]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - sound/i2c/other/ak4xxx-adda.c
Linux-2.6.12-rc2
[thirdparty/kernel/stable.git] / sound / i2c / other / ak4xxx-adda.c
1 /*
2 * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
3 * AD and DA converters
4 *
5 * Copyright (c) 2000-2004 Jaroslav Kysela <perex@suse.cz>,
6 * Takashi Iwai <tiwai@suse.de>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <sound/driver.h>
25 #include <asm/io.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <sound/core.h>
30 #include <sound/control.h>
31 #include <sound/ak4xxx-adda.h>
32
33 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Takashi Iwai <tiwai@suse.de>");
34 MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
35 MODULE_LICENSE("GPL");
36
37 void snd_akm4xxx_write(akm4xxx_t *ak, int chip, unsigned char reg, unsigned char val)
38 {
39 ak->ops.lock(ak, chip);
40 ak->ops.write(ak, chip, reg, val);
41
42 /* save the data */
43 if (ak->type == SND_AK4524 || ak->type == SND_AK4528) {
44 if ((reg != 0x04 && reg != 0x05) || (val & 0x80) == 0)
45 snd_akm4xxx_set(ak, chip, reg, val);
46 else
47 snd_akm4xxx_set_ipga(ak, chip, reg, val);
48 } else {
49 /* AK4529, or else */
50 snd_akm4xxx_set(ak, chip, reg, val);
51 }
52 ak->ops.unlock(ak, chip);
53 }
54
55 /*
56 * reset the AKM codecs
57 * @state: 1 = reset codec, 0 = restore the registers
58 *
59 * assert the reset operation and restores the register values to the chips.
60 */
61 void snd_akm4xxx_reset(akm4xxx_t *ak, int state)
62 {
63 unsigned int chip;
64 unsigned char reg;
65
66 switch (ak->type) {
67 case SND_AK4524:
68 case SND_AK4528:
69 for (chip = 0; chip < ak->num_dacs/2; chip++) {
70 snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
71 if (state)
72 continue;
73 /* DAC volumes */
74 for (reg = 0x04; reg < (ak->type == SND_AK4528 ? 0x06 : 0x08); reg++)
75 snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg));
76 if (ak->type == SND_AK4528)
77 continue;
78 /* IPGA */
79 for (reg = 0x04; reg < 0x06; reg++)
80 snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get_ipga(ak, chip, reg));
81 }
82 break;
83 case SND_AK4529:
84 /* FIXME: needed for ak4529? */
85 break;
86 case SND_AK4355:
87 case SND_AK4358:
88 if (state) {
89 snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
90 return;
91 }
92 for (reg = 0x00; reg < 0x0b; reg++)
93 if (reg != 0x01)
94 snd_akm4xxx_write(ak, 0, reg, snd_akm4xxx_get(ak, 0, reg));
95 snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
96 break;
97 case SND_AK4381:
98 for (chip = 0; chip < ak->num_dacs/2; chip++) {
99 snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
100 if (state)
101 continue;
102 for (reg = 0x01; reg < 0x05; reg++)
103 snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg));
104 }
105 break;
106 }
107 }
108
109 /*
110 * initialize all the ak4xxx chips
111 */
112 void snd_akm4xxx_init(akm4xxx_t *ak)
113 {
114 static unsigned char inits_ak4524[] = {
115 0x00, 0x07, /* 0: all power up */
116 0x01, 0x00, /* 1: ADC/DAC reset */
117 0x02, 0x60, /* 2: 24bit I2S */
118 0x03, 0x19, /* 3: deemphasis off */
119 0x01, 0x03, /* 1: ADC/DAC enable */
120 0x04, 0x00, /* 4: ADC left muted */
121 0x05, 0x00, /* 5: ADC right muted */
122 0x04, 0x80, /* 4: ADC IPGA gain 0dB */
123 0x05, 0x80, /* 5: ADC IPGA gain 0dB */
124 0x06, 0x00, /* 6: DAC left muted */
125 0x07, 0x00, /* 7: DAC right muted */
126 0xff, 0xff
127 };
128 static unsigned char inits_ak4528[] = {
129 0x00, 0x07, /* 0: all power up */
130 0x01, 0x00, /* 1: ADC/DAC reset */
131 0x02, 0x60, /* 2: 24bit I2S */
132 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
133 0x01, 0x03, /* 1: ADC/DAC enable */
134 0x04, 0x00, /* 4: ADC left muted */
135 0x05, 0x00, /* 5: ADC right muted */
136 0xff, 0xff
137 };
138 static unsigned char inits_ak4529[] = {
139 0x09, 0x01, /* 9: ATS=0, RSTN=1 */
140 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
141 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
142 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
