]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
run-command: mark path lookup errors with ENOENT
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec_cmd.h"
4 #include "sigchain.h"
5 #include "argv-array.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8
9 void child_process_init(struct child_process *child)
10 {
11 memset(child, 0, sizeof(*child));
12 argv_array_init(&child->args);
13 argv_array_init(&child->env_array);
14 }
15
16 void child_process_clear(struct child_process *child)
17 {
18 argv_array_clear(&child->args);
19 argv_array_clear(&child->env_array);
20 }
21
22 struct child_to_clean {
23 pid_t pid;
24 struct child_process *process;
25 struct child_to_clean *next;
26 };
27 static struct child_to_clean *children_to_clean;
28 static int installed_child_cleanup_handler;
29
30 static void cleanup_children(int sig, int in_signal)
31 {
32 struct child_to_clean *children_to_wait_for = NULL;
33
34 while (children_to_clean) {
35 struct child_to_clean *p = children_to_clean;
36 children_to_clean = p->next;
37
38 if (p->process && !in_signal) {
39 struct child_process *process = p->process;
40 if (process->clean_on_exit_handler) {
41 trace_printf(
42 "trace: run_command: running exit handler for pid %"
43 PRIuMAX, (uintmax_t)p->pid
44 );
45 process->clean_on_exit_handler(process);
46 }
47 }
48
49 kill(p->pid, sig);
50
51 if (p->process && p->process->wait_after_clean) {
52 p->next = children_to_wait_for;
53 children_to_wait_for = p;
54 } else {
55 if (!in_signal)
56 free(p);
57 }
58 }
59
60 while (children_to_wait_for) {
61 struct child_to_clean *p = children_to_wait_for;
62 children_to_wait_for = p->next;
63
64 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
65 ; /* spin waiting for process exit or error */
66
67 if (!in_signal)
68 free(p);
69 }
70 }
71
72 static void cleanup_children_on_signal(int sig)
73 {
74 cleanup_children(sig, 1);
75 sigchain_pop(sig);
76 raise(sig);
77 }
78
79 static void cleanup_children_on_exit(void)
80 {
81 cleanup_children(SIGTERM, 0);
82 }
83
84 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
85 {
86 struct child_to_clean *p = xmalloc(sizeof(*p));
87 p->pid = pid;
88 p->process = process;
89 p->next = children_to_clean;
90 children_to_clean = p;
91
92 if (!installed_child_cleanup_handler) {
93 atexit(cleanup_children_on_exit);
94 sigchain_push_common(cleanup_children_on_signal);
95 installed_child_cleanup_handler = 1;
96 }
97 }
98
99 static void clear_child_for_cleanup(pid_t pid)
100 {
101 struct child_to_clean **pp;
102
103 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
104 struct child_to_clean *clean_me = *pp;
105
106 if (clean_me->pid == pid) {
107 *pp = clean_me->next;
108 free(clean_me);
109 return;
110 }
111 }
112 }
113
114 static inline void close_pair(int fd[2])
115 {
116 close(fd[0]);
117 close(fd[1]);
118 }
119
120 int is_executable(const char *name)
121 {
122 struct stat st;
123
124 if (stat(name, &st) || /* stat, not lstat */
125 !S_ISREG(st.st_mode))
126 return 0;
127
128 #if defined(GIT_WINDOWS_NATIVE)
129 /*
130 * On Windows there is no executable bit. The file extension
131 * indicates whether it can be run as an executable, and Git
132 * has special-handling to detect scripts and launch them
133 * through the indicated script interpreter. We test for the
134 * file extension first because virus scanners may make
135 * it quite expensive to open many files.
136 */
137 if (ends_with(name, ".exe"))
138 return S_IXUSR;
139
140 {
141 /*
142 * Now that we know it does not have an executable extension,
143 * peek into the file instead.
144 */
145 char buf[3] = { 0 };
146 int n;
147 int fd = open(name, O_RDONLY);
148 st.st_mode &= ~S_IXUSR;
149 if (fd >= 0) {
150 n = read(fd, buf, 2);
151 if (n == 2)
152 /* look for a she-bang */
153 if (!strcmp(buf, "#!"))
154 st.st_mode |= S_IXUSR;
155 close(fd);
156 }
157 }
158 #endif
159 return st.st_mode & S_IXUSR;
160 }
161
162 /*
163 * Search $PATH for a command. This emulates the path search that
164 * execvp would perform, without actually executing the command so it
165 * can be used before fork() to prepare to run a command using
166 * execve() or after execvp() to diagnose why it failed.
167 *
168 * The caller should ensure that file contains no directory
169 * separators.
170 *
171 * Returns the path to the command, as found in $PATH or NULL if the
172 * command could not be found. The caller inherits ownership of the memory
173 * used to store the resultant path.
174 *
175 * This should not be used on Windows, where the $PATH search rules
176 * are more complicated (e.g., a search for "foo" should find
177 * "foo.exe").
178 */
179 static char *locate_in_PATH(const char *file)
180 {
181 const char *p = getenv("PATH");
182 struct strbuf buf = STRBUF_INIT;
183
184 if (!p || !*p)
185 return NULL;
186
187 while (1) {
188 const char *end = strchrnul(p, ':');
189
190 strbuf_reset(&buf);
191
192 /* POSIX specifies an empty entry as the current directory. */
193 if (end != p) {
194 strbuf_add(&buf, p, end - p);
195 strbuf_addch(&buf, '/');
196 }
197 strbuf_addstr(&buf, file);
198
199 if (is_executable(buf.buf))
200 return strbuf_detach(&buf, NULL);
201
202 if (!*end)
203 break;
204 p = end + 1;
205 }
206
207 strbuf_release(&buf);
208 return NULL;
209 }
210
211 static int exists_in_PATH(const char *file)
212 {
213 char *r = locate_in_PATH(file);
214 free(r);
215 return r != NULL;
216 }
217
218 int sane_execvp(const char *file, char * const argv[])
219 {
220 if (!execvp(file, argv))
221 return 0; /* cannot happen ;-) */
222
223 /*
224 * When a command can't be found because one of the directories
225 * listed in $PATH is unsearchable, execvp reports EACCES, but
226 * careful usability testing (read: analysis of occasional bug
227 * reports) reveals that "No such file or directory" is more
228 * intuitive.
