]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/hashmap.c
tree-wide: use gcc attribute macros where appropriate
[thirdparty/systemd.git] / src / basic / hashmap.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stdint.h>
5 #include <stdlib.h>
6 #include <string.h>
7
8 #include "alloc-util.h"
9 #include "fileio.h"
10 #include "hashmap.h"
11 #include "macro.h"
12 #include "mempool.h"
13 #include "process-util.h"
14 #include "random-util.h"
15 #include "set.h"
16 #include "siphash24.h"
17 #include "string-util.h"
18 #include "strv.h"
19 #include "util.h"
20
21 #if ENABLE_DEBUG_HASHMAP
22 #include <pthread.h>
23 #include "list.h"
24 #endif
25
26 /*
27 * Implementation of hashmaps.
28 * Addressing: open
29 * - uses less RAM compared to closed addressing (chaining), because
30 * our entries are small (especially in Sets, which tend to contain
31 * the majority of entries in systemd).
32 * Collision resolution: Robin Hood
33 * - tends to equalize displacement of entries from their optimal buckets.
34 * Probe sequence: linear
35 * - though theoretically worse than random probing/uniform hashing/double
36 * hashing, it is good for cache locality.
37 *
38 * References:
39 * Celis, P. 1986. Robin Hood Hashing.
40 * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada.
41 * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
42 * - The results are derived for random probing. Suggests deletion with
43 * tombstones and two mean-centered search methods. None of that works
44 * well for linear probing.
45 *
46 * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies.
47 * ACM Trans. Algorithms 1, 2 (October 2005), 177-213.
48 * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964
49 * http://www.math.uu.se/~svante/papers/sj157.pdf
50 * - Applies to Robin Hood with linear probing. Contains remarks on
51 * the unsuitability of mean-centered search with linear probing.
52 *
53 * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing.
54 * ACM Trans. Algorithms 1, 2 (October 2005), 214-242.
55 * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965
56 * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes
57 * in a successful search), and Janson writes about displacement. C = d + 1.
58 *
59 * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion.
60 * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
61 * - Explanation of backward shift deletion with pictures.
62 *
63 * Khuong, P. 2013. The Other Robin Hood Hashing.
64 * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/
65 * - Short summary of random vs. linear probing, and tombstones vs. backward shift.
66 */
67
68 /*
69 * XXX Ideas for improvement:
70 * For unordered hashmaps, randomize iteration order, similarly to Perl:
71 * http://blog.booking.com/hardening-perls-hash-function.html
72 */
73
74 /* INV_KEEP_FREE = 1 / (1 - max_load_factor)
75 * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */
76 #define INV_KEEP_FREE 5U
77
78 /* Fields common to entries of all hashmap/set types */
79 struct hashmap_base_entry {
80 const void *key;
81 };
82
83 /* Entry types for specific hashmap/set types
84 * hashmap_base_entry must be at the beginning of each entry struct. */
85
86 struct plain_hashmap_entry {
87 struct hashmap_base_entry b;
88 void *value;
89 };
90
91 struct ordered_hashmap_entry {
92 struct plain_hashmap_entry p;
93 unsigned iterate_next, iterate_previous;
94 };
95
96 struct set_entry {
97 struct hashmap_base_entry b;
98 };
99
100 /* In several functions it is advantageous to have the hash table extended
101 * virtually by a couple of additional buckets. We reserve special index values
102 * for these "swap" buckets. */
103 #define _IDX_SWAP_BEGIN (UINT_MAX - 3)
104 #define IDX_PUT (_IDX_SWAP_BEGIN + 0)
105 #define IDX_TMP (_IDX_SWAP_BEGIN + 1)
106 #define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2)
107
108 #define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */
109 #define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */
110
111 assert_cc(IDX_FIRST == _IDX_SWAP_END);
112 assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST);
113
114 /* Storage space for the "swap" buckets.
115 * All entry types can fit into a ordered_hashmap_entry. */
116 struct swap_entries {
117 struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN];
118 };
119
120 /* Distance from Initial Bucket */
121 typedef uint8_t dib_raw_t;
122 #define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */
123 #define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */
124 #define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */
125 #define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */
126
127 #define DIB_FREE UINT_MAX
128
129 #if ENABLE_DEBUG_HASHMAP
130 struct hashmap_debug_info {
131 LIST_FIELDS(struct hashmap_debug_info, debug_list);
132 unsigned max_entries; /* high watermark of n_entries */
133
134 /* who allocated this hashmap */
135 int line;
136 const char *file;
137 const char *func;
138
139 /* fields to detect modification while iterating */
140 unsigned put_count; /* counts puts into the hashmap */
141 unsigned rem_count; /* counts removals from hashmap */
142 unsigned last_rem_idx; /* remembers last removal index */
143 };
144
145 /* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */
146 static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list);
147 static pthread_mutex_t hashmap_debug_list_mutex = PTHREAD_MUTEX_INITIALIZER;
148
149 #define HASHMAP_DEBUG_FIELDS struct hashmap_debug_info debug;
150
151 #else /* !ENABLE_DEBUG_HASHMAP */
152 #define HASHMAP_DEBUG_FIELDS
153 #endif /* ENABLE_DEBUG_HASHMAP */
154
155 enum HashmapType {
156 HASHMAP_TYPE_PLAIN,
157 HASHMAP_TYPE_ORDERED,
158 HASHMAP_TYPE_SET,
159 _HASHMAP_TYPE_MAX
160 };
161
162 struct _packed_ indirect_storage {
163 void *storage; /* where buckets and DIBs are stored */
164 uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */
165
166 unsigned n_entries; /* number of stored entries */
167 unsigned n_buckets; /* number of buckets */
168
169 unsigned idx_lowest_entry; /* Index below which all buckets are free.
170 Makes "while(hashmap_steal_first())" loops
171 O(n) instead of O(n^2) for unordered hashmaps. */
172 uint8_t _pad[3]; /* padding for the whole HashmapBase */
173 /* The bitfields in HashmapBase complete the alignment of the whole thing. */
174 };
175
176 struct direct_storage {
177 /* This gives us 39 bytes on 64bit, or 35 bytes on 32bit.
178 * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64bit,
179 * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32bit. */
180 uint8_t storage[sizeof(struct indirect_storage)];
181 };
182
183 #define DIRECT_BUCKETS(entry_t) \
184 (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t)))
185
186 /* We should be able to store at least one entry directly. */
187 assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1);
188
189 /* We have 3 bits for n_direct_entries. */
190 assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3));
191
192 /* Hashmaps with directly stored entries all use this shared hash key.
193 * It's no big deal if the key is guessed, because there can be only
194 * a handful of directly stored entries in a hashmap. When a hashmap
195 * outgrows direct storage, it gets its own key for indirect storage. */
196 static uint8_t shared_hash_key[HASH_KEY_SIZE];
197 static bool shared_hash_key_initialized;
198
199 /* Fields that all hashmap/set types must have */
200 struct HashmapBase {
201 const struct hash_ops *hash_ops; /* hash and compare ops to use */
202
203 union _packed_ {
204 struct indirect_storage indirect; /* if has_indirect */
205 struct direct_storage direct; /* if !has_indirect */
206 };
207
208 enum HashmapType type:2; /* HASHMAP_TYPE_* */
209 bool has_indirect:1; /* whether indirect storage is used */
210 unsigned n_direct_entries:3; /* Number of entries in direct storage.
