]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
Git 2.37-rc1
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11 #include "packfile.h"
12 #include "hook.h"
13
14 void child_process_init(struct child_process *child)
15 {
16 struct child_process blank = CHILD_PROCESS_INIT;
17 memcpy(child, &blank, sizeof(*child));
18 }
19
20 void child_process_clear(struct child_process *child)
21 {
22 strvec_clear(&child->args);
23 strvec_clear(&child->env);
24 }
25
26 struct child_to_clean {
27 pid_t pid;
28 struct child_process *process;
29 struct child_to_clean *next;
30 };
31 static struct child_to_clean *children_to_clean;
32 static int installed_child_cleanup_handler;
33
34 static void cleanup_children(int sig, int in_signal)
35 {
36 struct child_to_clean *children_to_wait_for = NULL;
37
38 while (children_to_clean) {
39 struct child_to_clean *p = children_to_clean;
40 children_to_clean = p->next;
41
42 if (p->process && !in_signal) {
43 struct child_process *process = p->process;
44 if (process->clean_on_exit_handler) {
45 trace_printf(
46 "trace: run_command: running exit handler for pid %"
47 PRIuMAX, (uintmax_t)p->pid
48 );
49 process->clean_on_exit_handler(process);
50 }
51 }
52
53 kill(p->pid, sig);
54
55 if (p->process && p->process->wait_after_clean) {
56 p->next = children_to_wait_for;
57 children_to_wait_for = p;
58 } else {
59 if (!in_signal)
60 free(p);
61 }
62 }
63
64 while (children_to_wait_for) {
65 struct child_to_clean *p = children_to_wait_for;
66 children_to_wait_for = p->next;
67
68 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
69 ; /* spin waiting for process exit or error */
70
71 if (!in_signal)
72 free(p);
73 }
74 }
75
76 static void cleanup_children_on_signal(int sig)
77 {
78 cleanup_children(sig, 1);
79 sigchain_pop(sig);
80 raise(sig);
81 }
82
83 static void cleanup_children_on_exit(void)
84 {
85 cleanup_children(SIGTERM, 0);
86 }
87
88 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
89 {
90 struct child_to_clean *p = xmalloc(sizeof(*p));
91 p->pid = pid;
92 p->process = process;
93 p->next = children_to_clean;
94 children_to_clean = p;
95
96 if (!installed_child_cleanup_handler) {
97 atexit(cleanup_children_on_exit);
98 sigchain_push_common(cleanup_children_on_signal);
99 installed_child_cleanup_handler = 1;
100 }
101 }
102
103 static void clear_child_for_cleanup(pid_t pid)
104 {
105 struct child_to_clean **pp;
106
107 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
108 struct child_to_clean *clean_me = *pp;
109
110 if (clean_me->pid == pid) {
111 *pp = clean_me->next;
112 free(clean_me);
113 return;
114 }
115 }
116 }
117
118 static inline void close_pair(int fd[2])
119 {
120 close(fd[0]);
121 close(fd[1]);
122 }
123
124 int is_executable(const char *name)
125 {
126 struct stat st;
127
128 if (stat(name, &st) || /* stat, not lstat */
129 !S_ISREG(st.st_mode))
130 return 0;
131
132 #if defined(GIT_WINDOWS_NATIVE)
133 /*
134 * On Windows there is no executable bit. The file extension
135 * indicates whether it can be run as an executable, and Git
136 * has special-handling to detect scripts and launch them
137 * through the indicated script interpreter. We test for the
138 * file extension first because virus scanners may make
139 * it quite expensive to open many files.
140 */
141 if (ends_with(name, ".exe"))
142 return S_IXUSR;
143
144 {
145 /*
146 * Now that we know it does not have an executable extension,
147 * peek into the file instead.
148 */
149 char buf[3] = { 0 };
150 int n;
151 int fd = open(name, O_RDONLY);
152 st.st_mode &= ~S_IXUSR;
153 if (fd >= 0) {
154 n = read(fd, buf, 2);
155 if (n == 2)
156 /* look for a she-bang */
157 if (!strcmp(buf, "#!"))
158 st.st_mode |= S_IXUSR;
159 close(fd);
160 }
161 }
162 #endif
163 return st.st_mode & S_IXUSR;
164 }
165
166 /*
167 * Search $PATH for a command. This emulates the path search that
168 * execvp would perform, without actually executing the command so it
169 * can be used before fork() to prepare to run a command using
170 * execve() or after execvp() to diagnose why it failed.
171 *
172 * The caller should ensure that file contains no directory
173 * separators.
174 *
175 * Returns the path to the command, as found in $PATH or NULL if the
176 * command could not be found. The caller inherits ownership of the memory
177 * used to store the resultant path.
178 *
179 * This should not be used on Windows, where the $PATH search rules
180 * are more complicated (e.g., a search for "foo" should find
181 * "foo.exe").
182 */
183 static char *locate_in_PATH(const char *file)
184 {
185 const char *p = getenv("PATH");
186 struct strbuf buf = STRBUF_INIT;
187
188 if (!p || !*p)
189 return NULL;
190
191 while (1) {
192 const char *end = strchrnul(p, ':');
193
194 strbuf_reset(&buf);
195
196 /* POSIX specifies an empty entry as the current directory. */
197 if (end != p) {
198 strbuf_add(&buf, p, end - p);
199 strbuf_addch(&buf, '/');
200 }
201 strbuf_addstr(&buf, file);
202
203 if (is_executable(buf.buf))
204 return strbuf_detach(&buf, NULL);
205
206 if (!*end)
207 break;
208 p = end + 1;
209 }
210
211 strbuf_release(&buf);
212 return NULL;
213 }
214
215 int exists_in_PATH(const char *command)
216 {
217 char *r = locate_in_PATH(command);
218 int found = r != NULL;
219 free(r);
220 return found;
221 }
222
223 int sane_execvp(const char *file, char * const argv[])
224 {
225 #ifndef GIT_WINDOWS_NATIVE
226 /*
227 * execvp() doesn't return, so we all we can do is tell trace2
228 * what we are about to do and let it leave a hint in the log
229 * (unless of course the execvp() fails).
230 *
231 * we skip this for Windows because the compat layer already
232 * has to emulate the execvp() call anyway.
233 */
234 int exec_id = trace2_exec(file, (const char **)argv);
235 #endif
236
237 if (!execvp(file, argv))
238 return 0; /* cannot happen ;-) */
239
240 #ifndef GIT_WINDOWS_NATIVE
241 {
242 int ec = errno;
243 trace2_exec_result(exec_id, ec);
244 errno = ec;
245 }
246 #endif
247
248 /*
249 * When a command can't be found because one of the directories
250 * listed in $PATH is unsearchable, execvp reports EACCES, but
251 * careful usability testing (read: analysis of occasional bug
252 * reports) reveals that "No such file or directory" is more
253 * intuitive.
254 *
255 * We avoid commands with "/", because execvp will not do $PATH
256 * lookups in that case.
257 *
258 * The reassignment of EACCES to errno looks like a no-op below,
259 * but we need to protect against exists_in_PATH overwriting errno.
