]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
Merge branch 'ir/makefile-typofix'
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "refs.h"
3 #include "object.h"
4 #include "tag.h"
5 #include "dir.h"
6 #include "string-list.h"
7
8 /*
9 * How to handle various characters in refnames:
10 * 0: An acceptable character for refs
11 * 1: End-of-component
12 * 2: ., look for a preceding . to reject .. in refs
13 * 3: {, look for a preceding @ to reject @{ in refs
14 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
15 */
16 static unsigned char refname_disposition[256] = {
17 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
18 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
19 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
20 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
22 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
23 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
24 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
25 };
26
27 /*
28 * Used as a flag to ref_transaction_delete when a loose ref is being
29 * pruned.
30 */
31 #define REF_ISPRUNING 0x0100
32 /*
33 * Try to read one refname component from the front of refname.
34 * Return the length of the component found, or -1 if the component is
35 * not legal. It is legal if it is something reasonable to have under
36 * ".git/refs/"; We do not like it if:
37 *
38 * - any path component of it begins with ".", or
39 * - it has double dots "..", or
40 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
41 * - it ends with a "/".
42 * - it ends with ".lock"
43 * - it contains a "\" (backslash)
44 */
45 static int check_refname_component(const char *refname, int flags)
46 {
47 const char *cp;
48 char last = '\0';
49
50 for (cp = refname; ; cp++) {
51 int ch = *cp & 255;
52 unsigned char disp = refname_disposition[ch];
53 switch (disp) {
54 case 1:
55 goto out;
56 case 2:
57 if (last == '.')
58 return -1; /* Refname contains "..". */
59 break;
60 case 3:
61 if (last == '@')
62 return -1; /* Refname contains "@{". */
63 break;
64 case 4:
65 return -1;
66 }
67 last = ch;
68 }
69 out:
70 if (cp == refname)
71 return 0; /* Component has zero length. */
72 if (refname[0] == '.') {
73 if (!(flags & REFNAME_DOT_COMPONENT))
74 return -1; /* Component starts with '.'. */
75 /*
76 * Even if leading dots are allowed, don't allow "."
77 * as a component (".." is prevented by a rule above).
78 */
79 if (refname[1] == '\0')
80 return -1; /* Component equals ".". */
81 }
82 if (cp - refname >= 5 && !memcmp(cp - 5, ".lock", 5))
83 return -1; /* Refname ends with ".lock". */
84 return cp - refname;
85 }
86
87 int check_refname_format(const char *refname, int flags)
88 {
89 int component_len, component_count = 0;
90
91 if (!strcmp(refname, "@"))
92 /* Refname is a single character '@'. */
93 return -1;
94
95 while (1) {
96 /* We are at the start of a path component. */
97 component_len = check_refname_component(refname, flags);
98 if (component_len <= 0) {
99 if ((flags & REFNAME_REFSPEC_PATTERN) &&
100 refname[0] == '*' &&
101 (refname[1] == '\0' || refname[1] == '/')) {
102 /* Accept one wildcard as a full refname component. */
103 flags &= ~REFNAME_REFSPEC_PATTERN;
104 component_len = 1;
105 } else {
106 return -1;
107 }
108 }
109 component_count++;
110 if (refname[component_len] == '\0')
111 break;
112 /* Skip to next component. */
113 refname += component_len + 1;
114 }
115
116 if (refname[component_len - 1] == '.')
117 return -1; /* Refname ends with '.'. */
118 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
119 return -1; /* Refname has only one component. */
120 return 0;
121 }
122
123 struct ref_entry;
124
125 /*
126 * Information used (along with the information in ref_entry) to
127 * describe a single cached reference. This data structure only
128 * occurs embedded in a union in struct ref_entry, and only when
129 * (ref_entry->flag & REF_DIR) is zero.
130 */
131 struct ref_value {
132 /*
133 * The name of the object to which this reference resolves
134 * (which may be a tag object). If REF_ISBROKEN, this is
135 * null. If REF_ISSYMREF, then this is the name of the object
136 * referred to by the last reference in the symlink chain.
137 */
138 unsigned char sha1[20];
139
140 /*
141 * If REF_KNOWS_PEELED, then this field holds the peeled value
142 * of this reference, or null if the reference is known not to
143 * be peelable. See the documentation for peel_ref() for an
144 * exact definition of "peelable".
145 */
146 unsigned char peeled[20];
147 };
148
149 struct ref_cache;
150
151 /*
152 * Information used (along with the information in ref_entry) to
153 * describe a level in the hierarchy of references. This data
154 * structure only occurs embedded in a union in struct ref_entry, and
155 * only when (ref_entry.flag & REF_DIR) is set. In that case,
156 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
157 * in the directory have already been read:
158 *
159 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
160 * or packed references, already read.
161 *
162 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
163 * references that hasn't been read yet (nor has any of its
164 * subdirectories).
165 *
166 * Entries within a directory are stored within a growable array of
167 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
168 * sorted are sorted by their component name in strcmp() order and the
169 * remaining entries are unsorted.
170 *
171 * Loose references are read lazily, one directory at a time. When a
172 * directory of loose references is read, then all of the references
173 * in that directory are stored, and REF_INCOMPLETE stubs are created
174 * for any subdirectories, but the subdirectories themselves are not
175 * read. The reading is triggered by get_ref_dir().
176 */
177 struct ref_dir {
178 int nr, alloc;
179
180 /*
181 * Entries with index 0 <= i < sorted are sorted by name. New
182 * entries are appended to the list unsorted, and are sorted
183 * only when required; thus we avoid the need to sort the list
184 * after the addition of every reference.
185 */
186 int sorted;
187
188 /* A pointer to the ref_cache that contains this ref_dir. */
189 struct ref_cache *ref_cache;
190
191 struct ref_entry **entries;
192 };
193
194 /*
195 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
196 * REF_ISPACKED=0x02, and REF_ISBROKEN=0x04 are public values; see
197 * refs.h.
198 */
199
200 /*
201 * The field ref_entry->u.value.peeled of this value entry contains
202 * the correct peeled value for the reference, which might be
203 * null_sha1 if the reference is not a tag or if it is broken.
204 */
205 #define REF_KNOWS_PEELED 0x08
206
207 /* ref_entry represents a directory of references */
208 #define REF_DIR 0x10
209
210 /*
211 * Entry has not yet been read from disk (used only for REF_DIR
212 * entries representing loose references)
213 */
214 #define REF_INCOMPLETE 0x20
215
216 /*
217 * A ref_entry represents either a reference or a "subdirectory" of
218 * references.
219 *
220 * Each directory in the reference namespace is represented by a
221 * ref_entry with (flags & REF_DIR) set and containing a subdir member
222 * that holds the entries in that directory that have been read so
223 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
224 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
225 * used for loose reference directories.
226 *
227 * References are represented by a ref_entry with (flags & REF_DIR)
228 * unset and a value member that describes the reference's value. The
229 * flag member is at the ref_entry level, but it is also needed to
230 * interpret the contents of the value field (in other words, a
231 * ref_value object is not very much use without the enclosing
232 * ref_entry).
233 *
234 * Reference names cannot end with slash and directories' names are
235 * always stored with a trailing slash (except for the top-level
236 * directory, which is always denoted by ""). This has two nice
237 * consequences: (1) when the entries in each subdir are sorted
238 * lexicographically by name (as they usually are), the references in
239 * a whole tree can be generated in lexicographic order by traversing
240 * the tree in left-to-right, depth-first order; (2) the names of
241 * references and subdirectories cannot conflict, and therefore the
242 * presence of an empty subdirectory does not block the creation of a
243 * similarly-named reference. (The fact that reference names with the
244 * same leading components can conflict *with each other* is a
245 * separate issue that is regulated by is_refname_available().)
246 *
247 * Please note that the name field contains the fully-qualified
248 * reference (or subdirectory) name. Space could be saved by only
249 * storing the relative names. But that would require the full names
250 * to be generated on the fly when iterating in do_for_each_ref(), and
251 * would break callback functions, who have always been able to assume
252 * that the name strings that they are passed will not be freed during
253 * the iteration.
254 */
255 struct ref_entry {
256 unsigned char flag; /* ISSYMREF? ISPACKED? */
257 union {
258 struct ref_value value; /* if not (flags&REF_DIR) */
259 struct ref_dir subdir; /* if (flags&REF_DIR) */
260 } u;
261 /*
262 * The full name of the reference (e.g., "refs/heads/master")
263 * or the full name of the directory with a trailing slash
264 * (e.g., "refs/heads/"):
265 */
266 char name[FLEX_ARRAY];
267 };
268
269 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
270
271 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
272 {
273 struct ref_dir *dir;
274 assert(entry->flag & REF_DIR);
275 dir = &entry->u.subdir;
276 if (entry->flag & REF_INCOMPLETE) {
277 read_loose_refs(entry->name, dir);
278 entry->flag &= ~REF_INCOMPLETE;
279 }
280 return dir;
281 }
282
283 static struct ref_entry *create_ref_entry(const char *refname,
284 const unsigned char *sha1, int flag,
285 int check_name)
286 {
287 int len;
288 struct ref_entry *ref;
289
290 if (check_name &&
291 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL|REFNAME_DOT_COMPONENT))
292 die("Reference has invalid format: '%s'", refname);
293 len = strlen(refname) + 1;
294 ref = xmalloc(sizeof(struct ref_entry) + len);
295 hashcpy(ref->u.value.sha1, sha1);
296 hashclr(ref->u.value.peeled);
297 memcpy(ref->name, refname, len);
298 ref->flag = flag;
299 return ref;
300 }
301
302 static void clear_ref_dir(struct ref_dir *dir);
303
304 static void free_ref_entry(struct ref_entry *entry)
305 {
306 if (entry->flag & REF_DIR) {
307 /*
308 * Do not use get_ref_dir() here, as that might
309 * trigger the reading of loose refs.
310 */
311 clear_ref_dir(&entry->u.subdir);
312 }
313 free(entry);
314 }
315
316 /*
317 * Add a ref_entry to the end of dir (unsorted). Entry is always
318 * stored directly in dir; no recursion into subdirectories is
319 * done.
320 */
321 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
322 {
323 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
324 dir->entries[dir->nr++] = entry;
325 /* optimize for the case that entries are added in order */
326 if (dir->nr == 1 ||
327 (dir->nr == dir->sorted + 1 &&
328 strcmp(dir->entries[dir->nr - 2]->name,
329 dir->entries[dir->nr - 1]->name) < 0))
330 dir->sorted = dir->nr;
331 }
332
333 /*
334 * Clear and free all entries in dir, recursively.
335 */
336 static void clear_ref_dir(struct ref_dir *dir)
337 {
338 int i;
339 for (i = 0; i < dir->nr; i++)
340 free_ref_entry(dir->entries[i]);
341 free(dir->entries);
342 dir->sorted = dir->nr = dir->alloc = 0;
343 dir->entries = NULL;
344 }
345
346 /*
347 * Create a struct ref_entry object for the specified dirname.
348 * dirname is the name of the directory with a trailing slash (e.g.,
349 * "refs/heads/") or "" for the top-level directory.
350 */
351 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
352 const char *dirname, size_t len,
353 int incomplete)
354 {
355 struct ref_entry *direntry;
356 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
357 memcpy(direntry->name, dirname, len);
358 direntry->name[len] = '\0';
359 direntry->u.subdir.ref_cache = ref_cache;
360 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
361 return direntry;
362 }
363
364 static int ref_entry_cmp(const void *a, const void *b)
365 {
366 struct ref_entry *one = *(struct ref_entry **)a;
367 struct ref_entry *two = *(struct ref_entry **)b;
368 return strcmp(one->name, two->name);
369 }
370
371 static void sort_ref_dir(struct ref_dir *dir);
372
373 struct string_slice {
374 size_t len;
375 const char *str;
376 };
377
378 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
379 {
380 const struct string_slice *key = key_;
381 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
382 int cmp = strncmp(key->str, ent->name, key->len);
383 if (cmp)
384 return cmp;
385 return '\0' - (unsigned char)ent->name[key->len];
386 }
387
388 /*
389 * Return the index of the entry with the given refname from the
390 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
391 * no such entry is found. dir must already be complete.
392 */
393 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
394 {
395 struct ref_entry **r;
396 struct string_slice key;
397
398 if (refname == NULL || !dir->nr)
399 return -1;
400
401 sort_ref_dir(dir);
402 key.len = len;
403 key.str = refname;
404 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
405 ref_entry_cmp_sslice);
406
407 if (r == NULL)
408 return -1;
409
410 return r - dir->entries;
411 }
412
413 /*
414 * Search for a directory entry directly within dir (without
415 * recursing). Sort dir if necessary. subdirname must be a directory
416 * name (i.e., end in '/'). If mkdir is set, then create the
417 * directory if it is missing; otherwise, return NULL if the desired
418 * directory cannot be found. dir must already be complete.
419 */
420 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
421 const char *subdirname, size_t len,
422 int mkdir)
423 {
424 int entry_index = search_ref_dir(dir, subdirname, len);
425 struct ref_entry *entry;
426 if (entry_index == -1) {
427 if (!mkdir)
428 return NULL;
429 /*
430 * Since dir is complete, the absence of a subdir
431 * means that the subdir really doesn't exist;
432 * therefore, create an empty record for it but mark
433 * the record complete.
434 */
435 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
436 add_entry_to_dir(dir, entry);
437 } else {
438 entry = dir->entries[entry_index];
439 }
440 return get_ref_dir(entry);
441 }
442
443 /*
444 * If refname is a reference name, find the ref_dir within the dir
445 * tree that should hold refname. If refname is a directory name
446 * (i.e., ends in '/'), then return that ref_dir itself. dir must
447 * represent the top-level directory and must already be complete.
448 * Sort ref_dirs and recurse into subdirectories as necessary. If
449 * mkdir is set, then create any missing directories; otherwise,
450 * return NULL if the desired directory cannot be found.
451 */
452 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
453 const char *refname, int mkdir)
454 {
455 const char *slash;
456 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
457 size_t dirnamelen = slash - refname + 1;
458 struct ref_dir *subdir;
459 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
460 if (!subdir) {
461 dir = NULL;
462 break;
463 }
464 dir = subdir;
465 }
466
467 return dir;
468 }
469
470 /*
471 * Find the value entry with the given name in dir, sorting ref_dirs
472 * and recursing into subdirectories as necessary. If the name is not
473 * found or it corresponds to a directory entry, return NULL.
