]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/cgroup-util.c
e94fcfad022c6fa9a56afe0709dc1137e900bb59
[thirdparty/systemd.git] / src / basic / cgroup-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <ftw.h>
5 #include <limits.h>
6 #include <signal.h>
7 #include <stddef.h>
8 #include <stdlib.h>
9 #include <sys/types.h>
10 #include <sys/utsname.h>
11 #include <sys/xattr.h>
12 #include <unistd.h>
13
14 #include "alloc-util.h"
15 #include "cgroup-util.h"
16 #include "def.h"
17 #include "dirent-util.h"
18 #include "extract-word.h"
19 #include "fd-util.h"
20 #include "fileio.h"
21 #include "format-util.h"
22 #include "fs-util.h"
23 #include "log.h"
24 #include "login-util.h"
25 #include "macro.h"
26 #include "missing_magic.h"
27 #include "mkdir.h"
28 #include "parse-util.h"
29 #include "path-util.h"
30 #include "process-util.h"
31 #include "set.h"
32 #include "special.h"
33 #include "stat-util.h"
34 #include "stdio-util.h"
35 #include "string-table.h"
36 #include "string-util.h"
37 #include "strv.h"
38 #include "unit-name.h"
39 #include "user-util.h"
40 #include "xattr-util.h"
41
42 static int cg_enumerate_items(const char *controller, const char *path, FILE **_f, const char *item) {
43 _cleanup_free_ char *fs = NULL;
44 FILE *f;
45 int r;
46
47 assert(_f);
48
49 r = cg_get_path(controller, path, item, &fs);
50 if (r < 0)
51 return r;
52
53 f = fopen(fs, "re");
54 if (!f)
55 return -errno;
56
57 *_f = f;
58 return 0;
59 }
60
61 int cg_enumerate_processes(const char *controller, const char *path, FILE **_f) {
62 return cg_enumerate_items(controller, path, _f, "cgroup.procs");
63 }
64
65 int cg_read_pid(FILE *f, pid_t *_pid) {
66 unsigned long ul;
67
68 /* Note that the cgroup.procs might contain duplicates! See
69 * cgroups.txt for details. */
70
71 assert(f);
72 assert(_pid);
73
74 errno = 0;
75 if (fscanf(f, "%lu", &ul) != 1) {
76
77 if (feof(f))
78 return 0;
79
80 return errno_or_else(EIO);
81 }
82
83 if (ul <= 0)
84 return -EIO;
85
86 *_pid = (pid_t) ul;
87 return 1;
88 }
89
90 int cg_read_event(
91 const char *controller,
92 const char *path,
93 const char *event,
94 char **ret) {
95
96 _cleanup_free_ char *events = NULL, *content = NULL;
97 int r;
98
99 r = cg_get_path(controller, path, "cgroup.events", &events);
100 if (r < 0)
101 return r;
102
103 r = read_full_file(events, &content, NULL);
104 if (r < 0)
105 return r;
106
107 for (const char *p = content;;) {
108 _cleanup_free_ char *line = NULL, *key = NULL, *val = NULL;
109 const char *q;
110
111 r = extract_first_word(&p, &line, "\n", 0);
112 if (r < 0)
113 return r;
114 if (r == 0)
115 return -ENOENT;
116
117 q = line;
118 r = extract_first_word(&q, &key, " ", 0);
119 if (r < 0)
120 return r;
121 if (r == 0)
122 return -EINVAL;
123
124 if (!streq(key, event))
125 continue;
126
127 val = strdup(q);
128 if (!val)
129 return -ENOMEM;
130
131 *ret = TAKE_PTR(val);
132 return 0;
133 }
134 }
135
136 bool cg_ns_supported(void) {
137 static thread_local int enabled = -1;
138
139 if (enabled >= 0)
140 return enabled;
141
142 if (access("/proc/self/ns/cgroup", F_OK) < 0) {
143 if (errno != ENOENT)
144 log_debug_errno(errno, "Failed to check whether /proc/self/ns/cgroup is available, assuming not: %m");
145 enabled = false;
146 } else
147 enabled = true;
148
149 return enabled;
150 }
151
152 bool cg_freezer_supported(void) {
153 static thread_local int supported = -1;
154
155 if (supported >= 0)
156 return supported;
157
158 supported = cg_all_unified() > 0 && access("/sys/fs/cgroup/init.scope/cgroup.freeze", F_OK) == 0;
159
160 return supported;
161 }
162
163 int cg_enumerate_subgroups(const char *controller, const char *path, DIR **_d) {
164 _cleanup_free_ char *fs = NULL;
165 int r;
166 DIR *d;
167
168 assert(_d);
169
170 /* This is not recursive! */
171
172 r = cg_get_path(controller, path, NULL, &fs);
173 if (r < 0)
174 return r;
175
176 d = opendir(fs);
177 if (!d)
178 return -errno;
179
180 *_d = d;
181 return 0;
182 }
183
184 int cg_read_subgroup(DIR *d, char **fn) {
185 struct dirent *de;
186
187 assert(d);
188 assert(fn);
189
190 FOREACH_DIRENT_ALL(de, d, return -errno) {
191 char *b;
192
193 if (de->d_type != DT_DIR)
194 continue;
195
196 if (dot_or_dot_dot(de->d_name))
197 continue;
198
199 b = strdup(de->d_name);
200 if (!b)
201 return -ENOMEM;
202
203 *fn = b;
204 return 1;
205 }
206
207 return 0;
208 }
209
210 int cg_rmdir(const char *controller, const char *path) {
211 _cleanup_free_ char *p = NULL;
212 int r;
213
214 r = cg_get_path(controller, path, NULL, &p);
215 if (r < 0)
216 return r;
217
218 r = rmdir(p);
219 if (r < 0 && errno != ENOENT)
220 return -errno;
221
222 r = cg_hybrid_unified();
223 if (r <= 0)
224 return r;
225
226 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
227 r = cg_rmdir(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path);
228 if (r < 0)
229 log_warning_errno(r, "Failed to remove compat systemd cgroup %s: %m", path);
230 }
231
232 return 0;
233 }
234
235 static int cg_kill_items(
236 const char *controller,
237 const char *path,
238 int sig,
239 CGroupFlags flags,
240 Set *s,
241 cg_kill_log_func_t log_kill,
242 void *userdata,
243 const char *item) {
244
245 _cleanup_set_free_ Set *allocated_set = NULL;
246 bool done = false;
247 int r, ret = 0, ret_log_kill = 0;
248 pid_t my_pid;
249
250 assert(sig >= 0);
251
252 /* Don't send SIGCONT twice. Also, SIGKILL always works even when process is suspended, hence don't send
253 * SIGCONT on SIGKILL. */
254 if (IN_SET(sig, SIGCONT, SIGKILL))
255 flags &= ~CGROUP_SIGCONT;
256
257 /* This goes through the tasks list and kills them all. This
258 * is repeated until no further processes are added to the
259 * tasks list, to properly handle forking processes */
260
261 if (!s) {
262 s = allocated_set = set_new(NULL);
263 if (!s)
264 return -ENOMEM;
265 }
266
267 my_pid = getpid_cached();
268
269 do {
270 _cleanup_fclose_ FILE *f = NULL;
271 pid_t pid = 0;
272 done = true;
273
274 r = cg_enumerate_items(controller, path, &f, item);
275 if (r < 0) {
276 if (ret >= 0 && r != -ENOENT)
277 return r;
278
279 return ret;
280 }
281
282 while ((r = cg_read_pid(f, &pid)) > 0) {
283
284 if ((flags & CGROUP_IGNORE_SELF) && pid == my_pid)
285 continue;
286
287 if (set_get(s, PID_TO_PTR(pid)) == PID_TO_PTR(pid))
288 continue;
289
290 if (log_kill)
291 ret_log_kill = log_kill(pid, sig, userdata);
292
293 /* If we haven't killed this process yet, kill
294 * it */
295 if (kill(pid, sig) < 0) {
296 if (ret >= 0 && errno != ESRCH)
297 ret = -errno;
298 } else {
299 if (flags & CGROUP_SIGCONT)
