]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
Merge branch 'rb/nonstop-lacks-uncompress2'
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11 #include "packfile.h"
12 #include "hook.h"
13
14 void child_process_init(struct child_process *child)
15 {
16 struct child_process blank = CHILD_PROCESS_INIT;
17 memcpy(child, &blank, sizeof(*child));
18 }
19
20 void child_process_clear(struct child_process *child)
21 {
22 strvec_clear(&child->args);
23 strvec_clear(&child->env_array);
24 }
25
26 struct child_to_clean {
27 pid_t pid;
28 struct child_process *process;
29 struct child_to_clean *next;
30 };
31 static struct child_to_clean *children_to_clean;
32 static int installed_child_cleanup_handler;
33
34 static void cleanup_children(int sig, int in_signal)
35 {
36 struct child_to_clean *children_to_wait_for = NULL;
37
38 while (children_to_clean) {
39 struct child_to_clean *p = children_to_clean;
40 children_to_clean = p->next;
41
42 if (p->process && !in_signal) {
43 struct child_process *process = p->process;
44 if (process->clean_on_exit_handler) {
45 trace_printf(
46 "trace: run_command: running exit handler for pid %"
47 PRIuMAX, (uintmax_t)p->pid
48 );
49 process->clean_on_exit_handler(process);
50 }
51 }
52
53 kill(p->pid, sig);
54
55 if (p->process && p->process->wait_after_clean) {
56 p->next = children_to_wait_for;
57 children_to_wait_for = p;
58 } else {
59 if (!in_signal)
60 free(p);
61 }
62 }
63
64 while (children_to_wait_for) {
65 struct child_to_clean *p = children_to_wait_for;
66 children_to_wait_for = p->next;
67
68 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
69 ; /* spin waiting for process exit or error */
70
71 if (!in_signal)
72 free(p);
73 }
74 }
75
76 static void cleanup_children_on_signal(int sig)
77 {
78 cleanup_children(sig, 1);
79 sigchain_pop(sig);
80 raise(sig);
81 }
82
83 static void cleanup_children_on_exit(void)
84 {
85 cleanup_children(SIGTERM, 0);
86 }
87
88 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
89 {
90 struct child_to_clean *p = xmalloc(sizeof(*p));
91 p->pid = pid;
92 p->process = process;
93 p->next = children_to_clean;
94 children_to_clean = p;
95
96 if (!installed_child_cleanup_handler) {
97 atexit(cleanup_children_on_exit);
98 sigchain_push_common(cleanup_children_on_signal);
99 installed_child_cleanup_handler = 1;
100 }
101 }
102
103 static void clear_child_for_cleanup(pid_t pid)
104 {
105 struct child_to_clean **pp;
106
107 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
108 struct child_to_clean *clean_me = *pp;
109
110 if (clean_me->pid == pid) {
111 *pp = clean_me->next;
112 free(clean_me);
113 return;
114 }
115 }
116 }
117
118 static inline void close_pair(int fd[2])
119 {
120 close(fd[0]);
121 close(fd[1]);
122 }
123
124 int is_executable(const char *name)
125 {
126 struct stat st;
127
128 if (stat(name, &st) || /* stat, not lstat */
129 !S_ISREG(st.st_mode))
130 return 0;
131
132 #if defined(GIT_WINDOWS_NATIVE)
133 /*
134 * On Windows there is no executable bit. The file extension
135 * indicates whether it can be run as an executable, and Git
136 * has special-handling to detect scripts and launch them
137 * through the indicated script interpreter. We test for the
138 * file extension first because virus scanners may make
139 * it quite expensive to open many files.
140 */
141 if (ends_with(name, ".exe"))
142 return S_IXUSR;
143
144 {
145 /*
146 * Now that we know it does not have an executable extension,
147 * peek into the file instead.
148 */
149 char buf[3] = { 0 };
150 int n;
151 int fd = open(name, O_RDONLY);
152 st.st_mode &= ~S_IXUSR;
153 if (fd >= 0) {
154 n = read(fd, buf, 2);
155 if (n == 2)
156 /* look for a she-bang */
157 if (!strcmp(buf, "#!"))
158 st.st_mode |= S_IXUSR;
159 close(fd);
160 }
161 }
162 #endif
163 return st.st_mode & S_IXUSR;
164 }
165
166 /*
167 * Search $PATH for a command. This emulates the path search that
168 * execvp would perform, without actually executing the command so it
169 * can be used before fork() to prepare to run a command using
170 * execve() or after execvp() to diagnose why it failed.
171 *
172 * The caller should ensure that file contains no directory
173 * separators.
174 *
175 * Returns the path to the command, as found in $PATH or NULL if the
176 * command could not be found. The caller inherits ownership of the memory
177 * used to store the resultant path.
178 *
179 * This should not be used on Windows, where the $PATH search rules
180 * are more complicated (e.g., a search for "foo" should find
181 * "foo.exe").
182 */
183 static char *locate_in_PATH(const char *file)
184 {
185 const char *p = getenv("PATH");
186 struct strbuf buf = STRBUF_INIT;
187
188 if (!p || !*p)
189 return NULL;
190
191 while (1) {
192 const char *end = strchrnul(p, ':');
193
194 strbuf_reset(&buf);
195
196 /* POSIX specifies an empty entry as the current directory. */
197 if (end != p) {
198 strbuf_add(&buf, p, end - p);
199 strbuf_addch(&buf, '/');
200 }
201 strbuf_addstr(&buf, file);
202
203 if (is_executable(buf.buf))
204 return strbuf_detach(&buf, NULL);
205
206 if (!*end)
207 break;
208 p = end + 1;
209 }
210
211 strbuf_release(&buf);
212 return NULL;
213 }
214
215 int exists_in_PATH(const char *command)
216 {
217 char *r = locate_in_PATH(command);
218 int found = r != NULL;
219 free(r);
220 return found;
221 }
222
223 int sane_execvp(const char *file, char * const argv[])
224 {
225 #ifndef GIT_WINDOWS_NATIVE
226 /*
227 * execvp() doesn't return, so we all we can do is tell trace2
228 * what we are about to do and let it leave a hint in the log
229 * (unless of course the execvp() fails).
230 *
231 * we skip this for Windows because the compat layer already
232 * has to emulate the execvp() call anyway.
233 */
234 int exec_id = trace2_exec(file, (const char **)argv);
235 #endif
236
237 if (!execvp(file, argv))
238 return 0; /* cannot happen ;-) */
239
240 #ifndef GIT_WINDOWS_NATIVE
241 {
242 int ec = errno;
243 trace2_exec_result(exec_id, ec);
244 errno = ec;
245 }
246 #endif
247
248 /*
249 * When a command can't be found because one of the directories
250 * listed in $PATH is unsearchable, execvp reports EACCES, but
251 * careful usability testing (read: analysis of occasional bug
252 * reports) reveals that "No such file or directory" is more
253 * intuitive.
254 *
255 * We avoid commands with "/", because execvp will not do $PATH
256 * lookups in that case.
257 *
258 * The reassignment of EACCES to errno looks like a no-op below,
259 * but we need to protect against exists_in_PATH overwriting errno.
