]> git.ipfire.org Git - thirdparty/linux.git/blob - security/integrity/ima/ima_crypto.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / security / integrity / ima / ima_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4 *
5 * Authors:
6 * Mimi Zohar <zohar@us.ibm.com>
7 * Kylene Hall <kjhall@us.ibm.com>
8 *
9 * File: ima_crypto.c
10 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/ratelimit.h>
16 #include <linux/file.h>
17 #include <linux/crypto.h>
18 #include <linux/scatterlist.h>
19 #include <linux/err.h>
20 #include <linux/slab.h>
21 #include <crypto/hash.h>
22
23 #include "ima.h"
24
25 /* minimum file size for ahash use */
26 static unsigned long ima_ahash_minsize;
27 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
28 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
29
30 /* default is 0 - 1 page. */
31 static int ima_maxorder;
32 static unsigned int ima_bufsize = PAGE_SIZE;
33
34 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
35 {
36 unsigned long long size;
37 int order;
38
39 size = memparse(val, NULL);
40 order = get_order(size);
41 if (order >= MAX_ORDER)
42 return -EINVAL;
43 ima_maxorder = order;
44 ima_bufsize = PAGE_SIZE << order;
45 return 0;
46 }
47
48 static const struct kernel_param_ops param_ops_bufsize = {
49 .set = param_set_bufsize,
50 .get = param_get_uint,
51 };
52 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
53
54 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
55 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
56
57 static struct crypto_shash *ima_shash_tfm;
58 static struct crypto_ahash *ima_ahash_tfm;
59
60 int __init ima_init_crypto(void)
61 {
62 long rc;
63
64 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
65 if (IS_ERR(ima_shash_tfm)) {
66 rc = PTR_ERR(ima_shash_tfm);
67 pr_err("Can not allocate %s (reason: %ld)\n",
68 hash_algo_name[ima_hash_algo], rc);
69 return rc;
70 }
71 pr_info("Allocated hash algorithm: %s\n",
72 hash_algo_name[ima_hash_algo]);
73 return 0;
74 }
75
76 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
77 {
78 struct crypto_shash *tfm = ima_shash_tfm;
79 int rc;
80
81 if (algo < 0 || algo >= HASH_ALGO__LAST)
82 algo = ima_hash_algo;
83
84 if (algo != ima_hash_algo) {
85 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
86 if (IS_ERR(tfm)) {
87 rc = PTR_ERR(tfm);
88 pr_err("Can not allocate %s (reason: %d)\n",
89 hash_algo_name[algo], rc);
90 }
91 }
92 return tfm;
93 }
94
95 static void ima_free_tfm(struct crypto_shash *tfm)
96 {
97 if (tfm != ima_shash_tfm)
98 crypto_free_shash(tfm);
99 }
100
101 /**
102 * ima_alloc_pages() - Allocate contiguous pages.
103 * @max_size: Maximum amount of memory to allocate.
104 * @allocated_size: Returned size of actual allocation.
105 * @last_warn: Should the min_size allocation warn or not.
106 *
107 * Tries to do opportunistic allocation for memory first trying to allocate
108 * max_size amount of memory and then splitting that until zero order is
109 * reached. Allocation is tried without generating allocation warnings unless
110 * last_warn is set. Last_warn set affects only last allocation of zero order.
111 *
112 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
113 *
114 * Return pointer to allocated memory, or NULL on failure.
115 */
116 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
117 int last_warn)
118 {
119 void *ptr;
120 int order = ima_maxorder;
121 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
122
123 if (order)
124 order = min(get_order(max_size), order);
125
126 for (; order; order--) {
127 ptr = (void *)__get_free_pages(gfp_mask, order);
128 if (ptr) {
129 *allocated_size = PAGE_SIZE << order;
130 return ptr;
131 }
132 }
133
134 /* order is zero - one page */
135
136 gfp_mask = GFP_KERNEL;
137
138 if (!last_warn)
139 gfp_mask |= __GFP_NOWARN;
140
141 ptr = (void *)__get_free_pages(gfp_mask, 0);
142 if (ptr) {
143 *allocated_size = PAGE_SIZE;
144 return ptr;
145 }
146
147 *allocated_size = 0;
148 return NULL;
149 }
150
151 /**
152 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
153 * @ptr: Pointer to allocated pages.
