]> git.ipfire.org Git - thirdparty/qemu.git/blob - slirp/src/tcp_input.c
b10477fc577e7f14f163202af9585859c318e0c4
[thirdparty/qemu.git] / slirp / src / tcp_input.c
1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
30 * tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp
31 */
32
33 /*
34 * Changes and additions relating to SLiRP
35 * Copyright (c) 1995 Danny Gasparovski.
36 *
37 * Please read the file COPYRIGHT for the
38 * terms and conditions of the copyright.
39 */
40
41 #include "slirp.h"
42 #include "ip_icmp.h"
43
44 #define TCPREXMTTHRESH 3
45
46 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
47
48 /* for modulo comparisons of timestamps */
49 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
50 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
51
52 /*
53 * Insert segment ti into reassembly queue of tcp with
54 * control block tp. Return TH_FIN if reassembly now includes
55 * a segment with FIN. The macro form does the common case inline
56 * (segment is the next to be received on an established connection,
57 * and the queue is empty), avoiding linkage into and removal
58 * from the queue and repetition of various conversions.
59 * Set DELACK for segments received in order, but ack immediately
60 * when segments are out of order (so fast retransmit can work).
61 */
62 #define TCP_REASS(tp, ti, m, so, flags) { \
63 if ((ti)->ti_seq == (tp)->rcv_nxt && \
64 tcpfrag_list_empty(tp) && \
65 (tp)->t_state == TCPS_ESTABLISHED) { \
66 tp->t_flags |= TF_DELACK; \
67 (tp)->rcv_nxt += (ti)->ti_len; \
68 flags = (ti)->ti_flags & TH_FIN; \
69 if (so->so_emu) { \
70 if (tcp_emu((so),(m))) sbappend(so, (m)); \
71 } else \
72 sbappend((so), (m)); \
73 } else { \
74 (flags) = tcp_reass((tp), (ti), (m)); \
75 tp->t_flags |= TF_ACKNOW; \
76 } \
77 }
78
79 static void tcp_dooptions(struct tcpcb *tp, uint8_t *cp, int cnt,
80 struct tcpiphdr *ti);
81 static void tcp_xmit_timer(register struct tcpcb *tp, int rtt);
82
83 static int
84 tcp_reass(register struct tcpcb *tp, register struct tcpiphdr *ti,
85 struct mbuf *m)
86 {
87 register struct tcpiphdr *q;
88 struct socket *so = tp->t_socket;
89 int flags;
90
91 /*
92 * Call with ti==NULL after become established to
93 * force pre-ESTABLISHED data up to user socket.
94 */
95 if (ti == NULL)
96 goto present;
97
98 /*
99 * Find a segment which begins after this one does.
100 */
101 for (q = tcpfrag_list_first(tp); !tcpfrag_list_end(q, tp);
102 q = tcpiphdr_next(q))
103 if (SEQ_GT(q->ti_seq, ti->ti_seq))
104 break;
105
106 /*
107 * If there is a preceding segment, it may provide some of
108 * our data already. If so, drop the data from the incoming
109 * segment. If it provides all of our data, drop us.
110 */
111 if (!tcpfrag_list_end(tcpiphdr_prev(q), tp)) {
112 register int i;
113 q = tcpiphdr_prev(q);
114 /* conversion to int (in i) handles seq wraparound */
115 i = q->ti_seq + q->ti_len - ti->ti_seq;
116 if (i > 0) {
117 if (i >= ti->ti_len) {
118 m_free(m);
119 /*
120 * Try to present any queued data
121 * at the left window edge to the user.
122 * This is needed after the 3-WHS
123 * completes.
124 */
125 goto present; /* ??? */
126 }
127 m_adj(m, i);
128 ti->ti_len -= i;
129 ti->ti_seq += i;
130 }
131 q = tcpiphdr_next(q);
132 }
133 ti->ti_mbuf = m;
134
135 /*
136 * While we overlap succeeding segments trim them or,
137 * if they are completely covered, dequeue them.
138 */
139 while (!tcpfrag_list_end(q, tp)) {
140 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
141 if (i <= 0)
142 break;
143 if (i < q->ti_len) {
144 q->ti_seq += i;
145 q->ti_len -= i;
146 m_adj(q->ti_mbuf, i);
147 break;
148 }
149 q = tcpiphdr_next(q);
150 m = tcpiphdr_prev(q)->ti_mbuf;
151 remque(tcpiphdr2qlink(tcpiphdr_prev(q)));
152 m_free(m);
153 }
154
155 /*
156 * Stick new segment in its place.
157 */
158 insque(tcpiphdr2qlink(ti), tcpiphdr2qlink(tcpiphdr_prev(q)));
159
160 present:
161 /*
162 * Present data to user, advancing rcv_nxt through
163 * completed sequence space.
164 */
165 if (!TCPS_HAVEESTABLISHED(tp->t_state))
166 return (0);
167 ti = tcpfrag_list_first(tp);
168 if (tcpfrag_list_end(ti, tp) || ti->ti_seq != tp->rcv_nxt)
169 return (0);
170 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
171 return (0);
172 do {
173 tp->rcv_nxt += ti->ti_len;
174 flags = ti->ti_flags & TH_FIN;
175 remque(tcpiphdr2qlink(ti));
176 m = ti->ti_mbuf;
177 ti = tcpiphdr_next(ti);
178 if (so->so_state & SS_FCANTSENDMORE)
179 m_free(m);
180 else {
181 if (so->so_emu) {
182 if (tcp_emu(so,m)) sbappend(so, m);
183 } else
184 sbappend(so, m);
185 }
186 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
187 return (flags);
188 }
189
190 /*
191 * TCP input routine, follows pages 65-76 of the
192 * protocol specification dated September, 1981 very closely.