229 *
230 * We avoid commands with "/", because execvp will not do $PATH
231 * lookups in that case.
232 *
233 * The reassignment of EACCES to errno looks like a no-op below,
234 * but we need to protect against exists_in_PATH overwriting errno.
235 */
236 if (errno == EACCES && !strchr(file, '/'))
237 errno = exists_in_PATH(file) ? EACCES : ENOENT;
238 else if (errno == ENOTDIR && !strchr(file, '/'))
239 errno = ENOENT;
240 return -1;
241 }
242
243 static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
244 {
245 if (!argv[0])
246 die("BUG: shell command is empty");
247
248 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
249 #ifndef GIT_WINDOWS_NATIVE
250 argv_array_push(out, SHELL_PATH);
251 #else
252 argv_array_push(out, "sh");
253 #endif
254 argv_array_push(out, "-c");
255
256 /*
257 * If we have no extra arguments, we do not even need to
258 * bother with the "$@" magic.
259 */
260 if (!argv[1])
261 argv_array_push(out, argv[0]);
262 else
263 argv_array_pushf(out, "%s \"$@\"", argv[0]);
264 }
265
266 argv_array_pushv(out, argv);
267 return out->argv;
268 }
269
270 #ifndef GIT_WINDOWS_NATIVE
271 static int child_notifier = -1;
272
273 enum child_errcode {
274 CHILD_ERR_CHDIR,
275 CHILD_ERR_DUP2,
276 CHILD_ERR_CLOSE,
277 CHILD_ERR_SIGPROCMASK,
278 CHILD_ERR_ENOENT,
279 CHILD_ERR_SILENT,
280 CHILD_ERR_ERRNO
281 };
282
283 struct child_err {
284 enum child_errcode err;
285 int syserr; /* errno */
286 };
287
288 static void child_die(enum child_errcode err)
289 {
290 struct child_err buf;
291
292 buf.err = err;
293 buf.syserr = errno;
294
295 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
296 xwrite(child_notifier, &buf, sizeof(buf));
297 _exit(1);
298 }
299
300 static void child_dup2(int fd, int to)
301 {
302 if (dup2(fd, to) < 0)
303 child_die(CHILD_ERR_DUP2);
304 }
305
306 static void child_close(int fd)
307 {
308 if (close(fd))
309 child_die(CHILD_ERR_CLOSE);
310 }
311
312 static void child_close_pair(int fd[2])
313 {
314 child_close(fd[0]);
315 child_close(fd[1]);
316 }
317
318 /*
319 * parent will make it look like the child spewed a fatal error and died
320 * this is needed to prevent changes to t0061.
321 */
322 static void fake_fatal(const char *err, va_list params)
323 {
324 vreportf("fatal: ", err, params);
325 }
326
327 static void child_error_fn(const char *err, va_list params)
328 {
329 const char msg[] = "error() should not be called in child\n";
330 xwrite(2, msg, sizeof(msg) - 1);
331 }
332
333 static void child_warn_fn(const char *err, va_list params)
334 {
335 const char msg[] = "warn() should not be called in child\n";
336 xwrite(2, msg, sizeof(msg) - 1);
337 }
338
339 static void NORETURN child_die_fn(const char *err, va_list params)
340 {
341 const char msg[] = "die() should not be called in child\n";
342 xwrite(2, msg, sizeof(msg) - 1);
343 _exit(2);
344 }
345
346 /* this runs in the parent process */
347 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
348 {
349 static void (*old_errfn)(const char *err, va_list params);
350
351 old_errfn = get_error_routine();
352 set_error_routine(fake_fatal);
353 errno = cerr->syserr;
354
355 switch (cerr->err) {
356 case CHILD_ERR_CHDIR:
357 error_errno("exec '%s': cd to '%s' failed",
358 cmd->argv[0], cmd->dir);
359 break;
360 case CHILD_ERR_DUP2:
361 error_errno("dup2() in child failed");
362 break;
363 case CHILD_ERR_CLOSE:
364 error_errno("close() in child failed");
365 break;
366 case CHILD_ERR_SIGPROCMASK:
367 error_errno("sigprocmask failed restoring signals");
368 break;
369 case CHILD_ERR_ENOENT:
370 error_errno("cannot run %s", cmd->argv[0]);
371 break;
372 case CHILD_ERR_SILENT:
373 break;
374 case CHILD_ERR_ERRNO:
375 error_errno("cannot exec '%s'", cmd->argv[0]);
376 break;
377 }
378 set_error_routine(old_errfn);
379 }
380
381 static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
382 {
383 if (!cmd->argv[0])
384 die("BUG: command is empty");
385
386 /*
387 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
388 * attempt to interpret the command with 'sh'.
389 */
390 argv_array_push(out, SHELL_PATH);
391
392 if (cmd->git_cmd) {
393 argv_array_push(out, "git");
394 argv_array_pushv(out, cmd->argv);
395 } else if (cmd->use_shell) {
396 prepare_shell_cmd(out, cmd->argv);
397 } else {
398 argv_array_pushv(out, cmd->argv);
399 }
400
401 /*
402 * If there are no '/' characters in the command then perform a path
403 * lookup and use the resolved path as the command to exec. If there
404 * are '/' characters, we have exec attempt to invoke the command
405 * directly.