260 */
261 if (errno == EACCES && !strchr(file, '/'))
262 errno = exists_in_PATH(file) ? EACCES : ENOENT;
263 else if (errno == ENOTDIR && !strchr(file, '/'))
264 errno = ENOENT;
265 return -1;
266 }
267
268 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
269 {
270 if (!argv[0])
271 BUG("shell command is empty");
272
273 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
274 #ifndef GIT_WINDOWS_NATIVE
275 strvec_push(out, SHELL_PATH);
276 #else
277 strvec_push(out, "sh");
278 #endif
279 strvec_push(out, "-c");
280
281 /*
282 * If we have no extra arguments, we do not even need to
283 * bother with the "$@" magic.
284 */
285 if (!argv[1])
286 strvec_push(out, argv[0]);
287 else
288 strvec_pushf(out, "%s \"$@\"", argv[0]);
289 }
290
291 strvec_pushv(out, argv);
292 return out->v;
293 }
294
295 #ifndef GIT_WINDOWS_NATIVE
296 static int child_notifier = -1;
297
298 enum child_errcode {
299 CHILD_ERR_CHDIR,
300 CHILD_ERR_DUP2,
301 CHILD_ERR_CLOSE,
302 CHILD_ERR_SIGPROCMASK,
303 CHILD_ERR_ENOENT,
304 CHILD_ERR_SILENT,
305 CHILD_ERR_ERRNO
306 };
307
308 struct child_err {
309 enum child_errcode err;
310 int syserr; /* errno */
311 };
312
313 static void child_die(enum child_errcode err)
314 {
315 struct child_err buf;
316
317 buf.err = err;
318 buf.syserr = errno;
319
320 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
321 xwrite(child_notifier, &buf, sizeof(buf));
322 _exit(1);
323 }
324
325 static void child_dup2(int fd, int to)
326 {
327 if (dup2(fd, to) < 0)
328 child_die(CHILD_ERR_DUP2);
329 }
330
331 static void child_close(int fd)
332 {
333 if (close(fd))
334 child_die(CHILD_ERR_CLOSE);
335 }
336
337 static void child_close_pair(int fd[2])
338 {
339 child_close(fd[0]);
340 child_close(fd[1]);
341 }
342
343 static void child_error_fn(const char *err, va_list params)
344 {
345 const char msg[] = "error() should not be called in child\n";
346 xwrite(2, msg, sizeof(msg) - 1);
347 }
348
349 static void child_warn_fn(const char *err, va_list params)
350 {
351 const char msg[] = "warn() should not be called in child\n";
352 xwrite(2, msg, sizeof(msg) - 1);
353 }
354
355 static void NORETURN child_die_fn(const char *err, va_list params)
356 {
357 const char msg[] = "die() should not be called in child\n";
358 xwrite(2, msg, sizeof(msg) - 1);
359 _exit(2);
360 }
361
362 /* this runs in the parent process */
363 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
364 {
365 static void (*old_errfn)(const char *err, va_list params);
366 report_fn die_message_routine = get_die_message_routine();
367
368 old_errfn = get_error_routine();
369 set_error_routine(die_message_routine);
370 errno = cerr->syserr;
371
372 switch (cerr->err) {
373 case CHILD_ERR_CHDIR:
374 error_errno("exec '%s': cd to '%s' failed",
375 cmd->args.v[0], cmd->dir);
376 break;
377 case CHILD_ERR_DUP2:
378 error_errno("dup2() in child failed");
379 break;
380 case CHILD_ERR_CLOSE:
381 error_errno("close() in child failed");
382 break;
383 case CHILD_ERR_SIGPROCMASK:
384 error_errno("sigprocmask failed restoring signals");
385 break;
386 case CHILD_ERR_ENOENT:
387 error_errno("cannot run %s", cmd->args.v[0]);
388 break;
389 case CHILD_ERR_SILENT:
390 break;
391 case CHILD_ERR_ERRNO:
392 error_errno("cannot exec '%s'", cmd->args.v[0]);
393 break;
394 }
395 set_error_routine(old_errfn);
396 }
397
398 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
399 {
400 if (!cmd->args.v[0])
401 BUG("command is empty");
402
403 /*
404 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
405 * attempt to interpret the command with 'sh'.
406 */
407 strvec_push(out, SHELL_PATH);
408
409 if (cmd->git_cmd) {
410 prepare_git_cmd(out, cmd->args.v);
411 } else if (cmd->use_shell) {
412 prepare_shell_cmd(out, cmd->args.v);
413 } else {
414 strvec_pushv(out, cmd->args.v);
415 }
416
417 /*
418 * If there are no dir separator characters in the command then perform
419 * a path lookup and use the resolved path as the command to exec. If
420 * there are dir separator characters, we have exec attempt to invoke
421 * the command directly.
422 */
423 if (!has_dir_sep(out->v[1])) {
424 char *program = locate_in_PATH(out->v[1]);
425 if (program) {
426 free((char *)out->v[1]);
427 out->v[1] = program;
428 } else {
429 strvec_clear(out);
430 errno = ENOENT;
431 return -1;
432 }
433 }
434
435 return 0;
436 }
437
438 static char **prep_childenv(const char *const *deltaenv)
439 {
440 extern char **environ;
441 char **childenv;
442 struct string_list env = STRING_LIST_INIT_DUP;
443 struct strbuf key = STRBUF_INIT;
444 const char *const *p;
445 int i;
446
447 /* Construct a sorted string list consisting of the current environ */
448 for (p = (const char *const *) environ; p && *p; p++) {
449 const char *equals = strchr(*p, '=');
450
451 if (equals) {
452 strbuf_reset(&key);
453 strbuf_add(&key, *p, equals - *p);
454 string_list_append(&env, key.buf)->util = (void *) *p;
455 } else {
456 string_list_append(&env, *p)->util = (void *) *p;
457 }
458 }
459 string_list_sort(&env);
460
461 /* Merge in 'deltaenv' with the current environ */
462 for (p = deltaenv; p && *p; p++) {
463 const char *equals = strchr(*p, '=');
464
465 if (equals) {
466 /* ('key=value'), insert or replace entry */
467 strbuf_reset(&key);
468 strbuf_add(&key, *p, equals - *p);
469 string_list_insert(&env, key.buf)->util = (void *) *p;
470 } else {
471 /* otherwise ('key') remove existing entry */
472 string_list_remove(&env, *p, 0);
473 }
474 }
475
476 /* Create an array of 'char *' to be used as the childenv */
477 ALLOC_ARRAY(childenv, env.nr + 1);
478 for (i = 0; i < env.nr; i++)
479 childenv[i] = env.items[i].util;
480 childenv[env.nr] = NULL;
481
482 string_list_clear(&env, 0);
483 strbuf_release(&key);
484 return childenv;
485 }
486
487 struct atfork_state {
488 #ifndef NO_PTHREADS
489 int cs;
490 #endif
491 sigset_t old;
492 };
493
494 #define CHECK_BUG(err, msg) \
495 do { \
496 int e = (err); \
497 if (e) \
498 BUG("%s: %s", msg, strerror(e)); \
499 } while(0)
500
501 static void atfork_prepare(struct atfork_state *as)
502 {
503 sigset_t all;
504
505 if (sigfillset(&all))
506 die_errno("sigfillset");
507 #ifdef NO_PTHREADS
508 if (sigprocmask(SIG_SETMASK, &all, &as->old))
509 die_errno("sigprocmask");
510 #else
511 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
512 "blocking all signals");
513 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
514 "disabling cancellation");
515 #endif
516 }
517
518 static void atfork_parent(struct atfork_state *as)
519 {
520 #ifdef NO_PTHREADS
521 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
522 die_errno("sigprocmask");
523 #else
524 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
525 "re-enabling cancellation");
526 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
527 "restoring signal mask");
528 #endif
529 }
530 #endif /* GIT_WINDOWS_NATIVE */
531
532 static inline void set_cloexec(int fd)
533 {
534 int flags = fcntl(fd, F_GETFD);
535 if (flags >= 0)
536 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
537 }
538
539 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
540 {
541 int status, code = -1;
542 pid_t waiting;
543 int failed_errno = 0;
544
545 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
546 ; /* nothing */
547
548 if (waiting < 0) {
549 failed_errno = errno;
550 if (!in_signal)
551 error_errno("waitpid for %s failed", argv0);
552 } else if (waiting != pid) {
553 if (!in_signal)
554 error("waitpid is confused (%s)", argv0);
555 } else if (WIFSIGNALED(status)) {
556 code = WTERMSIG(status);
557 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
558 error("%s died of signal %d", argv0, code);
559 /*
560 * This return value is chosen so that code & 0xff
561 * mimics the exit code that a POSIX shell would report for
562 * a program that died from this signal.
