]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
run-command API: remove "env" member, always use "env_array"
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11 #include "packfile.h"
12 #include "hook.h"
13
14 void child_process_init(struct child_process *child)
15 {
16 struct child_process blank = CHILD_PROCESS_INIT;
17 memcpy(child, &blank, sizeof(*child));
18 }
19
20 void child_process_clear(struct child_process *child)
21 {
22 strvec_clear(&child->args);
23 strvec_clear(&child->env_array);
24 }
25
26 struct child_to_clean {
27 pid_t pid;
28 struct child_process *process;
29 struct child_to_clean *next;
30 };
31 static struct child_to_clean *children_to_clean;
32 static int installed_child_cleanup_handler;
33
34 static void cleanup_children(int sig, int in_signal)
35 {
36 struct child_to_clean *children_to_wait_for = NULL;
37
38 while (children_to_clean) {
39 struct child_to_clean *p = children_to_clean;
40 children_to_clean = p->next;
41
42 if (p->process && !in_signal) {
43 struct child_process *process = p->process;
44 if (process->clean_on_exit_handler) {
45 trace_printf(
46 "trace: run_command: running exit handler for pid %"
47 PRIuMAX, (uintmax_t)p->pid
48 );
49 process->clean_on_exit_handler(process);
50 }
51 }
52
53 kill(p->pid, sig);
54
55 if (p->process && p->process->wait_after_clean) {
56 p->next = children_to_wait_for;
57 children_to_wait_for = p;
58 } else {
59 if (!in_signal)
60 free(p);
61 }
62 }
63
64 while (children_to_wait_for) {
65 struct child_to_clean *p = children_to_wait_for;
66 children_to_wait_for = p->next;
67
68 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
69 ; /* spin waiting for process exit or error */
70
71 if (!in_signal)
72 free(p);
73 }
74 }
75
76 static void cleanup_children_on_signal(int sig)
77 {
78 cleanup_children(sig, 1);
79 sigchain_pop(sig);
80 raise(sig);
81 }
82
83 static void cleanup_children_on_exit(void)
84 {
85 cleanup_children(SIGTERM, 0);
86 }
87
88 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
89 {
90 struct child_to_clean *p = xmalloc(sizeof(*p));
91 p->pid = pid;
92 p->process = process;
93 p->next = children_to_clean;
94 children_to_clean = p;
95
96 if (!installed_child_cleanup_handler) {
97 atexit(cleanup_children_on_exit);
98 sigchain_push_common(cleanup_children_on_signal);
99 installed_child_cleanup_handler = 1;
100 }
101 }
102
103 static void clear_child_for_cleanup(pid_t pid)
104 {
105 struct child_to_clean **pp;
106
107 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
108 struct child_to_clean *clean_me = *pp;
109
110 if (clean_me->pid == pid) {
111 *pp = clean_me->next;
112 free(clean_me);
113 return;
114 }
115 }
116 }
117
118 static inline void close_pair(int fd[2])
119 {
120 close(fd[0]);
121 close(fd[1]);
122 }
123
124 int is_executable(const char *name)
125 {
126 struct stat st;
127
128 if (stat(name, &st) || /* stat, not lstat */
129 !S_ISREG(st.st_mode))
130 return 0;
131
132 #if defined(GIT_WINDOWS_NATIVE)
133 /*
134 * On Windows there is no executable bit. The file extension
135 * indicates whether it can be run as an executable, and Git
136 * has special-handling to detect scripts and launch them
137 * through the indicated script interpreter. We test for the
138 * file extension first because virus scanners may make
139 * it quite expensive to open many files.
140 */
141 if (ends_with(name, ".exe"))
142 return S_IXUSR;
143
144 {
145 /*
146 * Now that we know it does not have an executable extension,
147 * peek into the file instead.
148 */
149 char buf[3] = { 0 };
150 int n;
151 int fd = open(name, O_RDONLY);
152 st.st_mode &= ~S_IXUSR;
153 if (fd >= 0) {
154 n = read(fd, buf, 2);
155 if (n == 2)
156 /* look for a she-bang */
157 if (!strcmp(buf, "#!"))
158 st.st_mode |= S_IXUSR;
159 close(fd);
160 }
161 }
162 #endif
163 return st.st_mode & S_IXUSR;
164 }
165
166 /*
167 * Search $PATH for a command. This emulates the path search that
168 * execvp would perform, without actually executing the command so it
169 * can be used before fork() to prepare to run a command using
170 * execve() or after execvp() to diagnose why it failed.
171 *
172 * The caller should ensure that file contains no directory
173 * separators.
174 *
175 * Returns the path to the command, as found in $PATH or NULL if the
176 * command could not be found. The caller inherits ownership of the memory
177 * used to store the resultant path.
178 *
179 * This should not be used on Windows, where the $PATH search rules
180 * are more complicated (e.g., a search for "foo" should find
181 * "foo.exe").
182 */
183 static char *locate_in_PATH(const char *file)
184 {
185 const char *p = getenv("PATH");
186 struct strbuf buf = STRBUF_INIT;
187
188 if (!p || !*p)
189 return NULL;
190
191 while (1) {
192 const char *end = strchrnul(p, ':');
193
194 strbuf_reset(&buf);
195
196 /* POSIX specifies an empty entry as the current directory. */
197 if (end != p) {
198 strbuf_add(&buf, p, end - p);
199 strbuf_addch(&buf, '/');
200 }
201 strbuf_addstr(&buf, file);
202
203 if (is_executable(buf.buf))
204 return strbuf_detach(&buf, NULL);
205
206 if (!*end)
207 break;
208 p = end + 1;
209 }
210
211 strbuf_release(&buf);
212 return NULL;
213 }
214
215 int exists_in_PATH(const char *command)
216 {
217 char *r = locate_in_PATH(command);
218 int found = r != NULL;
219 free(r);
220 return found;
221 }
222
223 int sane_execvp(const char *file, char * const argv[])
224 {
225 #ifndef GIT_WINDOWS_NATIVE
226 /*
227 * execvp() doesn't return, so we all we can do is tell trace2
228 * what we are about to do and let it leave a hint in the log
229 * (unless of course the execvp() fails).
230 *
231 * we skip this for Windows because the compat layer already
232 * has to emulate the execvp() call anyway.
233 */
234 int exec_id = trace2_exec(file, (const char **)argv);
235 #endif
236
237 if (!execvp(file, argv))
238 return 0; /* cannot happen ;-) */
239
240 #ifndef GIT_WINDOWS_NATIVE
241 {
242 int ec = errno;
243 trace2_exec_result(exec_id, ec);
244 errno = ec;
245 }
246 #endif
247
248 /*
249 * When a command can't be found because one of the directories
250 * listed in $PATH is unsearchable, execvp reports EACCES, but
251 * careful usability testing (read: analysis of occasional bug
252 * reports) reveals that "No such file or directory" is more
253 * intuitive.
254 *
255 * We avoid commands with "/", because execvp will not do $PATH
256 * lookups in that case.
257 *
258 * The reassignment of EACCES to errno looks like a no-op below,
259 * but we need to protect against exists_in_PATH overwriting errno.