300 (void) kill(pid, SIGCONT);
301
302 if (ret == 0) {
303 if (log_kill)
304 ret = ret_log_kill;
305 else
306 ret = 1;
307 }
308 }
309
310 done = false;
311
312 r = set_put(s, PID_TO_PTR(pid));
313 if (r < 0) {
314 if (ret >= 0)
315 return r;
316
317 return ret;
318 }
319 }
320
321 if (r < 0) {
322 if (ret >= 0)
323 return r;
324
325 return ret;
326 }
327
328 /* To avoid racing against processes which fork
329 * quicker than we can kill them we repeat this until
330 * no new pids need to be killed. */
331
332 } while (!done);
333
334 return ret;
335 }
336
337 int cg_kill(
338 const char *controller,
339 const char *path,
340 int sig,
341 CGroupFlags flags,
342 Set *s,
343 cg_kill_log_func_t log_kill,
344 void *userdata) {
345 int r;
346
347 r = cg_kill_items(controller, path, sig, flags, s, log_kill, userdata, "cgroup.procs");
348 if (r < 0 || sig != SIGKILL)
349 return r;
350
351 /* Only in case of killing with SIGKILL and when using cgroupsv2, kill remaining threads manually as
352 a workaround for kernel bug. It was fixed in 5.2-rc5 (c03cd7738a83), backported to 4.19.66
353 (4340d175b898) and 4.14.138 (feb6b123b7dd). */
354 r = cg_unified_controller(controller);
355 if (r <= 0)
356 return r;
357
358 return cg_kill_items(controller, path, sig, flags, s, log_kill, userdata, "cgroup.threads");
359 }
360
361 int cg_kill_recursive(
362 const char *controller,
363 const char *path,
364 int sig,
365 CGroupFlags flags,
366 Set *s,
367 cg_kill_log_func_t log_kill,
368 void *userdata) {
369
370 _cleanup_set_free_ Set *allocated_set = NULL;
371 _cleanup_closedir_ DIR *d = NULL;
372 int r, ret;
373 char *fn;
374
375 assert(path);
376 assert(sig >= 0);
377
378 if (!s) {
379 s = allocated_set = set_new(NULL);
380 if (!s)
381 return -ENOMEM;
382 }
383
384 ret = cg_kill(controller, path, sig, flags, s, log_kill, userdata);
385
386 r = cg_enumerate_subgroups(controller, path, &d);
387 if (r < 0) {
388 if (ret >= 0 && r != -ENOENT)
389 return r;
390
391 return ret;
392 }
393
394 while ((r = cg_read_subgroup(d, &fn)) > 0) {
395 _cleanup_free_ char *p = NULL;
396
397 p = path_join(empty_to_root(path), fn);
398 free(fn);
399 if (!p)
400 return -ENOMEM;
401
402 r = cg_kill_recursive(controller, p, sig, flags, s, log_kill, userdata);
403 if (r != 0 && ret >= 0)
404 ret = r;
405 }
406 if (ret >= 0 && r < 0)
407 ret = r;
408
409 if (flags & CGROUP_REMOVE) {
410 r = cg_rmdir(controller, path);
411 if (r < 0 && ret >= 0 && !IN_SET(r, -ENOENT, -EBUSY))
412 return r;
413 }
414
415 return ret;
416 }
417
418 static const char *controller_to_dirname(const char *controller) {
419 const char *e;
420
421 assert(controller);
422
423 /* Converts a controller name to the directory name below
424 * /sys/fs/cgroup/ we want to mount it to. Effectively, this
425 * just cuts off the name= prefixed used for named
426 * hierarchies, if it is specified. */
427
428 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
429 if (cg_hybrid_unified() > 0)
430 controller = SYSTEMD_CGROUP_CONTROLLER_HYBRID;
431 else
432 controller = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
433 }
434
435 e = startswith(controller, "name=");
436 if (e)
437 return e;
438
439 return controller;
440 }
441
442 static int join_path_legacy(const char *controller, const char *path, const char *suffix, char **fs) {
443 const char *dn;
444 char *t = NULL;
445
446 assert(fs);
447 assert(controller);
448
449 dn = controller_to_dirname(controller);
450
451 if (isempty(path) && isempty(suffix))
452 t = path_join("/sys/fs/cgroup", dn);
453 else if (isempty(path))
454 t = path_join("/sys/fs/cgroup", dn, suffix);
455 else if (isempty(suffix))
456 t = path_join("/sys/fs/cgroup", dn, path);
457 else
458 t = path_join("/sys/fs/cgroup", dn, path, suffix);
459 if (!t)
460 return -ENOMEM;
461
462 *fs = t;
463 return 0;
464 }
465
466 static int join_path_unified(const char *path, const char *suffix, char **fs) {
467 char *t;
468
469 assert(fs);
470
471 if (isempty(path) && isempty(suffix))
472 t = strdup("/sys/fs/cgroup");
473 else if (isempty(path))
474 t = path_join("/sys/fs/cgroup", suffix);
475 else if (isempty(suffix))
476 t = path_join("/sys/fs/cgroup", path);
477 else
478 t = path_join("/sys/fs/cgroup", path, suffix);
479 if (!t)
480 return -ENOMEM;
481
482 *fs = t;
483 return 0;
484 }
485
486 int cg_get_path(const char *controller, const char *path, const char *suffix, char **fs) {
487 int r;
488
489 assert(fs);
490
491 if (!controller) {
492 char *t;
493
494 /* If no controller is specified, we return the path
495 * *below* the controllers, without any prefix. */
496
497 if (!path && !suffix)
498 return -EINVAL;
499
500 if (!suffix)
501 t = strdup(path);
502 else if (!path)
503 t = strdup(suffix);
504 else
505 t = path_join(path, suffix);
506 if (!t)
507 return -ENOMEM;
508
509 *fs = path_simplify(t, false);
510 return 0;
511 }
512
513 if (!cg_controller_is_valid(controller))
514 return -EINVAL;
515
516 r = cg_all_unified();
517 if (r < 0)
518 return r;
519 if (r > 0)
520 r = join_path_unified(path, suffix, fs);
521 else
522 r = join_path_legacy(controller, path, suffix, fs);
523 if (r < 0)
524 return r;
525
526 path_simplify(*fs, false);
527 return 0;
528 }
529
530 static int controller_is_accessible(const char *controller) {
531 int r;
532
533 assert(controller);
534
535 /* Checks whether a specific controller is accessible,
536 * i.e. its hierarchy mounted. In the unified hierarchy all
537 * controllers are considered accessible, except for the named
538 * hierarchies */
539
540 if (!cg_controller_is_valid(controller))
541 return -EINVAL;
542
543 r = cg_all_unified();
544 if (r < 0)
545 return r;
546 if (r > 0) {
547 /* We don't support named hierarchies if we are using
548 * the unified hierarchy. */
549
550 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
551 return 0;
552
553 if (startswith(controller, "name="))
554 return -EOPNOTSUPP;
555
556 } else {
557 const char *cc, *dn;
558
559 dn = controller_to_dirname(controller);
560 cc = strjoina("/sys/fs/cgroup/", dn);
561
562 if (laccess(cc, F_OK) < 0)
563 return -errno;
564 }
565
566 return 0;
567 }
568
569 int cg_get_path_and_check(const char *controller, const char *path, const char *suffix, char **fs) {
570 int r;
571
572 assert(controller);
573 assert(fs);
574
575 /* Check if the specified controller is actually accessible */
576 r = controller_is_accessible(controller);
577 if (r < 0)
578 return r;
579
580 return cg_get_path(controller, path, suffix, fs);
581 }
582
