]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/cgroup-util.c
tree-wide: use TAKE_PTR() and TAKE_FD() macros
[thirdparty/systemd.git] / src / basic / cgroup-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2 /***
3 This file is part of systemd.
4
5 Copyright 2010 Lennart Poettering
6
7 systemd is free software; you can redistribute it and/or modify it
8 under the terms of the GNU Lesser General Public License as published by
9 the Free Software Foundation; either version 2.1 of the License, or
10 (at your option) any later version.
11
12 systemd is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with systemd; If not, see <http://www.gnu.org/licenses/>.
19 ***/
20
21 #include <dirent.h>
22 #include <errno.h>
23 #include <ftw.h>
24 #include <limits.h>
25 #include <signal.h>
26 #include <stddef.h>
27 #include <stdio_ext.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/stat.h>
31 #include <sys/statfs.h>
32 #include <sys/types.h>
33 #include <sys/xattr.h>
34 #include <unistd.h>
35
36 #include "alloc-util.h"
37 #include "cgroup-util.h"
38 #include "def.h"
39 #include "dirent-util.h"
40 #include "extract-word.h"
41 #include "fd-util.h"
42 #include "fileio.h"
43 #include "format-util.h"
44 #include "fs-util.h"
45 #include "log.h"
46 #include "login-util.h"
47 #include "macro.h"
48 #include "missing.h"
49 #include "mkdir.h"
50 #include "parse-util.h"
51 #include "path-util.h"
52 #include "proc-cmdline.h"
53 #include "process-util.h"
54 #include "set.h"
55 #include "special.h"
56 #include "stat-util.h"
57 #include "stdio-util.h"
58 #include "string-table.h"
59 #include "string-util.h"
60 #include "strv.h"
61 #include "unit-name.h"
62 #include "user-util.h"
63
64 int cg_enumerate_processes(const char *controller, const char *path, FILE **_f) {
65 _cleanup_free_ char *fs = NULL;
66 FILE *f;
67 int r;
68
69 assert(_f);
70
71 r = cg_get_path(controller, path, "cgroup.procs", &fs);
72 if (r < 0)
73 return r;
74
75 f = fopen(fs, "re");
76 if (!f)
77 return -errno;
78
79 *_f = f;
80 return 0;
81 }
82
83 int cg_read_pid(FILE *f, pid_t *_pid) {
84 unsigned long ul;
85
86 /* Note that the cgroup.procs might contain duplicates! See
87 * cgroups.txt for details. */
88
89 assert(f);
90 assert(_pid);
91
92 errno = 0;
93 if (fscanf(f, "%lu", &ul) != 1) {
94
95 if (feof(f))
96 return 0;
97
98 return errno > 0 ? -errno : -EIO;
99 }
100
101 if (ul <= 0)
102 return -EIO;
103
104 *_pid = (pid_t) ul;
105 return 1;
106 }
107
108 int cg_read_event(
109 const char *controller,
110 const char *path,
111 const char *event,
112 char **val) {
113
114 _cleanup_free_ char *events = NULL, *content = NULL;
115 char *p, *line;
116 int r;
117
118 r = cg_get_path(controller, path, "cgroup.events", &events);
119 if (r < 0)
120 return r;
121
122 r = read_full_file(events, &content, NULL);
123 if (r < 0)
124 return r;
125
126 p = content;
127 while ((line = strsep(&p, "\n"))) {
128 char *key;
129
130 key = strsep(&line, " ");
131 if (!key || !line)
132 return -EINVAL;
133
134 if (strcmp(key, event))
135 continue;
136
137 *val = strdup(line);
138 return 0;
139 }
140
141 return -ENOENT;
142 }
143
144 bool cg_ns_supported(void) {
145 static thread_local int enabled = -1;
146
147 if (enabled >= 0)
148 return enabled;
149
150 if (access("/proc/self/ns/cgroup", F_OK) == 0)
151 enabled = 1;
152 else
153 enabled = 0;
154
155 return enabled;
156 }
157
158 int cg_enumerate_subgroups(const char *controller, const char *path, DIR **_d) {
159 _cleanup_free_ char *fs = NULL;
160 int r;
161 DIR *d;
162
163 assert(_d);
164
165 /* This is not recursive! */
166
167 r = cg_get_path(controller, path, NULL, &fs);
168 if (r < 0)
169 return r;
170
171 d = opendir(fs);
172 if (!d)
173 return -errno;
174
175 *_d = d;
176 return 0;
177 }
178
179 int cg_read_subgroup(DIR *d, char **fn) {
180 struct dirent *de;
181
182 assert(d);
183 assert(fn);
184
185 FOREACH_DIRENT_ALL(de, d, return -errno) {
186 char *b;
187
188 if (de->d_type != DT_DIR)
189 continue;
190
191 if (dot_or_dot_dot(de->d_name))
192 continue;
193
194 b = strdup(de->d_name);
195 if (!b)
196 return -ENOMEM;
197
198 *fn = b;
199 return 1;
200 }
201
202 return 0;
203 }
204
205 int cg_rmdir(const char *controller, const char *path) {
206 _cleanup_free_ char *p = NULL;
207 int r;
208
209 r = cg_get_path(controller, path, NULL, &p);
210 if (r < 0)
211 return r;
212
213 r = rmdir(p);
214 if (r < 0 && errno != ENOENT)
215 return -errno;
216
217 r = cg_hybrid_unified();
218 if (r < 0)
219 return r;
220 if (r == 0)
221 return 0;
222
223 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
224 r = cg_rmdir(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path);
225 if (r < 0)
226 log_warning_errno(r, "Failed to remove compat systemd cgroup %s: %m", path);
227 }
228
229 return 0;
230 }
231
232 int cg_kill(
233 const char *controller,
234 const char *path,
235 int sig,
236 CGroupFlags flags,
237 Set *s,
238 cg_kill_log_func_t log_kill,
239 void *userdata) {
240
241 _cleanup_set_free_ Set *allocated_set = NULL;
242 bool done = false;
243 int r, ret = 0;
244 pid_t my_pid;
245
246 assert(sig >= 0);
247
248 /* Don't send SIGCONT twice. Also, SIGKILL always works even when process is suspended, hence don't send
249 * SIGCONT on SIGKILL. */
250 if (IN_SET(sig, SIGCONT, SIGKILL))
251 flags &= ~CGROUP_SIGCONT;
252
253 /* This goes through the tasks list and kills them all. This
254 * is repeated until no further processes are added to the
255 * tasks list, to properly handle forking processes */
256
257 if (!s) {
258 s = allocated_set = set_new(NULL);
259 if (!s)
260 return -ENOMEM;
261 }
262
263 my_pid = getpid_cached();
264
265 do {
266 _cleanup_fclose_ FILE *f = NULL;
267 pid_t pid = 0;
268 done = true;
269
270 r = cg_enumerate_processes(controller, path, &f);
271 if (r < 0) {
272 if (ret >= 0 && r != -ENOENT)
273 return r;
274
275 return ret;
276 }
277
278 while ((r = cg_read_pid(f, &pid)) > 0) {
279
280 if ((flags & CGROUP_IGNORE_SELF) && pid == my_pid)
281 continue;
282
283 if (set_get(s, PID_TO_PTR(pid)) == PID_TO_PTR(pid))
284 continue;
285
286 if (log_kill)
287 log_kill(pid, sig, userdata);
288
289 /* If we haven't killed this process yet, kill
290 * it */
291 if (kill(pid, sig) < 0) {
292 if (ret >= 0 && errno != ESRCH)
293 ret = -errno;
294 } else {
295 if (flags & CGROUP_SIGCONT)
296 (void) kill(pid, SIGCONT);
297
298 if (ret == 0)
299 ret = 1;
300 }
301
302 done = false;
303
304 r = set_put(s, PID_TO_PTR(pid));
305 if (r < 0) {
306 if (ret >= 0)
307 return r;
308
309 return ret;
310 }
311 }
312
313 if (r < 0) {
314 if (ret >= 0)
315 return r;
316
317 return ret;
318 }
319
320 /* To avoid racing against processes which fork
321 * quicker than we can kill them we repeat this until
322 * no new pids need to be killed. */
323
324 } while (!done);
325
326 return ret;
327 }
328
329 int cg_kill_recursive(
330 const char *controller,
331 const char *path,
332 int sig,
333 CGroupFlags flags,
334 Set *s,
335 cg_kill_log_func_t log_kill,
336 void *userdata) {
337
338 _cleanup_set_free_ Set *allocated_set = NULL;
339 _cleanup_closedir_ DIR *d = NULL;
340 int r, ret;
341 char *fn;
342
343 assert(path);
344 assert(sig >= 0);
345
346 if (!s) {
347 s = allocated_set = set_new(NULL);
348 if (!s)
349 return -ENOMEM;
350 }
351
352 ret = cg_kill(controller, path, sig, flags, s, log_kill, userdata);
353
354 r = cg_enumerate_subgroups(controller, path, &d);
355 if (r < 0) {
356 if (ret >= 0 && r != -ENOENT)
357 return r;
358
359 return ret;
360 }
361
362 while ((r = cg_read_subgroup(d, &fn)) > 0) {
363 _cleanup_free_ char *p = NULL;
364
365 p = strjoin(path, "/", fn);
366 free(fn);
367 if (!p)
368 return -ENOMEM;
369
370 r = cg_kill_recursive(controller, p, sig, flags, s, log_kill, userdata);
371 if (r != 0 && ret >= 0)
372 ret = r;
373 }
374 if (ret >= 0 && r < 0)
375 ret = r;
376
377 if (flags & CGROUP_REMOVE) {
378 r = cg_rmdir(controller, path);
379 if (r < 0 && ret >= 0 && !IN_SET(r, -ENOENT, -EBUSY))
380 return r;
381 }
382
383 return ret;
384 }
385
386 int cg_migrate(
387 const char *cfrom,
388 const char *pfrom,
389 const char *cto,
390 const char *pto,
391 CGroupFlags flags) {
392
393 bool done = false;
394 _cleanup_set_free_ Set *s = NULL;
