]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/process-util.c
cgroup-util: add mask definitions for sets of controllers supported by cgroupsv1...
[thirdparty/systemd.git] / src / basic / process-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <ctype.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <linux/oom.h>
7 #include <sched.h>
8 #include <signal.h>
9 #include <stdbool.h>
10 #include <stdio.h>
11 #include <stdio_ext.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <sys/mman.h>
15 #include <sys/mount.h>
16 #include <sys/personality.h>
17 #include <sys/prctl.h>
18 #include <sys/types.h>
19 #include <sys/wait.h>
20 #include <syslog.h>
21 #include <unistd.h>
22 #if HAVE_VALGRIND_VALGRIND_H
23 #include <valgrind/valgrind.h>
24 #endif
25
26 #include "alloc-util.h"
27 #include "architecture.h"
28 #include "def.h"
29 #include "escape.h"
30 #include "fd-util.h"
31 #include "fileio.h"
32 #include "fs-util.h"
33 #include "ioprio.h"
34 #include "log.h"
35 #include "macro.h"
36 #include "missing.h"
37 #include "process-util.h"
38 #include "raw-clone.h"
39 #include "signal-util.h"
40 #include "stat-util.h"
41 #include "string-table.h"
42 #include "string-util.h"
43 #include "terminal-util.h"
44 #include "user-util.h"
45 #include "util.h"
46
47 int get_process_state(pid_t pid) {
48 const char *p;
49 char state;
50 int r;
51 _cleanup_free_ char *line = NULL;
52
53 assert(pid >= 0);
54
55 p = procfs_file_alloca(pid, "stat");
56
57 r = read_one_line_file(p, &line);
58 if (r == -ENOENT)
59 return -ESRCH;
60 if (r < 0)
61 return r;
62
63 p = strrchr(line, ')');
64 if (!p)
65 return -EIO;
66
67 p++;
68
69 if (sscanf(p, " %c", &state) != 1)
70 return -EIO;
71
72 return (unsigned char) state;
73 }
74
75 int get_process_comm(pid_t pid, char **ret) {
76 _cleanup_free_ char *escaped = NULL, *comm = NULL;
77 const char *p;
78 int r;
79
80 assert(ret);
81 assert(pid >= 0);
82
83 escaped = new(char, TASK_COMM_LEN);
84 if (!escaped)
85 return -ENOMEM;
86
87 p = procfs_file_alloca(pid, "comm");
88
89 r = read_one_line_file(p, &comm);
90 if (r == -ENOENT)
91 return -ESRCH;
92 if (r < 0)
93 return r;
94
95 /* Escape unprintable characters, just in case, but don't grow the string beyond the underlying size */
96 cellescape(escaped, TASK_COMM_LEN, comm);
97
98 *ret = TAKE_PTR(escaped);
99 return 0;
100 }
101
102 int get_process_cmdline(pid_t pid, size_t max_length, bool comm_fallback, char **line) {
103 _cleanup_fclose_ FILE *f = NULL;
104 bool space = false;
105 char *k, *ans = NULL;
106 const char *p;
107 int c;
108
109 assert(line);
110 assert(pid >= 0);
111
112 /* Retrieves a process' command line. Replaces unprintable characters while doing so by whitespace (coalescing
113 * multiple sequential ones into one). If max_length is != 0 will return a string of the specified size at most
114 * (the trailing NUL byte does count towards the length here!), abbreviated with a "..." ellipsis. If
115 * comm_fallback is true and the process has no command line set (the case for kernel threads), or has a
116 * command line that resolves to the empty string will return the "comm" name of the process instead.