583 int cg_set_xattr(const char *controller, const char *path, const char *name, const void *value, size_t size, int flags) {
584 _cleanup_free_ char *fs = NULL;
585 int r;
586
587 assert(path);
588 assert(name);
589 assert(value || size <= 0);
590
591 r = cg_get_path(controller, path, NULL, &fs);
592 if (r < 0)
593 return r;
594
595 if (setxattr(fs, name, value, size, flags) < 0)
596 return -errno;
597
598 return 0;
599 }
600
601 int cg_get_xattr(const char *controller, const char *path, const char *name, void *value, size_t size) {
602 _cleanup_free_ char *fs = NULL;
603 ssize_t n;
604 int r;
605
606 assert(path);
607 assert(name);
608
609 r = cg_get_path(controller, path, NULL, &fs);
610 if (r < 0)
611 return r;
612
613 n = getxattr(fs, name, value, size);
614 if (n < 0)
615 return -errno;
616
617 return (int) n;
618 }
619
620 int cg_get_xattr_malloc(const char *controller, const char *path, const char *name, char **ret) {
621 _cleanup_free_ char *fs = NULL;
622 int r;
623
624 assert(path);
625 assert(name);
626
627 r = cg_get_path(controller, path, NULL, &fs);
628 if (r < 0)
629 return r;
630
631 r = getxattr_malloc(fs, name, ret, false);
632 if (r < 0)
633 return r;
634
635 return r;
636 }
637
638 int cg_remove_xattr(const char *controller, const char *path, const char *name) {
639 _cleanup_free_ char *fs = NULL;
640 int r;
641
642 assert(path);
643 assert(name);
644
645 r = cg_get_path(controller, path, NULL, &fs);
646 if (r < 0)
647 return r;
648
649 if (removexattr(fs, name) < 0)
650 return -errno;
651
652 return 0;
653 }
654
655 int cg_pid_get_path(const char *controller, pid_t pid, char **path) {
656 _cleanup_fclose_ FILE *f = NULL;
657 const char *fs, *controller_str;
658 int unified, r;
659 size_t cs = 0;
660
661 assert(path);
662 assert(pid >= 0);
663
664 if (controller) {
665 if (!cg_controller_is_valid(controller))
666 return -EINVAL;
667 } else
668 controller = SYSTEMD_CGROUP_CONTROLLER;
669
670 unified = cg_unified_controller(controller);
671 if (unified < 0)
672 return unified;
673 if (unified == 0) {
674 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
675 controller_str = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
676 else
677 controller_str = controller;
678
679 cs = strlen(controller_str);
680 }
681
682 fs = procfs_file_alloca(pid, "cgroup");
683 r = fopen_unlocked(fs, "re", &f);
684 if (r == -ENOENT)
685 return -ESRCH;
686 if (r < 0)
687 return r;
688
689 for (;;) {
690 _cleanup_free_ char *line = NULL;
691 char *e, *p;
692
693 r = read_line(f, LONG_LINE_MAX, &line);
694 if (r < 0)
695 return r;
696 if (r == 0)
697 break;
698
699 if (unified) {
700 e = startswith(line, "0:");
701 if (!e)
702 continue;
703
704 e = strchr(e, ':');
705 if (!e)
706 continue;
707 } else {
708 char *l;
709 size_t k;
710 const char *word, *state;
711 bool found = false;
712
713 l = strchr(line, ':');
714 if (!l)
715 continue;
716
717 l++;
718 e = strchr(l, ':');
719 if (!e)
720 continue;
721
722 *e = 0;
723 FOREACH_WORD_SEPARATOR(word, k, l, ",", state)
724 if (k == cs && memcmp(word, controller_str, cs) == 0) {
725 found = true;
726 break;
727 }
728 if (!found)
729 continue;
730 }
731
732 p = strdup(e + 1);
733 if (!p)
734 return -ENOMEM;
735
736 /* Truncate suffix indicating the process is a zombie */
737 e = endswith(p, " (deleted)");
738 if (e)
739 *e = 0;
740
741 *path = p;
742 return 0;
743 }
744
745 return -ENODATA;
746 }
747
748 int cg_install_release_agent(const char *controller, const char *agent) {
749 _cleanup_free_ char *fs = NULL, *contents = NULL;
750 const char *sc;
751 int r;
752
753 assert(agent);
754
755 r = cg_unified_controller(controller);
756 if (r < 0)
757 return r;
758 if (r > 0) /* doesn't apply to unified hierarchy */
759 return -EOPNOTSUPP;
760
761 r = cg_get_path(controller, NULL, "release_agent", &fs);
762 if (r < 0)
763 return r;
764
765 r = read_one_line_file(fs, &contents);
766 if (r < 0)
767 return r;
768
769 sc = strstrip(contents);
770 if (isempty(sc)) {
771 r = write_string_file(fs, agent, WRITE_STRING_FILE_DISABLE_BUFFER);
772 if (r < 0)
773 return r;
774 } else if (!path_equal(sc, agent))
775 return -EEXIST;
776
777 fs = mfree(fs);
778 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
779 if (r < 0)
780 return r;
781
782 contents = mfree(contents);
783 r = read_one_line_file(fs, &contents);
784 if (r < 0)
785 return r;
786
787 sc = strstrip(contents);
788 if (streq(sc, "0")) {
789 r = write_string_file(fs, "1", WRITE_STRING_FILE_DISABLE_BUFFER);
790 if (r < 0)
791 return r;
792
793 return 1;
794 }
795
796 if (!streq(sc, "1"))
797 return -EIO;
798
799 return 0;
800 }
801
802 int cg_uninstall_release_agent(const char *controller) {
803 _cleanup_free_ char *fs = NULL;
804 int r;
805
806 r = cg_unified_controller(controller);
807 if (r < 0)
808 return r;
809 if (r > 0) /* Doesn't apply to unified hierarchy */
810 return -EOPNOTSUPP;
811
812 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
813 if (r < 0)
814 return r;
815
816 r = write_string_file(fs, "0", WRITE_STRING_FILE_DISABLE_BUFFER);
817 if (r < 0)
818 return r;
819
820 fs = mfree(fs);
821
822 r = cg_get_path(controller, NULL, "release_agent", &fs);
823 if (r < 0)
824 return r;
825
826 r = write_string_file(fs, "", WRITE_STRING_FILE_DISABLE_BUFFER);
827 if (r < 0)
828 return r;
829
830 return 0;
831 }
832
833 int cg_is_empty(const char *controller, const char *path) {
834 _cleanup_fclose_ FILE *f = NULL;
835 pid_t pid;
836 int r;
837
838 assert(path);
839
840 r = cg_enumerate_processes(controller, path, &f);
841 if (r == -ENOENT)
842 return true;
843 if (r < 0)
844 return r;
845
846 r = cg_read_pid(f, &pid);
847 if (r < 0)
848 return r;
849
850 return r == 0;
851 }
852
853 int cg_is_empty_recursive(const char *controller, const char *path) {
854 int r;
855
856 assert(path);
857
858 /* The root cgroup is always populated */
859 if (controller && empty_or_root(path))
860 return false;
861
862 r = cg_unified_controller(controller);
863 if (r < 0)
864 return r;
865 if (r > 0) {
866 _cleanup_free_ char *t = NULL;
867
868 /* On the unified hierarchy we can check empty state
869 * via the "populated" attribute of "cgroup.events". */
870
871 r = cg_read_event(controller, path, "populated", &t);
872 if (r == -ENOENT)
873 return true;
874 if (r < 0)
875 return r;
876
877 return streq(t, "0");
878 } else {
879 _cleanup_closedir_ DIR *d = NULL;
880 char *fn;
881
882 r = cg_is_empty(controller, path);
883 if (r <= 0)
884 return r;
885
886 r = cg_enumerate_subgroups(controller, path, &d);
887 if (r == -ENOENT)
888 return true;
889 if (r < 0)
890 return r;
891