395 int r, ret = 0;
396 pid_t my_pid;
397
398 assert(cfrom);
399 assert(pfrom);
400 assert(cto);
401 assert(pto);
402
403 s = set_new(NULL);
404 if (!s)
405 return -ENOMEM;
406
407 my_pid = getpid_cached();
408
409 do {
410 _cleanup_fclose_ FILE *f = NULL;
411 pid_t pid = 0;
412 done = true;
413
414 r = cg_enumerate_processes(cfrom, pfrom, &f);
415 if (r < 0) {
416 if (ret >= 0 && r != -ENOENT)
417 return r;
418
419 return ret;
420 }
421
422 while ((r = cg_read_pid(f, &pid)) > 0) {
423
424 /* This might do weird stuff if we aren't a
425 * single-threaded program. However, we
426 * luckily know we are not */
427 if ((flags & CGROUP_IGNORE_SELF) && pid == my_pid)
428 continue;
429
430 if (set_get(s, PID_TO_PTR(pid)) == PID_TO_PTR(pid))
431 continue;
432
433 /* Ignore kernel threads. Since they can only
434 * exist in the root cgroup, we only check for
435 * them there. */
436 if (cfrom &&
437 (isempty(pfrom) || path_equal(pfrom, "/")) &&
438 is_kernel_thread(pid) > 0)
439 continue;
440
441 r = cg_attach(cto, pto, pid);
442 if (r < 0) {
443 if (ret >= 0 && r != -ESRCH)
444 ret = r;
445 } else if (ret == 0)
446 ret = 1;
447
448 done = false;
449
450 r = set_put(s, PID_TO_PTR(pid));
451 if (r < 0) {
452 if (ret >= 0)
453 return r;
454
455 return ret;
456 }
457 }
458
459 if (r < 0) {
460 if (ret >= 0)
461 return r;
462
463 return ret;
464 }
465 } while (!done);
466
467 return ret;
468 }
469
470 int cg_migrate_recursive(
471 const char *cfrom,
472 const char *pfrom,
473 const char *cto,
474 const char *pto,
475 CGroupFlags flags) {
476
477 _cleanup_closedir_ DIR *d = NULL;
478 int r, ret = 0;
479 char *fn;
480
481 assert(cfrom);
482 assert(pfrom);
483 assert(cto);
484 assert(pto);
485
486 ret = cg_migrate(cfrom, pfrom, cto, pto, flags);
487
488 r = cg_enumerate_subgroups(cfrom, pfrom, &d);
489 if (r < 0) {
490 if (ret >= 0 && r != -ENOENT)
491 return r;
492
493 return ret;
494 }
495
496 while ((r = cg_read_subgroup(d, &fn)) > 0) {
497 _cleanup_free_ char *p = NULL;
498
499 p = strjoin(pfrom, "/", fn);
500 free(fn);
501 if (!p)
502 return -ENOMEM;
503
504 r = cg_migrate_recursive(cfrom, p, cto, pto, flags);
505 if (r != 0 && ret >= 0)
506 ret = r;
507 }
508
509 if (r < 0 && ret >= 0)
510 ret = r;
511
512 if (flags & CGROUP_REMOVE) {
513 r = cg_rmdir(cfrom, pfrom);
514 if (r < 0 && ret >= 0 && !IN_SET(r, -ENOENT, -EBUSY))
515 return r;
516 }
517
518 return ret;
519 }
520
521 int cg_migrate_recursive_fallback(
522 const char *cfrom,
523 const char *pfrom,
524 const char *cto,
525 const char *pto,
526 CGroupFlags flags) {
527
528 int r;
529
530 assert(cfrom);
531 assert(pfrom);
532 assert(cto);
533 assert(pto);
534
535 r = cg_migrate_recursive(cfrom, pfrom, cto, pto, flags);
536 if (r < 0) {
537 char prefix[strlen(pto) + 1];
538
539 /* This didn't work? Then let's try all prefixes of the destination */
540
541 PATH_FOREACH_PREFIX(prefix, pto) {
542 int q;
543
544 q = cg_migrate_recursive(cfrom, pfrom, cto, prefix, flags);
545 if (q >= 0)
546 return q;
547 }
548 }
549
550 return r;
551 }
552
553 static const char *controller_to_dirname(const char *controller) {
554 const char *e;
555
556 assert(controller);
557
558 /* Converts a controller name to the directory name below
559 * /sys/fs/cgroup/ we want to mount it to. Effectively, this
560 * just cuts off the name= prefixed used for named
561 * hierarchies, if it is specified. */
562
563 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
564 if (cg_hybrid_unified() > 0)
565 controller = SYSTEMD_CGROUP_CONTROLLER_HYBRID;
566 else
567 controller = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
568 }
569
570 e = startswith(controller, "name=");
571 if (e)
572 return e;
573
574 return controller;
575 }
576
577 static int join_path_legacy(const char *controller, const char *path, const char *suffix, char **fs) {
578 const char *dn;
579 char *t = NULL;
580
581 assert(fs);
582 assert(controller);
583
584 dn = controller_to_dirname(controller);
585
586 if (isempty(path) && isempty(suffix))
587 t = strappend("/sys/fs/cgroup/", dn);
588 else if (isempty(path))
589 t = strjoin("/sys/fs/cgroup/", dn, "/", suffix);
590 else if (isempty(suffix))
591 t = strjoin("/sys/fs/cgroup/", dn, "/", path);
592 else
593 t = strjoin("/sys/fs/cgroup/", dn, "/", path, "/", suffix);
594 if (!t)
595 return -ENOMEM;
596
597 *fs = t;
598 return 0;
599 }
600
601 static int join_path_unified(const char *path, const char *suffix, char **fs) {
602 char *t;
603
604 assert(fs);
605
606 if (isempty(path) && isempty(suffix))
607 t = strdup("/sys/fs/cgroup");
608 else if (isempty(path))
609 t = strappend("/sys/fs/cgroup/", suffix);
610 else if (isempty(suffix))
611 t = strappend("/sys/fs/cgroup/", path);
612 else
613 t = strjoin("/sys/fs/cgroup/", path, "/", suffix);
614 if (!t)
615 return -ENOMEM;
616
617 *fs = t;
618 return 0;
619 }
620
621 int cg_get_path(const char *controller, const char *path, const char *suffix, char **fs) {
622 int r;
623
624 assert(fs);
625
626 if (!controller) {
627 char *t;
628
629 /* If no controller is specified, we return the path
630 * *below* the controllers, without any prefix. */
631
632 if (!path && !suffix)
633 return -EINVAL;
634
635 if (!suffix)
636 t = strdup(path);
637 else if (!path)
638 t = strdup(suffix);
639 else
640 t = strjoin(path, "/", suffix);
641 if (!t)
642 return -ENOMEM;
643
644 *fs = path_kill_slashes(t);
645 return 0;
646 }
647
648 if (!cg_controller_is_valid(controller))
649 return -EINVAL;
650
651 r = cg_all_unified();
652 if (r < 0)
653 return r;
654 if (r > 0)
655 r = join_path_unified(path, suffix, fs);
656 else
657 r = join_path_legacy(controller, path, suffix, fs);
658 if (r < 0)
659 return r;
660
661 path_kill_slashes(*fs);
662 return 0;
663 }
664
665 static int controller_is_accessible(const char *controller) {
666 int r;
667
668 assert(controller);
669
670 /* Checks whether a specific controller is accessible,
671 * i.e. its hierarchy mounted. In the unified hierarchy all
672 * controllers are considered accessible, except for the named
673 * hierarchies */
674
675 if (!cg_controller_is_valid(controller))
676 return -EINVAL;
677
678 r = cg_all_unified();
679 if (r < 0)
680 return r;
681 if (r > 0) {
682 /* We don't support named hierarchies if we are using
683 * the unified hierarchy. */
684
685 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
686 return 0;
687
688 if (startswith(controller, "name="))
689 return -EOPNOTSUPP;
690
691 } else {
692 const char *cc, *dn;
693
694 dn = controller_to_dirname(controller);
695 cc = strjoina("/sys/fs/cgroup/", dn);
696
697 if (laccess(cc, F_OK) < 0)
698 return -errno;
699 }
700
701 return 0;
702 }
703
704 int cg_get_path_and_check(const char *controller, const char *path, const char *suffix, char **fs) {
705 int r;
706
707 assert(controller);
708 assert(fs);
709
710 /* Check if the specified controller is actually accessible */
711 r = controller_is_accessible(controller);
712 if (r < 0)
713 return r;
714
715 return cg_get_path(controller, path, suffix, fs);
716 }
717
718 static int trim_cb(const char *path, const struct stat *sb, int typeflag, struct FTW *ftwbuf) {
719 assert(path);
720 assert(sb);
721 assert(ftwbuf);
722
723 if (typeflag != FTW_DP)
724 return 0;
725
726 if (ftwbuf->level < 1)
727 return 0;
728
729 (void) rmdir(path);
730 return 0;
731 }
732
733 int cg_trim(const char *controller, const char *path, bool delete_root) {
734 _cleanup_free_ char *fs = NULL;
735 int r = 0, q;
736
737 assert(path);
738
739 r = cg_get_path(controller, path, NULL, &fs);
740 if (r < 0)
741 return r;
742
743 errno = 0;
744 if (nftw(fs, trim_cb, 64, FTW_DEPTH|FTW_MOUNT|FTW_PHYS) != 0) {
745 if (errno == ENOENT)
746 r = 0;
747 else if (errno > 0)
748 r = -errno;
749 else
750 r = -EIO;
751 }
752
753 if (delete_root) {
754 if (rmdir(fs) < 0 && errno != ENOENT)
755 return -errno;
756 }
757
758 q = cg_hybrid_unified();
759 if (q < 0)
760 return q;
761 if (q > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
762 q = cg_trim(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, delete_root);
763 if (q < 0)
764 log_warning_errno(q, "Failed to trim compat systemd cgroup %s: %m", path);
765 }
766
767 return r;