117 *
118 * Returns -ESRCH if the process doesn't exist, and -ENOENT if the process has no command line (and
119 * comm_fallback is false). Returns 0 and sets *line otherwise. */
120
121 p = procfs_file_alloca(pid, "cmdline");
122
123 f = fopen(p, "re");
124 if (!f) {
125 if (errno == ENOENT)
126 return -ESRCH;
127 return -errno;
128 }
129
130 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
131
132 if (max_length == 1) {
133
134 /* If there's only room for one byte, return the empty string */
135 ans = new0(char, 1);
136 if (!ans)
137 return -ENOMEM;
138
139 *line = ans;
140 return 0;
141
142 } else if (max_length == 0) {
143 size_t len = 0, allocated = 0;
144
145 while ((c = getc(f)) != EOF) {
146
147 if (!GREEDY_REALLOC(ans, allocated, len+3)) {
148 free(ans);
149 return -ENOMEM;
150 }
151
152 if (isprint(c)) {
153 if (space) {
154 ans[len++] = ' ';
155 space = false;
156 }
157
158 ans[len++] = c;
159 } else if (len > 0)
160 space = true;
161 }
162
163 if (len > 0)
164 ans[len] = '\0';
165 else
166 ans = mfree(ans);
167
168 } else {
169 bool dotdotdot = false;
170 size_t left;
171
172 ans = new(char, max_length);
173 if (!ans)
174 return -ENOMEM;
175
176 k = ans;
177 left = max_length;
178 while ((c = getc(f)) != EOF) {
179
180 if (isprint(c)) {
181
182 if (space) {
183 if (left <= 2) {
184 dotdotdot = true;
185 break;
186 }
187
188 *(k++) = ' ';
189 left--;
190 space = false;
191 }
192
193 if (left <= 1) {
194 dotdotdot = true;
195 break;
196 }
197
198 *(k++) = (char) c;
199 left--;
200 } else if (k > ans)
201 space = true;
202 }
203
204 if (dotdotdot) {
205 if (max_length <= 4) {
206 k = ans;
207 left = max_length;
208 } else {
209 k = ans + max_length - 4;
210 left = 4;
211
212 /* Eat up final spaces */
213 while (k > ans && isspace(k[-1])) {
214 k--;
215 left++;
216 }
217 }
218
219 strncpy(k, "...", left-1);
220 k[left-1] = 0;
221 } else
222 *k = 0;
223 }
224
225 /* Kernel threads have no argv[] */
226 if (isempty(ans)) {
227 _cleanup_free_ char *t = NULL;
228 int h;
229
230 free(ans);
231
232 if (!comm_fallback)
233 return -ENOENT;
234
235 h = get_process_comm(pid, &t);
236 if (h < 0)
237 return h;
238
239 if (max_length == 0)
240 ans = strjoin("[", t, "]");
241 else {
242 size_t l;
243
244 l = strlen(t);
245
246 if (l + 3 <= max_length)
247 ans = strjoin("[", t, "]");
248 else if (max_length <= 6) {
249
250 ans = new(char, max_length);
251 if (!ans)
252 return -ENOMEM;
253
254 memcpy(ans, "[...]", max_length-1);
255 ans[max_length-1] = 0;
256 } else {
257 t[max_length - 6] = 0;
258
259 /* Chop off final spaces */
260 delete_trailing_chars(t, WHITESPACE);
261
262 ans = strjoin("[", t, "...]");
263 }
264 }
265 if (!ans)
266 return -ENOMEM;
267 }
268
269 *line = ans;
270 return 0;
271 }
272
273 int rename_process(const char name[]) {
274 static size_t mm_size = 0;
275 static char *mm = NULL;
276 bool truncated = false;
277 size_t l;
278
279 /* This is a like a poor man's setproctitle(). It changes the comm field, argv[0], and also the glibc's
280 * internally used name of the process. For the first one a limit of 16 chars applies; to the second one in
281 * many cases one of 10 (i.e. length of "/sbin/init") — however if we have CAP_SYS_RESOURCES it is unbounded;
282 * to the third one 7 (i.e. the length of "systemd". If you pass a longer string it will likely be
283 * truncated.
284 *
285 * Returns 0 if a name was set but truncated, > 0 if it was set but not truncated. */
286
287 if (isempty(name))
288 return -EINVAL; /* let's not confuse users unnecessarily with an empty name */
289
290 if (!is_main_thread())
291 return -EPERM; /* Let's not allow setting the process name from other threads than the main one, as we
292 * cache things without locking, and we make assumptions that PR_SET_NAME sets the
293 * process name that isn't correct on any other threads */
294
295 l = strlen(name);
296
297 /* First step, change the comm field. The main thread's comm is identical to the process comm. This means we
298 * can use PR_SET_NAME, which sets the thread name for the calling thread. */
299 if (prctl(PR_SET_NAME, name) < 0)
300 log_debug_errno(errno, "PR_SET_NAME failed: %m");
301 if (l >= TASK_COMM_LEN) /* Linux process names can be 15 chars at max */
302 truncated = true;
303
304 /* Second step, change glibc's ID of the process name. */
305 if (program_invocation_name) {
306 size_t k;
307
308 k = strlen(program_invocation_name);
309 strncpy(program_invocation_name, name, k);
310 if (l > k)
311 truncated = true;
312 }
313
314 /* Third step, completely replace the argv[] array the kernel maintains for us. This requires privileges, but
315 * has the advantage that the argv[] array is exactly what we want it to be, and not filled up with zeros at
316 * the end. This is the best option for changing /proc/self/cmdline. */