563 */
564 code += 128;
565 } else if (WIFEXITED(status)) {
566 code = WEXITSTATUS(status);
567 } else {
568 if (!in_signal)
569 error("waitpid is confused (%s)", argv0);
570 }
571
572 if (!in_signal)
573 clear_child_for_cleanup(pid);
574
575 errno = failed_errno;
576 return code;
577 }
578
579 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
580 {
581 struct string_list envs = STRING_LIST_INIT_DUP;
582 const char *const *e;
583 int i;
584 int printed_unset = 0;
585
586 /* Last one wins, see run-command.c:prep_childenv() for context */
587 for (e = deltaenv; e && *e; e++) {
588 struct strbuf key = STRBUF_INIT;
589 char *equals = strchr(*e, '=');
590
591 if (equals) {
592 strbuf_add(&key, *e, equals - *e);
593 string_list_insert(&envs, key.buf)->util = equals + 1;
594 } else {
595 string_list_insert(&envs, *e)->util = NULL;
596 }
597 strbuf_release(&key);
598 }
599
600 /* "unset X Y...;" */
601 for (i = 0; i < envs.nr; i++) {
602 const char *var = envs.items[i].string;
603 const char *val = envs.items[i].util;
604
605 if (val || !getenv(var))
606 continue;
607
608 if (!printed_unset) {
609 strbuf_addstr(dst, " unset");
610 printed_unset = 1;
611 }
612 strbuf_addf(dst, " %s", var);
613 }
614 if (printed_unset)
615 strbuf_addch(dst, ';');
616
617 /* ... followed by "A=B C=D ..." */
618 for (i = 0; i < envs.nr; i++) {
619 const char *var = envs.items[i].string;
620 const char *val = envs.items[i].util;
621 const char *oldval;
622
623 if (!val)
624 continue;
625
626 oldval = getenv(var);
627 if (oldval && !strcmp(val, oldval))
628 continue;
629
630 strbuf_addf(dst, " %s=", var);
631 sq_quote_buf_pretty(dst, val);
632 }
633 string_list_clear(&envs, 0);
634 }
635
636 static void trace_run_command(const struct child_process *cp)
637 {
638 struct strbuf buf = STRBUF_INIT;
639
640 if (!trace_want(&trace_default_key))
641 return;
642
643 strbuf_addstr(&buf, "trace: run_command:");
644 if (cp->dir) {
645 strbuf_addstr(&buf, " cd ");
646 sq_quote_buf_pretty(&buf, cp->dir);
647 strbuf_addch(&buf, ';');
648 }
649 trace_add_env(&buf, cp->env.v);
650 if (cp->git_cmd)
651 strbuf_addstr(&buf, " git");
652 sq_quote_argv_pretty(&buf, cp->args.v);
653
654 trace_printf("%s", buf.buf);
655 strbuf_release(&buf);
656 }
657
658 int start_command(struct child_process *cmd)
659 {
660 int need_in, need_out, need_err;
661 int fdin[2], fdout[2], fderr[2];
662 int failed_errno;
663 char *str;
664
665 /*
666 * In case of errors we must keep the promise to close FDs
667 * that have been passed in via ->in and ->out.
668 */
669
670 need_in = !cmd->no_stdin && cmd->in < 0;
671 if (need_in) {
672 if (pipe(fdin) < 0) {
673 failed_errno = errno;
674 if (cmd->out > 0)
675 close(cmd->out);
676 str = "standard input";
677 goto fail_pipe;
678 }
679 cmd->in = fdin[1];
680 }
681
682 need_out = !cmd->no_stdout
683 && !cmd->stdout_to_stderr
684 && cmd->out < 0;
685 if (need_out) {
686 if (pipe(fdout) < 0) {
687 failed_errno = errno;
688 if (need_in)
689 close_pair(fdin);
690 else if (cmd->in)
691 close(cmd->in);
692 str = "standard output";
693 goto fail_pipe;
694 }
695 cmd->out = fdout[0];
696 }
697
698 need_err = !cmd->no_stderr && cmd->err < 0;
699 if (need_err) {
700 if (pipe(fderr) < 0) {
701 failed_errno = errno;
702 if (need_in)
703 close_pair(fdin);
704 else if (cmd->in)
705 close(cmd->in);
706 if (need_out)
707 close_pair(fdout);
708 else if (cmd->out)
709 close(cmd->out);
710 str = "standard error";
711 fail_pipe:
712 error("cannot create %s pipe for %s: %s",
713 str, cmd->args.v[0], strerror(failed_errno));
714 child_process_clear(cmd);
715 errno = failed_errno;
716 return -1;
717 }
718 cmd->err = fderr[0];
719 }
720
721 trace2_child_start(cmd);
722 trace_run_command(cmd);
723
724 fflush(NULL);
725
726 if (cmd->close_object_store)
727 close_object_store(the_repository->objects);
728
729 #ifndef GIT_WINDOWS_NATIVE
730 {
731 int notify_pipe[2];
732 int null_fd = -1;
733 char **childenv;
734 struct strvec argv = STRVEC_INIT;
735 struct child_err cerr;
736 struct atfork_state as;
737
738 if (prepare_cmd(&argv, cmd) < 0) {
739 failed_errno = errno;
740 cmd->pid = -1;
741 if (!cmd->silent_exec_failure)
742 error_errno("cannot run %s", cmd->args.v[0]);
743 goto end_of_spawn;
744 }
745
746 if (pipe(notify_pipe))
747 notify_pipe[0] = notify_pipe[1] = -1;
748
749 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
750 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
751 set_cloexec(null_fd);
752 }
753
754 childenv = prep_childenv(cmd->env.v);
755 atfork_prepare(&as);
756
757 /*
758 * NOTE: In order to prevent deadlocking when using threads special
759 * care should be taken with the function calls made in between the
760 * fork() and exec() calls. No calls should be made to functions which
761 * require acquiring a lock (e.g. malloc) as the lock could have been
762 * held by another thread at the time of forking, causing the lock to
763 * never be released in the child process. This means only
764 * Async-Signal-Safe functions are permitted in the child.
