080
1081 /* The length of a peeled reference line in packed-refs, including EOL: */
1082 #define PEELED_LINE_LENGTH 42
1083
1084 /*
1085 * The packed-refs header line that we write out. Perhaps other
1086 * traits will be added later. The trailing space is required.
1087 */
1088 static const char PACKED_REFS_HEADER[] =
1089 "# pack-refs with: peeled fully-peeled \n";
1090
1091 /*
1092 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1093 * Return a pointer to the refname within the line (null-terminated),
1094 * or NULL if there was a problem.
1095 */
1096 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1097 {
1098 const char *ref;
1099
1100 /*
1101 * 42: the answer to everything.
1102 *
1103 * In this case, it happens to be the answer to
1104 * 40 (length of sha1 hex representation)
1105 * +1 (space in between hex and name)
1106 * +1 (newline at the end of the line)
1107 */
1108 if (line->len <= 42)
1109 return NULL;
1110
1111 if (get_sha1_hex(line->buf, sha1) < 0)
1112 return NULL;
1113 if (!isspace(line->buf[40]))
1114 return NULL;
1115
1116 ref = line->buf + 41;
1117 if (isspace(*ref))
1118 return NULL;
1119
1120 if (line->buf[line->len - 1] != '\n')
1121 return NULL;
1122 line->buf[--line->len] = 0;
1123
1124 return ref;
1125 }
1126
1127 /*
1128 * Read f, which is a packed-refs file, into dir.
1129 *
1130 * A comment line of the form "# pack-refs with: " may contain zero or
1131 * more traits. We interpret the traits as follows:
1132 *
1133 * No traits:
1134 *
1135 * Probably no references are peeled. But if the file contains a
1136 * peeled value for a reference, we will use it.
1137 *
1138 * peeled:
1139 *
1140 * References under "refs/tags/", if they *can* be peeled, *are*
1141 * peeled in this file. References outside of "refs/tags/" are
1142 * probably not peeled even if they could have been, but if we find
1143 * a peeled value for such a reference we will use it.
1144 *
1145 * fully-peeled:
1146 *
1147 * All references in the file that can be peeled are peeled.
1148 * Inversely (and this is more important), any references in the
1149 * file for which no peeled value is recorded is not peelable. This
1150 * trait should typically be written alongside "peeled" for
1151 * compatibility with older clients, but we do not require it
1152 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1153 */
1154 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1155 {
1156 struct ref_entry *last = NULL;
1157 struct strbuf line = STRBUF_INIT;
1158 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1159
1160 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1161 unsigned char sha1[20];
1162 const char *refname;
1163 const char *traits;
1164
1165 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1166 if (strstr(traits, " fully-peeled "))
1167 peeled = PEELED_FULLY;
1168 else if (strstr(traits, " peeled "))
1169 peeled = PEELED_TAGS;
1170 /* perhaps other traits later as well */
1171 continue;
1172 }
1173
1174 refname = parse_ref_line(&line, sha1);
1175 if (refname) {
1176 int flag = REF_ISPACKED;
1177
1178 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1179 if (!refname_is_safe(refname))
1180 die("packed refname is dangerous: %s", refname);
1181 hashclr(sha1);
1182 flag |= REF_BAD_NAME | REF_ISBROKEN;
1183 }
1184 last = create_ref_entry(refname, sha1, flag, 0);
1185 if (peeled == PEELED_FULLY ||
1186 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1187 last->flag |= REF_KNOWS_PEELED;
1188 add_ref(dir, last);
1189 continue;
1190 }
1191 if (last &&
1192 line.buf[0] == '^' &&
1193 line.len == PEELED_LINE_LENGTH &&
1194 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1195 !get_sha1_hex(line.buf + 1, sha1)) {
1196 hashcpy(last->u.value.peeled, sha1);
1197 /*
1198 * Regardless of what the file header said,
1199 * we definitely know the value of *this*
1200 * reference:
1201 */
1202 last->flag |= REF_KNOWS_PEELED;
1203 }
1204 }
1205
1206 strbuf_release(&line);
1207 }
1208
1209 /*
1210 * Get the packed_ref_cache for the specified ref_cache, creating it
1211 * if necessary.
1212 */
1213 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1214 {
1215 const char *packed_refs_file;
1216
1217 if (*refs->name)
1218 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1219 else
1220 packed_refs_file = git_path("packed-refs");
1221
1222 if (refs->packed &&
1223 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1224 clear_packed_ref_cache(refs);
1225
1226 if (!refs->packed) {
1227 FILE *f;
1228
1229 refs->packed = xcalloc(1, sizeof(*refs->packed));
1230 acquire_packed_ref_cache(refs->packed);
1231 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1232 f = fopen(packed_refs_file, "r");
1233 if (f) {
1234 stat_validity_update(&refs->packed->validity, fileno(f));
1235 read_packed_refs(f, get_ref_dir(refs->packed->root));
1236 fclose(f);
1237 }
1238 }
1239 return refs->packed;
1240 }
1241
1242 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1243 {
1244 return get_ref_dir(packed_ref_cache->root);
1245 }
1246
1247 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1248 {
1249 return get_packed_ref_dir(get_packed_ref_cache(refs));
1250 }
1251
1252 void add_packed_ref(const char *refname, const unsigned char *sha1)
1253 {
1254 struct packed_ref_cache *packed_ref_cache =
1255 get_packed_ref_cache(&ref_cache);
1256
1257 if (!packed_ref_cache->lock)
1258 die("internal error: packed refs not locked");
1259 add_ref(get_packed_ref_dir(packed_ref_cache),
1260 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1261 }
1262
1263 /*
1264 * Read the loose references from the namespace dirname into dir
1265 * (without recursing). dirname must end with '/'. dir must be the
1266 * directory entry corresponding to dirname.
1267 */
1268 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1269 {
1270 struct ref_cache *refs = dir->ref_cache;
1271 DIR *d;
1272 const char *path;
1273 struct dirent *de;
1274 int dirnamelen = strlen(dirname);
1275 struct strbuf refname;
1276
1277 if (*refs->name)
1278 path = git_path_submodule(refs->name, "%s", dirname);
1279 else
1280 path = git_path("%s", dirname);
1281
1282 d = opendir(path);
1283 if (!d)
1284 return;
1285
1286 strbuf_init(&refname, dirnamelen + 257);
1287 strbuf_add(&refname, dirname, dirnamelen);
1288
1289 while ((de = readdir(d)) != NULL) {
1290 unsigned char sha1[20];
1291 struct stat st;
1292 int flag;
1293 const char *refdir;
1294
1295 if (de->d_name[0] == '.')
1296 continue;
1297 if (ends_with(de->d_name, ".lock"))
1298 continue;
1299 strbuf_addstr(&refname, de->d_name);
1300 refdir = *refs->name
1301 ? git_path_submodule(refs->name, "%s", refname.buf)
1302 : git_path("%s", refname.buf);
1303 if (stat(refdir, &st) < 0) {
1304 ; /* silently ignore */
1305 } else if (S_ISDIR(st.st_mode)) {
1306 strbuf_addch(&refname, '/');
1307 add_entry_to_dir(dir,
1308 create_dir_entry(refs, refname.buf,
1309 refname.len, 1));
1310 } else {
1311 if (*refs->name) {
1312 hashclr(sha1);
1313 flag = 0;
1314 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1315 hashclr(sha1);
1316 flag |= REF_ISBROKEN;
1317 }
1318 } else if (read_ref_full(refname.buf,
1319 RESOLVE_REF_READING,
1320 sha1, &flag)) {
1321 hashclr(sha1);
1322 flag |= REF_ISBROKEN;
1323 }
1324 if (check_refname_format(refname.buf,
1325 REFNAME_ALLOW_ONELEVEL)) {
1326 if (!refname_is_safe(refname.buf))
1327 die("loose refname is dangerous: %s", refname.buf);
1328 hashclr(sha1);
1329 flag |= REF_BAD_NAME | REF_ISBROKEN;
1330 }
1331 add_entry_to_dir(dir,
1332 create_ref_entry(refname.buf, sha1, flag, 0));
1333 }
1334 strbuf_setlen(&refname, dirnamelen);
1335 }
1336 strbuf_release(&refname);
1337 closedir(d);
1338 }
1339
1340 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1341 {
1342 if (!refs->loose) {
1343 /*
1344 * Mark the top-level directory complete because we
1345 * are about to read the only subdirectory that can
1346 * hold references:
1347 */
1348 refs->loose = create_dir_entry(refs, "", 0, 0);
1349 /*
1350 * Create an incomplete entry for "refs/":
1351 */
1352 add_entry_to_dir(get_ref_dir(refs->loose),
1353 create_dir_entry(refs, "refs/", 5, 1));
1354 }
1355 return get_ref_dir(refs->loose);
1356 }
1357
1358 /* We allow "recursive" symbolic refs. Only within reason, though */
1359 #define MAXDEPTH 5
1360 #define MAXREFLEN (1024)
1361
1362 /*
1363 * Called by resolve_gitlink_ref_recursive() after it failed to read
1364 * from the loose refs in ref_cache refs. Find <refname> in the
1365 * packed-refs file for the submodule.
1366 */
1367 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1368 const char *refname, unsigned char *sha1)
1369 {
1370 struct ref_entry *ref;
1371 struct ref_dir *dir = get_packed_refs(refs);
1372
1373 ref = find_ref(dir, refname);
1374 if (ref == NULL)
1375 return -1;
1376
1377 hashcpy(sha1, ref->u.value.sha1);
1378 return 0;
1379 }
1380
1381 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1382 const char *refname, unsigned char *sha1,
1383 int recursion)
1384 {
1385 int fd, len;
1386 char buffer[128], *p;
1387 char *path;
1388
1389 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1390 return -1;
1391 path = *refs->name
1392 ? git_path_submodule(refs->name, "%s", refname)
1393 : git_path("%s", refname);
1394 fd = open(path, O_RDONLY);
1395 if (fd < 0)
1396 return resolve_gitlink_packed_ref(refs, refname, sha1);
1397
1398 len = read(fd, buffer, sizeof(buffer)-1);
1399 close(fd);
1400 if (len < 0)
1401 return -1;
1402 while (len && isspace(buffer[len-1]))
1403 len--;
1404 buffer[len] = 0;
1405
1406 /* Was it a detached head or an old-fashioned symlink? */
1407 if (!get_sha1_hex(buffer, sha1))
1408 return 0;
1409
1410 /* Symref? */
1411 if (strncmp(buffer, "ref:", 4))
1412 return -1;
1413 p = buffer + 4;
1414 while (isspace(*p))
1415 p++;
1416
1417 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1418 }
1419
1420 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1421 {
1422 int len = strlen(path), retval;
1423 char *submodule;
1424 struct ref_cache *refs;
1425
1426 while (len && path[len-1] == '/')
1427 len--;
1428 if (!len)
1429 return -1;
1430 submodule = xstrndup(path, len);
1431 refs = get_ref_cache(submodule);
1432 free(submodule);
1433
1434 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1435 return retval;
1436 }
1437
1438 /*
1439 * Return the ref_entry for the given refname from the packed
1440 * references. If it does not exist, return NULL.
1441 */
1442 static struct ref_entry *get_packed_ref(const char *refname)
1443 {
1444 return find_ref(get_packed_refs(&ref_cache), refname);
1445 }
1446
1447 /*
1448 * A loose ref file doesn't exist; check for a packed ref. The
1449 * options are forwarded from resolve_safe_unsafe().
