]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - security/security.c
x86/mm/KASLR: Compute the size of the vmemmap section properly
[thirdparty/kernel/stable.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15 #include <linux/bpf.h>
16 #include <linux/capability.h>
17 #include <linux/dcache.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/integrity.h>
23 #include <linux/ima.h>
24 #include <linux/evm.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mman.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/backing-dev.h>
30 #include <linux/string.h>
31 #include <net/flow.h>
32
33 #include <trace/events/initcall.h>
34
35 #define MAX_LSM_EVM_XATTR 2
36
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX 10
39
40 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42
43 char *lsm_names;
44 /* Boot-time LSM user choice */
45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46 CONFIG_DEFAULT_SECURITY;
47
48 static void __init do_security_initcalls(void)
49 {
50 int ret;
51 initcall_t call;
52 initcall_entry_t *ce;
53
54 ce = __security_initcall_start;
55 trace_initcall_level("security");
56 while (ce < __security_initcall_end) {
57 call = initcall_from_entry(ce);
58 trace_initcall_start(call);
59 ret = call();
60 trace_initcall_finish(call, ret);
61 ce++;
62 }
63 }
64
65 /**
66 * security_init - initializes the security framework
67 *
68 * This should be called early in the kernel initialization sequence.
69 */
70 int __init security_init(void)
71 {
72 int i;
73 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
74
75 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
76 i++)
77 INIT_HLIST_HEAD(&list[i]);
78 pr_info("Security Framework initialized\n");
79
80 /*
81 * Load minor LSMs, with the capability module always first.
82 */
83 capability_add_hooks();
84 yama_add_hooks();
85 loadpin_add_hooks();
86
87 /*
88 * Load all the remaining security modules.
89 */
90 do_security_initcalls();
91
92 return 0;
93 }
94
95 /* Save user chosen LSM */
96 static int __init choose_lsm(char *str)
97 {
98 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
99 return 1;
100 }
101 __setup("security=", choose_lsm);
102
103 static bool match_last_lsm(const char *list, const char *lsm)
104 {
105 const char *last;
106
107 if (WARN_ON(!list || !lsm))
108 return false;
109 last = strrchr(list, ',');
110 if (last)
111 /* Pass the comma, strcmp() will check for '\0' */
112 last++;
113 else
114 last = list;
115 return !strcmp(last, lsm);
116 }
117
118 static int lsm_append(char *new, char **result)
119 {
120 char *cp;
121
122 if (*result == NULL) {
123 *result = kstrdup(new, GFP_KERNEL);
124 if (*result == NULL)
125 return -ENOMEM;
126 } else {
127 /* Check if it is the last registered name */
128 if (match_last_lsm(*result, new))
129 return 0;
130 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
131 if (cp == NULL)
132 return -ENOMEM;
133 kfree(*result);
134 *result = cp;
135 }
136 return 0;
137 }
138
139 /**
140 * security_module_enable - Load given security module on boot ?
141 * @module: the name of the module
142 *
143 * Each LSM must pass this method before registering its own operations
144 * to avoid security registration races. This method may also be used
145 * to check if your LSM is currently loaded during kernel initialization.
146 *
147 * Returns:
148 *
149 * true if:
150 *
151 * - The passed LSM is the one chosen by user at boot time,
152 * - or the passed LSM is configured as the default and the user did not
153 * choose an alternate LSM at boot time.
154 *
155 * Otherwise, return false.
156 */
157 int __init security_module_enable(const char *module)
158 {
159 return !strcmp(module, chosen_lsm);
160 }
161
162 /**
163 * security_add_hooks - Add a modules hooks to the hook lists.
164 * @hooks: the hooks to add
165 * @count: the number of hooks to add
166 * @lsm: the name of the security module
167 *
168 * Each LSM has to register its hooks with the infrastructure.
169 */
170 void __init security_add_hooks(struct security_hook_list *hooks, int count,
171 char *lsm)
172 {
173 int i;
174
175 for (i = 0; i < count; i++) {
176 hooks[i].lsm = lsm;
177 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
178 }
179 if (lsm_append(lsm, &lsm_names) < 0)
180 panic("%s - Cannot get early memory.\n", __func__);
181 }
182
183 int call_lsm_notifier(enum lsm_event event, void *data)
184 {
185 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
186 }
187 EXPORT_SYMBOL(call_lsm_notifier);
188
189 int register_lsm_notifier(struct notifier_block *nb)
190 {
191 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
192 }
193 EXPORT_SYMBOL(register_lsm_notifier);
194
195 int unregister_lsm_notifier(struct notifier_block *nb)
196 {
197 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
198 }
199 EXPORT_SYMBOL(unregister_lsm_notifier);
200
201 /*
202 * Hook list operation macros.
203 *
204 * call_void_hook:
205 * This is a hook that does not return a value.
206 *
207 * call_int_hook:
208 * This is a hook that returns a value.