193 */
194 void
195 tcp_input(struct mbuf *m, int iphlen, struct socket *inso, unsigned short af)
196 {
197 struct ip save_ip, *ip;
198 struct ip6 save_ip6, *ip6;
199 register struct tcpiphdr *ti;
200 char *optp = NULL;
201 int optlen = 0;
202 int len, tlen, off;
203 register struct tcpcb *tp = NULL;
204 register int tiflags;
205 struct socket *so = NULL;
206 int todrop, acked, ourfinisacked, needoutput = 0;
207 int iss = 0;
208 uint32_t tiwin;
209 int ret;
210 struct sockaddr_storage lhost, fhost;
211 struct sockaddr_in *lhost4, *fhost4;
212 struct sockaddr_in6 *lhost6, *fhost6;
213 struct gfwd_list *ex_ptr;
214 Slirp *slirp;
215
216 DEBUG_CALL("tcp_input");
217 DEBUG_ARG("m = %p iphlen = %2d inso = %p",
218 m, iphlen, inso);
219
220 /*
221 * If called with m == 0, then we're continuing the connect
222 */
223 if (m == NULL) {
224 so = inso;
225 slirp = so->slirp;
226
227 /* Re-set a few variables */
228 tp = sototcpcb(so);
229 m = so->so_m;
230 so->so_m = NULL;
231 ti = so->so_ti;
232 tiwin = ti->ti_win;
233 tiflags = ti->ti_flags;
234
235 goto cont_conn;
236 }
237 slirp = m->slirp;
238
239 ip = mtod(m, struct ip *);
240 ip6 = mtod(m, struct ip6 *);
241
242 switch (af) {
243 case AF_INET:
244 if (iphlen > sizeof(struct ip)) {
245 ip_stripoptions(m, (struct mbuf *)0);
246 iphlen = sizeof(struct ip);
247 }
248 /* XXX Check if too short */
249
250
251 /*
252 * Save a copy of the IP header in case we want restore it
253 * for sending an ICMP error message in response.
254 */
255 save_ip = *ip;
256 save_ip.ip_len += iphlen;
257
258 /*
259 * Get IP and TCP header together in first mbuf.
260 * Note: IP leaves IP header in first mbuf.
261 */
262 m->m_data -= sizeof(struct tcpiphdr) - sizeof(struct ip)
263 - sizeof(struct tcphdr);
264 m->m_len += sizeof(struct tcpiphdr) - sizeof(struct ip)
265 - sizeof(struct tcphdr);
266 ti = mtod(m, struct tcpiphdr *);
267
268 /*
269 * Checksum extended TCP header and data.
270 */
271 tlen = ip->ip_len;
272 tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = NULL;
273 memset(&ti->ih_mbuf, 0 , sizeof(struct mbuf_ptr));
274 memset(&ti->ti, 0, sizeof(ti->ti));
275 ti->ti_x0 = 0;
276 ti->ti_src = save_ip.ip_src;
277 ti->ti_dst = save_ip.ip_dst;
278 ti->ti_pr = save_ip.ip_p;
279 ti->ti_len = htons((uint16_t)tlen);
280 break;
281
282 case AF_INET6:
283 /*
284 * Save a copy of the IP header in case we want restore it
285 * for sending an ICMP error message in response.
286 */
287 save_ip6 = *ip6;
288 /*
289 * Get IP and TCP header together in first mbuf.
290 * Note: IP leaves IP header in first mbuf.
291 */
292 m->m_data -= sizeof(struct tcpiphdr) - (sizeof(struct ip6)
293 + sizeof(struct tcphdr));
294 m->m_len += sizeof(struct tcpiphdr) - (sizeof(struct ip6)
295 + sizeof(struct tcphdr));
296 ti = mtod(m, struct tcpiphdr *);
297
298 tlen = ip6->ip_pl;
299 tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = NULL;
300 memset(&ti->ih_mbuf, 0 , sizeof(struct mbuf_ptr));
301 memset(&ti->ti, 0, sizeof(ti->ti));
302 ti->ti_x0 = 0;
303 ti->ti_src6 = save_ip6.ip_src;
304 ti->ti_dst6 = save_ip6.ip_dst;
305 ti->ti_nh6 = save_ip6.ip_nh;
306 ti->ti_len = htons((uint16_t)tlen);
307 break;
308
309 default:
310 g_assert_not_reached();
311 }
312
313 len = ((sizeof(struct tcpiphdr) - sizeof(struct tcphdr)) + tlen);
314 if (cksum(m, len)) {
315 goto drop;
316 }
317
318 /*
319 * Check that TCP offset makes sense,
320 * pull out TCP options and adjust length. XXX
321 */
322 off = ti->ti_off << 2;
323 if (off < sizeof (struct tcphdr) || off > tlen) {
324 goto drop;
325 }
326 tlen -= off;
327 ti->ti_len = tlen;
328 if (off > sizeof (struct tcphdr)) {
329 optlen = off - sizeof (struct tcphdr);
330 optp = mtod(m, char *) + sizeof (struct tcpiphdr);
331 }
332 tiflags = ti->ti_flags;
333
334 /*
335 * Convert TCP protocol specific fields to host format.
336 */
337 NTOHL(ti->ti_seq);
338 NTOHL(ti->ti_ack);
339 NTOHS(ti->ti_win);
340 NTOHS(ti->ti_urp);
341
342 /*
343 * Drop TCP, IP headers and TCP options.
344 */
345 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
346 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
347
348 /*
349 * Locate pcb for segment.
350 */
351 findso:
352 lhost.ss_family = af;
353 fhost.ss_family = af;
354 switch (af) {
355 case AF_INET:
356 lhost4 = (struct sockaddr_in *) &lhost;
357 lhost4->sin_addr = ti->ti_src;
358 lhost4->sin_port = ti->ti_sport;
359 fhost4 = (struct sockaddr_in *) &fhost;
360 fhost4->sin_addr = ti->ti_dst;
361 fhost4->sin_port = ti->ti_dport;
362 break;
363 case AF_INET6:
364 lhost6 = (struct sockaddr_in6 *) &lhost;
365 lhost6->sin6_addr = ti->ti_src6;
366 lhost6->sin6_port = ti->ti_sport;
367 fhost6 = (struct sockaddr_in6 *) &fhost;
368 fhost6->sin6_addr = ti->ti_dst6;
369 fhost6->sin6_port = ti->ti_dport;
370 break;
371 default:
372 g_assert_not_reached();
373 }
374
375 so = solookup(&slirp->tcp_last_so, &slirp->tcb, &lhost, &fhost);
376
377 /*
378 * If the state is CLOSED (i.e., TCB does not exist) then
379 * all data in the incoming segment is discarded.
380 * If the TCB exists but is in CLOSED state, it is embryonic,
381 * but should either do a listen or a connect soon.
382 *
383 * state == CLOSED means we've done socreate() but haven't
384 * attached it to a protocol yet...
385 *
386 * XXX If a TCB does not exist, and the TH_SYN flag is
387 * the only flag set, then create a session, mark it
388 * as if it was LISTENING, and continue...
389 */
390 if (so == NULL) {
391 /* TODO: IPv6 */
392 if (slirp->restricted) {
393 /* Any hostfwds will have an existing socket, so we only get here
394 * for non-hostfwd connections. These should be dropped, unless it
395 * happens to be a guestfwd.