1450 */
1451 static int resolve_missing_loose_ref(const char *refname,
1452 int resolve_flags,
1453 unsigned char *sha1,
1454 int *flags)
1455 {
1456 struct ref_entry *entry;
1457
1458 /*
1459 * The loose reference file does not exist; check for a packed
1460 * reference.
1461 */
1462 entry = get_packed_ref(refname);
1463 if (entry) {
1464 hashcpy(sha1, entry->u.value.sha1);
1465 if (flags)
1466 *flags |= REF_ISPACKED;
1467 return 0;
1468 }
1469 /* The reference is not a packed reference, either. */
1470 if (resolve_flags & RESOLVE_REF_READING) {
1471 errno = ENOENT;
1472 return -1;
1473 } else {
1474 hashclr(sha1);
1475 return 0;
1476 }
1477 }
1478
1479 /* This function needs to return a meaningful errno on failure */
1480 const char *resolve_ref_unsafe(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1481 {
1482 int depth = MAXDEPTH;
1483 ssize_t len;
1484 char buffer[256];
1485 static char refname_buffer[256];
1486 int bad_name = 0;
1487
1488 if (flags)
1489 *flags = 0;
1490
1491 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1492 if (flags)
1493 *flags |= REF_BAD_NAME;
1494
1495 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1496 !refname_is_safe(refname)) {
1497 errno = EINVAL;
1498 return NULL;
1499 }
1500 /*
1501 * dwim_ref() uses REF_ISBROKEN to distinguish between
1502 * missing refs and refs that were present but invalid,
1503 * to complain about the latter to stderr.
1504 *
1505 * We don't know whether the ref exists, so don't set
1506 * REF_ISBROKEN yet.
1507 */
1508 bad_name = 1;
1509 }
1510 for (;;) {
1511 char path[PATH_MAX];
1512 struct stat st;
1513 char *buf;
1514 int fd;
1515
1516 if (--depth < 0) {
1517 errno = ELOOP;
1518 return NULL;
1519 }
1520
1521 git_snpath(path, sizeof(path), "%s", refname);
1522
1523 /*
1524 * We might have to loop back here to avoid a race
1525 * condition: first we lstat() the file, then we try
1526 * to read it as a link or as a file. But if somebody
1527 * changes the type of the file (file <-> directory
1528 * <-> symlink) between the lstat() and reading, then
1529 * we don't want to report that as an error but rather
1530 * try again starting with the lstat().
1531 */
1532 stat_ref:
1533 if (lstat(path, &st) < 0) {
1534 if (errno != ENOENT)
1535 return NULL;
1536 if (resolve_missing_loose_ref(refname, resolve_flags,
1537 sha1, flags))
1538 return NULL;
1539 if (bad_name) {
1540 hashclr(sha1);
1541 if (flags)
1542 *flags |= REF_ISBROKEN;
1543 }
1544 return refname;
1545 }
1546
1547 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1548 if (S_ISLNK(st.st_mode)) {
1549 len = readlink(path, buffer, sizeof(buffer)-1);
1550 if (len < 0) {
1551 if (errno == ENOENT || errno == EINVAL)
1552 /* inconsistent with lstat; retry */
1553 goto stat_ref;
1554 else
1555 return NULL;
1556 }
1557 buffer[len] = 0;
1558 if (starts_with(buffer, "refs/") &&
1559 !check_refname_format(buffer, 0)) {
1560 strcpy(refname_buffer, buffer);
1561 refname = refname_buffer;
1562 if (flags)
1563 *flags |= REF_ISSYMREF;
1564 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1565 hashclr(sha1);
1566 return refname;
1567 }
1568 continue;
1569 }
1570 }
1571
1572 /* Is it a directory? */
1573 if (S_ISDIR(st.st_mode)) {
1574 errno = EISDIR;
1575 return NULL;
1576 }
1577
1578 /*
1579 * Anything else, just open it and try to use it as
1580 * a ref
1581 */
1582 fd = open(path, O_RDONLY);
1583 if (fd < 0) {
1584 if (errno == ENOENT)
1585 /* inconsistent with lstat; retry */
1586 goto stat_ref;
1587 else
1588 return NULL;
1589 }
1590 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1591 if (len < 0) {
1592 int save_errno = errno;
1593 close(fd);
1594 errno = save_errno;
1595 return NULL;
1596 }
1597 close(fd);
1598 while (len && isspace(buffer[len-1]))
1599 len--;
1600 buffer[len] = '\0';
1601
1602 /*
1603 * Is it a symbolic ref?
1604 */
1605 if (!starts_with(buffer, "ref:")) {
1606 /*
1607 * Please note that FETCH_HEAD has a second
1608 * line containing other data.
1609 */
1610 if (get_sha1_hex(buffer, sha1) ||
1611 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1612 if (flags)
1613 *flags |= REF_ISBROKEN;
1614 errno = EINVAL;
1615 return NULL;
1616 }
1617 if (bad_name) {
1618 hashclr(sha1);
1619 if (flags)
1620 *flags |= REF_ISBROKEN;
1621 }
1622 return refname;
1623 }
1624 if (flags)
1625 *flags |= REF_ISSYMREF;
1626 buf = buffer + 4;
1627 while (isspace(*buf))
1628 buf++;
1629 refname = strcpy(refname_buffer, buf);
1630 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1631 hashclr(sha1);
1632 return refname;
1633 }
1634 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1635 if (flags)
1636 *flags |= REF_ISBROKEN;
1637
1638 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1639 !refname_is_safe(buf)) {
1640 errno = EINVAL;
1641 return NULL;
1642 }
1643 bad_name = 1;
1644 }
1645 }
1646 }
1647
1648 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1649 {
1650 return xstrdup_or_null(resolve_ref_unsafe(ref, resolve_flags, sha1, flags));
1651 }
1652
1653 /* The argument to filter_refs */
1654 struct ref_filter {
1655 const char *pattern;
1656 each_ref_fn *fn;
1657 void *cb_data;
1658 };
1659
1660 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1661 {
1662 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1663 return 0;
1664 return -1;
1665 }
1666
1667 int read_ref(const char *refname, unsigned char *sha1)
1668 {
1669 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1670 }
1671
1672 int ref_exists(const char *refname)
1673 {
1674 unsigned char sha1[20];
1675 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1676 }
1677
1678 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1679 void *data)
1680 {
1681 struct ref_filter *filter = (struct ref_filter *)data;
1682 if (wildmatch(filter->pattern, refname, 0, NULL))
1683 return 0;
1684 return filter->fn(refname, sha1, flags, filter->cb_data);
1685 }
1686
1687 enum peel_status {
1688 /* object was peeled successfully: */
1689 PEEL_PEELED = 0,
1690
1691 /*
1692 * object cannot be peeled because the named object (or an
1693 * object referred to by a tag in the peel chain), does not
1694 * exist.
1695 */
1696 PEEL_INVALID = -1,
1697
1698 /* object cannot be peeled because it is not a tag: */
1699 PEEL_NON_TAG = -2,
1700
1701 /* ref_entry contains no peeled value because it is a symref: */
1702 PEEL_IS_SYMREF = -3,
1703
1704 /*
1705 * ref_entry cannot be peeled because it is broken (i.e., the
1706 * symbolic reference cannot even be resolved to an object
1707 * name):
1708 */
1709 PEEL_BROKEN = -4
1710 };
1711
1712 /*
1713 * Peel the named object; i.e., if the object is a tag, resolve the
1714 * tag recursively until a non-tag is found. If successful, store the
1715 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1716 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1717 * and leave sha1 unchanged.
1718 */
1719 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1720 {
1721 struct object *o = lookup_unknown_object(name);
1722
1723 if (o->type == OBJ_NONE) {
1724 int type = sha1_object_info(name, NULL);
1725 if (type < 0 || !object_as_type(o, type, 0))
1726 return PEEL_INVALID;
1727 }
1728
1729 if (o->type != OBJ_TAG)
1730 return PEEL_NON_TAG;
1731
1732 o = deref_tag_noverify(o);
1733 if (!o)
1734 return PEEL_INVALID;
1735
1736 hashcpy(sha1, o->sha1);
1737 return PEEL_PEELED;
1738 }
1739
1740 /*
1741 * Peel the entry (if possible) and return its new peel_status. If
1742 * repeel is true, re-peel the entry even if there is an old peeled
1743 * value that is already stored in it.
1744 *
1745 * It is OK to call this function with a packed reference entry that
1746 * might be stale and might even refer to an object that has since
1747 * been garbage-collected. In such a case, if the entry has
1748 * REF_KNOWS_PEELED then leave the status unchanged and return
1749 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1750 */
1751 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1752 {
1753 enum peel_status status;
1754
1755 if (entry->flag & REF_KNOWS_PEELED) {
1756 if (repeel) {
1757 entry->flag &= ~REF_KNOWS_PEELED;
1758 hashclr(entry->u.value.peeled);
1759 } else {
1760 return is_null_sha1(entry->u.value.peeled) ?
1761 PEEL_NON_TAG : PEEL_PEELED;
1762 }
1763 }
1764 if (entry->flag & REF_ISBROKEN)
1765 return PEEL_BROKEN;
1766 if (entry->flag & REF_ISSYMREF)
1767 return PEEL_IS_SYMREF;
1768
1769 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1770 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1771 entry->flag |= REF_KNOWS_PEELED;
1772 return status;
1773 }
1774
1775 int peel_ref(const char *refname, unsigned char *sha1)
1776 {
1777 int flag;
1778 unsigned char base[20];
1779
1780 if (current_ref && (current_ref->name == refname
1781 || !strcmp(current_ref->name, refname))) {
1782 if (peel_entry(current_ref, 0))
1783 return -1;
1784 hashcpy(sha1, current_ref->u.value.peeled);
1785 return 0;
1786 }
1787
1788 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1789 return -1;
1790
1791 /*
1792 * If the reference is packed, read its ref_entry from the
1793 * cache in the hope that we already know its peeled value.
1794 * We only try this optimization on packed references because
1795 * (a) forcing the filling of the loose reference cache could
1796 * be expensive and (b) loose references anyway usually do not
1797 * have REF_KNOWS_PEELED.
1798 */
1799 if (flag & REF_ISPACKED) {
1800 struct ref_entry *r = get_packed_ref(refname);
1801 if (r) {
1802 if (peel_entry(r, 0))
1803 return -1;
1804 hashcpy(sha1, r->u.value.peeled);
1805 return 0;
1806 }
1807 }
1808
1809 return peel_object(base, sha1);
1810 }
1811
1812 struct warn_if_dangling_data {
1813 FILE *fp;
1814 const char *refname;
1815 const struct string_list *refnames;
1816 const char *msg_fmt;
1817 };
1818
1819 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1820 int flags, void *cb_data)
1821 {
1822 struct warn_if_dangling_data *d = cb_data;
1823 const char *resolves_to;
1824 unsigned char junk[20];
1825
1826 if (!(flags & REF_ISSYMREF))
1827 return 0;
1828
1829 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1830 if (!resolves_to
1831 || (d->refname
1832 ? strcmp(resolves_to, d->refname)
1833 : !string_list_has_string(d->refnames, resolves_to))) {
1834 return 0;
1835 }
1836
1837 fprintf(d->fp, d->msg_fmt, refname);
1838 fputc('\n', d->fp);
1839 return 0;
1840 }
1841
1842 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1843 {
1844 struct warn_if_dangling_data data;
1845
1846 data.fp = fp;
1847 data.refname = refname;
1848 data.refnames = NULL;
1849 data.msg_fmt = msg_fmt;
1850 for_each_rawref(warn_if_dangling_symref, &data);
1851 }
1852
1853 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1854 {
1855 struct warn_if_dangling_data data;
1856
1857 data.fp = fp;
1858 data.refname = NULL;
1859 data.refnames = refnames;
1860 data.msg_fmt = msg_fmt;
1861 for_each_rawref(warn_if_dangling_symref, &data);
1862 }
1863
1864 /*
1865 * Call fn for each reference in the specified ref_cache, omitting
1866 * references not in the containing_dir of base. fn is called for all
1867 * references, including broken ones. If fn ever returns a non-zero
1868 * value, stop the iteration and return that value; otherwise, return
1869 * 0.