154 * @size: Size of allocated buffer.
155 */
156 static void ima_free_pages(void *ptr, size_t size)
157 {
158 if (!ptr)
159 return;
160 free_pages((unsigned long)ptr, get_order(size));
161 }
162
163 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
164 {
165 struct crypto_ahash *tfm = ima_ahash_tfm;
166 int rc;
167
168 if (algo < 0 || algo >= HASH_ALGO__LAST)
169 algo = ima_hash_algo;
170
171 if (algo != ima_hash_algo || !tfm) {
172 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
173 if (!IS_ERR(tfm)) {
174 if (algo == ima_hash_algo)
175 ima_ahash_tfm = tfm;
176 } else {
177 rc = PTR_ERR(tfm);
178 pr_err("Can not allocate %s (reason: %d)\n",
179 hash_algo_name[algo], rc);
180 }
181 }
182 return tfm;
183 }
184
185 static void ima_free_atfm(struct crypto_ahash *tfm)
186 {
187 if (tfm != ima_ahash_tfm)
188 crypto_free_ahash(tfm);
189 }
190
191 static inline int ahash_wait(int err, struct crypto_wait *wait)
192 {
193
194 err = crypto_wait_req(err, wait);
195
196 if (err)
197 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
198
199 return err;
200 }
201
202 static int ima_calc_file_hash_atfm(struct file *file,
203 struct ima_digest_data *hash,
204 struct crypto_ahash *tfm)
205 {
206 loff_t i_size, offset;
207 char *rbuf[2] = { NULL, };
208 int rc, rbuf_len, active = 0, ahash_rc = 0;
209 struct ahash_request *req;
210 struct scatterlist sg[1];
211 struct crypto_wait wait;
212 size_t rbuf_size[2];
213
214 hash->length = crypto_ahash_digestsize(tfm);
215
216 req = ahash_request_alloc(tfm, GFP_KERNEL);
217 if (!req)
218 return -ENOMEM;
219
220 crypto_init_wait(&wait);
221 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
222 CRYPTO_TFM_REQ_MAY_SLEEP,
223 crypto_req_done, &wait);
224
225 rc = ahash_wait(crypto_ahash_init(req), &wait);
226 if (rc)
227 goto out1;
228
229 i_size = i_size_read(file_inode(file));
230
231 if (i_size == 0)
232 goto out2;
233
234 /*
235 * Try to allocate maximum size of memory.
236 * Fail if even a single page cannot be allocated.
237 */
238 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
239 if (!rbuf[0]) {
240 rc = -ENOMEM;
241 goto out1;
242 }
243
244 /* Only allocate one buffer if that is enough. */
245 if (i_size > rbuf_size[0]) {
246 /*
247 * Try to allocate secondary buffer. If that fails fallback to
248 * using single buffering. Use previous memory allocation size
249 * as baseline for possible allocation size.
250 */
251 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
252 &rbuf_size[1], 0);
253 }
254
255 for (offset = 0; offset < i_size; offset += rbuf_len) {
256 if (!rbuf[1] && offset) {
257 /* Not using two buffers, and it is not the first
258 * read/request, wait for the completion of the
259 * previous ahash_update() request.
260 */
261 rc = ahash_wait(ahash_rc, &wait);
262 if (rc)
263 goto out3;
264 }
265 /* read buffer */
266 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
267 rc = integrity_kernel_read(file, offset, rbuf[active],
268 rbuf_len);
269 if (rc != rbuf_len) {
270 if (rc >= 0)
271 rc = -EINVAL;
272 /*
273 * Forward current rc, do not overwrite with return value
274 * from ahash_wait()
275 */
276 ahash_wait(ahash_rc, &wait);
277 goto out3;
278 }
279
280 if (rbuf[1] && offset) {
281 /* Using two buffers, and it is not the first
282 * read/request, wait for the completion of the
283 * previous ahash_update() request.