768 }
769
770 int cg_create(const char *controller, const char *path) {
771 _cleanup_free_ char *fs = NULL;
772 int r;
773
774 r = cg_get_path_and_check(controller, path, NULL, &fs);
775 if (r < 0)
776 return r;
777
778 r = mkdir_parents(fs, 0755);
779 if (r < 0)
780 return r;
781
782 r = mkdir_errno_wrapper(fs, 0755);
783 if (r == -EEXIST)
784 return 0;
785 if (r < 0)
786 return r;
787
788 r = cg_hybrid_unified();
789 if (r < 0)
790 return r;
791
792 if (r > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
793 r = cg_create(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path);
794 if (r < 0)
795 log_warning_errno(r, "Failed to create compat systemd cgroup %s: %m", path);
796 }
797
798 return 1;
799 }
800
801 int cg_create_and_attach(const char *controller, const char *path, pid_t pid) {
802 int r, q;
803
804 assert(pid >= 0);
805
806 r = cg_create(controller, path);
807 if (r < 0)
808 return r;
809
810 q = cg_attach(controller, path, pid);
811 if (q < 0)
812 return q;
813
814 /* This does not remove the cgroup on failure */
815 return r;
816 }
817
818 int cg_attach(const char *controller, const char *path, pid_t pid) {
819 _cleanup_free_ char *fs = NULL;
820 char c[DECIMAL_STR_MAX(pid_t) + 2];
821 int r;
822
823 assert(path);
824 assert(pid >= 0);
825
826 r = cg_get_path_and_check(controller, path, "cgroup.procs", &fs);
827 if (r < 0)
828 return r;
829
830 if (pid == 0)
831 pid = getpid_cached();
832
833 xsprintf(c, PID_FMT "\n", pid);
834
835 r = write_string_file(fs, c, 0);
836 if (r < 0)
837 return r;
838
839 r = cg_hybrid_unified();
840 if (r < 0)
841 return r;
842
843 if (r > 0 && streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
844 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, pid);
845 if (r < 0)
846 log_warning_errno(r, "Failed to attach "PID_FMT" to compat systemd cgroup %s: %m", pid, path);
847 }
848
849 return 0;
850 }
851
852 int cg_attach_fallback(const char *controller, const char *path, pid_t pid) {
853 int r;
854
855 assert(controller);
856 assert(path);
857 assert(pid >= 0);
858
859 r = cg_attach(controller, path, pid);
860 if (r < 0) {
861 char prefix[strlen(path) + 1];
862
863 /* This didn't work? Then let's try all prefixes of
864 * the destination */
865
866 PATH_FOREACH_PREFIX(prefix, path) {
867 int q;
868
869 q = cg_attach(controller, prefix, pid);
870 if (q >= 0)
871 return q;
872 }
873 }
874
875 return r;
876 }
877
878 int cg_set_access(
879 const char *controller,
880 const char *path,
881 uid_t uid,
882 gid_t gid) {
883
884 struct Attribute {
885 const char *name;
886 bool fatal;
887 };
888
889 /* cgroupsv1, aka legacy/non-unified */
890 static const struct Attribute legacy_attributes[] = {
891 { "cgroup.procs", true },
892 { "tasks", false },
893 { "cgroup.clone_children", false },
894 {},
895 };
896
897 /* cgroupsv2, aka unified */
898 static const struct Attribute unified_attributes[] = {
899 { "cgroup.procs", true },
900 { "cgroup.subtree_control", true },
901 { "cgroup.threads", false },
902 {},
903 };
904
905 static const struct Attribute* const attributes[] = {
906 [false] = legacy_attributes,
907 [true] = unified_attributes,
908 };
909
910 _cleanup_free_ char *fs = NULL;
911 const struct Attribute *i;
912 int r, unified;
913
914 assert(path);
915
916 if (uid == UID_INVALID && gid == GID_INVALID)
917 return 0;
918
919 unified = cg_unified_controller(controller);
920 if (unified < 0)
921 return unified;
922
923 /* Configure access to the cgroup itself */
924 r = cg_get_path(controller, path, NULL, &fs);
925 if (r < 0)
926 return r;
927
928 r = chmod_and_chown(fs, 0755, uid, gid);
929 if (r < 0)
930 return r;
931
932 /* Configure access to the cgroup's attributes */
933 for (i = attributes[unified]; i->name; i++) {
934 fs = mfree(fs);
935
936 r = cg_get_path(controller, path, i->name, &fs);
937 if (r < 0)
938 return r;
939
940 r = chmod_and_chown(fs, 0644, uid, gid);
941 if (r < 0) {
942 if (i->fatal)
943 return r;
944
945 log_debug_errno(r, "Failed to set access on cgroup %s, ignoring: %m", fs);
946 }
947 }
948
949 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
950 r = cg_hybrid_unified();
951 if (r < 0)
952 return r;
953 if (r > 0) {
954 /* Always propagate access mode from unified to legacy controller */
955 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path, uid, gid);
956 if (r < 0)
957 log_debug_errno(r, "Failed to set access on compatibility systemd cgroup %s, ignoring: %m", path);
958 }
959 }
960
961 return 0;
962 }
963
964 int cg_set_xattr(const char *controller, const char *path, const char *name, const void *value, size_t size, int flags) {
965 _cleanup_free_ char *fs = NULL;
966 int r;
967
968 assert(path);
969 assert(name);
970 assert(value || size <= 0);
971
972 r = cg_get_path(controller, path, NULL, &fs);
973 if (r < 0)
974 return r;
975
976 if (setxattr(fs, name, value, size, flags) < 0)
977 return -errno;
978
979 return 0;
980 }
981
982 int cg_get_xattr(const char *controller, const char *path, const char *name, void *value, size_t size) {
983 _cleanup_free_ char *fs = NULL;
984 ssize_t n;
985 int r;
986
987 assert(path);
988 assert(name);
989
990 r = cg_get_path(controller, path, NULL, &fs);
991 if (r < 0)
992 return r;
993
994 n = getxattr(fs, name, value, size);
995 if (n < 0)
996 return -errno;
997
998 return (int) n;
999 }
1000
1001 int cg_pid_get_path(const char *controller, pid_t pid, char **path) {
1002 _cleanup_fclose_ FILE *f = NULL;
1003 char line[LINE_MAX];
1004 const char *fs, *controller_str;
1005 size_t cs = 0;
1006 int unified;
1007
1008 assert(path);
1009 assert(pid >= 0);
1010
1011 if (controller) {
1012 if (!cg_controller_is_valid(controller))
1013 return -EINVAL;
1014 } else
1015 controller = SYSTEMD_CGROUP_CONTROLLER;
1016
1017 unified = cg_unified_controller(controller);
1018 if (unified < 0)
1019 return unified;
1020 if (unified == 0) {
1021 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
1022 controller_str = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
1023 else
1024 controller_str = controller;
1025
1026 cs = strlen(controller_str);
1027 }
1028
1029 fs = procfs_file_alloca(pid, "cgroup");
1030 f = fopen(fs, "re");
1031 if (!f)
1032 return errno == ENOENT ? -ESRCH : -errno;
1033
1034 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
1035
1036 FOREACH_LINE(line, f, return -errno) {
1037 char *e, *p;
1038
1039 truncate_nl(line);
1040
1041 if (unified) {
1042 e = startswith(line, "0:");
1043 if (!e)
1044 continue;
1045
1046 e = strchr(e, ':');
1047 if (!e)
1048 continue;
1049 } else {
1050 char *l;
1051 size_t k;
1052 const char *word, *state;
1053 bool found = false;
1054
1055 l = strchr(line, ':');
1056 if (!l)
1057 continue;
1058
1059 l++;
1060 e = strchr(l, ':');
1061 if (!e)
1062 continue;
1063
1064 *e = 0;
1065 FOREACH_WORD_SEPARATOR(word, k, l, ",", state)
1066 if (k == cs && memcmp(word, controller_str, cs) == 0) {
1067 found = true;
1068 break;
1069 }
1070 if (!found)
1071 continue;
1072 }
1073
1074 p = strdup(e + 1);
1075 if (!p)
1076 return -ENOMEM;
1077
1078 /* Truncate suffix indicating the process is a zombie */
1079 e = endswith(p, " (deleted)");
1080 if (e)
1081 *e = 0;
1082
1083 *path = p;
1084 return 0;
1085 }
1086
1087 return -ENODATA;
1088 }
1089
1090 int cg_install_release_agent(const char *controller, const char *agent) {
1091 _cleanup_free_ char *fs = NULL, *contents = NULL;
1092 const char *sc;
1093 int r;
1094
1095 assert(agent);
1096
1097 r = cg_unified_controller(controller);
1098 if (r < 0)
1099 return r;
1100 if (r > 0) /* doesn't apply to unified hierarchy */
1101 return -EOPNOTSUPP;
1102
1103 r = cg_get_path(controller, NULL, "release_agent", &fs);
1104 if (r < 0)
1105 return r;
1106
1107 r = read_one_line_file(fs, &contents);
1108 if (r < 0)
1109 return r;
1110
1111 sc = strstrip(contents);
1112 if (isempty(sc)) {
1113 r = write_string_file(fs, agent, 0);
1114 if (r < 0)
1115 return r;
1116 } else if (!path_equal(sc, agent))
1117 return -EEXIST;
1118
1119 fs = mfree(fs);
1120 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
1121 if (r < 0)
1122 return r;
1123
1124 contents = mfree(contents);
1125 r = read_one_line_file(fs, &contents);
1126 if (r < 0)