260 */
261 if (errno == EACCES && !strchr(file, '/'))
262 errno = exists_in_PATH(file) ? EACCES : ENOENT;
263 else if (errno == ENOTDIR && !strchr(file, '/'))
264 errno = ENOENT;
265 return -1;
266 }
267
268 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
269 {
270 if (!argv[0])
271 BUG("shell command is empty");
272
273 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
274 #ifndef GIT_WINDOWS_NATIVE
275 strvec_push(out, SHELL_PATH);
276 #else
277 strvec_push(out, "sh");
278 #endif
279 strvec_push(out, "-c");
280
281 /*
282 * If we have no extra arguments, we do not even need to
283 * bother with the "$@" magic.
284 */
285 if (!argv[1])
286 strvec_push(out, argv[0]);
287 else
288 strvec_pushf(out, "%s \"$@\"", argv[0]);
289 }
290
291 strvec_pushv(out, argv);
292 return out->v;
293 }
294
295 #ifndef GIT_WINDOWS_NATIVE
296 static int child_notifier = -1;
297
298 enum child_errcode {
299 CHILD_ERR_CHDIR,
300 CHILD_ERR_DUP2,
301 CHILD_ERR_CLOSE,
302 CHILD_ERR_SIGPROCMASK,
303 CHILD_ERR_ENOENT,
304 CHILD_ERR_SILENT,
305 CHILD_ERR_ERRNO
306 };
307
308 struct child_err {
309 enum child_errcode err;
310 int syserr; /* errno */
311 };
312
313 static void child_die(enum child_errcode err)
314 {
315 struct child_err buf;
316
317 buf.err = err;
318 buf.syserr = errno;
319
320 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
321 xwrite(child_notifier, &buf, sizeof(buf));
322 _exit(1);
323 }
324
325 static void child_dup2(int fd, int to)
326 {
327 if (dup2(fd, to) < 0)
328 child_die(CHILD_ERR_DUP2);
329 }
330
331 static void child_close(int fd)
332 {
333 if (close(fd))
334 child_die(CHILD_ERR_CLOSE);
335 }
336
337 static void child_close_pair(int fd[2])
338 {
339 child_close(fd[0]);
340 child_close(fd[1]);
341 }
342
343 static void child_error_fn(const char *err, va_list params)
344 {
345 const char msg[] = "error() should not be called in child\n";
346 xwrite(2, msg, sizeof(msg) - 1);
347 }
348
349 static void child_warn_fn(const char *err, va_list params)
350 {
351 const char msg[] = "warn() should not be called in child\n";
352 xwrite(2, msg, sizeof(msg) - 1);
353 }
354
355 static void NORETURN child_die_fn(const char *err, va_list params)
356 {
357 const char msg[] = "die() should not be called in child\n";
358 xwrite(2, msg, sizeof(msg) - 1);
359 _exit(2);
360 }
361
362 /* this runs in the parent process */
363 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
364 {
365 static void (*old_errfn)(const char *err, va_list params);
366 report_fn die_message_routine = get_die_message_routine();
367
368 old_errfn = get_error_routine();
369 set_error_routine(die_message_routine);
370 errno = cerr->syserr;
371
372 switch (cerr->err) {
373 case CHILD_ERR_CHDIR:
374 error_errno("exec '%s': cd to '%s' failed",
375 cmd->args.v[0], cmd->dir);
376 break;
377 case CHILD_ERR_DUP2:
378 error_errno("dup2() in child failed");
379 break;
380 case CHILD_ERR_CLOSE:
381 error_errno("close() in child failed");
382 break;
383 case CHILD_ERR_SIGPROCMASK:
384 error_errno("sigprocmask failed restoring signals");
385 break;
386 case CHILD_ERR_ENOENT:
387 error_errno("cannot run %s", cmd->args.v[0]);
388 break;
389 case CHILD_ERR_SILENT:
390 break;
391 case CHILD_ERR_ERRNO:
392 error_errno("cannot exec '%s'", cmd->args.v[0]);
393 break;
394 }
395 set_error_routine(old_errfn);
396 }
397
398 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
399 {
400 if (!cmd->args.v[0])
401 BUG("command is empty");
402
403 /*
404 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
405 * attempt to interpret the command with 'sh'.
406 */
407 strvec_push(out, SHELL_PATH);
408
409 if (cmd->git_cmd) {
410 prepare_git_cmd(out, cmd->args.v);
411 } else if (cmd->use_shell) {
412 prepare_shell_cmd(out, cmd->args.v);
413 } else {
414 strvec_pushv(out, cmd->args.v);
415 }
416
417 /*
418 * If there are no dir separator characters in the command then perform
419 * a path lookup and use the resolved path as the command to exec. If
420 * there are dir separator characters, we have exec attempt to invoke
421 * the command directly.
422 */
423 if (!has_dir_sep(out->v[1])) {
424 char *program = locate_in_PATH(out->v[1]);
425 if (program) {
426 free((char *)out->v[1]);
427 out->v[1] = program;
428 } else {
429 strvec_clear(out);
430 errno = ENOENT;
431 return -1;
432 }
433 }
434
435 return 0;
436 }
437
438 static char **prep_childenv(const char *const *deltaenv)
439 {
440 extern char **environ;
441 char **childenv;
442 struct string_list env = STRING_LIST_INIT_DUP;
443 struct strbuf key = STRBUF_INIT;
444 const char *const *p;
445 int i;
446
447 /* Construct a sorted string list consisting of the current environ */
448 for (p = (const char *const *) environ; p && *p; p++) {
449 const char *equals = strchr(*p, '=');
450
451 if (equals) {
452 strbuf_reset(&key);
453 strbuf_add(&key, *p, equals - *p);
454 string_list_append(&env, key.buf)->util = (void *) *p;
455 } else {
456 string_list_append(&env, *p)->util = (void *) *p;
457 }
458 }
459 string_list_sort(&env);
460
461 /* Merge in 'deltaenv' with the current environ */
462 for (p = deltaenv; p && *p; p++) {
463 const char *equals = strchr(*p, '=');
464
465 if (equals) {
466 /* ('key=value'), insert or replace entry */
467 strbuf_reset(&key);
468 strbuf_add(&key, *p, equals - *p);
469 string_list_insert(&env, key.buf)->util = (void *) *p;
470 } else {
471 /* otherwise ('key') remove existing entry */
472 string_list_remove(&env, *p, 0);
473 }
474 }
475
476 /* Create an array of 'char *' to be used as the childenv */
477 ALLOC_ARRAY(childenv, env.nr + 1);
478 for (i = 0; i < env.nr; i++)
479 childenv[i] = env.items[i].util;
480 childenv[env.nr] = NULL;
481
482 string_list_clear(&env, 0);
483 strbuf_release(&key);
484 return childenv;
485 }
486
487 struct atfork_state {
488 #ifndef NO_PTHREADS
489 int cs;
490 #endif
491 sigset_t old;
492 };
493
494 #define CHECK_BUG(err, msg) \
495 do { \
496 int e = (err); \
497 if (e) \
498 BUG("%s: %s", msg, strerror(e)); \
499 } while(0)
500
501 static void atfork_prepare(struct atfork_state *as)
502 {
503 sigset_t all;
504
505 if (sigfillset(&all))
506 die_errno("sigfillset");
507 #ifdef NO_PTHREADS
508 if (sigprocmask(SIG_SETMASK, &all, &as->old))
509 die_errno("sigprocmask");
510 #else
511 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
512 "blocking all signals");
513 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
514 "disabling cancellation");
515 #endif
516 }
517
518 static void atfork_parent(struct atfork_state *as)
519 {
520 #ifdef NO_PTHREADS
521 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
522 die_errno("sigprocmask");
523 #else
524 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
525 "re-enabling cancellation");
526 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
527 "restoring signal mask");
528 #endif
529 }
530 #endif /* GIT_WINDOWS_NATIVE */
531
532 static inline void set_cloexec(int fd)
533 {
534 int flags = fcntl(fd, F_GETFD);
535 if (flags >= 0)
536 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
537 }
538
539 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
540 {
541 int status, code = -1;
542 pid_t waiting;
543 int failed_errno = 0;
544
545 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
546 ; /* nothing */
547
548 if (waiting < 0) {
549 failed_errno = errno;
550 if (!in_signal)
551 error_errno("waitpid for %s failed", argv0);
552 } else if (waiting != pid) {
553 if (!in_signal)
554 error("waitpid is confused (%s)", argv0);
555 } else if (WIFSIGNALED(status)) {
556 code = WTERMSIG(status);
557 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
558 error("%s died of signal %d", argv0, code);
559 /*
560 * This return value is chosen so that code & 0xff
561 * mimics the exit code that a POSIX shell would report for
562 * a program that died from this signal.