765 */
766 cmd->pid = fork();
767 failed_errno = errno;
768 if (!cmd->pid) {
769 int sig;
770 /*
771 * Ensure the default die/error/warn routines do not get
772 * called, they can take stdio locks and malloc.
773 */
774 set_die_routine(child_die_fn);
775 set_error_routine(child_error_fn);
776 set_warn_routine(child_warn_fn);
777
778 close(notify_pipe[0]);
779 set_cloexec(notify_pipe[1]);
780 child_notifier = notify_pipe[1];
781
782 if (cmd->no_stdin)
783 child_dup2(null_fd, 0);
784 else if (need_in) {
785 child_dup2(fdin[0], 0);
786 child_close_pair(fdin);
787 } else if (cmd->in) {
788 child_dup2(cmd->in, 0);
789 child_close(cmd->in);
790 }
791
792 if (cmd->no_stderr)
793 child_dup2(null_fd, 2);
794 else if (need_err) {
795 child_dup2(fderr[1], 2);
796 child_close_pair(fderr);
797 } else if (cmd->err > 1) {
798 child_dup2(cmd->err, 2);
799 child_close(cmd->err);
800 }
801
802 if (cmd->no_stdout)
803 child_dup2(null_fd, 1);
804 else if (cmd->stdout_to_stderr)
805 child_dup2(2, 1);
806 else if (need_out) {
807 child_dup2(fdout[1], 1);
808 child_close_pair(fdout);
809 } else if (cmd->out > 1) {
810 child_dup2(cmd->out, 1);
811 child_close(cmd->out);
812 }
813
814 if (cmd->dir && chdir(cmd->dir))
815 child_die(CHILD_ERR_CHDIR);
816
817 /*
818 * restore default signal handlers here, in case
819 * we catch a signal right before execve below
820 */
821 for (sig = 1; sig < NSIG; sig++) {
822 /* ignored signals get reset to SIG_DFL on execve */
823 if (signal(sig, SIG_DFL) == SIG_IGN)
824 signal(sig, SIG_IGN);
825 }
826
827 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
828 child_die(CHILD_ERR_SIGPROCMASK);
829
830 /*
831 * Attempt to exec using the command and arguments starting at
832 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
833 * be used in the event exec failed with ENOEXEC at which point
834 * we will try to interpret the command using 'sh'.
835 */
836 execve(argv.v[1], (char *const *) argv.v + 1,
837 (char *const *) childenv);
838 if (errno == ENOEXEC)
839 execve(argv.v[0], (char *const *) argv.v,
840 (char *const *) childenv);
841
842 if (errno == ENOENT) {
843 if (cmd->silent_exec_failure)
844 child_die(CHILD_ERR_SILENT);
845 child_die(CHILD_ERR_ENOENT);
846 } else {
847 child_die(CHILD_ERR_ERRNO);
848 }
849 }
850 atfork_parent(&as);
851 if (cmd->pid < 0)
852 error_errno("cannot fork() for %s", cmd->args.v[0]);
853 else if (cmd->clean_on_exit)
854 mark_child_for_cleanup(cmd->pid, cmd);
855
856 /*
857 * Wait for child's exec. If the exec succeeds (or if fork()
858 * failed), EOF is seen immediately by the parent. Otherwise, the
859 * child process sends a child_err struct.
860 * Note that use of this infrastructure is completely advisory,
861 * therefore, we keep error checks minimal.
862 */
863 close(notify_pipe[1]);
864 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
865 /*
866 * At this point we know that fork() succeeded, but exec()
867 * failed. Errors have been reported to our stderr.
868 */
869 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
870 child_err_spew(cmd, &cerr);
871 failed_errno = errno;
872 cmd->pid = -1;
873 }
874 close(notify_pipe[0]);
875
876 if (null_fd >= 0)
877 close(null_fd);
878 strvec_clear(&argv);
879 free(childenv);
880 }
881 end_of_spawn:
882
883 #else
884 {
885 int fhin = 0, fhout = 1, fherr = 2;
886 const char **sargv = cmd->args.v;
887 struct strvec nargv = STRVEC_INIT;
888
889 if (cmd->no_stdin)
890 fhin = open("/dev/null", O_RDWR);
891 else if (need_in)
892 fhin = dup(fdin[0]);
893 else if (cmd->in)
894 fhin = dup(cmd->in);
895
896 if (cmd->no_stderr)
897 fherr = open("/dev/null", O_RDWR);
898 else if (need_err)
899 fherr = dup(fderr[1]);
900 else if (cmd->err > 2)
901 fherr = dup(cmd->err);
902
903 if (cmd->no_stdout)
904 fhout = open("/dev/null", O_RDWR);
905 else if (cmd->stdout_to_stderr)
906 fhout = dup(fherr);
907 else if (need_out)
908 fhout = dup(fdout[1]);
909 else if (cmd->out > 1)
910 fhout = dup(cmd->out);
911
912 if (cmd->git_cmd)
913 cmd->args.v = prepare_git_cmd(&nargv, sargv);
914 else if (cmd->use_shell)
915 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
916
917 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v,
918 (char**) cmd->env.v,
919 cmd->dir, fhin, fhout, fherr);
920 failed_errno = errno;
921 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
922 error_errno("cannot spawn %s", cmd->args.v[0]);
923 if (cmd->clean_on_exit && cmd->pid >= 0)
924 mark_child_for_cleanup(cmd->pid, cmd);
925
926 strvec_clear(&nargv);
927 cmd->args.v = sargv;
928 if (fhin != 0)
929 close(fhin);
930 if (fhout != 1)
931 close(fhout);
932 if (fherr != 2)
933 close(fherr);
934 }
935 #endif
936
937 if (cmd->pid < 0) {
938 trace2_child_exit(cmd, -1);
939
940 if (need_in)
941 close_pair(fdin);
942 else if (cmd->in)
943 close(cmd->in);
944 if (need_out)
945 close_pair(fdout);
946 else if (cmd->out)
947 close(cmd->out);
948 if (need_err)
949 close_pair(fderr);
950 else if (cmd->err)
951 close(cmd->err);
952 child_process_clear(cmd);
953 errno = failed_errno;
954 return -1;
955 }
956
957 if (need_in)
958 close(fdin[0]);
959 else if (cmd->in)
960 close(cmd->in);
961
962 if (need_out)
963 close(fdout[1]);
964 else if (cmd->out)
965 close(cmd->out);
966
967 if (need_err)
968 close(fderr[1]);
969 else if (cmd->err)
970 close(cmd->err);
971
972 return 0;
973 }
974
975 int finish_command(struct child_process *cmd)
976 {
977 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
978 trace2_child_exit(cmd, ret);
979 child_process_clear(cmd);
980 invalidate_lstat_cache();
981 return ret;
982 }
983
984 int finish_command_in_signal(struct child_process *cmd)
985 {
986 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
987 if (ret != -1)
988 trace2_child_exit(cmd, ret);
989 return ret;
990 }
991
992
993 int run_command(struct child_process *cmd)
994 {
995 int code;
996
997 if (cmd->out < 0 || cmd->err < 0)
998 BUG("run_command with a pipe can cause deadlock");
999
1000 code = start_command(cmd);
1001 if (code)
1002 return code;