211 * Only valid if !has_indirect. */
212 bool from_pool:1; /* whether was allocated from mempool */
213 bool dirty:1; /* whether dirtied since last iterated_cache_get() */
214 bool cached:1; /* whether this hashmap is being cached */
215 HASHMAP_DEBUG_FIELDS /* optional hashmap_debug_info */
216 };
217
218 /* Specific hash types
219 * HashmapBase must be at the beginning of each hashmap struct. */
220
221 struct Hashmap {
222 struct HashmapBase b;
223 };
224
225 struct OrderedHashmap {
226 struct HashmapBase b;
227 unsigned iterate_list_head, iterate_list_tail;
228 };
229
230 struct Set {
231 struct HashmapBase b;
232 };
233
234 typedef struct CacheMem {
235 const void **ptr;
236 size_t n_populated, n_allocated;
237 bool active:1;
238 } CacheMem;
239
240 struct IteratedCache {
241 HashmapBase *hashmap;
242 CacheMem keys, values;
243 };
244
245 DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8);
246 DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8);
247 /* No need for a separate Set pool */
248 assert_cc(sizeof(Hashmap) == sizeof(Set));
249
250 struct hashmap_type_info {
251 size_t head_size;
252 size_t entry_size;
253 struct mempool *mempool;
254 unsigned n_direct_buckets;
255 };
256
257 static const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = {
258 [HASHMAP_TYPE_PLAIN] = {
259 .head_size = sizeof(Hashmap),
260 .entry_size = sizeof(struct plain_hashmap_entry),
261 .mempool = &hashmap_pool,
262 .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry),
263 },
264 [HASHMAP_TYPE_ORDERED] = {
265 .head_size = sizeof(OrderedHashmap),
266 .entry_size = sizeof(struct ordered_hashmap_entry),
267 .mempool = &ordered_hashmap_pool,
268 .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry),
269 },
270 [HASHMAP_TYPE_SET] = {
271 .head_size = sizeof(Set),
272 .entry_size = sizeof(struct set_entry),
273 .mempool = &hashmap_pool,
274 .n_direct_buckets = DIRECT_BUCKETS(struct set_entry),
275 },
276 };
277
278 #if VALGRIND
279 _destructor_ static void cleanup_pools(void) {
280 _cleanup_free_ char *t = NULL;
281 int r;
282
283 /* Be nice to valgrind */
284
285 /* The pool is only allocated by the main thread, but the memory can
286 * be passed to other threads. Let's clean up if we are the main thread
287 * and no other threads are live. */
288 if (!is_main_thread())
289 return;
290
291 r = get_proc_field("/proc/self/status", "Threads", WHITESPACE, &t);
292 if (r < 0 || !streq(t, "1"))
293 return;
294
295 mempool_drop(&hashmap_pool);
296 mempool_drop(&ordered_hashmap_pool);
297 }
298 #endif
299
300 static unsigned n_buckets(HashmapBase *h) {
301 return h->has_indirect ? h->indirect.n_buckets
302 : hashmap_type_info[h->type].n_direct_buckets;
303 }
304
305 static unsigned n_entries(HashmapBase *h) {
306 return h->has_indirect ? h->indirect.n_entries
307 : h->n_direct_entries;
308 }
309
310 static void n_entries_inc(HashmapBase *h) {
311 if (h->has_indirect)
312 h->indirect.n_entries++;
313 else
314 h->n_direct_entries++;
315 }
316
317 static void n_entries_dec(HashmapBase *h) {
318 if (h->has_indirect)
319 h->indirect.n_entries--;
320 else
321 h->n_direct_entries--;
322 }
323
324 static void *storage_ptr(HashmapBase *h) {
325 return h->has_indirect ? h->indirect.storage
326 : h->direct.storage;
327 }
328
329 static uint8_t *hash_key(HashmapBase *h) {
330 return h->has_indirect ? h->indirect.hash_key
331 : shared_hash_key;
332 }
333
334 static unsigned base_bucket_hash(HashmapBase *h, const void *p) {
335 struct siphash state;
336 uint64_t hash;
337
338 siphash24_init(&state, hash_key(h));
339
340 h->hash_ops->hash(p, &state);
341
342 hash = siphash24_finalize(&state);
343
344 return (unsigned) (hash % n_buckets(h));
345 }
346 #define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p)
347
348 static inline void base_set_dirty(HashmapBase *h) {
349 h->dirty = true;
350 }
351 #define hashmap_set_dirty(h) base_set_dirty(HASHMAP_BASE(h))
352
353 static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) {
354 static uint8_t current[HASH_KEY_SIZE];
355 static bool current_initialized = false;
356
357 /* Returns a hash function key to use. In order to keep things
358 * fast we will not generate a new key each time we allocate a
359 * new hash table. Instead, we'll just reuse the most recently
360 * generated one, except if we never generated one or when we
361 * are rehashing an entire hash table because we reached a
362 * fill level */
363
364 if (!current_initialized || !reuse_is_ok) {
365 random_bytes(current, sizeof(current));
366 current_initialized = true;
367 }
368
369 memcpy(hash_key, current, sizeof(current));
370 }
371
372 static struct hashmap_base_entry *bucket_at(HashmapBase *h, unsigned idx) {
373 return (struct hashmap_base_entry*)
374 ((uint8_t*) storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size);
375 }
376
377 static struct plain_hashmap_entry *plain_bucket_at(Hashmap *h, unsigned idx) {
378 return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
379 }
380
381 static struct ordered_hashmap_entry *ordered_bucket_at(OrderedHashmap *h, unsigned idx) {
382 return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
383 }
384
385 static struct set_entry *set_bucket_at(Set *h, unsigned idx) {
386 return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx);
387 }
388
389 static struct ordered_hashmap_entry *bucket_at_swap(struct swap_entries *swap, unsigned idx) {
390 return &swap->e[idx - _IDX_SWAP_BEGIN];
391 }
392
393 /* Returns a pointer to the bucket at index idx.
394 * Understands real indexes and swap indexes, hence "_virtual". */
395 static struct hashmap_base_entry *bucket_at_virtual(HashmapBase *h, struct swap_entries *swap,
396 unsigned idx) {
397 if (idx < _IDX_SWAP_BEGIN)
398 return bucket_at(h, idx);
399
400 if (idx < _IDX_SWAP_END)
401 return &bucket_at_swap(swap, idx)->p.b;
402
403 assert_not_reached("Invalid index");
404 }
405
406 static dib_raw_t *dib_raw_ptr(HashmapBase *h) {
407 return (dib_raw_t*)
408 ((uint8_t*) storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h));
409 }
410
411 static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) {
412 return idx >= from ? idx - from
413 : n_buckets(h) + idx - from;
414 }
415
416 static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) {
417 unsigned initial_bucket;
418
419 if (raw_dib == DIB_RAW_FREE)
420 return DIB_FREE;
421
422 if (_likely_(raw_dib < DIB_RAW_OVERFLOW))
423 return raw_dib;
424
425 /*
426 * Having an overflow DIB value is very unlikely. The hash function
427 * would have to be bad. For example, in a table of size 2^24 filled
428 * to load factor 0.9 the maximum observed DIB is only about 60.
429 * In theory (assuming I used Maxima correctly), for an infinite size
430 * hash table with load factor 0.8 the probability of a given entry
431 * having DIB > 40 is 1.9e-8.
432 * This returns the correct DIB value by recomputing the hash value in
433 * the unlikely case. XXX Hitting this case could be a hint to rehash.
