]> git.ipfire.org Git - thirdparty/linux.git/blob - sound/core/pcm_lib.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[thirdparty/linux.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36 /*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46 {
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109 }
110
111 #ifdef CONFIG_SND_DEBUG
112 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
114 {
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
119 substream->number);
120 }
121 EXPORT_SYMBOL(snd_pcm_debug_name);
122 #endif
123
124 #define XRUN_DEBUG_BASIC (1<<0)
125 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130 #define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
132 #else
133 #define xrun_debug(substream, mask) 0
134 #endif
135
136 #define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
138 dump_stack(); \
139 } while (0)
140
141 /* call with stream lock held */
142 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143 {
144 struct snd_pcm_runtime *runtime = substream->runtime;
145
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
150 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
151 char name[16];
152 snd_pcm_debug_name(substream, name, sizeof(name));
153 pcm_warn(substream->pcm, "XRUN: %s\n", name);
154 dump_stack_on_xrun(substream);
155 }
156 }
157
158 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
159 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
160 do { \
161 trace_hw_ptr_error(substream, reason); \
162 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
163 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
164 (in_interrupt) ? 'Q' : 'P', ##args); \
165 dump_stack_on_xrun(substream); \
166 } \
167 } while (0)
168
169 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
170
171 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
172
173 #endif
174
175 int snd_pcm_update_state(struct snd_pcm_substream *substream,
176 struct snd_pcm_runtime *runtime)
177 {
178 snd_pcm_uframes_t avail;
179
180 avail = snd_pcm_avail(substream);
181 if (avail > runtime->avail_max)
182 runtime->avail_max = avail;
183 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
184 if (avail >= runtime->buffer_size) {
185 snd_pcm_drain_done(substream);
186 return -EPIPE;
187 }
188 } else {
189 if (avail >= runtime->stop_threshold) {
190 __snd_pcm_xrun(substream);
191 return -EPIPE;
192 }
193 }
194 if (runtime->twake) {
195 if (avail >= runtime->twake)
196 wake_up(&runtime->tsleep);
197 } else if (avail >= runtime->control->avail_min)
198 wake_up(&runtime->sleep);
199 return 0;
200 }
201
202 static void update_audio_tstamp(struct snd_pcm_substream *substream,
203 struct timespec *curr_tstamp,
204 struct timespec *audio_tstamp)
205 {
206 struct snd_pcm_runtime *runtime = substream->runtime;
207 u64 audio_frames, audio_nsecs;
208 struct timespec driver_tstamp;
209
210 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
211 return;
212
213 if (!(substream->ops->get_time_info) ||
214 (runtime->audio_tstamp_report.actual_type ==
215 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
216
217 /*
218 * provide audio timestamp derived from pointer position
219 * add delay only if requested
220 */
221
222 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
223
224 if (runtime->audio_tstamp_config.report_delay) {
225 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
226 audio_frames -= runtime->delay;
227 else
228 audio_frames += runtime->delay;
229 }
230 audio_nsecs = div_u64(audio_frames * 1000000000LL,
231 runtime->rate);
232 *audio_tstamp = ns_to_timespec(audio_nsecs);
233 }
234 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
235 runtime->status->audio_tstamp = *audio_tstamp;
236 runtime->status->tstamp = *curr_tstamp;
237 }
238
239 /*
240 * re-take a driver timestamp to let apps detect if the reference tstamp
241 * read by low-level hardware was provided with a delay
242 */
243 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
244 runtime->driver_tstamp = driver_tstamp;
245 }
246
247 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
248 unsigned int in_interrupt)
249 {
250 struct snd_pcm_runtime *runtime = substream->runtime;
251 snd_pcm_uframes_t pos;
252 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
253 snd_pcm_sframes_t hdelta, delta;
254 unsigned long jdelta;
255 unsigned long curr_jiffies;
256 struct timespec curr_tstamp;
257 struct timespec audio_tstamp;
258 int crossed_boundary = 0;
259
260 old_hw_ptr = runtime->status->hw_ptr;
261
262 /*
263 * group pointer, time and jiffies reads to allow for more
264 * accurate correlations/corrections.
265 * The values are stored at the end of this routine after
266 * corrections for hw_ptr position
267 */
268 pos = substream->ops->pointer(substream);
269 curr_jiffies = jiffies;
270 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
271 if ((substream->ops->get_time_info) &&
272 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
273 substream->ops->get_time_info(substream, &curr_tstamp,
274 &audio_tstamp,
275 &runtime->audio_tstamp_config,
276 &runtime->audio_tstamp_report);
277
278 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
279 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
280 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
281 } else
282 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
283 }
284
285 if (pos == SNDRV_PCM_POS_XRUN) {
286 __snd_pcm_xrun(substream);
287 return -EPIPE;
288 }
289 if (pos >= runtime->buffer_size) {
290 if (printk_ratelimit()) {
291 char name[16];
292 snd_pcm_debug_name(substream, name, sizeof(name));
293 pcm_err(substream->pcm,
294 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
295 name, pos, runtime->buffer_size,
296 runtime->period_size);
297 }
298 pos = 0;
299 }
300 pos -= pos % runtime->min_align;
301 trace_hwptr(substream, pos, in_interrupt);
302 hw_base = runtime->hw_ptr_base;
303 new_hw_ptr = hw_base + pos;
304 if (in_interrupt) {
305 /* we know that one period was processed */
306 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
307 delta = runtime->hw_ptr_interrupt + runtime->period_size;
308 if (delta > new_hw_ptr) {
309 /* check for double acknowledged interrupts */
310 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
311 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
312 hw_base += runtime->buffer_size;
313 if (hw_base >= runtime->boundary) {
314 hw_base = 0;
315 crossed_boundary++;
316 }
317 new_hw_ptr = hw_base + pos;
318 goto __delta;
319 }
320 }
321 }
322 /* new_hw_ptr might be lower than old_hw_ptr in case when */
323 /* pointer crosses the end of the ring buffer */
324 if (new_hw_ptr < old_hw_ptr) {
325 hw_base += runtime->buffer_size;
326 if (hw_base >= runtime->boundary) {
327 hw_base = 0;
328 crossed_boundary++;
329 }
330 new_hw_ptr = hw_base + pos;
331 }
332 __delta:
333 delta = new_hw_ptr - old_hw_ptr;
334 if (delta < 0)
335 delta += runtime->boundary;
336
337 if (runtime->no_period_wakeup) {
338 snd_pcm_sframes_t xrun_threshold;
339 /*
340 * Without regular period interrupts, we have to check
341 * the elapsed time to detect xruns.
342 */
343 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
345 goto no_delta_check;
346 hdelta = jdelta - delta * HZ / runtime->rate;
347 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
348 while (hdelta > xrun_threshold) {
349 delta += runtime->buffer_size;
350 hw_base += runtime->buffer_size;
351 if (hw_base >= runtime->boundary) {
352 hw_base = 0;
353 crossed_boundary++;
354 }
355 new_hw_ptr = hw_base + pos;
356 hdelta -= runtime->hw_ptr_buffer_jiffies;
357 }
358 goto no_delta_check;
359 }
360
361 /* something must be really wrong */
362 if (delta >= runtime->buffer_size + runtime->period_size) {
363 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
364 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
365 substream->stream, (long)pos,
366 (long)new_hw_ptr, (long)old_hw_ptr);
367 return 0;
368 }
369
370 /* Do jiffies check only in xrun_debug mode */
371 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
372 goto no_jiffies_check;
373
374 /* Skip the jiffies check for hardwares with BATCH flag.
375 * Such hardware usually just increases the position at each IRQ,
376 * thus it can't give any strange position.