396 */
397 for (ex_ptr = slirp->guestfwd_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
398 if (ex_ptr->ex_fport == ti->ti_dport &&
399 ti->ti_dst.s_addr == ex_ptr->ex_addr.s_addr) {
400 break;
401 }
402 }
403 if (!ex_ptr) {
404 goto dropwithreset;
405 }
406 }
407
408 if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
409 goto dropwithreset;
410
411 so = socreate(slirp);
412 if (tcp_attach(so) < 0) {
413 g_free(so); /* Not sofree (if it failed, it's not insqued) */
414 goto dropwithreset;
415 }
416
417 sbreserve(&so->so_snd, TCP_SNDSPACE);
418 sbreserve(&so->so_rcv, TCP_RCVSPACE);
419
420 so->lhost.ss = lhost;
421 so->fhost.ss = fhost;
422
423 so->so_iptos = tcp_tos(so);
424 if (so->so_iptos == 0) {
425 switch (af) {
426 case AF_INET:
427 so->so_iptos = ((struct ip *)ti)->ip_tos;
428 break;
429 case AF_INET6:
430 break;
431 default:
432 g_assert_not_reached();
433 }
434 }
435
436 tp = sototcpcb(so);
437 tp->t_state = TCPS_LISTEN;
438 }
439
440 /*
441 * If this is a still-connecting socket, this probably
442 * a retransmit of the SYN. Whether it's a retransmit SYN
443 * or something else, we nuke it.
444 */
445 if (so->so_state & SS_ISFCONNECTING)
446 goto drop;
447
448 tp = sototcpcb(so);
449
450 /* XXX Should never fail */
451 if (tp == NULL)
452 goto dropwithreset;
453 if (tp->t_state == TCPS_CLOSED)
454 goto drop;
455
456 tiwin = ti->ti_win;
457
458 /*
459 * Segment received on connection.
460 * Reset idle time and keep-alive timer.
461 */
462 tp->t_idle = 0;
463 if (slirp_do_keepalive)
464 tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL;
465 else
466 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE;
467
468 /*
469 * Process options if not in LISTEN state,
470 * else do it below (after getting remote address).
471 */
472 if (optp && tp->t_state != TCPS_LISTEN)
473 tcp_dooptions(tp, (uint8_t *)optp, optlen, ti);
474
475 /*
476 * Header prediction: check for the two common cases
477 * of a uni-directional data xfer. If the packet has
478 * no control flags, is in-sequence, the window didn't
479 * change and we're not retransmitting, it's a
480 * candidate. If the length is zero and the ack moved
481 * forward, we're the sender side of the xfer. Just
482 * free the data acked & wake any higher level process
483 * that was blocked waiting for space. If the length
484 * is non-zero and the ack didn't move, we're the
485 * receiver side. If we're getting packets in-order
486 * (the reassembly queue is empty), add the data to
487 * the socket buffer and note that we need a delayed ack.
488 *
489 * XXX Some of these tests are not needed
490 * eg: the tiwin == tp->snd_wnd prevents many more
491 * predictions.. with no *real* advantage..
492 */
493 if (tp->t_state == TCPS_ESTABLISHED &&
494 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
495 ti->ti_seq == tp->rcv_nxt &&
496 tiwin && tiwin == tp->snd_wnd &&
497 tp->snd_nxt == tp->snd_max) {
498 if (ti->ti_len == 0) {
499 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
500 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
501 tp->snd_cwnd >= tp->snd_wnd) {
502 /*
503 * this is a pure ack for outstanding data.
504 */
505 if (tp->t_rtt &&
506 SEQ_GT(ti->ti_ack, tp->t_rtseq))
507 tcp_xmit_timer(tp, tp->t_rtt);
508 acked = ti->ti_ack - tp->snd_una;
509 sodrop(so, acked);
510 tp->snd_una = ti->ti_ack;
511 m_free(m);
512
513 /*
514 * If all outstanding data are acked, stop
515 * retransmit timer, otherwise restart timer
516 * using current (possibly backed-off) value.
517 * If process is waiting for space,
518 * wakeup/selwakeup/signal. If data
519 * are ready to send, let tcp_output
520 * decide between more output or persist.
521 */
522 if (tp->snd_una == tp->snd_max)
523 tp->t_timer[TCPT_REXMT] = 0;
524 else if (tp->t_timer[TCPT_PERSIST] == 0)
525 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
526
527 /*
528 * This is called because sowwakeup might have
529 * put data into so_snd. Since we don't so sowwakeup,
530 * we don't need this.. XXX???
531 */
532 if (so->so_snd.sb_cc)
533 (void) tcp_output(tp);
534
535 return;
536 }
537 } else if (ti->ti_ack == tp->snd_una &&
538 tcpfrag_list_empty(tp) &&
539 ti->ti_len <= sbspace(&so->so_rcv)) {
540 /*
541 * this is a pure, in-sequence data packet
542 * with nothing on the reassembly queue and
543 * we have enough buffer space to take it.
544 */
545 tp->rcv_nxt += ti->ti_len;
546 /*
547 * Add data to socket buffer.
548 */
549 if (so->so_emu) {
550 if (tcp_emu(so,m)) sbappend(so, m);
551 } else
552 sbappend(so, m);
553
554 /*
555 * If this is a short packet, then ACK now - with Nagel
556 * congestion avoidance sender won't send more until
557 * he gets an ACK.
558 *
559 * It is better to not delay acks at all to maximize
560 * TCP throughput. See RFC 2581.
561 */
562 tp->t_flags |= TF_ACKNOW;
563 tcp_output(tp);
564 return;
565 }
566 } /* header prediction */
567 /*
568 * Calculate amount of space in receive window,
569 * and then do TCP input processing.
570 * Receive window is amount of space in rcv queue,
571 * but not less than advertised window.
572 */
573 { int win;
574 win = sbspace(&so->so_rcv);
575 if (win < 0)
576 win = 0;
577 tp->rcv_wnd = MAX(win, (int)(tp->rcv_adv - tp->rcv_nxt));
578 }
579
580 switch (tp->t_state) {
581
582 /*
583 * If the state is LISTEN then ignore segment if it contains an RST.
584 * If the segment contains an ACK then it is bad and send a RST.
585 * If it does not contain a SYN then it is not interesting; drop it.
586 * Don't bother responding if the destination was a broadcast.
587 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
588 * tp->iss, and send a segment:
589 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
590 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
591 * Fill in remote peer address fields if not previously specified.
592 * Enter SYN_RECEIVED state, and process any other fields of this
593 * segment in this state.
594 */
595 case TCPS_LISTEN: {
596
597 if (tiflags & TH_RST)
598 goto drop;
599 if (tiflags & TH_ACK)
600 goto dropwithreset;
601 if ((tiflags & TH_SYN) == 0)
602 goto drop;
603
604 /*
605 * This has way too many gotos...