434 */
435 initial_bucket = bucket_hash(h, bucket_at(h, idx)->key);
436 return bucket_distance(h, idx, initial_bucket);
437 }
438
439 static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) {
440 dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE;
441 }
442
443 static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) {
444 dib_raw_t *dibs;
445
446 dibs = dib_raw_ptr(h);
447
448 for ( ; idx < n_buckets(h); idx++)
449 if (dibs[idx] != DIB_RAW_FREE)
450 return idx;
451
452 return IDX_NIL;
453 }
454
455 static void bucket_mark_free(HashmapBase *h, unsigned idx) {
456 memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size);
457 bucket_set_dib(h, idx, DIB_FREE);
458 }
459
460 static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap,
461 unsigned from, unsigned to) {
462 struct hashmap_base_entry *e_from, *e_to;
463
464 assert(from != to);
465
466 e_from = bucket_at_virtual(h, swap, from);
467 e_to = bucket_at_virtual(h, swap, to);
468
469 memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size);
470
471 if (h->type == HASHMAP_TYPE_ORDERED) {
472 OrderedHashmap *lh = (OrderedHashmap*) h;
473 struct ordered_hashmap_entry *le, *le_to;
474
475 le_to = (struct ordered_hashmap_entry*) e_to;
476
477 if (le_to->iterate_next != IDX_NIL) {
478 le = (struct ordered_hashmap_entry*)
479 bucket_at_virtual(h, swap, le_to->iterate_next);
480 le->iterate_previous = to;
481 }
482
483 if (le_to->iterate_previous != IDX_NIL) {
484 le = (struct ordered_hashmap_entry*)
485 bucket_at_virtual(h, swap, le_to->iterate_previous);
486 le->iterate_next = to;
487 }
488
489 if (lh->iterate_list_head == from)
490 lh->iterate_list_head = to;
491 if (lh->iterate_list_tail == from)
492 lh->iterate_list_tail = to;
493 }
494 }
495
496 static unsigned next_idx(HashmapBase *h, unsigned idx) {
497 return (idx + 1U) % n_buckets(h);
498 }
499
500 static unsigned prev_idx(HashmapBase *h, unsigned idx) {
501 return (n_buckets(h) + idx - 1U) % n_buckets(h);
502 }
503
504 static void *entry_value(HashmapBase *h, struct hashmap_base_entry *e) {
505 switch (h->type) {
506
507 case HASHMAP_TYPE_PLAIN:
508 case HASHMAP_TYPE_ORDERED:
509 return ((struct plain_hashmap_entry*)e)->value;
510
511 case HASHMAP_TYPE_SET:
512 return (void*) e->key;
513
514 default:
515 assert_not_reached("Unknown hashmap type");
516 }
517 }
518
519 static void base_remove_entry(HashmapBase *h, unsigned idx) {
520 unsigned left, right, prev, dib;
521 dib_raw_t raw_dib, *dibs;
522
523 dibs = dib_raw_ptr(h);
524 assert(dibs[idx] != DIB_RAW_FREE);
525
526 #if ENABLE_DEBUG_HASHMAP
527 h->debug.rem_count++;
528 h->debug.last_rem_idx = idx;
529 #endif
530
531 left = idx;
532 /* Find the stop bucket ("right"). It is either free or has DIB == 0. */
533 for (right = next_idx(h, left); ; right = next_idx(h, right)) {
534 raw_dib = dibs[right];
535 if (IN_SET(raw_dib, 0, DIB_RAW_FREE))
536 break;
537
538 /* The buckets are not supposed to be all occupied and with DIB > 0.
539 * That would mean we could make everyone better off by shifting them
540 * backward. This scenario is impossible. */
541 assert(left != right);
542 }
543
544 if (h->type == HASHMAP_TYPE_ORDERED) {
545 OrderedHashmap *lh = (OrderedHashmap*) h;
546 struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx);
547
548 if (le->iterate_next != IDX_NIL)
549 ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous;
550 else
551 lh->iterate_list_tail = le->iterate_previous;
552
553 if (le->iterate_previous != IDX_NIL)
554 ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next;
555 else
556 lh->iterate_list_head = le->iterate_next;
557 }
558
559 /* Now shift all buckets in the interval (left, right) one step backwards */
560 for (prev = left, left = next_idx(h, left); left != right;
561 prev = left, left = next_idx(h, left)) {
562 dib = bucket_calculate_dib(h, left, dibs[left]);
563 assert(dib != 0);
564 bucket_move_entry(h, NULL, left, prev);
565 bucket_set_dib(h, prev, dib - 1);
566 }
567
568 bucket_mark_free(h, prev);
569 n_entries_dec(h);
570 base_set_dirty(h);
571 }
572 #define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx)
573
574 static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) {
575 struct ordered_hashmap_entry *e;
576 unsigned idx;
577
578 assert(h);
579 assert(i);
580
581 if (i->idx == IDX_NIL)
582 goto at_end;
583
584 if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL)
585 goto at_end;
586
587 if (i->idx == IDX_FIRST) {
588 idx = h->iterate_list_head;
589 e = ordered_bucket_at(h, idx);
590 } else {
591 idx = i->idx;
592 e = ordered_bucket_at(h, idx);
593 /*
594 * We allow removing the current entry while iterating, but removal may cause
595 * a backward shift. The next entry may thus move one bucket to the left.
596 * To detect when it happens, we remember the key pointer of the entry we were
597 * going to iterate next. If it does not match, there was a backward shift.
598 */
599 if (e->p.b.key != i->next_key) {
600 idx = prev_idx(HASHMAP_BASE(h), idx);
601 e = ordered_bucket_at(h, idx);
602 }
603 assert(e->p.b.key == i->next_key);
604 }
605
606 #if ENABLE_DEBUG_HASHMAP
607 i->prev_idx = idx;
608 #endif
609
610 if (e->iterate_next != IDX_NIL) {
611 struct ordered_hashmap_entry *n;
612 i->idx = e->iterate_next;
613 n = ordered_bucket_at(h, i->idx);
614 i->next_key = n->p.b.key;
615 } else
616 i->idx = IDX_NIL;
617
618 return idx;
619
620 at_end:
621 i->idx = IDX_NIL;
622 return IDX_NIL;
623 }
624
625 static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) {
626 unsigned idx;
627
628 assert(h);
629 assert(i);
630
631 if (i->idx == IDX_NIL)
632 goto at_end;
633
634 if (i->idx == IDX_FIRST) {
635 /* fast forward to the first occupied bucket */
636 if (h->has_indirect) {
637 i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry);
638 h->indirect.idx_lowest_entry = i->idx;
639 } else
640 i->idx = skip_free_buckets(h, 0);
641
642 if (i->idx == IDX_NIL)
643 goto at_end;
644 } else {
645 struct hashmap_base_entry *e;
646
647 assert(i->idx > 0);
648
649 e = bucket_at(h, i->idx);
650 /*
651 * We allow removing the current entry while iterating, but removal may cause
652 * a backward shift. The next entry may thus move one bucket to the left.
653 * To detect when it happens, we remember the key pointer of the entry we were
654 * going to iterate next. If it does not match, there was a backward shift.