284 */
285 rc = ahash_wait(ahash_rc, &wait);
286 if (rc)
287 goto out3;
288 }
289
290 sg_init_one(&sg[0], rbuf[active], rbuf_len);
291 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
292
293 ahash_rc = crypto_ahash_update(req);
294
295 if (rbuf[1])
296 active = !active; /* swap buffers, if we use two */
297 }
298 /* wait for the last update request to complete */
299 rc = ahash_wait(ahash_rc, &wait);
300 out3:
301 ima_free_pages(rbuf[0], rbuf_size[0]);
302 ima_free_pages(rbuf[1], rbuf_size[1]);
303 out2:
304 if (!rc) {
305 ahash_request_set_crypt(req, NULL, hash->digest, 0);
306 rc = ahash_wait(crypto_ahash_final(req), &wait);
307 }
308 out1:
309 ahash_request_free(req);
310 return rc;
311 }
312
313 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
314 {
315 struct crypto_ahash *tfm;
316 int rc;
317
318 tfm = ima_alloc_atfm(hash->algo);
319 if (IS_ERR(tfm))
320 return PTR_ERR(tfm);
321
322 rc = ima_calc_file_hash_atfm(file, hash, tfm);
323
324 ima_free_atfm(tfm);
325
326 return rc;
327 }
328
329 static int ima_calc_file_hash_tfm(struct file *file,
330 struct ima_digest_data *hash,
331 struct crypto_shash *tfm)
332 {
333 loff_t i_size, offset = 0;
334 char *rbuf;
335 int rc;
336 SHASH_DESC_ON_STACK(shash, tfm);
337
338 shash->tfm = tfm;
339
340 hash->length = crypto_shash_digestsize(tfm);
341
342 rc = crypto_shash_init(shash);
343 if (rc != 0)
344 return rc;
345
346 i_size = i_size_read(file_inode(file));
347
348 if (i_size == 0)
349 goto out;
350
351 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
352 if (!rbuf)
353 return -ENOMEM;
354
355 while (offset < i_size) {
356 int rbuf_len;
357
358 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
359 if (rbuf_len < 0) {
360 rc = rbuf_len;
361 break;
362 }
363 if (rbuf_len == 0) { /* unexpected EOF */
364 rc = -EINVAL;
365 break;
366 }
367 offset += rbuf_len;
368
369 rc = crypto_shash_update(shash, rbuf, rbuf_len);
370 if (rc)
371 break;
372 }
373 kfree(rbuf);
374 out:
375 if (!rc)
376 rc = crypto_shash_final(shash, hash->digest);
377 return rc;
378 }
379
380 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
381 {
382 struct crypto_shash *tfm;
383 int rc;
384
385 tfm = ima_alloc_tfm(hash->algo);
386 if (IS_ERR(tfm))
387 return PTR_ERR(tfm);
388
389 rc = ima_calc_file_hash_tfm(file, hash, tfm);
390
391 ima_free_tfm(tfm);
392
393 return rc;
394 }
395
396 /*
397 * ima_calc_file_hash - calculate file hash
398 *
399 * Asynchronous hash (ahash) allows using HW acceleration for calculating
400 * a hash. ahash performance varies for different data sizes on different
401 * crypto accelerators. shash performance might be better for smaller files.
402 * The 'ima.ahash_minsize' module parameter allows specifying the best
403 * minimum file size for using ahash on the system.
404 *
405 * If the ima.ahash_minsize parameter is not specified, this function uses
406 * shash for the hash calculation. If ahash fails, it falls back to using
407 * shash.
408 */
409 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
410 {
411 loff_t i_size;
412 int rc;
413 struct file *f = file;
414 bool new_file_instance = false, modified_flags = false;
415
416 /*
417 * For consistency, fail file's opened with the O_DIRECT flag on
418 * filesystems mounted with/without DAX option.
