]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - security/security.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 69
[thirdparty/kernel/stable.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15 #define pr_fmt(fmt) "LSM: " fmt
16
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <linux/msg.h>
34 #include <net/flow.h>
35
36 #define MAX_LSM_EVM_XATTR 2
37
38 /* How many LSMs were built into the kernel? */
39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
40
41 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
43
44 static struct kmem_cache *lsm_file_cache;
45 static struct kmem_cache *lsm_inode_cache;
46
47 char *lsm_names;
48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
49
50 /* Boot-time LSM user choice */
51 static __initdata const char *chosen_lsm_order;
52 static __initdata const char *chosen_major_lsm;
53
54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
55
56 /* Ordered list of LSMs to initialize. */
57 static __initdata struct lsm_info **ordered_lsms;
58 static __initdata struct lsm_info *exclusive;
59
60 static __initdata bool debug;
61 #define init_debug(...) \
62 do { \
63 if (debug) \
64 pr_info(__VA_ARGS__); \
65 } while (0)
66
67 static bool __init is_enabled(struct lsm_info *lsm)
68 {
69 if (!lsm->enabled)
70 return false;
71
72 return *lsm->enabled;
73 }
74
75 /* Mark an LSM's enabled flag. */
76 static int lsm_enabled_true __initdata = 1;
77 static int lsm_enabled_false __initdata = 0;
78 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
79 {
80 /*
81 * When an LSM hasn't configured an enable variable, we can use
82 * a hard-coded location for storing the default enabled state.
83 */
84 if (!lsm->enabled) {
85 if (enabled)
86 lsm->enabled = &lsm_enabled_true;
87 else
88 lsm->enabled = &lsm_enabled_false;
89 } else if (lsm->enabled == &lsm_enabled_true) {
90 if (!enabled)
91 lsm->enabled = &lsm_enabled_false;
92 } else if (lsm->enabled == &lsm_enabled_false) {
93 if (enabled)
94 lsm->enabled = &lsm_enabled_true;
95 } else {
96 *lsm->enabled = enabled;
97 }
98 }
99
100 /* Is an LSM already listed in the ordered LSMs list? */
101 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
102 {
103 struct lsm_info **check;
104
105 for (check = ordered_lsms; *check; check++)
106 if (*check == lsm)
107 return true;
108
109 return false;
110 }
111
112 /* Append an LSM to the list of ordered LSMs to initialize. */
113 static int last_lsm __initdata;
114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
115 {
116 /* Ignore duplicate selections. */
117 if (exists_ordered_lsm(lsm))
118 return;
119
120 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
121 return;
122
123 /* Enable this LSM, if it is not already set. */
124 if (!lsm->enabled)
125 lsm->enabled = &lsm_enabled_true;
126 ordered_lsms[last_lsm++] = lsm;
127
128 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
129 is_enabled(lsm) ? "en" : "dis");
130 }
131
132 /* Is an LSM allowed to be initialized? */
133 static bool __init lsm_allowed(struct lsm_info *lsm)
134 {
135 /* Skip if the LSM is disabled. */
136 if (!is_enabled(lsm))
137 return false;
138
139 /* Not allowed if another exclusive LSM already initialized. */
140 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
141 init_debug("exclusive disabled: %s\n", lsm->name);
142 return false;
143 }
144
145 return true;
146 }
147
148 static void __init lsm_set_blob_size(int *need, int *lbs)
149 {
150 int offset;
151
152 if (*need > 0) {
153 offset = *lbs;
154 *lbs += *need;
155 *need = offset;
156 }
157 }
158
159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
160 {
161 if (!needed)
162 return;
163
164 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
165 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
166 /*
167 * The inode blob gets an rcu_head in addition to
168 * what the modules might need.
169 */
170 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
171 blob_sizes.lbs_inode = sizeof(struct rcu_head);
172 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
173 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
174 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
175 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
176 }
177
178 /* Prepare LSM for initialization. */
179 static void __init prepare_lsm(struct lsm_info *lsm)
180 {
181 int enabled = lsm_allowed(lsm);
182
183 /* Record enablement (to handle any following exclusive LSMs). */
184 set_enabled(lsm, enabled);
185
186 /* If enabled, do pre-initialization work. */
187 if (enabled) {
188 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
189 exclusive = lsm;
190 init_debug("exclusive chosen: %s\n", lsm->name);
191 }
192
193 lsm_set_blob_sizes(lsm->blobs);
194 }
195 }
196
197 /* Initialize a given LSM, if it is enabled. */
198 static void __init initialize_lsm(struct lsm_info *lsm)
199 {
200 if (is_enabled(lsm)) {
201 int ret;
202
203 init_debug("initializing %s\n", lsm->name);
204 ret = lsm->init();
205 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
206 }
207 }
208
209 /* Populate ordered LSMs list from comma-separated LSM name list. */
210 static void __init ordered_lsm_parse(const char *order, const char *origin)
211 {
212 struct lsm_info *lsm;
213 char *sep, *name, *next;
214
215 /* LSM_ORDER_FIRST is always first. */
216 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
217 if (lsm->order == LSM_ORDER_FIRST)
218 append_ordered_lsm(lsm, "first");
219 }
220
221 /* Process "security=", if given. */
222 if (chosen_major_lsm) {
223 struct lsm_info *major;
224
225 /*
226 * To match the original "security=" behavior, this
227 * explicitly does NOT fallback to another Legacy Major
228 * if the selected one was separately disabled: disable
229 * all non-matching Legacy Major LSMs.
230 */
231 for (major = __start_lsm_info; major < __end_lsm_info;
232 major++) {
233 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
234 strcmp(major->name, chosen_major_lsm) != 0) {
235 set_enabled(major, false);
236 init_debug("security=%s disabled: %s\n",
237 chosen_major_lsm, major->name);
238 }
239 }
240 }
241
242 sep = kstrdup(order, GFP_KERNEL);
243 next = sep;
244 /* Walk the list, looking for matching LSMs. */
245 while ((name = strsep(&next, ",")) != NULL) {
246 bool found = false;
247
248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249 if (lsm->order == LSM_ORDER_MUTABLE &&
250 strcmp(lsm->name, name) == 0) {
251 append_ordered_lsm(lsm, origin);
252 found = true;
253 }
254 }
255
256 if (!found)
257 init_debug("%s ignored: %s\n", origin, name);
258 }
259
260 /* Process "security=", if given. */
261 if (chosen_major_lsm) {
262 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
263 if (exists_ordered_lsm(lsm))
264 continue;
265 if (strcmp(lsm->name, chosen_major_lsm) == 0)
266 append_ordered_lsm(lsm, "security=");
267 }
268 }
269
270 /* Disable all LSMs not in the ordered list. */
271 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
272 if (exists_ordered_lsm(lsm))
273 continue;
274 set_enabled(lsm, false);
275 init_debug("%s disabled: %s\n", origin, lsm->name);
276 }
277
278 kfree(sep);
279 }
280
281 static void __init lsm_early_cred(struct cred *cred);
282 static void __init lsm_early_task(struct task_struct *task);
283
284 static void __init ordered_lsm_init(void)
285 {
286 struct lsm_info **lsm;
287
288 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
289 GFP_KERNEL);
290
291 if (chosen_lsm_order) {
292 if (chosen_major_lsm) {
293 pr_info("security= is ignored because it is superseded by lsm=\n");
294 chosen_major_lsm = NULL;
295 }
296 ordered_lsm_parse(chosen_lsm_order, "cmdline");
297 } else
298 ordered_lsm_parse(builtin_lsm_order, "builtin");
299
300 for (lsm = ordered_lsms; *lsm; lsm++)
301 prepare_lsm(*lsm);
302
303 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
304 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
305 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
306 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
307 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
308 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
309
310 /*
311 * Create any kmem_caches needed for blobs
312 */
313 if (blob_sizes.lbs_file)
314 lsm_file_cache = kmem_cache_create("lsm_file_cache",
315 blob_sizes.lbs_file, 0,
316 SLAB_PANIC, NULL);
317 if (blob_sizes.lbs_inode)
318 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
319 blob_sizes.lbs_inode, 0,
320 SLAB_PANIC, NULL);
321
322 lsm_early_cred((struct cred *) current->cred);
323 lsm_early_task(current);
324 for (lsm = ordered_lsms; *lsm; lsm++)
325 initialize_lsm(*lsm);
326
327 kfree(ordered_lsms);
328 }
329
330 /**
331 * security_init - initializes the security framework
332 *
333 * This should be called early in the kernel initialization sequence.