1870 */
1871 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1872 each_ref_entry_fn fn, void *cb_data)
1873 {
1874 struct packed_ref_cache *packed_ref_cache;
1875 struct ref_dir *loose_dir;
1876 struct ref_dir *packed_dir;
1877 int retval = 0;
1878
1879 /*
1880 * We must make sure that all loose refs are read before accessing the
1881 * packed-refs file; this avoids a race condition in which loose refs
1882 * are migrated to the packed-refs file by a simultaneous process, but
1883 * our in-memory view is from before the migration. get_packed_ref_cache()
1884 * takes care of making sure our view is up to date with what is on
1885 * disk.
1886 */
1887 loose_dir = get_loose_refs(refs);
1888 if (base && *base) {
1889 loose_dir = find_containing_dir(loose_dir, base, 0);
1890 }
1891 if (loose_dir)
1892 prime_ref_dir(loose_dir);
1893
1894 packed_ref_cache = get_packed_ref_cache(refs);
1895 acquire_packed_ref_cache(packed_ref_cache);
1896 packed_dir = get_packed_ref_dir(packed_ref_cache);
1897 if (base && *base) {
1898 packed_dir = find_containing_dir(packed_dir, base, 0);
1899 }
1900
1901 if (packed_dir && loose_dir) {
1902 sort_ref_dir(packed_dir);
1903 sort_ref_dir(loose_dir);
1904 retval = do_for_each_entry_in_dirs(
1905 packed_dir, loose_dir, fn, cb_data);
1906 } else if (packed_dir) {
1907 sort_ref_dir(packed_dir);
1908 retval = do_for_each_entry_in_dir(
1909 packed_dir, 0, fn, cb_data);
1910 } else if (loose_dir) {
1911 sort_ref_dir(loose_dir);
1912 retval = do_for_each_entry_in_dir(
1913 loose_dir, 0, fn, cb_data);
1914 }
1915
1916 release_packed_ref_cache(packed_ref_cache);
1917 return retval;
1918 }
1919
1920 /*
1921 * Call fn for each reference in the specified ref_cache for which the
1922 * refname begins with base. If trim is non-zero, then trim that many
1923 * characters off the beginning of each refname before passing the
1924 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1925 * broken references in the iteration. If fn ever returns a non-zero
1926 * value, stop the iteration and return that value; otherwise, return
1927 * 0.
1928 */
1929 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1930 each_ref_fn fn, int trim, int flags, void *cb_data)
1931 {
1932 struct ref_entry_cb data;
1933 data.base = base;
1934 data.trim = trim;
1935 data.flags = flags;
1936 data.fn = fn;
1937 data.cb_data = cb_data;
1938
1939 if (ref_paranoia < 0)
1940 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1941 if (ref_paranoia)
1942 data.flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1943
1944 return do_for_each_entry(refs, base, do_one_ref, &data);
1945 }
1946
1947 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1948 {
1949 unsigned char sha1[20];
1950 int flag;
1951
1952 if (submodule) {
1953 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1954 return fn("HEAD", sha1, 0, cb_data);
1955
1956 return 0;
1957 }
1958
1959 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
1960 return fn("HEAD", sha1, flag, cb_data);
1961
1962 return 0;
1963 }
1964
1965 int head_ref(each_ref_fn fn, void *cb_data)
1966 {
1967 return do_head_ref(NULL, fn, cb_data);
1968 }
1969
1970 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1971 {
1972 return do_head_ref(submodule, fn, cb_data);
1973 }
1974
1975 int for_each_ref(each_ref_fn fn, void *cb_data)
1976 {
1977 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1978 }
1979
1980 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1981 {
1982 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1983 }
1984
1985 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1986 {
1987 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1988 }
1989
1990 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1991 each_ref_fn fn, void *cb_data)
1992 {
1993 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1994 }
1995
1996 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1997 {
1998 return for_each_ref_in("refs/tags/", fn, cb_data);
1999 }
2000
2001 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2002 {
2003 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
2004 }
2005
2006 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
2007 {
2008 return for_each_ref_in("refs/heads/", fn, cb_data);
2009 }
2010
2011 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2012 {
2013 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
2014 }
2015
2016 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
2017 {
2018 return for_each_ref_in("refs/remotes/", fn, cb_data);
2019 }
2020
2021 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2022 {
2023 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2024 }
2025
2026 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2027 {
2028 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2029 }
2030
2031 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2032 {
2033 struct strbuf buf = STRBUF_INIT;
2034 int ret = 0;
2035 unsigned char sha1[20];
2036 int flag;
2037
2038 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2039 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2040 ret = fn(buf.buf, sha1, flag, cb_data);
2041 strbuf_release(&buf);
2042
2043 return ret;
2044 }
2045
2046 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2047 {
2048 struct strbuf buf = STRBUF_INIT;
2049 int ret;
2050 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2051 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2052 strbuf_release(&buf);
2053 return ret;
2054 }
2055
2056 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2057 const char *prefix, void *cb_data)
2058 {
2059 struct strbuf real_pattern = STRBUF_INIT;
2060 struct ref_filter filter;
2061 int ret;
2062
2063 if (!prefix && !starts_with(pattern, "refs/"))
2064 strbuf_addstr(&real_pattern, "refs/");
2065 else if (prefix)
2066 strbuf_addstr(&real_pattern, prefix);
2067 strbuf_addstr(&real_pattern, pattern);
2068
2069 if (!has_glob_specials(pattern)) {
2070 /* Append implied '/' '*' if not present. */
2071 if (real_pattern.buf[real_pattern.len - 1] != '/')
2072 strbuf_addch(&real_pattern, '/');
2073 /* No need to check for '*', there is none. */
2074 strbuf_addch(&real_pattern, '*');
2075 }
2076
2077 filter.pattern = real_pattern.buf;
2078 filter.fn = fn;
2079 filter.cb_data = cb_data;
2080 ret = for_each_ref(filter_refs, &filter);
2081
2082 strbuf_release(&real_pattern);
2083 return ret;
2084 }
2085
2086 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2087 {
2088 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2089 }
2090
2091 int for_each_rawref(each_ref_fn fn, void *cb_data)
2092 {
2093 return do_for_each_ref(&ref_cache, "", fn, 0,
2094 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2095 }
2096
2097 const char *prettify_refname(const char *name)
2098 {
2099 return name + (
2100 starts_with(name, "refs/heads/") ? 11 :
2101 starts_with(name, "refs/tags/") ? 10 :
2102 starts_with(name, "refs/remotes/") ? 13 :
2103 0);
2104 }
2105
2106 static const char *ref_rev_parse_rules[] = {
2107 "%.*s",
2108 "refs/%.*s",
2109 "refs/tags/%.*s",
2110 "refs/heads/%.*s",
2111 "refs/remotes/%.*s",
2112 "refs/remotes/%.*s/HEAD",
2113 NULL
2114 };
2115
2116 int refname_match(const char *abbrev_name, const char *full_name)
2117 {
2118 const char **p;
2119 const int abbrev_name_len = strlen(abbrev_name);
2120
2121 for (p = ref_rev_parse_rules; *p; p++) {
2122 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2123 return 1;
2124 }
2125 }
2126
2127 return 0;
2128 }
2129
2130 static void unlock_ref(struct ref_lock *lock)
2131 {
2132 /* Do not free lock->lk -- atexit() still looks at them */
2133 if (lock->lk)
2134 rollback_lock_file(lock->lk);
2135 free(lock->ref_name);
2136 free(lock->orig_ref_name);
2137 free(lock);
2138 }
2139
2140 /* This function should make sure errno is meaningful on error */
2141 static struct ref_lock *verify_lock(struct ref_lock *lock,
2142 const unsigned char *old_sha1, int mustexist)
2143 {
2144 if (read_ref_full(lock->ref_name,
2145 mustexist ? RESOLVE_REF_READING : 0,
2146 lock->old_sha1, NULL)) {
2147 int save_errno = errno;
2148 error("Can't verify ref %s", lock->ref_name);
2149 unlock_ref(lock);
2150 errno = save_errno;
2151 return NULL;
2152 }
2153 if (hashcmp(lock->old_sha1, old_sha1)) {
2154 error("Ref %s is at %s but expected %s", lock->ref_name,
2155 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2156 unlock_ref(lock);
2157 errno = EBUSY;
2158 return NULL;
2159 }
2160 return lock;
2161 }
2162
2163 static int remove_empty_directories(const char *file)
2164 {
2165 /* we want to create a file but there is a directory there;
2166 * if that is an empty directory (or a directory that contains
2167 * only empty directories), remove them.
2168 */
2169 struct strbuf path;
2170 int result, save_errno;
2171
2172 strbuf_init(&path, 20);
2173 strbuf_addstr(&path, file);
2174
2175 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2176 save_errno = errno;
2177
2178 strbuf_release(&path);
2179 errno = save_errno;
2180
2181 return result;
2182 }
2183
2184 /*
2185 * *string and *len will only be substituted, and *string returned (for
2186 * later free()ing) if the string passed in is a magic short-hand form
2187 * to name a branch.
2188 */
2189 static char *substitute_branch_name(const char **string, int *len)
2190 {
2191 struct strbuf buf = STRBUF_INIT;
2192 int ret = interpret_branch_name(*string, *len, &buf);
2193
2194 if (ret == *len) {
2195 size_t size;
2196 *string = strbuf_detach(&buf, &size);
2197 *len = size;
2198 return (char *)*string;
2199 }
2200
2201 return NULL;
2202 }
2203
2204 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2205 {
2206 char *last_branch = substitute_branch_name(&str, &len);
2207 const char **p, *r;
2208 int refs_found = 0;
2209
2210 *ref = NULL;
2211 for (p = ref_rev_parse_rules; *p; p++) {
2212 char fullref[PATH_MAX];
2213 unsigned char sha1_from_ref[20];
2214 unsigned char *this_result;
2215 int flag;
2216
2217 this_result = refs_found ? sha1_from_ref : sha1;
2218 mksnpath(fullref, sizeof(fullref), *p, len, str);
2219 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2220 this_result, &flag);
2221 if (r) {
2222 if (!refs_found++)
2223 *ref = xstrdup(r);
2224 if (!warn_ambiguous_refs)
2225 break;
2226 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2227 warning("ignoring dangling symref %s.", fullref);
2228 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2229 warning("ignoring broken ref %s.", fullref);
2230 }
2231 }
2232 free(last_branch);
2233 return refs_found;
2234 }
2235
2236 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2237 {
2238 char *last_branch = substitute_branch_name(&str, &len);
2239 const char **p;
2240 int logs_found = 0;
2241
2242 *log = NULL;
2243 for (p = ref_rev_parse_rules; *p; p++) {
2244 unsigned char hash[20];
2245 char path[PATH_MAX];
2246 const char *ref, *it;
2247
2248 mksnpath(path, sizeof(path), *p, len, str);
2249 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2250 hash, NULL);
2251 if (!ref)
2252 continue;
2253 if (reflog_exists(path))
2254 it = path;
2255 else if (strcmp(ref, path) && reflog_exists(ref))
2256 it = ref;
2257 else
2258 continue;
2259 if (!logs_found++) {
2260 *log = xstrdup(it);
2261 hashcpy(sha1, hash);
2262 }
2263 if (!warn_ambiguous_refs)
2264 break;
2265 }
2266 free(last_branch);
2267 return logs_found;
2268 }
2269
2270 /*
2271 * Locks a ref returning the lock on success and NULL on failure.