563 */
564 code += 128;
565 } else if (WIFEXITED(status)) {
566 code = WEXITSTATUS(status);
567 } else {
568 if (!in_signal)
569 error("waitpid is confused (%s)", argv0);
570 }
571
572 if (!in_signal)
573 clear_child_for_cleanup(pid);
574
575 errno = failed_errno;
576 return code;
577 }
578
579 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
580 {
581 struct string_list envs = STRING_LIST_INIT_DUP;
582 const char *const *e;
583 int i;
584 int printed_unset = 0;
585
586 /* Last one wins, see run-command.c:prep_childenv() for context */
587 for (e = deltaenv; e && *e; e++) {
588 struct strbuf key = STRBUF_INIT;
589 char *equals = strchr(*e, '=');
590
591 if (equals) {
592 strbuf_add(&key, *e, equals - *e);
593 string_list_insert(&envs, key.buf)->util = equals + 1;
594 } else {
595 string_list_insert(&envs, *e)->util = NULL;
596 }
597 strbuf_release(&key);
598 }
599
600 /* "unset X Y...;" */
601 for (i = 0; i < envs.nr; i++) {
602 const char *var = envs.items[i].string;
603 const char *val = envs.items[i].util;
604
605 if (val || !getenv(var))
606 continue;
607
608 if (!printed_unset) {
609 strbuf_addstr(dst, " unset");
610 printed_unset = 1;
611 }
612 strbuf_addf(dst, " %s", var);
613 }
614 if (printed_unset)
615 strbuf_addch(dst, ';');
616
617 /* ... followed by "A=B C=D ..." */
618 for (i = 0; i < envs.nr; i++) {
619 const char *var = envs.items[i].string;
620 const char *val = envs.items[i].util;
621 const char *oldval;
622
623 if (!val)
624 continue;
625
626 oldval = getenv(var);
627 if (oldval && !strcmp(val, oldval))
628 continue;
629
630 strbuf_addf(dst, " %s=", var);
631 sq_quote_buf_pretty(dst, val);
632 }
633 string_list_clear(&envs, 0);
634 }
635
636 static void trace_run_command(const struct child_process *cp)
637 {
638 struct strbuf buf = STRBUF_INIT;
639
640 if (!trace_want(&trace_default_key))
641 return;
642
643 strbuf_addstr(&buf, "trace: run_command:");
644 if (cp->dir) {
645 strbuf_addstr(&buf, " cd ");
646 sq_quote_buf_pretty(&buf, cp->dir);
647 strbuf_addch(&buf, ';');
648 }
649 trace_add_env(&buf, cp->env_array.v);
650 if (cp->git_cmd)
651 strbuf_addstr(&buf, " git");
652 sq_quote_argv_pretty(&buf, cp->args.v);
653
654 trace_printf("%s", buf.buf);
655 strbuf_release(&buf);
656 }
657
658 int start_command(struct child_process *cmd)
659 {
660 int need_in, need_out, need_err;
661 int fdin[2], fdout[2], fderr[2];
662 int failed_errno;
663 char *str;
664
665 /*
666 * In case of errors we must keep the promise to close FDs
667 * that have been passed in via ->in and ->out.
668 */
669
670 need_in = !cmd->no_stdin && cmd->in < 0;
671 if (need_in) {
672 if (pipe(fdin) < 0) {
673 failed_errno = errno;
674 if (cmd->out > 0)
675 close(cmd->out);
676 str = "standard input";
677 goto fail_pipe;
678 }
679 cmd->in = fdin[1];
680 }
681
682 need_out = !cmd->no_stdout
683 && !cmd->stdout_to_stderr
684 && cmd->out < 0;
685 if (need_out) {
686 if (pipe(fdout) < 0) {
687 failed_errno = errno;
688 if (need_in)
689 close_pair(fdin);
690 else if (cmd->in)
691 close(cmd->in);
692 str = "standard output";
693 goto fail_pipe;
694 }
695 cmd->out = fdout[0];
696 }
697
698 need_err = !cmd->no_stderr && cmd->err < 0;
699 if (need_err) {
700 if (pipe(fderr) < 0) {
701 failed_errno = errno;
702 if (need_in)
703 close_pair(fdin);
704 else if (cmd->in)
705 close(cmd->in);
706 if (need_out)
707 close_pair(fdout);
708 else if (cmd->out)
709 close(cmd->out);
710 str = "standard error";
711 fail_pipe:
712 error("cannot create %s pipe for %s: %s",
713 str, cmd->args.v[0], strerror(failed_errno));
714 child_process_clear(cmd);
715 errno = failed_errno;
716 return -1;
717 }
718 cmd->err = fderr[0];
719 }
720
721 trace2_child_start(cmd);
722 trace_run_command(cmd);
723
724 fflush(NULL);
725
726 if (cmd->close_object_store)
727 close_object_store(the_repository->objects);
728
729 #ifndef GIT_WINDOWS_NATIVE
730 {
731 int notify_pipe[2];
732 int null_fd = -1;
733 char **childenv;
734 struct strvec argv = STRVEC_INIT;
735 struct child_err cerr;
736 struct atfork_state as;
737
738 if (prepare_cmd(&argv, cmd) < 0) {
739 failed_errno = errno;
740 cmd->pid = -1;
741 if (!cmd->silent_exec_failure)
742 error_errno("cannot run %s", cmd->args.v[0]);
743 goto end_of_spawn;
744 }
745
746 if (pipe(notify_pipe))
747 notify_pipe[0] = notify_pipe[1] = -1;
748
749 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
750 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
751 set_cloexec(null_fd);
752 }
753
754 childenv = prep_childenv(cmd->env_array.v);
755 atfork_prepare(&as);
756
757 /*
758 * NOTE: In order to prevent deadlocking when using threads special
759 * care should be taken with the function calls made in between the
760 * fork() and exec() calls. No calls should be made to functions which
761 * require acquiring a lock (e.g. malloc) as the lock could have been
762 * held by another thread at the time of forking, causing the lock to
763 * never be released in the child process. This means only
764 * Async-Signal-Safe functions are permitted in the child.