377 */
378 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
379 goto no_jiffies_check;
380 hdelta = delta;
381 if (hdelta < runtime->delay)
382 goto no_jiffies_check;
383 hdelta -= runtime->delay;
384 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
385 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
386 delta = jdelta /
387 (((runtime->period_size * HZ) / runtime->rate)
388 + HZ/100);
389 /* move new_hw_ptr according jiffies not pos variable */
390 new_hw_ptr = old_hw_ptr;
391 hw_base = delta;
392 /* use loop to avoid checks for delta overflows */
393 /* the delta value is small or zero in most cases */
394 while (delta > 0) {
395 new_hw_ptr += runtime->period_size;
396 if (new_hw_ptr >= runtime->boundary) {
397 new_hw_ptr -= runtime->boundary;
398 crossed_boundary--;
399 }
400 delta--;
401 }
402 /* align hw_base to buffer_size */
403 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
404 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
405 (long)pos, (long)hdelta,
406 (long)runtime->period_size, jdelta,
407 ((hdelta * HZ) / runtime->rate), hw_base,
408 (unsigned long)old_hw_ptr,
409 (unsigned long)new_hw_ptr);
410 /* reset values to proper state */
411 delta = 0;
412 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
413 }
414 no_jiffies_check:
415 if (delta > runtime->period_size + runtime->period_size / 2) {
416 hw_ptr_error(substream, in_interrupt,
417 "Lost interrupts?",
418 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
419 substream->stream, (long)delta,
420 (long)new_hw_ptr,
421 (long)old_hw_ptr);
422 }
423
424 no_delta_check:
425 if (runtime->status->hw_ptr == new_hw_ptr) {
426 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
427 return 0;
428 }
429
430 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
431 runtime->silence_size > 0)
432 snd_pcm_playback_silence(substream, new_hw_ptr);
433
434 if (in_interrupt) {
435 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
436 if (delta < 0)
437 delta += runtime->boundary;
438 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
439 runtime->hw_ptr_interrupt += delta;
440 if (runtime->hw_ptr_interrupt >= runtime->boundary)
441 runtime->hw_ptr_interrupt -= runtime->boundary;
442 }
443 runtime->hw_ptr_base = hw_base;
444 runtime->status->hw_ptr = new_hw_ptr;
445 runtime->hw_ptr_jiffies = curr_jiffies;
446 if (crossed_boundary) {
447 snd_BUG_ON(crossed_boundary != 1);
448 runtime->hw_ptr_wrap += runtime->boundary;
449 }
450
451 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
452
453 return snd_pcm_update_state(substream, runtime);
454 }
455
456 /* CAUTION: call it with irq disabled */
457 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
458 {
459 return snd_pcm_update_hw_ptr0(substream, 0);
460 }
461
462 /**
463 * snd_pcm_set_ops - set the PCM operators
464 * @pcm: the pcm instance
465 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
466 * @ops: the operator table
467 *
468 * Sets the given PCM operators to the pcm instance.
469 */
470 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
471 const struct snd_pcm_ops *ops)
472 {
473 struct snd_pcm_str *stream = &pcm->streams[direction];
474 struct snd_pcm_substream *substream;
475
476 for (substream = stream->substream; substream != NULL; substream = substream->next)
477 substream->ops = ops;
478 }
479 EXPORT_SYMBOL(snd_pcm_set_ops);
480
481 /**
482 * snd_pcm_sync - set the PCM sync id
483 * @substream: the pcm substream
484 *
485 * Sets the PCM sync identifier for the card.
486 */
487 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
488 {
489 struct snd_pcm_runtime *runtime = substream->runtime;
490
491 runtime->sync.id32[0] = substream->pcm->card->number;
492 runtime->sync.id32[1] = -1;
493 runtime->sync.id32[2] = -1;
494 runtime->sync.id32[3] = -1;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_sync);
497
498 /*
499 * Standard ioctl routine
500 */
501
502 static inline unsigned int div32(unsigned int a, unsigned int b,
503 unsigned int *r)
504 {
505 if (b == 0) {
506 *r = 0;
507 return UINT_MAX;
508 }
509 *r = a % b;
510 return a / b;
511 }
512
513 static inline unsigned int div_down(unsigned int a, unsigned int b)
514 {
515 if (b == 0)
516 return UINT_MAX;
517 return a / b;
518 }
519
520 static inline unsigned int div_up(unsigned int a, unsigned int b)
521 {
522 unsigned int r;
523 unsigned int q;
524 if (b == 0)
525 return UINT_MAX;
526 q = div32(a, b, &r);
527 if (r)
528 ++q;
529 return q;
530 }
531
532 static inline unsigned int mul(unsigned int a, unsigned int b)
533 {
534 if (a == 0)
535 return 0;
536 if (div_down(UINT_MAX, a) < b)
537 return UINT_MAX;
538 return a * b;
539 }
540
541 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
542 unsigned int c, unsigned int *r)
543 {
544 u_int64_t n = (u_int64_t) a * b;
545 if (c == 0) {
546 *r = 0;
547 return UINT_MAX;
548 }
549 n = div_u64_rem(n, c, r);
550 if (n >= UINT_MAX) {
551 *r = 0;
552 return UINT_MAX;
553 }
554 return n;
555 }
556
557 /**
558 * snd_interval_refine - refine the interval value of configurator
559 * @i: the interval value to refine
560 * @v: the interval value to refer to
561 *
562 * Refines the interval value with the reference value.
563 * The interval is changed to the range satisfying both intervals.
564 * The interval status (min, max, integer, etc.) are evaluated.
565 *
566 * Return: Positive if the value is changed, zero if it's not changed, or a
567 * negative error code.
568 */
569 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
570 {
571 int changed = 0;
572 if (snd_BUG_ON(snd_interval_empty(i)))
573 return -EINVAL;
574 if (i->min < v->min) {
575 i->min = v->min;
576 i->openmin = v->openmin;
577 changed = 1;
578 } else if (i->min == v->min && !i->openmin && v->openmin) {
579 i->openmin = 1;
580 changed = 1;
581 }
582 if (i->max > v->max) {
583 i->max = v->max;
584 i->openmax = v->openmax;
585 changed = 1;
586 } else if (i->max == v->max && !i->openmax && v->openmax) {
587 i->openmax = 1;
588 changed = 1;
589 }
590 if (!i->integer && v->integer) {
591 i->integer = 1;
592 changed = 1;
593 }
594 if (i->integer) {
595 if (i->openmin) {
596 i->min++;
597 i->openmin = 0;
598 }
599 if (i->openmax) {
600 i->max--;
601 i->openmax = 0;
602 }
603 } else if (!i->openmin && !i->openmax && i->min == i->max)
604 i->integer = 1;
605 if (snd_interval_checkempty(i)) {
606 snd_interval_none(i);
607 return -EINVAL;
608 }
609 return changed;
610 }
611 EXPORT_SYMBOL(snd_interval_refine);
612
613 static int snd_interval_refine_first(struct snd_interval *i)
614 {
615 const unsigned int last_max = i->max;
616
617 if (snd_BUG_ON(snd_interval_empty(i)))
618 return -EINVAL;
619 if (snd_interval_single(i))
620 return 0;
621 i->max = i->min;
622 if (i->openmin)
623 i->max++;
624 /* only exclude max value if also excluded before refine */
625 i->openmax = (i->openmax && i->max >= last_max);
626 return 1;
627 }
628
629 static int snd_interval_refine_last(struct snd_interval *i)
630 {
631 const unsigned int last_min = i->min;
632
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 if (i->openmax)
639 i->min--;
640 /* only exclude min value if also excluded before refine */
641 i->openmin = (i->openmin && i->min <= last_min);
642 return 1;
643 }
644
645 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
646 {
647 if (a->empty || b->empty) {
648 snd_interval_none(c);
649 return;
650 }
651 c->empty = 0;
652 c->min = mul(a->min, b->min);
653 c->openmin = (a->openmin || b->openmin);
654 c->max = mul(a->max, b->max);
655 c->openmax = (a->openmax || b->openmax);
656 c->integer = (a->integer && b->integer);
657 }
658
659 /**
660 * snd_interval_div - refine the interval value with division
661 * @a: dividend
662 * @b: divisor
663 * @c: quotient
664 *
665 * c = a / b
666 *
667 * Returns non-zero if the value is changed, zero if not changed.
668 */
669 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
670 {
671 unsigned int r;
672 if (a->empty || b->empty) {
673 snd_interval_none(c);
674 return;
675 }
676 c->empty = 0;
677 c->min = div32(a->min, b->max, &r);
678 c->openmin = (r || a->openmin || b->openmax);
679 if (b->min > 0) {
680 c->max = div32(a->max, b->min, &r);
681 if (r) {
682 c->max++;
683 c->openmax = 1;
684 } else
685 c->openmax = (a->openmax || b->openmin);
686 } else {
687 c->max = UINT_MAX;
688 c->openmax = 0;
689 }
690 c->integer = 0;
691 }
692
693 /**
694 * snd_interval_muldivk - refine the interval value
695 * @a: dividend 1
696 * @b: dividend 2
697 * @k: divisor (as integer)
698 * @c: result
699 *
700 * c = a * b / k
701 *
702 * Returns non-zero if the value is changed, zero if not changed.