1003 return finish_command(cmd);
1004 }
1005
1006 int run_command_v_opt(const char **argv, int opt)
1007 {
1008 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1009 }
1010
1011 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1012 {
1013 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1014 }
1015
1016 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1017 {
1018 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1019 }
1020
1021 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1022 const char *const *env, const char *tr2_class)
1023 {
1024 struct child_process cmd = CHILD_PROCESS_INIT;
1025 strvec_pushv(&cmd.args, argv);
1026 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1027 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1028 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1029 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1030 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1031 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1032 cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1033 cmd.close_object_store = opt & RUN_CLOSE_OBJECT_STORE ? 1 : 0;
1034 cmd.dir = dir;
1035 if (env)
1036 strvec_pushv(&cmd.env, (const char **)env);
1037 cmd.trace2_child_class = tr2_class;
1038 return run_command(&cmd);
1039 }
1040
1041 #ifndef NO_PTHREADS
1042 static pthread_t main_thread;
1043 static int main_thread_set;
1044 static pthread_key_t async_key;
1045 static pthread_key_t async_die_counter;
1046
1047 static void *run_thread(void *data)
1048 {
1049 struct async *async = data;
1050 intptr_t ret;
1051
1052 if (async->isolate_sigpipe) {
1053 sigset_t mask;
1054 sigemptyset(&mask);
1055 sigaddset(&mask, SIGPIPE);
1056 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1057 ret = error("unable to block SIGPIPE in async thread");
1058 return (void *)ret;
1059 }
1060 }
1061
1062 pthread_setspecific(async_key, async);
1063 ret = async->proc(async->proc_in, async->proc_out, async->data);
1064 return (void *)ret;
1065 }
1066
1067 static NORETURN void die_async(const char *err, va_list params)
1068 {
1069 report_fn die_message_fn = get_die_message_routine();
1070
1071 die_message_fn(err, params);
1072
1073 if (in_async()) {
1074 struct async *async = pthread_getspecific(async_key);
1075 if (async->proc_in >= 0)
1076 close(async->proc_in);
1077 if (async->proc_out >= 0)
1078 close(async->proc_out);
1079 pthread_exit((void *)128);
1080 }
1081
1082 exit(128);
1083 }
1084
1085 static int async_die_is_recursing(void)
1086 {
1087 void *ret = pthread_getspecific(async_die_counter);
1088 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1089 return ret != NULL;
1090 }
1091
1092 int in_async(void)
1093 {
1094 if (!main_thread_set)
1095 return 0; /* no asyncs started yet */
1096 return !pthread_equal(main_thread, pthread_self());
1097 }
1098
1099 static void NORETURN async_exit(int code)
1100 {
1101 pthread_exit((void *)(intptr_t)code);
1102 }
1103
1104 #else
1105
1106 static struct {
1107 void (**handlers)(void);
1108 size_t nr;
1109 size_t alloc;
1110 } git_atexit_hdlrs;
1111
1112 static int git_atexit_installed;
1113
1114 static void git_atexit_dispatch(void)
1115 {
1116 size_t i;
1117
1118 for (i=git_atexit_hdlrs.nr ; i ; i--)
1119 git_atexit_hdlrs.handlers[i-1]();
1120 }
1121
1122 static void git_atexit_clear(void)
1123 {
1124 free(git_atexit_hdlrs.handlers);
1125 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1126 git_atexit_installed = 0;
1127 }
1128
1129 #undef atexit
1130 int git_atexit(void (*handler)(void))
1131 {
1132 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1133 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1134 if (!git_atexit_installed) {
1135 if (atexit(&git_atexit_dispatch))
1136 return -1;
1137 git_atexit_installed = 1;
1138 }
1139 return 0;
1140 }
1141 #define atexit git_atexit
1142
1143 static int process_is_async;
1144 int in_async(void)
1145 {
1146 return process_is_async;
1147 }
1148
1149 static void NORETURN async_exit(int code)
1150 {
1151 exit(code);
1152 }
1153
1154 #endif
1155
1156 void check_pipe(int err)
1157 {
1158 if (err == EPIPE) {
1159 if (in_async())
1160 async_exit(141);
1161
1162 signal(SIGPIPE, SIG_DFL);
1163 raise(SIGPIPE);
1164 /* Should never happen, but just in case... */
1165 exit(141);
1166 }
1167 }
1168
1169 int start_async(struct async *async)
1170 {
1171 int need_in, need_out;
1172 int fdin[2], fdout[2];
1173 int proc_in, proc_out;
1174
1175 need_in = async->in < 0;
1176 if (need_in) {
1177 if (pipe(fdin) < 0) {
1178 if (async->out > 0)
1179 close(async->out);
1180 return error_errno("cannot create pipe");
1181 }
1182 async->in = fdin[1];
1183 }
1184
1185 need_out = async->out < 0;
1186 if (need_out) {
1187 if (pipe(fdout) < 0) {
1188 if (need_in)
1189 close_pair(fdin);
1190 else if (async->in)
1191 close(async->in);
1192 return error_errno("cannot create pipe");
1193 }
1194 async->out = fdout[0];
1195 }
1196
1197 if (need_in)
1198 proc_in = fdin[0];
1199 else if (async->in)
1200 proc_in = async->in;
1201 else
1202 proc_in = -1;
1203
1204 if (need_out)
1205 proc_out = fdout[1];
1206 else if (async->out)
1207 proc_out = async->out;
1208 else
1209 proc_out = -1;
1210
1211 #ifdef NO_PTHREADS
1212 /* Flush stdio before fork() to avoid cloning buffers */
1213 fflush(NULL);
1214
1215 async->pid = fork();
1216 if (async->pid < 0) {
1217 error_errno("fork (async) failed");
1218 goto error;
1219 }
1220 if (!async->pid) {
1221 if (need_in)
1222 close(fdin[1]);
1223 if (need_out)
1224 close(fdout[0]);
1225 git_atexit_clear();
1226 process_is_async = 1;
1227 exit(!!async->proc(proc_in, proc_out, async->data));
1228 }
1229
1230 mark_child_for_cleanup(async->pid, NULL);
1231
1232 if (need_in)
1233 close(fdin[0]);
1234 else if (async->in)
1235 close(async->in);
1236
1237 if (need_out)
1238 close(fdout[1]);
1239 else if (async->out)
1240 close(async->out);
1241 #else
1242 if (!main_thread_set) {
1243 /*
1244 * We assume that the first time that start_async is called
1245 * it is from the main thread.