606 * But a bit of spaghetti code never hurt anybody :)
607 */
608
609 /*
610 * If this is destined for the control address, then flag to
611 * tcp_ctl once connected, otherwise connect
612 */
613 /* TODO: IPv6 */
614 if (af == AF_INET &&
615 (so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) ==
616 slirp->vnetwork_addr.s_addr) {
617 if (so->so_faddr.s_addr != slirp->vhost_addr.s_addr &&
618 so->so_faddr.s_addr != slirp->vnameserver_addr.s_addr) {
619 /* May be an add exec */
620 for (ex_ptr = slirp->guestfwd_list; ex_ptr;
621 ex_ptr = ex_ptr->ex_next) {
622 if(ex_ptr->ex_fport == so->so_fport &&
623 so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr) {
624 so->so_state |= SS_CTL;
625 break;
626 }
627 }
628 if (so->so_state & SS_CTL) {
629 goto cont_input;
630 }
631 }
632 /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
633 }
634
635 if (so->so_emu & EMU_NOCONNECT) {
636 so->so_emu &= ~EMU_NOCONNECT;
637 goto cont_input;
638 }
639
640 if ((tcp_fconnect(so, so->so_ffamily) == -1) &&
641 (errno != EAGAIN) &&
642 (errno != EINPROGRESS) && (errno != EWOULDBLOCK)
643 ) {
644 uint8_t code;
645 DEBUG_MISC(" tcp fconnect errno = %d-%s", errno, strerror(errno));
646 if(errno == ECONNREFUSED) {
647 /* ACK the SYN, send RST to refuse the connection */
648 tcp_respond(tp, ti, m, ti->ti_seq + 1, (tcp_seq) 0,
649 TH_RST | TH_ACK, af);
650 } else {
651 switch (af) {
652 case AF_INET:
653 code = ICMP_UNREACH_NET;
654 if (errno == EHOSTUNREACH) {
655 code = ICMP_UNREACH_HOST;
656 }
657 break;
658 case AF_INET6:
659 code = ICMP6_UNREACH_NO_ROUTE;
660 if (errno == EHOSTUNREACH) {
661 code = ICMP6_UNREACH_ADDRESS;
662 }
663 break;
664 default:
665 g_assert_not_reached();
666 }
667 HTONL(ti->ti_seq); /* restore tcp header */
668 HTONL(ti->ti_ack);
669 HTONS(ti->ti_win);
670 HTONS(ti->ti_urp);
671 m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
672 m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
673 switch (af) {
674 case AF_INET:
675 m->m_data += sizeof(struct tcpiphdr) - sizeof(struct ip)
676 - sizeof(struct tcphdr);
677 m->m_len -= sizeof(struct tcpiphdr) - sizeof(struct ip)
678 - sizeof(struct tcphdr);
679 *ip = save_ip;
680 icmp_send_error(m, ICMP_UNREACH, code, 0, strerror(errno));
681 break;
682 case AF_INET6:
683 m->m_data += sizeof(struct tcpiphdr) - (sizeof(struct ip6)
684 + sizeof(struct tcphdr));
685 m->m_len -= sizeof(struct tcpiphdr) - (sizeof(struct ip6)
686 + sizeof(struct tcphdr));
687 *ip6 = save_ip6;
688 icmp6_send_error(m, ICMP6_UNREACH, code);
689 break;
690 default:
691 g_assert_not_reached();
692 }
693 }
694 tcp_close(tp);
695 m_free(m);
696 } else {
697 /*
698 * Haven't connected yet, save the current mbuf
699 * and ti, and return
700 * XXX Some OS's don't tell us whether the connect()
701 * succeeded or not. So we must time it out.
702 */
703 so->so_m = m;
704 so->so_ti = ti;
705 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
706 tp->t_state = TCPS_SYN_RECEIVED;
707 /*
708 * Initialize receive sequence numbers now so that we can send a
709 * valid RST if the remote end rejects our connection.
710 */
711 tp->irs = ti->ti_seq;
712 tcp_rcvseqinit(tp);
713 tcp_template(tp);
714 }
715 return;
716
717 cont_conn:
718 /* m==NULL
719 * Check if the connect succeeded
720 */
721 if (so->so_state & SS_NOFDREF) {
722 tp = tcp_close(tp);
723 goto dropwithreset;
724 }
725 cont_input:
726 tcp_template(tp);
727
728 if (optp)
729 tcp_dooptions(tp, (uint8_t *)optp, optlen, ti);
730
731 if (iss)
732 tp->iss = iss;
733 else
734 tp->iss = slirp->tcp_iss;
735 slirp->tcp_iss += TCP_ISSINCR/2;
736 tp->irs = ti->ti_seq;
737 tcp_sendseqinit(tp);
738 tcp_rcvseqinit(tp);
739 tp->t_flags |= TF_ACKNOW;
740 tp->t_state = TCPS_SYN_RECEIVED;
741 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
742 goto trimthenstep6;
743 } /* case TCPS_LISTEN */
744
745 /*
746 * If the state is SYN_SENT:
747 * if seg contains an ACK, but not for our SYN, drop the input.
748 * if seg contains a RST, then drop the connection.
749 * if seg does not contain SYN, then drop it.
750 * Otherwise this is an acceptable SYN segment
751 * initialize tp->rcv_nxt and tp->irs
752 * if seg contains ack then advance tp->snd_una
753 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
754 * arrange for segment to be acked (eventually)
755 * continue processing rest of data/controls, beginning with URG
756 */
757 case TCPS_SYN_SENT:
758 if ((tiflags & TH_ACK) &&
759 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
760 SEQ_GT(ti->ti_ack, tp->snd_max)))
761 goto dropwithreset;
762
763 if (tiflags & TH_RST) {
764 if (tiflags & TH_ACK) {
765 tcp_drop(tp, 0); /* XXX Check t_softerror! */
766 }
767 goto drop;
768 }
769
770 if ((tiflags & TH_SYN) == 0)
771 goto drop;
772 if (tiflags & TH_ACK) {
773 tp->snd_una = ti->ti_ack;
774 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
775 tp->snd_nxt = tp->snd_una;
776 }
777
778 tp->t_timer[TCPT_REXMT] = 0;
779 tp->irs = ti->ti_seq;
780 tcp_rcvseqinit(tp);
781 tp->t_flags |= TF_ACKNOW;
782 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
783 soisfconnected(so);
784 tp->t_state = TCPS_ESTABLISHED;
785
786 (void) tcp_reass(tp, (struct tcpiphdr *)0,
787 (struct mbuf *)0);
788 /*
789 * if we didn't have to retransmit the SYN,
790 * use its rtt as our initial srtt & rtt var.