655 */
656 if (e->key != i->next_key)
657 e = bucket_at(h, --i->idx);
658
659 assert(e->key == i->next_key);
660 }
661
662 idx = i->idx;
663 #if ENABLE_DEBUG_HASHMAP
664 i->prev_idx = idx;
665 #endif
666
667 i->idx = skip_free_buckets(h, i->idx + 1);
668 if (i->idx != IDX_NIL)
669 i->next_key = bucket_at(h, i->idx)->key;
670 else
671 i->idx = IDX_NIL;
672
673 return idx;
674
675 at_end:
676 i->idx = IDX_NIL;
677 return IDX_NIL;
678 }
679
680 static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) {
681 if (!h) {
682 i->idx = IDX_NIL;
683 return IDX_NIL;
684 }
685
686 #if ENABLE_DEBUG_HASHMAP
687 if (i->idx == IDX_FIRST) {
688 i->put_count = h->debug.put_count;
689 i->rem_count = h->debug.rem_count;
690 } else {
691 /* While iterating, must not add any new entries */
692 assert(i->put_count == h->debug.put_count);
693 /* ... or remove entries other than the current one */
694 assert(i->rem_count == h->debug.rem_count ||
695 (i->rem_count == h->debug.rem_count - 1 &&
696 i->prev_idx == h->debug.last_rem_idx));
697 /* Reset our removals counter */
698 i->rem_count = h->debug.rem_count;
699 }
700 #endif
701
702 return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i)
703 : hashmap_iterate_in_internal_order(h, i);
704 }
705
706 bool internal_hashmap_iterate(HashmapBase *h, Iterator *i, void **value, const void **key) {
707 struct hashmap_base_entry *e;
708 void *data;
709 unsigned idx;
710
711 idx = hashmap_iterate_entry(h, i);
712 if (idx == IDX_NIL) {
713 if (value)
714 *value = NULL;
715 if (key)
716 *key = NULL;
717
718 return false;
719 }
720
721 e = bucket_at(h, idx);
722 data = entry_value(h, e);
723 if (value)
724 *value = data;
725 if (key)
726 *key = e->key;
727
728 return true;
729 }
730
731 bool set_iterate(Set *s, Iterator *i, void **value) {
732 return internal_hashmap_iterate(HASHMAP_BASE(s), i, value, NULL);
733 }
734
735 #define HASHMAP_FOREACH_IDX(idx, h, i) \
736 for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \
737 (idx != IDX_NIL); \
738 (idx) = hashmap_iterate_entry((h), &(i)))
739
740 IteratedCache *internal_hashmap_iterated_cache_new(HashmapBase *h) {
741 IteratedCache *cache;
742
743 assert(h);
744 assert(!h->cached);
745
746 if (h->cached)
747 return NULL;
748
749 cache = new0(IteratedCache, 1);
750 if (!cache)
751 return NULL;
752
753 cache->hashmap = h;
754 h->cached = true;
755
756 return cache;
757 }
758
759 static void reset_direct_storage(HashmapBase *h) {
760 const struct hashmap_type_info *hi = &hashmap_type_info[h->type];
761 void *p;
762
763 assert(!h->has_indirect);
764
765 p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets);
766 memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets);
767 }
768
769 static struct HashmapBase *hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type HASHMAP_DEBUG_PARAMS) {
770 HashmapBase *h;
771 const struct hashmap_type_info *hi = &hashmap_type_info[type];
772 bool up;
773
774 up = mempool_enabled();
775
776 h = up ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size);
777 if (!h)
778 return NULL;
779
780 h->type = type;
781 h->from_pool = up;
782 h->hash_ops = hash_ops ? hash_ops : &trivial_hash_ops;
783
784 if (type == HASHMAP_TYPE_ORDERED) {
785 OrderedHashmap *lh = (OrderedHashmap*)h;
786 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
787 }
788
789 reset_direct_storage(h);
790
791 if (!shared_hash_key_initialized) {
792 random_bytes(shared_hash_key, sizeof(shared_hash_key));
793 shared_hash_key_initialized= true;
794 }
795
796 #if ENABLE_DEBUG_HASHMAP
797 h->debug.func = func;
798 h->debug.file = file;
799 h->debug.line = line;
800 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
801 LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug);
802 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
803 #endif
804
805 return h;
806 }
807
808 Hashmap *internal_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
809 return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
810 }
811
812 OrderedHashmap *internal_ordered_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
813 return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
814 }
815
816 Set *internal_set_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
817 return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
818 }
819
820 static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops,
821 enum HashmapType type HASHMAP_DEBUG_PARAMS) {
822 HashmapBase *q;
823
824 assert(h);
825
826 if (*h)
827 return 0;
828
829 q = hashmap_base_new(hash_ops, type HASHMAP_DEBUG_PASS_ARGS);
830 if (!q)
831 return -ENOMEM;
832
833 *h = q;
834 return 0;
835 }
836
837 int internal_hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
838 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
839 }
840
841 int internal_ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
842 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
843 }
844
845 int internal_set_ensure_allocated(Set **s, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
846 return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
847 }
848
849 static void hashmap_free_no_clear(HashmapBase *h) {
850 assert(!h->has_indirect);
851 assert(!h->n_direct_entries);
852
853 #if ENABLE_DEBUG_HASHMAP
854 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
855 LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug);
856 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
857 #endif
858
859 if (h->from_pool) {
860 /* Ensure that the object didn't get migrated between threads. */
861 assert_se(is_main_thread());
862 mempool_free_tile(hashmap_type_info[h->type].mempool, h);
863 } else
864 free(h);
865 }
866
867 HashmapBase *internal_hashmap_free(HashmapBase *h) {
868
869 /* Free the hashmap, but nothing in it */
870
871 if (h) {
872 internal_hashmap_clear(h);
873 hashmap_free_no_clear(h);
874 }
875
876 return NULL;
877 }
878
879 HashmapBase *internal_hashmap_free_free(HashmapBase *h) {
880
881 /* Free the hashmap and all data objects in it, but not the
882 * keys */
883
884 if (h) {
885 internal_hashmap_clear_free(h);
886 hashmap_free_no_clear(h);
887 }
888
889 return NULL;
890 }
891
892 Hashmap *hashmap_free_free_free(Hashmap *h) {
893
894 /* Free the hashmap and all data and key objects in it */
895
896 if (h) {
897 hashmap_clear_free_free(h);
898 hashmap_free_no_clear(HASHMAP_BASE(h));
899 }
900
901 return NULL;
902 }
903
904 void internal_hashmap_clear(HashmapBase *h) {
905 if (!h)
906 return;
907
908 if (h->has_indirect) {
909 free(h->indirect.storage);
910 h->has_indirect = false;
911 }
912
913 h->n_direct_entries = 0;
914 reset_direct_storage(h);
915
916 if (h->type == HASHMAP_TYPE_ORDERED) {
917 OrderedHashmap *lh = (OrderedHashmap*) h;
918 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
919 }
920
921 base_set_dirty(h);
922 }
923
924 void internal_hashmap_clear_free(HashmapBase *h) {
925 unsigned idx;
926
927 if (!h)
928 return;
929
930 for (idx = skip_free_buckets(h, 0); idx != IDX_NIL;
931 idx = skip_free_buckets(h, idx + 1))
932 free(entry_value(h, bucket_at(h, idx)));
933
934 internal_hashmap_clear(h);
935 }
936
937 void hashmap_clear_free_free(Hashmap *h) {
938 unsigned idx;
939
940 if (!h)
941 return;
942
943 for (idx = skip_free_buckets(HASHMAP_BASE(h), 0); idx != IDX_NIL;
944 idx = skip_free_buckets(HASHMAP_BASE(h), idx + 1)) {
945 struct plain_hashmap_entry *e = plain_bucket_at(h, idx);
946 free((void*)e->b.key);
947 free(e->value);
948 }
949
950 internal_hashmap_clear(HASHMAP_BASE(h));
951 }
952
953 static int resize_buckets(HashmapBase *h, unsigned entries_add);
954
955 /*
956 * Finds an empty bucket to put an entry into, starting the scan at 'idx'.
957 * Performs Robin Hood swaps as it goes. The entry to put must be placed
958 * by the caller into swap slot IDX_PUT.
959 * If used for in-place resizing, may leave a displaced entry in swap slot
960 * IDX_PUT. Caller must rehash it next.