419 */
420 if (file->f_flags & O_DIRECT) {
421 hash->length = hash_digest_size[ima_hash_algo];
422 hash->algo = ima_hash_algo;
423 return -EINVAL;
424 }
425
426 /* Open a new file instance in O_RDONLY if we cannot read */
427 if (!(file->f_mode & FMODE_READ)) {
428 int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
429 O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
430 flags |= O_RDONLY;
431 f = dentry_open(&file->f_path, flags, file->f_cred);
432 if (IS_ERR(f)) {
433 /*
434 * Cannot open the file again, lets modify f_flags
435 * of original and continue
436 */
437 pr_info_ratelimited("Unable to reopen file for reading.\n");
438 f = file;
439 f->f_flags |= FMODE_READ;
440 modified_flags = true;
441 } else {
442 new_file_instance = true;
443 }
444 }
445
446 i_size = i_size_read(file_inode(f));
447
448 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
449 rc = ima_calc_file_ahash(f, hash);
450 if (!rc)
451 goto out;
452 }
453
454 rc = ima_calc_file_shash(f, hash);
455 out:
456 if (new_file_instance)
457 fput(f);
458 else if (modified_flags)
459 f->f_flags &= ~FMODE_READ;
460 return rc;
461 }
462
463 /*
464 * Calculate the hash of template data
465 */
466 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
467 struct ima_template_desc *td,
468 int num_fields,
469 struct ima_digest_data *hash,
470 struct crypto_shash *tfm)
471 {
472 SHASH_DESC_ON_STACK(shash, tfm);
473 int rc, i;
474
475 shash->tfm = tfm;
476
477 hash->length = crypto_shash_digestsize(tfm);
478
479 rc = crypto_shash_init(shash);
480 if (rc != 0)
481 return rc;
482
483 for (i = 0; i < num_fields; i++) {
484 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
485 u8 *data_to_hash = field_data[i].data;
486 u32 datalen = field_data[i].len;
487 u32 datalen_to_hash =
488 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
489
490 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
491 rc = crypto_shash_update(shash,
492 (const u8 *) &datalen_to_hash,
493 sizeof(datalen_to_hash));
494 if (rc)
495 break;
496 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
497 memcpy(buffer, data_to_hash, datalen);
498 data_to_hash = buffer;
499 datalen = IMA_EVENT_NAME_LEN_MAX + 1;
500 }
501 rc = crypto_shash_update(shash, data_to_hash, datalen);
502 if (rc)
503 break;
504 }
505
506 if (!rc)
507 rc = crypto_shash_final(shash, hash->digest);
508
509 return rc;
510 }
511
512 int ima_calc_field_array_hash(struct ima_field_data *field_data,
513 struct ima_template_desc *desc, int num_fields,
514 struct ima_digest_data *hash)
515 {
516 struct crypto_shash *tfm;
517 int rc;
518
519 tfm = ima_alloc_tfm(hash->algo);
520 if (IS_ERR(tfm))
521 return PTR_ERR(tfm);
522
523 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
524 hash, tfm);
525
526 ima_free_tfm(tfm);
527
528 return rc;
529 }
530
531 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
532 struct ima_digest_data *hash,
533 struct crypto_ahash *tfm)
534 {
535 struct ahash_request *req;
536 struct scatterlist sg;
537 struct crypto_wait wait;
538 int rc, ahash_rc = 0;
539
540 hash->length = crypto_ahash_digestsize(tfm);
541
542 req = ahash_request_alloc(tfm, GFP_KERNEL);
543 if (!req)
544 return -ENOMEM;
545
546 crypto_init_wait(&wait);
547 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
548 CRYPTO_TFM_REQ_MAY_SLEEP,
549 crypto_req_done, &wait);
550
551 rc = ahash_wait(crypto_ahash_init(req), &wait);