474 */
475 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
476 {
477 int entry_index;
478 struct ref_entry *entry;
479 dir = find_containing_dir(dir, refname, 0);
480 if (!dir)
481 return NULL;
482 entry_index = search_ref_dir(dir, refname, strlen(refname));
483 if (entry_index == -1)
484 return NULL;
485 entry = dir->entries[entry_index];
486 return (entry->flag & REF_DIR) ? NULL : entry;
487 }
488
489 /*
490 * Remove the entry with the given name from dir, recursing into
491 * subdirectories as necessary. If refname is the name of a directory
492 * (i.e., ends with '/'), then remove the directory and its contents.
493 * If the removal was successful, return the number of entries
494 * remaining in the directory entry that contained the deleted entry.
495 * If the name was not found, return -1. Please note that this
496 * function only deletes the entry from the cache; it does not delete
497 * it from the filesystem or ensure that other cache entries (which
498 * might be symbolic references to the removed entry) are updated.
499 * Nor does it remove any containing dir entries that might be made
500 * empty by the removal. dir must represent the top-level directory
501 * and must already be complete.
502 */
503 static int remove_entry(struct ref_dir *dir, const char *refname)
504 {
505 int refname_len = strlen(refname);
506 int entry_index;
507 struct ref_entry *entry;
508 int is_dir = refname[refname_len - 1] == '/';
509 if (is_dir) {
510 /*
511 * refname represents a reference directory. Remove
512 * the trailing slash; otherwise we will get the
513 * directory *representing* refname rather than the
514 * one *containing* it.
515 */
516 char *dirname = xmemdupz(refname, refname_len - 1);
517 dir = find_containing_dir(dir, dirname, 0);
518 free(dirname);
519 } else {
520 dir = find_containing_dir(dir, refname, 0);
521 }
522 if (!dir)
523 return -1;
524 entry_index = search_ref_dir(dir, refname, refname_len);
525 if (entry_index == -1)
526 return -1;
527 entry = dir->entries[entry_index];
528
529 memmove(&dir->entries[entry_index],
530 &dir->entries[entry_index + 1],
531 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
532 );
533 dir->nr--;
534 if (dir->sorted > entry_index)
535 dir->sorted--;
536 free_ref_entry(entry);
537 return dir->nr;
538 }
539
540 /*
541 * Add a ref_entry to the ref_dir (unsorted), recursing into
542 * subdirectories as necessary. dir must represent the top-level
543 * directory. Return 0 on success.
544 */
545 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
546 {
547 dir = find_containing_dir(dir, ref->name, 1);
548 if (!dir)
549 return -1;
550 add_entry_to_dir(dir, ref);
551 return 0;
552 }
553
554 /*
555 * Emit a warning and return true iff ref1 and ref2 have the same name
556 * and the same sha1. Die if they have the same name but different
557 * sha1s.
558 */
559 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
560 {
561 if (strcmp(ref1->name, ref2->name))
562 return 0;
563
564 /* Duplicate name; make sure that they don't conflict: */
565
566 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
567 /* This is impossible by construction */
568 die("Reference directory conflict: %s", ref1->name);
569
570 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
571 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
572
573 warning("Duplicated ref: %s", ref1->name);
574 return 1;
575 }
576
577 /*
578 * Sort the entries in dir non-recursively (if they are not already
579 * sorted) and remove any duplicate entries.
580 */
581 static void sort_ref_dir(struct ref_dir *dir)
582 {
583 int i, j;
584 struct ref_entry *last = NULL;
585
586 /*
587 * This check also prevents passing a zero-length array to qsort(),
588 * which is a problem on some platforms.
589 */
590 if (dir->sorted == dir->nr)
591 return;
592
593 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
594
595 /* Remove any duplicates: */
596 for (i = 0, j = 0; j < dir->nr; j++) {
597 struct ref_entry *entry = dir->entries[j];
598 if (last && is_dup_ref(last, entry))
599 free_ref_entry(entry);
600 else
601 last = dir->entries[i++] = entry;
602 }
603 dir->sorted = dir->nr = i;
604 }
605
606 /* Include broken references in a do_for_each_ref*() iteration: */
607 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
608
609 /*
610 * Return true iff the reference described by entry can be resolved to
611 * an object in the database. Emit a warning if the referred-to
612 * object does not exist.
613 */
614 static int ref_resolves_to_object(struct ref_entry *entry)
615 {
616 if (entry->flag & REF_ISBROKEN)
617 return 0;
618 if (!has_sha1_file(entry->u.value.sha1)) {
619 error("%s does not point to a valid object!", entry->name);
620 return 0;
621 }
622 return 1;
623 }
624
625 /*
626 * current_ref is a performance hack: when iterating over references
627 * using the for_each_ref*() functions, current_ref is set to the
628 * current reference's entry before calling the callback function. If
629 * the callback function calls peel_ref(), then peel_ref() first
630 * checks whether the reference to be peeled is the current reference
631 * (it usually is) and if so, returns that reference's peeled version
632 * if it is available. This avoids a refname lookup in a common case.
633 */
634 static struct ref_entry *current_ref;
635
636 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
637
638 struct ref_entry_cb {
639 const char *base;
640 int trim;
641 int flags;
642 each_ref_fn *fn;
643 void *cb_data;
644 };
645
646 /*
647 * Handle one reference in a do_for_each_ref*()-style iteration,
648 * calling an each_ref_fn for each entry.
649 */
650 static int do_one_ref(struct ref_entry *entry, void *cb_data)
651 {
652 struct ref_entry_cb *data = cb_data;
653 struct ref_entry *old_current_ref;
654 int retval;
655
656 if (!starts_with(entry->name, data->base))
657 return 0;
658
659 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
660 !ref_resolves_to_object(entry))
661 return 0;
662
663 /* Store the old value, in case this is a recursive call: */
664 old_current_ref = current_ref;
665 current_ref = entry;
666 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
667 entry->flag, data->cb_data);
668 current_ref = old_current_ref;
669 return retval;
670 }
671
672 /*
673 * Call fn for each reference in dir that has index in the range
674 * offset <= index < dir->nr. Recurse into subdirectories that are in
675 * that index range, sorting them before iterating. This function
676 * does not sort dir itself; it should be sorted beforehand. fn is
677 * called for all references, including broken ones.
678 */
679 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
680 each_ref_entry_fn fn, void *cb_data)
681 {
682 int i;
683 assert(dir->sorted == dir->nr);
684 for (i = offset; i < dir->nr; i++) {
685 struct ref_entry *entry = dir->entries[i];
686 int retval;
687 if (entry->flag & REF_DIR) {
688 struct ref_dir *subdir = get_ref_dir(entry);
689 sort_ref_dir(subdir);
690 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
691 } else {
692 retval = fn(entry, cb_data);
693 }
694 if (retval)
695 return retval;
696 }
697 return 0;
698 }
699
700 /*
701 * Call fn for each reference in the union of dir1 and dir2, in order
702 * by refname. Recurse into subdirectories. If a value entry appears
703 * in both dir1 and dir2, then only process the version that is in
704 * dir2. The input dirs must already be sorted, but subdirs will be
705 * sorted as needed. fn is called for all references, including
706 * broken ones.
707 */
708 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
709 struct ref_dir *dir2,
710 each_ref_entry_fn fn, void *cb_data)
711 {
712 int retval;
713 int i1 = 0, i2 = 0;
714
715 assert(dir1->sorted == dir1->nr);
716 assert(dir2->sorted == dir2->nr);
717 while (1) {
718 struct ref_entry *e1, *e2;
719 int cmp;
720 if (i1 == dir1->nr) {
721 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
722 }
723 if (i2 == dir2->nr) {
724 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
725 }
726 e1 = dir1->entries[i1];
727 e2 = dir2->entries[i2];
728 cmp = strcmp(e1->name, e2->name);
729 if (cmp == 0) {
730 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
731 /* Both are directories; descend them in parallel. */
732 struct ref_dir *subdir1 = get_ref_dir(e1);
733 struct ref_dir *subdir2 = get_ref_dir(e2);
734 sort_ref_dir(subdir1);
735 sort_ref_dir(subdir2);
736 retval = do_for_each_entry_in_dirs(
737 subdir1, subdir2, fn, cb_data);
738 i1++;
739 i2++;
740 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
741 /* Both are references; ignore the one from dir1. */
742 retval = fn(e2, cb_data);
743 i1++;
744 i2++;
745 } else {
746 die("conflict between reference and directory: %s",
747 e1->name);
748 }
749 } else {
750 struct ref_entry *e;
751 if (cmp < 0) {
752 e = e1;
753 i1++;
754 } else {
755 e = e2;
756 i2++;
757 }
758 if (e->flag & REF_DIR) {
759 struct ref_dir *subdir = get_ref_dir(e);
760 sort_ref_dir(subdir);
761 retval = do_for_each_entry_in_dir(
762 subdir, 0, fn, cb_data);
763 } else {
764 retval = fn(e, cb_data);
765 }
766 }
767 if (retval)
768 return retval;
769 }
770 }
771
772 /*
773 * Load all of the refs from the dir into our in-memory cache. The hard work
774 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
775 * through all of the sub-directories. We do not even need to care about
776 * sorting, as traversal order does not matter to us.
777 */
778 static void prime_ref_dir(struct ref_dir *dir)
779 {
780 int i;
781 for (i = 0; i < dir->nr; i++) {
782 struct ref_entry *entry = dir->entries[i];
783 if (entry->flag & REF_DIR)
784 prime_ref_dir(get_ref_dir(entry));
785 }
786 }
787 /*
788 * Return true iff refname1 and refname2 conflict with each other.
789 * Two reference names conflict if one of them exactly matches the
790 * leading components of the other; e.g., "foo/bar" conflicts with
791 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
792 * "foo/barbados".
793 */
794 static int names_conflict(const char *refname1, const char *refname2)
795 {
796 for (; *refname1 && *refname1 == *refname2; refname1++, refname2++)
797 ;
798 return (*refname1 == '\0' && *refname2 == '/')
799 || (*refname1 == '/' && *refname2 == '\0');
800 }
801
802 struct name_conflict_cb {
803 const char *refname;
804 const char *oldrefname;
805 const char *conflicting_refname;
806 };
807
808 static int name_conflict_fn(struct ref_entry *entry, void *cb_data)
809 {
810 struct name_conflict_cb *data = (struct name_conflict_cb *)cb_data;
811 if (data->oldrefname && !strcmp(data->oldrefname, entry->name))
812 return 0;
813 if (names_conflict(data->refname, entry->name)) {
814 data->conflicting_refname = entry->name;
815 return 1;
816 }
817 return 0;
818 }
819
820 /*
821 * Return true iff a reference named refname could be created without
822 * conflicting with the name of an existing reference in dir. If
823 * oldrefname is non-NULL, ignore potential conflicts with oldrefname
824 * (e.g., because oldrefname is scheduled for deletion in the same
825 * operation).
826 */
827 static int is_refname_available(const char *refname, const char *oldrefname,
828 struct ref_dir *dir)
829 {
830 struct name_conflict_cb data;
831 data.refname = refname;
832 data.oldrefname = oldrefname;
833 data.conflicting_refname = NULL;
834
835 sort_ref_dir(dir);
836 if (do_for_each_entry_in_dir(dir, 0, name_conflict_fn, &data)) {
837 error("'%s' exists; cannot create '%s'",
838 data.conflicting_refname, refname);
839 return 0;
840 }
841 return 1;
842 }
843
844 struct packed_ref_cache {
845 struct ref_entry *root;
846
847 /*
848 * Count of references to the data structure in this instance,
849 * including the pointer from ref_cache::packed if any. The
850 * data will not be freed as long as the reference count is
851 * nonzero.
852 */
853 unsigned int referrers;
854
855 /*
856 * Iff the packed-refs file associated with this instance is
857 * currently locked for writing, this points at the associated
858 * lock (which is owned by somebody else). The referrer count
859 * is also incremented when the file is locked and decremented
860 * when it is unlocked.
861 */
862 struct lock_file *lock;
863
864 /* The metadata from when this packed-refs cache was read */
865 struct stat_validity validity;
866 };
867
868 /*
869 * Future: need to be in "struct repository"
870 * when doing a full libification.
871 */
872 static struct ref_cache {
873 struct ref_cache *next;
874 struct ref_entry *loose;
875 struct packed_ref_cache *packed;
876 /*
877 * The submodule name, or "" for the main repo. We allocate
878 * length 1 rather than FLEX_ARRAY so that the main ref_cache
879 * is initialized correctly.
880 */
881 char name[1];
882 } ref_cache, *submodule_ref_caches;
883
884 /* Lock used for the main packed-refs file: */
885 static struct lock_file packlock;
886
887 /*
888 * Increment the reference count of *packed_refs.
889 */
890 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
891 {
892 packed_refs->referrers++;
893 }
894
895 /*
896 * Decrease the reference count of *packed_refs. If it goes to zero,
897 * free *packed_refs and return true; otherwise return false.
898 */
899 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
900 {
901 if (!--packed_refs->referrers) {
902 free_ref_entry(packed_refs->root);
903 stat_validity_clear(&packed_refs->validity);
904 free(packed_refs);
905 return 1;
906 } else {
907 return 0;
908 }
909 }
910
911 static void clear_packed_ref_cache(struct ref_cache *refs)
912 {
913 if (refs->packed) {
914 struct packed_ref_cache *packed_refs = refs->packed;
915
916 if (packed_refs->lock)
917 die("internal error: packed-ref cache cleared while locked");
918 refs->packed = NULL;
919 release_packed_ref_cache(packed_refs);
920 }
921 }
922
923 static void clear_loose_ref_cache(struct ref_cache *refs)
924 {
925 if (refs->loose) {
926 free_ref_entry(refs->loose);
927 refs->loose = NULL;
928 }
929 }
930
931 static struct ref_cache *create_ref_cache(const char *submodule)
932 {
933 int len;
934 struct ref_cache *refs;
935 if (!submodule)
936 submodule = "";
937 len = strlen(submodule) + 1;
938 refs = xcalloc(1, sizeof(struct ref_cache) + len);
939 memcpy(refs->name, submodule, len);
940 return refs;
941 }
942
943 /*
944 * Return a pointer to a ref_cache for the specified submodule. For
945 * the main repository, use submodule==NULL. The returned structure
946 * will be allocated and initialized but not necessarily populated; it
947 * should not be freed.
948 */
949 static struct ref_cache *get_ref_cache(const char *submodule)
950 {
951 struct ref_cache *refs;
952
953 if (!submodule || !*submodule)
954 return &ref_cache;
955
956 for (refs = submodule_ref_caches; refs; refs = refs->next)
957 if (!strcmp(submodule, refs->name))
958 return refs;
959
960 refs = create_ref_cache(submodule);
961 refs->next = submodule_ref_caches;
962 submodule_ref_caches = refs;
963 return refs;
964 }
965
966 /* The length of a peeled reference line in packed-refs, including EOL: */
967 #define PEELED_LINE_LENGTH 42
968
969 /*
970 * The packed-refs header line that we write out. Perhaps other
971 * traits will be added later. The trailing space is required.