317
318 /* Let's not bother with this if we don't have euid == 0. Strictly speaking we should check for the
319 * CAP_SYS_RESOURCE capability which is independent of the euid. In our own code the capability generally is
320 * present only for euid == 0, hence let's use this as quick bypass check, to avoid calling mmap() if
321 * PR_SET_MM_ARG_{START,END} fails with EPERM later on anyway. After all geteuid() is dead cheap to call, but
322 * mmap() is not. */
323 if (geteuid() != 0)
324 log_debug("Skipping PR_SET_MM, as we don't have privileges.");
325 else if (mm_size < l+1) {
326 size_t nn_size;
327 char *nn;
328
329 nn_size = PAGE_ALIGN(l+1);
330 nn = mmap(NULL, nn_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
331 if (nn == MAP_FAILED) {
332 log_debug_errno(errno, "mmap() failed: %m");
333 goto use_saved_argv;
334 }
335
336 strncpy(nn, name, nn_size);
337
338 /* Now, let's tell the kernel about this new memory */
339 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
340 /* HACK: prctl() API is kind of dumb on this point. The existing end address may already be
341 * below the desired start address, in which case the kernel may have kicked this back due
342 * to a range-check failure (see linux/kernel/sys.c:validate_prctl_map() to see this in
343 * action). The proper solution would be to have a prctl() API that could set both start+end
344 * simultaneously, or at least let us query the existing address to anticipate this condition
345 * and respond accordingly. For now, we can only guess at the cause of this failure and try
346 * a workaround--which will briefly expand the arg space to something potentially huge before
347 * resizing it to what we want. */
348 log_debug_errno(errno, "PR_SET_MM_ARG_START failed, attempting PR_SET_MM_ARG_END hack: %m");
349
350 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0) {
351 log_debug_errno(errno, "PR_SET_MM_ARG_END hack failed, proceeding without: %m");
352 (void) munmap(nn, nn_size);
353 goto use_saved_argv;
354 }
355
356 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
357 log_debug_errno(errno, "PR_SET_MM_ARG_START still failed, proceeding without: %m");
358 goto use_saved_argv;
359 }
360 } else {
361 /* And update the end pointer to the new end, too. If this fails, we don't really know what
362 * to do, it's pretty unlikely that we can rollback, hence we'll just accept the failure,
363 * and continue. */
364 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0)
365 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
366 }
367
368 if (mm)
369 (void) munmap(mm, mm_size);
370
371 mm = nn;
372 mm_size = nn_size;
373 } else {
374 strncpy(mm, name, mm_size);
375
376 /* Update the end pointer, continuing regardless of any failure. */
377 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) mm + l + 1, 0, 0) < 0)
378 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
379 }
380
381 use_saved_argv:
382 /* Fourth step: in all cases we'll also update the original argv[], so that our own code gets it right too if
383 * it still looks here */
384
385 if (saved_argc > 0) {
386 int i;
387
388 if (saved_argv[0]) {
389 size_t k;
390
391 k = strlen(saved_argv[0]);
392 strncpy(saved_argv[0], name, k);
393 if (l > k)
394 truncated = true;
395 }
396
397 for (i = 1; i < saved_argc; i++) {
398 if (!saved_argv[i])
399 break;
400
401 memzero(saved_argv[i], strlen(saved_argv[i]));
402 }
403 }
404
405 return !truncated;
406 }
407
408 int is_kernel_thread(pid_t pid) {
409 _cleanup_free_ char *line = NULL;
410 unsigned long long flags;
411 size_t l, i;
412 const char *p;
413 char *q;
414 int r;
415
416 if (IN_SET(pid, 0, 1) || pid == getpid_cached()) /* pid 1, and we ourselves certainly aren't a kernel thread */
417 return 0;
418 if (!pid_is_valid(pid))
419 return -EINVAL;
420
421 p = procfs_file_alloca(pid, "stat");
422 r = read_one_line_file(p, &line);
423 if (r == -ENOENT)
424 return -ESRCH;
425 if (r < 0)
426 return r;
427
428 /* Skip past the comm field */
429 q = strrchr(line, ')');
430 if (!q)
431 return -EINVAL;
432 q++;
433
434 /* Skip 6 fields to reach the flags field */
435 for (i = 0; i < 6; i++) {
436 l = strspn(q, WHITESPACE);
437 if (l < 1)
438 return -EINVAL;
439 q += l;
440
441 l = strcspn(q, WHITESPACE);
442 if (l < 1)
443 return -EINVAL;
444 q += l;
445 }
446
447 /* Skip preceding whitespace */
448 l = strspn(q, WHITESPACE);
449 if (l < 1)
450 return -EINVAL;
451 q += l;
452
453 /* Truncate the rest */
454 l = strcspn(q, WHITESPACE);
455 if (l < 1)
456 return -EINVAL;
457 q[l] = 0;
458
459 r = safe_atollu(q, &flags);
460 if (r < 0)
461 return r;
462
463 return !!(flags & PF_KTHREAD);
464 }
465
466 int get_process_capeff(pid_t pid, char **capeff) {
467 const char *p;
468 int r;
469
470 assert(capeff);
471 assert(pid >= 0);