552 if (rc)
553 goto out;
554
555 sg_init_one(&sg, buf, len);
556 ahash_request_set_crypt(req, &sg, NULL, len);
557
558 ahash_rc = crypto_ahash_update(req);
559
560 /* wait for the update request to complete */
561 rc = ahash_wait(ahash_rc, &wait);
562 if (!rc) {
563 ahash_request_set_crypt(req, NULL, hash->digest, 0);
564 rc = ahash_wait(crypto_ahash_final(req), &wait);
565 }
566 out:
567 ahash_request_free(req);
568 return rc;
569 }
570
571 static int calc_buffer_ahash(const void *buf, loff_t len,
572 struct ima_digest_data *hash)
573 {
574 struct crypto_ahash *tfm;
575 int rc;
576
577 tfm = ima_alloc_atfm(hash->algo);
578 if (IS_ERR(tfm))
579 return PTR_ERR(tfm);
580
581 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
582
583 ima_free_atfm(tfm);
584
585 return rc;
586 }
587
588 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
589 struct ima_digest_data *hash,
590 struct crypto_shash *tfm)
591 {
592 SHASH_DESC_ON_STACK(shash, tfm);
593 unsigned int len;
594 int rc;
595
596 shash->tfm = tfm;
597
598 hash->length = crypto_shash_digestsize(tfm);
599
600 rc = crypto_shash_init(shash);
601 if (rc != 0)
602 return rc;
603
604 while (size) {
605 len = size < PAGE_SIZE ? size : PAGE_SIZE;
606 rc = crypto_shash_update(shash, buf, len);
607 if (rc)
608 break;
609 buf += len;
610 size -= len;
611 }
612
613 if (!rc)
614 rc = crypto_shash_final(shash, hash->digest);
615 return rc;
616 }
617
618 static int calc_buffer_shash(const void *buf, loff_t len,
619 struct ima_digest_data *hash)
620 {
621 struct crypto_shash *tfm;
622 int rc;
623
624 tfm = ima_alloc_tfm(hash->algo);
625 if (IS_ERR(tfm))
626 return PTR_ERR(tfm);
627
628 rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
629
630 ima_free_tfm(tfm);
631 return rc;
632 }
633
634 int ima_calc_buffer_hash(const void *buf, loff_t len,
635 struct ima_digest_data *hash)
636 {
637 int rc;
638
639 if (ima_ahash_minsize && len >= ima_ahash_minsize) {
640 rc = calc_buffer_ahash(buf, len, hash);
641 if (!rc)
642 return 0;
643 }
644
645 return calc_buffer_shash(buf, len, hash);
646 }
647
648 static void __init ima_pcrread(u32 idx, struct tpm_digest *d)
649 {
650 if (!ima_tpm_chip)
651 return;
652
653 if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
654 pr_err("Error Communicating to TPM chip\n");
655 }
656
657 /*
658 * Calculate the boot aggregate hash
659 */
660 static int __init ima_calc_boot_aggregate_tfm(char *digest,
661 struct crypto_shash *tfm)
662 {
663 struct tpm_digest d = { .alg_id = TPM_ALG_SHA1, .digest = {0} };
664 int rc;
665 u32 i;
666 SHASH_DESC_ON_STACK(shash, tfm);
667
668 shash->tfm = tfm;
669
670 rc = crypto_shash_init(shash);
671 if (rc != 0)
672 return rc;
673
674 /* cumulative sha1 over tpm registers 0-7 */
675 for (i = TPM_PCR0; i < TPM_PCR8; i++) {
676 ima_pcrread(i, &d);
677 /* now accumulate with current aggregate */
678 rc = crypto_shash_update(shash, d.digest, TPM_DIGEST_SIZE);
679 }
680 if (!rc)
681 crypto_shash_final(shash, digest);
682 return rc;
683 }
684
685 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
686 {
687 struct crypto_shash *tfm;
688 int rc;
689
690 tfm = ima_alloc_tfm(hash->algo);
691 if (IS_ERR(tfm))
692 return PTR_ERR(tfm);
693
694 hash->length = crypto_shash_digestsize(tfm);
695 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
696
697 ima_free_tfm(tfm);
698
699 return rc;
700 }