260 */
261 if (errno == EACCES && !strchr(file, '/'))
262 errno = exists_in_PATH(file) ? EACCES : ENOENT;
263 else if (errno == ENOTDIR && !strchr(file, '/'))
264 errno = ENOENT;
265 return -1;
266 }
267
268 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
269 {
270 if (!argv[0])
271 BUG("shell command is empty");
272
273 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
274 #ifndef GIT_WINDOWS_NATIVE
275 strvec_push(out, SHELL_PATH);
276 #else
277 strvec_push(out, "sh");
278 #endif
279 strvec_push(out, "-c");
280
281 /*
282 * If we have no extra arguments, we do not even need to
283 * bother with the "$@" magic.
284 */
285 if (!argv[1])
286 strvec_push(out, argv[0]);
287 else
288 strvec_pushf(out, "%s \"$@\"", argv[0]);
289 }
290
291 strvec_pushv(out, argv);
292 return out->v;
293 }
294
295 #ifndef GIT_WINDOWS_NATIVE
296 static int child_notifier = -1;
297
298 enum child_errcode {
299 CHILD_ERR_CHDIR,
300 CHILD_ERR_DUP2,
301 CHILD_ERR_CLOSE,
302 CHILD_ERR_SIGPROCMASK,
303 CHILD_ERR_ENOENT,
304 CHILD_ERR_SILENT,
305 CHILD_ERR_ERRNO
306 };
307
308 struct child_err {
309 enum child_errcode err;
310 int syserr; /* errno */
311 };
312
313 static void child_die(enum child_errcode err)
314 {
315 struct child_err buf;
316
317 buf.err = err;
318 buf.syserr = errno;
319
320 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
321 xwrite(child_notifier, &buf, sizeof(buf));
322 _exit(1);
323 }
324
325 static void child_dup2(int fd, int to)
326 {
327 if (dup2(fd, to) < 0)
328 child_die(CHILD_ERR_DUP2);
329 }
330
331 static void child_close(int fd)
332 {
333 if (close(fd))
334 child_die(CHILD_ERR_CLOSE);
335 }
336
337 static void child_close_pair(int fd[2])
338 {
339 child_close(fd[0]);
340 child_close(fd[1]);
341 }
342
343 /*
344 * parent will make it look like the child spewed a fatal error and died
345 * this is needed to prevent changes to t0061.
346 */
347 static void fake_fatal(const char *err, va_list params)
348 {
349 vreportf("fatal: ", err, params);
350 }
351
352 static void child_error_fn(const char *err, va_list params)
353 {
354 const char msg[] = "error() should not be called in child\n";
355 xwrite(2, msg, sizeof(msg) - 1);
356 }
357
358 static void child_warn_fn(const char *err, va_list params)
359 {
360 const char msg[] = "warn() should not be called in child\n";
361 xwrite(2, msg, sizeof(msg) - 1);
362 }
363
364 static void NORETURN child_die_fn(const char *err, va_list params)
365 {
366 const char msg[] = "die() should not be called in child\n";
367 xwrite(2, msg, sizeof(msg) - 1);
368 _exit(2);
369 }
370
371 /* this runs in the parent process */
372 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
373 {
374 static void (*old_errfn)(const char *err, va_list params);
375
376 old_errfn = get_error_routine();
377 set_error_routine(fake_fatal);
378 errno = cerr->syserr;
379
380 switch (cerr->err) {
381 case CHILD_ERR_CHDIR:
382 error_errno("exec '%s': cd to '%s' failed",
383 cmd->args.v[0], cmd->dir);
384 break;
385 case CHILD_ERR_DUP2:
386 error_errno("dup2() in child failed");
387 break;
388 case CHILD_ERR_CLOSE:
389 error_errno("close() in child failed");
390 break;
391 case CHILD_ERR_SIGPROCMASK:
392 error_errno("sigprocmask failed restoring signals");
393 break;
394 case CHILD_ERR_ENOENT:
395 error_errno("cannot run %s", cmd->args.v[0]);
396 break;
397 case CHILD_ERR_SILENT:
398 break;
399 case CHILD_ERR_ERRNO:
400 error_errno("cannot exec '%s'", cmd->args.v[0]);
401 break;
402 }
403 set_error_routine(old_errfn);
404 }
405
406 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
407 {
408 if (!cmd->args.v[0])
409 BUG("command is empty");
410
411 /*
412 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
413 * attempt to interpret the command with 'sh'.
414 */
415 strvec_push(out, SHELL_PATH);
416
417 if (cmd->git_cmd) {
418 prepare_git_cmd(out, cmd->args.v);
419 } else if (cmd->use_shell) {
420 prepare_shell_cmd(out, cmd->args.v);
421 } else {
422 strvec_pushv(out, cmd->args.v);
423 }
424
425 /*
426 * If there are no dir separator characters in the command then perform
427 * a path lookup and use the resolved path as the command to exec. If
428 * there are dir separator characters, we have exec attempt to invoke
429 * the command directly.
430 */
431 if (!has_dir_sep(out->v[1])) {
432 char *program = locate_in_PATH(out->v[1]);
433 if (program) {
434 free((char *)out->v[1]);
435 out->v[1] = program;
436 } else {
437 strvec_clear(out);
438 errno = ENOENT;
439 return -1;
440 }
441 }
442
443 return 0;
444 }
445
446 static char **prep_childenv(const char *const *deltaenv)
447 {
448 extern char **environ;
449 char **childenv;
450 struct string_list env = STRING_LIST_INIT_DUP;
451 struct strbuf key = STRBUF_INIT;
452 const char *const *p;
453 int i;
454
455 /* Construct a sorted string list consisting of the current environ */
456 for (p = (const char *const *) environ; p && *p; p++) {
457 const char *equals = strchr(*p, '=');
458
459 if (equals) {
460 strbuf_reset(&key);
461 strbuf_add(&key, *p, equals - *p);
462 string_list_append(&env, key.buf)->util = (void *) *p;
463 } else {
464 string_list_append(&env, *p)->util = (void *) *p;
465 }
466 }
467 string_list_sort(&env);
468
469 /* Merge in 'deltaenv' with the current environ */
470 for (p = deltaenv; p && *p; p++) {
471 const char *equals = strchr(*p, '=');
472
473 if (equals) {
474 /* ('key=value'), insert or replace entry */
475 strbuf_reset(&key);
476 strbuf_add(&key, *p, equals - *p);
477 string_list_insert(&env, key.buf)->util = (void *) *p;
478 } else {
479 /* otherwise ('key') remove existing entry */
480 string_list_remove(&env, *p, 0);
481 }
482 }
483
484 /* Create an array of 'char *' to be used as the childenv */
485 ALLOC_ARRAY(childenv, env.nr + 1);
486 for (i = 0; i < env.nr; i++)
487 childenv[i] = env.items[i].util;
488 childenv[env.nr] = NULL;
489
490 string_list_clear(&env, 0);
491 strbuf_release(&key);
492 return childenv;
493 }
494
495 struct atfork_state {
496 #ifndef NO_PTHREADS
497 int cs;
498 #endif
499 sigset_t old;
500 };
501
502 #define CHECK_BUG(err, msg) \
503 do { \
504 int e = (err); \
505 if (e) \
506 BUG("%s: %s", msg, strerror(e)); \
507 } while(0)
508
509 static void atfork_prepare(struct atfork_state *as)
510 {
511 sigset_t all;
512
513 if (sigfillset(&all))
514 die_errno("sigfillset");
515 #ifdef NO_PTHREADS
516 if (sigprocmask(SIG_SETMASK, &all, &as->old))
517 die_errno("sigprocmask");
518 #else
519 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
520 "blocking all signals");
521 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
522 "disabling cancellation");
523 #endif
524 }
525
526 static void atfork_parent(struct atfork_state *as)
527 {
528 #ifdef NO_PTHREADS
529 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
530 die_errno("sigprocmask");
531 #else
532 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
533 "re-enabling cancellation");
534 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
535 "restoring signal mask");
536 #endif
537 }
538 #endif /* GIT_WINDOWS_NATIVE */
539
540 static inline void set_cloexec(int fd)
541 {
542 int flags = fcntl(fd, F_GETFD);
543 if (flags >= 0)
544 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
545 }
546
547 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
548 {
549 int status, code = -1;
550 pid_t waiting;
551 int failed_errno = 0;
552
553 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
554 ; /* nothing */
555 if (in_signal) {
556 if (WIFEXITED(status))
557 code = WEXITSTATUS(status);
558 return code;
559 }
560
561 if (waiting < 0) {
562 failed_errno = errno;
563 error_errno("waitpid for %s failed", argv0);
564 } else if (waiting != pid) {
565 error("waitpid is confused (%s)", argv0);
566 } else if (WIFSIGNALED(status)) {
567 code = WTERMSIG(status);
568 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
569 error("%s died of signal %d", argv0, code);
570 /*
571 * This return value is chosen so that code & 0xff
572 * mimics the exit code that a POSIX shell would report for
573 * a program that died from this signal.