791 */
792 if (tp->t_rtt)
793 tcp_xmit_timer(tp, tp->t_rtt);
794 } else
795 tp->t_state = TCPS_SYN_RECEIVED;
796
797 trimthenstep6:
798 /*
799 * Advance ti->ti_seq to correspond to first data byte.
800 * If data, trim to stay within window,
801 * dropping FIN if necessary.
802 */
803 ti->ti_seq++;
804 if (ti->ti_len > tp->rcv_wnd) {
805 todrop = ti->ti_len - tp->rcv_wnd;
806 m_adj(m, -todrop);
807 ti->ti_len = tp->rcv_wnd;
808 tiflags &= ~TH_FIN;
809 }
810 tp->snd_wl1 = ti->ti_seq - 1;
811 tp->rcv_up = ti->ti_seq;
812 goto step6;
813 } /* switch tp->t_state */
814 /*
815 * States other than LISTEN or SYN_SENT.
816 * Check that at least some bytes of segment are within
817 * receive window. If segment begins before rcv_nxt,
818 * drop leading data (and SYN); if nothing left, just ack.
819 */
820 todrop = tp->rcv_nxt - ti->ti_seq;
821 if (todrop > 0) {
822 if (tiflags & TH_SYN) {
823 tiflags &= ~TH_SYN;
824 ti->ti_seq++;
825 if (ti->ti_urp > 1)
826 ti->ti_urp--;
827 else
828 tiflags &= ~TH_URG;
829 todrop--;
830 }
831 /*
832 * Following if statement from Stevens, vol. 2, p. 960.
833 */
834 if (todrop > ti->ti_len
835 || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
836 /*
837 * Any valid FIN must be to the left of the window.
838 * At this point the FIN must be a duplicate or out
839 * of sequence; drop it.
840 */
841 tiflags &= ~TH_FIN;
842
843 /*
844 * Send an ACK to resynchronize and drop any data.
845 * But keep on processing for RST or ACK.
846 */
847 tp->t_flags |= TF_ACKNOW;
848 todrop = ti->ti_len;
849 }
850 m_adj(m, todrop);
851 ti->ti_seq += todrop;
852 ti->ti_len -= todrop;
853 if (ti->ti_urp > todrop)
854 ti->ti_urp -= todrop;
855 else {
856 tiflags &= ~TH_URG;
857 ti->ti_urp = 0;
858 }
859 }
860 /*
861 * If new data are received on a connection after the
862 * user processes are gone, then RST the other end.
863 */
864 if ((so->so_state & SS_NOFDREF) &&
865 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
866 tp = tcp_close(tp);
867 goto dropwithreset;
868 }
869
870 /*
871 * If segment ends after window, drop trailing data
872 * (and PUSH and FIN); if nothing left, just ACK.
873 */
874 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
875 if (todrop > 0) {
876 if (todrop >= ti->ti_len) {
877 /*
878 * If a new connection request is received
879 * while in TIME_WAIT, drop the old connection
880 * and start over if the sequence numbers
881 * are above the previous ones.
882 */
883 if (tiflags & TH_SYN &&
884 tp->t_state == TCPS_TIME_WAIT &&
885 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
886 iss = tp->rcv_nxt + TCP_ISSINCR;
887 tp = tcp_close(tp);
888 goto findso;
889 }
890 /*
891 * If window is closed can only take segments at
892 * window edge, and have to drop data and PUSH from
893 * incoming segments. Continue processing, but
894 * remember to ack. Otherwise, drop segment
895 * and ack.
896 */
897 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
898 tp->t_flags |= TF_ACKNOW;
899 } else {
900 goto dropafterack;
901 }
902 }
903 m_adj(m, -todrop);
904 ti->ti_len -= todrop;
905 tiflags &= ~(TH_PUSH|TH_FIN);
906 }
907
908 /*
909 * If the RST bit is set examine the state:
910 * SYN_RECEIVED STATE:
911 * If passive open, return to LISTEN state.
912 * If active open, inform user that connection was refused.
913 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
914 * Inform user that connection was reset, and close tcb.
915 * CLOSING, LAST_ACK, TIME_WAIT STATES
916 * Close the tcb.
917 */
918 if (tiflags&TH_RST) switch (tp->t_state) {
919
920 case TCPS_SYN_RECEIVED:
921 case TCPS_ESTABLISHED:
922 case TCPS_FIN_WAIT_1:
923 case TCPS_FIN_WAIT_2:
924 case TCPS_CLOSE_WAIT:
925 tp->t_state = TCPS_CLOSED;
926 tcp_close(tp);
927 goto drop;
928
929 case TCPS_CLOSING:
930 case TCPS_LAST_ACK:
931 case TCPS_TIME_WAIT:
932 tcp_close(tp);
933 goto drop;
934 }
935
936 /*
937 * If a SYN is in the window, then this is an
938 * error and we send an RST and drop the connection.
939 */
940 if (tiflags & TH_SYN) {
941 tp = tcp_drop(tp,0);
942 goto dropwithreset;
943 }
944
945 /*
946 * If the ACK bit is off we drop the segment and return.
947 */
948 if ((tiflags & TH_ACK) == 0) goto drop;
949
950 /*
951 * Ack processing.
952 */
953 switch (tp->t_state) {
954 /*
955 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
956 * ESTABLISHED state and continue processing, otherwise
957 * send an RST. una<=ack<=max
958 */
959 case TCPS_SYN_RECEIVED:
960
961 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
962 SEQ_GT(ti->ti_ack, tp->snd_max))
963 goto dropwithreset;
964 tp->t_state = TCPS_ESTABLISHED;
965 /*
966 * The sent SYN is ack'ed with our sequence number +1
967 * The first data byte already in the buffer will get
968 * lost if no correction is made. This is only needed for
969 * SS_CTL since the buffer is empty otherwise.
970 * tp->snd_una++; or:
971 */
972 tp->snd_una=ti->ti_ack;
973 if (so->so_state & SS_CTL) {
974 /* So tcp_ctl reports the right state */
975 ret = tcp_ctl(so);
976 if (ret == 1) {
977 soisfconnected(so);
978 so->so_state &= ~SS_CTL; /* success XXX */
979 } else if (ret == 2) {
980 so->so_state &= SS_PERSISTENT_MASK;
981 so->so_state |= SS_NOFDREF; /* CTL_CMD */
982 } else {
983 needoutput = 1;
984 tp->t_state = TCPS_FIN_WAIT_1;
985 }
986 } else {
987 soisfconnected(so);
988 }
989
990 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
991 tp->snd_wl1 = ti->ti_seq - 1;
992 /* Avoid ack processing; snd_una==ti_ack => dup ack */
993 goto synrx_to_est;
994 /* fall into ... */
995
996 /*
997 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
998 * ACKs. If the ack is in the range
999 * tp->snd_una < ti->ti_ack <= tp->snd_max
1000 * then advance tp->snd_una to ti->ti_ack and drop
1001 * data from the retransmission queue. If this ACK reflects
1002 * more up to date window information we update our window information.