334 */
335 int __init security_init(void)
336 {
337 int i;
338 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
339
340 pr_info("Security Framework initializing\n");
341
342 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
343 i++)
344 INIT_HLIST_HEAD(&list[i]);
345
346 /* Load LSMs in specified order. */
347 ordered_lsm_init();
348
349 return 0;
350 }
351
352 /* Save user chosen LSM */
353 static int __init choose_major_lsm(char *str)
354 {
355 chosen_major_lsm = str;
356 return 1;
357 }
358 __setup("security=", choose_major_lsm);
359
360 /* Explicitly choose LSM initialization order. */
361 static int __init choose_lsm_order(char *str)
362 {
363 chosen_lsm_order = str;
364 return 1;
365 }
366 __setup("lsm=", choose_lsm_order);
367
368 /* Enable LSM order debugging. */
369 static int __init enable_debug(char *str)
370 {
371 debug = true;
372 return 1;
373 }
374 __setup("lsm.debug", enable_debug);
375
376 static bool match_last_lsm(const char *list, const char *lsm)
377 {
378 const char *last;
379
380 if (WARN_ON(!list || !lsm))
381 return false;
382 last = strrchr(list, ',');
383 if (last)
384 /* Pass the comma, strcmp() will check for '\0' */
385 last++;
386 else
387 last = list;
388 return !strcmp(last, lsm);
389 }
390
391 static int lsm_append(char *new, char **result)
392 {
393 char *cp;
394
395 if (*result == NULL) {
396 *result = kstrdup(new, GFP_KERNEL);
397 if (*result == NULL)
398 return -ENOMEM;
399 } else {
400 /* Check if it is the last registered name */
401 if (match_last_lsm(*result, new))
402 return 0;
403 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
404 if (cp == NULL)
405 return -ENOMEM;
406 kfree(*result);
407 *result = cp;
408 }
409 return 0;
410 }
411
412 /**
413 * security_add_hooks - Add a modules hooks to the hook lists.
414 * @hooks: the hooks to add
415 * @count: the number of hooks to add
416 * @lsm: the name of the security module
417 *
418 * Each LSM has to register its hooks with the infrastructure.
419 */
420 void __init security_add_hooks(struct security_hook_list *hooks, int count,
421 char *lsm)
422 {
423 int i;
424
425 for (i = 0; i < count; i++) {
426 hooks[i].lsm = lsm;
427 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
428 }
429 if (lsm_append(lsm, &lsm_names) < 0)
430 panic("%s - Cannot get early memory.\n", __func__);
431 }
432
433 int call_lsm_notifier(enum lsm_event event, void *data)
434 {
435 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
436 }
437 EXPORT_SYMBOL(call_lsm_notifier);
438
439 int register_lsm_notifier(struct notifier_block *nb)
440 {
441 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
442 }
443 EXPORT_SYMBOL(register_lsm_notifier);
444
445 int unregister_lsm_notifier(struct notifier_block *nb)
446 {
447 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
448 }
449 EXPORT_SYMBOL(unregister_lsm_notifier);
450
451 /**
452 * lsm_cred_alloc - allocate a composite cred blob
453 * @cred: the cred that needs a blob
454 * @gfp: allocation type
455 *
456 * Allocate the cred blob for all the modules
457 *
458 * Returns 0, or -ENOMEM if memory can't be allocated.
459 */
460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
461 {
462 if (blob_sizes.lbs_cred == 0) {
463 cred->security = NULL;
464 return 0;
465 }
466
467 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
468 if (cred->security == NULL)
469 return -ENOMEM;
470 return 0;
471 }
472
473 /**
474 * lsm_early_cred - during initialization allocate a composite cred blob
475 * @cred: the cred that needs a blob
476 *
477 * Allocate the cred blob for all the modules
478 */
479 static void __init lsm_early_cred(struct cred *cred)
480 {
481 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
482
483 if (rc)
484 panic("%s: Early cred alloc failed.\n", __func__);
485 }
486
487 /**
488 * lsm_file_alloc - allocate a composite file blob
489 * @file: the file that needs a blob
490 *
491 * Allocate the file blob for all the modules
492 *
493 * Returns 0, or -ENOMEM if memory can't be allocated.
494 */
495 static int lsm_file_alloc(struct file *file)
496 {
497 if (!lsm_file_cache) {
498 file->f_security = NULL;
499 return 0;
500 }
501
502 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
503 if (file->f_security == NULL)
504 return -ENOMEM;
505 return 0;
506 }
507
508 /**
509 * lsm_inode_alloc - allocate a composite inode blob
510 * @inode: the inode that needs a blob
511 *
512 * Allocate the inode blob for all the modules
513 *
514 * Returns 0, or -ENOMEM if memory can't be allocated.
515 */
516 int lsm_inode_alloc(struct inode *inode)
517 {
518 if (!lsm_inode_cache) {
519 inode->i_security = NULL;
520 return 0;
521 }
522
523 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
524 if (inode->i_security == NULL)
525 return -ENOMEM;
526 return 0;
527 }
528
529 /**
530 * lsm_task_alloc - allocate a composite task blob
531 * @task: the task that needs a blob
532 *
533 * Allocate the task blob for all the modules
534 *
535 * Returns 0, or -ENOMEM if memory can't be allocated.
536 */
537 static int lsm_task_alloc(struct task_struct *task)
538 {
539 if (blob_sizes.lbs_task == 0) {
540 task->security = NULL;
541 return 0;
542 }
543
544 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
545 if (task->security == NULL)
546 return -ENOMEM;
547 return 0;
548 }
549
550 /**
551 * lsm_ipc_alloc - allocate a composite ipc blob
552 * @kip: the ipc that needs a blob
553 *
554 * Allocate the ipc blob for all the modules
555 *
556 * Returns 0, or -ENOMEM if memory can't be allocated.
557 */
558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
559 {
560 if (blob_sizes.lbs_ipc == 0) {
561 kip->security = NULL;
562 return 0;
563 }
564
565 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
566 if (kip->security == NULL)
567 return -ENOMEM;
568 return 0;
569 }
570
571 /**
572 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
573 * @mp: the msg_msg that needs a blob
574 *
575 * Allocate the ipc blob for all the modules
576 *
577 * Returns 0, or -ENOMEM if memory can't be allocated.
578 */
579 static int lsm_msg_msg_alloc(struct msg_msg *mp)
580 {
581 if (blob_sizes.lbs_msg_msg == 0) {
582 mp->security = NULL;
583 return 0;
584 }
585
586 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
587 if (mp->security == NULL)
588 return -ENOMEM;
589 return 0;
590 }
591
592 /**
593 * lsm_early_task - during initialization allocate a composite task blob
594 * @task: the task that needs a blob
595 *
596 * Allocate the task blob for all the modules
597 */
598 static void __init lsm_early_task(struct task_struct *task)
599 {
600 int rc = lsm_task_alloc(task);
601
602 if (rc)
603 panic("%s: Early task alloc failed.\n", __func__);
604 }
605
606 /*
607 * Hook list operation macros.