209 */
210
211 #define call_void_hook(FUNC, ...) \
212 do { \
213 struct security_hook_list *P; \
214 \
215 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
216 P->hook.FUNC(__VA_ARGS__); \
217 } while (0)
218
219 #define call_int_hook(FUNC, IRC, ...) ({ \
220 int RC = IRC; \
221 do { \
222 struct security_hook_list *P; \
223 \
224 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
225 RC = P->hook.FUNC(__VA_ARGS__); \
226 if (RC != 0) \
227 break; \
228 } \
229 } while (0); \
230 RC; \
231 })
232
233 /* Security operations */
234
235 int security_binder_set_context_mgr(struct task_struct *mgr)
236 {
237 return call_int_hook(binder_set_context_mgr, 0, mgr);
238 }
239
240 int security_binder_transaction(struct task_struct *from,
241 struct task_struct *to)
242 {
243 return call_int_hook(binder_transaction, 0, from, to);
244 }
245
246 int security_binder_transfer_binder(struct task_struct *from,
247 struct task_struct *to)
248 {
249 return call_int_hook(binder_transfer_binder, 0, from, to);
250 }
251
252 int security_binder_transfer_file(struct task_struct *from,
253 struct task_struct *to, struct file *file)
254 {
255 return call_int_hook(binder_transfer_file, 0, from, to, file);
256 }
257
258 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
259 {
260 return call_int_hook(ptrace_access_check, 0, child, mode);
261 }
262
263 int security_ptrace_traceme(struct task_struct *parent)
264 {
265 return call_int_hook(ptrace_traceme, 0, parent);
266 }
267
268 int security_capget(struct task_struct *target,
269 kernel_cap_t *effective,
270 kernel_cap_t *inheritable,
271 kernel_cap_t *permitted)
272 {
273 return call_int_hook(capget, 0, target,
274 effective, inheritable, permitted);
275 }
276
277 int security_capset(struct cred *new, const struct cred *old,
278 const kernel_cap_t *effective,
279 const kernel_cap_t *inheritable,
280 const kernel_cap_t *permitted)
281 {
282 return call_int_hook(capset, 0, new, old,
283 effective, inheritable, permitted);
284 }
285
286 int security_capable(const struct cred *cred, struct user_namespace *ns,
287 int cap)
288 {
289 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
290 }
291
292 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
293 int cap)
294 {
295 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
296 }
297
298 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
299 {
300 return call_int_hook(quotactl, 0, cmds, type, id, sb);
301 }
302
303 int security_quota_on(struct dentry *dentry)
304 {
305 return call_int_hook(quota_on, 0, dentry);
306 }
307
308 int security_syslog(int type)
309 {
310 return call_int_hook(syslog, 0, type);
311 }
312
313 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
314 {
315 return call_int_hook(settime, 0, ts, tz);
316 }
317
318 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
319 {
320 struct security_hook_list *hp;
321 int cap_sys_admin = 1;
322 int rc;
323
324 /*
325 * The module will respond with a positive value if
326 * it thinks the __vm_enough_memory() call should be
327 * made with the cap_sys_admin set. If all of the modules
328 * agree that it should be set it will. If any module
329 * thinks it should not be set it won't.
330 */
331 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
332 rc = hp->hook.vm_enough_memory(mm, pages);
333 if (rc <= 0) {
334 cap_sys_admin = 0;
335 break;
336 }
337 }
338 return __vm_enough_memory(mm, pages, cap_sys_admin);
339 }
340
341 int security_bprm_set_creds(struct linux_binprm *bprm)
342 {
343 return call_int_hook(bprm_set_creds, 0, bprm);
344 }
345
346 int security_bprm_check(struct linux_binprm *bprm)
347 {
348 int ret;
349
350 ret = call_int_hook(bprm_check_security, 0, bprm);
351 if (ret)
352 return ret;
353 return ima_bprm_check(bprm);
354 }
355
356 void security_bprm_committing_creds(struct linux_binprm *bprm)
357 {
358 call_void_hook(bprm_committing_creds, bprm);
359 }
360
361 void security_bprm_committed_creds(struct linux_binprm *bprm)
362 {
363 call_void_hook(bprm_committed_creds, bprm);
364 }
365
366 int security_sb_alloc(struct super_block *sb)
367 {
368 return call_int_hook(sb_alloc_security, 0, sb);
369 }
370
371 void security_sb_free(struct super_block *sb)
372 {
373 call_void_hook(sb_free_security, sb);
374 }
375
376 int security_sb_copy_data(char *orig, char *copy)
377 {
378 return call_int_hook(sb_copy_data, 0, orig, copy);
379 }
380 EXPORT_SYMBOL(security_sb_copy_data);
381
382 int security_sb_remount(struct super_block *sb, void *data)
383 {
384 return call_int_hook(sb_remount, 0, sb, data);
385 }
386
387 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
388 {
389 return call_int_hook(sb_kern_mount, 0, sb, flags, data);
390 }
391
392 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
393 {
394 return call_int_hook(sb_show_options, 0, m, sb);
395 }
396
397 int security_sb_statfs(struct dentry *dentry)
398 {
399 return call_int_hook(sb_statfs, 0, dentry);
400 }
401
402 int security_sb_mount(const char *dev_name, const struct path *path,
403 const char *type, unsigned long flags, void *data)
404 {
405 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
406 }
407
408 int security_sb_umount(struct vfsmount *mnt, int flags)
409 {
410 return call_int_hook(sb_umount, 0, mnt, flags);
411 }
412
413 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
414 {
415 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
416 }
417
418 int security_sb_set_mnt_opts(struct super_block *sb,
419 struct security_mnt_opts *opts,
420 unsigned long kern_flags,
421 unsigned long *set_kern_flags)
422 {
423 return call_int_hook(sb_set_mnt_opts,
424 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
425 opts, kern_flags, set_kern_flags);
426 }
427 EXPORT_SYMBOL(security_sb_set_mnt_opts);
428
429 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
430 struct super_block *newsb,
431 unsigned long kern_flags,
432 unsigned long *set_kern_flags)
433 {
434 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
435 kern_flags, set_kern_flags);
436 }
437 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
438
439 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
440 {
441 return call_int_hook(sb_parse_opts_str, 0, options, opts);
442 }
443 EXPORT_SYMBOL(security_sb_parse_opts_str);
444
445 int security_inode_alloc(struct inode *inode)
446 {
447 inode->i_security = NULL;
448 return call_int_hook(inode_alloc_security, 0, inode);
449 }
450
451 void security_inode_free(struct inode *inode)
452 {
453 integrity_inode_free(inode);
454 call_void_hook(inode_free_security, inode);
455 }
456
457 int security_dentry_init_security(struct dentry *dentry, int mode,
458 const struct qstr *name, void **ctx,
459 u32 *ctxlen)
460 {
461 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
462 name, ctx, ctxlen);
463 }
464 EXPORT_SYMBOL(security_dentry_init_security);
465
466 int security_dentry_create_files_as(struct dentry *dentry, int mode,
467 struct qstr *name,
468 const struct cred *old, struct cred *new)
469 {
470 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
471 name, old, new);
472 }
473 EXPORT_SYMBOL(security_dentry_create_files_as);
474
475 int security_inode_init_security(struct inode *inode, struct inode *dir,
476 const struct qstr *qstr,
477 const initxattrs initxattrs, void *fs_data)
478 {
479 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
480 struct xattr *lsm_xattr, *evm_xattr, *xattr;