972 */
973 static const char PACKED_REFS_HEADER[] =
974 "# pack-refs with: peeled fully-peeled \n";
975
976 /*
977 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
978 * Return a pointer to the refname within the line (null-terminated),
979 * or NULL if there was a problem.
980 */
981 static const char *parse_ref_line(char *line, unsigned char *sha1)
982 {
983 /*
984 * 42: the answer to everything.
985 *
986 * In this case, it happens to be the answer to
987 * 40 (length of sha1 hex representation)
988 * +1 (space in between hex and name)
989 * +1 (newline at the end of the line)
990 */
991 int len = strlen(line) - 42;
992
993 if (len <= 0)
994 return NULL;
995 if (get_sha1_hex(line, sha1) < 0)
996 return NULL;
997 if (!isspace(line[40]))
998 return NULL;
999 line += 41;
1000 if (isspace(*line))
1001 return NULL;
1002 if (line[len] != '\n')
1003 return NULL;
1004 line[len] = 0;
1005
1006 return line;
1007 }
1008
1009 /*
1010 * Read f, which is a packed-refs file, into dir.
1011 *
1012 * A comment line of the form "# pack-refs with: " may contain zero or
1013 * more traits. We interpret the traits as follows:
1014 *
1015 * No traits:
1016 *
1017 * Probably no references are peeled. But if the file contains a
1018 * peeled value for a reference, we will use it.
1019 *
1020 * peeled:
1021 *
1022 * References under "refs/tags/", if they *can* be peeled, *are*
1023 * peeled in this file. References outside of "refs/tags/" are
1024 * probably not peeled even if they could have been, but if we find
1025 * a peeled value for such a reference we will use it.
1026 *
1027 * fully-peeled:
1028 *
1029 * All references in the file that can be peeled are peeled.
1030 * Inversely (and this is more important), any references in the
1031 * file for which no peeled value is recorded is not peelable. This
1032 * trait should typically be written alongside "peeled" for
1033 * compatibility with older clients, but we do not require it
1034 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1035 */
1036 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1037 {
1038 struct ref_entry *last = NULL;
1039 char refline[PATH_MAX];
1040 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1041
1042 while (fgets(refline, sizeof(refline), f)) {
1043 unsigned char sha1[20];
1044 const char *refname;
1045 static const char header[] = "# pack-refs with:";
1046
1047 if (!strncmp(refline, header, sizeof(header)-1)) {
1048 const char *traits = refline + sizeof(header) - 1;
1049 if (strstr(traits, " fully-peeled "))
1050 peeled = PEELED_FULLY;
1051 else if (strstr(traits, " peeled "))
1052 peeled = PEELED_TAGS;
1053 /* perhaps other traits later as well */
1054 continue;
1055 }
1056
1057 refname = parse_ref_line(refline, sha1);
1058 if (refname) {
1059 last = create_ref_entry(refname, sha1, REF_ISPACKED, 1);
1060 if (peeled == PEELED_FULLY ||
1061 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1062 last->flag |= REF_KNOWS_PEELED;
1063 add_ref(dir, last);
1064 continue;
1065 }
1066 if (last &&
1067 refline[0] == '^' &&
1068 strlen(refline) == PEELED_LINE_LENGTH &&
1069 refline[PEELED_LINE_LENGTH - 1] == '\n' &&
1070 !get_sha1_hex(refline + 1, sha1)) {
1071 hashcpy(last->u.value.peeled, sha1);
1072 /*
1073 * Regardless of what the file header said,
1074 * we definitely know the value of *this*
1075 * reference:
1076 */
1077 last->flag |= REF_KNOWS_PEELED;
1078 }
1079 }
1080 }
1081
1082 /*
1083 * Get the packed_ref_cache for the specified ref_cache, creating it
1084 * if necessary.
1085 */
1086 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1087 {
1088 const char *packed_refs_file;
1089
1090 if (*refs->name)
1091 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1092 else
1093 packed_refs_file = git_path("packed-refs");
1094
1095 if (refs->packed &&
1096 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1097 clear_packed_ref_cache(refs);
1098
1099 if (!refs->packed) {
1100 FILE *f;
1101
1102 refs->packed = xcalloc(1, sizeof(*refs->packed));
1103 acquire_packed_ref_cache(refs->packed);
1104 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1105 f = fopen(packed_refs_file, "r");
1106 if (f) {
1107 stat_validity_update(&refs->packed->validity, fileno(f));
1108 read_packed_refs(f, get_ref_dir(refs->packed->root));
1109 fclose(f);
1110 }
1111 }
1112 return refs->packed;
1113 }
1114
1115 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1116 {
1117 return get_ref_dir(packed_ref_cache->root);
1118 }
1119
1120 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1121 {
1122 return get_packed_ref_dir(get_packed_ref_cache(refs));
1123 }
1124
1125 void add_packed_ref(const char *refname, const unsigned char *sha1)
1126 {
1127 struct packed_ref_cache *packed_ref_cache =
1128 get_packed_ref_cache(&ref_cache);
1129
1130 if (!packed_ref_cache->lock)
1131 die("internal error: packed refs not locked");
1132 add_ref(get_packed_ref_dir(packed_ref_cache),
1133 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1134 }
1135
1136 /*
1137 * Read the loose references from the namespace dirname into dir
1138 * (without recursing). dirname must end with '/'. dir must be the
1139 * directory entry corresponding to dirname.
1140 */
1141 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1142 {
1143 struct ref_cache *refs = dir->ref_cache;
1144 DIR *d;
1145 const char *path;
1146 struct dirent *de;
1147 int dirnamelen = strlen(dirname);
1148 struct strbuf refname;
1149
1150 if (*refs->name)
1151 path = git_path_submodule(refs->name, "%s", dirname);
1152 else
1153 path = git_path("%s", dirname);
1154
1155 d = opendir(path);
1156 if (!d)
1157 return;
1158
1159 strbuf_init(&refname, dirnamelen + 257);
1160 strbuf_add(&refname, dirname, dirnamelen);
1161
1162 while ((de = readdir(d)) != NULL) {
1163 unsigned char sha1[20];
1164 struct stat st;
1165 int flag;
1166 const char *refdir;
1167
1168 if (de->d_name[0] == '.')
1169 continue;
1170 if (ends_with(de->d_name, ".lock"))
1171 continue;
1172 strbuf_addstr(&refname, de->d_name);
1173 refdir = *refs->name
1174 ? git_path_submodule(refs->name, "%s", refname.buf)
1175 : git_path("%s", refname.buf);
1176 if (stat(refdir, &st) < 0) {
1177 ; /* silently ignore */
1178 } else if (S_ISDIR(st.st_mode)) {
1179 strbuf_addch(&refname, '/');
1180 add_entry_to_dir(dir,
1181 create_dir_entry(refs, refname.buf,
1182 refname.len, 1));
1183 } else {
1184 if (*refs->name) {
1185 hashclr(sha1);
1186 flag = 0;
1187 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1188 hashclr(sha1);
1189 flag |= REF_ISBROKEN;
1190 }
1191 } else if (read_ref_full(refname.buf, sha1, 1, &flag)) {
1192 hashclr(sha1);
1193 flag |= REF_ISBROKEN;
1194 }
1195 add_entry_to_dir(dir,
1196 create_ref_entry(refname.buf, sha1, flag, 1));
1197 }
1198 strbuf_setlen(&refname, dirnamelen);
1199 }
1200 strbuf_release(&refname);
1201 closedir(d);
1202 }
1203
1204 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1205 {
1206 if (!refs->loose) {
1207 /*
1208 * Mark the top-level directory complete because we
1209 * are about to read the only subdirectory that can
1210 * hold references:
1211 */
1212 refs->loose = create_dir_entry(refs, "", 0, 0);
1213 /*
1214 * Create an incomplete entry for "refs/":
1215 */
1216 add_entry_to_dir(get_ref_dir(refs->loose),
1217 create_dir_entry(refs, "refs/", 5, 1));
1218 }
1219 return get_ref_dir(refs->loose);
1220 }
1221
1222 /* We allow "recursive" symbolic refs. Only within reason, though */
1223 #define MAXDEPTH 5
1224 #define MAXREFLEN (1024)
1225
1226 /*
1227 * Called by resolve_gitlink_ref_recursive() after it failed to read
1228 * from the loose refs in ref_cache refs. Find <refname> in the
1229 * packed-refs file for the submodule.
1230 */
1231 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1232 const char *refname, unsigned char *sha1)
1233 {
1234 struct ref_entry *ref;
1235 struct ref_dir *dir = get_packed_refs(refs);
1236
1237 ref = find_ref(dir, refname);
1238 if (ref == NULL)
1239 return -1;
1240
1241 hashcpy(sha1, ref->u.value.sha1);
1242 return 0;
1243 }
1244
1245 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1246 const char *refname, unsigned char *sha1,
1247 int recursion)
1248 {
1249 int fd, len;
1250 char buffer[128], *p;
1251 char *path;
1252
1253 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1254 return -1;
1255 path = *refs->name
1256 ? git_path_submodule(refs->name, "%s", refname)
1257 : git_path("%s", refname);
1258 fd = open(path, O_RDONLY);
1259 if (fd < 0)
1260 return resolve_gitlink_packed_ref(refs, refname, sha1);
1261
1262 len = read(fd, buffer, sizeof(buffer)-1);
1263 close(fd);
1264 if (len < 0)
1265 return -1;
1266 while (len && isspace(buffer[len-1]))
1267 len--;
1268 buffer[len] = 0;
1269
1270 /* Was it a detached head or an old-fashioned symlink? */
1271 if (!get_sha1_hex(buffer, sha1))
1272 return 0;
1273
1274 /* Symref? */
1275 if (strncmp(buffer, "ref:", 4))
1276 return -1;
1277 p = buffer + 4;
1278 while (isspace(*p))
1279 p++;
1280
1281 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1282 }
1283
1284 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1285 {
1286 int len = strlen(path), retval;
1287 char *submodule;
1288 struct ref_cache *refs;
1289
1290 while (len && path[len-1] == '/')
1291 len--;
1292 if (!len)
1293 return -1;
1294 submodule = xstrndup(path, len);
1295 refs = get_ref_cache(submodule);
1296 free(submodule);
1297
1298 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1299 return retval;
1300 }
1301
1302 /*
1303 * Return the ref_entry for the given refname from the packed
1304 * references. If it does not exist, return NULL.
1305 */
1306 static struct ref_entry *get_packed_ref(const char *refname)
1307 {
1308 return find_ref(get_packed_refs(&ref_cache), refname);
1309 }
1310
1311 /*
1312 * A loose ref file doesn't exist; check for a packed ref. The
1313 * options are forwarded from resolve_safe_unsafe().
1314 */
1315 static const char *handle_missing_loose_ref(const char *refname,
1316 unsigned char *sha1,
1317 int reading,
1318 int *flag)
1319 {
1320 struct ref_entry *entry;
1321
1322 /*
1323 * The loose reference file does not exist; check for a packed
1324 * reference.
1325 */
1326 entry = get_packed_ref(refname);
1327 if (entry) {
1328 hashcpy(sha1, entry->u.value.sha1);
1329 if (flag)
1330 *flag |= REF_ISPACKED;
1331 return refname;
1332 }
1333 /* The reference is not a packed reference, either. */
1334 if (reading) {
1335 return NULL;
1336 } else {
1337 hashclr(sha1);
1338 return refname;
1339 }
1340 }
1341
1342 /* This function needs to return a meaningful errno on failure */
1343 const char *resolve_ref_unsafe(const char *refname, unsigned char *sha1, int reading, int *flag)
1344 {
1345 int depth = MAXDEPTH;
1346 ssize_t len;
1347 char buffer[256];
1348 static char refname_buffer[256];
1349
1350 if (flag)
1351 *flag = 0;
1352
1353 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1354 errno = EINVAL;
1355 return NULL;
1356 }
1357
1358 for (;;) {
1359 char path[PATH_MAX];
1360 struct stat st;
1361 char *buf;
1362 int fd;
1363
1364 if (--depth < 0) {
1365 errno = ELOOP;
1366 return NULL;
1367 }
1368
1369 git_snpath(path, sizeof(path), "%s", refname);
1370
1371 /*
1372 * We might have to loop back here to avoid a race
1373 * condition: first we lstat() the file, then we try
1374 * to read it as a link or as a file. But if somebody
1375 * changes the type of the file (file <-> directory
1376 * <-> symlink) between the lstat() and reading, then
1377 * we don't want to report that as an error but rather
1378 * try again starting with the lstat().
1379 */
1380 stat_ref:
1381 if (lstat(path, &st) < 0) {
1382 if (errno == ENOENT)
1383 return handle_missing_loose_ref(refname, sha1,
1384 reading, flag);
1385 else
1386 return NULL;
1387 }
1388
1389 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1390 if (S_ISLNK(st.st_mode)) {
1391 len = readlink(path, buffer, sizeof(buffer)-1);
1392 if (len < 0) {
1393 if (errno == ENOENT || errno == EINVAL)
1394 /* inconsistent with lstat; retry */
1395 goto stat_ref;
1396 else
1397 return NULL;
1398 }
1399 buffer[len] = 0;
1400 if (starts_with(buffer, "refs/") &&
1401 !check_refname_format(buffer, 0)) {
1402 strcpy(refname_buffer, buffer);
1403 refname = refname_buffer;
1404 if (flag)
1405 *flag |= REF_ISSYMREF;
1406 continue;
1407 }
1408 }
1409
1410 /* Is it a directory? */
1411 if (S_ISDIR(st.st_mode)) {
1412 errno = EISDIR;
1413 return NULL;
1414 }
1415
1416 /*
1417 * Anything else, just open it and try to use it as
1418 * a ref
1419 */
1420 fd = open(path, O_RDONLY);
1421 if (fd < 0) {
1422 if (errno == ENOENT)
1423 /* inconsistent with lstat; retry */
1424 goto stat_ref;
1425 else
1426 return NULL;
1427 }
1428 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1429 if (len < 0) {
1430 int save_errno = errno;
1431 close(fd);
1432 errno = save_errno;
1433 return NULL;
1434 }
1435 close(fd);
1436 while (len && isspace(buffer[len-1]))
1437 len--;
1438 buffer[len] = '\0';
1439
1440 /*
1441 * Is it a symbolic ref?
1442 */
1443 if (!starts_with(buffer, "ref:")) {
1444 /*
1445 * Please note that FETCH_HEAD has a second
1446 * line containing other data.