608 *
609 * call_void_hook:
610 * This is a hook that does not return a value.
611 *
612 * call_int_hook:
613 * This is a hook that returns a value.
614 */
615
616 #define call_void_hook(FUNC, ...) \
617 do { \
618 struct security_hook_list *P; \
619 \
620 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
621 P->hook.FUNC(__VA_ARGS__); \
622 } while (0)
623
624 #define call_int_hook(FUNC, IRC, ...) ({ \
625 int RC = IRC; \
626 do { \
627 struct security_hook_list *P; \
628 \
629 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
630 RC = P->hook.FUNC(__VA_ARGS__); \
631 if (RC != 0) \
632 break; \
633 } \
634 } while (0); \
635 RC; \
636 })
637
638 /* Security operations */
639
640 int security_binder_set_context_mgr(struct task_struct *mgr)
641 {
642 return call_int_hook(binder_set_context_mgr, 0, mgr);
643 }
644
645 int security_binder_transaction(struct task_struct *from,
646 struct task_struct *to)
647 {
648 return call_int_hook(binder_transaction, 0, from, to);
649 }
650
651 int security_binder_transfer_binder(struct task_struct *from,
652 struct task_struct *to)
653 {
654 return call_int_hook(binder_transfer_binder, 0, from, to);
655 }
656
657 int security_binder_transfer_file(struct task_struct *from,
658 struct task_struct *to, struct file *file)
659 {
660 return call_int_hook(binder_transfer_file, 0, from, to, file);
661 }
662
663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
664 {
665 return call_int_hook(ptrace_access_check, 0, child, mode);
666 }
667
668 int security_ptrace_traceme(struct task_struct *parent)
669 {
670 return call_int_hook(ptrace_traceme, 0, parent);
671 }
672
673 int security_capget(struct task_struct *target,
674 kernel_cap_t *effective,
675 kernel_cap_t *inheritable,
676 kernel_cap_t *permitted)
677 {
678 return call_int_hook(capget, 0, target,
679 effective, inheritable, permitted);
680 }
681
682 int security_capset(struct cred *new, const struct cred *old,
683 const kernel_cap_t *effective,
684 const kernel_cap_t *inheritable,
685 const kernel_cap_t *permitted)
686 {
687 return call_int_hook(capset, 0, new, old,
688 effective, inheritable, permitted);
689 }
690
691 int security_capable(const struct cred *cred,
692 struct user_namespace *ns,
693 int cap,
694 unsigned int opts)
695 {
696 return call_int_hook(capable, 0, cred, ns, cap, opts);
697 }
698
699 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
700 {
701 return call_int_hook(quotactl, 0, cmds, type, id, sb);
702 }
703
704 int security_quota_on(struct dentry *dentry)
705 {
706 return call_int_hook(quota_on, 0, dentry);
707 }
708
709 int security_syslog(int type)
710 {
711 return call_int_hook(syslog, 0, type);
712 }
713
714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
715 {
716 return call_int_hook(settime, 0, ts, tz);
717 }
718
719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
720 {
721 struct security_hook_list *hp;
722 int cap_sys_admin = 1;
723 int rc;
724
725 /*
726 * The module will respond with a positive value if
727 * it thinks the __vm_enough_memory() call should be
728 * made with the cap_sys_admin set. If all of the modules
729 * agree that it should be set it will. If any module
730 * thinks it should not be set it won't.
731 */
732 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
733 rc = hp->hook.vm_enough_memory(mm, pages);
734 if (rc <= 0) {
735 cap_sys_admin = 0;
736 break;
737 }
738 }
739 return __vm_enough_memory(mm, pages, cap_sys_admin);
740 }
741
742 int security_bprm_set_creds(struct linux_binprm *bprm)
743 {
744 return call_int_hook(bprm_set_creds, 0, bprm);
745 }
746
747 int security_bprm_check(struct linux_binprm *bprm)
748 {
749 int ret;
750
751 ret = call_int_hook(bprm_check_security, 0, bprm);
752 if (ret)
753 return ret;
754 return ima_bprm_check(bprm);
755 }
756
757 void security_bprm_committing_creds(struct linux_binprm *bprm)
758 {
759 call_void_hook(bprm_committing_creds, bprm);
760 }
761
762 void security_bprm_committed_creds(struct linux_binprm *bprm)
763 {
764 call_void_hook(bprm_committed_creds, bprm);
765 }
766
767 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
768 {
769 return call_int_hook(fs_context_dup, 0, fc, src_fc);
770 }
771
772 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
773 {
774 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
775 }
776
777 int security_sb_alloc(struct super_block *sb)
778 {
779 return call_int_hook(sb_alloc_security, 0, sb);
780 }
781
782 void security_sb_free(struct super_block *sb)
783 {
784 call_void_hook(sb_free_security, sb);
785 }
786
787 void security_free_mnt_opts(void **mnt_opts)
788 {
789 if (!*mnt_opts)
790 return;
791 call_void_hook(sb_free_mnt_opts, *mnt_opts);
792 *mnt_opts = NULL;
793 }
794 EXPORT_SYMBOL(security_free_mnt_opts);
795
796 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
797 {
798 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
799 }
800 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
801
802 int security_sb_remount(struct super_block *sb,
803 void *mnt_opts)
804 {
805 return call_int_hook(sb_remount, 0, sb, mnt_opts);
806 }
807 EXPORT_SYMBOL(security_sb_remount);
808
809 int security_sb_kern_mount(struct super_block *sb)
810 {
811 return call_int_hook(sb_kern_mount, 0, sb);
812 }
813
814 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
815 {
816 return call_int_hook(sb_show_options, 0, m, sb);
817 }
818
819 int security_sb_statfs(struct dentry *dentry)
820 {
821 return call_int_hook(sb_statfs, 0, dentry);
822 }
823
824 int security_sb_mount(const char *dev_name, const struct path *path,
825 const char *type, unsigned long flags, void *data)
826 {
827 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
828 }
829
830 int security_sb_umount(struct vfsmount *mnt, int flags)
831 {
832 return call_int_hook(sb_umount, 0, mnt, flags);
833 }
834
835 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
836 {
837 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
838 }
839
840 int security_sb_set_mnt_opts(struct super_block *sb,
841 void *mnt_opts,
842 unsigned long kern_flags,
843 unsigned long *set_kern_flags)
844 {
845 return call_int_hook(sb_set_mnt_opts,
846 mnt_opts ? -EOPNOTSUPP : 0, sb,
847 mnt_opts, kern_flags, set_kern_flags);
848 }
849 EXPORT_SYMBOL(security_sb_set_mnt_opts);
850
851 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
852 struct super_block *newsb,
853 unsigned long kern_flags,
854 unsigned long *set_kern_flags)
855 {
856 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
857 kern_flags, set_kern_flags);
858 }
859 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
860
861 int security_add_mnt_opt(const char *option, const char *val, int len,
862 void **mnt_opts)
863 {
864 return call_int_hook(sb_add_mnt_opt, -EINVAL,
865 option, val, len, mnt_opts);
866 }
867 EXPORT_SYMBOL(security_add_mnt_opt);
868
869 int security_move_mount(const struct path *from_path, const struct path *to_path)
870 {
871 return call_int_hook(move_mount, 0, from_path, to_path);
872 }
873
874 int security_inode_alloc(struct inode *inode)
875 {
876 int rc = lsm_inode_alloc(inode);
877
878 if (unlikely(rc))
879 return rc;
880 rc = call_int_hook(inode_alloc_security, 0, inode);
881 if (unlikely(rc))
882 security_inode_free(inode);
883 return rc;
884 }
885
886 static void inode_free_by_rcu(struct rcu_head *head)
887 {
888 /*
889 * The rcu head is at the start of the inode blob
890 */
891 kmem_cache_free(lsm_inode_cache, head);
892 }
893
894 void security_inode_free(struct inode *inode)
895 {
896 integrity_inode_free(inode);
897 call_void_hook(inode_free_security, inode);
898 /*
899 * The inode may still be referenced in a path walk and
900 * a call to security_inode_permission() can be made
901 * after inode_free_security() is called. Ideally, the VFS
902 * wouldn't do this, but fixing that is a much harder
903 * job. For now, simply free the i_security via RCU, and
904 * leave the current inode->i_security pointer intact.