472
473 p = procfs_file_alloca(pid, "status");
474
475 r = get_proc_field(p, "CapEff", WHITESPACE, capeff);
476 if (r == -ENOENT)
477 return -ESRCH;
478
479 return r;
480 }
481
482 static int get_process_link_contents(const char *proc_file, char **name) {
483 int r;
484
485 assert(proc_file);
486 assert(name);
487
488 r = readlink_malloc(proc_file, name);
489 if (r == -ENOENT)
490 return -ESRCH;
491 if (r < 0)
492 return r;
493
494 return 0;
495 }
496
497 int get_process_exe(pid_t pid, char **name) {
498 const char *p;
499 char *d;
500 int r;
501
502 assert(pid >= 0);
503
504 p = procfs_file_alloca(pid, "exe");
505 r = get_process_link_contents(p, name);
506 if (r < 0)
507 return r;
508
509 d = endswith(*name, " (deleted)");
510 if (d)
511 *d = '\0';
512
513 return 0;
514 }
515
516 static int get_process_id(pid_t pid, const char *field, uid_t *uid) {
517 _cleanup_fclose_ FILE *f = NULL;
518 const char *p;
519 int r;
520
521 assert(field);
522 assert(uid);
523
524 if (pid < 0)
525 return -EINVAL;
526
527 p = procfs_file_alloca(pid, "status");
528 f = fopen(p, "re");
529 if (!f) {
530 if (errno == ENOENT)
531 return -ESRCH;
532 return -errno;
533 }
534
535 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
536
537 for (;;) {
538 _cleanup_free_ char *line = NULL;
539 char *l;
540
541 r = read_line(f, LONG_LINE_MAX, &line);
542 if (r < 0)
543 return r;
544 if (r == 0)
545 break;
546
547 l = strstrip(line);
548
549 if (startswith(l, field)) {
550 l += strlen(field);
551 l += strspn(l, WHITESPACE);
552
553 l[strcspn(l, WHITESPACE)] = 0;
554
555 return parse_uid(l, uid);
556 }
557 }
558
559 return -EIO;
560 }
561
562 int get_process_uid(pid_t pid, uid_t *uid) {
563
564 if (pid == 0 || pid == getpid_cached()) {
565 *uid = getuid();
566 return 0;
567 }
568
569 return get_process_id(pid, "Uid:", uid);
570 }
571
572 int get_process_gid(pid_t pid, gid_t *gid) {
573
574 if (pid == 0 || pid == getpid_cached()) {
575 *gid = getgid();
576 return 0;
577 }
578
579 assert_cc(sizeof(uid_t) == sizeof(gid_t));
580 return get_process_id(pid, "Gid:", gid);
581 }
582
583 int get_process_cwd(pid_t pid, char **cwd) {
584 const char *p;
585
586 assert(pid >= 0);
587
588 p = procfs_file_alloca(pid, "cwd");
589
590 return get_process_link_contents(p, cwd);
591 }
592
593 int get_process_root(pid_t pid, char **root) {
594 const char *p;
595
596 assert(pid >= 0);
597
598 p = procfs_file_alloca(pid, "root");
599
600 return get_process_link_contents(p, root);
601 }
602
603 int get_process_environ(pid_t pid, char **env) {
604 _cleanup_fclose_ FILE *f = NULL;
605 _cleanup_free_ char *outcome = NULL;
606 int c;
607 const char *p;
608 size_t allocated = 0, sz = 0;
609
610 assert(pid >= 0);
611 assert(env);
612
613 p = procfs_file_alloca(pid, "environ");
614
615 f = fopen(p, "re");
616 if (!f) {
617 if (errno == ENOENT)
618 return -ESRCH;
619 return -errno;
620 }
621
622 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
623
624 while ((c = fgetc(f)) != EOF) {
625 if (!GREEDY_REALLOC(outcome, allocated, sz + 5))
626 return -ENOMEM;
627
628 if (c == '\0')
629 outcome[sz++] = '\n';
630 else
631 sz += cescape_char(c, outcome + sz);
632 }
633
634 if (!outcome) {
635 outcome = strdup("");
636 if (!outcome)
637 return -ENOMEM;
638 } else
639 outcome[sz] = '\0';
640
641 *env = TAKE_PTR(outcome);
642
643 return 0;
644 }
645
646 int get_process_ppid(pid_t pid, pid_t *_ppid) {
647 int r;
648 _cleanup_free_ char *line = NULL;
649 long unsigned ppid;
650 const char *p;
651
652 assert(pid >= 0);
653 assert(_ppid);
654
655 if (pid == 0 || pid == getpid_cached()) {
656 *_ppid = getppid();
657 return 0;
658 }
659
660 p = procfs_file_alloca(pid, "stat");
661 r = read_one_line_file(p, &line);
662 if (r == -ENOENT)
663 return -ESRCH;
664 if (r < 0)
665 return r;
666
667 /* Let's skip the pid and comm fields. The latter is enclosed
668 * in () but does not escape any () in its value, so let's
669 * skip over it manually */
670
671 p = strrchr(line, ')');
672 if (!p)
673 return -EIO;
674
675 p++;
676
677 if (sscanf(p, " "
678 "%*c " /* state */
679 "%lu ", /* ppid */
680 &ppid) != 1)
681 return -EIO;
682
683 if ((long unsigned) (pid_t) ppid != ppid)
684 return -ERANGE;
685
686 *_ppid = (pid_t) ppid;
687
688 return 0;
689 }
690
691 int wait_for_terminate(pid_t pid, siginfo_t *status) {
692 siginfo_t dummy;
693
694 assert(pid >= 1);
695
696 if (!status)
697 status = &dummy;
698
699 for (;;) {
700 zero(*status);
701
702 if (waitid(P_PID, pid, status, WEXITED) < 0) {
703
704 if (errno == EINTR)
705 continue;
706
707 return negative_errno();
708 }
709
710 return 0;
711 }
712 }
713
714 /*
715 * Return values:
716 * < 0 : wait_for_terminate() failed to get the state of the
717 * process, the process was terminated by a signal, or
718 * failed for an unknown reason.