2272 * On failure errno is set to something meaningful.
2273 */
2274 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2275 const unsigned char *old_sha1,
2276 const struct string_list *skip,
2277 unsigned int flags, int *type_p)
2278 {
2279 char *ref_file;
2280 const char *orig_refname = refname;
2281 struct ref_lock *lock;
2282 int last_errno = 0;
2283 int type, lflags;
2284 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2285 int resolve_flags = 0;
2286 int attempts_remaining = 3;
2287
2288 lock = xcalloc(1, sizeof(struct ref_lock));
2289 lock->lock_fd = -1;
2290
2291 if (mustexist)
2292 resolve_flags |= RESOLVE_REF_READING;
2293 if (flags & REF_DELETING) {
2294 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2295 if (flags & REF_NODEREF)
2296 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2297 }
2298
2299 refname = resolve_ref_unsafe(refname, resolve_flags,
2300 lock->old_sha1, &type);
2301 if (!refname && errno == EISDIR) {
2302 /* we are trying to lock foo but we used to
2303 * have foo/bar which now does not exist;
2304 * it is normal for the empty directory 'foo'
2305 * to remain.
2306 */
2307 ref_file = git_path("%s", orig_refname);
2308 if (remove_empty_directories(ref_file)) {
2309 last_errno = errno;
2310 error("there are still refs under '%s'", orig_refname);
2311 goto error_return;
2312 }
2313 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2314 lock->old_sha1, &type);
2315 }
2316 if (type_p)
2317 *type_p = type;
2318 if (!refname) {
2319 last_errno = errno;
2320 error("unable to resolve reference %s: %s",
2321 orig_refname, strerror(errno));
2322 goto error_return;
2323 }
2324 /*
2325 * If the ref did not exist and we are creating it, make sure
2326 * there is no existing packed ref whose name begins with our
2327 * refname, nor a packed ref whose name is a proper prefix of
2328 * our refname.
2329 */
2330 if (is_null_sha1(lock->old_sha1) &&
2331 !is_refname_available(refname, skip, get_packed_refs(&ref_cache))) {
2332 last_errno = ENOTDIR;
2333 goto error_return;
2334 }
2335
2336 lock->lk = xcalloc(1, sizeof(struct lock_file));
2337
2338 lflags = 0;
2339 if (flags & REF_NODEREF) {
2340 refname = orig_refname;
2341 lflags |= LOCK_NO_DEREF;
2342 }
2343 lock->ref_name = xstrdup(refname);
2344 lock->orig_ref_name = xstrdup(orig_refname);
2345 ref_file = git_path("%s", refname);
2346
2347 retry:
2348 switch (safe_create_leading_directories(ref_file)) {
2349 case SCLD_OK:
2350 break; /* success */
2351 case SCLD_VANISHED:
2352 if (--attempts_remaining > 0)
2353 goto retry;
2354 /* fall through */
2355 default:
2356 last_errno = errno;
2357 error("unable to create directory for %s", ref_file);
2358 goto error_return;
2359 }
2360
2361 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2362 if (lock->lock_fd < 0) {
2363 last_errno = errno;
2364 if (errno == ENOENT && --attempts_remaining > 0)
2365 /*
2366 * Maybe somebody just deleted one of the
2367 * directories leading to ref_file. Try
2368 * again:
2369 */
2370 goto retry;
2371 else {
2372 struct strbuf err = STRBUF_INIT;
2373 unable_to_lock_message(ref_file, errno, &err);
2374 error("%s", err.buf);
2375 strbuf_release(&err);
2376 goto error_return;
2377 }
2378 }
2379 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2380
2381 error_return:
2382 unlock_ref(lock);
2383 errno = last_errno;
2384 return NULL;
2385 }
2386
2387 /*
2388 * Write an entry to the packed-refs file for the specified refname.
2389 * If peeled is non-NULL, write it as the entry's peeled value.
2390 */
2391 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2392 unsigned char *peeled)
2393 {
2394 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2395 if (peeled)
2396 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2397 }
2398
2399 /*
2400 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2401 */
2402 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2403 {
2404 enum peel_status peel_status = peel_entry(entry, 0);
2405
2406 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2407 error("internal error: %s is not a valid packed reference!",
2408 entry->name);
2409 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2410 peel_status == PEEL_PEELED ?
2411 entry->u.value.peeled : NULL);
2412 return 0;
2413 }
2414
2415 /* This should return a meaningful errno on failure */
2416 int lock_packed_refs(int flags)
2417 {
2418 struct packed_ref_cache *packed_ref_cache;
2419
2420 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2421 return -1;
2422 /*
2423 * Get the current packed-refs while holding the lock. If the
2424 * packed-refs file has been modified since we last read it,
2425 * this will automatically invalidate the cache and re-read
2426 * the packed-refs file.
2427 */
2428 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2429 packed_ref_cache->lock = &packlock;
2430 /* Increment the reference count to prevent it from being freed: */
2431 acquire_packed_ref_cache(packed_ref_cache);
2432 return 0;
2433 }
2434
2435 /*
2436 * Commit the packed refs changes.
2437 * On error we must make sure that errno contains a meaningful value.
2438 */
2439 int commit_packed_refs(void)
2440 {
2441 struct packed_ref_cache *packed_ref_cache =
2442 get_packed_ref_cache(&ref_cache);
2443 int error = 0;
2444 int save_errno = 0;
2445 FILE *out;
2446
2447 if (!packed_ref_cache->lock)
2448 die("internal error: packed-refs not locked");
2449
2450 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2451 if (!out)
2452 die_errno("unable to fdopen packed-refs descriptor");
2453
2454 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2455 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2456 0, write_packed_entry_fn, out);
2457
2458 if (commit_lock_file(packed_ref_cache->lock)) {
2459 save_errno = errno;
2460 error = -1;
2461 }
2462 packed_ref_cache->lock = NULL;
2463 release_packed_ref_cache(packed_ref_cache);
2464 errno = save_errno;
2465 return error;
2466 }
2467
2468 void rollback_packed_refs(void)
2469 {
2470 struct packed_ref_cache *packed_ref_cache =
2471 get_packed_ref_cache(&ref_cache);
2472
2473 if (!packed_ref_cache->lock)
2474 die("internal error: packed-refs not locked");
2475 rollback_lock_file(packed_ref_cache->lock);
2476 packed_ref_cache->lock = NULL;
2477 release_packed_ref_cache(packed_ref_cache);
2478 clear_packed_ref_cache(&ref_cache);
2479 }
2480
2481 struct ref_to_prune {
2482 struct ref_to_prune *next;
2483 unsigned char sha1[20];
2484 char name[FLEX_ARRAY];
2485 };
2486
2487 struct pack_refs_cb_data {
2488 unsigned int flags;
2489 struct ref_dir *packed_refs;
2490 struct ref_to_prune *ref_to_prune;
2491 };
2492
2493 /*
2494 * An each_ref_entry_fn that is run over loose references only. If
2495 * the loose reference can be packed, add an entry in the packed ref
2496 * cache. If the reference should be pruned, also add it to
2497 * ref_to_prune in the pack_refs_cb_data.
2498 */
2499 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2500 {
2501 struct pack_refs_cb_data *cb = cb_data;
2502 enum peel_status peel_status;
2503 struct ref_entry *packed_entry;
2504 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2505
2506 /* ALWAYS pack tags */
2507 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2508 return 0;
2509
2510 /* Do not pack symbolic or broken refs: */
2511 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2512 return 0;
2513
2514 /* Add a packed ref cache entry equivalent to the loose entry. */
2515 peel_status = peel_entry(entry, 1);
2516 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2517 die("internal error peeling reference %s (%s)",
2518 entry->name, sha1_to_hex(entry->u.value.sha1));
2519 packed_entry = find_ref(cb->packed_refs, entry->name);
2520 if (packed_entry) {
2521 /* Overwrite existing packed entry with info from loose entry */
2522 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2523 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2524 } else {
2525 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2526 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2527 add_ref(cb->packed_refs, packed_entry);
2528 }
2529 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2530
2531 /* Schedule the loose reference for pruning if requested. */
2532 if ((cb->flags & PACK_REFS_PRUNE)) {
2533 int namelen = strlen(entry->name) + 1;
2534 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2535 hashcpy(n->sha1, entry->u.value.sha1);
2536 strcpy(n->name, entry->name);
2537 n->next = cb->ref_to_prune;
2538 cb->ref_to_prune = n;
2539 }
2540 return 0;
2541 }
2542
2543 /*
2544 * Remove empty parents, but spare refs/ and immediate subdirs.
2545 * Note: munges *name.
2546 */
2547 static void try_remove_empty_parents(char *name)
2548 {
2549 char *p, *q;
2550 int i;
2551 p = name;
2552 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2553 while (*p && *p != '/')
2554 p++;
2555 /* tolerate duplicate slashes; see check_refname_format() */
2556 while (*p == '/')
2557 p++;
2558 }
2559 for (q = p; *q; q++)
2560 ;
2561 while (1) {
2562 while (q > p && *q != '/')
2563 q--;
2564 while (q > p && *(q-1) == '/')
2565 q--;
2566 if (q == p)
2567 break;
2568 *q = '\0';
2569 if (rmdir(git_path("%s", name)))
2570 break;
2571 }
2572 }
2573
2574 /* make sure nobody touched the ref, and unlink */
2575 static void prune_ref(struct ref_to_prune *r)
2576 {
2577 struct ref_transaction *transaction;
2578 struct strbuf err = STRBUF_INIT;
2579
2580 if (check_refname_format(r->name, 0))
2581 return;
2582
2583 transaction = ref_transaction_begin(&err);
2584 if (!transaction ||
2585 ref_transaction_delete(transaction, r->name, r->sha1,
2586 REF_ISPRUNING, NULL, &err) ||
2587 ref_transaction_commit(transaction, &err)) {
2588 ref_transaction_free(transaction);
2589 error("%s", err.buf);
2590 strbuf_release(&err);
2591 return;
2592 }
2593 ref_transaction_free(transaction);
2594 strbuf_release(&err);
2595 try_remove_empty_parents(r->name);
2596 }
2597
2598 static void prune_refs(struct ref_to_prune *r)
2599 {
2600 while (r) {
2601 prune_ref(r);
2602 r = r->next;
2603 }
2604 }
2605
2606 int pack_refs(unsigned int flags)
2607 {
2608 struct pack_refs_cb_data cbdata;
2609
2610 memset(&cbdata, 0, sizeof(cbdata));
2611 cbdata.flags = flags;
2612
2613 lock_packed_refs(LOCK_DIE_ON_ERROR);
2614 cbdata.packed_refs = get_packed_refs(&ref_cache);
2615
2616 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2617 pack_if_possible_fn, &cbdata);
2618
2619 if (commit_packed_refs())
2620 die_errno("unable to overwrite old ref-pack file");
2621
2622 prune_refs(cbdata.ref_to_prune);
2623 return 0;
2624 }
2625
2626 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2627 {
2628 struct ref_dir *packed;
2629 struct string_list_item *refname;
2630 int ret, needs_repacking = 0, removed = 0;
2631
2632 assert(err);
2633
2634 /* Look for a packed ref */
2635 for_each_string_list_item(refname, refnames) {
2636 if (get_packed_ref(refname->string)) {
2637 needs_repacking = 1;
2638 break;
2639 }
2640 }
2641
2642 /* Avoid locking if we have nothing to do */
2643 if (!needs_repacking)
2644 return 0; /* no refname exists in packed refs */
2645
2646 if (lock_packed_refs(0)) {
2647 unable_to_lock_message(git_path("packed-refs"), errno, err);
2648 return -1;
2649 }
2650 packed = get_packed_refs(&ref_cache);
2651
2652 /* Remove refnames from the cache */
2653 for_each_string_list_item(refname, refnames)
2654 if (remove_entry(packed, refname->string) != -1)
2655 removed = 1;
2656 if (!removed) {
2657 /*
2658 * All packed entries disappeared while we were
2659 * acquiring the lock.