905 * The inode will be freed after the RCU grace period too.
906 */
907 if (inode->i_security)
908 call_rcu((struct rcu_head *)inode->i_security,
909 inode_free_by_rcu);
910 }
911
912 int security_dentry_init_security(struct dentry *dentry, int mode,
913 const struct qstr *name, void **ctx,
914 u32 *ctxlen)
915 {
916 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
917 name, ctx, ctxlen);
918 }
919 EXPORT_SYMBOL(security_dentry_init_security);
920
921 int security_dentry_create_files_as(struct dentry *dentry, int mode,
922 struct qstr *name,
923 const struct cred *old, struct cred *new)
924 {
925 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
926 name, old, new);
927 }
928 EXPORT_SYMBOL(security_dentry_create_files_as);
929
930 int security_inode_init_security(struct inode *inode, struct inode *dir,
931 const struct qstr *qstr,
932 const initxattrs initxattrs, void *fs_data)
933 {
934 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
935 struct xattr *lsm_xattr, *evm_xattr, *xattr;
936 int ret;
937
938 if (unlikely(IS_PRIVATE(inode)))
939 return 0;
940
941 if (!initxattrs)
942 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
943 dir, qstr, NULL, NULL, NULL);
944 memset(new_xattrs, 0, sizeof(new_xattrs));
945 lsm_xattr = new_xattrs;
946 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
947 &lsm_xattr->name,
948 &lsm_xattr->value,
949 &lsm_xattr->value_len);
950 if (ret)
951 goto out;
952
953 evm_xattr = lsm_xattr + 1;
954 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
955 if (ret)
956 goto out;
957 ret = initxattrs(inode, new_xattrs, fs_data);
958 out:
959 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
960 kfree(xattr->value);
961 return (ret == -EOPNOTSUPP) ? 0 : ret;
962 }
963 EXPORT_SYMBOL(security_inode_init_security);
964
965 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
966 const struct qstr *qstr, const char **name,
967 void **value, size_t *len)
968 {
969 if (unlikely(IS_PRIVATE(inode)))
970 return -EOPNOTSUPP;
971 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
972 qstr, name, value, len);
973 }
974 EXPORT_SYMBOL(security_old_inode_init_security);
975
976 #ifdef CONFIG_SECURITY_PATH
977 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
978 unsigned int dev)
979 {
980 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
981 return 0;
982 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
983 }
984 EXPORT_SYMBOL(security_path_mknod);
985
986 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
987 {
988 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
989 return 0;
990 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
991 }
992 EXPORT_SYMBOL(security_path_mkdir);
993
994 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
995 {
996 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
997 return 0;
998 return call_int_hook(path_rmdir, 0, dir, dentry);
999 }
1000
1001 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1002 {
1003 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1004 return 0;
1005 return call_int_hook(path_unlink, 0, dir, dentry);
1006 }
1007 EXPORT_SYMBOL(security_path_unlink);
1008
1009 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1010 const char *old_name)
1011 {
1012 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1013 return 0;
1014 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1015 }
1016
1017 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1018 struct dentry *new_dentry)
1019 {
1020 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1021 return 0;
1022 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1023 }
1024
1025 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1026 const struct path *new_dir, struct dentry *new_dentry,
1027 unsigned int flags)
1028 {
1029 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1030 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1031 return 0;
1032
1033 if (flags & RENAME_EXCHANGE) {
1034 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1035 old_dir, old_dentry);
1036 if (err)
1037 return err;
1038 }
1039
1040 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1041 new_dentry);
1042 }
1043 EXPORT_SYMBOL(security_path_rename);
1044
1045 int security_path_truncate(const struct path *path)
1046 {
1047 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1048 return 0;
1049 return call_int_hook(path_truncate, 0, path);
1050 }
1051
1052 int security_path_chmod(const struct path *path, umode_t mode)
1053 {
1054 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1055 return 0;
1056 return call_int_hook(path_chmod, 0, path, mode);
1057 }
1058
1059 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1060 {
1061 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1062 return 0;
1063 return call_int_hook(path_chown, 0, path, uid, gid);
1064 }
1065
1066 int security_path_chroot(const struct path *path)
1067 {
1068 return call_int_hook(path_chroot, 0, path);
1069 }
1070 #endif
1071
1072 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1073 {
1074 if (unlikely(IS_PRIVATE(dir)))
1075 return 0;
1076 return call_int_hook(inode_create, 0, dir, dentry, mode);
1077 }
1078 EXPORT_SYMBOL_GPL(security_inode_create);
1079
1080 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1081 struct dentry *new_dentry)
1082 {
1083 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1084 return 0;
1085 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1086 }
1087
1088 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1089 {
1090 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1091 return 0;
1092 return call_int_hook(inode_unlink, 0, dir, dentry);
1093 }
1094
1095 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1096 const char *old_name)
1097 {
1098 if (unlikely(IS_PRIVATE(dir)))
1099 return 0;
1100 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1101 }
1102
1103 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1104 {
1105 if (unlikely(IS_PRIVATE(dir)))
1106 return 0;
1107 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1108 }
1109 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1110
1111 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1112 {
1113 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1114 return 0;
1115 return call_int_hook(inode_rmdir, 0, dir, dentry);
1116 }
1117
1118 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1119 {
1120 if (unlikely(IS_PRIVATE(dir)))
1121 return 0;
1122 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1123 }
1124
1125 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1126 struct inode *new_dir, struct dentry *new_dentry,
1127 unsigned int flags)
1128 {
1129 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1130 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1131 return 0;
1132
1133 if (flags & RENAME_EXCHANGE) {
1134 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1135 old_dir, old_dentry);
1136 if (err)
1137 return err;
1138 }
1139
1140 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1141 new_dir, new_dentry);
1142 }
1143
1144 int security_inode_readlink(struct dentry *dentry)
1145 {
1146 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1147 return 0;
1148 return call_int_hook(inode_readlink, 0, dentry);
1149 }
1150
1151 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1152 bool rcu)
1153 {
1154 if (unlikely(IS_PRIVATE(inode)))
1155 return 0;
1156 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1157 }
1158
1159 int security_inode_permission(struct inode *inode, int mask)
1160 {
1161 if (unlikely(IS_PRIVATE(inode)))
1162 return 0;
1163 return call_int_hook(inode_permission, 0, inode, mask);
1164 }
1165
1166 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1167 {
1168 int ret;
1169
1170 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1171 return 0;
1172 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1173 if (ret)
1174 return ret;
1175 return evm_inode_setattr(dentry, attr);
1176 }
1177 EXPORT_SYMBOL_GPL(security_inode_setattr);
1178
1179 int security_inode_getattr(const struct path *path)
1180 {
1181 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1182 return 0;
1183 return call_int_hook(inode_getattr, 0, path);
1184 }
1185
1186 int security_inode_setxattr(struct dentry *dentry, const char *name,
1187 const void *value, size_t size, int flags)
1188 {
1189 int ret;
1190
1191 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1192 return 0;
1193 /*
1194 * SELinux and Smack integrate the cap call,
1195 * so assume that all LSMs supplying this call do so.