892 while ((r = cg_read_subgroup(d, &fn)) > 0) {
893 _cleanup_free_ char *p = NULL;
894
895 p = path_join(path, fn);
896 free(fn);
897 if (!p)
898 return -ENOMEM;
899
900 r = cg_is_empty_recursive(controller, p);
901 if (r <= 0)
902 return r;
903 }
904 if (r < 0)
905 return r;
906
907 return true;
908 }
909 }
910
911 int cg_split_spec(const char *spec, char **ret_controller, char **ret_path) {
912 _cleanup_free_ char *controller = NULL, *path = NULL;
913
914 assert(spec);
915
916 if (*spec == '/') {
917 if (!path_is_normalized(spec))
918 return -EINVAL;
919
920 if (ret_path) {
921 path = strdup(spec);
922 if (!path)
923 return -ENOMEM;
924
925 path_simplify(path, false);
926 }
927
928 } else {
929 const char *e;
930
931 e = strchr(spec, ':');
932 if (e) {
933 controller = strndup(spec, e-spec);
934 if (!controller)
935 return -ENOMEM;
936 if (!cg_controller_is_valid(controller))
937 return -EINVAL;
938
939 if (!isempty(e + 1)) {
940 path = strdup(e+1);
941 if (!path)
942 return -ENOMEM;
943
944 if (!path_is_normalized(path) ||
945 !path_is_absolute(path))
946 return -EINVAL;
947
948 path_simplify(path, false);
949 }
950
951 } else {
952 if (!cg_controller_is_valid(spec))
953 return -EINVAL;
954
955 if (ret_controller) {
956 controller = strdup(spec);
957 if (!controller)
958 return -ENOMEM;
959 }
960 }
961 }
962
963 if (ret_controller)
964 *ret_controller = TAKE_PTR(controller);
965 if (ret_path)
966 *ret_path = TAKE_PTR(path);
967 return 0;
968 }
969
970 int cg_mangle_path(const char *path, char **result) {
971 _cleanup_free_ char *c = NULL, *p = NULL;
972 char *t;
973 int r;
974
975 assert(path);
976 assert(result);
977
978 /* First, check if it already is a filesystem path */
979 if (path_startswith(path, "/sys/fs/cgroup")) {
980
981 t = strdup(path);
982 if (!t)
983 return -ENOMEM;
984
985 *result = path_simplify(t, false);
986 return 0;
987 }
988
989 /* Otherwise, treat it as cg spec */
990 r = cg_split_spec(path, &c, &p);
991 if (r < 0)
992 return r;
993
994 return cg_get_path(c ?: SYSTEMD_CGROUP_CONTROLLER, p ?: "/", NULL, result);
995 }
996
997 int cg_get_root_path(char **path) {
998 char *p, *e;
999 int r;
1000
1001 assert(path);
1002
1003 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 1, &p);
1004 if (r < 0)
1005 return r;
1006
1007 e = endswith(p, "/" SPECIAL_INIT_SCOPE);
1008 if (!e)
1009 e = endswith(p, "/" SPECIAL_SYSTEM_SLICE); /* legacy */
1010 if (!e)
1011 e = endswith(p, "/system"); /* even more legacy */
1012 if (e)
1013 *e = 0;
1014
1015 *path = p;
1016 return 0;
1017 }
1018
1019 int cg_shift_path(const char *cgroup, const char *root, const char **shifted) {
1020 _cleanup_free_ char *rt = NULL;
1021 char *p;
1022 int r;
1023
1024 assert(cgroup);
1025 assert(shifted);
1026
1027 if (!root) {
1028 /* If the root was specified let's use that, otherwise
1029 * let's determine it from PID 1 */
1030
1031 r = cg_get_root_path(&rt);
1032 if (r < 0)
1033 return r;
1034
1035 root = rt;
1036 }
1037
1038 p = path_startswith(cgroup, root);
1039 if (p && p > cgroup)
1040 *shifted = p - 1;
1041 else
1042 *shifted = cgroup;
1043
1044 return 0;
1045 }
1046
1047 int cg_pid_get_path_shifted(pid_t pid, const char *root, char **cgroup) {
1048 _cleanup_free_ char *raw = NULL;
1049 const char *c;
1050 int r;
1051
1052 assert(pid >= 0);
1053 assert(cgroup);
1054
1055 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &raw);
1056 if (r < 0)
1057 return r;
1058
1059 r = cg_shift_path(raw, root, &c);
1060 if (r < 0)
1061 return r;
1062
1063 if (c == raw)
1064 *cgroup = TAKE_PTR(raw);
1065 else {
1066 char *n;
1067
1068 n = strdup(c);
1069 if (!n)
1070 return -ENOMEM;
1071
1072 *cgroup = n;
1073 }
1074
1075 return 0;
1076 }
1077
1078 int cg_path_decode_unit(const char *cgroup, char **unit) {
1079 char *c, *s;
1080 size_t n;
1081
1082 assert(cgroup);
1083 assert(unit);
1084
1085 n = strcspn(cgroup, "/");
1086 if (n < 3)
1087 return -ENXIO;
1088
1089 c = strndupa(cgroup, n);
1090 c = cg_unescape(c);
1091
1092 if (!unit_name_is_valid(c, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
1093 return -ENXIO;
1094
1095 s = strdup(c);
1096 if (!s)
1097 return -ENOMEM;
1098
1099 *unit = s;
1100 return 0;
1101 }
1102
1103 static bool valid_slice_name(const char *p, size_t n) {
1104
1105 if (!p)
1106 return false;
1107
1108 if (n < STRLEN("x.slice"))
1109 return false;
1110
1111 if (memcmp(p + n - 6, ".slice", 6) == 0) {
1112 char buf[n+1], *c;
1113
1114 memcpy(buf, p, n);
1115 buf[n] = 0;
1116
1117 c = cg_unescape(buf);
1118
1119 return unit_name_is_valid(c, UNIT_NAME_PLAIN);
1120 }
1121
1122 return false;
1123 }
1124
1125 static const char *skip_slices(const char *p) {
1126 assert(p);
1127
1128 /* Skips over all slice assignments */
1129
1130 for (;;) {
1131 size_t n;
1132
1133 p += strspn(p, "/");
1134
1135 n = strcspn(p, "/");
1136 if (!valid_slice_name(p, n))
1137 return p;
1138
1139 p += n;
1140 }
1141 }
1142
1143 int cg_path_get_unit(const char *path, char **ret) {
1144 const char *e;
1145 char *unit;
1146 int r;
1147
1148 assert(path);
1149 assert(ret);
1150
1151 e = skip_slices(path);
1152
1153 r = cg_path_decode_unit(e, &unit);
1154 if (r < 0)
1155 return r;
1156
1157 /* We skipped over the slices, don't accept any now */
1158 if (endswith(unit, ".slice")) {
1159 free(unit);
1160 return -ENXIO;
1161 }
1162
1163 *ret = unit;
1164 return 0;
1165 }
1166
1167 int cg_pid_get_unit(pid_t pid, char **unit) {
1168 _cleanup_free_ char *cgroup = NULL;
1169 int r;
1170
1171 assert(unit);
1172
1173 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1174 if (r < 0)
1175 return r;
1176
1177 return cg_path_get_unit(cgroup, unit);
1178 }
1179
1180 /**
1181 * Skip session-*.scope, but require it to be there.
1182 */
1183 static const char *skip_session(const char *p) {
1184 size_t n;
1185
1186 if (isempty(p))
1187 return NULL;
1188
1189 p += strspn(p, "/");
1190
1191 n = strcspn(p, "/");
1192 if (n < STRLEN("session-x.scope"))
1193 return NULL;
1194
1195 if (memcmp(p, "session-", 8) == 0 && memcmp(p + n - 6, ".scope", 6) == 0) {
1196 char buf[n - 8 - 6 + 1];
1197
1198 memcpy(buf, p + 8, n - 8 - 6);
1199 buf[n - 8 - 6] = 0;
1200
1201 /* Note that session scopes never need unescaping,
1202 * since they cannot conflict with the kernel's own
1203 * names, hence we don't need to call cg_unescape()
1204 * here. */
1205
1206 if (!session_id_valid(buf))
1207 return false;
1208
1209 p += n;
1210 p += strspn(p, "/");
1211 return p;
1212 }
1213
1214 return NULL;
1215 }
1216
1217 /**
1218 * Skip user@*.service, but require it to be there.