1003 */
1004 case TCPS_ESTABLISHED:
1005 case TCPS_FIN_WAIT_1:
1006 case TCPS_FIN_WAIT_2:
1007 case TCPS_CLOSE_WAIT:
1008 case TCPS_CLOSING:
1009 case TCPS_LAST_ACK:
1010 case TCPS_TIME_WAIT:
1011
1012 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1013 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1014 DEBUG_MISC(" dup ack m = %p so = %p", m, so);
1015 /*
1016 * If we have outstanding data (other than
1017 * a window probe), this is a completely
1018 * duplicate ack (ie, window info didn't
1019 * change), the ack is the biggest we've
1020 * seen and we've seen exactly our rexmt
1021 * threshold of them, assume a packet
1022 * has been dropped and retransmit it.
1023 * Kludge snd_nxt & the congestion
1024 * window so we send only this one
1025 * packet.
1026 *
1027 * We know we're losing at the current
1028 * window size so do congestion avoidance
1029 * (set ssthresh to half the current window
1030 * and pull our congestion window back to
1031 * the new ssthresh).
1032 *
1033 * Dup acks mean that packets have left the
1034 * network (they're now cached at the receiver)
1035 * so bump cwnd by the amount in the receiver
1036 * to keep a constant cwnd packets in the
1037 * network.
1038 */
1039 if (tp->t_timer[TCPT_REXMT] == 0 ||
1040 ti->ti_ack != tp->snd_una)
1041 tp->t_dupacks = 0;
1042 else if (++tp->t_dupacks == TCPREXMTTHRESH) {
1043 tcp_seq onxt = tp->snd_nxt;
1044 unsigned win =
1045 MIN(tp->snd_wnd, tp->snd_cwnd) /
1046 2 / tp->t_maxseg;
1047
1048 if (win < 2)
1049 win = 2;
1050 tp->snd_ssthresh = win * tp->t_maxseg;
1051 tp->t_timer[TCPT_REXMT] = 0;
1052 tp->t_rtt = 0;
1053 tp->snd_nxt = ti->ti_ack;
1054 tp->snd_cwnd = tp->t_maxseg;
1055 (void) tcp_output(tp);
1056 tp->snd_cwnd = tp->snd_ssthresh +
1057 tp->t_maxseg * tp->t_dupacks;
1058 if (SEQ_GT(onxt, tp->snd_nxt))
1059 tp->snd_nxt = onxt;
1060 goto drop;
1061 } else if (tp->t_dupacks > TCPREXMTTHRESH) {
1062 tp->snd_cwnd += tp->t_maxseg;
1063 (void) tcp_output(tp);
1064 goto drop;
1065 }
1066 } else
1067 tp->t_dupacks = 0;
1068 break;
1069 }
1070 synrx_to_est:
1071 /*
1072 * If the congestion window was inflated to account
1073 * for the other side's cached packets, retract it.
1074 */
1075 if (tp->t_dupacks > TCPREXMTTHRESH &&
1076 tp->snd_cwnd > tp->snd_ssthresh)
1077 tp->snd_cwnd = tp->snd_ssthresh;
1078 tp->t_dupacks = 0;
1079 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1080 goto dropafterack;
1081 }
1082 acked = ti->ti_ack - tp->snd_una;
1083
1084 /*
1085 * If transmit timer is running and timed sequence
1086 * number was acked, update smoothed round trip time.
1087 * Since we now have an rtt measurement, cancel the
1088 * timer backoff (cf., Phil Karn's retransmit alg.).
1089 * Recompute the initial retransmit timer.
1090 */
1091 if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1092 tcp_xmit_timer(tp,tp->t_rtt);
1093
1094 /*
1095 * If all outstanding data is acked, stop retransmit
1096 * timer and remember to restart (more output or persist).
1097 * If there is more data to be acked, restart retransmit
1098 * timer, using current (possibly backed-off) value.
1099 */
1100 if (ti->ti_ack == tp->snd_max) {
1101 tp->t_timer[TCPT_REXMT] = 0;
1102 needoutput = 1;
1103 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1104 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1105 /*
1106 * When new data is acked, open the congestion window.
1107 * If the window gives us less than ssthresh packets
1108 * in flight, open exponentially (maxseg per packet).
1109 * Otherwise open linearly: maxseg per window
1110 * (maxseg^2 / cwnd per packet).
1111 */
1112 {
1113 register unsigned cw = tp->snd_cwnd;
1114 register unsigned incr = tp->t_maxseg;
1115
1116 if (cw > tp->snd_ssthresh)
1117 incr = incr * incr / cw;
1118 tp->snd_cwnd = MIN(cw + incr, TCP_MAXWIN << tp->snd_scale);
1119 }
1120 if (acked > so->so_snd.sb_cc) {
1121 tp->snd_wnd -= so->so_snd.sb_cc;
1122 sodrop(so, (int)so->so_snd.sb_cc);
1123 ourfinisacked = 1;
1124 } else {
1125 sodrop(so, acked);
1126 tp->snd_wnd -= acked;
1127 ourfinisacked = 0;
1128 }
1129 tp->snd_una = ti->ti_ack;
1130 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1131 tp->snd_nxt = tp->snd_una;
1132
1133 switch (tp->t_state) {
1134
1135 /*
1136 * In FIN_WAIT_1 STATE in addition to the processing
1137 * for the ESTABLISHED state if our FIN is now acknowledged
1138 * then enter FIN_WAIT_2.
1139 */
1140 case TCPS_FIN_WAIT_1:
1141 if (ourfinisacked) {
1142 /*
1143 * If we can't receive any more
1144 * data, then closing user can proceed.
1145 * Starting the timer is contrary to the
1146 * specification, but if we don't get a FIN
1147 * we'll hang forever.
1148 */
1149 if (so->so_state & SS_FCANTRCVMORE) {
1150 tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE;
1151 }
1152 tp->t_state = TCPS_FIN_WAIT_2;
1153 }
1154 break;
1155
1156 /*
1157 * In CLOSING STATE in addition to the processing for
1158 * the ESTABLISHED state if the ACK acknowledges our FIN
1159 * then enter the TIME-WAIT state, otherwise ignore
1160 * the segment.