961 * Returns: true if it left a displaced entry to rehash next in IDX_PUT,
962 * false otherwise.
963 */
964 static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx,
965 struct swap_entries *swap) {
966 dib_raw_t raw_dib, *dibs;
967 unsigned dib, distance;
968
969 #if ENABLE_DEBUG_HASHMAP
970 h->debug.put_count++;
971 #endif
972
973 dibs = dib_raw_ptr(h);
974
975 for (distance = 0; ; distance++) {
976 raw_dib = dibs[idx];
977 if (IN_SET(raw_dib, DIB_RAW_FREE, DIB_RAW_REHASH)) {
978 if (raw_dib == DIB_RAW_REHASH)
979 bucket_move_entry(h, swap, idx, IDX_TMP);
980
981 if (h->has_indirect && h->indirect.idx_lowest_entry > idx)
982 h->indirect.idx_lowest_entry = idx;
983
984 bucket_set_dib(h, idx, distance);
985 bucket_move_entry(h, swap, IDX_PUT, idx);
986 if (raw_dib == DIB_RAW_REHASH) {
987 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
988 return true;
989 }
990
991 return false;
992 }
993
994 dib = bucket_calculate_dib(h, idx, raw_dib);
995
996 if (dib < distance) {
997 /* Found a wealthier entry. Go Robin Hood! */
998 bucket_set_dib(h, idx, distance);
999
1000 /* swap the entries */
1001 bucket_move_entry(h, swap, idx, IDX_TMP);
1002 bucket_move_entry(h, swap, IDX_PUT, idx);
1003 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
1004
1005 distance = dib;
1006 }
1007
1008 idx = next_idx(h, idx);
1009 }
1010 }
1011
1012 /*
1013 * Puts an entry into a hashmap, boldly - no check whether key already exists.
1014 * The caller must place the entry (only its key and value, not link indexes)
1015 * in swap slot IDX_PUT.
1016 * Caller must ensure: the key does not exist yet in the hashmap.
1017 * that resize is not needed if !may_resize.
1018 * Returns: 1 if entry was put successfully.
1019 * -ENOMEM if may_resize==true and resize failed with -ENOMEM.
1020 * Cannot return -ENOMEM if !may_resize.
1021 */
1022 static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx,
1023 struct swap_entries *swap, bool may_resize) {
1024 struct ordered_hashmap_entry *new_entry;
1025 int r;
1026
1027 assert(idx < n_buckets(h));
1028
1029 new_entry = bucket_at_swap(swap, IDX_PUT);
1030
1031 if (may_resize) {
1032 r = resize_buckets(h, 1);
1033 if (r < 0)
1034 return r;
1035 if (r > 0)
1036 idx = bucket_hash(h, new_entry->p.b.key);
1037 }
1038 assert(n_entries(h) < n_buckets(h));
1039
1040 if (h->type == HASHMAP_TYPE_ORDERED) {
1041 OrderedHashmap *lh = (OrderedHashmap*) h;
1042
1043 new_entry->iterate_next = IDX_NIL;
1044 new_entry->iterate_previous = lh->iterate_list_tail;
1045
1046 if (lh->iterate_list_tail != IDX_NIL) {
1047 struct ordered_hashmap_entry *old_tail;
1048
1049 old_tail = ordered_bucket_at(lh, lh->iterate_list_tail);
1050 assert(old_tail->iterate_next == IDX_NIL);
1051 old_tail->iterate_next = IDX_PUT;
1052 }
1053
1054 lh->iterate_list_tail = IDX_PUT;
1055 if (lh->iterate_list_head == IDX_NIL)
1056 lh->iterate_list_head = IDX_PUT;
1057 }
1058
1059 assert_se(hashmap_put_robin_hood(h, idx, swap) == false);
1060
1061 n_entries_inc(h);
1062 #if ENABLE_DEBUG_HASHMAP
1063 h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h));
1064 #endif
1065
1066 base_set_dirty(h);
1067
1068 return 1;
1069 }
1070 #define hashmap_put_boldly(h, idx, swap, may_resize) \
1071 hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize)
1072
1073 /*
1074 * Returns 0 if resize is not needed.
1075 * 1 if successfully resized.
1076 * -ENOMEM on allocation failure.
1077 */
1078 static int resize_buckets(HashmapBase *h, unsigned entries_add) {
1079 struct swap_entries swap;
1080 void *new_storage;
1081 dib_raw_t *old_dibs, *new_dibs;
1082 const struct hashmap_type_info *hi;
1083 unsigned idx, optimal_idx;
1084 unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries;
1085 uint8_t new_shift;
1086 bool rehash_next;
1087
1088 assert(h);
1089
1090 hi = &hashmap_type_info[h->type];
1091 new_n_entries = n_entries(h) + entries_add;
1092
1093 /* overflow? */
1094 if (_unlikely_(new_n_entries < entries_add))
1095 return -ENOMEM;
1096
1097 /* For direct storage we allow 100% load, because it's tiny. */
1098 if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets)
1099 return 0;
1100
1101 /*
1102 * Load factor = n/m = 1 - (1/INV_KEEP_FREE).
1103 * From it follows: m = n + n/(INV_KEEP_FREE - 1)
1104 */
1105 new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1);
1106 /* overflow? */
1107 if (_unlikely_(new_n_buckets < new_n_entries))
1108 return -ENOMEM;
1109
1110 if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t))))
1111 return -ENOMEM;
1112
1113 old_n_buckets = n_buckets(h);
1114
1115 if (_likely_(new_n_buckets <= old_n_buckets))
1116 return 0;
1117
1118 new_shift = log2u_round_up(MAX(
1119 new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)),
1120 2 * sizeof(struct direct_storage)));
1121
1122 /* Realloc storage (buckets and DIB array). */
1123 new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL,
1124 1U << new_shift);
1125 if (!new_storage)
1126 return -ENOMEM;
1127
1128 /* Must upgrade direct to indirect storage. */
1129 if (!h->has_indirect) {
1130 memcpy(new_storage, h->direct.storage,
1131 old_n_buckets * (hi->entry_size + sizeof(dib_raw_t)));
1132 h->indirect.n_entries = h->n_direct_entries;
1133 h->indirect.idx_lowest_entry = 0;
1134 h->n_direct_entries = 0;
1135 }
1136
1137 /* Get a new hash key. If we've just upgraded to indirect storage,
1138 * allow reusing a previously generated key. It's still a different key
1139 * from the shared one that we used for direct storage. */
1140 get_hash_key(h->indirect.hash_key, !h->has_indirect);
1141
1142 h->has_indirect = true;
1143 h->indirect.storage = new_storage;
1144 h->indirect.n_buckets = (1U << new_shift) /
1145 (hi->entry_size + sizeof(dib_raw_t));
1146
1147 old_dibs = (dib_raw_t*)((uint8_t*) new_storage + hi->entry_size * old_n_buckets);
1148 new_dibs = dib_raw_ptr(h);
1149
1150 /*
1151 * Move the DIB array to the new place, replacing valid DIB values with
1152 * DIB_RAW_REHASH to indicate all of the used buckets need rehashing.
1153 * Note: Overlap is not possible, because we have at least doubled the
1154 * number of buckets and dib_raw_t is smaller than any entry type.