719 * >=0 : The process terminated normally, and its exit code is
720 * returned.
721 *
722 * That is, success is indicated by a return value of zero, and an
723 * error is indicated by a non-zero value.
724 *
725 * A warning is emitted if the process terminates abnormally,
726 * and also if it returns non-zero unless check_exit_code is true.
727 */
728 int wait_for_terminate_and_check(const char *name, pid_t pid, WaitFlags flags) {
729 _cleanup_free_ char *buffer = NULL;
730 siginfo_t status;
731 int r, prio;
732
733 assert(pid > 1);
734
735 if (!name) {
736 r = get_process_comm(pid, &buffer);
737 if (r < 0)
738 log_debug_errno(r, "Failed to acquire process name of " PID_FMT ", ignoring: %m", pid);
739 else
740 name = buffer;
741 }
742
743 prio = flags & WAIT_LOG_ABNORMAL ? LOG_ERR : LOG_DEBUG;
744
745 r = wait_for_terminate(pid, &status);
746 if (r < 0)
747 return log_full_errno(prio, r, "Failed to wait for %s: %m", strna(name));
748
749 if (status.si_code == CLD_EXITED) {
750 if (status.si_status != EXIT_SUCCESS)
751 log_full(flags & WAIT_LOG_NON_ZERO_EXIT_STATUS ? LOG_ERR : LOG_DEBUG,
752 "%s failed with exit status %i.", strna(name), status.si_status);
753 else
754 log_debug("%s succeeded.", name);
755
756 return status.si_status;
757
758 } else if (IN_SET(status.si_code, CLD_KILLED, CLD_DUMPED)) {
759
760 log_full(prio, "%s terminated by signal %s.", strna(name), signal_to_string(status.si_status));
761 return -EPROTO;
762 }
763
764 log_full(prio, "%s failed due to unknown reason.", strna(name));
765 return -EPROTO;
766 }
767
768 /*
769 * Return values:
770 *
771 * < 0 : wait_for_terminate_with_timeout() failed to get the state of the process, the process timed out, the process
772 * was terminated by a signal, or failed for an unknown reason.
773 *
774 * >=0 : The process terminated normally with no failures.
775 *
776 * Success is indicated by a return value of zero, a timeout is indicated by ETIMEDOUT, and all other child failure
777 * states are indicated by error is indicated by a non-zero value.
778 *
779 * This call assumes SIGCHLD has been blocked already, in particular before the child to wait for has been forked off
780 * to remain entirely race-free.
781 */
782 int wait_for_terminate_with_timeout(pid_t pid, usec_t timeout) {
783 sigset_t mask;
784 int r;
785 usec_t until;
786
787 assert_se(sigemptyset(&mask) == 0);
788 assert_se(sigaddset(&mask, SIGCHLD) == 0);
789
790 /* Drop into a sigtimewait-based timeout. Waiting for the
791 * pid to exit. */
792 until = now(CLOCK_MONOTONIC) + timeout;
793 for (;;) {
794 usec_t n;
795 siginfo_t status = {};
796 struct timespec ts;
797
798 n = now(CLOCK_MONOTONIC);
799 if (n >= until)
800 break;
801
802 r = sigtimedwait(&mask, NULL, timespec_store(&ts, until - n)) < 0 ? -errno : 0;
803 /* Assuming we woke due to the child exiting. */
804 if (waitid(P_PID, pid, &status, WEXITED|WNOHANG) == 0) {
805 if (status.si_pid == pid) {
806 /* This is the correct child.*/
807 if (status.si_code == CLD_EXITED)
808 return (status.si_status == 0) ? 0 : -EPROTO;
809 else
810 return -EPROTO;
811 }
812 }
813 /* Not the child, check for errors and proceed appropriately */
814 if (r < 0) {
815 switch (r) {
816 case -EAGAIN:
817 /* Timed out, child is likely hung. */
818 return -ETIMEDOUT;
819 case -EINTR:
820 /* Received a different signal and should retry */
821 continue;
822 default:
823 /* Return any unexpected errors */
824 return r;
825 }
826 }
827 }
828
829 return -EPROTO;
830 }
831
832 void sigkill_wait(pid_t pid) {
833 assert(pid > 1);
834
835 if (kill(pid, SIGKILL) > 0)
836 (void) wait_for_terminate(pid, NULL);
837 }
838
839 void sigkill_waitp(pid_t *pid) {
840 PROTECT_ERRNO;
841
842 if (!pid)
843 return;
844 if (*pid <= 1)
845 return;
846
847 sigkill_wait(*pid);
848 }
849
850 void sigterm_wait(pid_t pid) {
851 assert(pid > 1);
852
853 if (kill_and_sigcont(pid, SIGTERM) > 0)
854 (void) wait_for_terminate(pid, NULL);
855 }
856
857 int kill_and_sigcont(pid_t pid, int sig) {
858 int r;
859
860 r = kill(pid, sig) < 0 ? -errno : 0;
861
862 /* If this worked, also send SIGCONT, unless we already just sent a SIGCONT, or SIGKILL was sent which isn't
863 * affected by a process being suspended anyway. */
864 if (r >= 0 && !IN_SET(sig, SIGCONT, SIGKILL))
865 (void) kill(pid, SIGCONT);
866
867 return r;
868 }
869
870 int getenv_for_pid(pid_t pid, const char *field, char **ret) {
871 _cleanup_fclose_ FILE *f = NULL;
872 char *value = NULL;
873 bool done = false;
874 const char *path;
875 size_t l;
876
877 assert(pid >= 0);
878 assert(field);
879 assert(ret);
880
881 if (pid == 0 || pid == getpid_cached()) {