481 int ret;
482
483 if (unlikely(IS_PRIVATE(inode)))
484 return 0;
485
486 if (!initxattrs)
487 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
488 dir, qstr, NULL, NULL, NULL);
489 memset(new_xattrs, 0, sizeof(new_xattrs));
490 lsm_xattr = new_xattrs;
491 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
492 &lsm_xattr->name,
493 &lsm_xattr->value,
494 &lsm_xattr->value_len);
495 if (ret)
496 goto out;
497
498 evm_xattr = lsm_xattr + 1;
499 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
500 if (ret)
501 goto out;
502 ret = initxattrs(inode, new_xattrs, fs_data);
503 out:
504 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
505 kfree(xattr->value);
506 return (ret == -EOPNOTSUPP) ? 0 : ret;
507 }
508 EXPORT_SYMBOL(security_inode_init_security);
509
510 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
511 const struct qstr *qstr, const char **name,
512 void **value, size_t *len)
513 {
514 if (unlikely(IS_PRIVATE(inode)))
515 return -EOPNOTSUPP;
516 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
517 qstr, name, value, len);
518 }
519 EXPORT_SYMBOL(security_old_inode_init_security);
520
521 #ifdef CONFIG_SECURITY_PATH
522 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
523 unsigned int dev)
524 {
525 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
526 return 0;
527 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
528 }
529 EXPORT_SYMBOL(security_path_mknod);
530
531 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
532 {
533 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
534 return 0;
535 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
536 }
537 EXPORT_SYMBOL(security_path_mkdir);
538
539 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
540 {
541 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
542 return 0;
543 return call_int_hook(path_rmdir, 0, dir, dentry);
544 }
545
546 int security_path_unlink(const struct path *dir, struct dentry *dentry)
547 {
548 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
549 return 0;
550 return call_int_hook(path_unlink, 0, dir, dentry);
551 }
552 EXPORT_SYMBOL(security_path_unlink);
553
554 int security_path_symlink(const struct path *dir, struct dentry *dentry,
555 const char *old_name)
556 {
557 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
558 return 0;
559 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
560 }
561
562 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
563 struct dentry *new_dentry)
564 {
565 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
566 return 0;
567 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
568 }
569
570 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
571 const struct path *new_dir, struct dentry *new_dentry,
572 unsigned int flags)
573 {
574 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
575 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
576 return 0;
577
578 if (flags & RENAME_EXCHANGE) {
579 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
580 old_dir, old_dentry);
581 if (err)
582 return err;
583 }
584
585 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
586 new_dentry);
587 }
588 EXPORT_SYMBOL(security_path_rename);
589
590 int security_path_truncate(const struct path *path)
591 {
592 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
593 return 0;
594 return call_int_hook(path_truncate, 0, path);
595 }
596
597 int security_path_chmod(const struct path *path, umode_t mode)
598 {
599 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
600 return 0;
601 return call_int_hook(path_chmod, 0, path, mode);
602 }
603
604 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
605 {
606 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
607 return 0;
608 return call_int_hook(path_chown, 0, path, uid, gid);
609 }
610
611 int security_path_chroot(const struct path *path)
612 {
613 return call_int_hook(path_chroot, 0, path);
614 }
615 #endif
616
617 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
618 {
619 if (unlikely(IS_PRIVATE(dir)))
620 return 0;
621 return call_int_hook(inode_create, 0, dir, dentry, mode);
622 }
623 EXPORT_SYMBOL_GPL(security_inode_create);
624
625 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
626 struct dentry *new_dentry)
627 {
628 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
629 return 0;
630 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
631 }
632
633 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
634 {
635 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
636 return 0;
637 return call_int_hook(inode_unlink, 0, dir, dentry);
638 }
639
640 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
641 const char *old_name)
642 {
643 if (unlikely(IS_PRIVATE(dir)))
644 return 0;
645 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
646 }
647
648 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
649 {
650 if (unlikely(IS_PRIVATE(dir)))
651 return 0;
652 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
653 }
654 EXPORT_SYMBOL_GPL(security_inode_mkdir);
655
656 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
657 {
658 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
659 return 0;
660 return call_int_hook(inode_rmdir, 0, dir, dentry);
661 }
662
663 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
664 {
665 if (unlikely(IS_PRIVATE(dir)))
666 return 0;
667 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
668 }
669
670 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
671 struct inode *new_dir, struct dentry *new_dentry,
672 unsigned int flags)
673 {
674 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
675 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
676 return 0;
677
678 if (flags & RENAME_EXCHANGE) {
679 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
680 old_dir, old_dentry);
681 if (err)
682 return err;
683 }
684
685 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
686 new_dir, new_dentry);
687 }
688
689 int security_inode_readlink(struct dentry *dentry)
690 {
691 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
692 return 0;
693 return call_int_hook(inode_readlink, 0, dentry);
694 }
695
696 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
697 bool rcu)
698 {
699 if (unlikely(IS_PRIVATE(inode)))
700 return 0;
701 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
702 }
703
704 int security_inode_permission(struct inode *inode, int mask)
705 {
706 if (unlikely(IS_PRIVATE(inode)))
707 return 0;
708 return call_int_hook(inode_permission, 0, inode, mask);
709 }
710
711 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
712 {
713 int ret;
714
715 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
716 return 0;
717 ret = call_int_hook(inode_setattr, 0, dentry, attr);
718 if (ret)
719 return ret;
720 return evm_inode_setattr(dentry, attr);
721 }
722 EXPORT_SYMBOL_GPL(security_inode_setattr);
723
724 int security_inode_getattr(const struct path *path)
725 {
726 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
727 return 0;
728 return call_int_hook(inode_getattr, 0, path);
729 }
730
731 int security_inode_setxattr(struct dentry *dentry, const char *name,
732 const void *value, size_t size, int flags)
733 {
734 int ret;
735
736 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
737 return 0;
738 /*
739 * SELinux and Smack integrate the cap call,
740 * so assume that all LSMs supplying this call do so.