1155 */
1156 for (idx = 0; idx < old_n_buckets; idx++) {
1157 assert(old_dibs[idx] != DIB_RAW_REHASH);
1158 new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE
1159 : DIB_RAW_REHASH;
1160 }
1161
1162 /* Zero the area of newly added entries (including the old DIB area) */
1163 memzero(bucket_at(h, old_n_buckets),
1164 (n_buckets(h) - old_n_buckets) * hi->entry_size);
1165
1166 /* The upper half of the new DIB array needs initialization */
1167 memset(&new_dibs[old_n_buckets], DIB_RAW_INIT,
1168 (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t));
1169
1170 /* Rehash entries that need it */
1171 n_rehashed = 0;
1172 for (idx = 0; idx < old_n_buckets; idx++) {
1173 if (new_dibs[idx] != DIB_RAW_REHASH)
1174 continue;
1175
1176 optimal_idx = bucket_hash(h, bucket_at(h, idx)->key);
1177
1178 /*
1179 * Not much to do if by luck the entry hashes to its current
1180 * location. Just set its DIB.
1181 */
1182 if (optimal_idx == idx) {
1183 new_dibs[idx] = 0;
1184 n_rehashed++;
1185 continue;
1186 }
1187
1188 new_dibs[idx] = DIB_RAW_FREE;
1189 bucket_move_entry(h, &swap, idx, IDX_PUT);
1190 /* bucket_move_entry does not clear the source */
1191 memzero(bucket_at(h, idx), hi->entry_size);
1192
1193 do {
1194 /*
1195 * Find the new bucket for the current entry. This may make
1196 * another entry homeless and load it into IDX_PUT.
1197 */
1198 rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap);
1199 n_rehashed++;
1200
1201 /* Did the current entry displace another one? */
1202 if (rehash_next)
1203 optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key);
1204 } while (rehash_next);
1205 }
1206
1207 assert(n_rehashed == n_entries(h));
1208
1209 return 1;
1210 }
1211
1212 /*
1213 * Finds an entry with a matching key
1214 * Returns: index of the found entry, or IDX_NIL if not found.
1215 */
1216 static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) {
1217 struct hashmap_base_entry *e;
1218 unsigned dib, distance;
1219 dib_raw_t *dibs = dib_raw_ptr(h);
1220
1221 assert(idx < n_buckets(h));
1222
1223 for (distance = 0; ; distance++) {
1224 if (dibs[idx] == DIB_RAW_FREE)
1225 return IDX_NIL;
1226
1227 dib = bucket_calculate_dib(h, idx, dibs[idx]);
1228
1229 if (dib < distance)
1230 return IDX_NIL;
1231 if (dib == distance) {
1232 e = bucket_at(h, idx);
1233 if (h->hash_ops->compare(e->key, key) == 0)
1234 return idx;
1235 }
1236
1237 idx = next_idx(h, idx);
1238 }
1239 }
1240 #define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key)
1241
1242 int hashmap_put(Hashmap *h, const void *key, void *value) {
1243 struct swap_entries swap;
1244 struct plain_hashmap_entry *e;
1245 unsigned hash, idx;
1246
1247 assert(h);
1248
1249 hash = bucket_hash(h, key);
1250 idx = bucket_scan(h, hash, key);
1251 if (idx != IDX_NIL) {
1252 e = plain_bucket_at(h, idx);
1253 if (e->value == value)
1254 return 0;
1255 return -EEXIST;
1256 }
1257
1258 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1259 e->b.key = key;
1260 e->value = value;
1261 return hashmap_put_boldly(h, hash, &swap, true);
1262 }
1263
1264 int set_put(Set *s, const void *key) {
1265 struct swap_entries swap;
1266 struct hashmap_base_entry *e;
1267 unsigned hash, idx;
1268
1269 assert(s);
1270
1271 hash = bucket_hash(s, key);
1272 idx = bucket_scan(s, hash, key);
1273 if (idx != IDX_NIL)
1274 return 0;
1275
1276 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1277 e->key = key;
1278 return hashmap_put_boldly(s, hash, &swap, true);
1279 }
1280
1281 int hashmap_replace(Hashmap *h, const void *key, void *value) {
1282 struct swap_entries swap;
1283 struct plain_hashmap_entry *e;
1284 unsigned hash, idx;
1285
1286 assert(h);
1287
1288 hash = bucket_hash(h, key);
1289 idx = bucket_scan(h, hash, key);
1290 if (idx != IDX_NIL) {
1291 e = plain_bucket_at(h, idx);
1292 #if ENABLE_DEBUG_HASHMAP
1293 /* Although the key is equal, the key pointer may have changed,
1294 * and this would break our assumption for iterating. So count
1295 * this operation as incompatible with iteration. */
1296 if (e->b.key != key) {
1297 h->b.debug.put_count++;
1298 h->b.debug.rem_count++;
1299 h->b.debug.last_rem_idx = idx;
1300 }
1301 #endif
1302 e->b.key = key;
1303 e->value = value;
1304 hashmap_set_dirty(h);
1305
1306 return 0;
1307 }
1308
1309 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1310 e->b.key = key;
1311 e->value = value;
1312 return hashmap_put_boldly(h, hash, &swap, true);
1313 }
1314
1315 int hashmap_update(Hashmap *h, const void *key, void *value) {
1316 struct plain_hashmap_entry *e;
1317 unsigned hash, idx;
1318
1319 assert(h);
1320
1321 hash = bucket_hash(h, key);
1322 idx = bucket_scan(h, hash, key);
1323 if (idx == IDX_NIL)
1324 return -ENOENT;
1325
1326 e = plain_bucket_at(h, idx);
1327 e->value = value;
1328 hashmap_set_dirty(h);
1329
1330 return 0;
1331 }
1332
1333 void *internal_hashmap_get(HashmapBase *h, const void *key) {
1334 struct hashmap_base_entry *e;
1335 unsigned hash, idx;
1336
1337 if (!h)
1338 return NULL;
1339
1340 hash = bucket_hash(h, key);
1341 idx = bucket_scan(h, hash, key);
1342 if (idx == IDX_NIL)
1343 return NULL;
1344
1345 e = bucket_at(h, idx);
1346 return entry_value(h, e);
1347 }
1348
1349 void *hashmap_get2(Hashmap *h, const void *key, void **key2) {
1350 struct plain_hashmap_entry *e;
1351 unsigned hash, idx;
1352
1353 if (!h)
1354 return NULL;
1355
1356 hash = bucket_hash(h, key);
1357 idx = bucket_scan(h, hash, key);
1358 if (idx == IDX_NIL)
1359 return NULL;
1360
1361 e = plain_bucket_at(h, idx);
1362 if (key2)
1363 *key2 = (void*) e->b.key;
1364
1365 return e->value;
1366 }
1367
1368 bool internal_hashmap_contains(HashmapBase *h, const void *key) {
1369 unsigned hash;
1370
1371 if (!h)
1372 return false;
1373
1374 hash = bucket_hash(h, key);
1375 return bucket_scan(h, hash, key) != IDX_NIL;
1376 }
1377
1378 void *internal_hashmap_remove(HashmapBase *h, const void *key) {
1379 struct hashmap_base_entry *e;
1380 unsigned hash, idx;
1381 void *data;
1382
1383 if (!h)
1384 return NULL;
1385
1386 hash = bucket_hash(h, key);
1387 idx = bucket_scan(h, hash, key);
1388 if (idx == IDX_NIL)
1389 return NULL;
1390
1391 e = bucket_at(h, idx);
1392 data = entry_value(h, e);
1393 remove_entry(h, idx);
1394
1395 return data;