406 */
407 if (!strchr(out->argv[1], '/')) {
408 char *program = locate_in_PATH(out->argv[1]);
409 if (program) {
410 free((char *)out->argv[1]);
411 out->argv[1] = program;
412 } else {
413 argv_array_clear(out);
414 errno = ENOENT;
415 return -1;
416 }
417 }
418
419 return 0;
420 }
421
422 static char **prep_childenv(const char *const *deltaenv)
423 {
424 extern char **environ;
425 char **childenv;
426 struct string_list env = STRING_LIST_INIT_DUP;
427 struct strbuf key = STRBUF_INIT;
428 const char *const *p;
429 int i;
430
431 /* Construct a sorted string list consisting of the current environ */
432 for (p = (const char *const *) environ; p && *p; p++) {
433 const char *equals = strchr(*p, '=');
434
435 if (equals) {
436 strbuf_reset(&key);
437 strbuf_add(&key, *p, equals - *p);
438 string_list_append(&env, key.buf)->util = (void *) *p;
439 } else {
440 string_list_append(&env, *p)->util = (void *) *p;
441 }
442 }
443 string_list_sort(&env);
444
445 /* Merge in 'deltaenv' with the current environ */
446 for (p = deltaenv; p && *p; p++) {
447 const char *equals = strchr(*p, '=');
448
449 if (equals) {
450 /* ('key=value'), insert or replace entry */
451 strbuf_reset(&key);
452 strbuf_add(&key, *p, equals - *p);
453 string_list_insert(&env, key.buf)->util = (void *) *p;
454 } else {
455 /* otherwise ('key') remove existing entry */
456 string_list_remove(&env, *p, 0);
457 }
458 }
459
460 /* Create an array of 'char *' to be used as the childenv */
461 ALLOC_ARRAY(childenv, env.nr + 1);
462 for (i = 0; i < env.nr; i++)
463 childenv[i] = env.items[i].util;
464 childenv[env.nr] = NULL;
465
466 string_list_clear(&env, 0);
467 strbuf_release(&key);
468 return childenv;
469 }
470
471 struct atfork_state {
472 #ifndef NO_PTHREADS
473 int cs;
474 #endif
475 sigset_t old;
476 };
477
478 #ifndef NO_PTHREADS
479 static void bug_die(int err, const char *msg)
480 {
481 if (err) {
482 errno = err;
483 die_errno("BUG: %s", msg);
484 }
485 }
486 #endif
487
488 static void atfork_prepare(struct atfork_state *as)
489 {
490 sigset_t all;
491
492 if (sigfillset(&all))
493 die_errno("sigfillset");
494 #ifdef NO_PTHREADS
495 if (sigprocmask(SIG_SETMASK, &all, &as->old))
496 die_errno("sigprocmask");
497 #else
498 bug_die(pthread_sigmask(SIG_SETMASK, &all, &as->old),
499 "blocking all signals");
500 bug_die(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
501 "disabling cancellation");
502 #endif
503 }
504
505 static void atfork_parent(struct atfork_state *as)
506 {
507 #ifdef NO_PTHREADS
508 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
509 die_errno("sigprocmask");
510 #else
511 bug_die(pthread_setcancelstate(as->cs, NULL),
512 "re-enabling cancellation");
513 bug_die(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
514 "restoring signal mask");
515 #endif
516 }
517 #endif /* GIT_WINDOWS_NATIVE */
518
519 static inline void set_cloexec(int fd)
520 {
521 int flags = fcntl(fd, F_GETFD);
522 if (flags >= 0)
523 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
524 }
525
526 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
527 {
528 int status, code = -1;
529 pid_t waiting;
530 int failed_errno = 0;
531
532 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
533 ; /* nothing */
534 if (in_signal)
535 return 0;
536
537 if (waiting < 0) {
538 failed_errno = errno;
539 error_errno("waitpid for %s failed", argv0);
540 } else if (waiting != pid) {
541 error("waitpid is confused (%s)", argv0);
542 } else if (WIFSIGNALED(status)) {
543 code = WTERMSIG(status);
544 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
545 error("%s died of signal %d", argv0, code);
546 /*
547 * This return value is chosen so that code & 0xff
548 * mimics the exit code that a POSIX shell would report for
549 * a program that died from this signal.
550 */
551 code += 128;
552 } else if (WIFEXITED(status)) {
553 code = WEXITSTATUS(status);
554 } else {
555 error("waitpid is confused (%s)", argv0);
556 }
557
558 clear_child_for_cleanup(pid);
559
560 errno = failed_errno;
561 return code;
562 }
563
564 int start_command(struct child_process *cmd)
565 {
566 int need_in, need_out, need_err;
567 int fdin[2], fdout[2], fderr[2];
568 int failed_errno;
569 char *str;
570
571 if (!cmd->argv)
572 cmd->argv = cmd->args.argv;
573 if (!cmd->env)
574 cmd->env = cmd->env_array.argv;
575
576 /*
577 * In case of errors we must keep the promise to close FDs
578 * that have been passed in via ->in and ->out.
579 */
580
581 need_in = !cmd->no_stdin && cmd->in < 0;
582 if (need_in) {
583 if (pipe(fdin) < 0) {
584 failed_errno = errno;
585 if (cmd->out > 0)
586 close(cmd->out);
587 str = "standard input";
588 goto fail_pipe;
589 }
590 cmd->in = fdin[1];
591 }
592
593 need_out = !cmd->no_stdout
594 && !cmd->stdout_to_stderr
595 && cmd->out < 0;
596 if (need_out) {
597 if (pipe(fdout) < 0) {
598 failed_errno = errno;
599 if (need_in)
600 close_pair(fdin);
601 else if (cmd->in)
602 close(cmd->in);
603 str = "standard output";
604 goto fail_pipe;
605 }
606 cmd->out = fdout[0];
607 }
608
609 need_err = !cmd->no_stderr && cmd->err < 0;
610 if (need_err) {
611 if (pipe(fderr) < 0) {
612 failed_errno = errno;
613 if (need_in)
614 close_pair(fdin);
615 else if (cmd->in)
616 close(cmd->in);
617 if (need_out)
618 close_pair(fdout);
619 else if (cmd->out)
620 close(cmd->out);
621 str = "standard error";
622 fail_pipe:
623 error("cannot create %s pipe for %s: %s",
624 str, cmd->argv[0], strerror(failed_errno));
625 child_process_clear(cmd);
626 errno = failed_errno;
627 return -1;
628 }
629 cmd->err = fderr[0];
630 }
631
632 trace_argv_printf(cmd->argv, "trace: run_command:");
633 fflush(NULL);
634
635 #ifndef GIT_WINDOWS_NATIVE
636 {
637 int notify_pipe[2];
638 int null_fd = -1;
639 char **childenv;
640 struct argv_array argv = ARGV_ARRAY_INIT;
641 struct child_err cerr;
642 struct atfork_state as;
643
644 if (prepare_cmd(&argv, cmd) < 0) {
645 failed_errno = errno;
646 cmd->pid = -1;
647 goto end_of_spawn;
648 }
649
650 if (pipe(notify_pipe))
651 notify_pipe[0] = notify_pipe[1] = -1;
652
653 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
654 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
655 if (null_fd < 0)
656 die_errno(_("open /dev/null failed"));
657 set_cloexec(null_fd);
658 }
659
660 childenv = prep_childenv(cmd->env);
661 atfork_prepare(&as);
662
663 /*
664 * NOTE: In order to prevent deadlocking when using threads special
665 * care should be taken with the function calls made in between the
666 * fork() and exec() calls. No calls should be made to functions which
667 * require acquiring a lock (e.g. malloc) as the lock could have been
668 * held by another thread at the time of forking, causing the lock to
669 * never be released in the child process. This means only
670 * Async-Signal-Safe functions are permitted in the child.