765 */
766 cmd->pid = fork();
767 failed_errno = errno;
768 if (!cmd->pid) {
769 int sig;
770 /*
771 * Ensure the default die/error/warn routines do not get
772 * called, they can take stdio locks and malloc.
773 */
774 set_die_routine(child_die_fn);
775 set_error_routine(child_error_fn);
776 set_warn_routine(child_warn_fn);
777
778 close(notify_pipe[0]);
779 set_cloexec(notify_pipe[1]);
780 child_notifier = notify_pipe[1];
781
782 if (cmd->no_stdin)
783 child_dup2(null_fd, 0);
784 else if (need_in) {
785 child_dup2(fdin[0], 0);
786 child_close_pair(fdin);
787 } else if (cmd->in) {
788 child_dup2(cmd->in, 0);
789 child_close(cmd->in);
790 }
791
792 if (cmd->no_stderr)
793 child_dup2(null_fd, 2);
794 else if (need_err) {
795 child_dup2(fderr[1], 2);
796 child_close_pair(fderr);
797 } else if (cmd->err > 1) {
798 child_dup2(cmd->err, 2);
799 child_close(cmd->err);
800 }
801
802 if (cmd->no_stdout)
803 child_dup2(null_fd, 1);
804 else if (cmd->stdout_to_stderr)
805 child_dup2(2, 1);
806 else if (need_out) {
807 child_dup2(fdout[1], 1);
808 child_close_pair(fdout);
809 } else if (cmd->out > 1) {
810 child_dup2(cmd->out, 1);
811 child_close(cmd->out);
812 }
813
814 if (cmd->dir && chdir(cmd->dir))
815 child_die(CHILD_ERR_CHDIR);
816
817 /*
818 * restore default signal handlers here, in case
819 * we catch a signal right before execve below
820 */
821 for (sig = 1; sig < NSIG; sig++) {
822 /* ignored signals get reset to SIG_DFL on execve */
823 if (signal(sig, SIG_DFL) == SIG_IGN)
824 signal(sig, SIG_IGN);
825 }
826
827 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
828 child_die(CHILD_ERR_SIGPROCMASK);
829
830 /*
831 * Attempt to exec using the command and arguments starting at
832 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
833 * be used in the event exec failed with ENOEXEC at which point
834 * we will try to interpret the command using 'sh'.
835 */
836 execve(argv.v[1], (char *const *) argv.v + 1,
837 (char *const *) childenv);
838 if (errno == ENOEXEC)
839 execve(argv.v[0], (char *const *) argv.v,
840 (char *const *) childenv);
841
842 if (errno == ENOENT) {
843 if (cmd->silent_exec_failure)
844 child_die(CHILD_ERR_SILENT);
845 child_die(CHILD_ERR_ENOENT);
846 } else {
847 child_die(CHILD_ERR_ERRNO);
848 }
849 }
850 atfork_parent(&as);
851 if (cmd->pid < 0)
852 error_errno("cannot fork() for %s", cmd->args.v[0]);
853 else if (cmd->clean_on_exit)
854 mark_child_for_cleanup(cmd->pid, cmd);
855
856 /*
857 * Wait for child's exec. If the exec succeeds (or if fork()
858 * failed), EOF is seen immediately by the parent. Otherwise, the
859 * child process sends a child_err struct.
860 * Note that use of this infrastructure is completely advisory,
861 * therefore, we keep error checks minimal.
862 */
863 close(notify_pipe[1]);
864 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
865 /*
866 * At this point we know that fork() succeeded, but exec()
867 * failed. Errors have been reported to our stderr.
868 */
869 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
870 child_err_spew(cmd, &cerr);
871 failed_errno = errno;
872 cmd->pid = -1;
873 }
874 close(notify_pipe[0]);
875
876 if (null_fd >= 0)
877 close(null_fd);
878 strvec_clear(&argv);
879 free(childenv);
880 }
881 end_of_spawn:
882
883 #else
884 {
885 int fhin = 0, fhout = 1, fherr = 2;
886 const char **sargv = cmd->args.v;
887 struct strvec nargv = STRVEC_INIT;
888
889 if (cmd->no_stdin)
890 fhin = open("/dev/null", O_RDWR);
891 else if (need_in)
892 fhin = dup(fdin[0]);
893 else if (cmd->in)
894 fhin = dup(cmd->in);
895
896 if (cmd->no_stderr)
897 fherr = open("/dev/null", O_RDWR);
898 else if (need_err)
899 fherr = dup(fderr[1]);
900 else if (cmd->err > 2)
901 fherr = dup(cmd->err);
902
903 if (cmd->no_stdout)
904 fhout = open("/dev/null", O_RDWR);
905 else if (cmd->stdout_to_stderr)
906 fhout = dup(fherr);
907 else if (need_out)
908 fhout = dup(fdout[1]);
909 else if (cmd->out > 1)
910 fhout = dup(cmd->out);
911
912 if (cmd->git_cmd)
913 cmd->args.v = prepare_git_cmd(&nargv, sargv);
914 else if (cmd->use_shell)
915 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
916
917 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v, (char**) cmd->env_array.v,
918 cmd->dir, fhin, fhout, fherr);
919 failed_errno = errno;
920 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
921 error_errno("cannot spawn %s", cmd->args.v[0]);
922 if (cmd->clean_on_exit && cmd->pid >= 0)
923 mark_child_for_cleanup(cmd->pid, cmd);
924
925 strvec_clear(&nargv);
926 cmd->args.v = sargv;
927 if (fhin != 0)
928 close(fhin);
929 if (fhout != 1)
930 close(fhout);
931 if (fherr != 2)
932 close(fherr);
933 }
934 #endif
935
936 if (cmd->pid < 0) {
937 trace2_child_exit(cmd, -1);
938
939 if (need_in)
940 close_pair(fdin);
941 else if (cmd->in)
942 close(cmd->in);
943 if (need_out)
944 close_pair(fdout);
945 else if (cmd->out)
946 close(cmd->out);
947 if (need_err)
948 close_pair(fderr);
949 else if (cmd->err)
950 close(cmd->err);
951 child_process_clear(cmd);
952 errno = failed_errno;
953 return -1;
954 }
955
956 if (need_in)
957 close(fdin[0]);
958 else if (cmd->in)
959 close(cmd->in);
960
961 if (need_out)
962 close(fdout[1]);
963 else if (cmd->out)
964 close(cmd->out);
965
966 if (need_err)
967 close(fderr[1]);
968 else if (cmd->err)
969 close(cmd->err);
970
971 return 0;
972 }
973
974 int finish_command(struct child_process *cmd)
975 {
976 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
977 trace2_child_exit(cmd, ret);
978 child_process_clear(cmd);
979 invalidate_lstat_cache();
980 return ret;
981 }
982
983 int finish_command_in_signal(struct child_process *cmd)
984 {
985 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
986 trace2_child_exit(cmd, ret);
987 return ret;
988 }
989
990
991 int run_command(struct child_process *cmd)
992 {
993 int code;
994
995 if (cmd->out < 0 || cmd->err < 0)
996 BUG("run_command with a pipe can cause deadlock");
997
998 code = start_command(cmd);
999 if (code)
1000 return code;