741 */
742 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
743 flags);
744
745 if (ret == 1)
746 ret = cap_inode_setxattr(dentry, name, value, size, flags);
747 if (ret)
748 return ret;
749 ret = ima_inode_setxattr(dentry, name, value, size);
750 if (ret)
751 return ret;
752 return evm_inode_setxattr(dentry, name, value, size);
753 }
754
755 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
756 const void *value, size_t size, int flags)
757 {
758 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
759 return;
760 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
761 evm_inode_post_setxattr(dentry, name, value, size);
762 }
763
764 int security_inode_getxattr(struct dentry *dentry, const char *name)
765 {
766 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
767 return 0;
768 return call_int_hook(inode_getxattr, 0, dentry, name);
769 }
770
771 int security_inode_listxattr(struct dentry *dentry)
772 {
773 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
774 return 0;
775 return call_int_hook(inode_listxattr, 0, dentry);
776 }
777
778 int security_inode_removexattr(struct dentry *dentry, const char *name)
779 {
780 int ret;
781
782 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
783 return 0;
784 /*
785 * SELinux and Smack integrate the cap call,
786 * so assume that all LSMs supplying this call do so.
787 */
788 ret = call_int_hook(inode_removexattr, 1, dentry, name);
789 if (ret == 1)
790 ret = cap_inode_removexattr(dentry, name);
791 if (ret)
792 return ret;
793 ret = ima_inode_removexattr(dentry, name);
794 if (ret)
795 return ret;
796 return evm_inode_removexattr(dentry, name);
797 }
798
799 int security_inode_need_killpriv(struct dentry *dentry)
800 {
801 return call_int_hook(inode_need_killpriv, 0, dentry);
802 }
803
804 int security_inode_killpriv(struct dentry *dentry)
805 {
806 return call_int_hook(inode_killpriv, 0, dentry);
807 }
808
809 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
810 {
811 struct security_hook_list *hp;
812 int rc;
813
814 if (unlikely(IS_PRIVATE(inode)))
815 return -EOPNOTSUPP;
816 /*
817 * Only one module will provide an attribute with a given name.
818 */
819 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
820 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
821 if (rc != -EOPNOTSUPP)
822 return rc;
823 }
824 return -EOPNOTSUPP;
825 }
826
827 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
828 {
829 struct security_hook_list *hp;
830 int rc;
831
832 if (unlikely(IS_PRIVATE(inode)))
833 return -EOPNOTSUPP;
834 /*
835 * Only one module will provide an attribute with a given name.
836 */
837 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
838 rc = hp->hook.inode_setsecurity(inode, name, value, size,
839 flags);
840 if (rc != -EOPNOTSUPP)
841 return rc;
842 }
843 return -EOPNOTSUPP;
844 }
845
846 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
847 {
848 if (unlikely(IS_PRIVATE(inode)))
849 return 0;
850 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
851 }
852 EXPORT_SYMBOL(security_inode_listsecurity);
853
854 void security_inode_getsecid(struct inode *inode, u32 *secid)
855 {
856 call_void_hook(inode_getsecid, inode, secid);
857 }
858
859 int security_inode_copy_up(struct dentry *src, struct cred **new)
860 {
861 return call_int_hook(inode_copy_up, 0, src, new);
862 }
863 EXPORT_SYMBOL(security_inode_copy_up);
864
865 int security_inode_copy_up_xattr(const char *name)
866 {
867 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
868 }
869 EXPORT_SYMBOL(security_inode_copy_up_xattr);
870
871 int security_file_permission(struct file *file, int mask)
872 {
873 int ret;
874
875 ret = call_int_hook(file_permission, 0, file, mask);
876 if (ret)
877 return ret;
878
879 return fsnotify_perm(file, mask);
880 }
881
882 int security_file_alloc(struct file *file)
883 {
884 return call_int_hook(file_alloc_security, 0, file);
885 }
886
887 void security_file_free(struct file *file)
888 {
889 call_void_hook(file_free_security, file);
890 }
891
892 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
893 {
894 return call_int_hook(file_ioctl, 0, file, cmd, arg);
895 }
896
897 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
898 {
899 /*
900 * Does we have PROT_READ and does the application expect
901 * it to imply PROT_EXEC? If not, nothing to talk about...
902 */
903 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
904 return prot;
905 if (!(current->personality & READ_IMPLIES_EXEC))
906 return prot;
907 /*
908 * if that's an anonymous mapping, let it.