574 */
575 code += 128;
576 } else if (WIFEXITED(status)) {
577 code = WEXITSTATUS(status);
578 } else {
579 error("waitpid is confused (%s)", argv0);
580 }
581
582 clear_child_for_cleanup(pid);
583
584 errno = failed_errno;
585 return code;
586 }
587
588 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
589 {
590 struct string_list envs = STRING_LIST_INIT_DUP;
591 const char *const *e;
592 int i;
593 int printed_unset = 0;
594
595 /* Last one wins, see run-command.c:prep_childenv() for context */
596 for (e = deltaenv; e && *e; e++) {
597 struct strbuf key = STRBUF_INIT;
598 char *equals = strchr(*e, '=');
599
600 if (equals) {
601 strbuf_add(&key, *e, equals - *e);
602 string_list_insert(&envs, key.buf)->util = equals + 1;
603 } else {
604 string_list_insert(&envs, *e)->util = NULL;
605 }
606 strbuf_release(&key);
607 }
608
609 /* "unset X Y...;" */
610 for (i = 0; i < envs.nr; i++) {
611 const char *var = envs.items[i].string;
612 const char *val = envs.items[i].util;
613
614 if (val || !getenv(var))
615 continue;
616
617 if (!printed_unset) {
618 strbuf_addstr(dst, " unset");
619 printed_unset = 1;
620 }
621 strbuf_addf(dst, " %s", var);
622 }
623 if (printed_unset)
624 strbuf_addch(dst, ';');
625
626 /* ... followed by "A=B C=D ..." */
627 for (i = 0; i < envs.nr; i++) {
628 const char *var = envs.items[i].string;
629 const char *val = envs.items[i].util;
630 const char *oldval;
631
632 if (!val)
633 continue;
634
635 oldval = getenv(var);
636 if (oldval && !strcmp(val, oldval))
637 continue;
638
639 strbuf_addf(dst, " %s=", var);
640 sq_quote_buf_pretty(dst, val);
641 }
642 string_list_clear(&envs, 0);
643 }
644
645 static void trace_run_command(const struct child_process *cp)
646 {
647 struct strbuf buf = STRBUF_INIT;
648
649 if (!trace_want(&trace_default_key))
650 return;
651
652 strbuf_addstr(&buf, "trace: run_command:");
653 if (cp->dir) {
654 strbuf_addstr(&buf, " cd ");
655 sq_quote_buf_pretty(&buf, cp->dir);
656 strbuf_addch(&buf, ';');
657 }
658 trace_add_env(&buf, cp->env_array.v);
659 if (cp->git_cmd)
660 strbuf_addstr(&buf, " git");
661 sq_quote_argv_pretty(&buf, cp->args.v);
662
663 trace_printf("%s", buf.buf);
664 strbuf_release(&buf);
665 }
666
667 int start_command(struct child_process *cmd)
668 {
669 int need_in, need_out, need_err;
670 int fdin[2], fdout[2], fderr[2];
671 int failed_errno;
672 char *str;
673
674 /*
675 * In case of errors we must keep the promise to close FDs
676 * that have been passed in via ->in and ->out.
677 */
678
679 need_in = !cmd->no_stdin && cmd->in < 0;
680 if (need_in) {
681 if (pipe(fdin) < 0) {
682 failed_errno = errno;
683 if (cmd->out > 0)
684 close(cmd->out);
685 str = "standard input";
686 goto fail_pipe;
687 }
688 cmd->in = fdin[1];
689 }
690
691 need_out = !cmd->no_stdout
692 && !cmd->stdout_to_stderr
693 && cmd->out < 0;
694 if (need_out) {
695 if (pipe(fdout) < 0) {
696 failed_errno = errno;
697 if (need_in)
698 close_pair(fdin);
699 else if (cmd->in)
700 close(cmd->in);
701 str = "standard output";
702 goto fail_pipe;
703 }
704 cmd->out = fdout[0];
705 }
706
707 need_err = !cmd->no_stderr && cmd->err < 0;
708 if (need_err) {
709 if (pipe(fderr) < 0) {
710 failed_errno = errno;
711 if (need_in)
712 close_pair(fdin);
713 else if (cmd->in)
714 close(cmd->in);
715 if (need_out)
716 close_pair(fdout);
717 else if (cmd->out)
718 close(cmd->out);
719 str = "standard error";
720 fail_pipe:
721 error("cannot create %s pipe for %s: %s",
722 str, cmd->args.v[0], strerror(failed_errno));
723 child_process_clear(cmd);
724 errno = failed_errno;
725 return -1;
726 }
727 cmd->err = fderr[0];
728 }
729
730 trace2_child_start(cmd);
731 trace_run_command(cmd);
732
733 fflush(NULL);
734
735 if (cmd->close_object_store)
736 close_object_store(the_repository->objects);
737
738 #ifndef GIT_WINDOWS_NATIVE
739 {
740 int notify_pipe[2];
741 int null_fd = -1;
742 char **childenv;
743 struct strvec argv = STRVEC_INIT;
744 struct child_err cerr;
745 struct atfork_state as;
746
747 if (prepare_cmd(&argv, cmd) < 0) {
748 failed_errno = errno;
749 cmd->pid = -1;
750 if (!cmd->silent_exec_failure)
751 error_errno("cannot run %s", cmd->args.v[0]);
752 goto end_of_spawn;
753 }
754
755 if (pipe(notify_pipe))
756 notify_pipe[0] = notify_pipe[1] = -1;
757
758 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
759 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
760 set_cloexec(null_fd);
761 }
762
763 childenv = prep_childenv(cmd->env_array.v);
764 atfork_prepare(&as);
765
766 /*
767 * NOTE: In order to prevent deadlocking when using threads special
768 * care should be taken with the function calls made in between the
769 * fork() and exec() calls. No calls should be made to functions which
770 * require acquiring a lock (e.g. malloc) as the lock could have been
771 * held by another thread at the time of forking, causing the lock to
772 * never be released in the child process. This means only
773 * Async-Signal-Safe functions are permitted in the child.