882 const char *e;
883
884 e = getenv(field);
885 if (!e) {
886 *ret = NULL;
887 return 0;
888 }
889
890 value = strdup(e);
891 if (!value)
892 return -ENOMEM;
893
894 *ret = value;
895 return 1;
896 }
897
898 path = procfs_file_alloca(pid, "environ");
899
900 f = fopen(path, "re");
901 if (!f) {
902 if (errno == ENOENT)
903 return -ESRCH;
904
905 return -errno;
906 }
907
908 (void) __fsetlocking(f, FSETLOCKING_BYCALLER);
909
910 l = strlen(field);
911
912 do {
913 char line[LINE_MAX];
914 size_t i;
915
916 for (i = 0; i < sizeof(line)-1; i++) {
917 int c;
918
919 c = getc(f);
920 if (_unlikely_(c == EOF)) {
921 done = true;
922 break;
923 } else if (c == 0)
924 break;
925
926 line[i] = c;
927 }
928 line[i] = 0;
929
930 if (strneq(line, field, l) && line[l] == '=') {
931 value = strdup(line + l + 1);
932 if (!value)
933 return -ENOMEM;
934
935 *ret = value;
936 return 1;
937 }
938
939 } while (!done);
940
941 *ret = NULL;
942 return 0;
943 }
944
945 bool pid_is_unwaited(pid_t pid) {
946 /* Checks whether a PID is still valid at all, including a zombie */
947
948 if (pid < 0)
949 return false;
950
951 if (pid <= 1) /* If we or PID 1 would be dead and have been waited for, this code would not be running */
952 return true;
953
954 if (pid == getpid_cached())
955 return true;
956
957 if (kill(pid, 0) >= 0)
958 return true;
959
960 return errno != ESRCH;
961 }
962
963 bool pid_is_alive(pid_t pid) {
964 int r;
965
966 /* Checks whether a PID is still valid and not a zombie */
967
968 if (pid < 0)
969 return false;
970
971 if (pid <= 1) /* If we or PID 1 would be a zombie, this code would not be running */
972 return true;
973
974 if (pid == getpid_cached())
975 return true;
976
977 r = get_process_state(pid);
978 if (IN_SET(r, -ESRCH, 'Z'))
979 return false;
980
981 return true;
982 }
983
984 int pid_from_same_root_fs(pid_t pid) {
985 const char *root;
986
987 if (pid < 0)
988 return false;
989
990 if (pid == 0 || pid == getpid_cached())
991 return true;
992
993 root = procfs_file_alloca(pid, "root");
994
995 return files_same(root, "/proc/1/root", 0);
996 }
997
998 bool is_main_thread(void) {
999 static thread_local int cached = 0;
1000
1001 if (_unlikely_(cached == 0))
1002 cached = getpid_cached() == gettid() ? 1 : -1;
1003
1004 return cached > 0;
1005 }
1006
1007 _noreturn_ void freeze(void) {
1008
1009 log_close();
1010
1011 /* Make sure nobody waits for us on a socket anymore */
1012 close_all_fds(NULL, 0);
1013
1014 sync();
1015
1016 /* Let's not freeze right away, but keep reaping zombies. */
1017 for (;;) {
1018 int r;
1019 siginfo_t si = {};
1020
1021 r = waitid(P_ALL, 0, &si, WEXITED);
1022 if (r < 0 && errno != EINTR)
1023 break;
1024 }
1025
1026 /* waitid() failed with an unexpected error, things are really borked. Freeze now! */
1027 for (;;)
1028 pause();
1029 }
1030
1031 bool oom_score_adjust_is_valid(int oa) {
1032 return oa >= OOM_SCORE_ADJ_MIN && oa <= OOM_SCORE_ADJ_MAX;
1033 }
1034
1035 unsigned long personality_from_string(const char *p) {
1036 int architecture;
1037
1038 if (!p)
1039 return PERSONALITY_INVALID;
1040
1041 /* Parse a personality specifier. We use our own identifiers that indicate specific ABIs, rather than just
1042 * hints regarding the register size, since we want to keep things open for multiple locally supported ABIs for
1043 * the same register size. */
1044
1045 architecture = architecture_from_string(p);
1046 if (architecture < 0)
1047 return PERSONALITY_INVALID;
1048
1049 if (architecture == native_architecture())
1050 return PER_LINUX;
1051 #ifdef SECONDARY_ARCHITECTURE
1052 if (architecture == SECONDARY_ARCHITECTURE)
1053 return PER_LINUX32;
1054 #endif
1055
1056 return PERSONALITY_INVALID;
1057 }
1058
1059 const char* personality_to_string(unsigned long p) {
1060 int architecture = _ARCHITECTURE_INVALID;
1061
1062 if (p == PER_LINUX)
1063 architecture = native_architecture();
1064 #ifdef SECONDARY_ARCHITECTURE
1065 else if (p == PER_LINUX32)
1066 architecture = SECONDARY_ARCHITECTURE;
1067 #endif
1068
1069 if (architecture < 0)
1070 return NULL;
1071
1072 return architecture_to_string(architecture);
1073 }
1074
1075 int safe_personality(unsigned long p) {
1076 int ret;
1077
1078 /* So here's the deal, personality() is weirdly defined by glibc. In some cases it returns a failure via errno,
1079 * and in others as negative return value containing an errno-like value. Let's work around this: this is a
1080 * wrapper that uses errno if it is set, and uses the return value otherwise. And then it sets both errno and
1081 * the return value indicating the same issue, so that we are definitely on the safe side.