1001 return finish_command(cmd);
1002 }
1003
1004 int run_command_v_opt(const char **argv, int opt)
1005 {
1006 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1007 }
1008
1009 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1010 {
1011 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1012 }
1013
1014 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1015 {
1016 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1017 }
1018
1019 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1020 const char *const *env, const char *tr2_class)
1021 {
1022 struct child_process cmd = CHILD_PROCESS_INIT;
1023 strvec_pushv(&cmd.args, argv);
1024 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1025 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1026 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1027 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1028 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1029 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1030 cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1031 cmd.close_object_store = opt & RUN_CLOSE_OBJECT_STORE ? 1 : 0;
1032 cmd.dir = dir;
1033 if (env)
1034 strvec_pushv(&cmd.env_array, (const char **)env);
1035 cmd.trace2_child_class = tr2_class;
1036 return run_command(&cmd);
1037 }
1038
1039 #ifndef NO_PTHREADS
1040 static pthread_t main_thread;
1041 static int main_thread_set;
1042 static pthread_key_t async_key;
1043 static pthread_key_t async_die_counter;
1044
1045 static void *run_thread(void *data)
1046 {
1047 struct async *async = data;
1048 intptr_t ret;
1049
1050 if (async->isolate_sigpipe) {
1051 sigset_t mask;
1052 sigemptyset(&mask);
1053 sigaddset(&mask, SIGPIPE);
1054 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1055 ret = error("unable to block SIGPIPE in async thread");
1056 return (void *)ret;
1057 }
1058 }
1059
1060 pthread_setspecific(async_key, async);
1061 ret = async->proc(async->proc_in, async->proc_out, async->data);
1062 return (void *)ret;
1063 }
1064
1065 static NORETURN void die_async(const char *err, va_list params)
1066 {
1067 report_fn die_message_fn = get_die_message_routine();
1068
1069 die_message_fn(err, params);
1070
1071 if (in_async()) {
1072 struct async *async = pthread_getspecific(async_key);
1073 if (async->proc_in >= 0)
1074 close(async->proc_in);
1075 if (async->proc_out >= 0)
1076 close(async->proc_out);
1077 pthread_exit((void *)128);
1078 }
1079
1080 exit(128);
1081 }
1082
1083 static int async_die_is_recursing(void)
1084 {
1085 void *ret = pthread_getspecific(async_die_counter);
1086 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1087 return ret != NULL;
1088 }
1089
1090 int in_async(void)
1091 {
1092 if (!main_thread_set)
1093 return 0; /* no asyncs started yet */
1094 return !pthread_equal(main_thread, pthread_self());
1095 }
1096
1097 static void NORETURN async_exit(int code)
1098 {
1099 pthread_exit((void *)(intptr_t)code);
1100 }
1101
1102 #else
1103
1104 static struct {
1105 void (**handlers)(void);
1106 size_t nr;
1107 size_t alloc;
1108 } git_atexit_hdlrs;
1109
1110 static int git_atexit_installed;
1111
1112 static void git_atexit_dispatch(void)
1113 {
1114 size_t i;
1115
1116 for (i=git_atexit_hdlrs.nr ; i ; i--)
1117 git_atexit_hdlrs.handlers[i-1]();
1118 }
1119
1120 static void git_atexit_clear(void)
1121 {
1122 free(git_atexit_hdlrs.handlers);
1123 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1124 git_atexit_installed = 0;
1125 }
1126
1127 #undef atexit
1128 int git_atexit(void (*handler)(void))
1129 {
1130 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1131 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1132 if (!git_atexit_installed) {
1133 if (atexit(&git_atexit_dispatch))
1134 return -1;
1135 git_atexit_installed = 1;
1136 }
1137 return 0;
1138 }
1139 #define atexit git_atexit
1140
1141 static int process_is_async;
1142 int in_async(void)
1143 {
1144 return process_is_async;
1145 }
1146
1147 static void NORETURN async_exit(int code)
1148 {
1149 exit(code);
1150 }
1151
1152 #endif
1153
1154 void check_pipe(int err)
1155 {
1156 if (err == EPIPE) {
1157 if (in_async())
1158 async_exit(141);
1159
1160 signal(SIGPIPE, SIG_DFL);
1161 raise(SIGPIPE);
1162 /* Should never happen, but just in case... */
1163 exit(141);
1164 }
1165 }
1166
1167 int start_async(struct async *async)
1168 {
1169 int need_in, need_out;
1170 int fdin[2], fdout[2];
1171 int proc_in, proc_out;
1172
1173 need_in = async->in < 0;
1174 if (need_in) {
1175 if (pipe(fdin) < 0) {
1176 if (async->out > 0)
1177 close(async->out);
1178 return error_errno("cannot create pipe");
1179 }
1180 async->in = fdin[1];
1181 }
1182
1183 need_out = async->out < 0;
1184 if (need_out) {
1185 if (pipe(fdout) < 0) {
1186 if (need_in)
1187 close_pair(fdin);
1188 else if (async->in)
1189 close(async->in);
1190 return error_errno("cannot create pipe");
1191 }
1192 async->out = fdout[0];
1193 }
1194
1195 if (need_in)
1196 proc_in = fdin[0];
1197 else if (async->in)
1198 proc_in = async->in;
1199 else
1200 proc_in = -1;
1201
1202 if (need_out)
1203 proc_out = fdout[1];
1204 else if (async->out)
1205 proc_out = async->out;
1206 else
1207 proc_out = -1;
1208
1209 #ifdef NO_PTHREADS
1210 /* Flush stdio before fork() to avoid cloning buffers */
1211 fflush(NULL);
1212
1213 async->pid = fork();
1214 if (async->pid < 0) {
1215 error_errno("fork (async) failed");
1216 goto error;
1217 }
1218 if (!async->pid) {
1219 if (need_in)
1220 close(fdin[1]);
1221 if (need_out)
1222 close(fdout[0]);
1223 git_atexit_clear();
1224 process_is_async = 1;
1225 exit(!!async->proc(proc_in, proc_out, async->data));
1226 }
1227
1228 mark_child_for_cleanup(async->pid, NULL);
1229
1230 if (need_in)
1231 close(fdin[0]);
1232 else if (async->in)
1233 close(async->in);
1234
1235 if (need_out)
1236 close(fdout[1]);
1237 else if (async->out)
1238 close(async->out);
1239 #else
1240 if (!main_thread_set) {
1241 /*
1242 * We assume that the first time that start_async is called
1243 * it is from the main thread.