1396 }
1397
1398 void *hashmap_remove2(Hashmap *h, const void *key, void **rkey) {
1399 struct plain_hashmap_entry *e;
1400 unsigned hash, idx;
1401 void *data;
1402
1403 if (!h) {
1404 if (rkey)
1405 *rkey = NULL;
1406 return NULL;
1407 }
1408
1409 hash = bucket_hash(h, key);
1410 idx = bucket_scan(h, hash, key);
1411 if (idx == IDX_NIL) {
1412 if (rkey)
1413 *rkey = NULL;
1414 return NULL;
1415 }
1416
1417 e = plain_bucket_at(h, idx);
1418 data = e->value;
1419 if (rkey)
1420 *rkey = (void*) e->b.key;
1421
1422 remove_entry(h, idx);
1423
1424 return data;
1425 }
1426
1427 int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) {
1428 struct swap_entries swap;
1429 struct plain_hashmap_entry *e;
1430 unsigned old_hash, new_hash, idx;
1431
1432 if (!h)
1433 return -ENOENT;
1434
1435 old_hash = bucket_hash(h, old_key);
1436 idx = bucket_scan(h, old_hash, old_key);
1437 if (idx == IDX_NIL)
1438 return -ENOENT;
1439
1440 new_hash = bucket_hash(h, new_key);
1441 if (bucket_scan(h, new_hash, new_key) != IDX_NIL)
1442 return -EEXIST;
1443
1444 remove_entry(h, idx);
1445
1446 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1447 e->b.key = new_key;
1448 e->value = value;
1449 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1450
1451 return 0;
1452 }
1453
1454 int set_remove_and_put(Set *s, const void *old_key, const void *new_key) {
1455 struct swap_entries swap;
1456 struct hashmap_base_entry *e;
1457 unsigned old_hash, new_hash, idx;
1458
1459 if (!s)
1460 return -ENOENT;
1461
1462 old_hash = bucket_hash(s, old_key);
1463 idx = bucket_scan(s, old_hash, old_key);
1464 if (idx == IDX_NIL)
1465 return -ENOENT;
1466
1467 new_hash = bucket_hash(s, new_key);
1468 if (bucket_scan(s, new_hash, new_key) != IDX_NIL)
1469 return -EEXIST;
1470
1471 remove_entry(s, idx);
1472
1473 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1474 e->key = new_key;
1475 assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1);
1476
1477 return 0;
1478 }
1479
1480 int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) {
1481 struct swap_entries swap;
1482 struct plain_hashmap_entry *e;
1483 unsigned old_hash, new_hash, idx_old, idx_new;
1484
1485 if (!h)
1486 return -ENOENT;
1487
1488 old_hash = bucket_hash(h, old_key);
1489 idx_old = bucket_scan(h, old_hash, old_key);
1490 if (idx_old == IDX_NIL)
1491 return -ENOENT;
1492
1493 old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key;
1494
1495 new_hash = bucket_hash(h, new_key);
1496 idx_new = bucket_scan(h, new_hash, new_key);
1497 if (idx_new != IDX_NIL)
1498 if (idx_old != idx_new) {
1499 remove_entry(h, idx_new);
1500 /* Compensate for a possible backward shift. */
1501 if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key)
1502 idx_old = prev_idx(HASHMAP_BASE(h), idx_old);
1503 assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key);
1504 }
1505
1506 remove_entry(h, idx_old);
1507
1508 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1509 e->b.key = new_key;
1510 e->value = value;
1511 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1512
1513 return 0;
1514 }
1515
1516 void *hashmap_remove_value(Hashmap *h, const void *key, void *value) {
1517 struct plain_hashmap_entry *e;
1518 unsigned hash, idx;
1519
1520 if (!h)
1521 return NULL;
1522
1523 hash = bucket_hash(h, key);
1524 idx = bucket_scan(h, hash, key);
1525 if (idx == IDX_NIL)
1526 return NULL;
1527
1528 e = plain_bucket_at(h, idx);
1529 if (e->value != value)
1530 return NULL;
1531
1532 remove_entry(h, idx);
1533
1534 return value;
1535 }
1536
1537 static unsigned find_first_entry(HashmapBase *h) {
1538 Iterator i = ITERATOR_FIRST;
1539
1540 if (!h || !n_entries(h))
1541 return IDX_NIL;
1542
1543 return hashmap_iterate_entry(h, &i);
1544 }
1545
1546 void *internal_hashmap_first_key_and_value(HashmapBase *h, bool remove, void **ret_key) {
1547 struct hashmap_base_entry *e;
1548 void *key, *data;
1549 unsigned idx;
1550
1551 idx = find_first_entry(h);
1552 if (idx == IDX_NIL)
1553 return NULL;
1554
1555 e = bucket_at(h, idx);
1556 key = (void*) e->key;
1557 data = entry_value(h, e);
1558
1559 if (remove)
1560 remove_entry(h, idx);
1561
1562 if (ret_key)
1563 *ret_key = key;
1564
1565 return data;
1566 }
1567
1568 unsigned internal_hashmap_size(HashmapBase *h) {
1569
1570 if (!h)
1571 return 0;
1572
1573 return n_entries(h);
1574 }
1575
1576 unsigned internal_hashmap_buckets(HashmapBase *h) {
1577
1578 if (!h)
1579 return 0;
1580
1581 return n_buckets(h);
1582 }
1583
1584 int internal_hashmap_merge(Hashmap *h, Hashmap *other) {
1585 Iterator i;
1586 unsigned idx;
1587
1588 assert(h);
1589
1590 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1591 struct plain_hashmap_entry *pe = plain_bucket_at(other, idx);
1592 int r;
1593
1594 r = hashmap_put(h, pe->b.key, pe->value);
1595 if (r < 0 && r != -EEXIST)
1596 return r;
1597 }
1598
1599 return 0;
1600 }
1601
1602 int set_merge(Set *s, Set *other) {
1603 Iterator i;
1604 unsigned idx;
1605
1606 assert(s);
1607
1608 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1609 struct set_entry *se = set_bucket_at(other, idx);
1610 int r;
1611
1612 r = set_put(s, se->b.key);
1613 if (r < 0)
1614 return r;
1615 }
1616
1617 return 0;
1618 }
1619
1620 int internal_hashmap_reserve(HashmapBase *h, unsigned entries_add) {
1621 int r;
1622
1623 assert(h);
1624
1625 r = resize_buckets(h, entries_add);
1626 if (r < 0)
1627 return r;
1628
1629 return 0;
1630 }
1631
1632 /*
1633 * The same as hashmap_merge(), but every new item from other is moved to h.
1634 * Keys already in h are skipped and stay in other.
1635 * Returns: 0 on success.
1636 * -ENOMEM on alloc failure, in which case no move has been done.
1637 */
1638 int internal_hashmap_move(HashmapBase *h, HashmapBase *other) {
1639 struct swap_entries swap;
1640 struct hashmap_base_entry *e, *n;
1641 Iterator i;
1642 unsigned idx;
1643 int r;
1644
1645 assert(h);
1646
1647 if (!other)
1648 return 0;
1649
1650 assert(other->type == h->type);
1651
1652 /*
1653 * This reserves buckets for the worst case, where none of other's
1654 * entries are yet present in h. This is preferable to risking
1655 * an allocation failure in the middle of the moving and having to
1656 * rollback or return a partial result.