909 */
910 if (!file)
911 return prot | PROT_EXEC;
912 /*
913 * ditto if it's not on noexec mount, except that on !MMU we need
914 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
915 */
916 if (!path_noexec(&file->f_path)) {
917 #ifndef CONFIG_MMU
918 if (file->f_op->mmap_capabilities) {
919 unsigned caps = file->f_op->mmap_capabilities(file);
920 if (!(caps & NOMMU_MAP_EXEC))
921 return prot;
922 }
923 #endif
924 return prot | PROT_EXEC;
925 }
926 /* anything on noexec mount won't get PROT_EXEC */
927 return prot;
928 }
929
930 int security_mmap_file(struct file *file, unsigned long prot,
931 unsigned long flags)
932 {
933 int ret;
934 ret = call_int_hook(mmap_file, 0, file, prot,
935 mmap_prot(file, prot), flags);
936 if (ret)
937 return ret;
938 return ima_file_mmap(file, prot);
939 }
940
941 int security_mmap_addr(unsigned long addr)
942 {
943 return call_int_hook(mmap_addr, 0, addr);
944 }
945
946 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
947 unsigned long prot)
948 {
949 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
950 }
951
952 int security_file_lock(struct file *file, unsigned int cmd)
953 {
954 return call_int_hook(file_lock, 0, file, cmd);
955 }
956
957 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
958 {
959 return call_int_hook(file_fcntl, 0, file, cmd, arg);
960 }
961
962 void security_file_set_fowner(struct file *file)
963 {
964 call_void_hook(file_set_fowner, file);
965 }
966
967 int security_file_send_sigiotask(struct task_struct *tsk,
968 struct fown_struct *fown, int sig)
969 {
970 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
971 }
972
973 int security_file_receive(struct file *file)
974 {
975 return call_int_hook(file_receive, 0, file);
976 }
977
978 int security_file_open(struct file *file)
979 {
980 int ret;
981
982 ret = call_int_hook(file_open, 0, file);
983 if (ret)
984 return ret;
985
986 return fsnotify_perm(file, MAY_OPEN);
987 }
988
989 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
990 {
991 return call_int_hook(task_alloc, 0, task, clone_flags);
992 }
993
994 void security_task_free(struct task_struct *task)
995 {
996 call_void_hook(task_free, task);
997 }
998
999 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1000 {
1001 return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1002 }
1003
1004 void security_cred_free(struct cred *cred)
1005 {
1006 /*
1007 * There is a failure case in prepare_creds() that
1008 * may result in a call here with ->security being NULL.
1009 */
1010 if (unlikely(cred->security == NULL))
1011 return;
1012
1013 call_void_hook(cred_free, cred);
1014 }
1015
1016 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1017 {
1018 return call_int_hook(cred_prepare, 0, new, old, gfp);
1019 }
1020
1021 void security_transfer_creds(struct cred *new, const struct cred *old)
1022 {
1023 call_void_hook(cred_transfer, new, old);
1024 }
1025
1026 void security_cred_getsecid(const struct cred *c, u32 *secid)
1027 {
1028 *secid = 0;
1029 call_void_hook(cred_getsecid, c, secid);
1030 }
1031 EXPORT_SYMBOL(security_cred_getsecid);
1032
1033 int security_kernel_act_as(struct cred *new, u32 secid)
1034 {
1035 return call_int_hook(kernel_act_as, 0, new, secid);
1036 }
1037
1038 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1039 {
1040 return call_int_hook(kernel_create_files_as, 0, new, inode);
1041 }
1042
1043 int security_kernel_module_request(char *kmod_name)
1044 {
1045 int ret;
1046
1047 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1048 if (ret)
1049 return ret;
1050 return integrity_kernel_module_request(kmod_name);
1051 }
1052
1053 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1054 {
1055 int ret;
1056
1057 ret = call_int_hook(kernel_read_file, 0, file, id);
1058 if (ret)
1059 return ret;
1060 return ima_read_file(file, id);
1061 }
1062 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1063
1064 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1065 enum kernel_read_file_id id)
1066 {
1067 int ret;
1068
1069 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1070 if (ret)
1071 return ret;
1072 return ima_post_read_file(file, buf, size, id);
1073 }
1074 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1075
1076 int security_kernel_load_data(enum kernel_load_data_id id)
1077 {
1078 int ret;
1079
1080 ret = call_int_hook(kernel_load_data, 0, id);
1081 if (ret)
1082 return ret;
1083 return ima_load_data(id);
1084 }
1085 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1086
1087 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1088 int flags)
1089 {
1090 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1091 }
1092
1093 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1094 {
1095 return call_int_hook(task_setpgid, 0, p, pgid);
1096 }
1097
1098 int security_task_getpgid(struct task_struct *p)
1099 {
1100 return call_int_hook(task_getpgid, 0, p);
1101 }
1102
1103 int security_task_getsid(struct task_struct *p)
1104 {
1105 return call_int_hook(task_getsid, 0, p);
1106 }
1107
1108 void security_task_getsecid(struct task_struct *p, u32 *secid)
1109 {
1110 *secid = 0;
1111 call_void_hook(task_getsecid, p, secid);
1112 }
1113 EXPORT_SYMBOL(security_task_getsecid);
1114
1115 int security_task_setnice(struct task_struct *p, int nice)
1116 {
1117 return call_int_hook(task_setnice, 0, p, nice);
1118 }
1119
1120 int security_task_setioprio(struct task_struct *p, int ioprio)
1121 {
1122 return call_int_hook(task_setioprio, 0, p, ioprio);
1123 }
1124
1125 int security_task_getioprio(struct task_struct *p)
1126 {
1127 return call_int_hook(task_getioprio, 0, p);
1128 }
1129
1130 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1131 unsigned int flags)
1132 {
1133 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1134 }
1135
1136 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1137 struct rlimit *new_rlim)
1138 {
1139 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1140 }
1141
1142 int security_task_setscheduler(struct task_struct *p)
1143 {
1144 return call_int_hook(task_setscheduler, 0, p);
1145 }
1146
1147 int security_task_getscheduler(struct task_struct *p)
1148 {
1149 return call_int_hook(task_getscheduler, 0, p);