1196 */
1197 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1198 flags);
1199
1200 if (ret == 1)
1201 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1202 if (ret)
1203 return ret;
1204 ret = ima_inode_setxattr(dentry, name, value, size);
1205 if (ret)
1206 return ret;
1207 return evm_inode_setxattr(dentry, name, value, size);
1208 }
1209
1210 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1211 const void *value, size_t size, int flags)
1212 {
1213 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1214 return;
1215 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1216 evm_inode_post_setxattr(dentry, name, value, size);
1217 }
1218
1219 int security_inode_getxattr(struct dentry *dentry, const char *name)
1220 {
1221 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1222 return 0;
1223 return call_int_hook(inode_getxattr, 0, dentry, name);
1224 }
1225
1226 int security_inode_listxattr(struct dentry *dentry)
1227 {
1228 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1229 return 0;
1230 return call_int_hook(inode_listxattr, 0, dentry);
1231 }
1232
1233 int security_inode_removexattr(struct dentry *dentry, const char *name)
1234 {
1235 int ret;
1236
1237 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1238 return 0;
1239 /*
1240 * SELinux and Smack integrate the cap call,
1241 * so assume that all LSMs supplying this call do so.
1242 */
1243 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1244 if (ret == 1)
1245 ret = cap_inode_removexattr(dentry, name);
1246 if (ret)
1247 return ret;
1248 ret = ima_inode_removexattr(dentry, name);
1249 if (ret)
1250 return ret;
1251 return evm_inode_removexattr(dentry, name);
1252 }
1253
1254 int security_inode_need_killpriv(struct dentry *dentry)
1255 {
1256 return call_int_hook(inode_need_killpriv, 0, dentry);
1257 }
1258
1259 int security_inode_killpriv(struct dentry *dentry)
1260 {
1261 return call_int_hook(inode_killpriv, 0, dentry);
1262 }
1263
1264 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1265 {
1266 struct security_hook_list *hp;
1267 int rc;
1268
1269 if (unlikely(IS_PRIVATE(inode)))
1270 return -EOPNOTSUPP;
1271 /*
1272 * Only one module will provide an attribute with a given name.
1273 */
1274 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1275 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1276 if (rc != -EOPNOTSUPP)
1277 return rc;
1278 }
1279 return -EOPNOTSUPP;
1280 }
1281
1282 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1283 {
1284 struct security_hook_list *hp;
1285 int rc;
1286
1287 if (unlikely(IS_PRIVATE(inode)))
1288 return -EOPNOTSUPP;
1289 /*
1290 * Only one module will provide an attribute with a given name.
1291 */
1292 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1293 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1294 flags);
1295 if (rc != -EOPNOTSUPP)
1296 return rc;
1297 }
1298 return -EOPNOTSUPP;
1299 }
1300
1301 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1302 {
1303 if (unlikely(IS_PRIVATE(inode)))
1304 return 0;
1305 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1306 }
1307 EXPORT_SYMBOL(security_inode_listsecurity);
1308
1309 void security_inode_getsecid(struct inode *inode, u32 *secid)
1310 {
1311 call_void_hook(inode_getsecid, inode, secid);
1312 }
1313
1314 int security_inode_copy_up(struct dentry *src, struct cred **new)
1315 {
1316 return call_int_hook(inode_copy_up, 0, src, new);
1317 }
1318 EXPORT_SYMBOL(security_inode_copy_up);
1319
1320 int security_inode_copy_up_xattr(const char *name)
1321 {
1322 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1323 }
1324 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1325
1326 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1327 struct kernfs_node *kn)
1328 {
1329 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1330 }
1331
1332 int security_file_permission(struct file *file, int mask)
1333 {
1334 int ret;
1335
1336 ret = call_int_hook(file_permission, 0, file, mask);
1337 if (ret)
1338 return ret;
1339
1340 return fsnotify_perm(file, mask);
1341 }
1342
1343 int security_file_alloc(struct file *file)
1344 {
1345 int rc = lsm_file_alloc(file);
1346
1347 if (rc)
1348 return rc;
1349 rc = call_int_hook(file_alloc_security, 0, file);
1350 if (unlikely(rc))
1351 security_file_free(file);
1352 return rc;
1353 }
1354
1355 void security_file_free(struct file *file)
1356 {
1357 void *blob;
1358
1359 call_void_hook(file_free_security, file);
1360
1361 blob = file->f_security;
1362 if (blob) {
1363 file->f_security = NULL;
1364 kmem_cache_free(lsm_file_cache, blob);
1365 }
1366 }
1367
1368 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1369 {
1370 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1371 }
1372
1373 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1374 {
1375 /*
1376 * Does we have PROT_READ and does the application expect
1377 * it to imply PROT_EXEC? If not, nothing to talk about...
1378 */
1379 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1380 return prot;
1381 if (!(current->personality & READ_IMPLIES_EXEC))
1382 return prot;
1383 /*
1384 * if that's an anonymous mapping, let it.
1385 */
1386 if (!file)
1387 return prot | PROT_EXEC;
1388 /*
1389 * ditto if it's not on noexec mount, except that on !MMU we need
1390 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1391 */
1392 if (!path_noexec(&file->f_path)) {
1393 #ifndef CONFIG_MMU
1394 if (file->f_op->mmap_capabilities) {
1395 unsigned caps = file->f_op->mmap_capabilities(file);
1396 if (!(caps & NOMMU_MAP_EXEC))
1397 return prot;
1398 }
1399 #endif
1400 return prot | PROT_EXEC;
1401 }
1402 /* anything on noexec mount won't get PROT_EXEC */
1403 return prot;
1404 }
1405
1406 int security_mmap_file(struct file *file, unsigned long prot,
1407 unsigned long flags)
1408 {
1409 int ret;
1410 ret = call_int_hook(mmap_file, 0, file, prot,
1411 mmap_prot(file, prot), flags);
1412 if (ret)
1413 return ret;
1414 return ima_file_mmap(file, prot);
1415 }
1416
1417 int security_mmap_addr(unsigned long addr)
1418 {
1419 return call_int_hook(mmap_addr, 0, addr);
1420 }
1421
1422 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1423 unsigned long prot)
1424 {
1425 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1426 }
1427
1428 int security_file_lock(struct file *file, unsigned int cmd)
1429 {
1430 return call_int_hook(file_lock, 0, file, cmd);
1431 }
1432
1433 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1434 {
1435 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1436 }
1437
1438 void security_file_set_fowner(struct file *file)
1439 {
1440 call_void_hook(file_set_fowner, file);
1441 }
1442
1443 int security_file_send_sigiotask(struct task_struct *tsk,
1444 struct fown_struct *fown, int sig)
1445 {
1446 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1447 }
1448
1449 int security_file_receive(struct file *file)
1450 {
1451 return call_int_hook(file_receive, 0, file);
1452 }
1453
1454 int security_file_open(struct file *file)
1455 {
1456 int ret;
1457
1458 ret = call_int_hook(file_open, 0, file);
1459 if (ret)
1460 return ret;
1461
1462 return fsnotify_perm(file, MAY_OPEN);
1463 }
1464
1465 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1466 {
1467 int rc = lsm_task_alloc(task);
1468
1469 if (rc)
1470 return rc;
1471 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1472 if (unlikely(rc))
1473 security_task_free(task);
1474 return rc;
1475 }
1476
1477 void security_task_free(struct task_struct *task)
1478 {
1479 call_void_hook(task_free, task);
1480
1481 kfree(task->security);
1482 task->security = NULL;
1483 }
1484
1485 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1486 {
1487 int rc = lsm_cred_alloc(cred, gfp);
1488
1489 if (rc)
1490 return rc;
1491
1492 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1493 if (unlikely(rc))
1494 security_cred_free(cred);
1495 return rc;
1496 }
1497
1498 void security_cred_free(struct cred *cred)
1499 {
1500 /*
1501 * There is a failure case in prepare_creds() that
1502 * may result in a call here with ->security being NULL.