671 */
672 cmd->pid = fork();
673 failed_errno = errno;
674 if (!cmd->pid) {
675 int sig;
676 /*
677 * Ensure the default die/error/warn routines do not get
678 * called, they can take stdio locks and malloc.
679 */
680 set_die_routine(child_die_fn);
681 set_error_routine(child_error_fn);
682 set_warn_routine(child_warn_fn);
683
684 close(notify_pipe[0]);
685 set_cloexec(notify_pipe[1]);
686 child_notifier = notify_pipe[1];
687
688 if (cmd->no_stdin)
689 child_dup2(null_fd, 0);
690 else if (need_in) {
691 child_dup2(fdin[0], 0);
692 child_close_pair(fdin);
693 } else if (cmd->in) {
694 child_dup2(cmd->in, 0);
695 child_close(cmd->in);
696 }
697
698 if (cmd->no_stderr)
699 child_dup2(null_fd, 2);
700 else if (need_err) {
701 child_dup2(fderr[1], 2);
702 child_close_pair(fderr);
703 } else if (cmd->err > 1) {
704 child_dup2(cmd->err, 2);
705 child_close(cmd->err);
706 }
707
708 if (cmd->no_stdout)
709 child_dup2(null_fd, 1);
710 else if (cmd->stdout_to_stderr)
711 child_dup2(2, 1);
712 else if (need_out) {
713 child_dup2(fdout[1], 1);
714 child_close_pair(fdout);
715 } else if (cmd->out > 1) {
716 child_dup2(cmd->out, 1);
717 child_close(cmd->out);
718 }
719
720 if (cmd->dir && chdir(cmd->dir))
721 child_die(CHILD_ERR_CHDIR);
722
723 /*
724 * restore default signal handlers here, in case
725 * we catch a signal right before execve below
726 */
727 for (sig = 1; sig < NSIG; sig++) {
728 /* ignored signals get reset to SIG_DFL on execve */
729 if (signal(sig, SIG_DFL) == SIG_IGN)
730 signal(sig, SIG_IGN);
731 }
732
733 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
734 child_die(CHILD_ERR_SIGPROCMASK);
735
736 /*
737 * Attempt to exec using the command and arguments starting at
738 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
739 * be used in the event exec failed with ENOEXEC at which point
740 * we will try to interpret the command using 'sh'.
741 */
742 execve(argv.argv[1], (char *const *) argv.argv + 1,
743 (char *const *) childenv);
744 if (errno == ENOEXEC)
745 execve(argv.argv[0], (char *const *) argv.argv,
746 (char *const *) childenv);
747
748 if (errno == ENOENT) {
749 if (cmd->silent_exec_failure)
750 child_die(CHILD_ERR_SILENT);
751 child_die(CHILD_ERR_ENOENT);
752 } else {
753 child_die(CHILD_ERR_ERRNO);
754 }
755 }
756 atfork_parent(&as);
757 if (cmd->pid < 0)
758 error_errno("cannot fork() for %s", cmd->argv[0]);
759 else if (cmd->clean_on_exit)
760 mark_child_for_cleanup(cmd->pid, cmd);
761
762 /*
763 * Wait for child's exec. If the exec succeeds (or if fork()
764 * failed), EOF is seen immediately by the parent. Otherwise, the
765 * child process sends a child_err struct.
766 * Note that use of this infrastructure is completely advisory,
767 * therefore, we keep error checks minimal.
768 */
769 close(notify_pipe[1]);
770 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
771 /*
772 * At this point we know that fork() succeeded, but exec()
773 * failed. Errors have been reported to our stderr.