774 */
775 cmd->pid = fork();
776 failed_errno = errno;
777 if (!cmd->pid) {
778 int sig;
779 /*
780 * Ensure the default die/error/warn routines do not get
781 * called, they can take stdio locks and malloc.
782 */
783 set_die_routine(child_die_fn);
784 set_error_routine(child_error_fn);
785 set_warn_routine(child_warn_fn);
786
787 close(notify_pipe[0]);
788 set_cloexec(notify_pipe[1]);
789 child_notifier = notify_pipe[1];
790
791 if (cmd->no_stdin)
792 child_dup2(null_fd, 0);
793 else if (need_in) {
794 child_dup2(fdin[0], 0);
795 child_close_pair(fdin);
796 } else if (cmd->in) {
797 child_dup2(cmd->in, 0);
798 child_close(cmd->in);
799 }
800
801 if (cmd->no_stderr)
802 child_dup2(null_fd, 2);
803 else if (need_err) {
804 child_dup2(fderr[1], 2);
805 child_close_pair(fderr);
806 } else if (cmd->err > 1) {
807 child_dup2(cmd->err, 2);
808 child_close(cmd->err);
809 }
810
811 if (cmd->no_stdout)
812 child_dup2(null_fd, 1);
813 else if (cmd->stdout_to_stderr)
814 child_dup2(2, 1);
815 else if (need_out) {
816 child_dup2(fdout[1], 1);
817 child_close_pair(fdout);
818 } else if (cmd->out > 1) {
819 child_dup2(cmd->out, 1);
820 child_close(cmd->out);
821 }
822
823 if (cmd->dir && chdir(cmd->dir))
824 child_die(CHILD_ERR_CHDIR);
825
826 /*
827 * restore default signal handlers here, in case
828 * we catch a signal right before execve below
829 */
830 for (sig = 1; sig < NSIG; sig++) {
831 /* ignored signals get reset to SIG_DFL on execve */
832 if (signal(sig, SIG_DFL) == SIG_IGN)
833 signal(sig, SIG_IGN);
834 }
835
836 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
837 child_die(CHILD_ERR_SIGPROCMASK);
838
839 /*
840 * Attempt to exec using the command and arguments starting at
841 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
842 * be used in the event exec failed with ENOEXEC at which point
843 * we will try to interpret the command using 'sh'.
844 */
845 execve(argv.v[1], (char *const *) argv.v + 1,
846 (char *const *) childenv);
847 if (errno == ENOEXEC)
848 execve(argv.v[0], (char *const *) argv.v,
849 (char *const *) childenv);
850
851 if (errno == ENOENT) {
852 if (cmd->silent_exec_failure)
853 child_die(CHILD_ERR_SILENT);
854 child_die(CHILD_ERR_ENOENT);
855 } else {
856 child_die(CHILD_ERR_ERRNO);
857 }
858 }
859 atfork_parent(&as);
860 if (cmd->pid < 0)
861 error_errno("cannot fork() for %s", cmd->args.v[0]);
862 else if (cmd->clean_on_exit)
863 mark_child_for_cleanup(cmd->pid, cmd);
864
865 /*
866 * Wait for child's exec. If the exec succeeds (or if fork()
867 * failed), EOF is seen immediately by the parent. Otherwise, the
868 * child process sends a child_err struct.
869 * Note that use of this infrastructure is completely advisory,
870 * therefore, we keep error checks minimal.
871 */
872 close(notify_pipe[1]);
873 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
874 /*
875 * At this point we know that fork() succeeded, but exec()
876 * failed. Errors have been reported to our stderr.
877 */
878 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
879 child_err_spew(cmd, &cerr);
880 failed_errno = errno;
881 cmd->pid = -1;
882 }
883 close(notify_pipe[0]);
884
885 if (null_fd >= 0)
886 close(null_fd);
887 strvec_clear(&argv);
888 free(childenv);
889 }
890 end_of_spawn:
891
892 #else
893 {
894 int fhin = 0, fhout = 1, fherr = 2;
895 const char **sargv = cmd->args.v;
896 struct strvec nargv = STRVEC_INIT;
897
898 if (cmd->no_stdin)
899 fhin = open("/dev/null", O_RDWR);
900 else if (need_in)
901 fhin = dup(fdin[0]);
902 else if (cmd->in)
903 fhin = dup(cmd->in);
904
905 if (cmd->no_stderr)
906 fherr = open("/dev/null", O_RDWR);
907 else if (need_err)
908 fherr = dup(fderr[1]);
909 else if (cmd->err > 2)
910 fherr = dup(cmd->err);
911
912 if (cmd->no_stdout)
913 fhout = open("/dev/null", O_RDWR);
914 else if (cmd->stdout_to_stderr)
915 fhout = dup(fherr);
916 else if (need_out)
917 fhout = dup(fdout[1]);
918 else if (cmd->out > 1)
919 fhout = dup(cmd->out);
920
921 if (cmd->git_cmd)
922 cmd->args.v = prepare_git_cmd(&nargv, sargv);
923 else if (cmd->use_shell)
924 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
925
926 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v, (char**) cmd->env_array.v,
927 cmd->dir, fhin, fhout, fherr);
928 failed_errno = errno;
929 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
930 error_errno("cannot spawn %s", cmd->args.v[0]);
931 if (cmd->clean_on_exit && cmd->pid >= 0)
932 mark_child_for_cleanup(cmd->pid, cmd);
933
934 strvec_clear(&nargv);
935 cmd->args.v = sargv;
936 if (fhin != 0)
937 close(fhin);
938 if (fhout != 1)
939 close(fhout);
940 if (fherr != 2)
941 close(fherr);
942 }
943 #endif
944
945 if (cmd->pid < 0) {
946 trace2_child_exit(cmd, -1);
947
948 if (need_in)
949 close_pair(fdin);
950 else if (cmd->in)
951 close(cmd->in);
952 if (need_out)
953 close_pair(fdout);
954 else if (cmd->out)
955 close(cmd->out);
956 if (need_err)
957 close_pair(fderr);
958 else if (cmd->err)
959 close(cmd->err);
960 child_process_clear(cmd);
961 errno = failed_errno;
962 return -1;
963 }
964
965 if (need_in)
966 close(fdin[0]);
967 else if (cmd->in)
968 close(cmd->in);
969
970 if (need_out)
971 close(fdout[1]);
972 else if (cmd->out)
973 close(cmd->out);
974
975 if (need_err)
976 close(fderr[1]);
977 else if (cmd->err)
978 close(cmd->err);
979
980 return 0;
981 }
982
983 int finish_command(struct child_process *cmd)
984 {
985 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
986 trace2_child_exit(cmd, ret);
987 child_process_clear(cmd);
988 invalidate_lstat_cache();
989 return ret;
990 }
991
992 int finish_command_in_signal(struct child_process *cmd)
993 {
994 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
995 trace2_child_exit(cmd, ret);
996 return ret;
997 }
998
999
1000 int run_command(struct child_process *cmd)
1001 {
1002 int code;
1003
1004 if (cmd->out < 0 || cmd->err < 0)
1005 BUG("run_command with a pipe can cause deadlock");
1006
1007 code = start_command(cmd);
1008 if (code)