1127 return r;
1128
1129 sc = strstrip(contents);
1130 if (streq(sc, "0")) {
1131 r = write_string_file(fs, "1", 0);
1132 if (r < 0)
1133 return r;
1134
1135 return 1;
1136 }
1137
1138 if (!streq(sc, "1"))
1139 return -EIO;
1140
1141 return 0;
1142 }
1143
1144 int cg_uninstall_release_agent(const char *controller) {
1145 _cleanup_free_ char *fs = NULL;
1146 int r;
1147
1148 r = cg_unified_controller(controller);
1149 if (r < 0)
1150 return r;
1151 if (r > 0) /* Doesn't apply to unified hierarchy */
1152 return -EOPNOTSUPP;
1153
1154 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
1155 if (r < 0)
1156 return r;
1157
1158 r = write_string_file(fs, "0", 0);
1159 if (r < 0)
1160 return r;
1161
1162 fs = mfree(fs);
1163
1164 r = cg_get_path(controller, NULL, "release_agent", &fs);
1165 if (r < 0)
1166 return r;
1167
1168 r = write_string_file(fs, "", 0);
1169 if (r < 0)
1170 return r;
1171
1172 return 0;
1173 }
1174
1175 int cg_is_empty(const char *controller, const char *path) {
1176 _cleanup_fclose_ FILE *f = NULL;
1177 pid_t pid;
1178 int r;
1179
1180 assert(path);
1181
1182 r = cg_enumerate_processes(controller, path, &f);
1183 if (r == -ENOENT)
1184 return 1;
1185 if (r < 0)
1186 return r;
1187
1188 r = cg_read_pid(f, &pid);
1189 if (r < 0)
1190 return r;
1191
1192 return r == 0;
1193 }
1194
1195 int cg_is_empty_recursive(const char *controller, const char *path) {
1196 int r;
1197
1198 assert(path);
1199
1200 /* The root cgroup is always populated */
1201 if (controller && (isempty(path) || path_equal(path, "/")))
1202 return false;
1203
1204 r = cg_unified_controller(controller);
1205 if (r < 0)
1206 return r;
1207 if (r > 0) {
1208 _cleanup_free_ char *t = NULL;
1209
1210 /* On the unified hierarchy we can check empty state
1211 * via the "populated" attribute of "cgroup.events". */
1212
1213 r = cg_read_event(controller, path, "populated", &t);
1214 if (r < 0)
1215 return r;
1216
1217 return streq(t, "0");
1218 } else {
1219 _cleanup_closedir_ DIR *d = NULL;
1220 char *fn;
1221
1222 r = cg_is_empty(controller, path);
1223 if (r <= 0)
1224 return r;
1225
1226 r = cg_enumerate_subgroups(controller, path, &d);
1227 if (r == -ENOENT)
1228 return 1;
1229 if (r < 0)
1230 return r;
1231
1232 while ((r = cg_read_subgroup(d, &fn)) > 0) {
1233 _cleanup_free_ char *p = NULL;
1234
1235 p = strjoin(path, "/", fn);
1236 free(fn);
1237 if (!p)
1238 return -ENOMEM;
1239
1240 r = cg_is_empty_recursive(controller, p);
1241 if (r <= 0)
1242 return r;
1243 }
1244 if (r < 0)
1245 return r;
1246
1247 return true;
1248 }
1249 }
1250
1251 int cg_split_spec(const char *spec, char **controller, char **path) {
1252 char *t = NULL, *u = NULL;
1253 const char *e;
1254
1255 assert(spec);
1256
1257 if (*spec == '/') {
1258 if (!path_is_normalized(spec))
1259 return -EINVAL;
1260
1261 if (path) {
1262 t = strdup(spec);
1263 if (!t)
1264 return -ENOMEM;
1265
1266 *path = path_kill_slashes(t);
1267 }
1268
1269 if (controller)
1270 *controller = NULL;
1271
1272 return 0;
1273 }
1274
1275 e = strchr(spec, ':');
1276 if (!e) {
1277 if (!cg_controller_is_valid(spec))
1278 return -EINVAL;
1279
1280 if (controller) {
1281 t = strdup(spec);
1282 if (!t)
1283 return -ENOMEM;
1284
1285 *controller = t;
1286 }
1287
1288 if (path)
1289 *path = NULL;
1290
1291 return 0;
1292 }
1293
1294 t = strndup(spec, e-spec);
1295 if (!t)
1296 return -ENOMEM;
1297 if (!cg_controller_is_valid(t)) {
1298 free(t);
1299 return -EINVAL;
1300 }
1301
1302 if (isempty(e+1))
1303 u = NULL;
1304 else {
1305 u = strdup(e+1);
1306 if (!u) {
1307 free(t);
1308 return -ENOMEM;
1309 }
1310
1311 if (!path_is_normalized(u) ||
1312 !path_is_absolute(u)) {
1313 free(t);
1314 free(u);
1315 return -EINVAL;
1316 }
1317
1318 path_kill_slashes(u);
1319 }
1320
1321 if (controller)
1322 *controller = t;
1323 else
1324 free(t);
1325
1326 if (path)
1327 *path = u;
1328 else
1329 free(u);
1330
1331 return 0;
1332 }
1333
1334 int cg_mangle_path(const char *path, char **result) {
1335 _cleanup_free_ char *c = NULL, *p = NULL;
1336 char *t;
1337 int r;
1338
1339 assert(path);
1340 assert(result);
1341
1342 /* First, check if it already is a filesystem path */
1343 if (path_startswith(path, "/sys/fs/cgroup")) {
1344
1345 t = strdup(path);
1346 if (!t)
1347 return -ENOMEM;
1348
1349 *result = path_kill_slashes(t);
1350 return 0;
1351 }
1352
1353 /* Otherwise, treat it as cg spec */
1354 r = cg_split_spec(path, &c, &p);
1355 if (r < 0)
1356 return r;
1357
1358 return cg_get_path(c ?: SYSTEMD_CGROUP_CONTROLLER, p ?: "/", NULL, result);
1359 }
1360
1361 int cg_get_root_path(char **path) {
1362 char *p, *e;
1363 int r;
1364
1365 assert(path);
1366
1367 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 1, &p);
1368 if (r < 0)
1369 return r;
1370
1371 e = endswith(p, "/" SPECIAL_INIT_SCOPE);
1372 if (!e)
1373 e = endswith(p, "/" SPECIAL_SYSTEM_SLICE); /* legacy */
1374 if (!e)
1375 e = endswith(p, "/system"); /* even more legacy */
1376 if (e)
1377 *e = 0;
1378
1379 *path = p;
1380 return 0;
1381 }
1382
1383 int cg_shift_path(const char *cgroup, const char *root, const char **shifted) {
1384 _cleanup_free_ char *rt = NULL;
1385 char *p;
1386 int r;
1387
1388 assert(cgroup);
1389 assert(shifted);
1390
1391 if (!root) {
1392 /* If the root was specified let's use that, otherwise
1393 * let's determine it from PID 1 */
1394
1395 r = cg_get_root_path(&rt);
1396 if (r < 0)
1397 return r;
1398
1399 root = rt;
1400 }
1401
1402 p = path_startswith(cgroup, root);
1403 if (p && p > cgroup)
1404 *shifted = p - 1;
1405 else
1406 *shifted = cgroup;
1407
1408 return 0;
1409 }
1410
1411 int cg_pid_get_path_shifted(pid_t pid, const char *root, char **cgroup) {
1412 _cleanup_free_ char *raw = NULL;
1413 const char *c;
1414 int r;
1415
1416 assert(pid >= 0);
1417 assert(cgroup);
1418
1419 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &raw);
1420 if (r < 0)
1421 return r;
1422
1423 r = cg_shift_path(raw, root, &c);
1424 if (r < 0)
1425 return r;
1426
1427 if (c == raw)
1428 *cgroup = TAKE_PTR(raw);
1429 else {
1430 char *n;
1431
1432 n = strdup(c);
1433 if (!n)
1434 return -ENOMEM;
1435
1436 *cgroup = n;
1437 }
1438
1439 return 0;
1440 }
1441
1442 int cg_path_decode_unit(const char *cgroup, char **unit) {
1443 char *c, *s;
1444 size_t n;
1445
1446 assert(cgroup);
1447 assert(unit);
1448
1449 n = strcspn(cgroup, "/");
1450 if (n < 3)
1451 return -ENXIO;
1452
1453 c = strndupa(cgroup, n);
1454 c = cg_unescape(c);
1455
1456 if (!unit_name_is_valid(c, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
1457 return -ENXIO;
1458
1459 s = strdup(c);
1460 if (!s)
1461 return -ENOMEM;
1462
1463 *unit = s;
1464 return 0;
1465 }
1466
1467 static bool valid_slice_name(const char *p, size_t n) {
1468
1469 if (!p)
1470 return false;
1471
1472 if (n < STRLEN("x.slice"))
1473 return false;
1474
1475 if (memcmp(p + n - 6, ".slice", 6) == 0) {
1476 char buf[n+1], *c;
1477
1478 memcpy(buf, p, n);
1479 buf[n] = 0;
1480
1481 c = cg_unescape(buf);
1482
1483 return unit_name_is_valid(c, UNIT_NAME_PLAIN);
1484 }
1485
1486 return false;
1487 }
1488
1489 static const char *skip_slices(const char *p) {
1490 assert(p);
1491
1492 /* Skips over all slice assignments */
1493
1494 for (;;) {
1495 size_t n;
1496
1497 p += strspn(p, "/");
1498
1499 n = strcspn(p, "/");
1500 if (!valid_slice_name(p, n))
1501 return p;
1502
1503 p += n;
1504 }
1505 }
1506
1507 int cg_path_get_unit(const char *path, char **ret) {
1508 const char *e;
1509 char *unit;
1510 int r;
1511
1512 assert(path);
1513 assert(ret);
1514
1515 e = skip_slices(path);
1516
1517 r = cg_path_decode_unit(e, &unit);
1518 if (r < 0)
1519 return r;
1520
1521 /* We skipped over the slices, don't accept any now */
1522 if (endswith(unit, ".slice")) {
1523 free(unit);
1524 return -ENXIO;
1525 }
1526
1527 *ret = unit;
1528 return 0;
1529 }
1530
1531 int cg_pid_get_unit(pid_t pid, char **unit) {
1532 _cleanup_free_ char *cgroup = NULL;
1533 int r;
1534
1535 assert(unit);
1536
1537 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1538 if (r < 0)
1539 return r;
1540
1541 return cg_path_get_unit(cgroup, unit);
1542 }
1543
1544 /**
1545 * Skip session-*.scope, but require it to be there.