774 */
775 wait_or_whine(cmd->pid, cmd->argv[0], 0);
776 child_err_spew(cmd, &cerr);
777 failed_errno = errno;
778 cmd->pid = -1;
779 }
780 close(notify_pipe[0]);
781
782 if (null_fd >= 0)
783 close(null_fd);
784 argv_array_clear(&argv);
785 free(childenv);
786 }
787 end_of_spawn:
788
789 #else
790 {
791 int fhin = 0, fhout = 1, fherr = 2;
792 const char **sargv = cmd->argv;
793 struct argv_array nargv = ARGV_ARRAY_INIT;
794
795 if (cmd->no_stdin)
796 fhin = open("/dev/null", O_RDWR);
797 else if (need_in)
798 fhin = dup(fdin[0]);
799 else if (cmd->in)
800 fhin = dup(cmd->in);
801
802 if (cmd->no_stderr)
803 fherr = open("/dev/null", O_RDWR);
804 else if (need_err)
805 fherr = dup(fderr[1]);
806 else if (cmd->err > 2)
807 fherr = dup(cmd->err);
808
809 if (cmd->no_stdout)
810 fhout = open("/dev/null", O_RDWR);
811 else if (cmd->stdout_to_stderr)
812 fhout = dup(fherr);
813 else if (need_out)
814 fhout = dup(fdout[1]);
815 else if (cmd->out > 1)
816 fhout = dup(cmd->out);
817
818 if (cmd->git_cmd)
819 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
820 else if (cmd->use_shell)
821 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
822
823 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
824 cmd->dir, fhin, fhout, fherr);
825 failed_errno = errno;
826 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
827 error_errno("cannot spawn %s", cmd->argv[0]);
828 if (cmd->clean_on_exit && cmd->pid >= 0)
829 mark_child_for_cleanup(cmd->pid, cmd);
830
831 argv_array_clear(&nargv);
832 cmd->argv = sargv;
833 if (fhin != 0)
834 close(fhin);
835 if (fhout != 1)
836 close(fhout);
837 if (fherr != 2)
838 close(fherr);
839 }
840 #endif
841
842 if (cmd->pid < 0) {
843 if (need_in)
844 close_pair(fdin);
845 else if (cmd->in)
846 close(cmd->in);
847 if (need_out)
848 close_pair(fdout);
849 else if (cmd->out)
850 close(cmd->out);
851 if (need_err)
852 close_pair(fderr);
853 else if (cmd->err)
854 close(cmd->err);
855 child_process_clear(cmd);
856 errno = failed_errno;
857 return -1;
858 }
859
860 if (need_in)
861 close(fdin[0]);
862 else if (cmd->in)
863 close(cmd->in);
864
865 if (need_out)
866 close(fdout[1]);
867 else if (cmd->out)
868 close(cmd->out);
869
870 if (need_err)
871 close(fderr[1]);
872 else if (cmd->err)
873 close(cmd->err);
874
875 return 0;
876 }
877
878 int finish_command(struct child_process *cmd)
879 {
880 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
881 child_process_clear(cmd);
882 return ret;
883 }
884
885 int finish_command_in_signal(struct child_process *cmd)
886 {
887 return wait_or_whine(cmd->pid, cmd->argv[0], 1);
888 }
889
890
891 int run_command(struct child_process *cmd)
892 {
893 int code;
894
895 if (cmd->out < 0 || cmd->err < 0)
896 die("BUG: run_command with a pipe can cause deadlock");
897
898 code = start_command(cmd);
899 if (code)
900 return code;
901 return finish_command(cmd);
902 }
903
904 int run_command_v_opt(const char **argv, int opt)
905 {
906 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
907 }
908
909 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
910 {
911 struct child_process cmd = CHILD_PROCESS_INIT;
912 cmd.argv = argv;
913 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
914 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
915 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
916 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
917 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
918 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
919 cmd.dir = dir;
920 cmd.env = env;
921 return run_command(&cmd);
922 }
923
924 #ifndef NO_PTHREADS
925 static pthread_t main_thread;
926 static int main_thread_set;
927 static pthread_key_t async_key;
928 static pthread_key_t async_die_counter;
929
930 static void *run_thread(void *data)
931 {
932 struct async *async = data;
933 intptr_t ret;
934
935 if (async->isolate_sigpipe) {
936 sigset_t mask;
937 sigemptyset(&mask);
938 sigaddset(&mask, SIGPIPE);
939 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
940 ret = error("unable to block SIGPIPE in async thread");
941 return (void *)ret;
942 }
943 }
944
945 pthread_setspecific(async_key, async);
946 ret = async->proc(async->proc_in, async->proc_out, async->data);
947 return (void *)ret;
948 }
949
950 static NORETURN void die_async(const char *err, va_list params)
951 {
952 vreportf("fatal: ", err, params);
953
954 if (in_async()) {
955 struct async *async = pthread_getspecific(async_key);
956 if (async->proc_in >= 0)
957 close(async->proc_in);
958 if (async->proc_out >= 0)
959 close(async->proc_out);
960 pthread_exit((void *)128);
961 }
962
963 exit(128);
964 }
965
966 static int async_die_is_recursing(void)
967 {
968 void *ret = pthread_getspecific(async_die_counter);
969 pthread_setspecific(async_die_counter, (void *)1);
970 return ret != NULL;
971 }
972
973 int in_async(void)
974 {
975 if (!main_thread_set)
976 return 0; /* no asyncs started yet */
977 return !pthread_equal(main_thread, pthread_self());
978 }
979
980 static void NORETURN async_exit(int code)
981 {
982 pthread_exit((void *)(intptr_t)code);
983 }
984
985 #else
986
987 static struct {
988 void (**handlers)(void);
989 size_t nr;
990 size_t alloc;
991 } git_atexit_hdlrs;
992
993 static int git_atexit_installed;
994
995 static void git_atexit_dispatch(void)
996 {
997 size_t i;
998
999 for (i=git_atexit_hdlrs.nr ; i ; i--)
1000 git_atexit_hdlrs.handlers[i-1]();
1001 }
1002
1003 static void git_atexit_clear(void)
1004 {
1005 free(git_atexit_hdlrs.handlers);
1006 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1007 git_atexit_installed = 0;
1008 }
1009
1010 #undef atexit
1011 int git_atexit(void (*handler)(void))
1012 {
1013 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1014 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1015 if (!git_atexit_installed) {
1016 if (atexit(&git_atexit_dispatch))
1017 return -1;
1018 git_atexit_installed = 1;
1019 }
1020 return 0;
1021 }
1022 #define atexit git_atexit
1023
1024 static int process_is_async;
1025 int in_async(void)
1026 {
1027 return process_is_async;
1028 }
1029
1030 static void NORETURN async_exit(int code)
1031 {
1032 exit(code);
1033 }
1034
1035 #endif
1036
1037 void check_pipe(int err)
1038 {
1039 if (err == EPIPE) {
1040 if (in_async())
1041 async_exit(141);
1042
1043 signal(SIGPIPE, SIG_DFL);
1044 raise(SIGPIPE);
1045 /* Should never happen, but just in case... */
1046 exit(141);
1047 }
1048 }
1049
1050 int start_async(struct async *async)
1051 {
1052 int need_in, need_out;
1053 int fdin[2], fdout[2];
1054 int proc_in, proc_out;
1055
1056 need_in = async->in < 0;
1057 if (need_in) {
1058 if (pipe(fdin) < 0) {
1059 if (async->out > 0)
1060 close(async->out);
1061 return error_errno("cannot create pipe");
1062 }
1063 async->in = fdin[1];
1064 }
1065
1066 need_out = async->out < 0;
1067 if (need_out) {
1068 if (pipe(fdout) < 0) {
1069 if (need_in)
1070 close_pair(fdin);
1071 else if (async->in)
1072 close(async->in);
1073 return error_errno("cannot create pipe");
1074 }
1075 async->out = fdout[0];
1076 }
1077
1078 if (need_in)
1079 proc_in = fdin[0];
1080 else if (async->in)
1081 proc_in = async->in;
1082 else
1083 proc_in = -1;
1084
1085 if (need_out)
1086 proc_out = fdout[1];
1087 else if (async->out)
1088 proc_out = async->out;
1089 else
1090 proc_out = -1;
1091
1092 #ifdef NO_PTHREADS
1093 /* Flush stdio before fork() to avoid cloning buffers */
1094 fflush(NULL);
1095
1096 async->pid = fork();
1097 if (async->pid < 0) {
1098 error_errno("fork (async) failed");
1099 goto error;
1100 }
1101 if (!async->pid) {
1102 if (need_in)
1103 close(fdin[1]);
1104 if (need_out)
1105 close(fdout[0]);
1106 git_atexit_clear();
1107 process_is_async = 1;
1108 exit(!!async->proc(proc_in, proc_out, async->data));
1109 }
1110
1111 mark_child_for_cleanup(async->pid, NULL);
1112
1113 if (need_in)
1114 close(fdin[0]);
1115 else if (async->in)
1116 close(async->in);
1117
1118 if (need_out)
1119 close(fdout[1]);
1120 else if (async->out)
1121 close(async->out);
1122 #else
1123 if (!main_thread_set) {
1124 /*
1125 * We assume that the first time that start_async is called
1126 * it is from the main thread.