143 0x02, 0xff, /* 2: LOUT1 muted */
144 0x03, 0xff, /* 3: ROUT1 muted */
145 0x04, 0xff, /* 4: LOUT2 muted */
146 0x05, 0xff, /* 5: ROUT2 muted */
147 0x06, 0xff, /* 6: LOUT3 muted */
148 0x07, 0xff, /* 7: ROUT3 muted */
149 0x0b, 0xff, /* B: LOUT4 muted */
150 0x0c, 0xff, /* C: ROUT4 muted */
151 0x08, 0x55, /* 8: deemphasis all off */
152 0xff, 0xff
153 };
154 static unsigned char inits_ak4355[] = {
155 0x01, 0x02, /* 1: reset and soft-mute */
156 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, disable DZF, sharp roll-off, RSTN#=0 */
157 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
158 // 0x02, 0x2e, /* quad speed */
159 0x03, 0x01, /* 3: de-emphasis off */
160 0x04, 0x00, /* 4: LOUT1 volume muted */
161 0x05, 0x00, /* 5: ROUT1 volume muted */
162 0x06, 0x00, /* 6: LOUT2 volume muted */
163 0x07, 0x00, /* 7: ROUT2 volume muted */
164 0x08, 0x00, /* 8: LOUT3 volume muted */
165 0x09, 0x00, /* 9: ROUT3 volume muted */
166 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
167 0x01, 0x01, /* 1: un-reset, unmute */
168 0xff, 0xff
169 };
170 static unsigned char inits_ak4358[] = {
171 0x01, 0x02, /* 1: reset and soft-mute */
172 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, disable DZF, sharp roll-off, RSTN#=0 */
173 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
174 // 0x02, 0x2e, /* quad speed */
175 0x03, 0x01, /* 3: de-emphasis off */
176 0x04, 0x00, /* 4: LOUT1 volume muted */
177 0x05, 0x00, /* 5: ROUT1 volume muted */
178 0x06, 0x00, /* 6: LOUT2 volume muted */
179 0x07, 0x00, /* 7: ROUT2 volume muted */
180 0x08, 0x00, /* 8: LOUT3 volume muted */
181 0x09, 0x00, /* 9: ROUT3 volume muted */
182 0x0b, 0x00, /* b: LOUT4 volume muted */
183 0x0c, 0x00, /* c: ROUT4 volume muted */
184 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
185 0x01, 0x01, /* 1: un-reset, unmute */
186 0xff, 0xff
187 };
188 static unsigned char inits_ak4381[] = {
189 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
190 0x01, 0x02, /* 1: de-emphasis off, normal speed, sharp roll-off, DZF off */
191 // 0x01, 0x12, /* quad speed */
192 0x02, 0x00, /* 2: DZF disabled */
193 0x03, 0x00, /* 3: LATT 0 */
194 0x04, 0x00, /* 4: RATT 0 */
195 0x00, 0x0f, /* 0: power-up, un-reset */
196 0xff, 0xff
197 };
198
199 int chip, num_chips;
200 unsigned char *ptr, reg, data, *inits;
201
202 switch (ak->type) {
203 case SND_AK4524:
204 inits = inits_ak4524;
205 num_chips = ak->num_dacs / 2;
206 break;
207 case SND_AK4528:
208 inits = inits_ak4528;
209 num_chips = ak->num_dacs / 2;
210 break;
211 case SND_AK4529:
212 inits = inits_ak4529;
213 num_chips = 1;
214 break;
215 case SND_AK4355:
216 inits = inits_ak4355;
217 num_chips = 1;
218 break;
219 case SND_AK4358:
220 inits = inits_ak4358;
221 num_chips = 1;
222 break;
223 case SND_AK4381:
224 inits = inits_ak4381;
225 num_chips = ak->num_dacs / 2;
226 break;
227 default:
228 snd_BUG();
229 return;
230 }
231
232 for (chip = 0; chip < num_chips; chip++) {
233 ptr = inits;
234 while (*ptr != 0xff) {
235 reg = *ptr++;
236 data = *ptr++;
237 snd_akm4xxx_write(ak, chip, reg, data);
238 }
239 }
240 }
241
242 #define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
243 #define AK_GET_ADDR(val) ((val) & 0xff)
244 #define AK_GET_SHIFT(val) (((val) >> 16) & 0x7f)
245 #define AK_GET_INVERT(val) (((val) >> 23) & 1)
246 #define AK_GET_MASK(val) (((val) >> 24) & 0xff)
247 #define AK_COMPOSE(chip,addr,shift,mask) (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
248 #define AK_INVERT (1<<23)
249
250 static int snd_akm4xxx_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
251 {
252 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
253
254 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
255 uinfo->count = 1;
256 uinfo->value.integer.min = 0;
257 uinfo->value.integer.max = mask;
258 return 0;
259 }
260
261 static int snd_akm4xxx_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
262 {
263 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
264 int chip = AK_GET_CHIP(kcontrol->private_value);