1219 */
1220 static const char *skip_user_manager(const char *p) {
1221 size_t n;
1222
1223 if (isempty(p))
1224 return NULL;
1225
1226 p += strspn(p, "/");
1227
1228 n = strcspn(p, "/");
1229 if (n < STRLEN("user@x.service"))
1230 return NULL;
1231
1232 if (memcmp(p, "user@", 5) == 0 && memcmp(p + n - 8, ".service", 8) == 0) {
1233 char buf[n - 5 - 8 + 1];
1234
1235 memcpy(buf, p + 5, n - 5 - 8);
1236 buf[n - 5 - 8] = 0;
1237
1238 /* Note that user manager services never need unescaping,
1239 * since they cannot conflict with the kernel's own
1240 * names, hence we don't need to call cg_unescape()
1241 * here. */
1242
1243 if (parse_uid(buf, NULL) < 0)
1244 return NULL;
1245
1246 p += n;
1247 p += strspn(p, "/");
1248
1249 return p;
1250 }
1251
1252 return NULL;
1253 }
1254
1255 static const char *skip_user_prefix(const char *path) {
1256 const char *e, *t;
1257
1258 assert(path);
1259
1260 /* Skip slices, if there are any */
1261 e = skip_slices(path);
1262
1263 /* Skip the user manager, if it's in the path now... */
1264 t = skip_user_manager(e);
1265 if (t)
1266 return t;
1267
1268 /* Alternatively skip the user session if it is in the path... */
1269 return skip_session(e);
1270 }
1271
1272 int cg_path_get_user_unit(const char *path, char **ret) {
1273 const char *t;
1274
1275 assert(path);
1276 assert(ret);
1277
1278 t = skip_user_prefix(path);
1279 if (!t)
1280 return -ENXIO;
1281
1282 /* And from here on it looks pretty much the same as for a system unit, hence let's use the same
1283 * parser. */
1284 return cg_path_get_unit(t, ret);
1285 }
1286
1287 int cg_pid_get_user_unit(pid_t pid, char **unit) {
1288 _cleanup_free_ char *cgroup = NULL;
1289 int r;
1290
1291 assert(unit);
1292
1293 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1294 if (r < 0)
1295 return r;
1296
1297 return cg_path_get_user_unit(cgroup, unit);
1298 }
1299
1300 int cg_path_get_machine_name(const char *path, char **machine) {
1301 _cleanup_free_ char *u = NULL;
1302 const char *sl;
1303 int r;
1304
1305 r = cg_path_get_unit(path, &u);
1306 if (r < 0)
1307 return r;
1308
1309 sl = strjoina("/run/systemd/machines/unit:", u);
1310 return readlink_malloc(sl, machine);
1311 }
1312
1313 int cg_pid_get_machine_name(pid_t pid, char **machine) {
1314 _cleanup_free_ char *cgroup = NULL;
1315 int r;
1316
1317 assert(machine);
1318
1319 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1320 if (r < 0)
1321 return r;
1322
1323 return cg_path_get_machine_name(cgroup, machine);
1324 }
1325
1326 int cg_path_get_session(const char *path, char **session) {
1327 _cleanup_free_ char *unit = NULL;
1328 char *start, *end;
1329 int r;
1330
1331 assert(path);
1332
1333 r = cg_path_get_unit(path, &unit);
1334 if (r < 0)
1335 return r;
1336
1337 start = startswith(unit, "session-");
1338 if (!start)
1339 return -ENXIO;
1340 end = endswith(start, ".scope");
1341 if (!end)
1342 return -ENXIO;
1343
1344 *end = 0;
1345 if (!session_id_valid(start))
1346 return -ENXIO;
1347
1348 if (session) {
1349 char *rr;
1350
1351 rr = strdup(start);
1352 if (!rr)
1353 return -ENOMEM;
1354
1355 *session = rr;
1356 }
1357
1358 return 0;
1359 }
1360
1361 int cg_pid_get_session(pid_t pid, char **session) {
1362 _cleanup_free_ char *cgroup = NULL;
1363 int r;
1364
1365 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1366 if (r < 0)
1367 return r;
1368
1369 return cg_path_get_session(cgroup, session);
1370 }
1371
1372 int cg_path_get_owner_uid(const char *path, uid_t *uid) {
1373 _cleanup_free_ char *slice = NULL;
1374 char *start, *end;
1375 int r;
1376
1377 assert(path);
1378
1379 r = cg_path_get_slice(path, &slice);
1380 if (r < 0)
1381 return r;
1382
1383 start = startswith(slice, "user-");
1384 if (!start)
1385 return -ENXIO;
1386 end = endswith(start, ".slice");
1387 if (!end)
1388 return -ENXIO;
1389
1390 *end = 0;
1391 if (parse_uid(start, uid) < 0)
1392 return -ENXIO;
1393
1394 return 0;
1395 }
1396
1397 int cg_pid_get_owner_uid(pid_t pid, uid_t *uid) {
1398 _cleanup_free_ char *cgroup = NULL;
1399 int r;
1400
1401 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1402 if (r < 0)
1403 return r;
1404
1405 return cg_path_get_owner_uid(cgroup, uid);
1406 }
1407
1408 int cg_path_get_slice(const char *p, char **slice) {
1409 const char *e = NULL;
1410
1411 assert(p);
1412 assert(slice);
1413
1414 /* Finds the right-most slice unit from the beginning, but
1415 * stops before we come to the first non-slice unit. */
1416
1417 for (;;) {
1418 size_t n;
1419
1420 p += strspn(p, "/");
1421
1422 n = strcspn(p, "/");
1423 if (!valid_slice_name(p, n)) {
1424
1425 if (!e) {
1426 char *s;
1427
1428 s = strdup(SPECIAL_ROOT_SLICE);
1429 if (!s)
1430 return -ENOMEM;
1431
1432 *slice = s;
1433 return 0;
1434 }
1435
1436 return cg_path_decode_unit(e, slice);
1437 }
1438
1439 e = p;
1440 p += n;
1441 }
1442 }
1443
1444 int cg_pid_get_slice(pid_t pid, char **slice) {
1445 _cleanup_free_ char *cgroup = NULL;
1446 int r;
1447
1448 assert(slice);
1449
1450 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1451 if (r < 0)
1452 return r;
1453
1454 return cg_path_get_slice(cgroup, slice);
1455 }
1456
1457 int cg_path_get_user_slice(const char *p, char **slice) {
1458 const char *t;
1459 assert(p);
1460 assert(slice);
1461
1462 t = skip_user_prefix(p);
1463 if (!t)
1464 return -ENXIO;
1465
1466 /* And now it looks pretty much the same as for a system
1467 * slice, so let's just use the same parser from here on. */
1468 return cg_path_get_slice(t, slice);
1469 }
1470
1471 int cg_pid_get_user_slice(pid_t pid, char **slice) {
1472 _cleanup_free_ char *cgroup = NULL;
1473 int r;
1474
1475 assert(slice);
1476
1477 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1478 if (r < 0)
1479 return r;
1480
1481 return cg_path_get_user_slice(cgroup, slice);
1482 }
1483
1484 char *cg_escape(const char *p) {
1485 bool need_prefix = false;
1486
1487 /* This implements very minimal escaping for names to be used
1488 * as file names in the cgroup tree: any name which might
1489 * conflict with a kernel name or is prefixed with '_' is
1490 * prefixed with a '_'. That way, when reading cgroup names it
1491 * is sufficient to remove a single prefixing underscore if
1492 * there is one. */
1493
1494 /* The return value of this function (unlike cg_unescape())
1495 * needs free()! */
1496
1497 if (IN_SET(p[0], 0, '_', '.') ||
1498 STR_IN_SET(p, "notify_on_release", "release_agent", "tasks") ||
1499 startswith(p, "cgroup."))