1161 */
1162 case TCPS_CLOSING:
1163 if (ourfinisacked) {
1164 tp->t_state = TCPS_TIME_WAIT;
1165 tcp_canceltimers(tp);
1166 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1167 }
1168 break;
1169
1170 /*
1171 * In LAST_ACK, we may still be waiting for data to drain
1172 * and/or to be acked, as well as for the ack of our FIN.
1173 * If our FIN is now acknowledged, delete the TCB,
1174 * enter the closed state and return.
1175 */
1176 case TCPS_LAST_ACK:
1177 if (ourfinisacked) {
1178 tcp_close(tp);
1179 goto drop;
1180 }
1181 break;
1182
1183 /*
1184 * In TIME_WAIT state the only thing that should arrive
1185 * is a retransmission of the remote FIN. Acknowledge
1186 * it and restart the finack timer.
1187 */
1188 case TCPS_TIME_WAIT:
1189 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1190 goto dropafterack;
1191 }
1192 } /* switch(tp->t_state) */
1193
1194 step6:
1195 /*
1196 * Update window information.
1197 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1198 */
1199 if ((tiflags & TH_ACK) &&
1200 (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
1201 (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1202 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
1203 tp->snd_wnd = tiwin;
1204 tp->snd_wl1 = ti->ti_seq;
1205 tp->snd_wl2 = ti->ti_ack;
1206 if (tp->snd_wnd > tp->max_sndwnd)
1207 tp->max_sndwnd = tp->snd_wnd;
1208 needoutput = 1;
1209 }
1210
1211 /*
1212 * Process segments with URG.
1213 */
1214 if ((tiflags & TH_URG) && ti->ti_urp &&
1215 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1216 /*
1217 * This is a kludge, but if we receive and accept
1218 * random urgent pointers, we'll crash in
1219 * soreceive. It's hard to imagine someone
1220 * actually wanting to send this much urgent data.
1221 */
1222 if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
1223 ti->ti_urp = 0;
1224 tiflags &= ~TH_URG;
1225 goto dodata;
1226 }
1227 /*
1228 * If this segment advances the known urgent pointer,
1229 * then mark the data stream. This should not happen
1230 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1231 * a FIN has been received from the remote side.
1232 * In these states we ignore the URG.
1233 *
1234 * According to RFC961 (Assigned Protocols),
1235 * the urgent pointer points to the last octet
1236 * of urgent data. We continue, however,
1237 * to consider it to indicate the first octet
1238 * of data past the urgent section as the original
1239 * spec states (in one of two places).
1240 */
1241 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1242 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1243 so->so_urgc = so->so_rcv.sb_cc +
1244 (tp->rcv_up - tp->rcv_nxt); /* -1; */
1245 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1246
1247 }
1248 } else
1249 /*
1250 * If no out of band data is expected,
1251 * pull receive urgent pointer along
1252 * with the receive window.
1253 */
1254 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1255 tp->rcv_up = tp->rcv_nxt;
1256 dodata:
1257
1258 /*
1259 * If this is a small packet, then ACK now - with Nagel
1260 * congestion avoidance sender won't send more until
1261 * he gets an ACK.
1262 */
1263 if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
1264 ((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
1265 tp->t_flags |= TF_ACKNOW;
1266 }
1267
1268 /*
1269 * Process the segment text, merging it into the TCP sequencing queue,
1270 * and arranging for acknowledgment of receipt if necessary.
1271 * This process logically involves adjusting tp->rcv_wnd as data
1272 * is presented to the user (this happens in tcp_usrreq.c,
1273 * case PRU_RCVD). If a FIN has already been received on this
1274 * connection then we just ignore the text.
1275 */
1276 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1277 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1278 TCP_REASS(tp, ti, m, so, tiflags);
1279 } else {
1280 m_free(m);
1281 tiflags &= ~TH_FIN;
1282 }
1283
1284 /*
1285 * If FIN is received ACK the FIN and let the user know
1286 * that the connection is closing.
1287 */
1288 if (tiflags & TH_FIN) {
1289 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1290 /*
1291 * If we receive a FIN we can't send more data,
1292 * set it SS_FDRAIN
1293 * Shutdown the socket if there is no rx data in the
1294 * buffer.
1295 * soread() is called on completion of shutdown() and
1296 * will got to TCPS_LAST_ACK, and use tcp_output()
1297 * to send the FIN.
1298 */
1299 sofwdrain(so);
1300
1301 tp->t_flags |= TF_ACKNOW;
1302 tp->rcv_nxt++;
1303 }
1304 switch (tp->t_state) {
1305
1306 /*
1307 * In SYN_RECEIVED and ESTABLISHED STATES
1308 * enter the CLOSE_WAIT state.
1309 */
1310 case TCPS_SYN_RECEIVED:
1311 case TCPS_ESTABLISHED:
1312 if(so->so_emu == EMU_CTL) /* no shutdown on socket */
1313 tp->t_state = TCPS_LAST_ACK;
1314 else
1315 tp->t_state = TCPS_CLOSE_WAIT;
1316 break;
1317
1318 /*
1319 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1320 * enter the CLOSING state.
1321 */
1322 case TCPS_FIN_WAIT_1:
1323 tp->t_state = TCPS_CLOSING;
1324 break;
1325
1326 /*
1327 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1328 * starting the time-wait timer, turning off the other
1329 * standard timers.
1330 */
1331 case TCPS_FIN_WAIT_2:
1332 tp->t_state = TCPS_TIME_WAIT;
1333 tcp_canceltimers(tp);
1334 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1335 break;
1336
1337 /*
1338 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1339 */
1340 case TCPS_TIME_WAIT:
1341 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1342 break;
1343 }
1344 }
1345
1346 /*
1347 * Return any desired output.
1348 */
1349 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
1350 (void) tcp_output(tp);
1351 }
1352 return;
1353
1354 dropafterack:
1355 /*
1356 * Generate an ACK dropping incoming segment if it occupies
1357 * sequence space, where the ACK reflects our state.
1358 */
1359 if (tiflags & TH_RST)
1360 goto drop;
1361 m_free(m);
1362 tp->t_flags |= TF_ACKNOW;
1363 (void) tcp_output(tp);
1364 return;
1365
1366 dropwithreset:
1367 /* reuses m if m!=NULL, m_free() unnecessary */
1368 if (tiflags & TH_ACK)
1369 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST, af);
1370 else {
1371 if (tiflags & TH_SYN) ti->ti_len++;
1372 tcp_respond(tp, ti, m, ti->ti_seq + ti->ti_len, (tcp_seq) 0,
1373 TH_RST | TH_ACK, af);
1374 }
1375
1376 return;
1377
1378 drop:
1379 /*
1380 * Drop space held by incoming segment and return.