1447 */
1448 if (get_sha1_hex(buffer, sha1) ||
1449 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1450 if (flag)
1451 *flag |= REF_ISBROKEN;
1452 errno = EINVAL;
1453 return NULL;
1454 }
1455 return refname;
1456 }
1457 if (flag)
1458 *flag |= REF_ISSYMREF;
1459 buf = buffer + 4;
1460 while (isspace(*buf))
1461 buf++;
1462 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1463 if (flag)
1464 *flag |= REF_ISBROKEN;
1465 errno = EINVAL;
1466 return NULL;
1467 }
1468 refname = strcpy(refname_buffer, buf);
1469 }
1470 }
1471
1472 char *resolve_refdup(const char *ref, unsigned char *sha1, int reading, int *flag)
1473 {
1474 const char *ret = resolve_ref_unsafe(ref, sha1, reading, flag);
1475 return ret ? xstrdup(ret) : NULL;
1476 }
1477
1478 /* The argument to filter_refs */
1479 struct ref_filter {
1480 const char *pattern;
1481 each_ref_fn *fn;
1482 void *cb_data;
1483 };
1484
1485 int read_ref_full(const char *refname, unsigned char *sha1, int reading, int *flags)
1486 {
1487 if (resolve_ref_unsafe(refname, sha1, reading, flags))
1488 return 0;
1489 return -1;
1490 }
1491
1492 int read_ref(const char *refname, unsigned char *sha1)
1493 {
1494 return read_ref_full(refname, sha1, 1, NULL);
1495 }
1496
1497 int ref_exists(const char *refname)
1498 {
1499 unsigned char sha1[20];
1500 return !!resolve_ref_unsafe(refname, sha1, 1, NULL);
1501 }
1502
1503 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1504 void *data)
1505 {
1506 struct ref_filter *filter = (struct ref_filter *)data;
1507 if (wildmatch(filter->pattern, refname, 0, NULL))
1508 return 0;
1509 return filter->fn(refname, sha1, flags, filter->cb_data);
1510 }
1511
1512 enum peel_status {
1513 /* object was peeled successfully: */
1514 PEEL_PEELED = 0,
1515
1516 /*
1517 * object cannot be peeled because the named object (or an
1518 * object referred to by a tag in the peel chain), does not
1519 * exist.
1520 */
1521 PEEL_INVALID = -1,
1522
1523 /* object cannot be peeled because it is not a tag: */
1524 PEEL_NON_TAG = -2,
1525
1526 /* ref_entry contains no peeled value because it is a symref: */
1527 PEEL_IS_SYMREF = -3,
1528
1529 /*
1530 * ref_entry cannot be peeled because it is broken (i.e., the
1531 * symbolic reference cannot even be resolved to an object
1532 * name):
1533 */
1534 PEEL_BROKEN = -4
1535 };
1536
1537 /*
1538 * Peel the named object; i.e., if the object is a tag, resolve the
1539 * tag recursively until a non-tag is found. If successful, store the
1540 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1541 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1542 * and leave sha1 unchanged.
1543 */
1544 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1545 {
1546 struct object *o = lookup_unknown_object(name);
1547
1548 if (o->type == OBJ_NONE) {
1549 int type = sha1_object_info(name, NULL);
1550 if (type < 0 || !object_as_type(o, type, 0))
1551 return PEEL_INVALID;
1552 }
1553
1554 if (o->type != OBJ_TAG)
1555 return PEEL_NON_TAG;
1556
1557 o = deref_tag_noverify(o);
1558 if (!o)
1559 return PEEL_INVALID;
1560
1561 hashcpy(sha1, o->sha1);
1562 return PEEL_PEELED;
1563 }
1564
1565 /*
1566 * Peel the entry (if possible) and return its new peel_status. If
1567 * repeel is true, re-peel the entry even if there is an old peeled
1568 * value that is already stored in it.
1569 *
1570 * It is OK to call this function with a packed reference entry that
1571 * might be stale and might even refer to an object that has since
1572 * been garbage-collected. In such a case, if the entry has
1573 * REF_KNOWS_PEELED then leave the status unchanged and return
1574 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1575 */
1576 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1577 {
1578 enum peel_status status;
1579
1580 if (entry->flag & REF_KNOWS_PEELED) {
1581 if (repeel) {
1582 entry->flag &= ~REF_KNOWS_PEELED;
1583 hashclr(entry->u.value.peeled);
1584 } else {
1585 return is_null_sha1(entry->u.value.peeled) ?
1586 PEEL_NON_TAG : PEEL_PEELED;
1587 }
1588 }
1589 if (entry->flag & REF_ISBROKEN)
1590 return PEEL_BROKEN;
1591 if (entry->flag & REF_ISSYMREF)
1592 return PEEL_IS_SYMREF;
1593
1594 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1595 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1596 entry->flag |= REF_KNOWS_PEELED;
1597 return status;
1598 }
1599
1600 int peel_ref(const char *refname, unsigned char *sha1)
1601 {
1602 int flag;
1603 unsigned char base[20];
1604
1605 if (current_ref && (current_ref->name == refname
1606 || !strcmp(current_ref->name, refname))) {
1607 if (peel_entry(current_ref, 0))
1608 return -1;
1609 hashcpy(sha1, current_ref->u.value.peeled);
1610 return 0;
1611 }
1612
1613 if (read_ref_full(refname, base, 1, &flag))
1614 return -1;
1615
1616 /*
1617 * If the reference is packed, read its ref_entry from the
1618 * cache in the hope that we already know its peeled value.
1619 * We only try this optimization on packed references because
1620 * (a) forcing the filling of the loose reference cache could
1621 * be expensive and (b) loose references anyway usually do not
1622 * have REF_KNOWS_PEELED.
1623 */
1624 if (flag & REF_ISPACKED) {
1625 struct ref_entry *r = get_packed_ref(refname);
1626 if (r) {
1627 if (peel_entry(r, 0))
1628 return -1;
1629 hashcpy(sha1, r->u.value.peeled);
1630 return 0;
1631 }
1632 }
1633
1634 return peel_object(base, sha1);
1635 }
1636
1637 struct warn_if_dangling_data {
1638 FILE *fp;
1639 const char *refname;
1640 const struct string_list *refnames;
1641 const char *msg_fmt;
1642 };
1643
1644 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1645 int flags, void *cb_data)
1646 {
1647 struct warn_if_dangling_data *d = cb_data;
1648 const char *resolves_to;
1649 unsigned char junk[20];
1650
1651 if (!(flags & REF_ISSYMREF))
1652 return 0;
1653
1654 resolves_to = resolve_ref_unsafe(refname, junk, 0, NULL);
1655 if (!resolves_to
1656 || (d->refname
1657 ? strcmp(resolves_to, d->refname)
1658 : !string_list_has_string(d->refnames, resolves_to))) {
1659 return 0;
1660 }
1661
1662 fprintf(d->fp, d->msg_fmt, refname);
1663 fputc('\n', d->fp);
1664 return 0;
1665 }
1666
1667 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1668 {
1669 struct warn_if_dangling_data data;
1670
1671 data.fp = fp;
1672 data.refname = refname;
1673 data.refnames = NULL;
1674 data.msg_fmt = msg_fmt;
1675 for_each_rawref(warn_if_dangling_symref, &data);
1676 }
1677
1678 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1679 {
1680 struct warn_if_dangling_data data;
1681
1682 data.fp = fp;
1683 data.refname = NULL;
1684 data.refnames = refnames;
1685 data.msg_fmt = msg_fmt;
1686 for_each_rawref(warn_if_dangling_symref, &data);
1687 }
1688
1689 /*
1690 * Call fn for each reference in the specified ref_cache, omitting
1691 * references not in the containing_dir of base. fn is called for all
1692 * references, including broken ones. If fn ever returns a non-zero
1693 * value, stop the iteration and return that value; otherwise, return
1694 * 0.
1695 */
1696 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1697 each_ref_entry_fn fn, void *cb_data)
1698 {
1699 struct packed_ref_cache *packed_ref_cache;
1700 struct ref_dir *loose_dir;
1701 struct ref_dir *packed_dir;
1702 int retval = 0;
1703
1704 /*
1705 * We must make sure that all loose refs are read before accessing the
1706 * packed-refs file; this avoids a race condition in which loose refs
1707 * are migrated to the packed-refs file by a simultaneous process, but
1708 * our in-memory view is from before the migration. get_packed_ref_cache()
1709 * takes care of making sure our view is up to date with what is on
1710 * disk.
1711 */
1712 loose_dir = get_loose_refs(refs);
1713 if (base && *base) {
1714 loose_dir = find_containing_dir(loose_dir, base, 0);
1715 }
1716 if (loose_dir)
1717 prime_ref_dir(loose_dir);
1718
1719 packed_ref_cache = get_packed_ref_cache(refs);
1720 acquire_packed_ref_cache(packed_ref_cache);
1721 packed_dir = get_packed_ref_dir(packed_ref_cache);
1722 if (base && *base) {
1723 packed_dir = find_containing_dir(packed_dir, base, 0);
1724 }
1725
1726 if (packed_dir && loose_dir) {
1727 sort_ref_dir(packed_dir);
1728 sort_ref_dir(loose_dir);
1729 retval = do_for_each_entry_in_dirs(
1730 packed_dir, loose_dir, fn, cb_data);
1731 } else if (packed_dir) {
1732 sort_ref_dir(packed_dir);
1733 retval = do_for_each_entry_in_dir(
1734 packed_dir, 0, fn, cb_data);
1735 } else if (loose_dir) {
1736 sort_ref_dir(loose_dir);
1737 retval = do_for_each_entry_in_dir(
1738 loose_dir, 0, fn, cb_data);
1739 }
1740
1741 release_packed_ref_cache(packed_ref_cache);
1742 return retval;
1743 }
1744
1745 /*
1746 * Call fn for each reference in the specified ref_cache for which the
1747 * refname begins with base. If trim is non-zero, then trim that many
1748 * characters off the beginning of each refname before passing the
1749 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1750 * broken references in the iteration. If fn ever returns a non-zero
1751 * value, stop the iteration and return that value; otherwise, return
1752 * 0.
1753 */
1754 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1755 each_ref_fn fn, int trim, int flags, void *cb_data)
1756 {
1757 struct ref_entry_cb data;
1758 data.base = base;
1759 data.trim = trim;
1760 data.flags = flags;
1761 data.fn = fn;
1762 data.cb_data = cb_data;
1763
1764 return do_for_each_entry(refs, base, do_one_ref, &data);
1765 }
1766
1767 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1768 {
1769 unsigned char sha1[20];
1770 int flag;
1771
1772 if (submodule) {
1773 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1774 return fn("HEAD", sha1, 0, cb_data);
1775
1776 return 0;
1777 }
1778
1779 if (!read_ref_full("HEAD", sha1, 1, &flag))
1780 return fn("HEAD", sha1, flag, cb_data);
1781
1782 return 0;
1783 }
1784
1785 int head_ref(each_ref_fn fn, void *cb_data)
1786 {
1787 return do_head_ref(NULL, fn, cb_data);
1788 }
1789
1790 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1791 {
1792 return do_head_ref(submodule, fn, cb_data);
1793 }
1794
1795 int for_each_ref(each_ref_fn fn, void *cb_data)
1796 {
1797 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1798 }
1799
1800 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1801 {
1802 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1803 }
1804
1805 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1806 {
1807 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1808 }
1809
1810 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1811 each_ref_fn fn, void *cb_data)
1812 {
1813 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1814 }
1815
1816 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1817 {
1818 return for_each_ref_in("refs/tags/", fn, cb_data);
1819 }
1820
1821 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1822 {
1823 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1824 }
1825
1826 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1827 {
1828 return for_each_ref_in("refs/heads/", fn, cb_data);
1829 }
1830
1831 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1832 {
1833 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
1834 }
1835
1836 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
1837 {
1838 return for_each_ref_in("refs/remotes/", fn, cb_data);
1839 }
1840
1841 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1842 {
1843 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
1844 }
1845
1846 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
1847 {
1848 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
1849 }
1850
1851 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
1852 {
1853 struct strbuf buf = STRBUF_INIT;
1854 int ret = 0;
1855 unsigned char sha1[20];
1856 int flag;
1857
1858 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
1859 if (!read_ref_full(buf.buf, sha1, 1, &flag))
1860 ret = fn(buf.buf, sha1, flag, cb_data);
1861 strbuf_release(&buf);
1862
1863 return ret;
1864 }
1865
1866 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
1867 {
1868 struct strbuf buf = STRBUF_INIT;
1869 int ret;
1870 strbuf_addf(&buf, "%srefs/", get_git_namespace());
1871 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
1872 strbuf_release(&buf);
1873 return ret;
1874 }
1875
1876 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
1877 const char *prefix, void *cb_data)
1878 {
1879 struct strbuf real_pattern = STRBUF_INIT;
1880 struct ref_filter filter;
1881 int ret;
1882
1883 if (!prefix && !starts_with(pattern, "refs/"))
1884 strbuf_addstr(&real_pattern, "refs/");
1885 else if (prefix)
1886 strbuf_addstr(&real_pattern, prefix);
1887 strbuf_addstr(&real_pattern, pattern);
1888
1889 if (!has_glob_specials(pattern)) {
1890 /* Append implied '/' '*' if not present. */
1891 if (real_pattern.buf[real_pattern.len - 1] != '/')
1892 strbuf_addch(&real_pattern, '/');
1893 /* No need to check for '*', there is none. */
1894 strbuf_addch(&real_pattern, '*');
1895 }
1896
1897 filter.pattern = real_pattern.buf;
1898 filter.fn = fn;
1899 filter.cb_data = cb_data;
1900 ret = for_each_ref(filter_refs, &filter);
1901
1902 strbuf_release(&real_pattern);
1903 return ret;
1904 }
1905
1906 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
1907 {
1908 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
1909 }
1910
1911 int for_each_rawref(each_ref_fn fn, void *cb_data)
1912 {
1913 return do_for_each_ref(&ref_cache, "", fn, 0,
1914 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
1915 }
1916
1917 const char *prettify_refname(const char *name)
1918 {
1919 return name + (
1920 starts_with(name, "refs/heads/") ? 11 :
1921 starts_with(name, "refs/tags/") ? 10 :
1922 starts_with(name, "refs/remotes/") ? 13 :
1923 0);
1924 }
1925
1926 static const char *ref_rev_parse_rules[] = {
1927 "%.*s",
1928 "refs/%.*s",
1929 "refs/tags/%.*s",
1930 "refs/heads/%.*s",
1931 "refs/remotes/%.*s",
1932 "refs/remotes/%.*s/HEAD",
1933 NULL
1934 };
1935
1936 int refname_match(const char *abbrev_name, const char *full_name)
1937 {
1938 const char **p;
1939 const int abbrev_name_len = strlen(abbrev_name);
1940
1941 for (p = ref_rev_parse_rules; *p; p++) {
1942 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
1943 return 1;
1944 }
1945 }
1946
1947 return 0;
1948 }
1949
1950 /* This function should make sure errno is meaningful on error */
1951 static struct ref_lock *verify_lock(struct ref_lock *lock,
1952 const unsigned char *old_sha1, int mustexist)
1953 {
1954 if (read_ref_full(lock->ref_name, lock->old_sha1, mustexist, NULL)) {
1955 int save_errno = errno;
1956 error("Can't verify ref %s", lock->ref_name);
1957 unlock_ref(lock);
1958 errno = save_errno;
1959 return NULL;
1960 }
1961 if (hashcmp(lock->old_sha1, old_sha1)) {
1962 error("Ref %s is at %s but expected %s", lock->ref_name,
1963 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
1964 unlock_ref(lock);
1965 errno = EBUSY;
1966 return NULL;
1967 }
1968 return lock;
1969 }
1970
1971 static int remove_empty_directories(const char *file)
1972 {
1973 /* we want to create a file but there is a directory there;
1974 * if that is an empty directory (or a directory that contains
1975 * only empty directories), remove them.