1546 */
1547 static const char *skip_session(const char *p) {
1548 size_t n;
1549
1550 if (isempty(p))
1551 return NULL;
1552
1553 p += strspn(p, "/");
1554
1555 n = strcspn(p, "/");
1556 if (n < STRLEN("session-x.scope"))
1557 return NULL;
1558
1559 if (memcmp(p, "session-", 8) == 0 && memcmp(p + n - 6, ".scope", 6) == 0) {
1560 char buf[n - 8 - 6 + 1];
1561
1562 memcpy(buf, p + 8, n - 8 - 6);
1563 buf[n - 8 - 6] = 0;
1564
1565 /* Note that session scopes never need unescaping,
1566 * since they cannot conflict with the kernel's own
1567 * names, hence we don't need to call cg_unescape()
1568 * here. */
1569
1570 if (!session_id_valid(buf))
1571 return false;
1572
1573 p += n;
1574 p += strspn(p, "/");
1575 return p;
1576 }
1577
1578 return NULL;
1579 }
1580
1581 /**
1582 * Skip user@*.service, but require it to be there.
1583 */
1584 static const char *skip_user_manager(const char *p) {
1585 size_t n;
1586
1587 if (isempty(p))
1588 return NULL;
1589
1590 p += strspn(p, "/");
1591
1592 n = strcspn(p, "/");
1593 if (n < STRLEN("user@x.service"))
1594 return NULL;
1595
1596 if (memcmp(p, "user@", 5) == 0 && memcmp(p + n - 8, ".service", 8) == 0) {
1597 char buf[n - 5 - 8 + 1];
1598
1599 memcpy(buf, p + 5, n - 5 - 8);
1600 buf[n - 5 - 8] = 0;
1601
1602 /* Note that user manager services never need unescaping,
1603 * since they cannot conflict with the kernel's own
1604 * names, hence we don't need to call cg_unescape()
1605 * here. */
1606
1607 if (parse_uid(buf, NULL) < 0)
1608 return NULL;
1609
1610 p += n;
1611 p += strspn(p, "/");
1612
1613 return p;
1614 }
1615
1616 return NULL;
1617 }
1618
1619 static const char *skip_user_prefix(const char *path) {
1620 const char *e, *t;
1621
1622 assert(path);
1623
1624 /* Skip slices, if there are any */
1625 e = skip_slices(path);
1626
1627 /* Skip the user manager, if it's in the path now... */
1628 t = skip_user_manager(e);
1629 if (t)
1630 return t;
1631
1632 /* Alternatively skip the user session if it is in the path... */
1633 return skip_session(e);
1634 }
1635
1636 int cg_path_get_user_unit(const char *path, char **ret) {
1637 const char *t;
1638
1639 assert(path);
1640 assert(ret);
1641
1642 t = skip_user_prefix(path);
1643 if (!t)
1644 return -ENXIO;
1645
1646 /* And from here on it looks pretty much the same as for a
1647 * system unit, hence let's use the same parser from here
1648 * on. */
1649 return cg_path_get_unit(t, ret);
1650 }
1651
1652 int cg_pid_get_user_unit(pid_t pid, char **unit) {
1653 _cleanup_free_ char *cgroup = NULL;
1654 int r;
1655
1656 assert(unit);
1657
1658 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1659 if (r < 0)
1660 return r;
1661
1662 return cg_path_get_user_unit(cgroup, unit);
1663 }
1664
1665 int cg_path_get_machine_name(const char *path, char **machine) {
1666 _cleanup_free_ char *u = NULL;
1667 const char *sl;
1668 int r;
1669
1670 r = cg_path_get_unit(path, &u);
1671 if (r < 0)
1672 return r;
1673
1674 sl = strjoina("/run/systemd/machines/unit:", u);
1675 return readlink_malloc(sl, machine);
1676 }
1677
1678 int cg_pid_get_machine_name(pid_t pid, char **machine) {
1679 _cleanup_free_ char *cgroup = NULL;
1680 int r;
1681
1682 assert(machine);
1683
1684 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1685 if (r < 0)
1686 return r;
1687
1688 return cg_path_get_machine_name(cgroup, machine);
1689 }
1690
1691 int cg_path_get_session(const char *path, char **session) {
1692 _cleanup_free_ char *unit = NULL;
1693 char *start, *end;
1694 int r;
1695
1696 assert(path);
1697
1698 r = cg_path_get_unit(path, &unit);
1699 if (r < 0)
1700 return r;
1701
1702 start = startswith(unit, "session-");
1703 if (!start)
1704 return -ENXIO;
1705 end = endswith(start, ".scope");
1706 if (!end)
1707 return -ENXIO;
1708
1709 *end = 0;
1710 if (!session_id_valid(start))
1711 return -ENXIO;
1712
1713 if (session) {
1714 char *rr;
1715
1716 rr = strdup(start);
1717 if (!rr)
1718 return -ENOMEM;
1719
1720 *session = rr;
1721 }
1722
1723 return 0;
1724 }
1725
1726 int cg_pid_get_session(pid_t pid, char **session) {
1727 _cleanup_free_ char *cgroup = NULL;
1728 int r;
1729
1730 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1731 if (r < 0)
1732 return r;
1733
1734 return cg_path_get_session(cgroup, session);
1735 }
1736
1737 int cg_path_get_owner_uid(const char *path, uid_t *uid) {
1738 _cleanup_free_ char *slice = NULL;
1739 char *start, *end;
1740 int r;
1741
1742 assert(path);
1743
1744 r = cg_path_get_slice(path, &slice);
1745 if (r < 0)
1746 return r;
1747
1748 start = startswith(slice, "user-");
1749 if (!start)
1750 return -ENXIO;
1751 end = endswith(start, ".slice");
1752 if (!end)
1753 return -ENXIO;
1754
1755 *end = 0;
1756 if (parse_uid(start, uid) < 0)
1757 return -ENXIO;
1758
1759 return 0;
1760 }
1761
1762 int cg_pid_get_owner_uid(pid_t pid, uid_t *uid) {
1763 _cleanup_free_ char *cgroup = NULL;
1764 int r;
1765
1766 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1767 if (r < 0)
1768 return r;
1769
1770 return cg_path_get_owner_uid(cgroup, uid);
1771 }
1772
1773 int cg_path_get_slice(const char *p, char **slice) {
1774 const char *e = NULL;
1775
1776 assert(p);
1777 assert(slice);
1778
1779 /* Finds the right-most slice unit from the beginning, but
1780 * stops before we come to the first non-slice unit. */
1781
1782 for (;;) {
1783 size_t n;
1784
1785 p += strspn(p, "/");
1786
1787 n = strcspn(p, "/");
1788 if (!valid_slice_name(p, n)) {
1789
1790 if (!e) {
1791 char *s;
1792
1793 s = strdup(SPECIAL_ROOT_SLICE);
1794 if (!s)
1795 return -ENOMEM;
1796
1797 *slice = s;
1798 return 0;
1799 }
1800
1801 return cg_path_decode_unit(e, slice);
1802 }
1803
1804 e = p;
1805 p += n;
1806 }
1807 }
1808
1809 int cg_pid_get_slice(pid_t pid, char **slice) {
1810 _cleanup_free_ char *cgroup = NULL;
1811 int r;
1812
1813 assert(slice);
1814
1815 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1816 if (r < 0)
1817 return r;
1818
1819 return cg_path_get_slice(cgroup, slice);
1820 }
1821
1822 int cg_path_get_user_slice(const char *p, char **slice) {
1823 const char *t;
1824 assert(p);
1825 assert(slice);
1826
1827 t = skip_user_prefix(p);
1828 if (!t)
1829 return -ENXIO;
1830
1831 /* And now it looks pretty much the same as for a system
1832 * slice, so let's just use the same parser from here on. */
1833 return cg_path_get_slice(t, slice);
1834 }
1835
1836 int cg_pid_get_user_slice(pid_t pid, char **slice) {
1837 _cleanup_free_ char *cgroup = NULL;
1838 int r;
1839
1840 assert(slice);
1841
1842 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1843 if (r < 0)
1844 return r;
1845
1846 return cg_path_get_user_slice(cgroup, slice);
1847 }
1848
1849 char *cg_escape(const char *p) {
1850 bool need_prefix = false;
1851
1852 /* This implements very minimal escaping for names to be used
1853 * as file names in the cgroup tree: any name which might
1854 * conflict with a kernel name or is prefixed with '_' is
1855 * prefixed with a '_'. That way, when reading cgroup names it
1856 * is sufficient to remove a single prefixing underscore if
1857 * there is one. */
1858
1859 /* The return value of this function (unlike cg_unescape())
1860 * needs free()! */
1861
1862 if (IN_SET(p[0], 0, '_', '.') ||
1863 streq(p, "notify_on_release") ||
1864 streq(p, "release_agent") ||
1865 streq(p, "tasks") ||
1866 startswith(p, "cgroup."))