1009 return code;
1010 return finish_command(cmd);
1011 }
1012
1013 int run_command_v_opt(const char **argv, int opt)
1014 {
1015 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1016 }
1017
1018 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1019 {
1020 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1021 }
1022
1023 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1024 {
1025 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1026 }
1027
1028 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1029 const char *const *env, const char *tr2_class)
1030 {
1031 struct child_process cmd = CHILD_PROCESS_INIT;
1032 strvec_pushv(&cmd.args, argv);
1033 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1034 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1035 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1036 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1037 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1038 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1039 cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1040 cmd.close_object_store = opt & RUN_CLOSE_OBJECT_STORE ? 1 : 0;
1041 cmd.dir = dir;
1042 if (env)
1043 strvec_pushv(&cmd.env_array, (const char **)env);
1044 cmd.trace2_child_class = tr2_class;
1045 return run_command(&cmd);
1046 }
1047
1048 #ifndef NO_PTHREADS
1049 static pthread_t main_thread;
1050 static int main_thread_set;
1051 static pthread_key_t async_key;
1052 static pthread_key_t async_die_counter;
1053
1054 static void *run_thread(void *data)
1055 {
1056 struct async *async = data;
1057 intptr_t ret;
1058
1059 if (async->isolate_sigpipe) {
1060 sigset_t mask;
1061 sigemptyset(&mask);
1062 sigaddset(&mask, SIGPIPE);
1063 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1064 ret = error("unable to block SIGPIPE in async thread");
1065 return (void *)ret;
1066 }
1067 }
1068
1069 pthread_setspecific(async_key, async);
1070 ret = async->proc(async->proc_in, async->proc_out, async->data);
1071 return (void *)ret;
1072 }
1073
1074 static NORETURN void die_async(const char *err, va_list params)
1075 {
1076 vreportf("fatal: ", err, params);
1077
1078 if (in_async()) {
1079 struct async *async = pthread_getspecific(async_key);
1080 if (async->proc_in >= 0)
1081 close(async->proc_in);
1082 if (async->proc_out >= 0)
1083 close(async->proc_out);
1084 pthread_exit((void *)128);
1085 }
1086
1087 exit(128);
1088 }
1089
1090 static int async_die_is_recursing(void)
1091 {
1092 void *ret = pthread_getspecific(async_die_counter);
1093 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1094 return ret != NULL;
1095 }
1096
1097 int in_async(void)
1098 {
1099 if (!main_thread_set)
1100 return 0; /* no asyncs started yet */
1101 return !pthread_equal(main_thread, pthread_self());
1102 }
1103
1104 static void NORETURN async_exit(int code)
1105 {
1106 pthread_exit((void *)(intptr_t)code);
1107 }
1108
1109 #else
1110
1111 static struct {
1112 void (**handlers)(void);
1113 size_t nr;
1114 size_t alloc;
1115 } git_atexit_hdlrs;
1116
1117 static int git_atexit_installed;
1118
1119 static void git_atexit_dispatch(void)
1120 {
1121 size_t i;
1122
1123 for (i=git_atexit_hdlrs.nr ; i ; i--)
1124 git_atexit_hdlrs.handlers[i-1]();
1125 }
1126
1127 static void git_atexit_clear(void)
1128 {
1129 free(git_atexit_hdlrs.handlers);
1130 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1131 git_atexit_installed = 0;
1132 }
1133
1134 #undef atexit
1135 int git_atexit(void (*handler)(void))
1136 {
1137 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1138 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1139 if (!git_atexit_installed) {
1140 if (atexit(&git_atexit_dispatch))
1141 return -1;
1142 git_atexit_installed = 1;
1143 }
1144 return 0;
1145 }
1146 #define atexit git_atexit
1147
1148 static int process_is_async;
1149 int in_async(void)
1150 {
1151 return process_is_async;
1152 }
1153
1154 static void NORETURN async_exit(int code)
1155 {
1156 exit(code);
1157 }
1158
1159 #endif
1160
1161 void check_pipe(int err)
1162 {
1163 if (err == EPIPE) {
1164 if (in_async())
1165 async_exit(141);
1166
1167 signal(SIGPIPE, SIG_DFL);
1168 raise(SIGPIPE);
1169 /* Should never happen, but just in case... */
1170 exit(141);
1171 }
1172 }
1173
1174 int start_async(struct async *async)
1175 {
1176 int need_in, need_out;
1177 int fdin[2], fdout[2];
1178 int proc_in, proc_out;
1179
1180 need_in = async->in < 0;
1181 if (need_in) {
1182 if (pipe(fdin) < 0) {
1183 if (async->out > 0)
1184 close(async->out);
1185 return error_errno("cannot create pipe");
1186 }
1187 async->in = fdin[1];
1188 }
1189
1190 need_out = async->out < 0;
1191 if (need_out) {
1192 if (pipe(fdout) < 0) {
1193 if (need_in)
1194 close_pair(fdin);
1195 else if (async->in)
1196 close(async->in);
1197 return error_errno("cannot create pipe");
1198 }
1199 async->out = fdout[0];
1200 }
1201
1202 if (need_in)
1203 proc_in = fdin[0];
1204 else if (async->in)
1205 proc_in = async->in;
1206 else
1207 proc_in = -1;
1208
1209 if (need_out)
1210 proc_out = fdout[1];
1211 else if (async->out)
1212 proc_out = async->out;
1213 else
1214 proc_out = -1;
1215
1216 #ifdef NO_PTHREADS
1217 /* Flush stdio before fork() to avoid cloning buffers */
1218 fflush(NULL);
1219
1220 async->pid = fork();
1221 if (async->pid < 0) {
1222 error_errno("fork (async) failed");
1223 goto error;
1224 }
1225 if (!async->pid) {
1226 if (need_in)
1227 close(fdin[1]);
1228 if (need_out)
1229 close(fdout[0]);
1230 git_atexit_clear();
1231 process_is_async = 1;
1232 exit(!!async->proc(proc_in, proc_out, async->data));
1233 }
1234
1235 mark_child_for_cleanup(async->pid, NULL);
1236
1237 if (need_in)
1238 close(fdin[0]);
1239 else if (async->in)
1240 close(async->in);
1241
1242 if (need_out)
1243 close(fdout[1]);
1244 else if (async->out)
1245 close(async->out);
1246 #else
1247 if (!main_thread_set) {
1248 /*
1249 * We assume that the first time that start_async is called
1250 * it is from the main thread.