1976 */
1977 struct strbuf path;
1978 int result, save_errno;
1979
1980 strbuf_init(&path, 20);
1981 strbuf_addstr(&path, file);
1982
1983 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
1984 save_errno = errno;
1985
1986 strbuf_release(&path);
1987 errno = save_errno;
1988
1989 return result;
1990 }
1991
1992 /*
1993 * *string and *len will only be substituted, and *string returned (for
1994 * later free()ing) if the string passed in is a magic short-hand form
1995 * to name a branch.
1996 */
1997 static char *substitute_branch_name(const char **string, int *len)
1998 {
1999 struct strbuf buf = STRBUF_INIT;
2000 int ret = interpret_branch_name(*string, *len, &buf);
2001
2002 if (ret == *len) {
2003 size_t size;
2004 *string = strbuf_detach(&buf, &size);
2005 *len = size;
2006 return (char *)*string;
2007 }
2008
2009 return NULL;
2010 }
2011
2012 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2013 {
2014 char *last_branch = substitute_branch_name(&str, &len);
2015 const char **p, *r;
2016 int refs_found = 0;
2017
2018 *ref = NULL;
2019 for (p = ref_rev_parse_rules; *p; p++) {
2020 char fullref[PATH_MAX];
2021 unsigned char sha1_from_ref[20];
2022 unsigned char *this_result;
2023 int flag;
2024
2025 this_result = refs_found ? sha1_from_ref : sha1;
2026 mksnpath(fullref, sizeof(fullref), *p, len, str);
2027 r = resolve_ref_unsafe(fullref, this_result, 1, &flag);
2028 if (r) {
2029 if (!refs_found++)
2030 *ref = xstrdup(r);
2031 if (!warn_ambiguous_refs)
2032 break;
2033 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2034 warning("ignoring dangling symref %s.", fullref);
2035 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2036 warning("ignoring broken ref %s.", fullref);
2037 }
2038 }
2039 free(last_branch);
2040 return refs_found;
2041 }
2042
2043 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2044 {
2045 char *last_branch = substitute_branch_name(&str, &len);
2046 const char **p;
2047 int logs_found = 0;
2048
2049 *log = NULL;
2050 for (p = ref_rev_parse_rules; *p; p++) {
2051 unsigned char hash[20];
2052 char path[PATH_MAX];
2053 const char *ref, *it;
2054
2055 mksnpath(path, sizeof(path), *p, len, str);
2056 ref = resolve_ref_unsafe(path, hash, 1, NULL);
2057 if (!ref)
2058 continue;
2059 if (reflog_exists(path))
2060 it = path;
2061 else if (strcmp(ref, path) && reflog_exists(ref))
2062 it = ref;
2063 else
2064 continue;
2065 if (!logs_found++) {
2066 *log = xstrdup(it);
2067 hashcpy(sha1, hash);
2068 }
2069 if (!warn_ambiguous_refs)
2070 break;
2071 }
2072 free(last_branch);
2073 return logs_found;
2074 }
2075
2076 /*
2077 * Locks a "refs/" ref returning the lock on success and NULL on failure.
2078 * On failure errno is set to something meaningful.
2079 */
2080 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2081 const unsigned char *old_sha1,
2082 int flags, int *type_p)
2083 {
2084 char *ref_file;
2085 const char *orig_refname = refname;
2086 struct ref_lock *lock;
2087 int last_errno = 0;
2088 int type, lflags;
2089 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2090 int missing = 0;
2091 int attempts_remaining = 3;
2092
2093 lock = xcalloc(1, sizeof(struct ref_lock));
2094 lock->lock_fd = -1;
2095
2096 refname = resolve_ref_unsafe(refname, lock->old_sha1, mustexist, &type);
2097 if (!refname && errno == EISDIR) {
2098 /* we are trying to lock foo but we used to
2099 * have foo/bar which now does not exist;
2100 * it is normal for the empty directory 'foo'
2101 * to remain.
2102 */
2103 ref_file = git_path("%s", orig_refname);
2104 if (remove_empty_directories(ref_file)) {
2105 last_errno = errno;
2106 error("there are still refs under '%s'", orig_refname);
2107 goto error_return;
2108 }
2109 refname = resolve_ref_unsafe(orig_refname, lock->old_sha1, mustexist, &type);
2110 }
2111 if (type_p)
2112 *type_p = type;
2113 if (!refname) {
2114 last_errno = errno;
2115 error("unable to resolve reference %s: %s",
2116 orig_refname, strerror(errno));
2117 goto error_return;
2118 }
2119 missing = is_null_sha1(lock->old_sha1);
2120 /* When the ref did not exist and we are creating it,
2121 * make sure there is no existing ref that is packed
2122 * whose name begins with our refname, nor a ref whose
2123 * name is a proper prefix of our refname.
2124 */
2125 if (missing &&
2126 !is_refname_available(refname, NULL, get_packed_refs(&ref_cache))) {
2127 last_errno = ENOTDIR;
2128 goto error_return;
2129 }
2130
2131 lock->lk = xcalloc(1, sizeof(struct lock_file));
2132
2133 lflags = 0;
2134 if (flags & REF_NODEREF) {
2135 refname = orig_refname;
2136 lflags |= LOCK_NODEREF;
2137 }
2138 lock->ref_name = xstrdup(refname);
2139 lock->orig_ref_name = xstrdup(orig_refname);
2140 ref_file = git_path("%s", refname);
2141 if (missing)
2142 lock->force_write = 1;
2143 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
2144 lock->force_write = 1;
2145
2146 retry:
2147 switch (safe_create_leading_directories(ref_file)) {
2148 case SCLD_OK:
2149 break; /* success */
2150 case SCLD_VANISHED:
2151 if (--attempts_remaining > 0)
2152 goto retry;
2153 /* fall through */
2154 default:
2155 last_errno = errno;
2156 error("unable to create directory for %s", ref_file);
2157 goto error_return;
2158 }
2159
2160 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2161 if (lock->lock_fd < 0) {
2162 if (errno == ENOENT && --attempts_remaining > 0)
2163 /*
2164 * Maybe somebody just deleted one of the
2165 * directories leading to ref_file. Try
2166 * again:
2167 */
2168 goto retry;
2169 else
2170 unable_to_lock_index_die(ref_file, errno);
2171 }
2172 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2173
2174 error_return:
2175 unlock_ref(lock);
2176 errno = last_errno;
2177 return NULL;
2178 }
2179
2180 struct ref_lock *lock_any_ref_for_update(const char *refname,
2181 const unsigned char *old_sha1,
2182 int flags, int *type_p)
2183 {
2184 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
2185 return NULL;
2186 return lock_ref_sha1_basic(refname, old_sha1, flags, type_p);
2187 }
2188
2189 /*
2190 * Write an entry to the packed-refs file for the specified refname.
2191 * If peeled is non-NULL, write it as the entry's peeled value.
2192 */
2193 static void write_packed_entry(int fd, char *refname, unsigned char *sha1,
2194 unsigned char *peeled)
2195 {
2196 char line[PATH_MAX + 100];
2197 int len;
2198
2199 len = snprintf(line, sizeof(line), "%s %s\n",
2200 sha1_to_hex(sha1), refname);
2201 /* this should not happen but just being defensive */
2202 if (len > sizeof(line))
2203 die("too long a refname '%s'", refname);
2204 write_or_die(fd, line, len);
2205
2206 if (peeled) {
2207 if (snprintf(line, sizeof(line), "^%s\n",
2208 sha1_to_hex(peeled)) != PEELED_LINE_LENGTH)
2209 die("internal error");
2210 write_or_die(fd, line, PEELED_LINE_LENGTH);
2211 }
2212 }
2213
2214 /*
2215 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2216 */
2217 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2218 {
2219 int *fd = cb_data;
2220 enum peel_status peel_status = peel_entry(entry, 0);
2221
2222 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2223 error("internal error: %s is not a valid packed reference!",
2224 entry->name);
2225 write_packed_entry(*fd, entry->name, entry->u.value.sha1,
2226 peel_status == PEEL_PEELED ?
2227 entry->u.value.peeled : NULL);
2228 return 0;
2229 }
2230
2231 /* This should return a meaningful errno on failure */
2232 int lock_packed_refs(int flags)
2233 {
2234 struct packed_ref_cache *packed_ref_cache;
2235
2236 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2237 return -1;
2238 /*
2239 * Get the current packed-refs while holding the lock. If the
2240 * packed-refs file has been modified since we last read it,
2241 * this will automatically invalidate the cache and re-read
2242 * the packed-refs file.
2243 */
2244 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2245 packed_ref_cache->lock = &packlock;
2246 /* Increment the reference count to prevent it from being freed: */
2247 acquire_packed_ref_cache(packed_ref_cache);
2248 return 0;
2249 }
2250
2251 /*
2252 * Commit the packed refs changes.
2253 * On error we must make sure that errno contains a meaningful value.
2254 */
2255 int commit_packed_refs(void)
2256 {
2257 struct packed_ref_cache *packed_ref_cache =
2258 get_packed_ref_cache(&ref_cache);
2259 int error = 0;
2260 int save_errno = 0;
2261
2262 if (!packed_ref_cache->lock)
2263 die("internal error: packed-refs not locked");
2264 write_or_die(packed_ref_cache->lock->fd,
2265 PACKED_REFS_HEADER, strlen(PACKED_REFS_HEADER));
2266
2267 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2268 0, write_packed_entry_fn,
2269 &packed_ref_cache->lock->fd);
2270 if (commit_lock_file(packed_ref_cache->lock)) {
2271 save_errno = errno;
2272 error = -1;
2273 }
2274 packed_ref_cache->lock = NULL;
2275 release_packed_ref_cache(packed_ref_cache);
2276 errno = save_errno;
2277 return error;
2278 }
2279
2280 void rollback_packed_refs(void)
2281 {
2282 struct packed_ref_cache *packed_ref_cache =
2283 get_packed_ref_cache(&ref_cache);
2284
2285 if (!packed_ref_cache->lock)
2286 die("internal error: packed-refs not locked");
2287 rollback_lock_file(packed_ref_cache->lock);
2288 packed_ref_cache->lock = NULL;
2289 release_packed_ref_cache(packed_ref_cache);
2290 clear_packed_ref_cache(&ref_cache);
2291 }
2292
2293 struct ref_to_prune {
2294 struct ref_to_prune *next;
2295 unsigned char sha1[20];
2296 char name[FLEX_ARRAY];
2297 };
2298
2299 struct pack_refs_cb_data {
2300 unsigned int flags;
2301 struct ref_dir *packed_refs;
2302 struct ref_to_prune *ref_to_prune;
2303 };
2304
2305 /*
2306 * An each_ref_entry_fn that is run over loose references only. If
2307 * the loose reference can be packed, add an entry in the packed ref
2308 * cache. If the reference should be pruned, also add it to
2309 * ref_to_prune in the pack_refs_cb_data.
2310 */
2311 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2312 {
2313 struct pack_refs_cb_data *cb = cb_data;
2314 enum peel_status peel_status;
2315 struct ref_entry *packed_entry;
2316 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2317
2318 /* ALWAYS pack tags */
2319 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2320 return 0;
2321
2322 /* Do not pack symbolic or broken refs: */
2323 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2324 return 0;
2325
2326 /* Add a packed ref cache entry equivalent to the loose entry. */
2327 peel_status = peel_entry(entry, 1);
2328 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2329 die("internal error peeling reference %s (%s)",
2330 entry->name, sha1_to_hex(entry->u.value.sha1));
2331 packed_entry = find_ref(cb->packed_refs, entry->name);
2332 if (packed_entry) {
2333 /* Overwrite existing packed entry with info from loose entry */
2334 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2335 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2336 } else {
2337 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2338 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2339 add_ref(cb->packed_refs, packed_entry);
2340 }
2341 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2342
2343 /* Schedule the loose reference for pruning if requested. */
2344 if ((cb->flags & PACK_REFS_PRUNE)) {
2345 int namelen = strlen(entry->name) + 1;
2346 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2347 hashcpy(n->sha1, entry->u.value.sha1);
2348 strcpy(n->name, entry->name);
2349 n->next = cb->ref_to_prune;
2350 cb->ref_to_prune = n;
2351 }
2352 return 0;
2353 }
2354
2355 /*
2356 * Remove empty parents, but spare refs/ and immediate subdirs.
2357 * Note: munges *name.