1244 */
1245 main_thread_set = 1;
1246 main_thread = pthread_self();
1247 pthread_key_create(&async_key, NULL);
1248 pthread_key_create(&async_die_counter, NULL);
1249 set_die_routine(die_async);
1250 set_die_is_recursing_routine(async_die_is_recursing);
1251 }
1252
1253 if (proc_in >= 0)
1254 set_cloexec(proc_in);
1255 if (proc_out >= 0)
1256 set_cloexec(proc_out);
1257 async->proc_in = proc_in;
1258 async->proc_out = proc_out;
1259 {
1260 int err = pthread_create(&async->tid, NULL, run_thread, async);
1261 if (err) {
1262 error(_("cannot create async thread: %s"), strerror(err));
1263 goto error;
1264 }
1265 }
1266 #endif
1267 return 0;
1268
1269 error:
1270 if (need_in)
1271 close_pair(fdin);
1272 else if (async->in)
1273 close(async->in);
1274
1275 if (need_out)
1276 close_pair(fdout);
1277 else if (async->out)
1278 close(async->out);
1279 return -1;
1280 }
1281
1282 int finish_async(struct async *async)
1283 {
1284 #ifdef NO_PTHREADS
1285 int ret = wait_or_whine(async->pid, "child process", 0);
1286
1287 invalidate_lstat_cache();
1288
1289 return ret;
1290 #else
1291 void *ret = (void *)(intptr_t)(-1);
1292
1293 if (pthread_join(async->tid, &ret))
1294 error("pthread_join failed");
1295 invalidate_lstat_cache();
1296 return (int)(intptr_t)ret;
1297
1298 #endif
1299 }
1300
1301 int async_with_fork(void)
1302 {
1303 #ifdef NO_PTHREADS
1304 return 1;
1305 #else
1306 return 0;
1307 #endif
1308 }
1309
1310 int run_hook_ve(const char *const *env, const char *name, va_list args)
1311 {
1312 struct child_process hook = CHILD_PROCESS_INIT;
1313 const char *p;
1314
1315 p = find_hook(name);
1316 if (!p)
1317 return 0;
1318
1319 strvec_push(&hook.args, p);
1320 while ((p = va_arg(args, const char *)))
1321 strvec_push(&hook.args, p);
1322 if (env)
1323 strvec_pushv(&hook.env_array, (const char **)env);
1324 hook.no_stdin = 1;
1325 hook.stdout_to_stderr = 1;
1326 hook.trace2_hook_name = name;
1327
1328 return run_command(&hook);
1329 }
1330
1331 int run_hook_le(const char *const *env, const char *name, ...)
1332 {
1333 va_list args;
1334 int ret;
1335
1336 va_start(args, name);
1337 ret = run_hook_ve(env, name, args);
1338 va_end(args);
1339
1340 return ret;
1341 }
1342
1343 struct io_pump {
1344 /* initialized by caller */
1345 int fd;
1346 int type; /* POLLOUT or POLLIN */
1347 union {
1348 struct {
1349 const char *buf;
1350 size_t len;
1351 } out;
1352 struct {
1353 struct strbuf *buf;
1354 size_t hint;
1355 } in;
1356 } u;
1357
1358 /* returned by pump_io */
1359 int error; /* 0 for success, otherwise errno */
1360
1361 /* internal use */
1362 struct pollfd *pfd;
1363 };
1364
1365 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1366 {
1367 int pollsize = 0;
1368 int i;
1369
1370 for (i = 0; i < nr; i++) {
1371 struct io_pump *io = &slots[i];
1372 if (io->fd < 0)
1373 continue;
1374 pfd[pollsize].fd = io->fd;
1375 pfd[pollsize].events = io->type;
1376 io->pfd = &pfd[pollsize++];
1377 }
1378
1379 if (!pollsize)
1380 return 0;
1381
1382 if (poll(pfd, pollsize, -1) < 0) {
1383 if (errno == EINTR)
1384 return 1;
1385 die_errno("poll failed");
1386 }
1387
1388 for (i = 0; i < nr; i++) {
1389 struct io_pump *io = &slots[i];
1390
1391 if (io->fd < 0)
1392 continue;
1393
1394 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1395 continue;
1396
1397 if (io->type == POLLOUT) {
1398 ssize_t len = xwrite(io->fd,
1399 io->u.out.buf, io->u.out.len);
1400 if (len < 0) {
1401 io->error = errno;
1402 close(io->fd);
1403 io->fd = -1;
1404 } else {
1405 io->u.out.buf += len;
1406 io->u.out.len -= len;
1407 if (!io->u.out.len) {
1408 close(io->fd);
1409 io->fd = -1;
1410 }
1411 }
1412 }
1413
1414 if (io->type == POLLIN) {
1415 ssize_t len = strbuf_read_once(io->u.in.buf,
1416 io->fd, io->u.in.hint);
1417 if (len < 0)
1418 io->error = errno;
1419 if (len <= 0) {
1420 close(io->fd);
1421 io->fd = -1;
1422 }
1423 }
1424 }
1425
1426 return 1;
1427 }
1428
1429 static int pump_io(struct io_pump *slots, int nr)
1430 {
1431 struct pollfd *pfd;
1432 int i;
1433
1434 for (i = 0; i < nr; i++)
1435 slots[i].error = 0;
1436
1437 ALLOC_ARRAY(pfd, nr);
1438 while (pump_io_round(slots, nr, pfd))
1439 ; /* nothing */
1440 free(pfd);
1441
1442 /* There may be multiple errno values, so just pick the first. */
1443 for (i = 0; i < nr; i++) {
1444 if (slots[i].error) {
1445 errno = slots[i].error;
1446 return -1;
1447 }
1448 }
1449 return 0;
1450 }
1451
1452
1453 int pipe_command(struct child_process *cmd,
1454 const char *in, size_t in_len,
1455 struct strbuf *out, size_t out_hint,
1456 struct strbuf *err, size_t err_hint)
1457 {
1458 struct io_pump io[3];
1459 int nr = 0;
1460
1461 if (in)
1462 cmd->in = -1;
1463 if (out)
1464 cmd->out = -1;
1465 if (err)
1466 cmd->err = -1;
1467
1468 if (start_command(cmd) < 0)
1469 return -1;
1470
1471 if (in) {
1472 io[nr].fd = cmd->in;
1473 io[nr].type = POLLOUT;
1474 io[nr].u.out.buf = in;
1475 io[nr].u.out.len = in_len;
1476 nr++;
1477 }
1478 if (out) {
1479 io[nr].fd = cmd->out;
1480 io[nr].type = POLLIN;
1481 io[nr].u.in.buf = out;
1482 io[nr].u.in.hint = out_hint;
1483 nr++;
1484 }
1485 if (err) {
1486 io[nr].fd = cmd->err;
1487 io[nr].type = POLLIN;
1488 io[nr].u.in.buf = err;
1489 io[nr].u.in.hint = err_hint;
1490 nr++;
1491 }
1492
1493 if (pump_io(io, nr) < 0) {
1494 finish_command(cmd); /* throw away exit code */
1495 return -1;
1496 }
1497
1498 return finish_command(cmd);
1499 }
1500
1501 enum child_state {
1502 GIT_CP_FREE,
1503 GIT_CP_WORKING,
1504 GIT_CP_WAIT_CLEANUP,
1505 };
1506
1507 struct parallel_processes {
1508 void *data;
1509
1510 int max_processes;
1511 int nr_processes;
1512
1513 get_next_task_fn get_next_task;
1514 start_failure_fn start_failure;
1515 task_finished_fn task_finished;
1516
1517 struct {
1518 enum child_state state;
1519 struct child_process process;
1520 struct strbuf err;
1521 void *data;
1522 } *children;
1523 /*
1524 * The struct pollfd is logically part of *children,
1525 * but the system call expects it as its own array.