1500 need_prefix = true;
1501 else {
1502 const char *dot;
1503
1504 dot = strrchr(p, '.');
1505 if (dot) {
1506 CGroupController c;
1507 size_t l = dot - p;
1508
1509 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1510 const char *n;
1511
1512 n = cgroup_controller_to_string(c);
1513
1514 if (l != strlen(n))
1515 continue;
1516
1517 if (memcmp(p, n, l) != 0)
1518 continue;
1519
1520 need_prefix = true;
1521 break;
1522 }
1523 }
1524 }
1525
1526 if (need_prefix)
1527 return strjoin("_", p);
1528
1529 return strdup(p);
1530 }
1531
1532 char *cg_unescape(const char *p) {
1533 assert(p);
1534
1535 /* The return value of this function (unlike cg_escape())
1536 * doesn't need free()! */
1537
1538 if (p[0] == '_')
1539 return (char*) p+1;
1540
1541 return (char*) p;
1542 }
1543
1544 #define CONTROLLER_VALID \
1545 DIGITS LETTERS \
1546 "_"
1547
1548 bool cg_controller_is_valid(const char *p) {
1549 const char *t, *s;
1550
1551 if (!p)
1552 return false;
1553
1554 if (streq(p, SYSTEMD_CGROUP_CONTROLLER))
1555 return true;
1556
1557 s = startswith(p, "name=");
1558 if (s)
1559 p = s;
1560
1561 if (IN_SET(*p, 0, '_'))
1562 return false;
1563
1564 for (t = p; *t; t++)
1565 if (!strchr(CONTROLLER_VALID, *t))
1566 return false;
1567
1568 if (t - p > FILENAME_MAX)
1569 return false;
1570
1571 return true;
1572 }
1573
1574 int cg_slice_to_path(const char *unit, char **ret) {
1575 _cleanup_free_ char *p = NULL, *s = NULL, *e = NULL;
1576 const char *dash;
1577 int r;
1578
1579 assert(unit);
1580 assert(ret);
1581
1582 if (streq(unit, SPECIAL_ROOT_SLICE)) {
1583 char *x;
1584
1585 x = strdup("");
1586 if (!x)
1587 return -ENOMEM;
1588 *ret = x;
1589 return 0;
1590 }
1591
1592 if (!unit_name_is_valid(unit, UNIT_NAME_PLAIN))
1593 return -EINVAL;
1594
1595 if (!endswith(unit, ".slice"))
1596 return -EINVAL;
1597
1598 r = unit_name_to_prefix(unit, &p);
1599 if (r < 0)
1600 return r;
1601
1602 dash = strchr(p, '-');
1603
1604 /* Don't allow initial dashes */
1605 if (dash == p)
1606 return -EINVAL;
1607
1608 while (dash) {
1609 _cleanup_free_ char *escaped = NULL;
1610 char n[dash - p + sizeof(".slice")];
1611
1612 #if HAS_FEATURE_MEMORY_SANITIZER
1613 /* msan doesn't instrument stpncpy, so it thinks
1614 * n is later used uninitialized:
1615 * https://github.com/google/sanitizers/issues/926
1616 */
1617 zero(n);
1618 #endif
1619
1620 /* Don't allow trailing or double dashes */
1621 if (IN_SET(dash[1], 0, '-'))
1622 return -EINVAL;
1623
1624 strcpy(stpncpy(n, p, dash - p), ".slice");
1625 if (!unit_name_is_valid(n, UNIT_NAME_PLAIN))
1626 return -EINVAL;
1627
1628 escaped = cg_escape(n);
1629 if (!escaped)
1630 return -ENOMEM;
1631
1632 if (!strextend(&s, escaped, "/", NULL))
1633 return -ENOMEM;
1634
1635 dash = strchr(dash+1, '-');
1636 }
1637
1638 e = cg_escape(unit);
1639 if (!e)
1640 return -ENOMEM;
1641
1642 if (!strextend(&s, e, NULL))
1643 return -ENOMEM;
1644
1645 *ret = TAKE_PTR(s);
1646
1647 return 0;
1648 }
1649
1650 int cg_set_attribute(const char *controller, const char *path, const char *attribute, const char *value) {
1651 _cleanup_free_ char *p = NULL;
1652 int r;
1653
1654 r = cg_get_path(controller, path, attribute, &p);
1655 if (r < 0)
1656 return r;
1657
1658 return write_string_file(p, value, WRITE_STRING_FILE_DISABLE_BUFFER);
1659 }
1660
1661 int cg_get_attribute(const char *controller, const char *path, const char *attribute, char **ret) {
1662 _cleanup_free_ char *p = NULL;
1663 int r;
1664
1665 r = cg_get_path(controller, path, attribute, &p);
1666 if (r < 0)
1667 return r;
1668
1669 return read_one_line_file(p, ret);
1670 }
1671
1672 int cg_get_attribute_as_uint64(const char *controller, const char *path, const char *attribute, uint64_t *ret) {
1673 _cleanup_free_ char *value = NULL;
1674 uint64_t v;
1675 int r;
1676
1677 assert(ret);
1678
1679 r = cg_get_attribute(controller, path, attribute, &value);
1680 if (r == -ENOENT)
1681 return -ENODATA;
1682 if (r < 0)
1683 return r;
1684
1685 if (streq(value, "max")) {
1686 *ret = CGROUP_LIMIT_MAX;
1687 return 0;
1688 }
1689
1690 r = safe_atou64(value, &v);
1691 if (r < 0)
1692 return r;
1693
1694 *ret = v;
1695 return 0;
1696 }
1697
1698 int cg_get_keyed_attribute_full(
1699 const char *controller,
1700 const char *path,
1701 const char *attribute,
1702 char **keys,
1703 char **ret_values,
1704 CGroupKeyMode mode) {
1705
1706 _cleanup_free_ char *filename = NULL, *contents = NULL;
1707 const char *p;
1708 size_t n, i, n_done = 0;
1709 char **v;
1710 int r;
1711
1712 /* Reads one or more fields of a cgroup v2 keyed attribute file. The 'keys' parameter should be an strv with
1713 * all keys to retrieve. The 'ret_values' parameter should be passed as string size with the same number of
1714 * entries as 'keys'. On success each entry will be set to the value of the matching key.