2358 */
2359 static void try_remove_empty_parents(char *name)
2360 {
2361 char *p, *q;
2362 int i;
2363 p = name;
2364 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2365 while (*p && *p != '/')
2366 p++;
2367 /* tolerate duplicate slashes; see check_refname_format() */
2368 while (*p == '/')
2369 p++;
2370 }
2371 for (q = p; *q; q++)
2372 ;
2373 while (1) {
2374 while (q > p && *q != '/')
2375 q--;
2376 while (q > p && *(q-1) == '/')
2377 q--;
2378 if (q == p)
2379 break;
2380 *q = '\0';
2381 if (rmdir(git_path("%s", name)))
2382 break;
2383 }
2384 }
2385
2386 /* make sure nobody touched the ref, and unlink */
2387 static void prune_ref(struct ref_to_prune *r)
2388 {
2389 struct ref_transaction *transaction;
2390 struct strbuf err = STRBUF_INIT;
2391
2392 if (check_refname_format(r->name, 0))
2393 return;
2394
2395 transaction = ref_transaction_begin(&err);
2396 if (!transaction ||
2397 ref_transaction_delete(transaction, r->name, r->sha1,
2398 REF_ISPRUNING, 1, &err) ||
2399 ref_transaction_commit(transaction, NULL, &err)) {
2400 ref_transaction_free(transaction);
2401 error("%s", err.buf);
2402 strbuf_release(&err);
2403 return;
2404 }
2405 ref_transaction_free(transaction);
2406 strbuf_release(&err);
2407 try_remove_empty_parents(r->name);
2408 }
2409
2410 static void prune_refs(struct ref_to_prune *r)
2411 {
2412 while (r) {
2413 prune_ref(r);
2414 r = r->next;
2415 }
2416 }
2417
2418 int pack_refs(unsigned int flags)
2419 {
2420 struct pack_refs_cb_data cbdata;
2421
2422 memset(&cbdata, 0, sizeof(cbdata));
2423 cbdata.flags = flags;
2424
2425 lock_packed_refs(LOCK_DIE_ON_ERROR);
2426 cbdata.packed_refs = get_packed_refs(&ref_cache);
2427
2428 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2429 pack_if_possible_fn, &cbdata);
2430
2431 if (commit_packed_refs())
2432 die_errno("unable to overwrite old ref-pack file");
2433
2434 prune_refs(cbdata.ref_to_prune);
2435 return 0;
2436 }
2437
2438 /*
2439 * If entry is no longer needed in packed-refs, add it to the string
2440 * list pointed to by cb_data. Reasons for deleting entries:
2441 *
2442 * - Entry is broken.
2443 * - Entry is overridden by a loose ref.
2444 * - Entry does not point at a valid object.
2445 *
2446 * In the first and third cases, also emit an error message because these
2447 * are indications of repository corruption.
2448 */
2449 static int curate_packed_ref_fn(struct ref_entry *entry, void *cb_data)
2450 {
2451 struct string_list *refs_to_delete = cb_data;
2452
2453 if (entry->flag & REF_ISBROKEN) {
2454 /* This shouldn't happen to packed refs. */
2455 error("%s is broken!", entry->name);
2456 string_list_append(refs_to_delete, entry->name);
2457 return 0;
2458 }
2459 if (!has_sha1_file(entry->u.value.sha1)) {
2460 unsigned char sha1[20];
2461 int flags;
2462
2463 if (read_ref_full(entry->name, sha1, 0, &flags))
2464 /* We should at least have found the packed ref. */
2465 die("Internal error");
2466 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED)) {
2467 /*
2468 * This packed reference is overridden by a
2469 * loose reference, so it is OK that its value
2470 * is no longer valid; for example, it might
2471 * refer to an object that has been garbage
2472 * collected. For this purpose we don't even
2473 * care whether the loose reference itself is
2474 * invalid, broken, symbolic, etc. Silently
2475 * remove the packed reference.
2476 */
2477 string_list_append(refs_to_delete, entry->name);
2478 return 0;
2479 }
2480 /*
2481 * There is no overriding loose reference, so the fact
2482 * that this reference doesn't refer to a valid object
2483 * indicates some kind of repository corruption.
2484 * Report the problem, then omit the reference from
2485 * the output.
2486 */
2487 error("%s does not point to a valid object!", entry->name);
2488 string_list_append(refs_to_delete, entry->name);
2489 return 0;
2490 }
2491
2492 return 0;
2493 }
2494
2495 int repack_without_refs(const char **refnames, int n, struct strbuf *err)
2496 {
2497 struct ref_dir *packed;
2498 struct string_list refs_to_delete = STRING_LIST_INIT_DUP;
2499 struct string_list_item *ref_to_delete;
2500 int i, ret, removed = 0;
2501
2502 /* Look for a packed ref */
2503 for (i = 0; i < n; i++)
2504 if (get_packed_ref(refnames[i]))
2505 break;
2506
2507 /* Avoid locking if we have nothing to do */
2508 if (i == n)
2509 return 0; /* no refname exists in packed refs */
2510
2511 if (lock_packed_refs(0)) {
2512 if (err) {
2513 unable_to_lock_message(git_path("packed-refs"), errno,
2514 err);
2515 return -1;
2516 }
2517 unable_to_lock_error(git_path("packed-refs"), errno);
2518 return error("cannot delete '%s' from packed refs", refnames[i]);
2519 }
2520 packed = get_packed_refs(&ref_cache);
2521
2522 /* Remove refnames from the cache */
2523 for (i = 0; i < n; i++)
2524 if (remove_entry(packed, refnames[i]) != -1)
2525 removed = 1;
2526 if (!removed) {
2527 /*
2528 * All packed entries disappeared while we were
2529 * acquiring the lock.
2530 */
2531 rollback_packed_refs();
2532 return 0;
2533 }
2534
2535 /* Remove any other accumulated cruft */
2536 do_for_each_entry_in_dir(packed, 0, curate_packed_ref_fn, &refs_to_delete);
2537 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
2538 if (remove_entry(packed, ref_to_delete->string) == -1)
2539 die("internal error");
2540 }
2541
2542 /* Write what remains */
2543 ret = commit_packed_refs();
2544 if (ret && err)
2545 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2546 strerror(errno));
2547 return ret;
2548 }
2549
2550 static int delete_ref_loose(struct ref_lock *lock, int flag)
2551 {
2552 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2553 /* loose */
2554 int err, i = strlen(lock->lk->filename) - 5; /* .lock */
2555
2556 lock->lk->filename[i] = 0;
2557 err = unlink_or_warn(lock->lk->filename);
2558 lock->lk->filename[i] = '.';
2559 if (err && errno != ENOENT)
2560 return 1;
2561 }
2562 return 0;
2563 }
2564
2565 int delete_ref(const char *refname, const unsigned char *sha1, int delopt)
2566 {
2567 struct ref_transaction *transaction;
2568 struct strbuf err = STRBUF_INIT;
2569
2570 transaction = ref_transaction_begin(&err);
2571 if (!transaction ||
2572 ref_transaction_delete(transaction, refname, sha1, delopt,
2573 sha1 && !is_null_sha1(sha1), &err) ||
2574 ref_transaction_commit(transaction, NULL, &err)) {
2575 error("%s", err.buf);
2576 ref_transaction_free(transaction);
2577 strbuf_release(&err);
2578 return 1;
2579 }
2580 ref_transaction_free(transaction);
2581 strbuf_release(&err);
2582 return 0;
2583 }
2584
2585 /*
2586 * People using contrib's git-new-workdir have .git/logs/refs ->
2587 * /some/other/path/.git/logs/refs, and that may live on another device.
2588 *
2589 * IOW, to avoid cross device rename errors, the temporary renamed log must
2590 * live into logs/refs.
2591 */
2592 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2593
2594 static int rename_tmp_log(const char *newrefname)
2595 {
2596 int attempts_remaining = 4;
2597
2598 retry:
2599 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2600 case SCLD_OK:
2601 break; /* success */
2602 case SCLD_VANISHED:
2603 if (--attempts_remaining > 0)
2604 goto retry;
2605 /* fall through */
2606 default:
2607 error("unable to create directory for %s", newrefname);
2608 return -1;
2609 }
2610
2611 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2612 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2613 /*
2614 * rename(a, b) when b is an existing
2615 * directory ought to result in ISDIR, but
2616 * Solaris 5.8 gives ENOTDIR. Sheesh.
2617 */
2618 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2619 error("Directory not empty: logs/%s", newrefname);
2620 return -1;
2621 }
2622 goto retry;
2623 } else if (errno == ENOENT && --attempts_remaining > 0) {
2624 /*
2625 * Maybe another process just deleted one of
2626 * the directories in the path to newrefname.
2627 * Try again from the beginning.
2628 */
2629 goto retry;
2630 } else {
2631 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2632 newrefname, strerror(errno));
2633 return -1;
2634 }
2635 }
2636 return 0;
2637 }
2638
2639 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2640 {
2641 unsigned char sha1[20], orig_sha1[20];
2642 int flag = 0, logmoved = 0;
2643 struct ref_lock *lock;
2644 struct stat loginfo;
2645 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2646 const char *symref = NULL;
2647
2648 if (log && S_ISLNK(loginfo.st_mode))
2649 return error("reflog for %s is a symlink", oldrefname);
2650
2651 symref = resolve_ref_unsafe(oldrefname, orig_sha1, 1, &flag);
2652 if (flag & REF_ISSYMREF)
2653 return error("refname %s is a symbolic ref, renaming it is not supported",
2654 oldrefname);
2655 if (!symref)
2656 return error("refname %s not found", oldrefname);
2657
2658 if (!is_refname_available(newrefname, oldrefname, get_packed_refs(&ref_cache)))
2659 return 1;
2660
2661 if (!is_refname_available(newrefname, oldrefname, get_loose_refs(&ref_cache)))
2662 return 1;
2663
2664 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2665 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2666 oldrefname, strerror(errno));
2667
2668 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2669 error("unable to delete old %s", oldrefname);
2670 goto rollback;
2671 }
2672
2673 if (!read_ref_full(newrefname, sha1, 1, &flag) &&
2674 delete_ref(newrefname, sha1, REF_NODEREF)) {
2675 if (errno==EISDIR) {
2676 if (remove_empty_directories(git_path("%s", newrefname))) {
2677 error("Directory not empty: %s", newrefname);
2678 goto rollback;
2679 }
2680 } else {
2681 error("unable to delete existing %s", newrefname);
2682 goto rollback;
2683 }
2684 }
2685
2686 if (log && rename_tmp_log(newrefname))
2687 goto rollback;
2688
2689 logmoved = log;
2690
2691 lock = lock_ref_sha1_basic(newrefname, NULL, 0, NULL);
2692 if (!lock) {
2693 error("unable to lock %s for update", newrefname);
2694 goto rollback;
2695 }
2696 lock->force_write = 1;
2697 hashcpy(lock->old_sha1, orig_sha1);
2698 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2699 error("unable to write current sha1 into %s", newrefname);
2700 goto rollback;
2701 }
2702
2703 return 0;
2704
2705 rollback:
2706 lock = lock_ref_sha1_basic(oldrefname, NULL, 0, NULL);
2707 if (!lock) {
2708 error("unable to lock %s for rollback", oldrefname);
2709 goto rollbacklog;
2710 }
2711
2712 lock->force_write = 1;
2713 flag = log_all_ref_updates;
2714 log_all_ref_updates = 0;
2715 if (write_ref_sha1(lock, orig_sha1, NULL))
2716 error("unable to write current sha1 into %s", oldrefname);
2717 log_all_ref_updates = flag;
2718
2719 rollbacklog:
2720 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2721 error("unable to restore logfile %s from %s: %s",
2722 oldrefname, newrefname, strerror(errno));
2723 if (!logmoved && log &&
2724 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2725 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2726 oldrefname, strerror(errno));
2727
2728 return 1;
2729 }
2730
2731 int close_ref(struct ref_lock *lock)
2732 {
2733 if (close_lock_file(lock->lk))
2734 return -1;
2735 lock->lock_fd = -1;
2736 return 0;
2737 }
2738
2739 int commit_ref(struct ref_lock *lock)
2740 {
2741 if (commit_lock_file(lock->lk))
2742 return -1;
2743 lock->lock_fd = -1;
2744 return 0;
2745 }
2746
2747 void unlock_ref(struct ref_lock *lock)
2748 {
2749 /* Do not free lock->lk -- atexit() still looks at them */
2750 if (lock->lk)
2751 rollback_lock_file(lock->lk);
2752 free(lock->ref_name);
2753 free(lock->orig_ref_name);
2754 free(lock);
2755 }
2756
2757 /*
2758 * copy the reflog message msg to buf, which has been allocated sufficiently
2759 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2760 * because reflog file is one line per entry.