1526 */
1527 struct pollfd *pfd;
1528
1529 unsigned shutdown : 1;
1530
1531 int output_owner;
1532 struct strbuf buffered_output; /* of finished children */
1533 };
1534
1535 static int default_start_failure(struct strbuf *out,
1536 void *pp_cb,
1537 void *pp_task_cb)
1538 {
1539 return 0;
1540 }
1541
1542 static int default_task_finished(int result,
1543 struct strbuf *out,
1544 void *pp_cb,
1545 void *pp_task_cb)
1546 {
1547 return 0;
1548 }
1549
1550 static void kill_children(struct parallel_processes *pp, int signo)
1551 {
1552 int i, n = pp->max_processes;
1553
1554 for (i = 0; i < n; i++)
1555 if (pp->children[i].state == GIT_CP_WORKING)
1556 kill(pp->children[i].process.pid, signo);
1557 }
1558
1559 static struct parallel_processes *pp_for_signal;
1560
1561 static void handle_children_on_signal(int signo)
1562 {
1563 kill_children(pp_for_signal, signo);
1564 sigchain_pop(signo);
1565 raise(signo);
1566 }
1567
1568 static void pp_init(struct parallel_processes *pp,
1569 int n,
1570 get_next_task_fn get_next_task,
1571 start_failure_fn start_failure,
1572 task_finished_fn task_finished,
1573 void *data)
1574 {
1575 int i;
1576
1577 if (n < 1)
1578 n = online_cpus();
1579
1580 pp->max_processes = n;
1581
1582 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1583
1584 pp->data = data;
1585 if (!get_next_task)
1586 BUG("you need to specify a get_next_task function");
1587 pp->get_next_task = get_next_task;
1588
1589 pp->start_failure = start_failure ? start_failure : default_start_failure;
1590 pp->task_finished = task_finished ? task_finished : default_task_finished;
1591
1592 pp->nr_processes = 0;
1593 pp->output_owner = 0;
1594 pp->shutdown = 0;
1595 CALLOC_ARRAY(pp->children, n);
1596 CALLOC_ARRAY(pp->pfd, n);
1597 strbuf_init(&pp->buffered_output, 0);
1598
1599 for (i = 0; i < n; i++) {
1600 strbuf_init(&pp->children[i].err, 0);
1601 child_process_init(&pp->children[i].process);
1602 pp->pfd[i].events = POLLIN | POLLHUP;
1603 pp->pfd[i].fd = -1;
1604 }
1605
1606 pp_for_signal = pp;
1607 sigchain_push_common(handle_children_on_signal);
1608 }
1609
1610 static void pp_cleanup(struct parallel_processes *pp)
1611 {
1612 int i;
1613
1614 trace_printf("run_processes_parallel: done");
1615 for (i = 0; i < pp->max_processes; i++) {
1616 strbuf_release(&pp->children[i].err);
1617 child_process_clear(&pp->children[i].process);
1618 }
1619
1620 free(pp->children);
1621 free(pp->pfd);
1622
1623 /*
1624 * When get_next_task added messages to the buffer in its last
1625 * iteration, the buffered output is non empty.
1626 */
1627 strbuf_write(&pp->buffered_output, stderr);
1628 strbuf_release(&pp->buffered_output);
1629
1630 sigchain_pop_common();
1631 }
1632
1633 /* returns
1634 * 0 if a new task was started.
1635 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1636 * problem with starting a new command)
1637 * <0 no new job was started, user wishes to shutdown early. Use negative code
1638 * to signal the children.
1639 */
1640 static int pp_start_one(struct parallel_processes *pp)
1641 {
1642 int i, code;
1643
1644 for (i = 0; i < pp->max_processes; i++)
1645 if (pp->children[i].state == GIT_CP_FREE)
1646 break;
1647 if (i == pp->max_processes)
1648 BUG("bookkeeping is hard");
1649
1650 code = pp->get_next_task(&pp->children[i].process,
1651 &pp->children[i].err,
1652 pp->data,
1653 &pp->children[i].data);
1654 if (!code) {
1655 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1656 strbuf_reset(&pp->children[i].err);
1657 return 1;
1658 }
1659 pp->children[i].process.err = -1;
1660 pp->children[i].process.stdout_to_stderr = 1;
1661 pp->children[i].process.no_stdin = 1;
1662
1663 if (start_command(&pp->children[i].process)) {
1664 code = pp->start_failure(&pp->children[i].err,
1665 pp->data,
1666 pp->children[i].data);
1667 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1668 strbuf_reset(&pp->children[i].err);
1669 if (code)
1670 pp->shutdown = 1;
1671 return code;
1672 }
1673
1674 pp->nr_processes++;
1675 pp->children[i].state = GIT_CP_WORKING;
1676 pp->pfd[i].fd = pp->children[i].process.err;
1677 return 0;
1678 }
1679
1680 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1681 {
1682 int i;
1683
1684 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1685 if (errno == EINTR)
1686 continue;
1687 pp_cleanup(pp);
1688 die_errno("poll");
1689 }
1690
1691 /* Buffer output from all pipes. */
1692 for (i = 0; i < pp->max_processes; i++) {
1693 if (pp->children[i].state == GIT_CP_WORKING &&
1694 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1695 int n = strbuf_read_once(&pp->children[i].err,
1696 pp->children[i].process.err, 0);
1697 if (n == 0) {
1698 close(pp->children[i].process.err);
1699 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1700 } else if (n < 0)
1701 if (errno != EAGAIN)
1702 die_errno("read");
1703 }
1704 }
1705 }
1706
1707 static void pp_output(struct parallel_processes *pp)
1708 {
1709 int i = pp->output_owner;
1710 if (pp->children[i].state == GIT_CP_WORKING &&
1711 pp->children[i].err.len) {
1712 strbuf_write(&pp->children[i].err, stderr);
1713 strbuf_reset(&pp->children[i].err);
1714 }
1715 }
1716
1717 static int pp_collect_finished(struct parallel_processes *pp)
1718 {
1719 int i, code;
1720 int n = pp->max_processes;
1721 int result = 0;
1722
1723 while (pp->nr_processes > 0) {
1724 for (i = 0; i < pp->max_processes; i++)
1725 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1726 break;
1727 if (i == pp->max_processes)
1728 break;
1729
1730 code = finish_command(&pp->children[i].process);
1731
1732 code = pp->task_finished(code,
1733 &pp->children[i].err, pp->data,
1734 pp->children[i].data);
1735
1736 if (code)
1737 result = code;
1738 if (code < 0)
1739 break;
1740
1741 pp->nr_processes--;
1742 pp->children[i].state = GIT_CP_FREE;
1743 pp->pfd[i].fd = -1;
1744 child_process_init(&pp->children[i].process);
1745
1746 if (i != pp->output_owner) {
1747 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1748 strbuf_reset(&pp->children[i].err);
1749 } else {
1750 strbuf_write(&pp->children[i].err, stderr);
1751 strbuf_reset(&pp->children[i].err);
1752
1753 /* Output all other finished child processes */
1754 strbuf_write(&pp->buffered_output, stderr);
1755 strbuf_reset(&pp->buffered_output);
1756
1757 /*
1758 * Pick next process to output live.