2660 */
2661 rollback_packed_refs();
2662 return 0;
2663 }
2664
2665 /* Write what remains */
2666 ret = commit_packed_refs();
2667 if (ret)
2668 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2669 strerror(errno));
2670 return ret;
2671 }
2672
2673 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2674 {
2675 assert(err);
2676
2677 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2678 /*
2679 * loose. The loose file name is the same as the
2680 * lockfile name, minus ".lock":
2681 */
2682 char *loose_filename = get_locked_file_path(lock->lk);
2683 int res = unlink_or_msg(loose_filename, err);
2684 free(loose_filename);
2685 if (res)
2686 return 1;
2687 }
2688 return 0;
2689 }
2690
2691 int delete_ref(const char *refname, const unsigned char *sha1, unsigned int flags)
2692 {
2693 struct ref_transaction *transaction;
2694 struct strbuf err = STRBUF_INIT;
2695
2696 transaction = ref_transaction_begin(&err);
2697 if (!transaction ||
2698 ref_transaction_delete(transaction, refname,
2699 (sha1 && !is_null_sha1(sha1)) ? sha1 : NULL,
2700 flags, NULL, &err) ||
2701 ref_transaction_commit(transaction, &err)) {
2702 error("%s", err.buf);
2703 ref_transaction_free(transaction);
2704 strbuf_release(&err);
2705 return 1;
2706 }
2707 ref_transaction_free(transaction);
2708 strbuf_release(&err);
2709 return 0;
2710 }
2711
2712 /*
2713 * People using contrib's git-new-workdir have .git/logs/refs ->
2714 * /some/other/path/.git/logs/refs, and that may live on another device.
2715 *
2716 * IOW, to avoid cross device rename errors, the temporary renamed log must
2717 * live into logs/refs.
2718 */
2719 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2720
2721 static int rename_tmp_log(const char *newrefname)
2722 {
2723 int attempts_remaining = 4;
2724
2725 retry:
2726 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2727 case SCLD_OK:
2728 break; /* success */
2729 case SCLD_VANISHED:
2730 if (--attempts_remaining > 0)
2731 goto retry;
2732 /* fall through */
2733 default:
2734 error("unable to create directory for %s", newrefname);
2735 return -1;
2736 }
2737
2738 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2739 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2740 /*
2741 * rename(a, b) when b is an existing
2742 * directory ought to result in ISDIR, but
2743 * Solaris 5.8 gives ENOTDIR. Sheesh.
2744 */
2745 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2746 error("Directory not empty: logs/%s", newrefname);
2747 return -1;
2748 }
2749 goto retry;
2750 } else if (errno == ENOENT && --attempts_remaining > 0) {
2751 /*
2752 * Maybe another process just deleted one of
2753 * the directories in the path to newrefname.
2754 * Try again from the beginning.
2755 */
2756 goto retry;
2757 } else {
2758 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2759 newrefname, strerror(errno));
2760 return -1;
2761 }
2762 }
2763 return 0;
2764 }
2765
2766 static int rename_ref_available(const char *oldname, const char *newname)
2767 {
2768 struct string_list skip = STRING_LIST_INIT_NODUP;
2769 int ret;
2770
2771 string_list_insert(&skip, oldname);
2772 ret = is_refname_available(newname, &skip, get_packed_refs(&ref_cache))
2773 && is_refname_available(newname, &skip, get_loose_refs(&ref_cache));
2774 string_list_clear(&skip, 0);
2775 return ret;
2776 }
2777
2778 static int write_ref_sha1(struct ref_lock *lock, const unsigned char *sha1,
2779 const char *logmsg);
2780
2781 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2782 {
2783 unsigned char sha1[20], orig_sha1[20];
2784 int flag = 0, logmoved = 0;
2785 struct ref_lock *lock;
2786 struct stat loginfo;
2787 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2788 const char *symref = NULL;
2789
2790 if (log && S_ISLNK(loginfo.st_mode))
2791 return error("reflog for %s is a symlink", oldrefname);
2792
2793 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2794 orig_sha1, &flag);
2795 if (flag & REF_ISSYMREF)
2796 return error("refname %s is a symbolic ref, renaming it is not supported",
2797 oldrefname);
2798 if (!symref)
2799 return error("refname %s not found", oldrefname);
2800
2801 if (!rename_ref_available(oldrefname, newrefname))
2802 return 1;
2803
2804 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2805 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2806 oldrefname, strerror(errno));
2807
2808 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2809 error("unable to delete old %s", oldrefname);
2810 goto rollback;
2811 }
2812
2813 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2814 delete_ref(newrefname, sha1, REF_NODEREF)) {
2815 if (errno==EISDIR) {
2816 if (remove_empty_directories(git_path("%s", newrefname))) {
2817 error("Directory not empty: %s", newrefname);
2818 goto rollback;
2819 }
2820 } else {
2821 error("unable to delete existing %s", newrefname);
2822 goto rollback;
2823 }
2824 }
2825
2826 if (log && rename_tmp_log(newrefname))
2827 goto rollback;
2828
2829 logmoved = log;
2830
2831 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, 0, NULL);
2832 if (!lock) {
2833 error("unable to lock %s for update", newrefname);
2834 goto rollback;
2835 }
2836 hashcpy(lock->old_sha1, orig_sha1);
2837 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2838 error("unable to write current sha1 into %s", newrefname);
2839 goto rollback;
2840 }
2841
2842 return 0;
2843
2844 rollback:
2845 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, 0, NULL);
2846 if (!lock) {
2847 error("unable to lock %s for rollback", oldrefname);
2848 goto rollbacklog;
2849 }
2850
2851 flag = log_all_ref_updates;
2852 log_all_ref_updates = 0;
2853 if (write_ref_sha1(lock, orig_sha1, NULL))
2854 error("unable to write current sha1 into %s", oldrefname);
2855 log_all_ref_updates = flag;
2856
2857 rollbacklog:
2858 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2859 error("unable to restore logfile %s from %s: %s",
2860 oldrefname, newrefname, strerror(errno));
2861 if (!logmoved && log &&
2862 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2863 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2864 oldrefname, strerror(errno));
2865
2866 return 1;
2867 }
2868
2869 static int close_ref(struct ref_lock *lock)
2870 {
2871 if (close_lock_file(lock->lk))
2872 return -1;
2873 lock->lock_fd = -1;
2874 return 0;
2875 }
2876
2877 static int commit_ref(struct ref_lock *lock)
2878 {
2879 if (commit_lock_file(lock->lk))
2880 return -1;
2881 lock->lock_fd = -1;
2882 return 0;
2883 }
2884
2885 /*
2886 * copy the reflog message msg to buf, which has been allocated sufficiently
2887 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2888 * because reflog file is one line per entry.
2889 */
2890 static int copy_msg(char *buf, const char *msg)
2891 {
2892 char *cp = buf;
2893 char c;
2894 int wasspace = 1;
2895
2896 *cp++ = '\t';
2897 while ((c = *msg++)) {
2898 if (wasspace && isspace(c))
2899 continue;
2900 wasspace = isspace(c);
2901 if (wasspace)
2902 c = ' ';
2903 *cp++ = c;
2904 }
2905 while (buf < cp && isspace(cp[-1]))
2906 cp--;
2907 *cp++ = '\n';
2908 return cp - buf;
2909 }
2910
2911 /* This function must set a meaningful errno on failure */
2912 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2913 {
2914 int logfd, oflags = O_APPEND | O_WRONLY;
2915
2916 git_snpath(logfile, bufsize, "logs/%s", refname);
2917 if (log_all_ref_updates &&
2918 (starts_with(refname, "refs/heads/") ||
2919 starts_with(refname, "refs/remotes/") ||
2920 starts_with(refname, "refs/notes/") ||
2921 !strcmp(refname, "HEAD"))) {
2922 if (safe_create_leading_directories(logfile) < 0) {
2923 int save_errno = errno;
2924 error("unable to create directory for %s", logfile);
2925 errno = save_errno;
2926 return -1;
2927 }
2928 oflags |= O_CREAT;
2929 }
2930
2931 logfd = open(logfile, oflags, 0666);
2932 if (logfd < 0) {
2933 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2934 return 0;
2935
2936 if (errno == EISDIR) {
2937 if (remove_empty_directories(logfile)) {
2938 int save_errno = errno;
2939 error("There are still logs under '%s'",
2940 logfile);
2941 errno = save_errno;
2942 return -1;
2943 }
2944 logfd = open(logfile, oflags, 0666);
2945 }
2946
2947 if (logfd < 0) {
2948 int save_errno = errno;
2949 error("Unable to append to %s: %s", logfile,
2950 strerror(errno));
2951 errno = save_errno;
2952 return -1;
2953 }
2954 }
2955
2956 adjust_shared_perm(logfile);
2957 close(logfd);
2958 return 0;
2959 }
2960
2961 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2962 const unsigned char *new_sha1,
2963 const char *committer, const char *msg)
2964 {
2965 int msglen, written;
2966 unsigned maxlen, len;
2967 char *logrec;
2968
2969 msglen = msg ? strlen(msg) : 0;
2970 maxlen = strlen(committer) + msglen + 100;
2971 logrec = xmalloc(maxlen);
2972 len = sprintf(logrec, "%s %s %s\n",
2973 sha1_to_hex(old_sha1),
2974 sha1_to_hex(new_sha1),
2975 committer);
2976 if (msglen)
2977 len += copy_msg(logrec + len - 1, msg) - 1;
2978
2979 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2980 free(logrec);
2981 if (written != len)
2982 return -1;
2983
2984 return 0;
2985 }
2986
2987 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2988 const unsigned char *new_sha1, const char *msg)
2989 {
2990 int logfd, result, oflags = O_APPEND | O_WRONLY;
2991 char log_file[PATH_MAX];
2992
2993 if (log_all_ref_updates < 0)
2994 log_all_ref_updates = !is_bare_repository();
2995
2996 result = log_ref_setup(refname, log_file, sizeof(log_file));
2997 if (result)
2998 return result;
2999
3000 logfd = open(log_file, oflags);
3001 if (logfd < 0)
3002 return 0;
3003 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3004 git_committer_info(0), msg);
3005 if (result) {
3006 int save_errno = errno;
3007 close(logfd);
3008 error("Unable to append to %s", log_file);
3009 errno = save_errno;
3010 return -1;
3011 }
3012 if (close(logfd)) {
3013 int save_errno = errno;
3014 error("Unable to append to %s", log_file);
3015 errno = save_errno;
3016 return -1;
3017 }
3018 return 0;
3019 }
3020
3021 int is_branch(const char *refname)
3022 {
3023 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3024 }
3025
3026 /*
3027 * Write sha1 into the ref specified by the lock. Make sure that errno
3028 * is sane on error.