703 */
704 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
705 unsigned int k, struct snd_interval *c)
706 {
707 unsigned int r;
708 if (a->empty || b->empty) {
709 snd_interval_none(c);
710 return;
711 }
712 c->empty = 0;
713 c->min = muldiv32(a->min, b->min, k, &r);
714 c->openmin = (r || a->openmin || b->openmin);
715 c->max = muldiv32(a->max, b->max, k, &r);
716 if (r) {
717 c->max++;
718 c->openmax = 1;
719 } else
720 c->openmax = (a->openmax || b->openmax);
721 c->integer = 0;
722 }
723
724 /**
725 * snd_interval_mulkdiv - refine the interval value
726 * @a: dividend 1
727 * @k: dividend 2 (as integer)
728 * @b: divisor
729 * @c: result
730 *
731 * c = a * k / b
732 *
733 * Returns non-zero if the value is changed, zero if not changed.
734 */
735 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
736 const struct snd_interval *b, struct snd_interval *c)
737 {
738 unsigned int r;
739 if (a->empty || b->empty) {
740 snd_interval_none(c);
741 return;
742 }
743 c->empty = 0;
744 c->min = muldiv32(a->min, k, b->max, &r);
745 c->openmin = (r || a->openmin || b->openmax);
746 if (b->min > 0) {
747 c->max = muldiv32(a->max, k, b->min, &r);
748 if (r) {
749 c->max++;
750 c->openmax = 1;
751 } else
752 c->openmax = (a->openmax || b->openmin);
753 } else {
754 c->max = UINT_MAX;
755 c->openmax = 0;
756 }
757 c->integer = 0;
758 }
759
760 /* ---- */
761
762
763 /**
764 * snd_interval_ratnum - refine the interval value
765 * @i: interval to refine
766 * @rats_count: number of ratnum_t
767 * @rats: ratnum_t array
768 * @nump: pointer to store the resultant numerator
769 * @denp: pointer to store the resultant denominator
770 *
771 * Return: Positive if the value is changed, zero if it's not changed, or a
772 * negative error code.
773 */
774 int snd_interval_ratnum(struct snd_interval *i,
775 unsigned int rats_count, const struct snd_ratnum *rats,
776 unsigned int *nump, unsigned int *denp)
777 {
778 unsigned int best_num, best_den;
779 int best_diff;
780 unsigned int k;
781 struct snd_interval t;
782 int err;
783 unsigned int result_num, result_den;
784 int result_diff;
785
786 best_num = best_den = best_diff = 0;
787 for (k = 0; k < rats_count; ++k) {
788 unsigned int num = rats[k].num;
789 unsigned int den;
790 unsigned int q = i->min;
791 int diff;
792 if (q == 0)
793 q = 1;
794 den = div_up(num, q);
795 if (den < rats[k].den_min)
796 continue;
797 if (den > rats[k].den_max)
798 den = rats[k].den_max;
799 else {
800 unsigned int r;
801 r = (den - rats[k].den_min) % rats[k].den_step;
802 if (r != 0)
803 den -= r;
804 }
805 diff = num - q * den;
806 if (diff < 0)
807 diff = -diff;
808 if (best_num == 0 ||
809 diff * best_den < best_diff * den) {
810 best_diff = diff;
811 best_den = den;
812 best_num = num;
813 }
814 }
815 if (best_den == 0) {
816 i->empty = 1;
817 return -EINVAL;
818 }
819 t.min = div_down(best_num, best_den);
820 t.openmin = !!(best_num % best_den);
821
822 result_num = best_num;
823 result_diff = best_diff;
824 result_den = best_den;
825 best_num = best_den = best_diff = 0;
826 for (k = 0; k < rats_count; ++k) {
827 unsigned int num = rats[k].num;
828 unsigned int den;
829 unsigned int q = i->max;
830 int diff;
831 if (q == 0) {
832 i->empty = 1;
833 return -EINVAL;
834 }
835 den = div_down(num, q);
836 if (den > rats[k].den_max)
837 continue;
838 if (den < rats[k].den_min)
839 den = rats[k].den_min;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den += rats[k].den_step - r;
845 }
846 diff = q * den - num;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.max = div_up(best_num, best_den);
861 t.openmax = !!(best_num % best_den);
862 t.integer = 0;
863 err = snd_interval_refine(i, &t);
864 if (err < 0)
865 return err;
866
867 if (snd_interval_single(i)) {
868 if (best_diff * result_den < result_diff * best_den) {
869 result_num = best_num;
870 result_den = best_den;
871 }
872 if (nump)
873 *nump = result_num;
874 if (denp)
875 *denp = result_den;
876 }
877 return err;
878 }
879 EXPORT_SYMBOL(snd_interval_ratnum);
880
881 /**
882 * snd_interval_ratden - refine the interval value
883 * @i: interval to refine
884 * @rats_count: number of struct ratden
885 * @rats: struct ratden array
886 * @nump: pointer to store the resultant numerator
887 * @denp: pointer to store the resultant denominator
888 *
889 * Return: Positive if the value is changed, zero if it's not changed, or a
890 * negative error code.
891 */
892 static int snd_interval_ratden(struct snd_interval *i,
893 unsigned int rats_count,
894 const struct snd_ratden *rats,
895 unsigned int *nump, unsigned int *denp)
896 {
897 unsigned int best_num, best_diff, best_den;
898 unsigned int k;
899 struct snd_interval t;
900 int err;
901
902 best_num = best_den = best_diff = 0;
903 for (k = 0; k < rats_count; ++k) {
904 unsigned int num;
905 unsigned int den = rats[k].den;
906 unsigned int q = i->min;
907 int diff;
908 num = mul(q, den);
909 if (num > rats[k].num_max)
910 continue;
911 if (num < rats[k].num_min)
912 num = rats[k].num_max;
913 else {
914 unsigned int r;
915 r = (num - rats[k].num_min) % rats[k].num_step;
916 if (r != 0)
917 num += rats[k].num_step - r;
918 }
919 diff = num - q * den;
920 if (best_num == 0 ||
921 diff * best_den < best_diff * den) {
922 best_diff = diff;
923 best_den = den;
924 best_num = num;
925 }
926 }
927 if (best_den == 0) {
928 i->empty = 1;
929 return -EINVAL;
930 }
931 t.min = div_down(best_num, best_den);
932 t.openmin = !!(best_num % best_den);
933
934 best_num = best_den = best_diff = 0;
935 for (k = 0; k < rats_count; ++k) {
936 unsigned int num;
937 unsigned int den = rats[k].den;
938 unsigned int q = i->max;
939 int diff;
940 num = mul(q, den);
941 if (num < rats[k].num_min)
942 continue;
943 if (num > rats[k].num_max)
944 num = rats[k].num_max;
945 else {
946 unsigned int r;
947 r = (num - rats[k].num_min) % rats[k].num_step;
948 if (r != 0)
949 num -= r;
950 }
951 diff = q * den - num;
952 if (best_num == 0 ||
953 diff * best_den < best_diff * den) {
954 best_diff = diff;
955 best_den = den;
956 best_num = num;
957 }
958 }
959 if (best_den == 0) {
960 i->empty = 1;
961 return -EINVAL;
962 }
963 t.max = div_up(best_num, best_den);
964 t.openmax = !!(best_num % best_den);
965 t.integer = 0;
966 err = snd_interval_refine(i, &t);
967 if (err < 0)
968 return err;
969
970 if (snd_interval_single(i)) {
971 if (nump)
972 *nump = best_num;
973 if (denp)
974 *denp = best_den;
975 }
976 return err;
977 }
978
979 /**
980 * snd_interval_list - refine the interval value from the list
981 * @i: the interval value to refine
982 * @count: the number of elements in the list
983 * @list: the value list
984 * @mask: the bit-mask to evaluate
985 *
986 * Refines the interval value from the list.
987 * When mask is non-zero, only the elements corresponding to bit 1 are
988 * evaluated.
989 *
990 * Return: Positive if the value is changed, zero if it's not changed, or a
991 * negative error code.