1715 *
1716 * If the attribute file doesn't exist at all returns ENOENT, if any key is not found returns ENXIO. If mode
1717 * is set to GG_KEY_MODE_GRACEFUL we ignore missing keys and return those that were parsed successfully. */
1718
1719 r = cg_get_path(controller, path, attribute, &filename);
1720 if (r < 0)
1721 return r;
1722
1723 r = read_full_file(filename, &contents, NULL);
1724 if (r < 0)
1725 return r;
1726
1727 n = strv_length(keys);
1728 if (n == 0) /* No keys to retrieve? That's easy, we are done then */
1729 return 0;
1730
1731 /* Let's build this up in a temporary array for now in order not to clobber the return parameter on failure */
1732 v = newa0(char*, n);
1733
1734 for (p = contents; *p;) {
1735 const char *w = NULL;
1736
1737 for (i = 0; i < n; i++)
1738 if (!v[i]) {
1739 w = first_word(p, keys[i]);
1740 if (w)
1741 break;
1742 }
1743
1744 if (w) {
1745 size_t l;
1746
1747 l = strcspn(w, NEWLINE);
1748 v[i] = strndup(w, l);
1749 if (!v[i]) {
1750 r = -ENOMEM;
1751 goto fail;
1752 }
1753
1754 n_done++;
1755 if (n_done >= n)
1756 goto done;
1757
1758 p = w + l;
1759 } else
1760 p += strcspn(p, NEWLINE);
1761
1762 p += strspn(p, NEWLINE);
1763 }
1764
1765 if (mode & CG_KEY_MODE_GRACEFUL)
1766 goto done;
1767
1768 r = -ENXIO;
1769
1770 fail:
1771 for (i = 0; i < n; i++)
1772 free(v[i]);
1773
1774 return r;
1775
1776 done:
1777 memcpy(ret_values, v, sizeof(char*) * n);
1778 if (mode & CG_KEY_MODE_GRACEFUL)
1779 return n_done;
1780
1781 return 0;
1782 }
1783
1784 int cg_mask_to_string(CGroupMask mask, char **ret) {
1785 _cleanup_free_ char *s = NULL;
1786 size_t n = 0, allocated = 0;
1787 bool space = false;
1788 CGroupController c;
1789
1790 assert(ret);
1791
1792 if (mask == 0) {
1793 *ret = NULL;
1794 return 0;
1795 }
1796
1797 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1798 const char *k;
1799 size_t l;
1800
1801 if (!FLAGS_SET(mask, CGROUP_CONTROLLER_TO_MASK(c)))
1802 continue;
1803
1804 k = cgroup_controller_to_string(c);
1805 l = strlen(k);
1806
1807 if (!GREEDY_REALLOC(s, allocated, n + space + l + 1))
1808 return -ENOMEM;
1809
1810 if (space)
1811 s[n] = ' ';
1812 memcpy(s + n + space, k, l);
1813 n += space + l;
1814
1815 space = true;
1816 }
1817
1818 assert(s);
1819
1820 s[n] = 0;
1821 *ret = TAKE_PTR(s);
1822
1823 return 0;
1824 }
1825
1826 int cg_mask_from_string(const char *value, CGroupMask *ret) {
1827 CGroupMask m = 0;
1828
1829 assert(ret);
1830 assert(value);
1831
1832 for (;;) {
1833 _cleanup_free_ char *n = NULL;
1834 CGroupController v;
1835 int r;
1836
1837 r = extract_first_word(&value, &n, NULL, 0);
1838 if (r < 0)
1839 return r;
1840 if (r == 0)
1841 break;
1842
1843 v = cgroup_controller_from_string(n);
1844 if (v < 0)
1845 continue;
1846
1847 m |= CGROUP_CONTROLLER_TO_MASK(v);
1848 }
1849
1850 *ret = m;
1851 return 0;
1852 }
1853
1854 int cg_mask_supported(CGroupMask *ret) {
1855 CGroupMask mask;
1856 int r;
1857
1858 /* Determines the mask of supported cgroup controllers. Only includes controllers we can make sense of and that
1859 * are actually accessible. Only covers real controllers, i.e. not the CGROUP_CONTROLLER_BPF_xyz
1860 * pseudo-controllers. */
1861
1862 r = cg_all_unified();
1863 if (r < 0)
1864 return r;
1865 if (r > 0) {
1866 _cleanup_free_ char *root = NULL, *controllers = NULL, *path = NULL;
1867
1868 /* In the unified hierarchy we can read the supported
1869 * and accessible controllers from a the top-level
1870 * cgroup attribute */
1871
1872 r = cg_get_root_path(&root);
1873 if (r < 0)
1874 return r;
1875
1876 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, root, "cgroup.controllers", &path);
1877 if (r < 0)
1878 return r;
1879
1880 r = read_one_line_file(path, &controllers);
1881 if (r < 0)
1882 return r;
1883
1884 r = cg_mask_from_string(controllers, &mask);
1885 if (r < 0)
1886 return r;
1887
1888 /* Mask controllers that are not supported in unified hierarchy. */
1889 mask &= CGROUP_MASK_V2;
1890
1891 } else {
1892 CGroupController c;
1893
1894 /* In the legacy hierarchy, we check which hierarchies are mounted. */
1895
1896 mask = 0;
1897 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1898 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1899 const char *n;
1900
1901 if (!FLAGS_SET(CGROUP_MASK_V1, bit))
1902 continue;
1903
1904 n = cgroup_controller_to_string(c);
1905 if (controller_is_accessible(n) >= 0)
1906 mask |= bit;
1907 }
1908 }
1909
1910 *ret = mask;
1911 return 0;
1912 }
1913
1914 int cg_kernel_controllers(Set **ret) {
1915 _cleanup_set_free_free_ Set *controllers = NULL;
1916 _cleanup_fclose_ FILE *f = NULL;
1917 int r;
1918
1919 assert(ret);
1920
1921 /* Determines the full list of kernel-known controllers. Might include controllers we don't actually support
1922 * and controllers that aren't currently accessible (because not mounted). This does not include "name="
1923 * pseudo-controllers. */
1924
1925 controllers = set_new(&string_hash_ops);
1926 if (!controllers)
1927 return -ENOMEM;
1928
1929 r = fopen_unlocked("/proc/cgroups", "re", &f);
1930 if (r == -ENOENT) {
1931 *ret = NULL;
1932 return 0;
1933 }
1934 if (r < 0)
1935 return r;
1936
1937 /* Ignore the header line */
1938 (void) read_line(f, (size_t) -1, NULL);
1939
1940 for (;;) {
1941 char *controller;
1942 int enabled = 0;
1943
1944 errno = 0;
1945 if (fscanf(f, "%ms %*i %*i %i", &controller, &enabled) != 2) {
1946
1947 if (feof(f))
1948 break;
1949
1950 if (ferror(f))
1951 return errno_or_else(EIO);
1952
1953 return -EBADMSG;
1954 }
1955
1956 if (!enabled) {
1957 free(controller);
1958 continue;
1959 }
1960
1961 if (!cg_controller_is_valid(controller)) {
1962 free(controller);
1963 return -EBADMSG;
1964 }
1965
1966 r = set_consume(controllers, controller);
1967 if (r < 0)
1968 return r;
1969 }
1970
1971 *ret = TAKE_PTR(controllers);
1972
1973 return 0;
1974 }
1975
1976 /* The hybrid mode was initially implemented in v232 and simply mounted cgroup2 on
1977 * /sys/fs/cgroup/systemd. This unfortunately broke other tools (such as docker) which expected the v1
1978 * "name=systemd" hierarchy on /sys/fs/cgroup/systemd. From v233 and on, the hybrid mode mounts v2 on
1979 * /sys/fs/cgroup/unified and maintains "name=systemd" hierarchy on /sys/fs/cgroup/systemd for compatibility
1980 * with other tools.
1981 *
1982 * To keep live upgrade working, we detect and support v232 layout. When v232 layout is detected, to keep
1983 * cgroup v2 process management but disable the compat dual layout, we return true on
1984 * cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) and false on cg_hybrid_unified().