1150 }
1151
1152 int security_task_movememory(struct task_struct *p)
1153 {
1154 return call_int_hook(task_movememory, 0, p);
1155 }
1156
1157 int security_task_kill(struct task_struct *p, struct siginfo *info,
1158 int sig, const struct cred *cred)
1159 {
1160 return call_int_hook(task_kill, 0, p, info, sig, cred);
1161 }
1162
1163 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1164 unsigned long arg4, unsigned long arg5)
1165 {
1166 int thisrc;
1167 int rc = -ENOSYS;
1168 struct security_hook_list *hp;
1169
1170 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1171 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1172 if (thisrc != -ENOSYS) {
1173 rc = thisrc;
1174 if (thisrc != 0)
1175 break;
1176 }
1177 }
1178 return rc;
1179 }
1180
1181 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1182 {
1183 call_void_hook(task_to_inode, p, inode);
1184 }
1185
1186 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1187 {
1188 return call_int_hook(ipc_permission, 0, ipcp, flag);
1189 }
1190
1191 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1192 {
1193 *secid = 0;
1194 call_void_hook(ipc_getsecid, ipcp, secid);
1195 }
1196
1197 int security_msg_msg_alloc(struct msg_msg *msg)
1198 {
1199 return call_int_hook(msg_msg_alloc_security, 0, msg);
1200 }
1201
1202 void security_msg_msg_free(struct msg_msg *msg)
1203 {
1204 call_void_hook(msg_msg_free_security, msg);
1205 }
1206
1207 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1208 {
1209 return call_int_hook(msg_queue_alloc_security, 0, msq);
1210 }
1211
1212 void security_msg_queue_free(struct kern_ipc_perm *msq)
1213 {
1214 call_void_hook(msg_queue_free_security, msq);
1215 }
1216
1217 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1218 {
1219 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1220 }
1221
1222 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1223 {
1224 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1225 }
1226
1227 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1228 struct msg_msg *msg, int msqflg)
1229 {
1230 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1231 }
1232
1233 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1234 struct task_struct *target, long type, int mode)
1235 {
1236 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1237 }
1238
1239 int security_shm_alloc(struct kern_ipc_perm *shp)
1240 {
1241 return call_int_hook(shm_alloc_security, 0, shp);
1242 }
1243
1244 void security_shm_free(struct kern_ipc_perm *shp)
1245 {
1246 call_void_hook(shm_free_security, shp);
1247 }
1248
1249 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1250 {
1251 return call_int_hook(shm_associate, 0, shp, shmflg);
1252 }
1253
1254 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1255 {
1256 return call_int_hook(shm_shmctl, 0, shp, cmd);
1257 }
1258
1259 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1260 {
1261 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1262 }
1263
1264 int security_sem_alloc(struct kern_ipc_perm *sma)
1265 {
1266 return call_int_hook(sem_alloc_security, 0, sma);
1267 }
1268
1269 void security_sem_free(struct kern_ipc_perm *sma)
1270 {
1271 call_void_hook(sem_free_security, sma);
1272 }
1273
1274 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1275 {
1276 return call_int_hook(sem_associate, 0, sma, semflg);
1277 }
1278
1279 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1280 {
1281 return call_int_hook(sem_semctl, 0, sma, cmd);
1282 }
1283
1284 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1285 unsigned nsops, int alter)
1286 {
1287 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1288 }
1289
1290 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1291 {
1292 if (unlikely(inode && IS_PRIVATE(inode)))
1293 return;
1294 call_void_hook(d_instantiate, dentry, inode);
1295 }
1296 EXPORT_SYMBOL(security_d_instantiate);
1297
1298 int security_getprocattr(struct task_struct *p, char *name, char **value)
1299 {
1300 return call_int_hook(getprocattr, -EINVAL, p, name, value);
1301 }
1302
1303 int security_setprocattr(const char *name, void *value, size_t size)
1304 {
1305 return call_int_hook(setprocattr, -EINVAL, name, value, size);
1306 }
1307
1308 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1309 {
1310 return call_int_hook(netlink_send, 0, sk, skb);
1311 }
1312
1313 int security_ismaclabel(const char *name)
1314 {
1315 return call_int_hook(ismaclabel, 0, name);
1316 }
1317 EXPORT_SYMBOL(security_ismaclabel);
1318
1319 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1320 {
1321 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1322 seclen);
1323 }
1324 EXPORT_SYMBOL(security_secid_to_secctx);
1325
1326 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1327 {
1328 *secid = 0;
1329 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1330 }
1331 EXPORT_SYMBOL(security_secctx_to_secid);
1332
1333 void security_release_secctx(char *secdata, u32 seclen)
1334 {
1335 call_void_hook(release_secctx, secdata, seclen);
1336 }
1337 EXPORT_SYMBOL(security_release_secctx);
1338
1339 void security_inode_invalidate_secctx(struct inode *inode)
1340 {
1341 call_void_hook(inode_invalidate_secctx, inode);
1342 }
1343 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1344
1345 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1346 {
1347 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1348 }
1349 EXPORT_SYMBOL(security_inode_notifysecctx);
1350
1351 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1352 {
1353 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1354 }
1355 EXPORT_SYMBOL(security_inode_setsecctx);
1356
1357 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1358 {
1359 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1360 }
1361 EXPORT_SYMBOL(security_inode_getsecctx);
1362
1363 #ifdef CONFIG_SECURITY_NETWORK
1364
1365 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1366 {
1367 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1368 }
1369 EXPORT_SYMBOL(security_unix_stream_connect);
1370
1371 int security_unix_may_send(struct socket *sock, struct socket *other)
1372 {
1373 return call_int_hook(unix_may_send, 0, sock, other);
1374 }