3029 */
3030 static int write_ref_sha1(struct ref_lock *lock,
3031 const unsigned char *sha1, const char *logmsg)
3032 {
3033 static char term = '\n';
3034 struct object *o;
3035
3036 o = parse_object(sha1);
3037 if (!o) {
3038 error("Trying to write ref %s with nonexistent object %s",
3039 lock->ref_name, sha1_to_hex(sha1));
3040 unlock_ref(lock);
3041 errno = EINVAL;
3042 return -1;
3043 }
3044 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3045 error("Trying to write non-commit object %s to branch %s",
3046 sha1_to_hex(sha1), lock->ref_name);
3047 unlock_ref(lock);
3048 errno = EINVAL;
3049 return -1;
3050 }
3051 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3052 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3053 close_ref(lock) < 0) {
3054 int save_errno = errno;
3055 error("Couldn't write %s", lock->lk->filename.buf);
3056 unlock_ref(lock);
3057 errno = save_errno;
3058 return -1;
3059 }
3060 clear_loose_ref_cache(&ref_cache);
3061 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3062 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3063 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3064 unlock_ref(lock);
3065 return -1;
3066 }
3067 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3068 /*
3069 * Special hack: If a branch is updated directly and HEAD
3070 * points to it (may happen on the remote side of a push
3071 * for example) then logically the HEAD reflog should be
3072 * updated too.
3073 * A generic solution implies reverse symref information,
3074 * but finding all symrefs pointing to the given branch
3075 * would be rather costly for this rare event (the direct
3076 * update of a branch) to be worth it. So let's cheat and
3077 * check with HEAD only which should cover 99% of all usage
3078 * scenarios (even 100% of the default ones).
3079 */
3080 unsigned char head_sha1[20];
3081 int head_flag;
3082 const char *head_ref;
3083 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3084 head_sha1, &head_flag);
3085 if (head_ref && (head_flag & REF_ISSYMREF) &&
3086 !strcmp(head_ref, lock->ref_name))
3087 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3088 }
3089 if (commit_ref(lock)) {
3090 error("Couldn't set %s", lock->ref_name);
3091 unlock_ref(lock);
3092 return -1;
3093 }
3094 unlock_ref(lock);
3095 return 0;
3096 }
3097
3098 int create_symref(const char *ref_target, const char *refs_heads_master,
3099 const char *logmsg)
3100 {
3101 const char *lockpath;
3102 char ref[1000];
3103 int fd, len, written;
3104 char *git_HEAD = git_pathdup("%s", ref_target);
3105 unsigned char old_sha1[20], new_sha1[20];
3106
3107 if (logmsg && read_ref(ref_target, old_sha1))
3108 hashclr(old_sha1);
3109
3110 if (safe_create_leading_directories(git_HEAD) < 0)
3111 return error("unable to create directory for %s", git_HEAD);
3112
3113 #ifndef NO_SYMLINK_HEAD
3114 if (prefer_symlink_refs) {
3115 unlink(git_HEAD);
3116 if (!symlink(refs_heads_master, git_HEAD))
3117 goto done;
3118 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3119 }
3120 #endif
3121
3122 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3123 if (sizeof(ref) <= len) {
3124 error("refname too long: %s", refs_heads_master);
3125 goto error_free_return;
3126 }
3127 lockpath = mkpath("%s.lock", git_HEAD);
3128 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3129 if (fd < 0) {
3130 error("Unable to open %s for writing", lockpath);
3131 goto error_free_return;
3132 }
3133 written = write_in_full(fd, ref, len);
3134 if (close(fd) != 0 || written != len) {
3135 error("Unable to write to %s", lockpath);
3136 goto error_unlink_return;
3137 }
3138 if (rename(lockpath, git_HEAD) < 0) {
3139 error("Unable to create %s", git_HEAD);
3140 goto error_unlink_return;
3141 }
3142 if (adjust_shared_perm(git_HEAD)) {
3143 error("Unable to fix permissions on %s", lockpath);
3144 error_unlink_return:
3145 unlink_or_warn(lockpath);
3146 error_free_return:
3147 free(git_HEAD);
3148 return -1;
3149 }
3150
3151 #ifndef NO_SYMLINK_HEAD
3152 done:
3153 #endif
3154 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3155 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3156
3157 free(git_HEAD);
3158 return 0;
3159 }
3160
3161 struct read_ref_at_cb {
3162 const char *refname;
3163 unsigned long at_time;
3164 int cnt;
3165 int reccnt;
3166 unsigned char *sha1;
3167 int found_it;
3168
3169 unsigned char osha1[20];
3170 unsigned char nsha1[20];
3171 int tz;
3172 unsigned long date;
3173 char **msg;
3174 unsigned long *cutoff_time;
3175 int *cutoff_tz;
3176 int *cutoff_cnt;
3177 };
3178
3179 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3180 const char *email, unsigned long timestamp, int tz,
3181 const char *message, void *cb_data)
3182 {
3183 struct read_ref_at_cb *cb = cb_data;
3184
3185 cb->reccnt++;
3186 cb->tz = tz;
3187 cb->date = timestamp;
3188
3189 if (timestamp <= cb->at_time || cb->cnt == 0) {
3190 if (cb->msg)
3191 *cb->msg = xstrdup(message);
3192 if (cb->cutoff_time)
3193 *cb->cutoff_time = timestamp;
3194 if (cb->cutoff_tz)
3195 *cb->cutoff_tz = tz;
3196 if (cb->cutoff_cnt)
3197 *cb->cutoff_cnt = cb->reccnt - 1;
3198 /*
3199 * we have not yet updated cb->[n|o]sha1 so they still
3200 * hold the values for the previous record.
3201 */
3202 if (!is_null_sha1(cb->osha1)) {
3203 hashcpy(cb->sha1, nsha1);
3204 if (hashcmp(cb->osha1, nsha1))
3205 warning("Log for ref %s has gap after %s.",
3206 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3207 }
3208 else if (cb->date == cb->at_time)
3209 hashcpy(cb->sha1, nsha1);
3210 else if (hashcmp(nsha1, cb->sha1))
3211 warning("Log for ref %s unexpectedly ended on %s.",
3212 cb->refname, show_date(cb->date, cb->tz,
3213 DATE_RFC2822));
3214 hashcpy(cb->osha1, osha1);
3215 hashcpy(cb->nsha1, nsha1);
3216 cb->found_it = 1;
3217 return 1;
3218 }
3219 hashcpy(cb->osha1, osha1);
3220 hashcpy(cb->nsha1, nsha1);
3221 if (cb->cnt > 0)
3222 cb->cnt--;
3223 return 0;
3224 }
3225
3226 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3227 const char *email, unsigned long timestamp,
3228 int tz, const char *message, void *cb_data)
3229 {
3230 struct read_ref_at_cb *cb = cb_data;
3231
3232 if (cb->msg)
3233 *cb->msg = xstrdup(message);
3234 if (cb->cutoff_time)
3235 *cb->cutoff_time = timestamp;
3236 if (cb->cutoff_tz)
3237 *cb->cutoff_tz = tz;
3238 if (cb->cutoff_cnt)
3239 *cb->cutoff_cnt = cb->reccnt;
3240 hashcpy(cb->sha1, osha1);
3241 if (is_null_sha1(cb->sha1))
3242 hashcpy(cb->sha1, nsha1);
3243 /* We just want the first entry */
3244 return 1;
3245 }
3246
3247 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3248 unsigned char *sha1, char **msg,
3249 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3250 {
3251 struct read_ref_at_cb cb;
3252
3253 memset(&cb, 0, sizeof(cb));
3254 cb.refname = refname;
3255 cb.at_time = at_time;
3256 cb.cnt = cnt;
3257 cb.msg = msg;
3258 cb.cutoff_time = cutoff_time;
3259 cb.cutoff_tz = cutoff_tz;
3260 cb.cutoff_cnt = cutoff_cnt;
3261 cb.sha1 = sha1;
3262
3263 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3264
3265 if (!cb.reccnt) {
3266 if (flags & GET_SHA1_QUIETLY)
3267 exit(128);
3268 else
3269 die("Log for %s is empty.", refname);
3270 }
3271 if (cb.found_it)
3272 return 0;
3273
3274 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3275
3276 return 1;
3277 }
3278
3279 int reflog_exists(const char *refname)
3280 {
3281 struct stat st;
3282
3283 return !lstat(git_path("logs/%s", refname), &st) &&
3284 S_ISREG(st.st_mode);
3285 }
3286
3287 int delete_reflog(const char *refname)
3288 {
3289 return remove_path(git_path("logs/%s", refname));
3290 }
3291
3292 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3293 {
3294 unsigned char osha1[20], nsha1[20];
3295 char *email_end, *message;
3296 unsigned long timestamp;
3297 int tz;
3298
3299 /* old SP new SP name <email> SP time TAB msg LF */
3300 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3301 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3302 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3303 !(email_end = strchr(sb->buf + 82, '>')) ||
3304 email_end[1] != ' ' ||
3305 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3306 !message || message[0] != ' ' ||
3307 (message[1] != '+' && message[1] != '-') ||
3308 !isdigit(message[2]) || !isdigit(message[3]) ||
3309 !isdigit(message[4]) || !isdigit(message[5]))
3310 return 0; /* corrupt? */
3311 email_end[1] = '\0';
3312 tz = strtol(message + 1, NULL, 10);
3313 if (message[6] != '\t')
3314 message += 6;
3315 else
3316 message += 7;
3317 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3318 }
3319
3320 static char *find_beginning_of_line(char *bob, char *scan)
3321 {
3322 while (bob < scan && *(--scan) != '\n')
3323 ; /* keep scanning backwards */
3324 /*
3325 * Return either beginning of the buffer, or LF at the end of
3326 * the previous line.
3327 */
3328 return scan;
3329 }
3330
3331 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3332 {
3333 struct strbuf sb = STRBUF_INIT;
3334 FILE *logfp;
3335 long pos;
3336 int ret = 0, at_tail = 1;
3337
3338 logfp = fopen(git_path("logs/%s", refname), "r");
3339 if (!logfp)
3340 return -1;
3341
3342 /* Jump to the end */
3343 if (fseek(logfp, 0, SEEK_END) < 0)
3344 return error("cannot seek back reflog for %s: %s",
3345 refname, strerror(errno));
3346 pos = ftell(logfp);
3347 while (!ret && 0 < pos) {
3348 int cnt;
3349 size_t nread;
3350 char buf[BUFSIZ];
3351 char *endp, *scanp;
3352
3353 /* Fill next block from the end */
3354 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3355 if (fseek(logfp, pos - cnt, SEEK_SET))
3356 return error("cannot seek back reflog for %s: %s",
3357 refname, strerror(errno));
3358 nread = fread(buf, cnt, 1, logfp);
3359 if (nread != 1)
3360 return error("cannot read %d bytes from reflog for %s: %s",
3361 cnt, refname, strerror(errno));
3362 pos -= cnt;
3363
3364 scanp = endp = buf + cnt;
3365 if (at_tail && scanp[-1] == '\n')
3366 /* Looking at the final LF at the end of the file */
3367 scanp--;
3368 at_tail = 0;
3369
3370 while (buf < scanp) {
3371 /*
3372 * terminating LF of the previous line, or the beginning
3373 * of the buffer.
3374 */
3375 char *bp;
3376
3377 bp = find_beginning_of_line(buf, scanp);
3378
3379 if (*bp == '\n') {
3380 /*
3381 * The newline is the end of the previous line,
3382 * so we know we have complete line starting
3383 * at (bp + 1). Prefix it onto any prior data
3384 * we collected for the line and process it.