1503 */
1504 if (unlikely(cred->security == NULL))
1505 return;
1506
1507 call_void_hook(cred_free, cred);
1508
1509 kfree(cred->security);
1510 cred->security = NULL;
1511 }
1512
1513 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1514 {
1515 int rc = lsm_cred_alloc(new, gfp);
1516
1517 if (rc)
1518 return rc;
1519
1520 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1521 if (unlikely(rc))
1522 security_cred_free(new);
1523 return rc;
1524 }
1525
1526 void security_transfer_creds(struct cred *new, const struct cred *old)
1527 {
1528 call_void_hook(cred_transfer, new, old);
1529 }
1530
1531 void security_cred_getsecid(const struct cred *c, u32 *secid)
1532 {
1533 *secid = 0;
1534 call_void_hook(cred_getsecid, c, secid);
1535 }
1536 EXPORT_SYMBOL(security_cred_getsecid);
1537
1538 int security_kernel_act_as(struct cred *new, u32 secid)
1539 {
1540 return call_int_hook(kernel_act_as, 0, new, secid);
1541 }
1542
1543 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1544 {
1545 return call_int_hook(kernel_create_files_as, 0, new, inode);
1546 }
1547
1548 int security_kernel_module_request(char *kmod_name)
1549 {
1550 int ret;
1551
1552 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1553 if (ret)
1554 return ret;
1555 return integrity_kernel_module_request(kmod_name);
1556 }
1557
1558 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1559 {
1560 int ret;
1561
1562 ret = call_int_hook(kernel_read_file, 0, file, id);
1563 if (ret)
1564 return ret;
1565 return ima_read_file(file, id);
1566 }
1567 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1568
1569 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1570 enum kernel_read_file_id id)
1571 {
1572 int ret;
1573
1574 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1575 if (ret)
1576 return ret;
1577 return ima_post_read_file(file, buf, size, id);
1578 }
1579 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1580
1581 int security_kernel_load_data(enum kernel_load_data_id id)
1582 {
1583 int ret;
1584
1585 ret = call_int_hook(kernel_load_data, 0, id);
1586 if (ret)
1587 return ret;
1588 return ima_load_data(id);
1589 }
1590 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1591
1592 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1593 int flags)
1594 {
1595 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1596 }
1597
1598 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1599 {
1600 return call_int_hook(task_setpgid, 0, p, pgid);
1601 }
1602
1603 int security_task_getpgid(struct task_struct *p)
1604 {
1605 return call_int_hook(task_getpgid, 0, p);
1606 }
1607
1608 int security_task_getsid(struct task_struct *p)
1609 {
1610 return call_int_hook(task_getsid, 0, p);
1611 }
1612
1613 void security_task_getsecid(struct task_struct *p, u32 *secid)
1614 {
1615 *secid = 0;
1616 call_void_hook(task_getsecid, p, secid);
1617 }
1618 EXPORT_SYMBOL(security_task_getsecid);
1619
1620 int security_task_setnice(struct task_struct *p, int nice)
1621 {
1622 return call_int_hook(task_setnice, 0, p, nice);
1623 }
1624
1625 int security_task_setioprio(struct task_struct *p, int ioprio)
1626 {
1627 return call_int_hook(task_setioprio, 0, p, ioprio);
1628 }
1629
1630 int security_task_getioprio(struct task_struct *p)
1631 {
1632 return call_int_hook(task_getioprio, 0, p);
1633 }
1634
1635 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1636 unsigned int flags)
1637 {
1638 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1639 }
1640
1641 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1642 struct rlimit *new_rlim)
1643 {
1644 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1645 }
1646
1647 int security_task_setscheduler(struct task_struct *p)
1648 {
1649 return call_int_hook(task_setscheduler, 0, p);
1650 }
1651
1652 int security_task_getscheduler(struct task_struct *p)
1653 {
1654 return call_int_hook(task_getscheduler, 0, p);
1655 }
1656
1657 int security_task_movememory(struct task_struct *p)
1658 {
1659 return call_int_hook(task_movememory, 0, p);
1660 }
1661
1662 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1663 int sig, const struct cred *cred)
1664 {
1665 return call_int_hook(task_kill, 0, p, info, sig, cred);
1666 }
1667
1668 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1669 unsigned long arg4, unsigned long arg5)
1670 {
1671 int thisrc;
1672 int rc = -ENOSYS;
1673 struct security_hook_list *hp;
1674
1675 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1676 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1677 if (thisrc != -ENOSYS) {
1678 rc = thisrc;
1679 if (thisrc != 0)
1680 break;
1681 }
1682 }
1683 return rc;
1684 }
1685
1686 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1687 {
1688 call_void_hook(task_to_inode, p, inode);
1689 }
1690
1691 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1692 {
1693 return call_int_hook(ipc_permission, 0, ipcp, flag);
1694 }
1695
1696 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1697 {
1698 *secid = 0;
1699 call_void_hook(ipc_getsecid, ipcp, secid);
1700 }
1701
1702 int security_msg_msg_alloc(struct msg_msg *msg)
1703 {
1704 int rc = lsm_msg_msg_alloc(msg);
1705
1706 if (unlikely(rc))
1707 return rc;
1708 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1709 if (unlikely(rc))
1710 security_msg_msg_free(msg);
1711 return rc;
1712 }
1713
1714 void security_msg_msg_free(struct msg_msg *msg)
1715 {
1716 call_void_hook(msg_msg_free_security, msg);
1717 kfree(msg->security);
1718 msg->security = NULL;
1719 }
1720
1721 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1722 {
1723 int rc = lsm_ipc_alloc(msq);
1724
1725 if (unlikely(rc))
1726 return rc;
1727 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1728 if (unlikely(rc))
1729 security_msg_queue_free(msq);
1730 return rc;
1731 }
1732
1733 void security_msg_queue_free(struct kern_ipc_perm *msq)
1734 {
1735 call_void_hook(msg_queue_free_security, msq);
1736 kfree(msq->security);
1737 msq->security = NULL;
1738 }
1739
1740 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1741 {
1742 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1743 }
1744
1745 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1746 {
1747 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1748 }
1749
1750 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1751 struct msg_msg *msg, int msqflg)
1752 {
1753 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1754 }
1755
1756 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1757 struct task_struct *target, long type, int mode)
1758 {
1759 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1760 }
1761
1762 int security_shm_alloc(struct kern_ipc_perm *shp)
1763 {
1764 int rc = lsm_ipc_alloc(shp);
1765
1766 if (unlikely(rc))
1767 return rc;
1768 rc = call_int_hook(shm_alloc_security, 0, shp);
1769 if (unlikely(rc))
1770 security_shm_free(shp);
1771 return rc;
1772 }
1773
1774 void security_shm_free(struct kern_ipc_perm *shp)
1775 {
1776 call_void_hook(shm_free_security, shp);
1777 kfree(shp->security);
1778 shp->security = NULL;
1779 }
1780
1781 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1782 {
1783 return call_int_hook(shm_associate, 0, shp, shmflg);
1784 }
1785
1786 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1787 {
1788 return call_int_hook(shm_shmctl, 0, shp, cmd);
1789 }
1790
1791 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1792 {
1793 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1794 }
1795
1796 int security_sem_alloc(struct kern_ipc_perm *sma)
1797 {
1798 int rc = lsm_ipc_alloc(sma);
1799
1800 if (unlikely(rc))
1801 return rc;
1802 rc = call_int_hook(sem_alloc_security, 0, sma);
1803 if (unlikely(rc))
1804 security_sem_free(sma);
1805 return rc;
1806 }
1807
1808 void security_sem_free(struct kern_ipc_perm *sma)
1809 {
1810 call_void_hook(sem_free_security, sma);
1811 kfree(sma->security);