1375 EXPORT_SYMBOL(security_unix_may_send);
1376
1377 int security_socket_create(int family, int type, int protocol, int kern)
1378 {
1379 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1380 }
1381
1382 int security_socket_post_create(struct socket *sock, int family,
1383 int type, int protocol, int kern)
1384 {
1385 return call_int_hook(socket_post_create, 0, sock, family, type,
1386 protocol, kern);
1387 }
1388
1389 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1390 {
1391 return call_int_hook(socket_socketpair, 0, socka, sockb);
1392 }
1393 EXPORT_SYMBOL(security_socket_socketpair);
1394
1395 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1396 {
1397 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1398 }
1399
1400 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1401 {
1402 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1403 }
1404
1405 int security_socket_listen(struct socket *sock, int backlog)
1406 {
1407 return call_int_hook(socket_listen, 0, sock, backlog);
1408 }
1409
1410 int security_socket_accept(struct socket *sock, struct socket *newsock)
1411 {
1412 return call_int_hook(socket_accept, 0, sock, newsock);
1413 }
1414
1415 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1416 {
1417 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1418 }
1419
1420 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1421 int size, int flags)
1422 {
1423 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1424 }
1425
1426 int security_socket_getsockname(struct socket *sock)
1427 {
1428 return call_int_hook(socket_getsockname, 0, sock);
1429 }
1430
1431 int security_socket_getpeername(struct socket *sock)
1432 {
1433 return call_int_hook(socket_getpeername, 0, sock);
1434 }
1435
1436 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1437 {
1438 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1439 }
1440
1441 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1442 {
1443 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1444 }
1445
1446 int security_socket_shutdown(struct socket *sock, int how)
1447 {
1448 return call_int_hook(socket_shutdown, 0, sock, how);
1449 }
1450
1451 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1452 {
1453 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1454 }
1455 EXPORT_SYMBOL(security_sock_rcv_skb);
1456
1457 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1458 int __user *optlen, unsigned len)
1459 {
1460 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1461 optval, optlen, len);
1462 }
1463
1464 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1465 {
1466 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1467 skb, secid);
1468 }
1469 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1470
1471 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1472 {
1473 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1474 }
1475
1476 void security_sk_free(struct sock *sk)
1477 {
1478 call_void_hook(sk_free_security, sk);
1479 }
1480
1481 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1482 {
1483 call_void_hook(sk_clone_security, sk, newsk);
1484 }
1485 EXPORT_SYMBOL(security_sk_clone);
1486
1487 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1488 {
1489 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1490 }
1491 EXPORT_SYMBOL(security_sk_classify_flow);
1492
1493 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1494 {
1495 call_void_hook(req_classify_flow, req, fl);
1496 }
1497 EXPORT_SYMBOL(security_req_classify_flow);
1498
1499 void security_sock_graft(struct sock *sk, struct socket *parent)
1500 {
1501 call_void_hook(sock_graft, sk, parent);
1502 }
1503 EXPORT_SYMBOL(security_sock_graft);
1504
1505 int security_inet_conn_request(struct sock *sk,
1506 struct sk_buff *skb, struct request_sock *req)
1507 {
1508 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1509 }
1510 EXPORT_SYMBOL(security_inet_conn_request);
1511
1512 void security_inet_csk_clone(struct sock *newsk,
1513 const struct request_sock *req)
1514 {
1515 call_void_hook(inet_csk_clone, newsk, req);
1516 }
1517
1518 void security_inet_conn_established(struct sock *sk,
1519 struct sk_buff *skb)
1520 {
1521 call_void_hook(inet_conn_established, sk, skb);
1522 }
1523 EXPORT_SYMBOL(security_inet_conn_established);
1524
1525 int security_secmark_relabel_packet(u32 secid)
1526 {
1527 return call_int_hook(secmark_relabel_packet, 0, secid);
1528 }
1529 EXPORT_SYMBOL(security_secmark_relabel_packet);
1530
1531 void security_secmark_refcount_inc(void)
1532 {
1533 call_void_hook(secmark_refcount_inc);
1534 }
1535 EXPORT_SYMBOL(security_secmark_refcount_inc);
1536
1537 void security_secmark_refcount_dec(void)
1538 {
1539 call_void_hook(secmark_refcount_dec);
1540 }
1541 EXPORT_SYMBOL(security_secmark_refcount_dec);
1542
1543 int security_tun_dev_alloc_security(void **security)
1544 {
1545 return call_int_hook(tun_dev_alloc_security, 0, security);
1546 }
1547 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1548
1549 void security_tun_dev_free_security(void *security)
1550 {
1551 call_void_hook(tun_dev_free_security, security);
1552 }
1553 EXPORT_SYMBOL(security_tun_dev_free_security);
1554
1555 int security_tun_dev_create(void)
1556 {
1557 return call_int_hook(tun_dev_create, 0);
1558 }
1559 EXPORT_SYMBOL(security_tun_dev_create);
1560
1561 int security_tun_dev_attach_queue(void *security)
1562 {
1563 return call_int_hook(tun_dev_attach_queue, 0, security);
1564 }
1565 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1566
1567 int security_tun_dev_attach(struct sock *sk, void *security)
1568 {
1569 return call_int_hook(tun_dev_attach, 0, sk, security);
1570 }
1571 EXPORT_SYMBOL(security_tun_dev_attach);
1572
1573 int security_tun_dev_open(void *security)
1574 {
1575 return call_int_hook(tun_dev_open, 0, security);
1576 }
1577 EXPORT_SYMBOL(security_tun_dev_open);
1578
1579 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1580 {
1581 return call_int_hook(sctp_assoc_request, 0, ep, skb);
1582 }
1583 EXPORT_SYMBOL(security_sctp_assoc_request);
1584
1585 int security_sctp_bind_connect(struct sock *sk, int optname,
1586 struct sockaddr *address, int addrlen)
1587 {