1246 */
1247 main_thread_set = 1;
1248 main_thread = pthread_self();
1249 pthread_key_create(&async_key, NULL);
1250 pthread_key_create(&async_die_counter, NULL);
1251 set_die_routine(die_async);
1252 set_die_is_recursing_routine(async_die_is_recursing);
1253 }
1254
1255 if (proc_in >= 0)
1256 set_cloexec(proc_in);
1257 if (proc_out >= 0)
1258 set_cloexec(proc_out);
1259 async->proc_in = proc_in;
1260 async->proc_out = proc_out;
1261 {
1262 int err = pthread_create(&async->tid, NULL, run_thread, async);
1263 if (err) {
1264 error(_("cannot create async thread: %s"), strerror(err));
1265 goto error;
1266 }
1267 }
1268 #endif
1269 return 0;
1270
1271 error:
1272 if (need_in)
1273 close_pair(fdin);
1274 else if (async->in)
1275 close(async->in);
1276
1277 if (need_out)
1278 close_pair(fdout);
1279 else if (async->out)
1280 close(async->out);
1281 return -1;
1282 }
1283
1284 int finish_async(struct async *async)
1285 {
1286 #ifdef NO_PTHREADS
1287 int ret = wait_or_whine(async->pid, "child process", 0);
1288
1289 invalidate_lstat_cache();
1290
1291 return ret;
1292 #else
1293 void *ret = (void *)(intptr_t)(-1);
1294
1295 if (pthread_join(async->tid, &ret))
1296 error("pthread_join failed");
1297 invalidate_lstat_cache();
1298 return (int)(intptr_t)ret;
1299
1300 #endif
1301 }
1302
1303 int async_with_fork(void)
1304 {
1305 #ifdef NO_PTHREADS
1306 return 1;
1307 #else
1308 return 0;
1309 #endif
1310 }
1311
1312 struct io_pump {
1313 /* initialized by caller */
1314 int fd;
1315 int type; /* POLLOUT or POLLIN */
1316 union {
1317 struct {
1318 const char *buf;
1319 size_t len;
1320 } out;
1321 struct {
1322 struct strbuf *buf;
1323 size_t hint;
1324 } in;
1325 } u;
1326
1327 /* returned by pump_io */
1328 int error; /* 0 for success, otherwise errno */
1329
1330 /* internal use */
1331 struct pollfd *pfd;
1332 };
1333
1334 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1335 {
1336 int pollsize = 0;
1337 int i;
1338
1339 for (i = 0; i < nr; i++) {
1340 struct io_pump *io = &slots[i];
1341 if (io->fd < 0)
1342 continue;
1343 pfd[pollsize].fd = io->fd;
1344 pfd[pollsize].events = io->type;
1345 io->pfd = &pfd[pollsize++];
1346 }
1347
1348 if (!pollsize)
1349 return 0;
1350
1351 if (poll(pfd, pollsize, -1) < 0) {
1352 if (errno == EINTR)
1353 return 1;
1354 die_errno("poll failed");
1355 }
1356
1357 for (i = 0; i < nr; i++) {
1358 struct io_pump *io = &slots[i];
1359
1360 if (io->fd < 0)
1361 continue;
1362
1363 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1364 continue;
1365
1366 if (io->type == POLLOUT) {
1367 ssize_t len = xwrite(io->fd,
1368 io->u.out.buf, io->u.out.len);
1369 if (len < 0) {
1370 io->error = errno;
1371 close(io->fd);
1372 io->fd = -1;
1373 } else {
1374 io->u.out.buf += len;
1375 io->u.out.len -= len;
1376 if (!io->u.out.len) {
1377 close(io->fd);
1378 io->fd = -1;
1379 }
1380 }
1381 }
1382
1383 if (io->type == POLLIN) {
1384 ssize_t len = strbuf_read_once(io->u.in.buf,
1385 io->fd, io->u.in.hint);
1386 if (len < 0)
1387 io->error = errno;
1388 if (len <= 0) {
1389 close(io->fd);
1390 io->fd = -1;
1391 }
1392 }
1393 }
1394
1395 return 1;
1396 }
1397
1398 static int pump_io(struct io_pump *slots, int nr)
1399 {
1400 struct pollfd *pfd;
1401 int i;
1402
1403 for (i = 0; i < nr; i++)
1404 slots[i].error = 0;
1405
1406 ALLOC_ARRAY(pfd, nr);
1407 while (pump_io_round(slots, nr, pfd))
1408 ; /* nothing */
1409 free(pfd);
1410
1411 /* There may be multiple errno values, so just pick the first. */
1412 for (i = 0; i < nr; i++) {
1413 if (slots[i].error) {
1414 errno = slots[i].error;
1415 return -1;
1416 }
1417 }
1418 return 0;
1419 }
1420
1421
1422 int pipe_command(struct child_process *cmd,
1423 const char *in, size_t in_len,
1424 struct strbuf *out, size_t out_hint,
1425 struct strbuf *err, size_t err_hint)
1426 {
1427 struct io_pump io[3];
1428 int nr = 0;
1429
1430 if (in)
1431 cmd->in = -1;
1432 if (out)
1433 cmd->out = -1;
1434 if (err)
1435 cmd->err = -1;
1436
1437 if (start_command(cmd) < 0)
1438 return -1;
1439
1440 if (in) {
1441 io[nr].fd = cmd->in;
1442 io[nr].type = POLLOUT;
1443 io[nr].u.out.buf = in;
1444 io[nr].u.out.len = in_len;
1445 nr++;
1446 }
1447 if (out) {
1448 io[nr].fd = cmd->out;
1449 io[nr].type = POLLIN;
1450 io[nr].u.in.buf = out;
1451 io[nr].u.in.hint = out_hint;
1452 nr++;
1453 }
1454 if (err) {
1455 io[nr].fd = cmd->err;
1456 io[nr].type = POLLIN;
1457 io[nr].u.in.buf = err;
1458 io[nr].u.in.hint = err_hint;
1459 nr++;
1460 }
1461
1462 if (pump_io(io, nr) < 0) {
1463 finish_command(cmd); /* throw away exit code */
1464 return -1;
1465 }
1466
1467 return finish_command(cmd);
1468 }
1469
1470 enum child_state {
1471 GIT_CP_FREE,
1472 GIT_CP_WORKING,
1473 GIT_CP_WAIT_CLEANUP,
1474 };
1475
1476 int run_processes_parallel_ungroup;
1477 struct parallel_processes {
1478 void *data;
1479
1480 int max_processes;
1481 int nr_processes;
1482
1483 get_next_task_fn get_next_task;
1484 start_failure_fn start_failure;
1485 task_finished_fn task_finished;
1486
1487 struct {
1488 enum child_state state;
1489 struct child_process process;
1490 struct strbuf err;
1491 void *data;
1492 } *children;
1493 /*
1494 * The struct pollfd is logically part of *children,
1495 * but the system call expects it as its own array.