1127 */
1128 main_thread_set = 1;
1129 main_thread = pthread_self();
1130 pthread_key_create(&async_key, NULL);
1131 pthread_key_create(&async_die_counter, NULL);
1132 set_die_routine(die_async);
1133 set_die_is_recursing_routine(async_die_is_recursing);
1134 }
1135
1136 if (proc_in >= 0)
1137 set_cloexec(proc_in);
1138 if (proc_out >= 0)
1139 set_cloexec(proc_out);
1140 async->proc_in = proc_in;
1141 async->proc_out = proc_out;
1142 {
1143 int err = pthread_create(&async->tid, NULL, run_thread, async);
1144 if (err) {
1145 error_errno("cannot create thread");
1146 goto error;
1147 }
1148 }
1149 #endif
1150 return 0;
1151
1152 error:
1153 if (need_in)
1154 close_pair(fdin);
1155 else if (async->in)
1156 close(async->in);
1157
1158 if (need_out)
1159 close_pair(fdout);
1160 else if (async->out)
1161 close(async->out);
1162 return -1;
1163 }
1164
1165 int finish_async(struct async *async)
1166 {
1167 #ifdef NO_PTHREADS
1168 return wait_or_whine(async->pid, "child process", 0);
1169 #else
1170 void *ret = (void *)(intptr_t)(-1);
1171
1172 if (pthread_join(async->tid, &ret))
1173 error("pthread_join failed");
1174 return (int)(intptr_t)ret;
1175 #endif
1176 }
1177
1178 const char *find_hook(const char *name)
1179 {
1180 static struct strbuf path = STRBUF_INIT;
1181
1182 strbuf_reset(&path);
1183 strbuf_git_path(&path, "hooks/%s", name);
1184 if (access(path.buf, X_OK) < 0) {
1185 #ifdef STRIP_EXTENSION
1186 strbuf_addstr(&path, STRIP_EXTENSION);
1187 if (access(path.buf, X_OK) >= 0)
1188 return path.buf;
1189 #endif
1190 return NULL;
1191 }
1192 return path.buf;
1193 }
1194
1195 int run_hook_ve(const char *const *env, const char *name, va_list args)
1196 {
1197 struct child_process hook = CHILD_PROCESS_INIT;
1198 const char *p;
1199
1200 p = find_hook(name);
1201 if (!p)
1202 return 0;
1203
1204 argv_array_push(&hook.args, p);
1205 while ((p = va_arg(args, const char *)))
1206 argv_array_push(&hook.args, p);
1207 hook.env = env;
1208 hook.no_stdin = 1;
1209 hook.stdout_to_stderr = 1;
1210
1211 return run_command(&hook);
1212 }
1213
1214 int run_hook_le(const char *const *env, const char *name, ...)