992 */
993 int snd_interval_list(struct snd_interval *i, unsigned int count,
994 const unsigned int *list, unsigned int mask)
995 {
996 unsigned int k;
997 struct snd_interval list_range;
998
999 if (!count) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 snd_interval_any(&list_range);
1004 list_range.min = UINT_MAX;
1005 list_range.max = 0;
1006 for (k = 0; k < count; k++) {
1007 if (mask && !(mask & (1 << k)))
1008 continue;
1009 if (!snd_interval_test(i, list[k]))
1010 continue;
1011 list_range.min = min(list_range.min, list[k]);
1012 list_range.max = max(list_range.max, list[k]);
1013 }
1014 return snd_interval_refine(i, &list_range);
1015 }
1016 EXPORT_SYMBOL(snd_interval_list);
1017
1018 /**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033 const struct snd_interval *ranges, unsigned int mask)
1034 {
1035 unsigned int k;
1036 struct snd_interval range_union;
1037 struct snd_interval range;
1038
1039 if (!count) {
1040 snd_interval_none(i);
1041 return -EINVAL;
1042 }
1043 snd_interval_any(&range_union);
1044 range_union.min = UINT_MAX;
1045 range_union.max = 0;
1046 for (k = 0; k < count; k++) {
1047 if (mask && !(mask & (1 << k)))
1048 continue;
1049 snd_interval_copy(&range, &ranges[k]);
1050 if (snd_interval_refine(&range, i) < 0)
1051 continue;
1052 if (snd_interval_empty(&range))
1053 continue;
1054
1055 if (range.min < range_union.min) {
1056 range_union.min = range.min;
1057 range_union.openmin = 1;
1058 }
1059 if (range.min == range_union.min && !range.openmin)
1060 range_union.openmin = 0;
1061 if (range.max > range_union.max) {
1062 range_union.max = range.max;
1063 range_union.openmax = 1;
1064 }
1065 if (range.max == range_union.max && !range.openmax)
1066 range_union.openmax = 0;
1067 }
1068 return snd_interval_refine(i, &range_union);
1069 }
1070 EXPORT_SYMBOL(snd_interval_ranges);
1071
1072 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073 {
1074 unsigned int n;
1075 int changed = 0;
1076 n = i->min % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 i->openmin = 0;
1080 changed = 1;
1081 }
1082 n = i->max % step;
1083 if (n != 0 || i->openmax) {
1084 i->max -= n;
1085 i->openmax = 0;
1086 changed = 1;
1087 }
1088 if (snd_interval_checkempty(i)) {
1089 i->empty = 1;
1090 return -EINVAL;
1091 }
1092 return changed;
1093 }
1094
1095 /* Info constraints helpers */
1096
1097 /**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109 int var,
1110 snd_pcm_hw_rule_func_t func, void *private,
1111 int dep, ...)
1112 {
1113 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114 struct snd_pcm_hw_rule *c;
1115 unsigned int k;
1116 va_list args;
1117 va_start(args, dep);
1118 if (constrs->rules_num >= constrs->rules_all) {
1119 struct snd_pcm_hw_rule *new;
1120 unsigned int new_rules = constrs->rules_all + 16;
1121 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1122 GFP_KERNEL);
1123 if (!new) {
1124 va_end(args);
1125 return -ENOMEM;
1126 }
1127 constrs->rules = new;
1128 constrs->rules_all = new_rules;
1129 }
1130 c = &constrs->rules[constrs->rules_num];
1131 c->cond = cond;
1132 c->func = func;
1133 c->var = var;
1134 c->private = private;
1135 k = 0;
1136 while (1) {
1137 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1138 va_end(args);
1139 return -EINVAL;
1140 }
1141 c->deps[k++] = dep;
1142 if (dep < 0)
1143 break;
1144 dep = va_arg(args, int);
1145 }
1146 constrs->rules_num++;
1147 va_end(args);
1148 return 0;
1149 }
1150 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1151
1152 /**
1153 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1159 *
1160 * Return: Zero if successful, or a negative error code on failure.
1161 */
1162 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164 {
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172 }
1173
1174 /**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 *
1182 * Return: Zero if successful, or a negative error code on failure.
1183 */
1184 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185 u_int64_t mask)
1186 {
1187 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188 struct snd_mask *maskp = constrs_mask(constrs, var);
1189 maskp->bits[0] &= (u_int32_t)mask;
1190 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1191 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1192 if (! maskp->bits[0] && ! maskp->bits[1])
1193 return -EINVAL;
1194 return 0;
1195 }
1196 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1197
1198 /**
1199 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1200 * @runtime: PCM runtime instance
1201 * @var: hw_params variable to apply the integer constraint
1202 *
1203 * Apply the constraint of integer to an interval parameter.
1204 *
1205 * Return: Positive if the value is changed, zero if it's not changed, or a
1206 * negative error code.
1207 */
1208 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1209 {
1210 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1211 return snd_interval_setinteger(constrs_interval(constrs, var));
1212 }
1213 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1214
1215 /**
1216 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1217 * @runtime: PCM runtime instance
1218 * @var: hw_params variable to apply the range
1219 * @min: the minimal value
1220 * @max: the maximal value
1221 *
1222 * Apply the min/max range constraint to an interval parameter.
1223 *
1224 * Return: Positive if the value is changed, zero if it's not changed, or a
1225 * negative error code.
1226 */
1227 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228 unsigned int min, unsigned int max)
1229 {
1230 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231 struct snd_interval t;
1232 t.min = min;
1233 t.max = max;
1234 t.openmin = t.openmax = 0;
1235 t.integer = 0;
1236 return snd_interval_refine(constrs_interval(constrs, var), &t);
1237 }
1238 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1239
1240 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1241 struct snd_pcm_hw_rule *rule)
1242 {
1243 struct snd_pcm_hw_constraint_list *list = rule->private;
1244 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1245 }
1246
1247
1248 /**
1249 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1250 * @runtime: PCM runtime instance
1251 * @cond: condition bits
1252 * @var: hw_params variable to apply the list constraint
1253 * @l: list
1254 *
1255 * Apply the list of constraints to an interval parameter.
1256 *
1257 * Return: Zero if successful, or a negative error code on failure.
1258 */
1259 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1260 unsigned int cond,
1261 snd_pcm_hw_param_t var,
1262 const struct snd_pcm_hw_constraint_list *l)
1263 {
1264 return snd_pcm_hw_rule_add(runtime, cond, var,
1265 snd_pcm_hw_rule_list, (void *)l,
1266 var, -1);
1267 }
1268 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1269
1270 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1271 struct snd_pcm_hw_rule *rule)
1272 {
1273 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1274 return snd_interval_ranges(hw_param_interval(params, rule->var),
1275 r->count, r->ranges, r->mask);
1276 }
1277
1278
1279 /**
1280 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1281 * @runtime: PCM runtime instance
1282 * @cond: condition bits
1283 * @var: hw_params variable to apply the list of range constraints
1284 * @r: ranges
1285 *
1286 * Apply the list of range constraints to an interval parameter.
1287 *
1288 * Return: Zero if successful, or a negative error code on failure.
1289 */
1290 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1291 unsigned int cond,
1292 snd_pcm_hw_param_t var,
1293 const struct snd_pcm_hw_constraint_ranges *r)
1294 {
1295 return snd_pcm_hw_rule_add(runtime, cond, var,
1296 snd_pcm_hw_rule_ranges, (void *)r,
1297 var, -1);
1298 }
1299 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1300
1301 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1302 struct snd_pcm_hw_rule *rule)
1303 {
1304 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1305 unsigned int num = 0, den = 0;
1306 int err;
1307 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1308 r->nrats, r->rats, &num, &den);
1309 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1310 params->rate_num = num;
1311 params->rate_den = den;
1312 }
1313 return err;
1314 }
1315
1316 /**
1317 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the ratnums constraint
1321 * @r: struct snd_ratnums constriants
1322 *
1323 * Return: Zero if successful, or a negative error code on failure.