265 int addr = AK_GET_ADDR(kcontrol->private_value);
266 int invert = AK_GET_INVERT(kcontrol->private_value);
267 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
268 unsigned char val = snd_akm4xxx_get(ak, chip, addr);
269
270 ucontrol->value.integer.value[0] = invert ? mask - val : val;
271 return 0;
272 }
273
274 static int snd_akm4xxx_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
275 {
276 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
277 int chip = AK_GET_CHIP(kcontrol->private_value);
278 int addr = AK_GET_ADDR(kcontrol->private_value);
279 int invert = AK_GET_INVERT(kcontrol->private_value);
280 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
281 unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
282 int change;
283
284 if (invert)
285 nval = mask - nval;
286 change = snd_akm4xxx_get(ak, chip, addr) != nval;
287 if (change)
288 snd_akm4xxx_write(ak, chip, addr, nval);
289 return change;
290 }
291
292 static int snd_akm4xxx_ipga_gain_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
293 {
294 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
295 uinfo->count = 1;
296 uinfo->value.integer.min = 0;
297 uinfo->value.integer.max = 36;
298 return 0;
299 }
300
301 static int snd_akm4xxx_ipga_gain_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
302 {
303 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
304 int chip = AK_GET_CHIP(kcontrol->private_value);
305 int addr = AK_GET_ADDR(kcontrol->private_value);
306 ucontrol->value.integer.value[0] = snd_akm4xxx_get_ipga(ak, chip, addr) & 0x7f;
307 return 0;
308 }
309
310 static int snd_akm4xxx_ipga_gain_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
311 {
312 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
313 int chip = AK_GET_CHIP(kcontrol->private_value);
314 int addr = AK_GET_ADDR(kcontrol->private_value);
315 unsigned char nval = (ucontrol->value.integer.value[0] % 37) | 0x80;
316 int change = snd_akm4xxx_get_ipga(ak, chip, addr) != nval;
317 if (change)
318 snd_akm4xxx_write(ak, chip, addr, nval);
319 return change;
320 }
321
322 static int snd_akm4xxx_deemphasis_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
323 {
324 static char *texts[4] = {
325 "44.1kHz", "Off", "48kHz", "32kHz",
326 };
327 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
328 uinfo->count = 1;
329 uinfo->value.enumerated.items = 4;
330 if (uinfo->value.enumerated.item >= 4)
331 uinfo->value.enumerated.item = 3;
332 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
333 return 0;
334 }
335
336 static int snd_akm4xxx_deemphasis_get(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t *ucontrol)
337 {
338 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
339 int chip = AK_GET_CHIP(kcontrol->private_value);
340 int addr = AK_GET_ADDR(kcontrol->private_value);
341 int shift = AK_GET_SHIFT(kcontrol->private_value);
342 ucontrol->value.enumerated.item[0] = (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
343 return 0;
344 }
345
346 static int snd_akm4xxx_deemphasis_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
347 {
348 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
349 int chip = AK_GET_CHIP(kcontrol->private_value);
350 int addr = AK_GET_ADDR(kcontrol->private_value);
351 int shift = AK_GET_SHIFT(kcontrol->private_value);
352 unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
353 int change;
354
355 nval = (nval << shift) | (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
356 change = snd_akm4xxx_get(ak, chip, addr) != nval;
357 if (change)
358 snd_akm4xxx_write(ak, chip, addr, nval);
359 return change;
360 }
361
362 /*
363 * build AK4xxx controls
364 */
365
366 int snd_akm4xxx_build_controls(akm4xxx_t *ak)
367 {
368 unsigned int idx, num_emphs;
369 snd_kcontrol_t *ctl;
370 int err;
371
372 ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
373 if (! ctl)
374 return -ENOMEM;
375
376 for (idx = 0; idx < ak->num_dacs; ++idx) {
377 memset(ctl, 0, sizeof(*ctl));
378 strcpy(ctl->id.name, "DAC Volume");
379 ctl->id.index = idx + ak->idx_offset * 2;