1867 need_prefix = true;
1868 else {
1869 const char *dot;
1870
1871 dot = strrchr(p, '.');
1872 if (dot) {
1873 CGroupController c;
1874 size_t l = dot - p;
1875
1876 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1877 const char *n;
1878
1879 n = cgroup_controller_to_string(c);
1880
1881 if (l != strlen(n))
1882 continue;
1883
1884 if (memcmp(p, n, l) != 0)
1885 continue;
1886
1887 need_prefix = true;
1888 break;
1889 }
1890 }
1891 }
1892
1893 if (need_prefix)
1894 return strappend("_", p);
1895
1896 return strdup(p);
1897 }
1898
1899 char *cg_unescape(const char *p) {
1900 assert(p);
1901
1902 /* The return value of this function (unlike cg_escape())
1903 * doesn't need free()! */
1904
1905 if (p[0] == '_')
1906 return (char*) p+1;
1907
1908 return (char*) p;
1909 }
1910
1911 #define CONTROLLER_VALID \
1912 DIGITS LETTERS \
1913 "_"
1914
1915 bool cg_controller_is_valid(const char *p) {
1916 const char *t, *s;
1917
1918 if (!p)
1919 return false;
1920
1921 if (streq(p, SYSTEMD_CGROUP_CONTROLLER))
1922 return true;
1923
1924 s = startswith(p, "name=");
1925 if (s)
1926 p = s;
1927
1928 if (IN_SET(*p, 0, '_'))
1929 return false;
1930
1931 for (t = p; *t; t++)
1932 if (!strchr(CONTROLLER_VALID, *t))
1933 return false;
1934
1935 if (t - p > FILENAME_MAX)
1936 return false;
1937
1938 return true;
1939 }
1940
1941 int cg_slice_to_path(const char *unit, char **ret) {
1942 _cleanup_free_ char *p = NULL, *s = NULL, *e = NULL;
1943 const char *dash;
1944 int r;
1945
1946 assert(unit);
1947 assert(ret);
1948
1949 if (streq(unit, SPECIAL_ROOT_SLICE)) {
1950 char *x;
1951
1952 x = strdup("");
1953 if (!x)
1954 return -ENOMEM;
1955 *ret = x;
1956 return 0;
1957 }
1958
1959 if (!unit_name_is_valid(unit, UNIT_NAME_PLAIN))
1960 return -EINVAL;
1961
1962 if (!endswith(unit, ".slice"))
1963 return -EINVAL;
1964
1965 r = unit_name_to_prefix(unit, &p);
1966 if (r < 0)
1967 return r;
1968
1969 dash = strchr(p, '-');
1970
1971 /* Don't allow initial dashes */
1972 if (dash == p)
1973 return -EINVAL;
1974
1975 while (dash) {
1976 _cleanup_free_ char *escaped = NULL;
1977 char n[dash - p + sizeof(".slice")];
1978
1979 #if HAS_FEATURE_MEMORY_SANITIZER
1980 /* msan doesn't instrument stpncpy, so it thinks
1981 * n is later used unitialized:
1982 * https://github.com/google/sanitizers/issues/926
1983 */
1984 zero(n);
1985 #endif
1986
1987 /* Don't allow trailing or double dashes */
1988 if (IN_SET(dash[1], 0, '-'))
1989 return -EINVAL;
1990
1991 strcpy(stpncpy(n, p, dash - p), ".slice");
1992 if (!unit_name_is_valid(n, UNIT_NAME_PLAIN))
1993 return -EINVAL;
1994
1995 escaped = cg_escape(n);
1996 if (!escaped)
1997 return -ENOMEM;
1998
1999 if (!strextend(&s, escaped, "/", NULL))
2000 return -ENOMEM;
2001
2002 dash = strchr(dash+1, '-');
2003 }
2004
2005 e = cg_escape(unit);
2006 if (!e)
2007 return -ENOMEM;
2008
2009 if (!strextend(&s, e, NULL))
2010 return -ENOMEM;
2011
2012 *ret = TAKE_PTR(s);
2013
2014 return 0;
2015 }
2016
2017 int cg_set_attribute(const char *controller, const char *path, const char *attribute, const char *value) {
2018 _cleanup_free_ char *p = NULL;
2019 int r;
2020
2021 r = cg_get_path(controller, path, attribute, &p);
2022 if (r < 0)
2023 return r;
2024
2025 return write_string_file(p, value, 0);
2026 }
2027
2028 int cg_get_attribute(const char *controller, const char *path, const char *attribute, char **ret) {
2029 _cleanup_free_ char *p = NULL;
2030 int r;
2031
2032 r = cg_get_path(controller, path, attribute, &p);
2033 if (r < 0)
2034 return r;
2035
2036 return read_one_line_file(p, ret);
2037 }
2038
2039 int cg_get_keyed_attribute(
2040 const char *controller,
2041 const char *path,
2042 const char *attribute,
2043 char **keys,
2044 char **ret_values) {
2045
2046 _cleanup_free_ char *filename = NULL, *contents = NULL;
2047 const char *p;
2048 size_t n, i, n_done = 0;
2049 char **v;
2050 int r;
2051
2052 /* Reads one or more fields of a cgroupsv2 keyed attribute file. The 'keys' parameter should be an strv with
2053 * all keys to retrieve. The 'ret_values' parameter should be passed as string size with the same number of
2054 * entries as 'keys'. On success each entry will be set to the value of the matching key.
2055 *
2056 * If the attribute file doesn't exist at all returns ENOENT, if any key is not found returns ENXIO. */
2057
2058 r = cg_get_path(controller, path, attribute, &filename);
2059 if (r < 0)
2060 return r;
2061
2062 r = read_full_file(filename, &contents, NULL);
2063 if (r < 0)
2064 return r;
2065
2066 n = strv_length(keys);
2067 if (n == 0) /* No keys to retrieve? That's easy, we are done then */
2068 return 0;
2069
2070 /* Let's build this up in a temporary array for now in order not to clobber the return parameter on failure */
2071 v = newa0(char*, n);
2072
2073 for (p = contents; *p;) {
2074 const char *w = NULL;
2075
2076 for (i = 0; i < n; i++)
2077 if (!v[i]) {
2078 w = first_word(p, keys[i]);
2079 if (w)
2080 break;
2081 }
2082
2083 if (w) {
2084 size_t l;
2085
2086 l = strcspn(w, NEWLINE);
2087 v[i] = strndup(w, l);
2088 if (!v[i]) {
2089 r = -ENOMEM;
2090 goto fail;
2091 }
2092
2093 n_done++;
2094 if (n_done >= n)
2095 goto done;
2096
2097 p = w + l;
2098 } else
2099 p += strcspn(p, NEWLINE);
2100
2101 p += strspn(p, NEWLINE);
2102 }
2103
2104 r = -ENXIO;
2105
2106 fail:
2107 for (i = 0; i < n; i++)
2108 free(v[i]);
2109
2110 return r;
2111
2112 done:
2113 memcpy(ret_values, v, sizeof(char*) * n);
2114 return 0;
2115
2116 }
2117
2118 int cg_create_everywhere(CGroupMask supported, CGroupMask mask, const char *path) {
2119 CGroupController c;
2120 int r;
2121
2122 /* This one will create a cgroup in our private tree, but also
2123 * duplicate it in the trees specified in mask, and remove it
2124 * in all others */
2125
2126 /* First create the cgroup in our own hierarchy. */
2127 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, path);
2128 if (r < 0)
2129 return r;
2130
2131 /* If we are in the unified hierarchy, we are done now */
2132 r = cg_all_unified();
2133 if (r < 0)
2134 return r;
2135 if (r > 0)
2136 return 0;
2137
2138 /* Otherwise, do the same in the other hierarchies */
2139 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2140 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2141 const char *n;
2142
2143 n = cgroup_controller_to_string(c);
2144
2145 if (mask & bit)
2146 (void) cg_create(n, path);
2147 else if (supported & bit)
2148 (void) cg_trim(n, path, true);
2149 }
2150
2151 return 0;
2152 }
2153
2154 int cg_attach_everywhere(CGroupMask supported, const char *path, pid_t pid, cg_migrate_callback_t path_callback, void *userdata) {
2155 CGroupController c;
2156 int r;
2157
2158 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, path, pid);
2159 if (r < 0)
2160 return r;
2161
2162 r = cg_all_unified();
2163 if (r < 0)
2164 return r;
2165 if (r > 0)
2166 return 0;
2167
2168 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2169 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2170 const char *p = NULL;
2171
2172 if (!(supported & bit))
2173 continue;
2174
2175 if (path_callback)
2176 p = path_callback(bit, userdata);
2177
2178 if (!p)
2179 p = path;
2180