1985 */
1986 static thread_local bool unified_systemd_v232;
1987
1988 int cg_unified_cached(bool flush) {
1989 static thread_local CGroupUnified unified_cache = CGROUP_UNIFIED_UNKNOWN;
1990
1991 struct statfs fs;
1992
1993 /* Checks if we support the unified hierarchy. Returns an
1994 * error when the cgroup hierarchies aren't mounted yet or we
1995 * have any other trouble determining if the unified hierarchy
1996 * is supported. */
1997
1998 if (flush)
1999 unified_cache = CGROUP_UNIFIED_UNKNOWN;
2000 else if (unified_cache >= CGROUP_UNIFIED_NONE)
2001 return unified_cache;
2002
2003 if (statfs("/sys/fs/cgroup/", &fs) < 0)
2004 return log_debug_errno(errno, "statfs(\"/sys/fs/cgroup/\") failed: %m");
2005
2006 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2007 log_debug("Found cgroup2 on /sys/fs/cgroup/, full unified hierarchy");
2008 unified_cache = CGROUP_UNIFIED_ALL;
2009 } else if (F_TYPE_EQUAL(fs.f_type, TMPFS_MAGIC)) {
2010 if (statfs("/sys/fs/cgroup/unified/", &fs) == 0 &&
2011 F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2012 log_debug("Found cgroup2 on /sys/fs/cgroup/unified, unified hierarchy for systemd controller");
2013 unified_cache = CGROUP_UNIFIED_SYSTEMD;
2014 unified_systemd_v232 = false;
2015 } else {
2016 if (statfs("/sys/fs/cgroup/systemd/", &fs) < 0)
2017 return log_debug_errno(errno, "statfs(\"/sys/fs/cgroup/systemd\" failed: %m");
2018
2019 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
2020 log_debug("Found cgroup2 on /sys/fs/cgroup/systemd, unified hierarchy for systemd controller (v232 variant)");
2021 unified_cache = CGROUP_UNIFIED_SYSTEMD;
2022 unified_systemd_v232 = true;
2023 } else if (F_TYPE_EQUAL(fs.f_type, CGROUP_SUPER_MAGIC)) {
2024 log_debug("Found cgroup on /sys/fs/cgroup/systemd, legacy hierarchy");
2025 unified_cache = CGROUP_UNIFIED_NONE;
2026 } else {
2027 log_debug("Unexpected filesystem type %llx mounted on /sys/fs/cgroup/systemd, assuming legacy hierarchy",
2028 (unsigned long long) fs.f_type);
2029 unified_cache = CGROUP_UNIFIED_NONE;
2030 }
2031 }
2032 } else if (F_TYPE_EQUAL(fs.f_type, SYSFS_MAGIC)) {
2033 return log_debug_errno(SYNTHETIC_ERRNO(ENOMEDIUM),
2034 "No filesystem is currently mounted on /sys/fs/cgroup.");
2035 } else
2036 return log_debug_errno(SYNTHETIC_ERRNO(ENOMEDIUM),
2037 "Unknown filesystem type %llx mounted on /sys/fs/cgroup.",
2038 (unsigned long long)fs.f_type);
2039
2040 return unified_cache;
2041 }
2042
2043 int cg_unified_controller(const char *controller) {
2044 int r;
2045
2046 r = cg_unified_cached(false);
2047 if (r < 0)
2048 return r;
2049
2050 if (r == CGROUP_UNIFIED_NONE)
2051 return false;
2052
2053 if (r >= CGROUP_UNIFIED_ALL)
2054 return true;
2055
2056 return streq_ptr(controller, SYSTEMD_CGROUP_CONTROLLER);
2057 }
2058
2059 int cg_all_unified(void) {
2060 int r;
2061
2062 r = cg_unified_cached(false);
2063 if (r < 0)
2064 return r;
2065
2066 return r >= CGROUP_UNIFIED_ALL;
2067 }
2068
2069 int cg_hybrid_unified(void) {
2070 int r;
2071
2072 r = cg_unified_cached(false);
2073 if (r < 0)
2074 return r;
2075
2076 return r == CGROUP_UNIFIED_SYSTEMD && !unified_systemd_v232;
2077 }
2078
2079 const uint64_t cgroup_io_limit_defaults[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2080 [CGROUP_IO_RBPS_MAX] = CGROUP_LIMIT_MAX,
2081 [CGROUP_IO_WBPS_MAX] = CGROUP_LIMIT_MAX,
2082 [CGROUP_IO_RIOPS_MAX] = CGROUP_LIMIT_MAX,
2083 [CGROUP_IO_WIOPS_MAX] = CGROUP_LIMIT_MAX,
2084 };
2085
2086 static const char* const cgroup_io_limit_type_table[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2087 [CGROUP_IO_RBPS_MAX] = "IOReadBandwidthMax",
2088 [CGROUP_IO_WBPS_MAX] = "IOWriteBandwidthMax",
2089 [CGROUP_IO_RIOPS_MAX] = "IOReadIOPSMax",
2090 [CGROUP_IO_WIOPS_MAX] = "IOWriteIOPSMax",
2091 };
2092
2093 DEFINE_STRING_TABLE_LOOKUP(cgroup_io_limit_type, CGroupIOLimitType);
2094
2095 bool is_cgroup_fs(const struct statfs *s) {
2096 return is_fs_type(s, CGROUP_SUPER_MAGIC) ||
2097 is_fs_type(s, CGROUP2_SUPER_MAGIC);
2098 }
2099
2100 bool fd_is_cgroup_fs(int fd) {
2101 struct statfs s;
2102
2103 if (fstatfs(fd, &s) < 0)
2104 return -errno;
2105
2106 return is_cgroup_fs(&s);
2107 }
2108
2109 static const char *const cgroup_controller_table[_CGROUP_CONTROLLER_MAX] = {
2110 [CGROUP_CONTROLLER_CPU] = "cpu",
2111 [CGROUP_CONTROLLER_CPUACCT] = "cpuacct",
2112 [CGROUP_CONTROLLER_CPUSET] = "cpuset",
2113 [CGROUP_CONTROLLER_IO] = "io",
2114 [CGROUP_CONTROLLER_BLKIO] = "blkio",
2115 [CGROUP_CONTROLLER_MEMORY] = "memory",
2116 [CGROUP_CONTROLLER_DEVICES] = "devices",
2117 [CGROUP_CONTROLLER_PIDS] = "pids",
2118 [CGROUP_CONTROLLER_BPF_FIREWALL] = "bpf-firewall",
2119 [CGROUP_CONTROLLER_BPF_DEVICES] = "bpf-devices",
2120 };
2121
2122 DEFINE_STRING_TABLE_LOOKUP(cgroup_controller, CGroupController);
2123
2124 CGroupMask get_cpu_accounting_mask(void) {
2125 static CGroupMask needed_mask = (CGroupMask) -1;
2126
2127 /* On kernel ≥4.15 with unified hierarchy, cpu.stat's usage_usec is
2128 * provided externally from the CPU controller, which means we don't
2129 * need to enable the CPU controller just to get metrics. This is good,
2130 * because enabling the CPU controller comes at a minor performance
2131 * hit, especially when it's propagated deep into large hierarchies.
2132 * There's also no separate CPU accounting controller available within
2133 * a unified hierarchy.
2134 *
2135 * This combination of factors results in the desired cgroup mask to
2136 * enable for CPU accounting varying as follows:
2137 *
2138 * ╔═════════════════════╤═════════════════════╗
2139 * ║ Linux ≥4.15 │ Linux <4.15 ║
2140 * ╔═══════════════╬═════════════════════╪═════════════════════╣
2141 * ║ Unified ║ nothing │ CGROUP_MASK_CPU ║
2142 * ╟───────────────╫─────────────────────┼─────────────────────╢
2143 * ║ Hybrid/Legacy ║ CGROUP_MASK_CPUACCT │ CGROUP_MASK_CPUACCT ║
2144 * ╚═══════════════╩═════════════════════╧═════════════════════╝
2145 *
2146 * We check kernel version here instead of manually checking whether
2147 * cpu.stat is present for every cgroup, as that check in itself would
2148 * already be fairly expensive.
2149 *
2150 * Kernels where this patch has been backported will therefore have the
2151 * CPU controller enabled unnecessarily. This is more expensive than
2152 * necessary, but harmless. ☺️
2153 */
2154
2155 if (needed_mask == (CGroupMask) -1) {
2156 if (cg_all_unified()) {
2157 struct utsname u;
2158 assert_se(uname(&u) >= 0);
2159
2160 if (str_verscmp(u.release, "4.15") < 0)
2161 needed_mask = CGROUP_MASK_CPU;
2162 else
2163 needed_mask = 0;
2164 } else
2165 needed_mask = CGROUP_MASK_CPUACCT;
2166 }
2167
2168 return needed_mask;
2169 }
2170
2171 bool cpu_accounting_is_cheap(void) {
2172 return get_cpu_accounting_mask() == 0;
2173 }