380 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
381 ctl->count = 1;
382 ctl->info = snd_akm4xxx_volume_info;
383 ctl->get = snd_akm4xxx_volume_get;
384 ctl->put = snd_akm4xxx_volume_put;
385 switch (ak->type) {
386 case SND_AK4524:
387 ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127); /* register 6 & 7 */
388 break;
389 case SND_AK4528:
390 ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); /* register 4 & 5 */
391 break;
392 case SND_AK4529: {
393 int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb; /* registers 2-7 and b,c */
394 ctl->private_value = AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
395 break;
396 }
397 case SND_AK4355:
398 ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255); /* register 4-9, chip #0 only */
399 break;
400 case SND_AK4358:
401 if (idx >= 6)
402 ctl->private_value = AK_COMPOSE(0, idx + 5, 0, 255); /* register 4-9, chip #0 only */
403 else
404 ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255); /* register 4-9, chip #0 only */
405 break;
406 case SND_AK4381:
407 ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255); /* register 3 & 4 */
408 break;
409 default:
410 err = -EINVAL;
411 goto __error;
412 }
413 ctl->private_data = ak;
414 if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
415 goto __error;
416 }
417 for (idx = 0; idx < ak->num_adcs && ak->type == SND_AK4524; ++idx) {
418 memset(ctl, 0, sizeof(*ctl));
419 strcpy(ctl->id.name, "ADC Volume");
420 ctl->id.index = idx + ak->idx_offset * 2;
421 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
422 ctl->count = 1;
423 ctl->info = snd_akm4xxx_volume_info;
424 ctl->get = snd_akm4xxx_volume_get;
425 ctl->put = snd_akm4xxx_volume_put;
426 ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); /* register 4 & 5 */
427 ctl->private_data = ak;
428 if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
429 goto __error;
430
431 memset(ctl, 0, sizeof(*ctl));
432 strcpy(ctl->id.name, "IPGA Analog Capture Volume");
433 ctl->id.index = idx + ak->idx_offset * 2;
434 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
435 ctl->count = 1;
436 ctl->info = snd_akm4xxx_ipga_gain_info;
437 ctl->get = snd_akm4xxx_ipga_gain_get;
438 ctl->put = snd_akm4xxx_ipga_gain_put;
439 ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 0); /* register 4 & 5 */
440 ctl->private_data = ak;
441 if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
442 goto __error;
443 }
444 if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
445 num_emphs = 1;
446 else
447 num_emphs = ak->num_dacs / 2;
448 for (idx = 0; idx < num_emphs; idx++) {
449 memset(ctl, 0, sizeof(*ctl));
450 strcpy(ctl->id.name, "Deemphasis");
451 ctl->id.index = idx + ak->idx_offset;
452 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
453 ctl->count = 1;
454 ctl->info = snd_akm4xxx_deemphasis_info;
455 ctl->get = snd_akm4xxx_deemphasis_get;
456 ctl->put = snd_akm4xxx_deemphasis_put;
457 switch (ak->type) {
458 case SND_AK4524:
459 case SND_AK4528:
460 ctl->private_value = AK_COMPOSE(idx, 3, 0, 0); /* register 3 */
461 break;
462 case SND_AK4529: {
463 int shift = idx == 3 ? 6 : (2 - idx) * 2;
464 ctl->private_value = AK_COMPOSE(0, 8, shift, 0); /* register 8 with shift */
465 break;
466 }
467 case SND_AK4355:
468 case SND_AK4358:
469 ctl->private_value = AK_COMPOSE(idx, 3, 0, 0);
470 break;
471 case SND_AK4381:
472 ctl->private_value = AK_COMPOSE(idx, 1, 1, 0);
473 break;
474 }
475 ctl->private_data = ak;
476 if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
477 goto __error;
478 }
479 err = 0;
480
481 __error:
482 kfree(ctl);
483 return err;
484 }
485
486 static int __init alsa_akm4xxx_module_init(void)
487 {
488 return 0;
489 }
490
491 static void __exit alsa_akm4xxx_module_exit(void)
492 {
493 }
494
495 module_init(alsa_akm4xxx_module_init)
496 module_exit(alsa_akm4xxx_module_exit)
497
498 EXPORT_SYMBOL(snd_akm4xxx_write);
499 EXPORT_SYMBOL(snd_akm4xxx_reset);
500 EXPORT_SYMBOL(snd_akm4xxx_init);
501 EXPORT_SYMBOL(snd_akm4xxx_build_controls);