1082 *
1083 * See https://github.com/systemd/systemd/issues/6737 */
1084
1085 errno = 0;
1086 ret = personality(p);
1087 if (ret < 0) {
1088 if (errno != 0)
1089 return -errno;
1090
1091 errno = -ret;
1092 }
1093
1094 return ret;
1095 }
1096
1097 int opinionated_personality(unsigned long *ret) {
1098 int current;
1099
1100 /* Returns the current personality, or PERSONALITY_INVALID if we can't determine it. This function is a bit
1101 * opinionated though, and ignores all the finer-grained bits and exotic personalities, only distinguishing the
1102 * two most relevant personalities: PER_LINUX and PER_LINUX32. */
1103
1104 current = safe_personality(PERSONALITY_INVALID);
1105 if (current < 0)
1106 return current;
1107
1108 if (((unsigned long) current & 0xffff) == PER_LINUX32)
1109 *ret = PER_LINUX32;
1110 else
1111 *ret = PER_LINUX;
1112
1113 return 0;
1114 }
1115
1116 void valgrind_summary_hack(void) {
1117 #if HAVE_VALGRIND_VALGRIND_H
1118 if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) {
1119 pid_t pid;
1120 pid = raw_clone(SIGCHLD);
1121 if (pid < 0)
1122 log_emergency_errno(errno, "Failed to fork off valgrind helper: %m");
1123 else if (pid == 0)
1124 exit(EXIT_SUCCESS);
1125 else {
1126 log_info("Spawned valgrind helper as PID "PID_FMT".", pid);
1127 (void) wait_for_terminate(pid, NULL);
1128 }
1129 }
1130 #endif
1131 }
1132
1133 int pid_compare_func(const pid_t *a, const pid_t *b) {
1134 /* Suitable for usage in qsort() */
1135 return CMP(*a, *b);
1136 }
1137
1138 int ioprio_parse_priority(const char *s, int *ret) {
1139 int i, r;
1140
1141 assert(s);
1142 assert(ret);
1143
1144 r = safe_atoi(s, &i);
1145 if (r < 0)
1146 return r;
1147
1148 if (!ioprio_priority_is_valid(i))
1149 return -EINVAL;
1150
1151 *ret = i;
1152 return 0;
1153 }
1154
1155 /* The cached PID, possible values:
1156 *
1157 * == UNSET [0] → cache not initialized yet
1158 * == BUSY [-1] → some thread is initializing it at the moment
1159 * any other → the cached PID
1160 */
1161
1162 #define CACHED_PID_UNSET ((pid_t) 0)
1163 #define CACHED_PID_BUSY ((pid_t) -1)
1164
1165 static pid_t cached_pid = CACHED_PID_UNSET;
1166
1167 void reset_cached_pid(void) {
1168 /* Invoked in the child after a fork(), i.e. at the first moment the PID changed */
1169 cached_pid = CACHED_PID_UNSET;
1170 }
1171
1172 /* We use glibc __register_atfork() + __dso_handle directly here, as they are not included in the glibc
1173 * headers. __register_atfork() is mostly equivalent to pthread_atfork(), but doesn't require us to link against
1174 * libpthread, as it is part of glibc anyway. */
1175 extern int __register_atfork(void (*prepare) (void), void (*parent) (void), void (*child) (void), void *dso_handle);
1176 extern void* __dso_handle __attribute__ ((__weak__));
1177
1178 pid_t getpid_cached(void) {
1179 static bool installed = false;
1180 pid_t current_value;
1181
1182 /* getpid_cached() is much like getpid(), but caches the value in local memory, to avoid having to invoke a
1183 * system call each time. This restores glibc behaviour from before 2.24, when getpid() was unconditionally
1184 * cached. Starting with 2.24 getpid() started to become prohibitively expensive when used for detecting when
1185 * objects were used across fork()s. With this caching the old behaviour is somewhat restored.