2181 (void) cg_attach_fallback(cgroup_controller_to_string(c), p, pid);
2182 }
2183
2184 return 0;
2185 }
2186
2187 int cg_attach_many_everywhere(CGroupMask supported, const char *path, Set* pids, cg_migrate_callback_t path_callback, void *userdata) {
2188 Iterator i;
2189 void *pidp;
2190 int r = 0;
2191
2192 SET_FOREACH(pidp, pids, i) {
2193 pid_t pid = PTR_TO_PID(pidp);
2194 int q;
2195
2196 q = cg_attach_everywhere(supported, path, pid, path_callback, userdata);
2197 if (q < 0 && r >= 0)
2198 r = q;
2199 }
2200
2201 return r;
2202 }
2203
2204 int cg_migrate_everywhere(CGroupMask supported, const char *from, const char *to, cg_migrate_callback_t to_callback, void *userdata) {
2205 CGroupController c;
2206 int r = 0, q;
2207
2208 if (!path_equal(from, to)) {
2209 r = cg_migrate_recursive(SYSTEMD_CGROUP_CONTROLLER, from, SYSTEMD_CGROUP_CONTROLLER, to, CGROUP_REMOVE);
2210 if (r < 0)
2211 return r;
2212 }
2213
2214 q = cg_all_unified();
2215 if (q < 0)
2216 return q;
2217 if (q > 0)
2218 return r;
2219
2220 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2221 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2222 const char *p = NULL;
2223
2224 if (!(supported & bit))
2225 continue;
2226
2227 if (to_callback)
2228 p = to_callback(bit, userdata);
2229
2230 if (!p)
2231 p = to;
2232
2233 (void) cg_migrate_recursive_fallback(SYSTEMD_CGROUP_CONTROLLER, to, cgroup_controller_to_string(c), p, 0);
2234 }
2235
2236 return 0;
2237 }
2238
2239 int cg_trim_everywhere(CGroupMask supported, const char *path, bool delete_root) {
2240 CGroupController c;
2241 int r, q;
2242
2243 r = cg_trim(SYSTEMD_CGROUP_CONTROLLER, path, delete_root);
2244 if (r < 0)
2245 return r;
2246
2247 q = cg_all_unified();
2248 if (q < 0)
2249 return q;
2250 if (q > 0)
2251 return r;
2252
2253 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2254 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2255
2256 if (!(supported & bit))
2257 continue;
2258
2259 (void) cg_trim(cgroup_controller_to_string(c), path, delete_root);
2260 }
2261
2262 return 0;
2263 }
2264
2265 int cg_mask_to_string(CGroupMask mask, char **ret) {
2266 _cleanup_free_ char *s = NULL;
2267 size_t n = 0, allocated = 0;
2268 bool space = false;
2269 CGroupController c;
2270
2271 assert(ret);
2272
2273 if (mask == 0) {
2274 *ret = NULL;
2275 return 0;
2276 }
2277
2278 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2279 const char *k;
2280 size_t l;
2281
2282 if (!(mask & CGROUP_CONTROLLER_TO_MASK(c)))
2283 continue;
2284
2285 k = cgroup_controller_to_string(c);
2286 l = strlen(k);
2287
2288 if (!GREEDY_REALLOC(s, allocated, n + space + l + 1))
2289 return -ENOMEM;
2290
2291 if (space)
2292 s[n] = ' ';
2293 memcpy(s + n + space, k, l);
2294 n += space + l;
2295
2296 space = true;
2297 }
2298
2299 assert(s);
2300
2301 s[n] = 0;
2302 *ret = TAKE_PTR(s);
2303
2304 return 0;
2305 }
2306
2307 int cg_mask_from_string(const char *value, CGroupMask *mask) {
2308 assert(mask);
2309 assert(value);
2310
2311 for (;;) {
2312 _cleanup_free_ char *n = NULL;
2313 CGroupController v;
2314 int r;
2315
2316 r = extract_first_word(&value, &n, NULL, 0);
2317 if (r < 0)
2318 return r;
2319 if (r == 0)
2320 break;
2321
2322 v = cgroup_controller_from_string(n);
2323 if (v < 0)
2324 continue;
2325
2326 *mask |= CGROUP_CONTROLLER_TO_MASK(v);
2327 }
2328 return 0;
2329 }
2330
2331 int cg_mask_supported(CGroupMask *ret) {
2332 CGroupMask mask = 0;
2333 int r;
2334
2335 /* Determines the mask of supported cgroup controllers. Only
2336 * includes controllers we can make sense of and that are
2337 * actually accessible. */
2338
2339 r = cg_all_unified();
2340 if (r < 0)
2341 return r;
2342 if (r > 0) {
2343 _cleanup_free_ char *root = NULL, *controllers = NULL, *path = NULL;
2344
2345 /* In the unified hierarchy we can read the supported
2346 * and accessible controllers from a the top-level
2347 * cgroup attribute */
2348
2349 r = cg_get_root_path(&root);
2350 if (r < 0)
2351 return r;
2352
2353 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, root, "cgroup.controllers", &path);
2354 if (r < 0)
2355 return r;
2356
2357 r = read_one_line_file(path, &controllers);
2358 if (r < 0)
2359 return r;
2360
2361 r = cg_mask_from_string(controllers, &mask);
2362 if (r < 0)
2363 return r;
2364
2365 /* Currently, we support the cpu, memory, io and pids
2366 * controller in the unified hierarchy, mask
2367 * everything else off. */
2368 mask &= CGROUP_MASK_CPU | CGROUP_MASK_MEMORY | CGROUP_MASK_IO | CGROUP_MASK_PIDS;
2369
2370 } else {
2371 CGroupController c;
2372
2373 /* In the legacy hierarchy, we check whether which
2374 * hierarchies are mounted. */
2375
2376 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2377 const char *n;
2378
2379 n = cgroup_controller_to_string(c);
2380 if (controller_is_accessible(n) >= 0)
2381 mask |= CGROUP_CONTROLLER_TO_MASK(c);
2382 }
2383 }
2384
2385 *ret = mask;
2386 return 0;
2387 }
2388
2389 int cg_kernel_controllers(Set **ret) {
2390 _cleanup_set_free_free_ Set *controllers = NULL;
2391 _cleanup_fclose_ FILE *f = NULL;
2392 int r;
2393
2394 assert(ret);
2395
2396 /* Determines the full list of kernel-known controllers. Might
2397 * include controllers we don't actually support, arbitrary
2398 * named hierarchies and controllers that aren't currently
2399 * accessible (because not mounted). */
2400
2401 controllers = set_new(&string_hash_ops);
2402 if (!controllers)
2403 return -ENOMEM;
2404
2405 f = fopen("/proc/cgroups", "re");
2406 if (!f) {
2407 if (errno == ENOENT) {
2408 *ret = NULL;
2409 return 0;
2410 }
2411
2412 return -errno;
2413 }
2414
2415 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
2416
2417 /* Ignore the header line */
2418 (void) read_line(f, (size_t) -1, NULL);
2419
2420 for (;;) {
2421 char *controller;
2422 int enabled = 0;
2423
2424 errno = 0;
2425 if (fscanf(f, "%ms %*i %*i %i", &controller, &enabled) != 2) {
2426
2427 if (feof(f))
2428 break;
2429
2430 if (ferror(f) && errno > 0)
2431 return -errno;
2432
2433 return -EBADMSG;
2434 }
2435
2436 if (!enabled) {
2437 free(controller);
2438 continue;
2439 }
2440
2441 if (!cg_controller_is_valid(controller)) {
2442 free(controller);
2443 return -EBADMSG;
2444 }
2445
2446 r = set_consume(controllers, controller);
2447 if (r < 0)
2448 return r;
2449 }
2450
2451 *ret = TAKE_PTR(controllers);
2452
2453 return 0;
2454 }
2455
2456 static thread_local CGroupUnified unified_cache = CGROUP_UNIFIED_UNKNOWN;
2457
2458 /* The hybrid mode was initially implemented in v232 and simply mounted cgroup v2 on /sys/fs/cgroup/systemd. This
2459 * unfortunately broke other tools (such as docker) which expected the v1 "name=systemd" hierarchy on
2460 * /sys/fs/cgroup/systemd. From v233 and on, the hybrid mode mountnbs v2 on /sys/fs/cgroup/unified and maintains
2461 * "name=systemd" hierarchy on /sys/fs/cgroup/systemd for compatibility with other tools.
2462 *
2463 * To keep live upgrade working, we detect and support v232 layout. When v232 layout is detected, to keep cgroup v2
2464 * process management but disable the compat dual layout, we return %true on
2465 * cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) and %false on cg_hybrid_unified().