1812 sma->security = NULL;
1813 }
1814
1815 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1816 {
1817 return call_int_hook(sem_associate, 0, sma, semflg);
1818 }
1819
1820 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1821 {
1822 return call_int_hook(sem_semctl, 0, sma, cmd);
1823 }
1824
1825 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1826 unsigned nsops, int alter)
1827 {
1828 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1829 }
1830
1831 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1832 {
1833 if (unlikely(inode && IS_PRIVATE(inode)))
1834 return;
1835 call_void_hook(d_instantiate, dentry, inode);
1836 }
1837 EXPORT_SYMBOL(security_d_instantiate);
1838
1839 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1840 char **value)
1841 {
1842 struct security_hook_list *hp;
1843
1844 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1845 if (lsm != NULL && strcmp(lsm, hp->lsm))
1846 continue;
1847 return hp->hook.getprocattr(p, name, value);
1848 }
1849 return -EINVAL;
1850 }
1851
1852 int security_setprocattr(const char *lsm, const char *name, void *value,
1853 size_t size)
1854 {
1855 struct security_hook_list *hp;
1856
1857 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1858 if (lsm != NULL && strcmp(lsm, hp->lsm))
1859 continue;
1860 return hp->hook.setprocattr(name, value, size);
1861 }
1862 return -EINVAL;
1863 }
1864
1865 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1866 {
1867 return call_int_hook(netlink_send, 0, sk, skb);
1868 }
1869
1870 int security_ismaclabel(const char *name)
1871 {
1872 return call_int_hook(ismaclabel, 0, name);
1873 }
1874 EXPORT_SYMBOL(security_ismaclabel);
1875
1876 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1877 {
1878 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1879 seclen);
1880 }
1881 EXPORT_SYMBOL(security_secid_to_secctx);
1882
1883 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1884 {
1885 *secid = 0;
1886 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1887 }
1888 EXPORT_SYMBOL(security_secctx_to_secid);
1889
1890 void security_release_secctx(char *secdata, u32 seclen)
1891 {
1892 call_void_hook(release_secctx, secdata, seclen);
1893 }
1894 EXPORT_SYMBOL(security_release_secctx);
1895
1896 void security_inode_invalidate_secctx(struct inode *inode)
1897 {
1898 call_void_hook(inode_invalidate_secctx, inode);
1899 }
1900 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1901
1902 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1903 {
1904 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1905 }
1906 EXPORT_SYMBOL(security_inode_notifysecctx);
1907
1908 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1909 {
1910 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1911 }
1912 EXPORT_SYMBOL(security_inode_setsecctx);
1913
1914 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1915 {
1916 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1917 }
1918 EXPORT_SYMBOL(security_inode_getsecctx);
1919
1920 #ifdef CONFIG_SECURITY_NETWORK
1921
1922 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1923 {
1924 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1925 }
1926 EXPORT_SYMBOL(security_unix_stream_connect);
1927
1928 int security_unix_may_send(struct socket *sock, struct socket *other)
1929 {
1930 return call_int_hook(unix_may_send, 0, sock, other);
1931 }
1932 EXPORT_SYMBOL(security_unix_may_send);
1933
1934 int security_socket_create(int family, int type, int protocol, int kern)
1935 {
1936 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1937 }
1938
1939 int security_socket_post_create(struct socket *sock, int family,
1940 int type, int protocol, int kern)
1941 {
1942 return call_int_hook(socket_post_create, 0, sock, family, type,
1943 protocol, kern);
1944 }
1945
1946 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1947 {
1948 return call_int_hook(socket_socketpair, 0, socka, sockb);
1949 }
1950 EXPORT_SYMBOL(security_socket_socketpair);
1951
1952 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1953 {
1954 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1955 }
1956
1957 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1958 {
1959 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1960 }
1961
1962 int security_socket_listen(struct socket *sock, int backlog)
1963 {
1964 return call_int_hook(socket_listen, 0, sock, backlog);
1965 }
1966
1967 int security_socket_accept(struct socket *sock, struct socket *newsock)
1968 {
1969 return call_int_hook(socket_accept, 0, sock, newsock);
1970 }
1971
1972 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1973 {
1974 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1975 }
1976
1977 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1978 int size, int flags)
1979 {
1980 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1981 }
1982
1983 int security_socket_getsockname(struct socket *sock)
1984 {
1985 return call_int_hook(socket_getsockname, 0, sock);
1986 }
1987
1988 int security_socket_getpeername(struct socket *sock)
1989 {
1990 return call_int_hook(socket_getpeername, 0, sock);
1991 }
1992
1993 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1994 {
1995 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1996 }
1997
1998 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1999 {
2000 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2001 }
2002
2003 int security_socket_shutdown(struct socket *sock, int how)
2004 {
2005 return call_int_hook(socket_shutdown, 0, sock, how);
2006 }
2007
2008 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2009 {
2010 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2011 }
2012 EXPORT_SYMBOL(security_sock_rcv_skb);
2013
2014 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2015 int __user *optlen, unsigned len)
2016 {
2017 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2018 optval, optlen, len);
2019 }
2020
2021 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2022 {
2023 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2024 skb, secid);
2025 }
2026 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2027
2028 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2029 {
2030 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2031 }
2032
2033 void security_sk_free(struct sock *sk)
2034 {
2035 call_void_hook(sk_free_security, sk);
2036 }
2037
2038 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2039 {
2040 call_void_hook(sk_clone_security, sk, newsk);
2041 }
2042 EXPORT_SYMBOL(security_sk_clone);
2043
2044 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2045 {
2046 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2047 }
2048 EXPORT_SYMBOL(security_sk_classify_flow);
2049
2050 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2051 {
2052 call_void_hook(req_classify_flow, req, fl);
2053 }
2054 EXPORT_SYMBOL(security_req_classify_flow);
2055
2056 void security_sock_graft(struct sock *sk, struct socket *parent)
2057 {
2058 call_void_hook(sock_graft, sk, parent);
2059 }
2060 EXPORT_SYMBOL(security_sock_graft);
2061
2062 int security_inet_conn_request(struct sock *sk,
2063 struct sk_buff *skb, struct request_sock *req)
2064 {
2065 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2066 }
2067 EXPORT_SYMBOL(security_inet_conn_request);
2068
2069 void security_inet_csk_clone(struct sock *newsk,
2070 const struct request_sock *req)
2071 {
2072 call_void_hook(inet_csk_clone, newsk, req);
2073 }
2074
2075 void security_inet_conn_established(struct sock *sk,
2076 struct sk_buff *skb)
2077 {
2078 call_void_hook(inet_conn_established, sk, skb);
2079 }
2080 EXPORT_SYMBOL(security_inet_conn_established);
2081
2082 int security_secmark_relabel_packet(u32 secid)
2083 {
2084 return call_int_hook(secmark_relabel_packet, 0, secid);
2085 }
2086 EXPORT_SYMBOL(security_secmark_relabel_packet);