1251 */
1252 main_thread_set = 1;
1253 main_thread = pthread_self();
1254 pthread_key_create(&async_key, NULL);
1255 pthread_key_create(&async_die_counter, NULL);
1256 set_die_routine(die_async);
1257 set_die_is_recursing_routine(async_die_is_recursing);
1258 }
1259
1260 if (proc_in >= 0)
1261 set_cloexec(proc_in);
1262 if (proc_out >= 0)
1263 set_cloexec(proc_out);
1264 async->proc_in = proc_in;
1265 async->proc_out = proc_out;
1266 {
1267 int err = pthread_create(&async->tid, NULL, run_thread, async);
1268 if (err) {
1269 error(_("cannot create async thread: %s"), strerror(err));
1270 goto error;
1271 }
1272 }
1273 #endif
1274 return 0;
1275
1276 error:
1277 if (need_in)
1278 close_pair(fdin);
1279 else if (async->in)
1280 close(async->in);
1281
1282 if (need_out)
1283 close_pair(fdout);
1284 else if (async->out)
1285 close(async->out);
1286 return -1;
1287 }
1288
1289 int finish_async(struct async *async)
1290 {
1291 #ifdef NO_PTHREADS
1292 int ret = wait_or_whine(async->pid, "child process", 0);
1293
1294 invalidate_lstat_cache();
1295
1296 return ret;
1297 #else
1298 void *ret = (void *)(intptr_t)(-1);
1299
1300 if (pthread_join(async->tid, &ret))
1301 error("pthread_join failed");
1302 invalidate_lstat_cache();
1303 return (int)(intptr_t)ret;
1304
1305 #endif
1306 }
1307
1308 int async_with_fork(void)
1309 {
1310 #ifdef NO_PTHREADS
1311 return 1;
1312 #else
1313 return 0;
1314 #endif
1315 }
1316
1317 int run_hook_ve(const char *const *env, const char *name, va_list args)
1318 {
1319 struct child_process hook = CHILD_PROCESS_INIT;
1320 const char *p;
1321
1322 p = find_hook(name);
1323 if (!p)
1324 return 0;
1325
1326 strvec_push(&hook.args, p);
1327 while ((p = va_arg(args, const char *)))
1328 strvec_push(&hook.args, p);
1329 if (env)
1330 strvec_pushv(&hook.env_array, (const char **)env);
1331 hook.no_stdin = 1;
1332 hook.stdout_to_stderr = 1;
1333 hook.trace2_hook_name = name;
1334
1335 return run_command(&hook);
1336 }
1337
1338 int run_hook_le(const char *const *env, const char *name, ...)
1339 {
1340 va_list args;
1341 int ret;
1342
1343 va_start(args, name);
1344 ret = run_hook_ve(env, name, args);
1345 va_end(args);
1346
1347 return ret;
1348 }
1349
1350 struct io_pump {
1351 /* initialized by caller */
1352 int fd;
1353 int type; /* POLLOUT or POLLIN */
1354 union {
1355 struct {
1356 const char *buf;
1357 size_t len;
1358 } out;
1359 struct {
1360 struct strbuf *buf;
1361 size_t hint;
1362 } in;
1363 } u;
1364
1365 /* returned by pump_io */
1366 int error; /* 0 for success, otherwise errno */
1367
1368 /* internal use */
1369 struct pollfd *pfd;
1370 };
1371
1372 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1373 {
1374 int pollsize = 0;
1375 int i;
1376
1377 for (i = 0; i < nr; i++) {
1378 struct io_pump *io = &slots[i];
1379 if (io->fd < 0)
1380 continue;
1381 pfd[pollsize].fd = io->fd;
1382 pfd[pollsize].events = io->type;
1383 io->pfd = &pfd[pollsize++];
1384 }
1385
1386 if (!pollsize)
1387 return 0;
1388
1389 if (poll(pfd, pollsize, -1) < 0) {
1390 if (errno == EINTR)
1391 return 1;
1392 die_errno("poll failed");
1393 }
1394
1395 for (i = 0; i < nr; i++) {
1396 struct io_pump *io = &slots[i];
1397
1398 if (io->fd < 0)
1399 continue;
1400
1401 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1402 continue;
1403
1404 if (io->type == POLLOUT) {
1405 ssize_t len = xwrite(io->fd,
1406 io->u.out.buf, io->u.out.len);
1407 if (len < 0) {
1408 io->error = errno;
1409 close(io->fd);
1410 io->fd = -1;
1411 } else {
1412 io->u.out.buf += len;
1413 io->u.out.len -= len;
1414 if (!io->u.out.len) {
1415 close(io->fd);
1416 io->fd = -1;
1417 }
1418 }
1419 }
1420
1421 if (io->type == POLLIN) {
1422 ssize_t len = strbuf_read_once(io->u.in.buf,
1423 io->fd, io->u.in.hint);
1424 if (len < 0)
1425 io->error = errno;
1426 if (len <= 0) {
1427 close(io->fd);
1428 io->fd = -1;
1429 }
1430 }
1431 }
1432
1433 return 1;
1434 }
1435
1436 static int pump_io(struct io_pump *slots, int nr)
1437 {
1438 struct pollfd *pfd;
1439 int i;
1440
1441 for (i = 0; i < nr; i++)
1442 slots[i].error = 0;
1443
1444 ALLOC_ARRAY(pfd, nr);
1445 while (pump_io_round(slots, nr, pfd))
1446 ; /* nothing */
1447 free(pfd);
1448
1449 /* There may be multiple errno values, so just pick the first. */
1450 for (i = 0; i < nr; i++) {
1451 if (slots[i].error) {
1452 errno = slots[i].error;
1453 return -1;
1454 }
1455 }
1456 return 0;
1457 }
1458
1459
1460 int pipe_command(struct child_process *cmd,
1461 const char *in, size_t in_len,
1462 struct strbuf *out, size_t out_hint,
1463 struct strbuf *err, size_t err_hint)
1464 {
1465 struct io_pump io[3];
1466 int nr = 0;
1467
1468 if (in)
1469 cmd->in = -1;
1470 if (out)
1471 cmd->out = -1;
1472 if (err)
1473 cmd->err = -1;
1474
1475 if (start_command(cmd) < 0)
1476 return -1;
1477
1478 if (in) {
1479 io[nr].fd = cmd->in;
1480 io[nr].type = POLLOUT;
1481 io[nr].u.out.buf = in;
1482 io[nr].u.out.len = in_len;
1483 nr++;
1484 }
1485 if (out) {
1486 io[nr].fd = cmd->out;
1487 io[nr].type = POLLIN;
1488 io[nr].u.in.buf = out;
1489 io[nr].u.in.hint = out_hint;
1490 nr++;
1491 }
1492 if (err) {
1493 io[nr].fd = cmd->err;
1494 io[nr].type = POLLIN;
1495 io[nr].u.in.buf = err;
1496 io[nr].u.in.hint = err_hint;
1497 nr++;
1498 }
1499
1500 if (pump_io(io, nr) < 0) {
1501 finish_command(cmd); /* throw away exit code */
1502 return -1;
1503 }
1504
1505 return finish_command(cmd);
1506 }
1507
1508 enum child_state {
1509 GIT_CP_FREE,
1510 GIT_CP_WORKING,
1511 GIT_CP_WAIT_CLEANUP,
1512 };
1513
1514 struct parallel_processes {
1515 void *data;
1516
1517 int max_processes;
1518 int nr_processes;
1519
1520 get_next_task_fn get_next_task;
1521 start_failure_fn start_failure;
1522 task_finished_fn task_finished;
1523
1524 struct {
1525 enum child_state state;
1526 struct child_process process;
1527 struct strbuf err;
1528 void *data;
1529 } *children;
1530 /*
1531 * The struct pollfd is logically part of *children,
1532 * but the system call expects it as its own array.