1381 */
1382 m_free(m);
1383 }
1384
1385 static void
1386 tcp_dooptions(struct tcpcb *tp, uint8_t *cp, int cnt, struct tcpiphdr *ti)
1387 {
1388 uint16_t mss;
1389 int opt, optlen;
1390
1391 DEBUG_CALL("tcp_dooptions");
1392 DEBUG_ARG("tp = %p cnt=%i", tp, cnt);
1393
1394 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1395 opt = cp[0];
1396 if (opt == TCPOPT_EOL)
1397 break;
1398 if (opt == TCPOPT_NOP)
1399 optlen = 1;
1400 else {
1401 optlen = cp[1];
1402 if (optlen <= 0)
1403 break;
1404 }
1405 switch (opt) {
1406
1407 default:
1408 continue;
1409
1410 case TCPOPT_MAXSEG:
1411 if (optlen != TCPOLEN_MAXSEG)
1412 continue;
1413 if (!(ti->ti_flags & TH_SYN))
1414 continue;
1415 memcpy((char *) &mss, (char *) cp + 2, sizeof(mss));
1416 NTOHS(mss);
1417 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1418 break;
1419 }
1420 }
1421 }
1422
1423 /*
1424 * Collect new round-trip time estimate
1425 * and update averages and current timeout.
1426 */
1427
1428 static void
1429 tcp_xmit_timer(register struct tcpcb *tp, int rtt)
1430 {
1431 register short delta;
1432
1433 DEBUG_CALL("tcp_xmit_timer");
1434 DEBUG_ARG("tp = %p", tp);
1435 DEBUG_ARG("rtt = %d", rtt);
1436
1437 if (tp->t_srtt != 0) {
1438 /*
1439 * srtt is stored as fixed point with 3 bits after the
1440 * binary point (i.e., scaled by 8). The following magic
1441 * is equivalent to the smoothing algorithm in rfc793 with
1442 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1443 * point). Adjust rtt to origin 0.
1444 */
1445 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1446 if ((tp->t_srtt += delta) <= 0)
1447 tp->t_srtt = 1;
1448 /*
1449 * We accumulate a smoothed rtt variance (actually, a
1450 * smoothed mean difference), then set the retransmit
1451 * timer to smoothed rtt + 4 times the smoothed variance.
1452 * rttvar is stored as fixed point with 2 bits after the
1453 * binary point (scaled by 4). The following is
1454 * equivalent to rfc793 smoothing with an alpha of .75
1455 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1456 * rfc793's wired-in beta.
1457 */
1458 if (delta < 0)
1459 delta = -delta;
1460 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1461 if ((tp->t_rttvar += delta) <= 0)
1462 tp->t_rttvar = 1;
1463 } else {
1464 /*
1465 * No rtt measurement yet - use the unsmoothed rtt.
1466 * Set the variance to half the rtt (so our first
1467 * retransmit happens at 3*rtt).
1468 */
1469 tp->t_srtt = rtt << TCP_RTT_SHIFT;
1470 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1471 }
1472 tp->t_rtt = 0;
1473 tp->t_rxtshift = 0;
1474
1475 /*
1476 * the retransmit should happen at rtt + 4 * rttvar.
1477 * Because of the way we do the smoothing, srtt and rttvar
1478 * will each average +1/2 tick of bias. When we compute
1479 * the retransmit timer, we want 1/2 tick of rounding and
1480 * 1 extra tick because of +-1/2 tick uncertainty in the
1481 * firing of the timer. The bias will give us exactly the
1482 * 1.5 tick we need. But, because the bias is
1483 * statistical, we have to test that we don't drop below
1484 * the minimum feasible timer (which is 2 ticks).
1485 */
1486 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1487 (short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */
1488
1489 /*
1490 * We received an ack for a packet that wasn't retransmitted;
1491 * it is probably safe to discard any error indications we've
1492 * received recently. This isn't quite right, but close enough
1493 * for now (a route might have failed after we sent a segment,
1494 * and the return path might not be symmetrical).
1495 */
1496 tp->t_softerror = 0;
1497 }
1498
1499 /*
1500 * Determine a reasonable value for maxseg size.
1501 * If the route is known, check route for mtu.
1502 * If none, use an mss that can be handled on the outgoing
1503 * interface without forcing IP to fragment; if bigger than
1504 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1505 * to utilize large mbufs. If no route is found, route has no mtu,
1506 * or the destination isn't local, use a default, hopefully conservative
1507 * size (usually 512 or the default IP max size, but no more than the mtu
1508 * of the interface), as we can't discover anything about intervening
1509 * gateways or networks. We also initialize the congestion/slow start
1510 * window to be a single segment if the destination isn't local.
1511 * While looking at the routing entry, we also initialize other path-dependent
1512 * parameters from pre-set or cached values in the routing entry.
1513 */
1514
1515 int
1516 tcp_mss(struct tcpcb *tp, unsigned offer)
1517 {
1518 struct socket *so = tp->t_socket;
1519 int mss;
1520
1521 DEBUG_CALL("tcp_mss");
1522 DEBUG_ARG("tp = %p", tp);
1523 DEBUG_ARG("offer = %d", offer);
1524
1525 switch (so->so_ffamily) {
1526 case AF_INET:
1527 mss = MIN(IF_MTU, IF_MRU) - sizeof(struct tcphdr)
1528 - sizeof(struct ip);
1529 break;
1530 case AF_INET6:
1531 mss = MIN(IF_MTU, IF_MRU) - sizeof(struct tcphdr)
1532 - sizeof(struct ip6);
1533 break;
1534 default:
1535 g_assert_not_reached();
1536 }
1537
1538 if (offer)
1539 mss = MIN(mss, offer);
1540 mss = MAX(mss, 32);
1541 if (mss < tp->t_maxseg || offer != 0)
1542 tp->t_maxseg = mss;
1543
1544 tp->snd_cwnd = mss;
1545
1546 sbreserve(&so->so_snd, TCP_SNDSPACE + ((TCP_SNDSPACE % mss) ?
1547 (mss - (TCP_SNDSPACE % mss)) :
1548 0));
1549 sbreserve(&so->so_rcv, TCP_RCVSPACE + ((TCP_RCVSPACE % mss) ?
1550 (mss - (TCP_RCVSPACE % mss)) :
1551 0));
1552
1553 DEBUG_MISC(" returning mss = %d", mss);
1554
1555 return mss;
1556 }