1496 */
1497 struct pollfd *pfd;
1498
1499 unsigned shutdown : 1;
1500 unsigned ungroup : 1;
1501
1502 int output_owner;
1503 struct strbuf buffered_output; /* of finished children */
1504 };
1505
1506 static int default_start_failure(struct strbuf *out,
1507 void *pp_cb,
1508 void *pp_task_cb)
1509 {
1510 return 0;
1511 }
1512
1513 static int default_task_finished(int result,
1514 struct strbuf *out,
1515 void *pp_cb,
1516 void *pp_task_cb)
1517 {
1518 return 0;
1519 }
1520
1521 static void kill_children(struct parallel_processes *pp, int signo)
1522 {
1523 int i, n = pp->max_processes;
1524
1525 for (i = 0; i < n; i++)
1526 if (pp->children[i].state == GIT_CP_WORKING)
1527 kill(pp->children[i].process.pid, signo);
1528 }
1529
1530 static struct parallel_processes *pp_for_signal;
1531
1532 static void handle_children_on_signal(int signo)
1533 {
1534 kill_children(pp_for_signal, signo);
1535 sigchain_pop(signo);
1536 raise(signo);
1537 }
1538
1539 static void pp_init(struct parallel_processes *pp,
1540 int n,
1541 get_next_task_fn get_next_task,
1542 start_failure_fn start_failure,
1543 task_finished_fn task_finished,
1544 void *data, int ungroup)
1545 {
1546 int i;
1547
1548 if (n < 1)
1549 n = online_cpus();
1550
1551 pp->max_processes = n;
1552
1553 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1554
1555 pp->data = data;
1556 if (!get_next_task)
1557 BUG("you need to specify a get_next_task function");
1558 pp->get_next_task = get_next_task;
1559
1560 pp->start_failure = start_failure ? start_failure : default_start_failure;
1561 pp->task_finished = task_finished ? task_finished : default_task_finished;
1562
1563 pp->nr_processes = 0;
1564 pp->output_owner = 0;
1565 pp->shutdown = 0;
1566 pp->ungroup = ungroup;
1567 CALLOC_ARRAY(pp->children, n);
1568 if (pp->ungroup)
1569 pp->pfd = NULL;
1570 else
1571 CALLOC_ARRAY(pp->pfd, n);
1572 strbuf_init(&pp->buffered_output, 0);
1573
1574 for (i = 0; i < n; i++) {
1575 strbuf_init(&pp->children[i].err, 0);
1576 child_process_init(&pp->children[i].process);
1577 if (pp->pfd) {
1578 pp->pfd[i].events = POLLIN | POLLHUP;
1579 pp->pfd[i].fd = -1;
1580 }
1581 }
1582
1583 pp_for_signal = pp;
1584 sigchain_push_common(handle_children_on_signal);
1585 }
1586
1587 static void pp_cleanup(struct parallel_processes *pp)
1588 {
1589 int i;
1590
1591 trace_printf("run_processes_parallel: done");
1592 for (i = 0; i < pp->max_processes; i++) {
1593 strbuf_release(&pp->children[i].err);
1594 child_process_clear(&pp->children[i].process);
1595 }
1596
1597 free(pp->children);
1598 free(pp->pfd);
1599
1600 /*
1601 * When get_next_task added messages to the buffer in its last
1602 * iteration, the buffered output is non empty.
1603 */
1604 strbuf_write(&pp->buffered_output, stderr);
1605 strbuf_release(&pp->buffered_output);
1606
1607 sigchain_pop_common();
1608 }
1609
1610 /* returns
1611 * 0 if a new task was started.
1612 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1613 * problem with starting a new command)
1614 * <0 no new job was started, user wishes to shutdown early. Use negative code
1615 * to signal the children.
1616 */
1617 static int pp_start_one(struct parallel_processes *pp)
1618 {
1619 int i, code;
1620
1621 for (i = 0; i < pp->max_processes; i++)
1622 if (pp->children[i].state == GIT_CP_FREE)
1623 break;
1624 if (i == pp->max_processes)
1625 BUG("bookkeeping is hard");
1626
1627 code = pp->get_next_task(&pp->children[i].process,
1628 pp->ungroup ? NULL : &pp->children[i].err,
1629 pp->data,
1630 &pp->children[i].data);
1631 if (!code) {
1632 if (!pp->ungroup) {
1633 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1634 strbuf_reset(&pp->children[i].err);
1635 }
1636 return 1;
1637 }
1638 if (!pp->ungroup) {
1639 pp->children[i].process.err = -1;
1640 pp->children[i].process.stdout_to_stderr = 1;
1641 }
1642 pp->children[i].process.no_stdin = 1;
1643
1644 if (start_command(&pp->children[i].process)) {
1645 code = pp->start_failure(pp->ungroup ? NULL :
1646 &pp->children[i].err,
1647 pp->data,
1648 pp->children[i].data);
1649 if (!pp->ungroup) {
1650 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1651 strbuf_reset(&pp->children[i].err);
1652 }
1653 if (code)
1654 pp->shutdown = 1;
1655 return code;
1656 }
1657
1658 pp->nr_processes++;
1659 pp->children[i].state = GIT_CP_WORKING;
1660 if (pp->pfd)
1661 pp->pfd[i].fd = pp->children[i].process.err;
1662 return 0;
1663 }
1664
1665 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1666 {
1667 int i;
1668
1669 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1670 if (errno == EINTR)
1671 continue;
1672 pp_cleanup(pp);
1673 die_errno("poll");
1674 }
1675
1676 /* Buffer output from all pipes. */
1677 for (i = 0; i < pp->max_processes; i++) {
1678 if (pp->children[i].state == GIT_CP_WORKING &&
1679 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1680 int n = strbuf_read_once(&pp->children[i].err,
1681 pp->children[i].process.err, 0);
1682 if (n == 0) {
1683 close(pp->children[i].process.err);
1684 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1685 } else if (n < 0)
1686 if (errno != EAGAIN)
1687 die_errno("read");
1688 }
1689 }
1690 }
1691
1692 static void pp_output(struct parallel_processes *pp)
1693 {
1694 int i = pp->output_owner;
1695
1696 if (pp->children[i].state == GIT_CP_WORKING &&
1697 pp->children[i].err.len) {
1698 strbuf_write(&pp->children[i].err, stderr);
1699 strbuf_reset(&pp->children[i].err);
1700 }
1701 }
1702
1703 static int pp_collect_finished(struct parallel_processes *pp)
1704 {
1705 int i, code;
1706 int n = pp->max_processes;
1707 int result = 0;
1708
1709 while (pp->nr_processes > 0) {
1710 for (i = 0; i < pp->max_processes; i++)
1711 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1712 break;
1713 if (i == pp->max_processes)
1714 break;
1715
1716 code = finish_command(&pp->children[i].process);
1717
1718 code = pp->task_finished(code, pp->ungroup ? NULL :
1719 &pp->children[i].err, pp->data,
1720 pp->children[i].data);
1721
1722 if (code)
1723 result = code;
1724 if (code < 0)
1725 break;
1726
1727 pp->nr_processes--;
1728 pp->children[i].state = GIT_CP_FREE;
1729 if (pp->pfd)
1730 pp->pfd[i].fd = -1;
1731 child_process_init(&pp->children[i].process);
1732
1733 if (pp->ungroup) {
1734 ; /* no strbuf_*() work to do here */
1735 } else if (i != pp->output_owner) {
1736 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1737 strbuf_reset(&pp->children[i].err);
1738 } else {
1739 strbuf_write(&pp->children[i].err, stderr);
1740 strbuf_reset(&pp->children[i].err);
1741
1742 /* Output all other finished child processes */
1743 strbuf_write(&pp->buffered_output, stderr);
1744 strbuf_reset(&pp->buffered_output);
1745
1746 /*
1747 * Pick next process to output live.