1759 * NEEDSWORK:
1760 * For now we pick it randomly by doing a round
1761 * robin. Later we may want to pick the one with
1762 * the most output or the longest or shortest
1763 * running process time.
1764 */
1765 for (i = 0; i < n; i++)
1766 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1767 break;
1768 pp->output_owner = (pp->output_owner + i) % n;
1769 }
1770 }
1771 return result;
1772 }
1773
1774 int run_processes_parallel(int n,
1775 get_next_task_fn get_next_task,
1776 start_failure_fn start_failure,
1777 task_finished_fn task_finished,
1778 void *pp_cb)
1779 {
1780 int i, code;
1781 int output_timeout = 100;
1782 int spawn_cap = 4;
1783 struct parallel_processes pp;
1784
1785 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1786 while (1) {
1787 for (i = 0;
1788 i < spawn_cap && !pp.shutdown &&
1789 pp.nr_processes < pp.max_processes;
1790 i++) {
1791 code = pp_start_one(&pp);
1792 if (!code)
1793 continue;
1794 if (code < 0) {
1795 pp.shutdown = 1;
1796 kill_children(&pp, -code);
1797 }
1798 break;
1799 }
1800 if (!pp.nr_processes)
1801 break;
1802 pp_buffer_stderr(&pp, output_timeout);
1803 pp_output(&pp);
1804 code = pp_collect_finished(&pp);
1805 if (code) {
1806 pp.shutdown = 1;
1807 if (code < 0)
1808 kill_children(&pp, -code);
1809 }
1810 }
1811
1812 pp_cleanup(&pp);
1813 return 0;
1814 }
1815
1816 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1817 start_failure_fn start_failure,
1818 task_finished_fn task_finished, void *pp_cb,
1819 const char *tr2_category, const char *tr2_label)
1820 {
1821 int result;
1822
1823 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1824 ((n < 1) ? online_cpus() : n));
1825
1826 result = run_processes_parallel(n, get_next_task, start_failure,
1827 task_finished, pp_cb);
1828
1829 trace2_region_leave(tr2_category, tr2_label, NULL);
1830
1831 return result;
1832 }
1833
1834 int run_auto_maintenance(int quiet)
1835 {
1836 int enabled;
1837 struct child_process maint = CHILD_PROCESS_INIT;
1838
1839 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1840 !enabled)
1841 return 0;
1842
1843 maint.git_cmd = 1;
1844 maint.close_object_store = 1;
1845 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1846 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1847
1848 return run_command(&maint);
1849 }
1850
1851 void prepare_other_repo_env(struct strvec *env_array, const char *new_git_dir)
1852 {
1853 const char * const *var;
1854
1855 for (var = local_repo_env; *var; var++) {
1856 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1857 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1858 strvec_push(env_array, *var);
1859 }
1860 strvec_pushf(env_array, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1861 }
1862
1863 enum start_bg_result start_bg_command(struct child_process *cmd,
1864 start_bg_wait_cb *wait_cb,
1865 void *cb_data,
1866 unsigned int timeout_sec)
1867 {
1868 enum start_bg_result sbgr = SBGR_ERROR;
1869 int ret;
1870 int wait_status;
1871 pid_t pid_seen;
1872 time_t time_limit;
1873
1874 /*
1875 * We do not allow clean-on-exit because the child process
1876 * should persist in the background and possibly/probably
1877 * after this process exits. So we don't want to kill the
1878 * child during our atexit routine.
1879 */
1880 if (cmd->clean_on_exit)
1881 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1882
1883 if (!cmd->trace2_child_class)
1884 cmd->trace2_child_class = "background";
1885
1886 ret = start_command(cmd);
1887 if (ret) {
1888 /*
1889 * We assume that if `start_command()` fails, we
1890 * either get a complete `trace2_child_start() /
1891 * trace2_child_exit()` pair or it fails before the
1892 * `trace2_child_start()` is emitted, so we do not
1893 * need to worry about it here.
1894 *
1895 * We also assume that `start_command()` does not add
1896 * us to the cleanup list. And that it calls
1897 * calls `child_process_clear()`.
1898 */
1899 sbgr = SBGR_ERROR;
1900 goto done;
1901 }
1902
1903 time(&time_limit);
1904 time_limit += timeout_sec;
1905
1906 wait:
1907 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1908
1909 if (!pid_seen) {
1910 /*
1911 * The child is currently running. Ask the callback
1912 * if the child is ready to do work or whether we
1913 * should keep waiting for it to boot up.
1914 */
1915 ret = (*wait_cb)(cmd, cb_data);
1916 if (!ret) {
1917 /*
1918 * The child is running and "ready".
1919 */
1920 trace2_child_ready(cmd, "ready");
1921 sbgr = SBGR_READY;
1922 goto done;
1923 } else if (ret > 0) {
1924 /*
1925 * The callback said to give it more time to boot up
1926 * (subject to our timeout limit).
1927 */
1928 time_t now;
1929
1930 time(&now);
1931 if (now < time_limit)
1932 goto wait;
1933
1934 /*
1935 * Our timeout has expired. We don't try to
1936 * kill the child, but rather let it continue
1937 * (hopefully) trying to startup.
1938 */
1939 trace2_child_ready(cmd, "timeout");
1940 sbgr = SBGR_TIMEOUT;
1941 goto done;
1942 } else {
1943 /*
1944 * The cb gave up on this child. It is still running,
1945 * but our cb got an error trying to probe it.
1946 */
1947 trace2_child_ready(cmd, "error");
1948 sbgr = SBGR_CB_ERROR;
1949 goto done;
1950 }
1951 }
1952
1953 else if (pid_seen == cmd->pid) {
1954 int child_code = -1;
1955
1956 /*
1957 * The child started, but exited or was terminated
1958 * before becoming "ready".
1959 *
1960 * We try to match the behavior of `wait_or_whine()`
1961 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1962 * and convert the child's status to a return code for
1963 * tracing purposes and emit the `trace2_child_exit()`
1964 * event.
1965 *
1966 * We do not want the wait_or_whine() error message
1967 * because we will be called by client-side library
1968 * routines.
1969 */
1970 if (WIFEXITED(wait_status))
1971 child_code = WEXITSTATUS(wait_status);
1972 else if (WIFSIGNALED(wait_status))
1973 child_code = WTERMSIG(wait_status) + 128;
1974 trace2_child_exit(cmd, child_code);
1975
1976 sbgr = SBGR_DIED;
1977 goto done;
1978 }
1979
1980 else if (pid_seen < 0 && errno == EINTR)
1981 goto wait;
1982
1983 trace2_child_exit(cmd, -1);
1984 sbgr = SBGR_ERROR;
1985
1986 done:
1987 child_process_clear(cmd);
1988 invalidate_lstat_cache();
1989 return sbgr;
1990 }