1215 {
1216 va_list args;
1217 int ret;
1218
1219 va_start(args, name);
1220 ret = run_hook_ve(env, name, args);
1221 va_end(args);
1222
1223 return ret;
1224 }
1225
1226 struct io_pump {
1227 /* initialized by caller */
1228 int fd;
1229 int type; /* POLLOUT or POLLIN */
1230 union {
1231 struct {
1232 const char *buf;
1233 size_t len;
1234 } out;
1235 struct {
1236 struct strbuf *buf;
1237 size_t hint;
1238 } in;
1239 } u;
1240
1241 /* returned by pump_io */
1242 int error; /* 0 for success, otherwise errno */
1243
1244 /* internal use */
1245 struct pollfd *pfd;
1246 };
1247
1248 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1249 {
1250 int pollsize = 0;
1251 int i;
1252
1253 for (i = 0; i < nr; i++) {
1254 struct io_pump *io = &slots[i];
1255 if (io->fd < 0)
1256 continue;
1257 pfd[pollsize].fd = io->fd;
1258 pfd[pollsize].events = io->type;
1259 io->pfd = &pfd[pollsize++];
1260 }
1261
1262 if (!pollsize)
1263 return 0;
1264
1265 if (poll(pfd, pollsize, -1) < 0) {
1266 if (errno == EINTR)
1267 return 1;
1268 die_errno("poll failed");
1269 }
1270
1271 for (i = 0; i < nr; i++) {
1272 struct io_pump *io = &slots[i];
1273
1274 if (io->fd < 0)
1275 continue;
1276
1277 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1278 continue;
1279
1280 if (io->type == POLLOUT) {
1281 ssize_t len = xwrite(io->fd,
1282 io->u.out.buf, io->u.out.len);
1283 if (len < 0) {
1284 io->error = errno;
1285 close(io->fd);
1286 io->fd = -1;
1287 } else {
1288 io->u.out.buf += len;
1289 io->u.out.len -= len;
1290 if (!io->u.out.len) {
1291 close(io->fd);
1292 io->fd = -1;
1293 }
1294 }
1295 }
1296
1297 if (io->type == POLLIN) {
1298 ssize_t len = strbuf_read_once(io->u.in.buf,
1299 io->fd, io->u.in.hint);
1300 if (len < 0)
1301 io->error = errno;
1302 if (len <= 0) {
1303 close(io->fd);
1304 io->fd = -1;
1305 }
1306 }
1307 }
1308
1309 return 1;
1310 }
1311
1312 static int pump_io(struct io_pump *slots, int nr)
1313 {
1314 struct pollfd *pfd;
1315 int i;
1316
1317 for (i = 0; i < nr; i++)
1318 slots[i].error = 0;
1319
1320 ALLOC_ARRAY(pfd, nr);
1321 while (pump_io_round(slots, nr, pfd))
1322 ; /* nothing */
1323 free(pfd);
1324
1325 /* There may be multiple errno values, so just pick the first. */
1326 for (i = 0; i < nr; i++) {
1327 if (slots[i].error) {
1328 errno = slots[i].error;
1329 return -1;
1330 }
1331 }
1332 return 0;
1333 }
1334
1335
1336 int pipe_command(struct child_process *cmd,
1337 const char *in, size_t in_len,
1338 struct strbuf *out, size_t out_hint,
1339 struct strbuf *err, size_t err_hint)
1340 {
1341 struct io_pump io[3];
1342 int nr = 0;
1343
1344 if (in)
1345 cmd->in = -1;
1346 if (out)
1347 cmd->out = -1;
1348 if (err)
1349 cmd->err = -1;
1350
1351 if (start_command(cmd) < 0)
1352 return -1;
1353
1354 if (in) {
1355 io[nr].fd = cmd->in;
1356 io[nr].type = POLLOUT;
1357 io[nr].u.out.buf = in;
1358 io[nr].u.out.len = in_len;
1359 nr++;
1360 }
1361 if (out) {
1362 io[nr].fd = cmd->out;
1363 io[nr].type = POLLIN;
1364 io[nr].u.in.buf = out;
1365 io[nr].u.in.hint = out_hint;
1366 nr++;
1367 }
1368 if (err) {
1369 io[nr].fd = cmd->err;
1370 io[nr].type = POLLIN;
1371 io[nr].u.in.buf = err;
1372 io[nr].u.in.hint = err_hint;
1373 nr++;
1374 }
1375
1376 if (pump_io(io, nr) < 0) {
1377 finish_command(cmd); /* throw away exit code */
1378 return -1;
1379 }
1380
1381 return finish_command(cmd);
1382 }
1383
1384 enum child_state {
1385 GIT_CP_FREE,
1386 GIT_CP_WORKING,
1387 GIT_CP_WAIT_CLEANUP,
1388 };
1389
1390 struct parallel_processes {
1391 void *data;
1392
1393 int max_processes;
1394 int nr_processes;
1395
1396 get_next_task_fn get_next_task;
1397 start_failure_fn start_failure;
1398 task_finished_fn task_finished;
1399
1400 struct {
1401 enum child_state state;
1402 struct child_process process;
1403 struct strbuf err;
1404 void *data;
1405 } *children;
1406 /*
1407 * The struct pollfd is logically part of *children,
1408 * but the system call expects it as its own array.
1409 */
1410 struct pollfd *pfd;
1411
1412 unsigned shutdown : 1;
1413
1414 int output_owner;
1415 struct strbuf buffered_output; /* of finished children */
1416 };
1417
1418 static int default_start_failure(struct strbuf *out,
1419 void *pp_cb,
1420 void *pp_task_cb)
1421 {
1422 return 0;
1423 }
1424
1425 static int default_task_finished(int result,
1426 struct strbuf *out,
1427 void *pp_cb,
1428 void *pp_task_cb)
1429 {
1430 return 0;
1431 }
1432
1433 static void kill_children(struct parallel_processes *pp, int signo)
1434 {
1435 int i, n = pp->max_processes;
1436
1437 for (i = 0; i < n; i++)
1438 if (pp->children[i].state == GIT_CP_WORKING)
1439 kill(pp->children[i].process.pid, signo);
1440 }
1441
1442 static struct parallel_processes *pp_for_signal;
1443
1444 static void handle_children_on_signal(int signo)
1445 {
1446 kill_children(pp_for_signal, signo);
1447 sigchain_pop(signo);
1448 raise(signo);
1449 }
1450
1451 static void pp_init(struct parallel_processes *pp,
1452 int n,
1453 get_next_task_fn get_next_task,
1454 start_failure_fn start_failure,
1455 task_finished_fn task_finished,
1456 void *data)
1457 {
1458 int i;
1459
1460 if (n < 1)
1461 n = online_cpus();
1462
1463 pp->max_processes = n;
1464
1465 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1466
1467 pp->data = data;
1468 if (!get_next_task)
1469 die("BUG: you need to specify a get_next_task function");
1470 pp->get_next_task = get_next_task;
1471
1472 pp->start_failure = start_failure ? start_failure : default_start_failure;
1473 pp->task_finished = task_finished ? task_finished : default_task_finished;
1474
1475 pp->nr_processes = 0;
1476 pp->output_owner = 0;
1477 pp->shutdown = 0;
1478 pp->children = xcalloc(n, sizeof(*pp->children));
1479 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1480 strbuf_init(&pp->buffered_output, 0);
1481
1482 for (i = 0; i < n; i++) {
1483 strbuf_init(&pp->children[i].err, 0);
1484 child_process_init(&pp->children[i].process);
1485 pp->pfd[i].events = POLLIN | POLLHUP;
1486 pp->pfd[i].fd = -1;
1487 }
1488
1489 pp_for_signal = pp;
1490 sigchain_push_common(handle_children_on_signal);
1491 }
1492
1493 static void pp_cleanup(struct parallel_processes *pp)
1494 {
1495 int i;
1496
1497 trace_printf("run_processes_parallel: done");
1498 for (i = 0; i < pp->max_processes; i++) {
1499 strbuf_release(&pp->children[i].err);
1500 child_process_clear(&pp->children[i].process);
1501 }
1502
1503 free(pp->children);
1504 free(pp->pfd);
1505
1506 /*
1507 * When get_next_task added messages to the buffer in its last
1508 * iteration, the buffered output is non empty.