1657 */
1658 r = resize_buckets(h, n_entries(other));
1659 if (r < 0)
1660 return r;
1661
1662 HASHMAP_FOREACH_IDX(idx, other, i) {
1663 unsigned h_hash;
1664
1665 e = bucket_at(other, idx);
1666 h_hash = bucket_hash(h, e->key);
1667 if (bucket_scan(h, h_hash, e->key) != IDX_NIL)
1668 continue;
1669
1670 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1671 n->key = e->key;
1672 if (h->type != HASHMAP_TYPE_SET)
1673 ((struct plain_hashmap_entry*) n)->value =
1674 ((struct plain_hashmap_entry*) e)->value;
1675 assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1);
1676
1677 remove_entry(other, idx);
1678 }
1679
1680 return 0;
1681 }
1682
1683 int internal_hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) {
1684 struct swap_entries swap;
1685 unsigned h_hash, other_hash, idx;
1686 struct hashmap_base_entry *e, *n;
1687 int r;
1688
1689 assert(h);
1690
1691 h_hash = bucket_hash(h, key);
1692 if (bucket_scan(h, h_hash, key) != IDX_NIL)
1693 return -EEXIST;
1694
1695 if (!other)
1696 return -ENOENT;
1697
1698 assert(other->type == h->type);
1699
1700 other_hash = bucket_hash(other, key);
1701 idx = bucket_scan(other, other_hash, key);
1702 if (idx == IDX_NIL)
1703 return -ENOENT;
1704
1705 e = bucket_at(other, idx);
1706
1707 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1708 n->key = e->key;
1709 if (h->type != HASHMAP_TYPE_SET)
1710 ((struct plain_hashmap_entry*) n)->value =
1711 ((struct plain_hashmap_entry*) e)->value;
1712 r = hashmap_put_boldly(h, h_hash, &swap, true);
1713 if (r < 0)
1714 return r;
1715
1716 remove_entry(other, idx);
1717 return 0;
1718 }
1719
1720 HashmapBase *internal_hashmap_copy(HashmapBase *h) {
1721 HashmapBase *copy;
1722 int r;
1723
1724 assert(h);
1725
1726 copy = hashmap_base_new(h->hash_ops, h->type HASHMAP_DEBUG_SRC_ARGS);
1727 if (!copy)
1728 return NULL;
1729
1730 switch (h->type) {
1731 case HASHMAP_TYPE_PLAIN:
1732 case HASHMAP_TYPE_ORDERED:
1733 r = hashmap_merge((Hashmap*)copy, (Hashmap*)h);
1734 break;
1735 case HASHMAP_TYPE_SET:
1736 r = set_merge((Set*)copy, (Set*)h);
1737 break;
1738 default:
1739 assert_not_reached("Unknown hashmap type");
1740 }
1741
1742 if (r < 0) {
1743 internal_hashmap_free(copy);
1744 return NULL;
1745 }
1746
1747 return copy;
1748 }
1749
1750 char **internal_hashmap_get_strv(HashmapBase *h) {
1751 char **sv;
1752 Iterator i;
1753 unsigned idx, n;
1754
1755 sv = new(char*, n_entries(h)+1);
1756 if (!sv)
1757 return NULL;
1758
1759 n = 0;
1760 HASHMAP_FOREACH_IDX(idx, h, i)
1761 sv[n++] = entry_value(h, bucket_at(h, idx));
1762 sv[n] = NULL;
1763
1764 return sv;
1765 }
1766
1767 void *ordered_hashmap_next(OrderedHashmap *h, const void *key) {
1768 struct ordered_hashmap_entry *e;
1769 unsigned hash, idx;
1770
1771 if (!h)
1772 return NULL;
1773
1774 hash = bucket_hash(h, key);
1775 idx = bucket_scan(h, hash, key);
1776 if (idx == IDX_NIL)
1777 return NULL;
1778
1779 e = ordered_bucket_at(h, idx);
1780 if (e->iterate_next == IDX_NIL)
1781 return NULL;
1782 return ordered_bucket_at(h, e->iterate_next)->p.value;
1783 }
1784
1785 int set_consume(Set *s, void *value) {
1786 int r;
1787
1788 assert(s);
1789 assert(value);
1790
1791 r = set_put(s, value);
1792 if (r <= 0)
1793 free(value);
1794
1795 return r;
1796 }
1797
1798 int set_put_strdup(Set *s, const char *p) {
1799 char *c;
1800
1801 assert(s);
1802 assert(p);
1803
1804 if (set_contains(s, (char*) p))
1805 return 0;
1806
1807 c = strdup(p);
1808 if (!c)
1809 return -ENOMEM;
1810
1811 return set_consume(s, c);
1812 }
1813
1814 int set_put_strdupv(Set *s, char **l) {
1815 int n = 0, r;
1816 char **i;
1817
1818 assert(s);
1819
1820 STRV_FOREACH(i, l) {
1821 r = set_put_strdup(s, *i);
1822 if (r < 0)
1823 return r;
1824
1825 n += r;
1826 }
1827
1828 return n;
1829 }
1830
1831 int set_put_strsplit(Set *s, const char *v, const char *separators, ExtractFlags flags) {
1832 const char *p = v;
1833 int r;
1834
1835 assert(s);
1836 assert(v);
1837
1838 for (;;) {
1839 char *word;
1840
1841 r = extract_first_word(&p, &word, separators, flags);
1842 if (r <= 0)
1843 return r;
1844
1845 r = set_consume(s, word);
1846 if (r < 0)
1847 return r;
1848 }
1849 }
1850
1851 /* expand the cachemem if needed, return true if newly (re)activated. */
1852 static int cachemem_maintain(CacheMem *mem, unsigned size) {
1853 assert(mem);
1854
1855 if (!GREEDY_REALLOC(mem->ptr, mem->n_allocated, size)) {
1856 if (size > 0)
1857 return -ENOMEM;
1858 }
1859
1860 if (!mem->active) {
1861 mem->active = true;
1862 return true;
1863 }
1864
1865 return false;
1866 }
1867
1868 int iterated_cache_get(IteratedCache *cache, const void ***res_keys, const void ***res_values, unsigned *res_n_entries) {
1869 bool sync_keys = false, sync_values = false;
1870 unsigned size;
1871 int r;
1872
1873 assert(cache);
1874 assert(cache->hashmap);
1875
1876 size = n_entries(cache->hashmap);
1877
1878 if (res_keys) {
1879 r = cachemem_maintain(&cache->keys, size);
1880 if (r < 0)
1881 return r;
1882
1883 sync_keys = r;
1884 } else
1885 cache->keys.active = false;
1886
1887 if (res_values) {
1888 r = cachemem_maintain(&cache->values, size);
1889 if (r < 0)
1890 return r;
1891
1892 sync_values = r;
1893 } else
1894 cache->values.active = false;
1895
1896 if (cache->hashmap->dirty) {
1897 if (cache->keys.active)
1898 sync_keys = true;
1899 if (cache->values.active)
1900 sync_values = true;
1901
1902 cache->hashmap->dirty = false;
1903 }
1904
1905 if (sync_keys || sync_values) {
1906 unsigned i, idx;
1907 Iterator iter;
1908
1909 i = 0;
1910 HASHMAP_FOREACH_IDX(idx, cache->hashmap, iter) {
1911 struct hashmap_base_entry *e;
1912
1913 e = bucket_at(cache->hashmap, idx);
1914
1915 if (sync_keys)
1916 cache->keys.ptr[i] = e->key;
1917 if (sync_values)
1918 cache->values.ptr[i] = entry_value(cache->hashmap, e);
1919 i++;
1920 }
1921 }
1922
1923 if (res_keys)
1924 *res_keys = cache->keys.ptr;
1925 if (res_values)
1926 *res_values = cache->values.ptr;
1927 if (res_n_entries)
1928 *res_n_entries = size;
1929
1930 return 0;
1931 }
1932
1933 IteratedCache *iterated_cache_free(IteratedCache *cache) {
1934 if (cache) {
1935 free(cache->keys.ptr);
1936 free(cache->values.ptr);
1937 free(cache);
1938 }
1939
1940 return NULL;
1941 }