3385 */
3386 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3387 scanp = bp;
3388 endp = bp + 1;
3389 ret = show_one_reflog_ent(&sb, fn, cb_data);
3390 strbuf_reset(&sb);
3391 if (ret)
3392 break;
3393 } else if (!pos) {
3394 /*
3395 * We are at the start of the buffer, and the
3396 * start of the file; there is no previous
3397 * line, and we have everything for this one.
3398 * Process it, and we can end the loop.
3399 */
3400 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3401 ret = show_one_reflog_ent(&sb, fn, cb_data);
3402 strbuf_reset(&sb);
3403 break;
3404 }
3405
3406 if (bp == buf) {
3407 /*
3408 * We are at the start of the buffer, and there
3409 * is more file to read backwards. Which means
3410 * we are in the middle of a line. Note that we
3411 * may get here even if *bp was a newline; that
3412 * just means we are at the exact end of the
3413 * previous line, rather than some spot in the
3414 * middle.
3415 *
3416 * Save away what we have to be combined with
3417 * the data from the next read.
3418 */
3419 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3420 break;
3421 }
3422 }
3423
3424 }
3425 if (!ret && sb.len)
3426 die("BUG: reverse reflog parser had leftover data");
3427
3428 fclose(logfp);
3429 strbuf_release(&sb);
3430 return ret;
3431 }
3432
3433 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3434 {
3435 FILE *logfp;
3436 struct strbuf sb = STRBUF_INIT;
3437 int ret = 0;
3438
3439 logfp = fopen(git_path("logs/%s", refname), "r");
3440 if (!logfp)
3441 return -1;
3442
3443 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3444 ret = show_one_reflog_ent(&sb, fn, cb_data);
3445 fclose(logfp);
3446 strbuf_release(&sb);
3447 return ret;
3448 }
3449 /*
3450 * Call fn for each reflog in the namespace indicated by name. name
3451 * must be empty or end with '/'. Name will be used as a scratch
3452 * space, but its contents will be restored before return.
3453 */
3454 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3455 {
3456 DIR *d = opendir(git_path("logs/%s", name->buf));
3457 int retval = 0;
3458 struct dirent *de;
3459 int oldlen = name->len;
3460
3461 if (!d)
3462 return name->len ? errno : 0;
3463
3464 while ((de = readdir(d)) != NULL) {
3465 struct stat st;
3466
3467 if (de->d_name[0] == '.')
3468 continue;
3469 if (ends_with(de->d_name, ".lock"))
3470 continue;
3471 strbuf_addstr(name, de->d_name);
3472 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3473 ; /* silently ignore */
3474 } else {
3475 if (S_ISDIR(st.st_mode)) {
3476 strbuf_addch(name, '/');
3477 retval = do_for_each_reflog(name, fn, cb_data);
3478 } else {
3479 unsigned char sha1[20];
3480 if (read_ref_full(name->buf, 0, sha1, NULL))
3481 retval = error("bad ref for %s", name->buf);
3482 else
3483 retval = fn(name->buf, sha1, 0, cb_data);
3484 }
3485 if (retval)
3486 break;
3487 }
3488 strbuf_setlen(name, oldlen);
3489 }
3490 closedir(d);
3491 return retval;
3492 }
3493
3494 int for_each_reflog(each_ref_fn fn, void *cb_data)
3495 {
3496 int retval;
3497 struct strbuf name;
3498 strbuf_init(&name, PATH_MAX);
3499 retval = do_for_each_reflog(&name, fn, cb_data);
3500 strbuf_release(&name);
3501 return retval;
3502 }
3503
3504 /**
3505 * Information needed for a single ref update. Set new_sha1 to the new
3506 * value or to null_sha1 to delete the ref. To check the old value
3507 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
3508 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
3509 * not exist before update.
3510 */
3511 struct ref_update {
3512 /*
3513 * If (flags & REF_HAVE_NEW), set the reference to this value:
3514 */
3515 unsigned char new_sha1[20];
3516 /*
3517 * If (flags & REF_HAVE_OLD), check that the reference
3518 * previously had this value:
3519 */
3520 unsigned char old_sha1[20];
3521 /*
3522 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
3523 * REF_DELETING, and REF_ISPRUNING:
3524 */
3525 unsigned int flags;
3526 struct ref_lock *lock;
3527 int type;
3528 char *msg;
3529 const char refname[FLEX_ARRAY];
3530 };
3531
3532 /*
3533 * Transaction states.
3534 * OPEN: The transaction is in a valid state and can accept new updates.
3535 * An OPEN transaction can be committed.
3536 * CLOSED: A closed transaction is no longer active and no other operations
3537 * than free can be used on it in this state.
3538 * A transaction can either become closed by successfully committing
3539 * an active transaction or if there is a failure while building
3540 * the transaction thus rendering it failed/inactive.
3541 */
3542 enum ref_transaction_state {
3543 REF_TRANSACTION_OPEN = 0,
3544 REF_TRANSACTION_CLOSED = 1
3545 };
3546
3547 /*
3548 * Data structure for holding a reference transaction, which can
3549 * consist of checks and updates to multiple references, carried out
3550 * as atomically as possible. This structure is opaque to callers.
3551 */
3552 struct ref_transaction {
3553 struct ref_update **updates;
3554 size_t alloc;
3555 size_t nr;
3556 enum ref_transaction_state state;
3557 };
3558
3559 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3560 {
3561 assert(err);
3562
3563 return xcalloc(1, sizeof(struct ref_transaction));
3564 }
3565
3566 void ref_transaction_free(struct ref_transaction *transaction)
3567 {
3568 int i;
3569
3570 if (!transaction)
3571 return;
3572
3573 for (i = 0; i < transaction->nr; i++) {
3574 free(transaction->updates[i]->msg);
3575 free(transaction->updates[i]);
3576 }
3577 free(transaction->updates);
3578 free(transaction);
3579 }
3580
3581 static struct ref_update *add_update(struct ref_transaction *transaction,
3582 const char *refname)
3583 {
3584 size_t len = strlen(refname);
3585 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3586
3587 strcpy((char *)update->refname, refname);
3588 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3589 transaction->updates[transaction->nr++] = update;
3590 return update;
3591 }
3592
3593 int ref_transaction_update(struct ref_transaction *transaction,
3594 const char *refname,
3595 const unsigned char *new_sha1,
3596 const unsigned char *old_sha1,
3597 unsigned int flags, const char *msg,
3598 struct strbuf *err)
3599 {
3600 struct ref_update *update;
3601
3602 assert(err);
3603
3604 if (transaction->state != REF_TRANSACTION_OPEN)
3605 die("BUG: update called for transaction that is not open");
3606
3607 if (new_sha1 && !is_null_sha1(new_sha1) &&
3608 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3609 strbuf_addf(err, "refusing to update ref with bad name %s",
3610 refname);
3611 return -1;
3612 }
3613
3614 update = add_update(transaction, refname);
3615 if (new_sha1) {
3616 hashcpy(update->new_sha1, new_sha1);
3617 flags |= REF_HAVE_NEW;
3618 }
3619 if (old_sha1) {
3620 hashcpy(update->old_sha1, old_sha1);
3621 flags |= REF_HAVE_OLD;
3622 }
3623 update->flags = flags;
3624 if (msg)
3625 update->msg = xstrdup(msg);
3626 return 0;
3627 }
3628
3629 int ref_transaction_create(struct ref_transaction *transaction,
3630 const char *refname,
3631 const unsigned char *new_sha1,
3632 unsigned int flags, const char *msg,
3633 struct strbuf *err)
3634 {
3635 if (!new_sha1 || is_null_sha1(new_sha1))
3636 die("BUG: create called without valid new_sha1");
3637 return ref_transaction_update(transaction, refname, new_sha1,
3638 null_sha1, flags, msg, err);
3639 }
3640
3641 int ref_transaction_delete(struct ref_transaction *transaction,
3642 const char *refname,
3643 const unsigned char *old_sha1,
3644 unsigned int flags, const char *msg,
3645 struct strbuf *err)
3646 {
3647 if (old_sha1 && is_null_sha1(old_sha1))
3648 die("BUG: delete called with old_sha1 set to zeros");
3649 return ref_transaction_update(transaction, refname,
3650 null_sha1, old_sha1,
3651 flags, msg, err);
3652 }
3653
3654 int ref_transaction_verify(struct ref_transaction *transaction,
3655 const char *refname,
3656 const unsigned char *old_sha1,
3657 unsigned int flags,
3658 struct strbuf *err)
3659 {
3660 if (!old_sha1)
3661 die("BUG: verify called with old_sha1 set to NULL");
3662 return ref_transaction_update(transaction, refname,
3663 NULL, old_sha1,
3664 flags, NULL, err);
3665 }
3666
3667 int update_ref(const char *msg, const char *refname,
3668 const unsigned char *new_sha1, const unsigned char *old_sha1,
3669 unsigned int flags, enum action_on_err onerr)
3670 {
3671 struct ref_transaction *t;
3672 struct strbuf err = STRBUF_INIT;
3673
3674 t = ref_transaction_begin(&err);
3675 if (!t ||
3676 ref_transaction_update(t, refname, new_sha1, old_sha1,
3677 flags, msg, &err) ||
3678 ref_transaction_commit(t, &err)) {
3679 const char *str = "update_ref failed for ref '%s': %s";
3680
3681 ref_transaction_free(t);
3682 switch (onerr) {
3683 case UPDATE_REFS_MSG_ON_ERR:
3684 error(str, refname, err.buf);
3685 break;
3686 case UPDATE_REFS_DIE_ON_ERR:
3687 die(str, refname, err.buf);
3688 break;
3689 case UPDATE_REFS_QUIET_ON_ERR:
3690 break;
3691 }
3692 strbuf_release(&err);
3693 return 1;
3694 }
3695 strbuf_release(&err);
3696 ref_transaction_free(t);
3697 return 0;
3698 }
3699
3700 static int ref_update_compare(const void *r1, const void *r2)
3701 {
3702 const struct ref_update * const *u1 = r1;
3703 const struct ref_update * const *u2 = r2;
3704 return strcmp((*u1)->refname, (*u2)->refname);
3705 }
3706
3707 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3708 struct strbuf *err)
3709 {
3710 int i;
3711
3712 assert(err);
3713
3714 for (i = 1; i < n; i++)
3715 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3716 strbuf_addf(err,
3717 "Multiple updates for ref '%s' not allowed.",
3718 updates[i]->refname);
3719 return 1;
3720 }
3721 return 0;
3722 }
3723
3724 int ref_transaction_commit(struct ref_transaction *transaction,
3725 struct strbuf *err)
3726 {
3727 int ret = 0, i;
3728 int n = transaction->nr;
3729 struct ref_update **updates = transaction->updates;
3730 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3731 struct string_list_item *ref_to_delete;
3732
3733 assert(err);
3734
3735 if (transaction->state != REF_TRANSACTION_OPEN)
3736 die("BUG: commit called for transaction that is not open");
3737
3738 if (!n) {
3739 transaction->state = REF_TRANSACTION_CLOSED;
3740 return 0;
3741 }
3742
3743 /* Copy, sort, and reject duplicate refs */
3744 qsort(updates, n, sizeof(*updates), ref_update_compare);
3745 if (ref_update_reject_duplicates(updates, n, err)) {
3746 ret = TRANSACTION_GENERIC_ERROR;
3747 goto cleanup;
3748 }
3749
3750 /* Acquire all locks while verifying old values */
3751 for (i = 0; i < n; i++) {
3752 struct ref_update *update = updates[i];
3753 unsigned int flags = update->flags;
3754
3755 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3756 flags |= REF_DELETING;
3757 update->lock = lock_ref_sha1_basic(
3758 update->refname,
3759 ((update->flags & REF_HAVE_OLD) ?