1588 return call_int_hook(sctp_bind_connect, 0, sk, optname,
1589 address, addrlen);
1590 }
1591 EXPORT_SYMBOL(security_sctp_bind_connect);
1592
1593 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1594 struct sock *newsk)
1595 {
1596 call_void_hook(sctp_sk_clone, ep, sk, newsk);
1597 }
1598 EXPORT_SYMBOL(security_sctp_sk_clone);
1599
1600 #endif /* CONFIG_SECURITY_NETWORK */
1601
1602 #ifdef CONFIG_SECURITY_INFINIBAND
1603
1604 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1605 {
1606 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1607 }
1608 EXPORT_SYMBOL(security_ib_pkey_access);
1609
1610 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1611 {
1612 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1613 }
1614 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1615
1616 int security_ib_alloc_security(void **sec)
1617 {
1618 return call_int_hook(ib_alloc_security, 0, sec);
1619 }
1620 EXPORT_SYMBOL(security_ib_alloc_security);
1621
1622 void security_ib_free_security(void *sec)
1623 {
1624 call_void_hook(ib_free_security, sec);
1625 }
1626 EXPORT_SYMBOL(security_ib_free_security);
1627 #endif /* CONFIG_SECURITY_INFINIBAND */
1628
1629 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1630
1631 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1632 struct xfrm_user_sec_ctx *sec_ctx,
1633 gfp_t gfp)
1634 {
1635 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1636 }
1637 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1638
1639 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1640 struct xfrm_sec_ctx **new_ctxp)
1641 {
1642 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1643 }
1644
1645 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1646 {
1647 call_void_hook(xfrm_policy_free_security, ctx);
1648 }
1649 EXPORT_SYMBOL(security_xfrm_policy_free);
1650
1651 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1652 {
1653 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1654 }
1655
1656 int security_xfrm_state_alloc(struct xfrm_state *x,
1657 struct xfrm_user_sec_ctx *sec_ctx)
1658 {
1659 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1660 }
1661 EXPORT_SYMBOL(security_xfrm_state_alloc);
1662
1663 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1664 struct xfrm_sec_ctx *polsec, u32 secid)
1665 {
1666 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1667 }
1668
1669 int security_xfrm_state_delete(struct xfrm_state *x)
1670 {
1671 return call_int_hook(xfrm_state_delete_security, 0, x);
1672 }
1673 EXPORT_SYMBOL(security_xfrm_state_delete);
1674
1675 void security_xfrm_state_free(struct xfrm_state *x)
1676 {
1677 call_void_hook(xfrm_state_free_security, x);
1678 }
1679
1680 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1681 {
1682 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1683 }
1684
1685 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1686 struct xfrm_policy *xp,
1687 const struct flowi *fl)
1688 {
1689 struct security_hook_list *hp;
1690 int rc = 1;
1691
1692 /*
1693 * Since this function is expected to return 0 or 1, the judgment
1694 * becomes difficult if multiple LSMs supply this call. Fortunately,
1695 * we can use the first LSM's judgment because currently only SELinux
1696 * supplies this call.
1697 *
1698 * For speed optimization, we explicitly break the loop rather than
1699 * using the macro
1700 */
1701 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1702 list) {
1703 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1704 break;
1705 }
1706 return rc;
1707 }
1708
1709 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1710 {
1711 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1712 }
1713
1714 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1715 {
1716 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1717 0);
1718
1719 BUG_ON(rc);
1720 }
1721 EXPORT_SYMBOL(security_skb_classify_flow);
1722
1723 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1724
1725 #ifdef CONFIG_KEYS
1726
1727 int security_key_alloc(struct key *key, const struct cred *cred,
1728 unsigned long flags)
1729 {
1730 return call_int_hook(key_alloc, 0, key, cred, flags);
1731 }
1732
1733 void security_key_free(struct key *key)
1734 {
1735 call_void_hook(key_free, key);
1736 }
1737
1738 int security_key_permission(key_ref_t key_ref,
1739 const struct cred *cred, unsigned perm)
1740 {
1741 return call_int_hook(key_permission, 0, key_ref, cred, perm);
1742 }
1743
1744 int security_key_getsecurity(struct key *key, char **_buffer)
1745 {
1746 *_buffer = NULL;
1747 return call_int_hook(key_getsecurity, 0, key, _buffer);
1748 }
1749
1750 #endif /* CONFIG_KEYS */
1751
1752 #ifdef CONFIG_AUDIT
1753
1754 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1755 {
1756 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1757 }
1758
1759 int security_audit_rule_known(struct audit_krule *krule)
1760 {
1761 return call_int_hook(audit_rule_known, 0, krule);
1762 }
1763
1764 void security_audit_rule_free(void *lsmrule)
1765 {
1766 call_void_hook(audit_rule_free, lsmrule);
1767 }
1768
1769 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1770 struct audit_context *actx)
1771 {
1772 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1773 actx);
1774 }
1775 #endif /* CONFIG_AUDIT */
1776
1777 #ifdef CONFIG_BPF_SYSCALL
1778 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1779 {
1780 return call_int_hook(bpf, 0, cmd, attr, size);
1781 }
1782 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1783 {
1784 return call_int_hook(bpf_map, 0, map, fmode);
1785 }
1786 int security_bpf_prog(struct bpf_prog *prog)
1787 {
1788 return call_int_hook(bpf_prog, 0, prog);
1789 }
1790 int security_bpf_map_alloc(struct bpf_map *map)
1791 {
1792 return call_int_hook(bpf_map_alloc_security, 0, map);
1793 }
1794 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1795 {
1796 return call_int_hook(bpf_prog_alloc_security, 0, aux);
1797 }
1798 void security_bpf_map_free(struct bpf_map *map)
1799 {
1800 call_void_hook(bpf_map_free_security, map);
1801 }
1802 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1803 {
1804 call_void_hook(bpf_prog_free_security, aux);
1805 }
1806 #endif /* CONFIG_BPF_SYSCALL */