2761 */
2762 static int copy_msg(char *buf, const char *msg)
2763 {
2764 char *cp = buf;
2765 char c;
2766 int wasspace = 1;
2767
2768 *cp++ = '\t';
2769 while ((c = *msg++)) {
2770 if (wasspace && isspace(c))
2771 continue;
2772 wasspace = isspace(c);
2773 if (wasspace)
2774 c = ' ';
2775 *cp++ = c;
2776 }
2777 while (buf < cp && isspace(cp[-1]))
2778 cp--;
2779 *cp++ = '\n';
2780 return cp - buf;
2781 }
2782
2783 /* This function must set a meaningful errno on failure */
2784 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2785 {
2786 int logfd, oflags = O_APPEND | O_WRONLY;
2787
2788 git_snpath(logfile, bufsize, "logs/%s", refname);
2789 if (log_all_ref_updates &&
2790 (starts_with(refname, "refs/heads/") ||
2791 starts_with(refname, "refs/remotes/") ||
2792 starts_with(refname, "refs/notes/") ||
2793 !strcmp(refname, "HEAD"))) {
2794 if (safe_create_leading_directories(logfile) < 0) {
2795 int save_errno = errno;
2796 error("unable to create directory for %s", logfile);
2797 errno = save_errno;
2798 return -1;
2799 }
2800 oflags |= O_CREAT;
2801 }
2802
2803 logfd = open(logfile, oflags, 0666);
2804 if (logfd < 0) {
2805 if (!(oflags & O_CREAT) && errno == ENOENT)
2806 return 0;
2807
2808 if ((oflags & O_CREAT) && errno == EISDIR) {
2809 if (remove_empty_directories(logfile)) {
2810 int save_errno = errno;
2811 error("There are still logs under '%s'",
2812 logfile);
2813 errno = save_errno;
2814 return -1;
2815 }
2816 logfd = open(logfile, oflags, 0666);
2817 }
2818
2819 if (logfd < 0) {
2820 int save_errno = errno;
2821 error("Unable to append to %s: %s", logfile,
2822 strerror(errno));
2823 errno = save_errno;
2824 return -1;
2825 }
2826 }
2827
2828 adjust_shared_perm(logfile);
2829 close(logfd);
2830 return 0;
2831 }
2832
2833 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2834 const unsigned char *new_sha1, const char *msg)
2835 {
2836 int logfd, result, written, oflags = O_APPEND | O_WRONLY;
2837 unsigned maxlen, len;
2838 int msglen;
2839 char log_file[PATH_MAX];
2840 char *logrec;
2841 const char *committer;
2842
2843 if (log_all_ref_updates < 0)
2844 log_all_ref_updates = !is_bare_repository();
2845
2846 result = log_ref_setup(refname, log_file, sizeof(log_file));
2847 if (result)
2848 return result;
2849
2850 logfd = open(log_file, oflags);
2851 if (logfd < 0)
2852 return 0;
2853 msglen = msg ? strlen(msg) : 0;
2854 committer = git_committer_info(0);
2855 maxlen = strlen(committer) + msglen + 100;
2856 logrec = xmalloc(maxlen);
2857 len = sprintf(logrec, "%s %s %s\n",
2858 sha1_to_hex(old_sha1),
2859 sha1_to_hex(new_sha1),
2860 committer);
2861 if (msglen)
2862 len += copy_msg(logrec + len - 1, msg) - 1;
2863 written = len <= maxlen ? write_in_full(logfd, logrec, len) : -1;
2864 free(logrec);
2865 if (written != len) {
2866 int save_errno = errno;
2867 close(logfd);
2868 error("Unable to append to %s", log_file);
2869 errno = save_errno;
2870 return -1;
2871 }
2872 if (close(logfd)) {
2873 int save_errno = errno;
2874 error("Unable to append to %s", log_file);
2875 errno = save_errno;
2876 return -1;
2877 }
2878 return 0;
2879 }
2880
2881 int is_branch(const char *refname)
2882 {
2883 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
2884 }
2885
2886 /* This function must return a meaningful errno */
2887 int write_ref_sha1(struct ref_lock *lock,
2888 const unsigned char *sha1, const char *logmsg)
2889 {
2890 static char term = '\n';
2891 struct object *o;
2892
2893 if (!lock) {
2894 errno = EINVAL;
2895 return -1;
2896 }
2897 if (!lock->force_write && !hashcmp(lock->old_sha1, sha1)) {
2898 unlock_ref(lock);
2899 return 0;
2900 }
2901 o = parse_object(sha1);
2902 if (!o) {
2903 error("Trying to write ref %s with nonexistent object %s",
2904 lock->ref_name, sha1_to_hex(sha1));
2905 unlock_ref(lock);
2906 errno = EINVAL;
2907 return -1;
2908 }
2909 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2910 error("Trying to write non-commit object %s to branch %s",
2911 sha1_to_hex(sha1), lock->ref_name);
2912 unlock_ref(lock);
2913 errno = EINVAL;
2914 return -1;
2915 }
2916 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
2917 write_in_full(lock->lock_fd, &term, 1) != 1 ||
2918 close_ref(lock) < 0) {
2919 int save_errno = errno;
2920 error("Couldn't write %s", lock->lk->filename);
2921 unlock_ref(lock);
2922 errno = save_errno;
2923 return -1;
2924 }
2925 clear_loose_ref_cache(&ref_cache);
2926 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
2927 (strcmp(lock->ref_name, lock->orig_ref_name) &&
2928 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
2929 unlock_ref(lock);
2930 return -1;
2931 }
2932 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
2933 /*
2934 * Special hack: If a branch is updated directly and HEAD
2935 * points to it (may happen on the remote side of a push
2936 * for example) then logically the HEAD reflog should be
2937 * updated too.
2938 * A generic solution implies reverse symref information,
2939 * but finding all symrefs pointing to the given branch
2940 * would be rather costly for this rare event (the direct
2941 * update of a branch) to be worth it. So let's cheat and
2942 * check with HEAD only which should cover 99% of all usage
2943 * scenarios (even 100% of the default ones).
2944 */
2945 unsigned char head_sha1[20];
2946 int head_flag;
2947 const char *head_ref;
2948 head_ref = resolve_ref_unsafe("HEAD", head_sha1, 1, &head_flag);
2949 if (head_ref && (head_flag & REF_ISSYMREF) &&
2950 !strcmp(head_ref, lock->ref_name))
2951 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
2952 }
2953 if (commit_ref(lock)) {
2954 error("Couldn't set %s", lock->ref_name);
2955 unlock_ref(lock);
2956 return -1;
2957 }
2958 unlock_ref(lock);
2959 return 0;
2960 }
2961
2962 int create_symref(const char *ref_target, const char *refs_heads_master,
2963 const char *logmsg)
2964 {
2965 const char *lockpath;
2966 char ref[1000];
2967 int fd, len, written;
2968 char *git_HEAD = git_pathdup("%s", ref_target);
2969 unsigned char old_sha1[20], new_sha1[20];
2970
2971 if (logmsg && read_ref(ref_target, old_sha1))
2972 hashclr(old_sha1);
2973
2974 if (safe_create_leading_directories(git_HEAD) < 0)
2975 return error("unable to create directory for %s", git_HEAD);
2976
2977 #ifndef NO_SYMLINK_HEAD
2978 if (prefer_symlink_refs) {
2979 unlink(git_HEAD);
2980 if (!symlink(refs_heads_master, git_HEAD))
2981 goto done;
2982 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2983 }
2984 #endif
2985
2986 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
2987 if (sizeof(ref) <= len) {
2988 error("refname too long: %s", refs_heads_master);
2989 goto error_free_return;
2990 }
2991 lockpath = mkpath("%s.lock", git_HEAD);
2992 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
2993 if (fd < 0) {
2994 error("Unable to open %s for writing", lockpath);
2995 goto error_free_return;
2996 }
2997 written = write_in_full(fd, ref, len);
2998 if (close(fd) != 0 || written != len) {
2999 error("Unable to write to %s", lockpath);
3000 goto error_unlink_return;
3001 }
3002 if (rename(lockpath, git_HEAD) < 0) {
3003 error("Unable to create %s", git_HEAD);
3004 goto error_unlink_return;
3005 }
3006 if (adjust_shared_perm(git_HEAD)) {
3007 error("Unable to fix permissions on %s", lockpath);
3008 error_unlink_return:
3009 unlink_or_warn(lockpath);
3010 error_free_return:
3011 free(git_HEAD);
3012 return -1;
3013 }
3014
3015 #ifndef NO_SYMLINK_HEAD
3016 done:
3017 #endif
3018 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3019 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3020
3021 free(git_HEAD);
3022 return 0;
3023 }
3024
3025 struct read_ref_at_cb {
3026 const char *refname;
3027 unsigned long at_time;
3028 int cnt;
3029 int reccnt;
3030 unsigned char *sha1;
3031 int found_it;
3032
3033 unsigned char osha1[20];
3034 unsigned char nsha1[20];
3035 int tz;
3036 unsigned long date;
3037 char **msg;
3038 unsigned long *cutoff_time;
3039 int *cutoff_tz;
3040 int *cutoff_cnt;
3041 };
3042
3043 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3044 const char *email, unsigned long timestamp, int tz,
3045 const char *message, void *cb_data)
3046 {
3047 struct read_ref_at_cb *cb = cb_data;
3048
3049 cb->reccnt++;
3050 cb->tz = tz;
3051 cb->date = timestamp;
3052
3053 if (timestamp <= cb->at_time || cb->cnt == 0) {
3054 if (cb->msg)
3055 *cb->msg = xstrdup(message);
3056 if (cb->cutoff_time)
3057 *cb->cutoff_time = timestamp;
3058 if (cb->cutoff_tz)
3059 *cb->cutoff_tz = tz;
3060 if (cb->cutoff_cnt)
3061 *cb->cutoff_cnt = cb->reccnt - 1;
3062 /*
3063 * we have not yet updated cb->[n|o]sha1 so they still
3064 * hold the values for the previous record.
3065 */
3066 if (!is_null_sha1(cb->osha1)) {
3067 hashcpy(cb->sha1, nsha1);
3068 if (hashcmp(cb->osha1, nsha1))
3069 warning("Log for ref %s has gap after %s.",
3070 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3071 }
3072 else if (cb->date == cb->at_time)
3073 hashcpy(cb->sha1, nsha1);
3074 else if (hashcmp(nsha1, cb->sha1))
3075 warning("Log for ref %s unexpectedly ended on %s.",
3076 cb->refname, show_date(cb->date, cb->tz,
3077 DATE_RFC2822));
3078 hashcpy(cb->osha1, osha1);
3079 hashcpy(cb->nsha1, nsha1);
3080 cb->found_it = 1;
3081 return 1;
3082 }
3083 hashcpy(cb->osha1, osha1);
3084 hashcpy(cb->nsha1, nsha1);
3085 if (cb->cnt > 0)
3086 cb->cnt--;
3087 return 0;
3088 }
3089
3090 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3091 const char *email, unsigned long timestamp,
3092 int tz, const char *message, void *cb_data)
3093 {
3094 struct read_ref_at_cb *cb = cb_data;
3095
3096 if (cb->msg)
3097 *cb->msg = xstrdup(message);
3098 if (cb->cutoff_time)
3099 *cb->cutoff_time = timestamp;
3100 if (cb->cutoff_tz)
3101 *cb->cutoff_tz = tz;
3102 if (cb->cutoff_cnt)
3103 *cb->cutoff_cnt = cb->reccnt;
3104 hashcpy(cb->sha1, osha1);
3105 if (is_null_sha1(cb->sha1))
3106 hashcpy(cb->sha1, nsha1);
3107 /* We just want the first entry */
3108 return 1;
3109 }
3110
3111 int read_ref_at(const char *refname, unsigned long at_time, int cnt,
3112 unsigned char *sha1, char **msg,
3113 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3114 {
3115 struct read_ref_at_cb cb;
3116
3117 memset(&cb, 0, sizeof(cb));
3118 cb.refname = refname;
3119 cb.at_time = at_time;
3120 cb.cnt = cnt;
3121 cb.msg = msg;
3122 cb.cutoff_time = cutoff_time;
3123 cb.cutoff_tz = cutoff_tz;
3124 cb.cutoff_cnt = cutoff_cnt;
3125 cb.sha1 = sha1;
3126
3127 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3128
3129 if (!cb.reccnt)
3130 die("Log for %s is empty.", refname);
3131 if (cb.found_it)
3132 return 0;
3133
3134 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3135
3136 return 1;
3137 }
3138
3139 int reflog_exists(const char *refname)
3140 {
3141 struct stat st;
3142
3143 return !lstat(git_path("logs/%s", refname), &st) &&
3144 S_ISREG(st.st_mode);
3145 }
3146
3147 int delete_reflog(const char *refname)
3148 {
3149 return remove_path(git_path("logs/%s", refname));
3150 }
3151
3152 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3153 {
3154 unsigned char osha1[20], nsha1[20];
3155 char *email_end, *message;
3156 unsigned long timestamp;
3157 int tz;
3158
3159 /* old SP new SP name <email> SP time TAB msg LF */
3160 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3161 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3162 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3163 !(email_end = strchr(sb->buf + 82, '>')) ||
3164 email_end[1] != ' ' ||
3165 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3166 !message || message[0] != ' ' ||
3167 (message[1] != '+' && message[1] != '-') ||
3168 !isdigit(message[2]) || !isdigit(message[3]) ||
3169 !isdigit(message[4]) || !isdigit(message[5]))
3170 return 0; /* corrupt? */
3171 email_end[1] = '\0';
3172 tz = strtol(message + 1, NULL, 10);
3173 if (message[6] != '\t')
3174 message += 6;
3175 else
3176 message += 7;
3177 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3178 }
3179
3180 static char *find_beginning_of_line(char *bob, char *scan)
3181 {
3182 while (bob < scan && *(--scan) != '\n')
3183 ; /* keep scanning backwards */
3184 /*
3185 * Return either beginning of the buffer, or LF at the end of
3186 * the previous line.
3187 */
3188 return scan;
3189 }
3190
3191 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3192 {
3193 struct strbuf sb = STRBUF_INIT;
3194 FILE *logfp;
3195 long pos;
3196 int ret = 0, at_tail = 1;
3197
3198 logfp = fopen(git_path("logs/%s", refname), "r");
3199 if (!logfp)
3200 return -1;
3201
3202 /* Jump to the end */
3203 if (fseek(logfp, 0, SEEK_END) < 0)
3204 return error("cannot seek back reflog for %s: %s",
3205 refname, strerror(errno));
3206 pos = ftell(logfp);
3207 while (!ret && 0 < pos) {
3208 int cnt;
3209 size_t nread;
3210 char buf[BUFSIZ];
3211 char *endp, *scanp;
3212
3213 /* Fill next block from the end */
3214 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3215 if (fseek(logfp, pos - cnt, SEEK_SET))
3216 return error("cannot seek back reflog for %s: %s",
3217 refname, strerror(errno));
3218 nread = fread(buf, cnt, 1, logfp);
3219 if (nread != 1)
3220 return error("cannot read %d bytes from reflog for %s: %s",
3221 cnt, refname, strerror(errno));
3222 pos -= cnt;
3223
3224 scanp = endp = buf + cnt;
3225 if (at_tail && scanp[-1] == '\n')
3226 /* Looking at the final LF at the end of the file */
3227 scanp--;
3228 at_tail = 0;
3229
3230 while (buf < scanp) {
3231 /*
3232 * terminating LF of the previous line, or the beginning
3233 * of the buffer.
3234 */
3235 char *bp;
3236
3237 bp = find_beginning_of_line(buf, scanp);
3238
3239 if (*bp != '\n') {
3240 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3241 if (pos)
3242 break; /* need to fill another block */
3243 scanp = buf - 1; /* leave loop */
3244 } else {
3245 /*
3246 * (bp + 1) thru endp is the beginning of the
3247 * current line we have in sb
3248 */
3249 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3250 scanp = bp;
3251 endp = bp + 1;
3252 }
3253 ret = show_one_reflog_ent(&sb, fn, cb_data);
3254 strbuf_reset(&sb);
3255 if (ret)
3256 break;
3257 }
3258
3259 }
3260 if (!ret && sb.len)
3261 ret = show_one_reflog_ent(&sb, fn, cb_data);
3262
3263 fclose(logfp);
3264 strbuf_release(&sb);
3265 return ret;
3266 }
3267
3268 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3269 {
3270 FILE *logfp;
3271 struct strbuf sb = STRBUF_INIT;
3272 int ret = 0;
3273
3274 logfp = fopen(git_path("logs/%s", refname), "r");
3275 if (!logfp)
3276 return -1;
3277
3278 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3279 ret = show_one_reflog_ent(&sb, fn, cb_data);
3280 fclose(logfp);
3281 strbuf_release(&sb);
3282 return ret;
3283 }
3284 /*
3285 * Call fn for each reflog in the namespace indicated by name. name
3286 * must be empty or end with '/'. Name will be used as a scratch
3287 * space, but its contents will be restored before return.
3288 */
3289 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3290 {
3291 DIR *d = opendir(git_path("logs/%s", name->buf));
3292 int retval = 0;
3293 struct dirent *de;
3294 int oldlen = name->len;
3295
3296 if (!d)
3297 return name->len ? errno : 0;
3298
3299 while ((de = readdir(d)) != NULL) {
3300 struct stat st;
3301
3302 if (de->d_name[0] == '.')