1324 */
1325 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1326 unsigned int cond,
1327 snd_pcm_hw_param_t var,
1328 const struct snd_pcm_hw_constraint_ratnums *r)
1329 {
1330 return snd_pcm_hw_rule_add(runtime, cond, var,
1331 snd_pcm_hw_rule_ratnums, (void *)r,
1332 var, -1);
1333 }
1334 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1335
1336 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1337 struct snd_pcm_hw_rule *rule)
1338 {
1339 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1340 unsigned int num = 0, den = 0;
1341 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1342 r->nrats, r->rats, &num, &den);
1343 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1344 params->rate_num = num;
1345 params->rate_den = den;
1346 }
1347 return err;
1348 }
1349
1350 /**
1351 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1352 * @runtime: PCM runtime instance
1353 * @cond: condition bits
1354 * @var: hw_params variable to apply the ratdens constraint
1355 * @r: struct snd_ratdens constriants
1356 *
1357 * Return: Zero if successful, or a negative error code on failure.
1358 */
1359 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1360 unsigned int cond,
1361 snd_pcm_hw_param_t var,
1362 const struct snd_pcm_hw_constraint_ratdens *r)
1363 {
1364 return snd_pcm_hw_rule_add(runtime, cond, var,
1365 snd_pcm_hw_rule_ratdens, (void *)r,
1366 var, -1);
1367 }
1368 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1369
1370 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1371 struct snd_pcm_hw_rule *rule)
1372 {
1373 unsigned int l = (unsigned long) rule->private;
1374 int width = l & 0xffff;
1375 unsigned int msbits = l >> 16;
1376 const struct snd_interval *i =
1377 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1378
1379 if (!snd_interval_single(i))
1380 return 0;
1381
1382 if ((snd_interval_value(i) == width) ||
1383 (width == 0 && snd_interval_value(i) > msbits))
1384 params->msbits = min_not_zero(params->msbits, msbits);
1385
1386 return 0;
1387 }
1388
1389 /**
1390 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @width: sample bits width
1394 * @msbits: msbits width
1395 *
1396 * This constraint will set the number of most significant bits (msbits) if a
1397 * sample format with the specified width has been select. If width is set to 0
1398 * the msbits will be set for any sample format with a width larger than the
1399 * specified msbits.
1400 *
1401 * Return: Zero if successful, or a negative error code on failure.
1402 */
1403 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1404 unsigned int cond,
1405 unsigned int width,
1406 unsigned int msbits)
1407 {
1408 unsigned long l = (msbits << 16) | width;
1409 return snd_pcm_hw_rule_add(runtime, cond, -1,
1410 snd_pcm_hw_rule_msbits,
1411 (void*) l,
1412 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1413 }
1414 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1415
1416 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1417 struct snd_pcm_hw_rule *rule)
1418 {
1419 unsigned long step = (unsigned long) rule->private;
1420 return snd_interval_step(hw_param_interval(params, rule->var), step);
1421 }
1422
1423 /**
1424 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1425 * @runtime: PCM runtime instance
1426 * @cond: condition bits
1427 * @var: hw_params variable to apply the step constraint
1428 * @step: step size
1429 *
1430 * Return: Zero if successful, or a negative error code on failure.
1431 */
1432 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1433 unsigned int cond,
1434 snd_pcm_hw_param_t var,
1435 unsigned long step)
1436 {
1437 return snd_pcm_hw_rule_add(runtime, cond, var,
1438 snd_pcm_hw_rule_step, (void *) step,
1439 var, -1);
1440 }
1441 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444 {
1445 static unsigned int pow2_sizes[] = {
1446 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450 };
1451 return snd_interval_list(hw_param_interval(params, rule->var),
1452 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453 }
1454
1455 /**
1456 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457 * @runtime: PCM runtime instance
1458 * @cond: condition bits
1459 * @var: hw_params variable to apply the power-of-2 constraint
1460 *
1461 * Return: Zero if successful, or a negative error code on failure.
1462 */
1463 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464 unsigned int cond,
1465 snd_pcm_hw_param_t var)
1466 {
1467 return snd_pcm_hw_rule_add(runtime, cond, var,
1468 snd_pcm_hw_rule_pow2, NULL,
1469 var, -1);
1470 }
1471 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1472
1473 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1474 struct snd_pcm_hw_rule *rule)
1475 {
1476 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1477 struct snd_interval *rate;
1478
1479 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1480 return snd_interval_list(rate, 1, &base_rate, 0);
1481 }
1482
1483 /**
1484 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1485 * @runtime: PCM runtime instance
1486 * @base_rate: the rate at which the hardware does not resample
1487 *
1488 * Return: Zero if successful, or a negative error code on failure.
1489 */
1490 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1491 unsigned int base_rate)
1492 {
1493 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1494 SNDRV_PCM_HW_PARAM_RATE,
1495 snd_pcm_hw_rule_noresample_func,
1496 (void *)(uintptr_t)base_rate,
1497 SNDRV_PCM_HW_PARAM_RATE, -1);
1498 }
1499 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1500
1501 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1502 snd_pcm_hw_param_t var)
1503 {
1504 if (hw_is_mask(var)) {
1505 snd_mask_any(hw_param_mask(params, var));
1506 params->cmask |= 1 << var;
1507 params->rmask |= 1 << var;
1508 return;
1509 }
1510 if (hw_is_interval(var)) {
1511 snd_interval_any(hw_param_interval(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 return;
1515 }
1516 snd_BUG();
1517 }
1518
1519 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1520 {
1521 unsigned int k;
1522 memset(params, 0, sizeof(*params));
1523 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1524 _snd_pcm_hw_param_any(params, k);
1525 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1526 _snd_pcm_hw_param_any(params, k);
1527 params->info = ~0U;
1528 }
1529 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1530
1531 /**
1532 * snd_pcm_hw_param_value - return @params field @var value
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Return: The value for field @var if it's fixed in configuration space
1538 * defined by @params. -%EINVAL otherwise.
1539 */
1540 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1541 snd_pcm_hw_param_t var, int *dir)
1542 {
1543 if (hw_is_mask(var)) {
1544 const struct snd_mask *mask = hw_param_mask_c(params, var);
1545 if (!snd_mask_single(mask))
1546 return -EINVAL;
1547 if (dir)
1548 *dir = 0;
1549 return snd_mask_value(mask);
1550 }
1551 if (hw_is_interval(var)) {
1552 const struct snd_interval *i = hw_param_interval_c(params, var);
1553 if (!snd_interval_single(i))
1554 return -EINVAL;
1555 if (dir)
1556 *dir = i->openmin;
1557 return snd_interval_value(i);
1558 }
1559 return -EINVAL;
1560 }
1561 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1562
1563 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1564 snd_pcm_hw_param_t var)
1565 {
1566 if (hw_is_mask(var)) {
1567 snd_mask_none(hw_param_mask(params, var));
1568 params->cmask |= 1 << var;
1569 params->rmask |= 1 << var;
1570 } else if (hw_is_interval(var)) {
1571 snd_interval_none(hw_param_interval(params, var));
1572 params->cmask |= 1 << var;
1573 params->rmask |= 1 << var;
1574 } else {
1575 snd_BUG();
1576 }
1577 }
1578 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1579
1580 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1581 snd_pcm_hw_param_t var)
1582 {
1583 int changed;
1584 if (hw_is_mask(var))
1585 changed = snd_mask_refine_first(hw_param_mask(params, var));
1586 else if (hw_is_interval(var))
1587 changed = snd_interval_refine_first(hw_param_interval(params, var));
1588 else
1589 return -EINVAL;
1590 if (changed > 0) {
1591 params->cmask |= 1 << var;
1592 params->rmask |= 1 << var;
1593 }
1594 return changed;
1595 }
1596
1597
1598 /**
1599 * snd_pcm_hw_param_first - refine config space and return minimum value
1600 * @pcm: PCM instance
1601 * @params: the hw_params instance
1602 * @var: parameter to retrieve
1603 * @dir: pointer to the direction (-1,0,1) or %NULL
1604 *
1605 * Inside configuration space defined by @params remove from @var all
1606 * values > minimum. Reduce configuration space accordingly.
1607 *
1608 * Return: The minimum, or a negative error code on failure.
1609 */
1610 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1611 struct snd_pcm_hw_params *params,
1612 snd_pcm_hw_param_t var, int *dir)
1613 {
1614 int changed = _snd_pcm_hw_param_first(params, var);
1615 if (changed < 0)
1616 return changed;
1617 if (params->rmask) {
1618 int err = snd_pcm_hw_refine(pcm, params);
1619 if (err < 0)
1620 return err;
1621 }
1622 return snd_pcm_hw_param_value(params, var, dir);
1623 }
1624 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1625
1626 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628 {
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_last(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_last(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed > 0) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641 }
1642
1643
1644 /**
1645 * snd_pcm_hw_param_last - refine config space and return maximum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values < maximum. Reduce configuration space accordingly.