1748 * NEEDSWORK:
1749 * For now we pick it randomly by doing a round
1750 * robin. Later we may want to pick the one with
1751 * the most output or the longest or shortest
1752 * running process time.
1753 */
1754 for (i = 0; i < n; i++)
1755 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1756 break;
1757 pp->output_owner = (pp->output_owner + i) % n;
1758 }
1759 }
1760 return result;
1761 }
1762
1763 int run_processes_parallel(int n,
1764 get_next_task_fn get_next_task,
1765 start_failure_fn start_failure,
1766 task_finished_fn task_finished,
1767 void *pp_cb)
1768 {
1769 int i, code;
1770 int output_timeout = 100;
1771 int spawn_cap = 4;
1772 int ungroup = run_processes_parallel_ungroup;
1773 struct parallel_processes pp;
1774
1775 /* unset for the next API user */
1776 run_processes_parallel_ungroup = 0;
1777
1778 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb,
1779 ungroup);
1780 while (1) {
1781 for (i = 0;
1782 i < spawn_cap && !pp.shutdown &&
1783 pp.nr_processes < pp.max_processes;
1784 i++) {
1785 code = pp_start_one(&pp);
1786 if (!code)
1787 continue;
1788 if (code < 0) {
1789 pp.shutdown = 1;
1790 kill_children(&pp, -code);
1791 }
1792 break;
1793 }
1794 if (!pp.nr_processes)
1795 break;
1796 if (ungroup) {
1797 int i;
1798
1799 for (i = 0; i < pp.max_processes; i++)
1800 pp.children[i].state = GIT_CP_WAIT_CLEANUP;
1801 } else {
1802 pp_buffer_stderr(&pp, output_timeout);
1803 pp_output(&pp);
1804 }
1805 code = pp_collect_finished(&pp);
1806 if (code) {
1807 pp.shutdown = 1;
1808 if (code < 0)
1809 kill_children(&pp, -code);
1810 }
1811 }
1812
1813 pp_cleanup(&pp);
1814 return 0;
1815 }
1816
1817 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1818 start_failure_fn start_failure,
1819 task_finished_fn task_finished, void *pp_cb,
1820 const char *tr2_category, const char *tr2_label)
1821 {
1822 int result;
1823
1824 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1825 ((n < 1) ? online_cpus() : n));
1826
1827 result = run_processes_parallel(n, get_next_task, start_failure,
1828 task_finished, pp_cb);
1829
1830 trace2_region_leave(tr2_category, tr2_label, NULL);
1831
1832 return result;
1833 }
1834
1835 int run_auto_maintenance(int quiet)
1836 {
1837 int enabled;
1838 struct child_process maint = CHILD_PROCESS_INIT;
1839
1840 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1841 !enabled)
1842 return 0;
1843
1844 maint.git_cmd = 1;
1845 maint.close_object_store = 1;
1846 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1847 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1848
1849 return run_command(&maint);
1850 }
1851
1852 void prepare_other_repo_env(struct strvec *env, const char *new_git_dir)
1853 {
1854 const char * const *var;
1855
1856 for (var = local_repo_env; *var; var++) {
1857 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1858 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1859 strvec_push(env, *var);
1860 }
1861 strvec_pushf(env, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1862 }
1863
1864 enum start_bg_result start_bg_command(struct child_process *cmd,
1865 start_bg_wait_cb *wait_cb,
1866 void *cb_data,
1867 unsigned int timeout_sec)
1868 {
1869 enum start_bg_result sbgr = SBGR_ERROR;
1870 int ret;
1871 int wait_status;
1872 pid_t pid_seen;
1873 time_t time_limit;
1874
1875 /*
1876 * We do not allow clean-on-exit because the child process
1877 * should persist in the background and possibly/probably
1878 * after this process exits. So we don't want to kill the
1879 * child during our atexit routine.
1880 */
1881 if (cmd->clean_on_exit)
1882 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1883
1884 if (!cmd->trace2_child_class)
1885 cmd->trace2_child_class = "background";
1886
1887 ret = start_command(cmd);
1888 if (ret) {
1889 /*
1890 * We assume that if `start_command()` fails, we
1891 * either get a complete `trace2_child_start() /
1892 * trace2_child_exit()` pair or it fails before the
1893 * `trace2_child_start()` is emitted, so we do not
1894 * need to worry about it here.
1895 *
1896 * We also assume that `start_command()` does not add
1897 * us to the cleanup list. And that it calls
1898 * calls `child_process_clear()`.
1899 */
1900 sbgr = SBGR_ERROR;
1901 goto done;
1902 }
1903
1904 time(&time_limit);
1905 time_limit += timeout_sec;
1906
1907 wait:
1908 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1909
1910 if (!pid_seen) {
1911 /*
1912 * The child is currently running. Ask the callback
1913 * if the child is ready to do work or whether we
1914 * should keep waiting for it to boot up.
1915 */
1916 ret = (*wait_cb)(cmd, cb_data);
1917 if (!ret) {
1918 /*
1919 * The child is running and "ready".
1920 */
1921 trace2_child_ready(cmd, "ready");
1922 sbgr = SBGR_READY;
1923 goto done;
1924 } else if (ret > 0) {
1925 /*
1926 * The callback said to give it more time to boot up
1927 * (subject to our timeout limit).
1928 */
1929 time_t now;
1930
1931 time(&now);
1932 if (now < time_limit)
1933 goto wait;
1934
1935 /*
1936 * Our timeout has expired. We don't try to
1937 * kill the child, but rather let it continue
1938 * (hopefully) trying to startup.
1939 */
1940 trace2_child_ready(cmd, "timeout");
1941 sbgr = SBGR_TIMEOUT;
1942 goto done;
1943 } else {
1944 /*
1945 * The cb gave up on this child. It is still running,
1946 * but our cb got an error trying to probe it.
1947 */
1948 trace2_child_ready(cmd, "error");
1949 sbgr = SBGR_CB_ERROR;
1950 goto done;
1951 }
1952 }
1953
1954 else if (pid_seen == cmd->pid) {
1955 int child_code = -1;
1956
1957 /*
1958 * The child started, but exited or was terminated
1959 * before becoming "ready".
1960 *
1961 * We try to match the behavior of `wait_or_whine()`
1962 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1963 * and convert the child's status to a return code for
1964 * tracing purposes and emit the `trace2_child_exit()`
1965 * event.
1966 *
1967 * We do not want the wait_or_whine() error message
1968 * because we will be called by client-side library
1969 * routines.
1970 */
1971 if (WIFEXITED(wait_status))
1972 child_code = WEXITSTATUS(wait_status);
1973 else if (WIFSIGNALED(wait_status))
1974 child_code = WTERMSIG(wait_status) + 128;
1975 trace2_child_exit(cmd, child_code);
1976
1977 sbgr = SBGR_DIED;
1978 goto done;
1979 }
1980
1981 else if (pid_seen < 0 && errno == EINTR)
1982 goto wait;
1983
1984 trace2_child_exit(cmd, -1);
1985 sbgr = SBGR_ERROR;
1986
1987 done:
1988 child_process_clear(cmd);
1989 invalidate_lstat_cache();
1990 return sbgr;
1991 }