3303 continue;
3304 if (ends_with(de->d_name, ".lock"))
3305 continue;
3306 strbuf_addstr(name, de->d_name);
3307 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3308 ; /* silently ignore */
3309 } else {
3310 if (S_ISDIR(st.st_mode)) {
3311 strbuf_addch(name, '/');
3312 retval = do_for_each_reflog(name, fn, cb_data);
3313 } else {
3314 unsigned char sha1[20];
3315 if (read_ref_full(name->buf, sha1, 0, NULL))
3316 retval = error("bad ref for %s", name->buf);
3317 else
3318 retval = fn(name->buf, sha1, 0, cb_data);
3319 }
3320 if (retval)
3321 break;
3322 }
3323 strbuf_setlen(name, oldlen);
3324 }
3325 closedir(d);
3326 return retval;
3327 }
3328
3329 int for_each_reflog(each_ref_fn fn, void *cb_data)
3330 {
3331 int retval;
3332 struct strbuf name;
3333 strbuf_init(&name, PATH_MAX);
3334 retval = do_for_each_reflog(&name, fn, cb_data);
3335 strbuf_release(&name);
3336 return retval;
3337 }
3338
3339 /**
3340 * Information needed for a single ref update. Set new_sha1 to the
3341 * new value or to zero to delete the ref. To check the old value
3342 * while locking the ref, set have_old to 1 and set old_sha1 to the
3343 * value or to zero to ensure the ref does not exist before update.
3344 */
3345 struct ref_update {
3346 unsigned char new_sha1[20];
3347 unsigned char old_sha1[20];
3348 int flags; /* REF_NODEREF? */
3349 int have_old; /* 1 if old_sha1 is valid, 0 otherwise */
3350 struct ref_lock *lock;
3351 int type;
3352 const char refname[FLEX_ARRAY];
3353 };
3354
3355 /*
3356 * Transaction states.
3357 * OPEN: The transaction is in a valid state and can accept new updates.
3358 * An OPEN transaction can be committed.
3359 * CLOSED: A closed transaction is no longer active and no other operations
3360 * than free can be used on it in this state.
3361 * A transaction can either become closed by successfully committing
3362 * an active transaction or if there is a failure while building
3363 * the transaction thus rendering it failed/inactive.
3364 */
3365 enum ref_transaction_state {
3366 REF_TRANSACTION_OPEN = 0,
3367 REF_TRANSACTION_CLOSED = 1
3368 };
3369
3370 /*
3371 * Data structure for holding a reference transaction, which can
3372 * consist of checks and updates to multiple references, carried out
3373 * as atomically as possible. This structure is opaque to callers.
3374 */
3375 struct ref_transaction {
3376 struct ref_update **updates;
3377 size_t alloc;
3378 size_t nr;
3379 enum ref_transaction_state state;
3380 };
3381
3382 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3383 {
3384 return xcalloc(1, sizeof(struct ref_transaction));
3385 }
3386
3387 void ref_transaction_free(struct ref_transaction *transaction)
3388 {
3389 int i;
3390
3391 if (!transaction)
3392 return;
3393
3394 for (i = 0; i < transaction->nr; i++)
3395 free(transaction->updates[i]);
3396
3397 free(transaction->updates);
3398 free(transaction);
3399 }
3400
3401 static struct ref_update *add_update(struct ref_transaction *transaction,
3402 const char *refname)
3403 {
3404 size_t len = strlen(refname);
3405 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3406
3407 strcpy((char *)update->refname, refname);
3408 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3409 transaction->updates[transaction->nr++] = update;
3410 return update;
3411 }
3412
3413 int ref_transaction_update(struct ref_transaction *transaction,
3414 const char *refname,
3415 const unsigned char *new_sha1,
3416 const unsigned char *old_sha1,
3417 int flags, int have_old,
3418 struct strbuf *err)
3419 {
3420 struct ref_update *update;
3421
3422 if (transaction->state != REF_TRANSACTION_OPEN)
3423 die("BUG: update called for transaction that is not open");
3424
3425 if (have_old && !old_sha1)
3426 die("BUG: have_old is true but old_sha1 is NULL");
3427
3428 update = add_update(transaction, refname);
3429 hashcpy(update->new_sha1, new_sha1);
3430 update->flags = flags;
3431 update->have_old = have_old;
3432 if (have_old)
3433 hashcpy(update->old_sha1, old_sha1);
3434 return 0;
3435 }
3436
3437 int ref_transaction_create(struct ref_transaction *transaction,
3438 const char *refname,
3439 const unsigned char *new_sha1,
3440 int flags,
3441 struct strbuf *err)
3442 {
3443 struct ref_update *update;
3444
3445 if (transaction->state != REF_TRANSACTION_OPEN)
3446 die("BUG: create called for transaction that is not open");
3447
3448 if (!new_sha1 || is_null_sha1(new_sha1))
3449 die("BUG: create ref with null new_sha1");
3450
3451 update = add_update(transaction, refname);
3452
3453 hashcpy(update->new_sha1, new_sha1);
3454 hashclr(update->old_sha1);
3455 update->flags = flags;
3456 update->have_old = 1;
3457 return 0;
3458 }
3459
3460 int ref_transaction_delete(struct ref_transaction *transaction,
3461 const char *refname,
3462 const unsigned char *old_sha1,
3463 int flags, int have_old,
3464 struct strbuf *err)
3465 {
3466 struct ref_update *update;
3467
3468 if (transaction->state != REF_TRANSACTION_OPEN)
3469 die("BUG: delete called for transaction that is not open");
3470
3471 if (have_old && !old_sha1)
3472 die("BUG: have_old is true but old_sha1 is NULL");
3473
3474 update = add_update(transaction, refname);
3475 update->flags = flags;
3476 update->have_old = have_old;
3477 if (have_old) {
3478 assert(!is_null_sha1(old_sha1));
3479 hashcpy(update->old_sha1, old_sha1);
3480 }
3481 return 0;
3482 }
3483
3484 int update_ref(const char *action, const char *refname,
3485 const unsigned char *sha1, const unsigned char *oldval,
3486 int flags, enum action_on_err onerr)
3487 {
3488 struct ref_transaction *t;
3489 struct strbuf err = STRBUF_INIT;
3490
3491 t = ref_transaction_begin(&err);
3492 if (!t ||
3493 ref_transaction_update(t, refname, sha1, oldval, flags,
3494 !!oldval, &err) ||
3495 ref_transaction_commit(t, action, &err)) {
3496 const char *str = "update_ref failed for ref '%s': %s";
3497
3498 ref_transaction_free(t);
3499 switch (onerr) {
3500 case UPDATE_REFS_MSG_ON_ERR:
3501 error(str, refname, err.buf);
3502 break;
3503 case UPDATE_REFS_DIE_ON_ERR:
3504 die(str, refname, err.buf);
3505 break;
3506 case UPDATE_REFS_QUIET_ON_ERR:
3507 break;
3508 }
3509 strbuf_release(&err);
3510 return 1;
3511 }
3512 strbuf_release(&err);
3513 ref_transaction_free(t);
3514 return 0;
3515 }
3516
3517 static int ref_update_compare(const void *r1, const void *r2)
3518 {
3519 const struct ref_update * const *u1 = r1;
3520 const struct ref_update * const *u2 = r2;
3521 return strcmp((*u1)->refname, (*u2)->refname);
3522 }
3523
3524 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3525 struct strbuf *err)
3526 {
3527 int i;
3528 for (i = 1; i < n; i++)
3529 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3530 const char *str =
3531 "Multiple updates for ref '%s' not allowed.";
3532 if (err)
3533 strbuf_addf(err, str, updates[i]->refname);
3534
3535 return 1;
3536 }
3537 return 0;
3538 }
3539
3540 int ref_transaction_commit(struct ref_transaction *transaction,
3541 const char *msg, struct strbuf *err)
3542 {
3543 int ret = 0, delnum = 0, i;
3544 const char **delnames;
3545 int n = transaction->nr;
3546 struct ref_update **updates = transaction->updates;
3547
3548 if (transaction->state != REF_TRANSACTION_OPEN)
3549 die("BUG: commit called for transaction that is not open");
3550
3551 if (!n) {
3552 transaction->state = REF_TRANSACTION_CLOSED;
3553 return 0;
3554 }
3555
3556 /* Allocate work space */
3557 delnames = xmalloc(sizeof(*delnames) * n);
3558
3559 /* Copy, sort, and reject duplicate refs */
3560 qsort(updates, n, sizeof(*updates), ref_update_compare);
3561 ret = ref_update_reject_duplicates(updates, n, err);
3562 if (ret)
3563 goto cleanup;
3564
3565 /* Acquire all locks while verifying old values */
3566 for (i = 0; i < n; i++) {
3567 struct ref_update *update = updates[i];
3568
3569 update->lock = lock_any_ref_for_update(update->refname,
3570 (update->have_old ?
3571 update->old_sha1 :
3572 NULL),
3573 update->flags,
3574 &update->type);
3575 if (!update->lock) {
3576 if (err)
3577 strbuf_addf(err, "Cannot lock the ref '%s'.",
3578 update->refname);
3579 ret = 1;
3580 goto cleanup;
3581 }
3582 }
3583
3584 /* Perform updates first so live commits remain referenced */
3585 for (i = 0; i < n; i++) {
3586 struct ref_update *update = updates[i];
3587
3588 if (!is_null_sha1(update->new_sha1)) {
3589 ret = write_ref_sha1(update->lock, update->new_sha1,
3590 msg);
3591 update->lock = NULL; /* freed by write_ref_sha1 */
3592 if (ret) {
3593 if (err)
3594 strbuf_addf(err, "Cannot update the ref '%s'.",
3595 update->refname);
3596 goto cleanup;
3597 }
3598 }
3599 }
3600
3601 /* Perform deletes now that updates are safely completed */
3602 for (i = 0; i < n; i++) {
3603 struct ref_update *update = updates[i];
3604
3605 if (update->lock) {
3606 ret |= delete_ref_loose(update->lock, update->type);
3607 if (!(update->flags & REF_ISPRUNING))
3608 delnames[delnum++] = update->lock->ref_name;
3609 }
3610 }
3611
3612 ret |= repack_without_refs(delnames, delnum, err);
3613 for (i = 0; i < delnum; i++)
3614 unlink_or_warn(git_path("logs/%s", delnames[i]));
3615 clear_loose_ref_cache(&ref_cache);
3616
3617 cleanup:
3618 transaction->state = REF_TRANSACTION_CLOSED;
3619
3620 for (i = 0; i < n; i++)
3621 if (updates[i]->lock)
3622 unlock_ref(updates[i]->lock);
3623 free(delnames);
3624 return ret;
3625 }
3626
3627 char *shorten_unambiguous_ref(const char *refname, int strict)
3628 {
3629 int i;
3630 static char **scanf_fmts;
3631 static int nr_rules;
3632 char *short_name;
3633
3634 if (!nr_rules) {
3635 /*
3636 * Pre-generate scanf formats from ref_rev_parse_rules[].
3637 * Generate a format suitable for scanf from a
3638 * ref_rev_parse_rules rule by interpolating "%s" at the
3639 * location of the "%.*s".
3640 */
3641 size_t total_len = 0;
3642 size_t offset = 0;
3643
3644 /* the rule list is NULL terminated, count them first */
3645 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3646 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3647 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3648
3649 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3650
3651 offset = 0;
3652 for (i = 0; i < nr_rules; i++) {
3653 assert(offset < total_len);
3654 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3655 offset += snprintf(scanf_fmts[i], total_len - offset,
3656 ref_rev_parse_rules[i], 2, "%s") + 1;
3657 }
3658 }
3659
3660 /* bail out if there are no rules */
3661 if (!nr_rules)
3662 return xstrdup(refname);
3663
3664 /* buffer for scanf result, at most refname must fit */
3665 short_name = xstrdup(refname);
3666
3667 /* skip first rule, it will always match */
3668 for (i = nr_rules - 1; i > 0 ; --i) {
3669 int j;
3670 int rules_to_fail = i;
3671 int short_name_len;
3672
3673 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3674 continue;
3675
3676 short_name_len = strlen(short_name);
3677
3678 /*
3679 * in strict mode, all (except the matched one) rules
3680 * must fail to resolve to a valid non-ambiguous ref
3681 */
3682 if (strict)
3683 rules_to_fail = nr_rules;
3684
3685 /*
3686 * check if the short name resolves to a valid ref,
3687 * but use only rules prior to the matched one
3688 */
3689 for (j = 0; j < rules_to_fail; j++) {
3690 const char *rule = ref_rev_parse_rules[j];
3691 char refname[PATH_MAX];
3692
3693 /* skip matched rule */
3694 if (i == j)
3695 continue;
3696
3697 /*
3698 * the short name is ambiguous, if it resolves
3699 * (with this previous rule) to a valid ref
3700 * read_ref() returns 0 on success
3701 */
3702 mksnpath(refname, sizeof(refname),
3703 rule, short_name_len, short_name);
3704 if (ref_exists(refname))
3705 break;
3706 }
3707
3708 /*
3709 * short name is non-ambiguous if all previous rules
3710 * haven't resolved to a valid ref
3711 */
3712 if (j == rules_to_fail)
3713 return short_name;
3714 }
3715
3716 free(short_name);
3717 return xstrdup(refname);
3718 }
3719
3720 static struct string_list *hide_refs;
3721
3722 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3723 {
3724 if (!strcmp("transfer.hiderefs", var) ||
3725 /* NEEDSWORK: use parse_config_key() once both are merged */
3726 (starts_with(var, section) && var[strlen(section)] == '.' &&
3727 !strcmp(var + strlen(section), ".hiderefs"))) {
3728 char *ref;
3729 int len;
3730
3731 if (!value)
3732 return config_error_nonbool(var);
3733 ref = xstrdup(value);
3734 len = strlen(ref);
3735 while (len && ref[len - 1] == '/')
3736 ref[--len] = '\0';
3737 if (!hide_refs) {
3738 hide_refs = xcalloc(1, sizeof(*hide_refs));
3739 hide_refs->strdup_strings = 1;
3740 }
3741 string_list_append(hide_refs, ref);
3742 }
3743 return 0;
3744 }
3745
3746 int ref_is_hidden(const char *refname)
3747 {
3748 struct string_list_item *item;
3749
3750 if (!hide_refs)
3751 return 0;
3752 for_each_string_list_item(item, hide_refs) {
3753 int len;
3754 if (!starts_with(refname, item->string))
3755 continue;
3756 len = strlen(item->string);
3757 if (!refname[len] || refname[len] == '/')
3758 return 1;
3759 }
3760 return 0;
3761 }