2087
2088 void security_secmark_refcount_inc(void)
2089 {
2090 call_void_hook(secmark_refcount_inc);
2091 }
2092 EXPORT_SYMBOL(security_secmark_refcount_inc);
2093
2094 void security_secmark_refcount_dec(void)
2095 {
2096 call_void_hook(secmark_refcount_dec);
2097 }
2098 EXPORT_SYMBOL(security_secmark_refcount_dec);
2099
2100 int security_tun_dev_alloc_security(void **security)
2101 {
2102 return call_int_hook(tun_dev_alloc_security, 0, security);
2103 }
2104 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2105
2106 void security_tun_dev_free_security(void *security)
2107 {
2108 call_void_hook(tun_dev_free_security, security);
2109 }
2110 EXPORT_SYMBOL(security_tun_dev_free_security);
2111
2112 int security_tun_dev_create(void)
2113 {
2114 return call_int_hook(tun_dev_create, 0);
2115 }
2116 EXPORT_SYMBOL(security_tun_dev_create);
2117
2118 int security_tun_dev_attach_queue(void *security)
2119 {
2120 return call_int_hook(tun_dev_attach_queue, 0, security);
2121 }
2122 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2123
2124 int security_tun_dev_attach(struct sock *sk, void *security)
2125 {
2126 return call_int_hook(tun_dev_attach, 0, sk, security);
2127 }
2128 EXPORT_SYMBOL(security_tun_dev_attach);
2129
2130 int security_tun_dev_open(void *security)
2131 {
2132 return call_int_hook(tun_dev_open, 0, security);
2133 }
2134 EXPORT_SYMBOL(security_tun_dev_open);
2135
2136 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2137 {
2138 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2139 }
2140 EXPORT_SYMBOL(security_sctp_assoc_request);
2141
2142 int security_sctp_bind_connect(struct sock *sk, int optname,
2143 struct sockaddr *address, int addrlen)
2144 {
2145 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2146 address, addrlen);
2147 }
2148 EXPORT_SYMBOL(security_sctp_bind_connect);
2149
2150 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2151 struct sock *newsk)
2152 {
2153 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2154 }
2155 EXPORT_SYMBOL(security_sctp_sk_clone);
2156
2157 #endif /* CONFIG_SECURITY_NETWORK */
2158
2159 #ifdef CONFIG_SECURITY_INFINIBAND
2160
2161 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2162 {
2163 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2164 }
2165 EXPORT_SYMBOL(security_ib_pkey_access);
2166
2167 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2168 {
2169 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2170 }
2171 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2172
2173 int security_ib_alloc_security(void **sec)
2174 {
2175 return call_int_hook(ib_alloc_security, 0, sec);
2176 }
2177 EXPORT_SYMBOL(security_ib_alloc_security);
2178
2179 void security_ib_free_security(void *sec)
2180 {
2181 call_void_hook(ib_free_security, sec);
2182 }
2183 EXPORT_SYMBOL(security_ib_free_security);
2184 #endif /* CONFIG_SECURITY_INFINIBAND */
2185
2186 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2187
2188 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2189 struct xfrm_user_sec_ctx *sec_ctx,
2190 gfp_t gfp)
2191 {
2192 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2193 }
2194 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2195
2196 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2197 struct xfrm_sec_ctx **new_ctxp)
2198 {
2199 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2200 }
2201
2202 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2203 {
2204 call_void_hook(xfrm_policy_free_security, ctx);
2205 }
2206 EXPORT_SYMBOL(security_xfrm_policy_free);
2207
2208 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2209 {
2210 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2211 }
2212
2213 int security_xfrm_state_alloc(struct xfrm_state *x,
2214 struct xfrm_user_sec_ctx *sec_ctx)
2215 {
2216 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2217 }
2218 EXPORT_SYMBOL(security_xfrm_state_alloc);
2219
2220 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2221 struct xfrm_sec_ctx *polsec, u32 secid)
2222 {
2223 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2224 }
2225
2226 int security_xfrm_state_delete(struct xfrm_state *x)
2227 {
2228 return call_int_hook(xfrm_state_delete_security, 0, x);
2229 }
2230 EXPORT_SYMBOL(security_xfrm_state_delete);
2231
2232 void security_xfrm_state_free(struct xfrm_state *x)
2233 {
2234 call_void_hook(xfrm_state_free_security, x);
2235 }
2236
2237 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2238 {
2239 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2240 }
2241
2242 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2243 struct xfrm_policy *xp,
2244 const struct flowi *fl)
2245 {
2246 struct security_hook_list *hp;
2247 int rc = 1;
2248
2249 /*
2250 * Since this function is expected to return 0 or 1, the judgment
2251 * becomes difficult if multiple LSMs supply this call. Fortunately,
2252 * we can use the first LSM's judgment because currently only SELinux
2253 * supplies this call.
2254 *
2255 * For speed optimization, we explicitly break the loop rather than
2256 * using the macro
2257 */
2258 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2259 list) {
2260 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2261 break;
2262 }
2263 return rc;
2264 }
2265
2266 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2267 {
2268 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2269 }
2270
2271 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2272 {
2273 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2274 0);
2275
2276 BUG_ON(rc);
2277 }
2278 EXPORT_SYMBOL(security_skb_classify_flow);
2279
2280 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2281
2282 #ifdef CONFIG_KEYS
2283
2284 int security_key_alloc(struct key *key, const struct cred *cred,
2285 unsigned long flags)
2286 {
2287 return call_int_hook(key_alloc, 0, key, cred, flags);
2288 }
2289
2290 void security_key_free(struct key *key)
2291 {
2292 call_void_hook(key_free, key);
2293 }
2294
2295 int security_key_permission(key_ref_t key_ref,
2296 const struct cred *cred, unsigned perm)
2297 {
2298 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2299 }
2300
2301 int security_key_getsecurity(struct key *key, char **_buffer)
2302 {
2303 *_buffer = NULL;
2304 return call_int_hook(key_getsecurity, 0, key, _buffer);
2305 }
2306
2307 #endif /* CONFIG_KEYS */
2308
2309 #ifdef CONFIG_AUDIT
2310
2311 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2312 {
2313 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2314 }
2315
2316 int security_audit_rule_known(struct audit_krule *krule)
2317 {
2318 return call_int_hook(audit_rule_known, 0, krule);
2319 }
2320
2321 void security_audit_rule_free(void *lsmrule)
2322 {
2323 call_void_hook(audit_rule_free, lsmrule);
2324 }
2325
2326 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2327 {
2328 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2329 }
2330 #endif /* CONFIG_AUDIT */
2331
2332 #ifdef CONFIG_BPF_SYSCALL
2333 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2334 {
2335 return call_int_hook(bpf, 0, cmd, attr, size);
2336 }
2337 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2338 {
2339 return call_int_hook(bpf_map, 0, map, fmode);
2340 }
2341 int security_bpf_prog(struct bpf_prog *prog)
2342 {
2343 return call_int_hook(bpf_prog, 0, prog);
2344 }
2345 int security_bpf_map_alloc(struct bpf_map *map)
2346 {
2347 return call_int_hook(bpf_map_alloc_security, 0, map);
2348 }
2349 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2350 {
2351 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2352 }
2353 void security_bpf_map_free(struct bpf_map *map)
2354 {
2355 call_void_hook(bpf_map_free_security, map);
2356 }
2357 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2358 {
2359 call_void_hook(bpf_prog_free_security, aux);
2360 }
2361 #endif /* CONFIG_BPF_SYSCALL */