1533 */
1534 struct pollfd *pfd;
1535
1536 unsigned shutdown : 1;
1537
1538 int output_owner;
1539 struct strbuf buffered_output; /* of finished children */
1540 };
1541
1542 static int default_start_failure(struct strbuf *out,
1543 void *pp_cb,
1544 void *pp_task_cb)
1545 {
1546 return 0;
1547 }
1548
1549 static int default_task_finished(int result,
1550 struct strbuf *out,
1551 void *pp_cb,
1552 void *pp_task_cb)
1553 {
1554 return 0;
1555 }
1556
1557 static void kill_children(struct parallel_processes *pp, int signo)
1558 {
1559 int i, n = pp->max_processes;
1560
1561 for (i = 0; i < n; i++)
1562 if (pp->children[i].state == GIT_CP_WORKING)
1563 kill(pp->children[i].process.pid, signo);
1564 }
1565
1566 static struct parallel_processes *pp_for_signal;
1567
1568 static void handle_children_on_signal(int signo)
1569 {
1570 kill_children(pp_for_signal, signo);
1571 sigchain_pop(signo);
1572 raise(signo);
1573 }
1574
1575 static void pp_init(struct parallel_processes *pp,
1576 int n,
1577 get_next_task_fn get_next_task,
1578 start_failure_fn start_failure,
1579 task_finished_fn task_finished,
1580 void *data)
1581 {
1582 int i;
1583
1584 if (n < 1)
1585 n = online_cpus();
1586
1587 pp->max_processes = n;
1588
1589 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1590
1591 pp->data = data;
1592 if (!get_next_task)
1593 BUG("you need to specify a get_next_task function");
1594 pp->get_next_task = get_next_task;
1595
1596 pp->start_failure = start_failure ? start_failure : default_start_failure;
1597 pp->task_finished = task_finished ? task_finished : default_task_finished;
1598
1599 pp->nr_processes = 0;
1600 pp->output_owner = 0;
1601 pp->shutdown = 0;
1602 CALLOC_ARRAY(pp->children, n);
1603 CALLOC_ARRAY(pp->pfd, n);
1604 strbuf_init(&pp->buffered_output, 0);
1605
1606 for (i = 0; i < n; i++) {
1607 strbuf_init(&pp->children[i].err, 0);
1608 child_process_init(&pp->children[i].process);
1609 pp->pfd[i].events = POLLIN | POLLHUP;
1610 pp->pfd[i].fd = -1;
1611 }
1612
1613 pp_for_signal = pp;
1614 sigchain_push_common(handle_children_on_signal);
1615 }
1616
1617 static void pp_cleanup(struct parallel_processes *pp)
1618 {
1619 int i;
1620
1621 trace_printf("run_processes_parallel: done");
1622 for (i = 0; i < pp->max_processes; i++) {
1623 strbuf_release(&pp->children[i].err);
1624 child_process_clear(&pp->children[i].process);
1625 }
1626
1627 free(pp->children);
1628 free(pp->pfd);
1629
1630 /*
1631 * When get_next_task added messages to the buffer in its last
1632 * iteration, the buffered output is non empty.
1633 */
1634 strbuf_write(&pp->buffered_output, stderr);
1635 strbuf_release(&pp->buffered_output);
1636
1637 sigchain_pop_common();
1638 }
1639
1640 /* returns
1641 * 0 if a new task was started.
1642 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1643 * problem with starting a new command)
1644 * <0 no new job was started, user wishes to shutdown early. Use negative code
1645 * to signal the children.
1646 */
1647 static int pp_start_one(struct parallel_processes *pp)
1648 {
1649 int i, code;
1650
1651 for (i = 0; i < pp->max_processes; i++)
1652 if (pp->children[i].state == GIT_CP_FREE)
1653 break;
1654 if (i == pp->max_processes)
1655 BUG("bookkeeping is hard");
1656
1657 code = pp->get_next_task(&pp->children[i].process,
1658 &pp->children[i].err,
1659 pp->data,
1660 &pp->children[i].data);
1661 if (!code) {
1662 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1663 strbuf_reset(&pp->children[i].err);
1664 return 1;
1665 }
1666 pp->children[i].process.err = -1;
1667 pp->children[i].process.stdout_to_stderr = 1;
1668 pp->children[i].process.no_stdin = 1;
1669
1670 if (start_command(&pp->children[i].process)) {
1671 code = pp->start_failure(&pp->children[i].err,
1672 pp->data,
1673 pp->children[i].data);
1674 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1675 strbuf_reset(&pp->children[i].err);
1676 if (code)
1677 pp->shutdown = 1;
1678 return code;
1679 }
1680
1681 pp->nr_processes++;
1682 pp->children[i].state = GIT_CP_WORKING;
1683 pp->pfd[i].fd = pp->children[i].process.err;
1684 return 0;
1685 }
1686
1687 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1688 {
1689 int i;
1690
1691 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1692 if (errno == EINTR)
1693 continue;
1694 pp_cleanup(pp);
1695 die_errno("poll");
1696 }
1697
1698 /* Buffer output from all pipes. */
1699 for (i = 0; i < pp->max_processes; i++) {
1700 if (pp->children[i].state == GIT_CP_WORKING &&
1701 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1702 int n = strbuf_read_once(&pp->children[i].err,
1703 pp->children[i].process.err, 0);
1704 if (n == 0) {
1705 close(pp->children[i].process.err);
1706 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1707 } else if (n < 0)
1708 if (errno != EAGAIN)
1709 die_errno("read");
1710 }
1711 }
1712 }
1713
1714 static void pp_output(struct parallel_processes *pp)
1715 {
1716 int i = pp->output_owner;
1717 if (pp->children[i].state == GIT_CP_WORKING &&
1718 pp->children[i].err.len) {
1719 strbuf_write(&pp->children[i].err, stderr);
1720 strbuf_reset(&pp->children[i].err);
1721 }
1722 }
1723
1724 static int pp_collect_finished(struct parallel_processes *pp)
1725 {
1726 int i, code;
1727 int n = pp->max_processes;
1728 int result = 0;
1729
1730 while (pp->nr_processes > 0) {
1731 for (i = 0; i < pp->max_processes; i++)
1732 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1733 break;
1734 if (i == pp->max_processes)
1735 break;
1736
1737 code = finish_command(&pp->children[i].process);
1738
1739 code = pp->task_finished(code,
1740 &pp->children[i].err, pp->data,
1741 pp->children[i].data);
1742
1743 if (code)
1744 result = code;
1745 if (code < 0)
1746 break;
1747
1748 pp->nr_processes--;
1749 pp->children[i].state = GIT_CP_FREE;
1750 pp->pfd[i].fd = -1;
1751 child_process_init(&pp->children[i].process);
1752
1753 if (i != pp->output_owner) {
1754 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1755 strbuf_reset(&pp->children[i].err);
1756 } else {
1757 strbuf_write(&pp->children[i].err, stderr);
1758 strbuf_reset(&pp->children[i].err);
1759
1760 /* Output all other finished child processes */
1761 strbuf_write(&pp->buffered_output, stderr);
1762 strbuf_reset(&pp->buffered_output);
1763
1764 /*
1765 * Pick next process to output live.