1653 *
1654 * Return: The maximum, or a negative error code on failure.
1655 */
1656 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659 {
1660 int changed = _snd_pcm_hw_param_last(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (err < 0)
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669 }
1670 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1671
1672 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1673 void *arg)
1674 {
1675 struct snd_pcm_runtime *runtime = substream->runtime;
1676 unsigned long flags;
1677 snd_pcm_stream_lock_irqsave(substream, flags);
1678 if (snd_pcm_running(substream) &&
1679 snd_pcm_update_hw_ptr(substream) >= 0)
1680 runtime->status->hw_ptr %= runtime->buffer_size;
1681 else {
1682 runtime->status->hw_ptr = 0;
1683 runtime->hw_ptr_wrap = 0;
1684 }
1685 snd_pcm_stream_unlock_irqrestore(substream, flags);
1686 return 0;
1687 }
1688
1689 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1690 void *arg)
1691 {
1692 struct snd_pcm_channel_info *info = arg;
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int width;
1695 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1696 info->offset = -1;
1697 return 0;
1698 }
1699 width = snd_pcm_format_physical_width(runtime->format);
1700 if (width < 0)
1701 return width;
1702 info->offset = 0;
1703 switch (runtime->access) {
1704 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1705 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1706 info->first = info->channel * width;
1707 info->step = runtime->channels * width;
1708 break;
1709 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1710 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1711 {
1712 size_t size = runtime->dma_bytes / runtime->channels;
1713 info->first = info->channel * size * 8;
1714 info->step = width;
1715 break;
1716 }
1717 default:
1718 snd_BUG();
1719 break;
1720 }
1721 return 0;
1722 }
1723
1724 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1725 void *arg)
1726 {
1727 struct snd_pcm_hw_params *params = arg;
1728 snd_pcm_format_t format;
1729 int channels;
1730 ssize_t frame_size;
1731
1732 params->fifo_size = substream->runtime->hw.fifo_size;
1733 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1734 format = params_format(params);
1735 channels = params_channels(params);
1736 frame_size = snd_pcm_format_size(format, channels);
1737 if (frame_size > 0)
1738 params->fifo_size /= (unsigned)frame_size;
1739 }
1740 return 0;
1741 }
1742
1743 /**
1744 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1745 * @substream: the pcm substream instance
1746 * @cmd: ioctl command
1747 * @arg: ioctl argument
1748 *
1749 * Processes the generic ioctl commands for PCM.
1750 * Can be passed as the ioctl callback for PCM ops.
1751 *
1752 * Return: Zero if successful, or a negative error code on failure.
1753 */
1754 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1755 unsigned int cmd, void *arg)
1756 {
1757 switch (cmd) {
1758 case SNDRV_PCM_IOCTL1_RESET:
1759 return snd_pcm_lib_ioctl_reset(substream, arg);
1760 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1761 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1762 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1763 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1764 }
1765 return -ENXIO;
1766 }
1767 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1768
1769 /**
1770 * snd_pcm_period_elapsed - update the pcm status for the next period
1771 * @substream: the pcm substream instance
1772 *
1773 * This function is called from the interrupt handler when the
1774 * PCM has processed the period size. It will update the current
1775 * pointer, wake up sleepers, etc.
1776 *
1777 * Even if more than one periods have elapsed since the last call, you
1778 * have to call this only once.
1779 */
1780 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1781 {
1782 struct snd_pcm_runtime *runtime;
1783 unsigned long flags;
1784
1785 if (PCM_RUNTIME_CHECK(substream))
1786 return;
1787 runtime = substream->runtime;
1788
1789 snd_pcm_stream_lock_irqsave(substream, flags);
1790 if (!snd_pcm_running(substream) ||
1791 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1792 goto _end;
1793
1794 #ifdef CONFIG_SND_PCM_TIMER
1795 if (substream->timer_running)
1796 snd_timer_interrupt(substream->timer, 1);
1797 #endif
1798 _end:
1799 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1800 snd_pcm_stream_unlock_irqrestore(substream, flags);
1801 }
1802 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1803
1804 /*
1805 * Wait until avail_min data becomes available
1806 * Returns a negative error code if any error occurs during operation.
1807 * The available space is stored on availp. When err = 0 and avail = 0
1808 * on the capture stream, it indicates the stream is in DRAINING state.
1809 */
1810 static int wait_for_avail(struct snd_pcm_substream *substream,
1811 snd_pcm_uframes_t *availp)
1812 {
1813 struct snd_pcm_runtime *runtime = substream->runtime;
1814 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1815 wait_queue_entry_t wait;
1816 int err = 0;
1817 snd_pcm_uframes_t avail = 0;
1818 long wait_time, tout;
1819
1820 init_waitqueue_entry(&wait, current);
1821 set_current_state(TASK_INTERRUPTIBLE);
1822 add_wait_queue(&runtime->tsleep, &wait);
1823
1824 if (runtime->no_period_wakeup)
1825 wait_time = MAX_SCHEDULE_TIMEOUT;
1826 else {
1827 /* use wait time from substream if available */
1828 if (substream->wait_time) {
1829 wait_time = substream->wait_time;
1830 } else {
1831 wait_time = 10;
1832
1833 if (runtime->rate) {
1834 long t = runtime->period_size * 2 /
1835 runtime->rate;
1836 wait_time = max(t, wait_time);
1837 }
1838 wait_time = msecs_to_jiffies(wait_time * 1000);
1839 }
1840 }
1841
1842 for (;;) {
1843 if (signal_pending(current)) {
1844 err = -ERESTARTSYS;
1845 break;
1846 }
1847
1848 /*
1849 * We need to check if space became available already
1850 * (and thus the wakeup happened already) first to close
1851 * the race of space already having become available.
1852 * This check must happen after been added to the waitqueue
1853 * and having current state be INTERRUPTIBLE.