3760 update->old_sha1 : NULL),
3761 NULL,
3762 flags,
3763 &update->type);
3764 if (!update->lock) {
3765 ret = (errno == ENOTDIR)
3766 ? TRANSACTION_NAME_CONFLICT
3767 : TRANSACTION_GENERIC_ERROR;
3768 strbuf_addf(err, "Cannot lock the ref '%s'.",
3769 update->refname);
3770 goto cleanup;
3771 }
3772 }
3773
3774 /* Perform updates first so live commits remain referenced */
3775 for (i = 0; i < n; i++) {
3776 struct ref_update *update = updates[i];
3777 int flags = update->flags;
3778
3779 if ((flags & REF_HAVE_NEW) && !is_null_sha1(update->new_sha1)) {
3780 int overwriting_symref = ((update->type & REF_ISSYMREF) &&
3781 (update->flags & REF_NODEREF));
3782
3783 if (!overwriting_symref
3784 && !hashcmp(update->lock->old_sha1, update->new_sha1)) {
3785 /*
3786 * The reference already has the desired
3787 * value, so we don't need to write it.
3788 */
3789 unlock_ref(update->lock);
3790 update->lock = NULL;
3791 } else if (write_ref_sha1(update->lock, update->new_sha1,
3792 update->msg)) {
3793 update->lock = NULL; /* freed by write_ref_sha1 */
3794 strbuf_addf(err, "Cannot update the ref '%s'.",
3795 update->refname);
3796 ret = TRANSACTION_GENERIC_ERROR;
3797 goto cleanup;
3798 } else {
3799 /* freed by write_ref_sha1(): */
3800 update->lock = NULL;
3801 }
3802 }
3803 }
3804
3805 /* Perform deletes now that updates are safely completed */
3806 for (i = 0; i < n; i++) {
3807 struct ref_update *update = updates[i];
3808 int flags = update->flags;
3809
3810 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1)) {
3811 if (delete_ref_loose(update->lock, update->type, err)) {
3812 ret = TRANSACTION_GENERIC_ERROR;
3813 goto cleanup;
3814 }
3815
3816 if (!(flags & REF_ISPRUNING))
3817 string_list_append(&refs_to_delete,
3818 update->lock->ref_name);
3819 }
3820 }
3821
3822 if (repack_without_refs(&refs_to_delete, err)) {
3823 ret = TRANSACTION_GENERIC_ERROR;
3824 goto cleanup;
3825 }
3826 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3827 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3828 clear_loose_ref_cache(&ref_cache);
3829
3830 cleanup:
3831 transaction->state = REF_TRANSACTION_CLOSED;
3832
3833 for (i = 0; i < n; i++)
3834 if (updates[i]->lock)
3835 unlock_ref(updates[i]->lock);
3836 string_list_clear(&refs_to_delete, 0);
3837 return ret;
3838 }
3839
3840 char *shorten_unambiguous_ref(const char *refname, int strict)
3841 {
3842 int i;
3843 static char **scanf_fmts;
3844 static int nr_rules;
3845 char *short_name;
3846
3847 if (!nr_rules) {
3848 /*
3849 * Pre-generate scanf formats from ref_rev_parse_rules[].
3850 * Generate a format suitable for scanf from a
3851 * ref_rev_parse_rules rule by interpolating "%s" at the
3852 * location of the "%.*s".
3853 */
3854 size_t total_len = 0;
3855 size_t offset = 0;
3856
3857 /* the rule list is NULL terminated, count them first */
3858 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3859 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3860 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3861
3862 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3863
3864 offset = 0;
3865 for (i = 0; i < nr_rules; i++) {
3866 assert(offset < total_len);
3867 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3868 offset += snprintf(scanf_fmts[i], total_len - offset,
3869 ref_rev_parse_rules[i], 2, "%s") + 1;
3870 }
3871 }
3872
3873 /* bail out if there are no rules */
3874 if (!nr_rules)
3875 return xstrdup(refname);
3876
3877 /* buffer for scanf result, at most refname must fit */
3878 short_name = xstrdup(refname);
3879
3880 /* skip first rule, it will always match */
3881 for (i = nr_rules - 1; i > 0 ; --i) {
3882 int j;
3883 int rules_to_fail = i;
3884 int short_name_len;
3885
3886 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3887 continue;
3888
3889 short_name_len = strlen(short_name);
3890
3891 /*
3892 * in strict mode, all (except the matched one) rules
3893 * must fail to resolve to a valid non-ambiguous ref
3894 */
3895 if (strict)
3896 rules_to_fail = nr_rules;
3897
3898 /*
3899 * check if the short name resolves to a valid ref,
3900 * but use only rules prior to the matched one
3901 */
3902 for (j = 0; j < rules_to_fail; j++) {
3903 const char *rule = ref_rev_parse_rules[j];
3904 char refname[PATH_MAX];
3905
3906 /* skip matched rule */
3907 if (i == j)
3908 continue;
3909
3910 /*
3911 * the short name is ambiguous, if it resolves
3912 * (with this previous rule) to a valid ref
3913 * read_ref() returns 0 on success
3914 */
3915 mksnpath(refname, sizeof(refname),
3916 rule, short_name_len, short_name);
3917 if (ref_exists(refname))
3918 break;
3919 }
3920
3921 /*
3922 * short name is non-ambiguous if all previous rules
3923 * haven't resolved to a valid ref
3924 */
3925 if (j == rules_to_fail)
3926 return short_name;
3927 }
3928
3929 free(short_name);
3930 return xstrdup(refname);
3931 }
3932
3933 static struct string_list *hide_refs;
3934
3935 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3936 {
3937 if (!strcmp("transfer.hiderefs", var) ||
3938 /* NEEDSWORK: use parse_config_key() once both are merged */
3939 (starts_with(var, section) && var[strlen(section)] == '.' &&
3940 !strcmp(var + strlen(section), ".hiderefs"))) {
3941 char *ref;
3942 int len;
3943
3944 if (!value)
3945 return config_error_nonbool(var);
3946 ref = xstrdup(value);
3947 len = strlen(ref);
3948 while (len && ref[len - 1] == '/')
3949 ref[--len] = '\0';
3950 if (!hide_refs) {
3951 hide_refs = xcalloc(1, sizeof(*hide_refs));
3952 hide_refs->strdup_strings = 1;
3953 }
3954 string_list_append(hide_refs, ref);
3955 }
3956 return 0;
3957 }
3958
3959 int ref_is_hidden(const char *refname)
3960 {
3961 struct string_list_item *item;
3962
3963 if (!hide_refs)
3964 return 0;
3965 for_each_string_list_item(item, hide_refs) {
3966 int len;
3967 if (!starts_with(refname, item->string))
3968 continue;
3969 len = strlen(item->string);
3970 if (!refname[len] || refname[len] == '/')
3971 return 1;
3972 }
3973 return 0;
3974 }
3975
3976 struct expire_reflog_cb {
3977 unsigned int flags;
3978 reflog_expiry_should_prune_fn *should_prune_fn;
3979 void *policy_cb;
3980 FILE *newlog;
3981 unsigned char last_kept_sha1[20];
3982 };
3983
3984 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
3985 const char *email, unsigned long timestamp, int tz,
3986 const char *message, void *cb_data)
3987 {
3988 struct expire_reflog_cb *cb = cb_data;
3989 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
3990
3991 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
3992 osha1 = cb->last_kept_sha1;
3993
3994 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
3995 message, policy_cb)) {
3996 if (!cb->newlog)
3997 printf("would prune %s", message);
3998 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
3999 printf("prune %s", message);
4000 } else {
4001 if (cb->newlog) {
4002 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4003 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4004 email, timestamp, tz, message);
4005 hashcpy(cb->last_kept_sha1, nsha1);
4006 }
4007 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4008 printf("keep %s", message);
4009 }
4010 return 0;
4011 }
4012
4013 int reflog_expire(const char *refname, const unsigned char *sha1,
4014 unsigned int flags,
4015 reflog_expiry_prepare_fn prepare_fn,
4016 reflog_expiry_should_prune_fn should_prune_fn,
4017 reflog_expiry_cleanup_fn cleanup_fn,
4018 void *policy_cb_data)
4019 {
4020 static struct lock_file reflog_lock;
4021 struct expire_reflog_cb cb;
4022 struct ref_lock *lock;
4023 char *log_file;
4024 int status = 0;
4025 int type;
4026
4027 memset(&cb, 0, sizeof(cb));
4028 cb.flags = flags;
4029 cb.policy_cb = policy_cb_data;
4030 cb.should_prune_fn = should_prune_fn;
4031
4032 /*
4033 * The reflog file is locked by holding the lock on the
4034 * reference itself, plus we might need to update the
4035 * reference if --updateref was specified:
4036 */
4037 lock = lock_ref_sha1_basic(refname, sha1, NULL, 0, &type);
4038 if (!lock)
4039 return error("cannot lock ref '%s'", refname);
4040 if (!reflog_exists(refname)) {
4041 unlock_ref(lock);
4042 return 0;
4043 }
4044
4045 log_file = git_pathdup("logs/%s", refname);
4046 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4047 /*
4048 * Even though holding $GIT_DIR/logs/$reflog.lock has
4049 * no locking implications, we use the lock_file
4050 * machinery here anyway because it does a lot of the
4051 * work we need, including cleaning up if the program
4052 * exits unexpectedly.
4053 */
4054 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4055 struct strbuf err = STRBUF_INIT;
4056 unable_to_lock_message(log_file, errno, &err);
4057 error("%s", err.buf);
4058 strbuf_release(&err);
4059 goto failure;
4060 }
4061 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4062 if (!cb.newlog) {
4063 error("cannot fdopen %s (%s)",
4064 reflog_lock.filename.buf, strerror(errno));
4065 goto failure;
4066 }
4067 }
4068
4069 (*prepare_fn)(refname, sha1, cb.policy_cb);
4070 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4071 (*cleanup_fn)(cb.policy_cb);
4072
4073 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4074 /*
4075 * It doesn't make sense to adjust a reference pointed
4076 * to by a symbolic ref based on expiring entries in
4077 * the symbolic reference's reflog. Nor can we update
4078 * a reference if there are no remaining reflog
4079 * entries.
4080 */
4081 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4082 !(type & REF_ISSYMREF) &&
4083 !is_null_sha1(cb.last_kept_sha1);
4084
4085 if (close_lock_file(&reflog_lock)) {
4086 status |= error("couldn't write %s: %s", log_file,
4087 strerror(errno));
4088 } else if (update &&
4089 (write_in_full(lock->lock_fd,
4090 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4091 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4092 close_ref(lock) < 0)) {
4093 status |= error("couldn't write %s",
4094 lock->lk->filename.buf);
4095 rollback_lock_file(&reflog_lock);
4096 } else if (commit_lock_file(&reflog_lock)) {
4097 status |= error("unable to commit reflog '%s' (%s)",
4098 log_file, strerror(errno));
4099 } else if (update && commit_ref(lock)) {
4100 status |= error("couldn't set %s", lock->ref_name);
4101 }
4102 }
4103 free(log_file);
4104 unlock_ref(lock);
4105 return status;
4106
4107 failure:
4108 rollback_lock_file(&reflog_lock);
4109 free(log_file);
4110 unlock_ref(lock);
4111 return -1;
4112 }