2466 */
2467 static thread_local bool unified_systemd_v232;
2468
2469 static int cg_unified_update(void) {
2470
2471 struct statfs fs;
2472
2473 /* Checks if we support the unified hierarchy. Returns an
2474 * error when the cgroup hierarchies aren't mounted yet or we
2475 * have any other trouble determining if the unified hierarchy
2476 * is supported. */
2477
2478 if (unified_cache >= CGROUP_UNIFIED_NONE)
2479 return 0;
2480
2481 if (statfs("/sys/fs/cgroup/", &fs) < 0)
2482 return log_debug_errno(errno, "statfs(\"/sys/fs/cgroup/\") failed: %m");
2483
2484 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2485 log_debug("Found cgroup2 on /sys/fs/cgroup/, full unified hierarchy");
2486 unified_cache = CGROUP_UNIFIED_ALL;
2487 } else if (F_TYPE_EQUAL(fs.f_type, TMPFS_MAGIC)) {
2488 if (statfs("/sys/fs/cgroup/unified/", &fs) == 0 &&
2489 F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2490 log_debug("Found cgroup2 on /sys/fs/cgroup/unified, unified hierarchy for systemd controller");
2491 unified_cache = CGROUP_UNIFIED_SYSTEMD;
2492 unified_systemd_v232 = false;
2493 } else {
2494 if (statfs("/sys/fs/cgroup/systemd/", &fs) < 0)
2495 return log_debug_errno(errno, "statfs(\"/sys/fs/cgroup/systemd\" failed: %m");
2496
2497 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2498 log_debug("Found cgroup2 on /sys/fs/cgroup/systemd, unified hierarchy for systemd controller (v232 variant)");
2499 unified_cache = CGROUP_UNIFIED_SYSTEMD;
2500 unified_systemd_v232 = true;
2501 } else if (F_TYPE_EQUAL(fs.f_type, CGROUP_SUPER_MAGIC)) {
2502 log_debug("Found cgroup on /sys/fs/cgroup/systemd, legacy hierarchy");
2503 unified_cache = CGROUP_UNIFIED_NONE;
2504 } else {
2505 log_debug("Unexpected filesystem type %llx mounted on /sys/fs/cgroup/systemd, assuming legacy hierarchy",
2506 (unsigned long long) fs.f_type);
2507 unified_cache = CGROUP_UNIFIED_NONE;
2508 }
2509 }
2510 } else {
2511 log_debug("Unknown filesystem type %llx mounted on /sys/fs/cgroup.",
2512 (unsigned long long) fs.f_type);
2513 return -ENOMEDIUM;
2514 }
2515
2516 return 0;
2517 }
2518
2519 int cg_unified_controller(const char *controller) {
2520 int r;
2521
2522 r = cg_unified_update();
2523 if (r < 0)
2524 return r;
2525
2526 if (unified_cache == CGROUP_UNIFIED_NONE)
2527 return false;
2528
2529 if (unified_cache >= CGROUP_UNIFIED_ALL)
2530 return true;
2531
2532 return streq_ptr(controller, SYSTEMD_CGROUP_CONTROLLER);
2533 }
2534
2535 int cg_all_unified(void) {
2536 int r;
2537
2538 r = cg_unified_update();
2539 if (r < 0)
2540 return r;
2541
2542 return unified_cache >= CGROUP_UNIFIED_ALL;
2543 }
2544
2545 int cg_hybrid_unified(void) {
2546 int r;
2547
2548 r = cg_unified_update();
2549 if (r < 0)
2550 return r;
2551
2552 return unified_cache == CGROUP_UNIFIED_SYSTEMD && !unified_systemd_v232;
2553 }
2554
2555 int cg_unified_flush(void) {
2556 unified_cache = CGROUP_UNIFIED_UNKNOWN;
2557
2558 return cg_unified_update();
2559 }
2560
2561 int cg_enable_everywhere(CGroupMask supported, CGroupMask mask, const char *p) {
2562 _cleanup_fclose_ FILE *f = NULL;
2563 _cleanup_free_ char *fs = NULL;
2564 CGroupController c;
2565 int r;
2566
2567 assert(p);
2568
2569 if (supported == 0)
2570 return 0;
2571
2572 r = cg_all_unified();
2573 if (r < 0)
2574 return r;
2575 if (r == 0) /* on the legacy hiearchy there's no joining of controllers defined */
2576 return 0;
2577
2578 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, p, "cgroup.subtree_control", &fs);
2579 if (r < 0)
2580 return r;
2581
2582 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2583 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2584 const char *n;
2585
2586 if (!(supported & bit))
2587 continue;
2588
2589 n = cgroup_controller_to_string(c);
2590 {
2591 char s[1 + strlen(n) + 1];
2592
2593 s[0] = mask & bit ? '+' : '-';
2594 strcpy(s + 1, n);
2595
2596 if (!f) {
2597 f = fopen(fs, "we");
2598 if (!f) {
2599 log_debug_errno(errno, "Failed to open cgroup.subtree_control file of %s: %m", p);
2600 break;
2601 }
2602 }
2603
2604 r = write_string_stream(f, s, 0);
2605 if (r < 0)
2606 log_debug_errno(r, "Failed to enable controller %s for %s (%s): %m", n, p, fs);
2607 }
2608 }
2609
2610 return 0;
2611 }
2612
2613 bool cg_is_unified_wanted(void) {
2614 static thread_local int wanted = -1;
2615 int r;
2616 bool b;
2617 const bool is_default = DEFAULT_HIERARCHY == CGROUP_UNIFIED_ALL;
2618
2619 /* If we have a cached value, return that. */
2620 if (wanted >= 0)
2621 return wanted;
2622
2623 /* If the hierarchy is already mounted, then follow whatever
2624 * was chosen for it. */
2625 if (cg_unified_flush() >= 0)
2626 return (wanted = unified_cache >= CGROUP_UNIFIED_ALL);
2627
2628 /* Otherwise, let's see what the kernel command line has to say.
2629 * Since checking is expensive, cache a non-error result. */
2630 r = proc_cmdline_get_bool("systemd.unified_cgroup_hierarchy", &b);
2631
2632 return (wanted = r > 0 ? b : is_default);
2633 }
2634
2635 bool cg_is_legacy_wanted(void) {
2636 static thread_local int wanted = -1;
2637
2638 /* If we have a cached value, return that. */
2639 if (wanted >= 0)
2640 return wanted;
2641
2642 /* Check if we have cgroups2 already mounted. */
2643 if (cg_unified_flush() >= 0 &&
2644 unified_cache == CGROUP_UNIFIED_ALL)
2645 return (wanted = false);
2646
2647 /* Otherwise, assume that at least partial legacy is wanted,
2648 * since cgroups2 should already be mounted at this point. */
2649 return (wanted = true);
2650 }
2651
2652 bool cg_is_hybrid_wanted(void) {
2653 static thread_local int wanted = -1;
2654 int r;
2655 bool b;
2656 const bool is_default = DEFAULT_HIERARCHY >= CGROUP_UNIFIED_SYSTEMD;
2657 /* We default to true if the default is "hybrid", obviously,
2658 * but also when the default is "unified", because if we get
2659 * called, it means that unified hierarchy was not mounted. */
2660
2661 /* If we have a cached value, return that. */
2662 if (wanted >= 0)
2663 return wanted;
2664
2665 /* If the hierarchy is already mounted, then follow whatever
2666 * was chosen for it. */
2667 if (cg_unified_flush() >= 0 &&
2668 unified_cache == CGROUP_UNIFIED_ALL)
2669 return (wanted = false);
2670
2671 /* Otherwise, let's see what the kernel command line has to say.
2672 * Since checking is expensive, cache a non-error result. */
2673 r = proc_cmdline_get_bool("systemd.legacy_systemd_cgroup_controller", &b);
2674
2675 /* The meaning of the kernel option is reversed wrt. to the return value
2676 * of this function, hence the negation. */
2677 return (wanted = r > 0 ? !b : is_default);
2678 }
2679
2680 int cg_weight_parse(const char *s, uint64_t *ret) {
2681 uint64_t u;
2682 int r;
2683
2684 if (isempty(s)) {
2685 *ret = CGROUP_WEIGHT_INVALID;
2686 return 0;
2687 }
2688
2689 r = safe_atou64(s, &u);
2690 if (r < 0)
2691 return r;
2692
2693 if (u < CGROUP_WEIGHT_MIN || u > CGROUP_WEIGHT_MAX)
2694 return -ERANGE;
2695
2696 *ret = u;
2697 return 0;
2698 }
2699
2700 const uint64_t cgroup_io_limit_defaults[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2701 [CGROUP_IO_RBPS_MAX] = CGROUP_LIMIT_MAX,
2702 [CGROUP_IO_WBPS_MAX] = CGROUP_LIMIT_MAX,
2703 [CGROUP_IO_RIOPS_MAX] = CGROUP_LIMIT_MAX,
2704 [CGROUP_IO_WIOPS_MAX] = CGROUP_LIMIT_MAX,
2705 };
2706
2707 static const char* const cgroup_io_limit_type_table[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2708 [CGROUP_IO_RBPS_MAX] = "IOReadBandwidthMax",
2709 [CGROUP_IO_WBPS_MAX] = "IOWriteBandwidthMax",
2710 [CGROUP_IO_RIOPS_MAX] = "IOReadIOPSMax",
2711 [CGROUP_IO_WIOPS_MAX] = "IOWriteIOPSMax",
2712 };
2713
2714 DEFINE_STRING_TABLE_LOOKUP(cgroup_io_limit_type, CGroupIOLimitType);
2715
2716 int cg_cpu_shares_parse(const char *s, uint64_t *ret) {
2717 uint64_t u;
2718 int r;
2719
2720 if (isempty(s)) {
2721 *ret = CGROUP_CPU_SHARES_INVALID;
2722 return 0;
2723 }
2724
2725 r = safe_atou64(s, &u);
2726 if (r < 0)
2727 return r;
2728
2729 if (u < CGROUP_CPU_SHARES_MIN || u > CGROUP_CPU_SHARES_MAX)
2730 return -ERANGE;
2731
2732 *ret = u;
2733 return 0;
2734 }
2735
2736 int cg_blkio_weight_parse(const char *s, uint64_t *ret) {
2737 uint64_t u;
2738 int r;
2739
2740 if (isempty(s)) {
2741 *ret = CGROUP_BLKIO_WEIGHT_INVALID;
2742 return 0;
2743 }
2744
2745 r = safe_atou64(s, &u);
2746 if (r < 0)
2747 return r;
2748
2749 if (u < CGROUP_BLKIO_WEIGHT_MIN || u > CGROUP_BLKIO_WEIGHT_MAX)
2750 return -ERANGE;
2751
2752 *ret = u;
2753 return 0;
2754 }
2755
2756 bool is_cgroup_fs(const struct statfs *s) {
2757 return is_fs_type(s, CGROUP_SUPER_MAGIC) ||
2758 is_fs_type(s, CGROUP2_SUPER_MAGIC);
2759 }
2760
2761 bool fd_is_cgroup_fs(int fd) {
2762 struct statfs s;
2763
2764 if (fstatfs(fd, &s) < 0)
2765 return -errno;
2766
2767 return is_cgroup_fs(&s);
2768 }
2769
2770 static const char *cgroup_controller_table[_CGROUP_CONTROLLER_MAX] = {
2771 [CGROUP_CONTROLLER_CPU] = "cpu",
2772 [CGROUP_CONTROLLER_CPUACCT] = "cpuacct",
2773 [CGROUP_CONTROLLER_IO] = "io",
2774 [CGROUP_CONTROLLER_BLKIO] = "blkio",
2775 [CGROUP_CONTROLLER_MEMORY] = "memory",
2776 [CGROUP_CONTROLLER_DEVICES] = "devices",
2777 [CGROUP_CONTROLLER_PIDS] = "pids",
2778 };
2779
2780 DEFINE_STRING_TABLE_LOOKUP(cgroup_controller, CGroupController);