1854 */
1855 avail = snd_pcm_avail(substream);
1856 if (avail >= runtime->twake)
1857 break;
1858 snd_pcm_stream_unlock_irq(substream);
1859
1860 tout = schedule_timeout(wait_time);
1861
1862 snd_pcm_stream_lock_irq(substream);
1863 set_current_state(TASK_INTERRUPTIBLE);
1864 switch (runtime->status->state) {
1865 case SNDRV_PCM_STATE_SUSPENDED:
1866 err = -ESTRPIPE;
1867 goto _endloop;
1868 case SNDRV_PCM_STATE_XRUN:
1869 err = -EPIPE;
1870 goto _endloop;
1871 case SNDRV_PCM_STATE_DRAINING:
1872 if (is_playback)
1873 err = -EPIPE;
1874 else
1875 avail = 0; /* indicate draining */
1876 goto _endloop;
1877 case SNDRV_PCM_STATE_OPEN:
1878 case SNDRV_PCM_STATE_SETUP:
1879 case SNDRV_PCM_STATE_DISCONNECTED:
1880 err = -EBADFD;
1881 goto _endloop;
1882 case SNDRV_PCM_STATE_PAUSED:
1883 continue;
1884 }
1885 if (!tout) {
1886 pcm_dbg(substream->pcm,
1887 "%s write error (DMA or IRQ trouble?)\n",
1888 is_playback ? "playback" : "capture");
1889 err = -EIO;
1890 break;
1891 }
1892 }
1893 _endloop:
1894 set_current_state(TASK_RUNNING);
1895 remove_wait_queue(&runtime->tsleep, &wait);
1896 *availp = avail;
1897 return err;
1898 }
1899
1900 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1901 int channel, unsigned long hwoff,
1902 void *buf, unsigned long bytes);
1903
1904 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1905 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1906
1907 /* calculate the target DMA-buffer position to be written/read */
1908 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1909 int channel, unsigned long hwoff)
1910 {
1911 return runtime->dma_area + hwoff +
1912 channel * (runtime->dma_bytes / runtime->channels);
1913 }
1914
1915 /* default copy_user ops for write; used for both interleaved and non- modes */
1916 static int default_write_copy(struct snd_pcm_substream *substream,
1917 int channel, unsigned long hwoff,
1918 void *buf, unsigned long bytes)
1919 {
1920 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1921 (void __user *)buf, bytes))
1922 return -EFAULT;
1923 return 0;
1924 }
1925
1926 /* default copy_kernel ops for write */
1927 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1928 int channel, unsigned long hwoff,
1929 void *buf, unsigned long bytes)
1930 {
1931 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1932 return 0;
1933 }
1934
1935 /* fill silence instead of copy data; called as a transfer helper
1936 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1937 * a NULL buffer is passed
1938 */
1939 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1940 unsigned long hwoff, void *buf, unsigned long bytes)
1941 {
1942 struct snd_pcm_runtime *runtime = substream->runtime;
1943
1944 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1945 return 0;
1946 if (substream->ops->fill_silence)
1947 return substream->ops->fill_silence(substream, channel,
1948 hwoff, bytes);
1949
1950 snd_pcm_format_set_silence(runtime->format,
1951 get_dma_ptr(runtime, channel, hwoff),
1952 bytes_to_samples(runtime, bytes));
1953 return 0;
1954 }
1955
1956 /* default copy_user ops for read; used for both interleaved and non- modes */
1957 static int default_read_copy(struct snd_pcm_substream *substream,
1958 int channel, unsigned long hwoff,
1959 void *buf, unsigned long bytes)
1960 {
1961 if (copy_to_user((void __user *)buf,
1962 get_dma_ptr(substream->runtime, channel, hwoff),
1963 bytes))
1964 return -EFAULT;
1965 return 0;
1966 }
1967
1968 /* default copy_kernel ops for read */
1969 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1970 int channel, unsigned long hwoff,
1971 void *buf, unsigned long bytes)
1972 {
1973 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1974 return 0;
1975 }
1976
1977 /* call transfer function with the converted pointers and sizes;
1978 * for interleaved mode, it's one shot for all samples
1979 */
1980 static int interleaved_copy(struct snd_pcm_substream *substream,
1981 snd_pcm_uframes_t hwoff, void *data,
1982 snd_pcm_uframes_t off,
1983 snd_pcm_uframes_t frames,
1984 pcm_transfer_f transfer)
1985 {
1986 struct snd_pcm_runtime *runtime = substream->runtime;
1987
1988 /* convert to bytes */
1989 hwoff = frames_to_bytes(runtime, hwoff);
1990 off = frames_to_bytes(runtime, off);
1991 frames = frames_to_bytes(runtime, frames);
1992 return transfer(substream, 0, hwoff, data + off, frames);
1993 }
1994
1995 /* call transfer function with the converted pointers and sizes for each
1996 * non-interleaved channel; when buffer is NULL, silencing instead of copying
1997 */
1998 static int noninterleaved_copy(struct snd_pcm_substream *substream,
1999 snd_pcm_uframes_t hwoff, void *data,
2000 snd_pcm_uframes_t off,
2001 snd_pcm_uframes_t frames,
2002 pcm_transfer_f transfer)
2003 {
2004 struct snd_pcm_runtime *runtime = substream->runtime;
2005 int channels = runtime->channels;
2006 void **bufs = data;
2007 int c, err;
2008
2009 /* convert to bytes; note that it's not frames_to_bytes() here.
2010 * in non-interleaved mode, we copy for each channel, thus
2011 * each copy is n_samples bytes x channels = whole frames.
2012 */
2013 off = samples_to_bytes(runtime, off);
2014 frames = samples_to_bytes(runtime, frames);
2015 hwoff = samples_to_bytes(runtime, hwoff);
2016 for (c = 0; c < channels; ++c, ++bufs) {
2017 if (!data || !*bufs)
2018 err = fill_silence(substream, c, hwoff, NULL, frames);
2019 else
2020 err = transfer(substream, c, hwoff, *bufs + off,
2021 frames);
2022 if (err < 0)
2023 return err;
2024 }
2025 return 0;
2026 }
2027
2028 /* fill silence on the given buffer position;
2029 * called from snd_pcm_playback_silence()
2030 */
2031 static int fill_silence_frames(struct snd_pcm_substream *substream,
2032 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2033 {
2034 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2035 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2036 return interleaved_copy(substream, off, NULL, 0, frames,
2037 fill_silence);
2038 else
2039 return noninterleaved_copy(substream, off, NULL, 0, frames,
2040 fill_silence);
2041 }
2042
2043 /* sanity-check for read/write methods */
2044 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2045 {
2046 struct snd_pcm_runtime *runtime;
2047 if (PCM_RUNTIME_CHECK(substream))
2048 return -ENXIO;
2049 runtime = substream->runtime;
2050 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2051 return -EINVAL;
2052 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2053 return -EBADFD;
2054 return 0;
2055 }
2056
2057 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2058 {
2059 switch (runtime->status->state) {
2060 case SNDRV_PCM_STATE_PREPARED:
2061 case SNDRV_PCM_STATE_RUNNING:
2062 case SNDRV_PCM_STATE_PAUSED:
2063 return 0;
2064 case SNDRV_PCM_STATE_XRUN:
2065 return -EPIPE;
2066 case SNDRV_PCM_STATE_SUSPENDED:
2067 return -ESTRPIPE;
2068 default:
2069 return -EBADFD;
2070 }
2071 }
2072
2073 /* update to the given appl_ptr and call ack callback if needed;
2074 * when an error is returned, take back to the original value
2075 */
2076 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2077 snd_pcm_uframes_t appl_ptr)
2078 {
2079 struct snd_pcm_runtime *runtime = substream->runtime;
2080 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2081 int ret;
2082
2083 if (old_appl_ptr == appl_ptr)
2084 return 0;
2085
2086 runtime->control->appl_ptr = appl_ptr;
2087 if (substream->ops->ack) {
2088 ret = substream->ops->ack(substream);
2089 if (ret < 0) {
2090 runtime->control->appl_ptr = old_appl_ptr;
2091 return ret;
2092 }
2093 }
2094
2095 trace_applptr(substream, old_appl_ptr, appl_ptr);
2096
2097 return 0;
2098 }
2099
2100 /* the common loop for read/write data */
2101 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2102 void *data, bool interleaved,
2103 snd_pcm_uframes_t size, bool in_kernel)
2104 {
2105 struct snd_pcm_runtime *runtime = substream->runtime;
2106 snd_pcm_uframes_t xfer = 0;
2107 snd_pcm_uframes_t offset = 0;
2108 snd_pcm_uframes_t avail;
2109 pcm_copy_f writer;
2110 pcm_transfer_f transfer;
2111 bool nonblock;
2112 bool is_playback;
2113 int err;
2114
2115 err = pcm_sanity_check(substream);
2116 if (err < 0)
2117 return err;
2118
2119 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2120 if (interleaved) {
2121 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2122 runtime->channels > 1)
2123 return -EINVAL;
2124 writer = interleaved_copy;
2125 } else {
2126 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2127 return -EINVAL;
2128 writer = noninterleaved_copy;
2129 }
2130
2131 if (!data) {
2132 if (is_playback)
2133 transfer = fill_silence;
2134 else
2135 return -EINVAL;
2136 } else if (in_kernel) {
2137 if (substream->ops->copy_kernel)
2138 transfer = substream->ops->copy_kernel;
2139 else
2140 transfer = is_playback ?
2141 default_write_copy_kernel : default_read_copy_kernel;
2142 } else {
2143 if (substream->ops->copy_user)
2144 transfer = (pcm_transfer_f)substream->ops->copy_user;
2145 else
2146 transfer = is_playback ?