1509 */
1510 strbuf_write(&pp->buffered_output, stderr);
1511 strbuf_release(&pp->buffered_output);
1512
1513 sigchain_pop_common();
1514 }
1515
1516 /* returns
1517 * 0 if a new task was started.
1518 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1519 * problem with starting a new command)
1520 * <0 no new job was started, user wishes to shutdown early. Use negative code
1521 * to signal the children.
1522 */
1523 static int pp_start_one(struct parallel_processes *pp)
1524 {
1525 int i, code;
1526
1527 for (i = 0; i < pp->max_processes; i++)
1528 if (pp->children[i].state == GIT_CP_FREE)
1529 break;
1530 if (i == pp->max_processes)
1531 die("BUG: bookkeeping is hard");
1532
1533 code = pp->get_next_task(&pp->children[i].process,
1534 &pp->children[i].err,
1535 pp->data,
1536 &pp->children[i].data);
1537 if (!code) {
1538 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1539 strbuf_reset(&pp->children[i].err);
1540 return 1;
1541 }
1542 pp->children[i].process.err = -1;
1543 pp->children[i].process.stdout_to_stderr = 1;
1544 pp->children[i].process.no_stdin = 1;
1545
1546 if (start_command(&pp->children[i].process)) {
1547 code = pp->start_failure(&pp->children[i].err,
1548 pp->data,
1549 pp->children[i].data);
1550 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1551 strbuf_reset(&pp->children[i].err);
1552 if (code)
1553 pp->shutdown = 1;
1554 return code;
1555 }
1556
1557 pp->nr_processes++;
1558 pp->children[i].state = GIT_CP_WORKING;
1559 pp->pfd[i].fd = pp->children[i].process.err;
1560 return 0;
1561 }
1562
1563 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1564 {
1565 int i;
1566
1567 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1568 if (errno == EINTR)
1569 continue;
1570 pp_cleanup(pp);
1571 die_errno("poll");
1572 }
1573
1574 /* Buffer output from all pipes. */
1575 for (i = 0; i < pp->max_processes; i++) {
1576 if (pp->children[i].state == GIT_CP_WORKING &&
1577 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1578 int n = strbuf_read_once(&pp->children[i].err,
1579 pp->children[i].process.err, 0);
1580 if (n == 0) {
1581 close(pp->children[i].process.err);
1582 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1583 } else if (n < 0)
1584 if (errno != EAGAIN)
1585 die_errno("read");
1586 }
1587 }
1588 }
1589
1590 static void pp_output(struct parallel_processes *pp)
1591 {
1592 int i = pp->output_owner;
1593 if (pp->children[i].state == GIT_CP_WORKING &&
1594 pp->children[i].err.len) {
1595 strbuf_write(&pp->children[i].err, stderr);
1596 strbuf_reset(&pp->children[i].err);
1597 }
1598 }
1599
1600 static int pp_collect_finished(struct parallel_processes *pp)
1601 {
1602 int i, code;
1603 int n = pp->max_processes;
1604 int result = 0;
1605
1606 while (pp->nr_processes > 0) {
1607 for (i = 0; i < pp->max_processes; i++)
1608 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1609 break;
1610 if (i == pp->max_processes)
1611 break;
1612
1613 code = finish_command(&pp->children[i].process);
1614
1615 code = pp->task_finished(code,
1616 &pp->children[i].err, pp->data,
1617 pp->children[i].data);
1618
1619 if (code)
1620 result = code;
1621 if (code < 0)
1622 break;
1623
1624 pp->nr_processes--;
1625 pp->children[i].state = GIT_CP_FREE;
1626 pp->pfd[i].fd = -1;
1627 child_process_init(&pp->children[i].process);
1628
1629 if (i != pp->output_owner) {
1630 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1631 strbuf_reset(&pp->children[i].err);
1632 } else {
1633 strbuf_write(&pp->children[i].err, stderr);
1634 strbuf_reset(&pp->children[i].err);
1635
1636 /* Output all other finished child processes */
1637 strbuf_write(&pp->buffered_output, stderr);
1638 strbuf_reset(&pp->buffered_output);
1639
1640 /*
1641 * Pick next process to output live.
1642 * NEEDSWORK:
1643 * For now we pick it randomly by doing a round
1644 * robin. Later we may want to pick the one with
1645 * the most output or the longest or shortest
1646 * running process time.
1647 */
1648 for (i = 0; i < n; i++)
1649 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1650 break;
1651 pp->output_owner = (pp->output_owner + i) % n;
1652 }
1653 }
1654 return result;
1655 }
1656
1657 int run_processes_parallel(int n,
1658 get_next_task_fn get_next_task,
1659 start_failure_fn start_failure,
1660 task_finished_fn task_finished,
1661 void *pp_cb)
1662 {
1663 int i, code;
1664 int output_timeout = 100;
1665 int spawn_cap = 4;
1666 struct parallel_processes pp;
1667
1668 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1669 while (1) {
1670 for (i = 0;
1671 i < spawn_cap && !pp.shutdown &&
1672 pp.nr_processes < pp.max_processes;
1673 i++) {
1674 code = pp_start_one(&pp);
1675 if (!code)
1676 continue;
1677 if (code < 0) {
1678 pp.shutdown = 1;
1679 kill_children(&pp, -code);
1680 }
1681 break;
1682 }
1683 if (!pp.nr_processes)
1684 break;
1685 pp_buffer_stderr(&pp, output_timeout);
1686 pp_output(&pp);
1687 code = pp_collect_finished(&pp);
1688 if (code) {
1689 pp.shutdown = 1;
1690 if (code < 0)
1691 kill_children(&pp, -code);
1692 }
1693 }
1694
1695 pp_cleanup(&pp);
1696 return 0;
1697 }