1766 * NEEDSWORK:
1767 * For now we pick it randomly by doing a round
1768 * robin. Later we may want to pick the one with
1769 * the most output or the longest or shortest
1770 * running process time.
1771 */
1772 for (i = 0; i < n; i++)
1773 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1774 break;
1775 pp->output_owner = (pp->output_owner + i) % n;
1776 }
1777 }
1778 return result;
1779 }
1780
1781 int run_processes_parallel(int n,
1782 get_next_task_fn get_next_task,
1783 start_failure_fn start_failure,
1784 task_finished_fn task_finished,
1785 void *pp_cb)
1786 {
1787 int i, code;
1788 int output_timeout = 100;
1789 int spawn_cap = 4;
1790 struct parallel_processes pp;
1791
1792 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1793 while (1) {
1794 for (i = 0;
1795 i < spawn_cap && !pp.shutdown &&
1796 pp.nr_processes < pp.max_processes;
1797 i++) {
1798 code = pp_start_one(&pp);
1799 if (!code)
1800 continue;
1801 if (code < 0) {
1802 pp.shutdown = 1;
1803 kill_children(&pp, -code);
1804 }
1805 break;
1806 }
1807 if (!pp.nr_processes)
1808 break;
1809 pp_buffer_stderr(&pp, output_timeout);
1810 pp_output(&pp);
1811 code = pp_collect_finished(&pp);
1812 if (code) {
1813 pp.shutdown = 1;
1814 if (code < 0)
1815 kill_children(&pp, -code);
1816 }
1817 }
1818
1819 pp_cleanup(&pp);
1820 return 0;
1821 }
1822
1823 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1824 start_failure_fn start_failure,
1825 task_finished_fn task_finished, void *pp_cb,
1826 const char *tr2_category, const char *tr2_label)
1827 {
1828 int result;
1829
1830 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1831 ((n < 1) ? online_cpus() : n));
1832
1833 result = run_processes_parallel(n, get_next_task, start_failure,
1834 task_finished, pp_cb);
1835
1836 trace2_region_leave(tr2_category, tr2_label, NULL);
1837
1838 return result;
1839 }
1840
1841 int run_auto_maintenance(int quiet)
1842 {
1843 int enabled;
1844 struct child_process maint = CHILD_PROCESS_INIT;
1845
1846 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1847 !enabled)
1848 return 0;
1849
1850 maint.git_cmd = 1;
1851 maint.close_object_store = 1;
1852 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1853 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1854
1855 return run_command(&maint);
1856 }
1857
1858 void prepare_other_repo_env(struct strvec *env_array, const char *new_git_dir)
1859 {
1860 const char * const *var;
1861
1862 for (var = local_repo_env; *var; var++) {
1863 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1864 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1865 strvec_push(env_array, *var);
1866 }
1867 strvec_pushf(env_array, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1868 }
1869
1870 enum start_bg_result start_bg_command(struct child_process *cmd,
1871 start_bg_wait_cb *wait_cb,
1872 void *cb_data,
1873 unsigned int timeout_sec)
1874 {
1875 enum start_bg_result sbgr = SBGR_ERROR;
1876 int ret;
1877 int wait_status;
1878 pid_t pid_seen;
1879 time_t time_limit;
1880
1881 /*
1882 * We do not allow clean-on-exit because the child process
1883 * should persist in the background and possibly/probably
1884 * after this process exits. So we don't want to kill the
1885 * child during our atexit routine.
1886 */
1887 if (cmd->clean_on_exit)
1888 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1889
1890 if (!cmd->trace2_child_class)
1891 cmd->trace2_child_class = "background";
1892
1893 ret = start_command(cmd);
1894 if (ret) {
1895 /*
1896 * We assume that if `start_command()` fails, we
1897 * either get a complete `trace2_child_start() /
1898 * trace2_child_exit()` pair or it fails before the
1899 * `trace2_child_start()` is emitted, so we do not
1900 * need to worry about it here.
1901 *
1902 * We also assume that `start_command()` does not add
1903 * us to the cleanup list. And that it calls
1904 * calls `child_process_clear()`.
1905 */
1906 sbgr = SBGR_ERROR;
1907 goto done;
1908 }
1909
1910 time(&time_limit);
1911 time_limit += timeout_sec;
1912
1913 wait:
1914 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1915
1916 if (!pid_seen) {
1917 /*
1918 * The child is currently running. Ask the callback
1919 * if the child is ready to do work or whether we
1920 * should keep waiting for it to boot up.
1921 */
1922 ret = (*wait_cb)(cmd, cb_data);
1923 if (!ret) {
1924 /*
1925 * The child is running and "ready".
1926 */
1927 trace2_child_ready(cmd, "ready");
1928 sbgr = SBGR_READY;
1929 goto done;
1930 } else if (ret > 0) {
1931 /*
1932 * The callback said to give it more time to boot up
1933 * (subject to our timeout limit).
1934 */
1935 time_t now;
1936
1937 time(&now);
1938 if (now < time_limit)
1939 goto wait;
1940
1941 /*
1942 * Our timeout has expired. We don't try to
1943 * kill the child, but rather let it continue
1944 * (hopefully) trying to startup.
1945 */
1946 trace2_child_ready(cmd, "timeout");
1947 sbgr = SBGR_TIMEOUT;
1948 goto done;
1949 } else {
1950 /*
1951 * The cb gave up on this child. It is still running,
1952 * but our cb got an error trying to probe it.
1953 */
1954 trace2_child_ready(cmd, "error");
1955 sbgr = SBGR_CB_ERROR;
1956 goto done;
1957 }
1958 }
1959
1960 else if (pid_seen == cmd->pid) {
1961 int child_code = -1;
1962
1963 /*
1964 * The child started, but exited or was terminated
1965 * before becoming "ready".
1966 *
1967 * We try to match the behavior of `wait_or_whine()`
1968 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1969 * and convert the child's status to a return code for
1970 * tracing purposes and emit the `trace2_child_exit()`
1971 * event.
1972 *
1973 * We do not want the wait_or_whine() error message
1974 * because we will be called by client-side library
1975 * routines.
1976 */
1977 if (WIFEXITED(wait_status))
1978 child_code = WEXITSTATUS(wait_status);
1979 else if (WIFSIGNALED(wait_status))
1980 child_code = WTERMSIG(wait_status) + 128;
1981 trace2_child_exit(cmd, child_code);
1982
1983 sbgr = SBGR_DIED;
1984 goto done;
1985 }
1986
1987 else if (pid_seen < 0 && errno == EINTR)
1988 goto wait;
1989
1990 trace2_child_exit(cmd, -1);
1991 sbgr = SBGR_ERROR;
1992
1993 done:
1994 child_process_clear(cmd);
1995 invalidate_lstat_cache();
1996 return sbgr;
1997 }