2147 default_write_copy : default_read_copy;
2148 }
2149
2150 if (size == 0)
2151 return 0;
2152
2153 nonblock = !!(substream->f_flags & O_NONBLOCK);
2154
2155 snd_pcm_stream_lock_irq(substream);
2156 err = pcm_accessible_state(runtime);
2157 if (err < 0)
2158 goto _end_unlock;
2159
2160 runtime->twake = runtime->control->avail_min ? : 1;
2161 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2162 snd_pcm_update_hw_ptr(substream);
2163
2164 /*
2165 * If size < start_threshold, wait indefinitely. Another
2166 * thread may start capture
2167 */
2168 if (!is_playback &&
2169 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2170 size >= runtime->start_threshold) {
2171 err = snd_pcm_start(substream);
2172 if (err < 0)
2173 goto _end_unlock;
2174 }
2175
2176 avail = snd_pcm_avail(substream);
2177
2178 while (size > 0) {
2179 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2180 snd_pcm_uframes_t cont;
2181 if (!avail) {
2182 if (!is_playback &&
2183 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2184 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2185 goto _end_unlock;
2186 }
2187 if (nonblock) {
2188 err = -EAGAIN;
2189 goto _end_unlock;
2190 }
2191 runtime->twake = min_t(snd_pcm_uframes_t, size,
2192 runtime->control->avail_min ? : 1);
2193 err = wait_for_avail(substream, &avail);
2194 if (err < 0)
2195 goto _end_unlock;
2196 if (!avail)
2197 continue; /* draining */
2198 }
2199 frames = size > avail ? avail : size;
2200 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2201 appl_ofs = appl_ptr % runtime->buffer_size;
2202 cont = runtime->buffer_size - appl_ofs;
2203 if (frames > cont)
2204 frames = cont;
2205 if (snd_BUG_ON(!frames)) {
2206 err = -EINVAL;
2207 goto _end_unlock;
2208 }
2209 snd_pcm_stream_unlock_irq(substream);
2210 err = writer(substream, appl_ofs, data, offset, frames,
2211 transfer);
2212 snd_pcm_stream_lock_irq(substream);
2213 if (err < 0)
2214 goto _end_unlock;
2215 err = pcm_accessible_state(runtime);
2216 if (err < 0)
2217 goto _end_unlock;
2218 appl_ptr += frames;
2219 if (appl_ptr >= runtime->boundary)
2220 appl_ptr -= runtime->boundary;
2221 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2222 if (err < 0)
2223 goto _end_unlock;
2224
2225 offset += frames;
2226 size -= frames;
2227 xfer += frames;
2228 avail -= frames;
2229 if (is_playback &&
2230 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2231 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2232 err = snd_pcm_start(substream);
2233 if (err < 0)
2234 goto _end_unlock;
2235 }
2236 }
2237 _end_unlock:
2238 runtime->twake = 0;
2239 if (xfer > 0 && err >= 0)
2240 snd_pcm_update_state(substream, runtime);
2241 snd_pcm_stream_unlock_irq(substream);
2242 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2243 }
2244 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2245
2246 /*
2247 * standard channel mapping helpers
2248 */
2249
2250 /* default channel maps for multi-channel playbacks, up to 8 channels */
2251 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2252 { .channels = 1,
2253 .map = { SNDRV_CHMAP_MONO } },
2254 { .channels = 2,
2255 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2256 { .channels = 4,
2257 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2258 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2259 { .channels = 6,
2260 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2261 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2262 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2263 { .channels = 8,
2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2265 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2266 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2267 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2268 { }
2269 };
2270 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2271
2272 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2273 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2274 { .channels = 1,
2275 .map = { SNDRV_CHMAP_MONO } },
2276 { .channels = 2,
2277 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2278 { .channels = 4,
2279 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2280 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2281 { .channels = 6,
2282 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2283 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2285 { .channels = 8,
2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2287 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2289 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2290 { }
2291 };
2292 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2293
2294 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2295 {
2296 if (ch > info->max_channels)
2297 return false;
2298 return !info->channel_mask || (info->channel_mask & (1U << ch));
2299 }
2300
2301 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2302 struct snd_ctl_elem_info *uinfo)
2303 {
2304 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2305
2306 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2307 uinfo->count = 0;
2308 uinfo->count = info->max_channels;
2309 uinfo->value.integer.min = 0;
2310 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2311 return 0;
2312 }
2313
2314 /* get callback for channel map ctl element
2315 * stores the channel position firstly matching with the current channels
2316 */
2317 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2318 struct snd_ctl_elem_value *ucontrol)
2319 {
2320 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2321 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2322 struct snd_pcm_substream *substream;
2323 const struct snd_pcm_chmap_elem *map;
2324
2325 if (!info->chmap)
2326 return -EINVAL;
2327 substream = snd_pcm_chmap_substream(info, idx);
2328 if (!substream)
2329 return -ENODEV;
2330 memset(ucontrol->value.integer.value, 0,
2331 sizeof(ucontrol->value.integer.value));
2332 if (!substream->runtime)
2333 return 0; /* no channels set */
2334 for (map = info->chmap; map->channels; map++) {
2335 int i;
2336 if (map->channels == substream->runtime->channels &&
2337 valid_chmap_channels(info, map->channels)) {
2338 for (i = 0; i < map->channels; i++)
2339 ucontrol->value.integer.value[i] = map->map[i];
2340 return 0;
2341 }
2342 }
2343 return -EINVAL;
2344 }
2345
2346 /* tlv callback for channel map ctl element
2347 * expands the pre-defined channel maps in a form of TLV
2348 */
2349 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2350 unsigned int size, unsigned int __user *tlv)
2351 {
2352 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2353 const struct snd_pcm_chmap_elem *map;
2354 unsigned int __user *dst;
2355 int c, count = 0;
2356
2357 if (!info->chmap)
2358 return -EINVAL;
2359 if (size < 8)
2360 return -ENOMEM;
2361 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2362 return -EFAULT;
2363 size -= 8;
2364 dst = tlv + 2;
2365 for (map = info->chmap; map->channels; map++) {
2366 int chs_bytes = map->channels * 4;
2367 if (!valid_chmap_channels(info, map->channels))
2368 continue;
2369 if (size < 8)
2370 return -ENOMEM;
2371 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2372 put_user(chs_bytes, dst + 1))
2373 return -EFAULT;
2374 dst += 2;
2375 size -= 8;
2376 count += 8;
2377 if (size < chs_bytes)
2378 return -ENOMEM;
2379 size -= chs_bytes;
2380 count += chs_bytes;
2381 for (c = 0; c < map->channels; c++) {
2382 if (put_user(map->map[c], dst))
2383 return -EFAULT;
2384 dst++;
2385 }
2386 }
2387 if (put_user(count, tlv + 1))
2388 return -EFAULT;
2389 return 0;
2390 }
2391
2392 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2393 {
2394 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2395 info->pcm->streams[info->stream].chmap_kctl = NULL;
2396 kfree(info);
2397 }
2398
2399 /**
2400 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2401 * @pcm: the assigned PCM instance
2402 * @stream: stream direction
2403 * @chmap: channel map elements (for query)
2404 * @max_channels: the max number of channels for the stream
2405 * @private_value: the value passed to each kcontrol's private_value field
2406 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2407 *
2408 * Create channel-mapping control elements assigned to the given PCM stream(s).
2409 * Return: Zero if successful, or a negative error value.
2410 */
2411 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2412 const struct snd_pcm_chmap_elem *chmap,
2413 int max_channels,
2414 unsigned long private_value,
2415 struct snd_pcm_chmap **info_ret)
2416 {
2417 struct snd_pcm_chmap *info;
2418 struct snd_kcontrol_new knew = {
2419 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2420 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2421 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2422 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2423 .info = pcm_chmap_ctl_info,
2424 .get = pcm_chmap_ctl_get,
2425 .tlv.c = pcm_chmap_ctl_tlv,
2426 };
2427 int err;
2428
2429 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2430 return -EBUSY;
2431 info = kzalloc(sizeof(*info), GFP_KERNEL);
2432 if (!info)
2433 return -ENOMEM;
2434 info->pcm = pcm;
2435 info->stream = stream;
2436 info->chmap = chmap;
2437 info->max_channels = max_channels;
2438 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2439 knew.name = "Playback Channel Map";
2440 else
2441 knew.name = "Capture Channel Map";
2442 knew.device = pcm->device;
2443 knew.count = pcm->streams[stream].substream_count;
2444 knew.private_value = private_value;
2445 info->kctl = snd_ctl_new1(&knew, info);
2446 if (!info->kctl) {
2447 kfree(info);
2448 return -ENOMEM;
2449 }
2450 info->kctl->private_free = pcm_chmap_ctl_private_free;
2451 err = snd_ctl_add(pcm->card, info->kctl);
2452 if (err < 0)
2453 return err;
2454 pcm->streams[stream].chmap_kctl = info->kctl;
2455 if (info_ret)
2456 *info_ret = info;
2457 return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);