1186 *
1187 * https://bugzilla.redhat.com/show_bug.cgi?id=1443976
1188 * https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=c579f48edba88380635ab98cb612030e3ed8691e
1189 */
1190
1191 current_value = __sync_val_compare_and_swap(&cached_pid, CACHED_PID_UNSET, CACHED_PID_BUSY);
1192
1193 switch (current_value) {
1194
1195 case CACHED_PID_UNSET: { /* Not initialized yet, then do so now */
1196 pid_t new_pid;
1197
1198 new_pid = raw_getpid();
1199
1200 if (!installed) {
1201 /* __register_atfork() either returns 0 or -ENOMEM, in its glibc implementation. Since it's
1202 * only half-documented (glibc doesn't document it but LSB does — though only superficially)
1203 * we'll check for errors only in the most generic fashion possible. */
1204
1205 if (__register_atfork(NULL, NULL, reset_cached_pid, __dso_handle) != 0) {
1206 /* OOM? Let's try again later */
1207 cached_pid = CACHED_PID_UNSET;
1208 return new_pid;
1209 }
1210
1211 installed = true;
1212 }
1213
1214 cached_pid = new_pid;
1215 return new_pid;
1216 }
1217
1218 case CACHED_PID_BUSY: /* Somebody else is currently initializing */
1219 return raw_getpid();
1220
1221 default: /* Properly initialized */
1222 return current_value;
1223 }
1224 }
1225
1226 int must_be_root(void) {
1227
1228 if (geteuid() == 0)
1229 return 0;
1230
1231 log_error("Need to be root.");
1232 return -EPERM;
1233 }
1234
1235 int safe_fork_full(
1236 const char *name,
1237 const int except_fds[],
1238 size_t n_except_fds,
1239 ForkFlags flags,
1240 pid_t *ret_pid) {
1241
1242 pid_t original_pid, pid;
1243 sigset_t saved_ss, ss;
1244 bool block_signals = false;
1245 int prio, r;
1246
1247 /* A wrapper around fork(), that does a couple of important initializations in addition to mere forking. Always
1248 * returns the child's PID in *ret_pid. Returns == 0 in the child, and > 0 in the parent. */
1249
1250 prio = flags & FORK_LOG ? LOG_ERR : LOG_DEBUG;
1251
1252 original_pid = getpid_cached();
1253
1254 if (flags & (FORK_RESET_SIGNALS|FORK_DEATHSIG)) {
1255
1256 /* We temporarily block all signals, so that the new child has them blocked initially. This way, we can
1257 * be sure that SIGTERMs are not lost we might send to the child. */
1258
1259 if (sigfillset(&ss) < 0)
1260 return log_full_errno(prio, errno, "Failed to reset signal set: %m");
1261
1262 block_signals = true;
1263
1264 } else if (flags & FORK_WAIT) {
1265
1266 /* Let's block SIGCHLD at least, so that we can safely watch for the child process */
1267
1268 if (sigemptyset(&ss) < 0)
1269 return log_full_errno(prio, errno, "Failed to clear signal set: %m");
1270
1271 if (sigaddset(&ss, SIGCHLD) < 0)
1272 return log_full_errno(prio, errno, "Failed to add SIGCHLD to signal set: %m");
1273
1274 block_signals = true;
1275 }
1276
1277 if (block_signals)
1278 if (sigprocmask(SIG_SETMASK, &ss, &saved_ss) < 0)
1279 return log_full_errno(prio, errno, "Failed to set signal mask: %m");
1280
1281 if (flags & FORK_NEW_MOUNTNS)
1282 pid = raw_clone(SIGCHLD|CLONE_NEWNS);
1283 else
1284 pid = fork();
1285 if (pid < 0) {
1286 r = -errno;
1287
1288 if (block_signals) /* undo what we did above */
1289 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1290
1291 return log_full_errno(prio, r, "Failed to fork: %m");
1292 }
1293 if (pid > 0) {
1294 /* We are in the parent process */
1295
1296 log_debug("Successfully forked off '%s' as PID " PID_FMT ".", strna(name), pid);
1297
1298 if (flags & FORK_WAIT) {
1299 r = wait_for_terminate_and_check(name, pid, (flags & FORK_LOG ? WAIT_LOG : 0));
1300 if (r < 0)
1301 return r;
1302 if (r != EXIT_SUCCESS) /* exit status > 0 should be treated as failure, too */
1303 return -EPROTO;
1304 }
1305
1306 if (block_signals) /* undo what we did above */
1307 (void) sigprocmask(SIG_SETMASK, &saved_ss, NULL);
1308
1309 if (ret_pid)
1310 *ret_pid = pid;
1311
1312 return 1;
1313 }
1314
1315 /* We are in the child process */
1316
1317 if (flags & FORK_REOPEN_LOG) {
1318 /* Close the logs if requested, before we log anything. And make sure we reopen it if needed. */
1319 log_close();
1320 log_set_open_when_needed(true);
1321 }
1322
1323 if (name) {
1324 r = rename_process(name);
1325 if (r < 0)
1326 log_full_errno(flags & FORK_LOG ? LOG_WARNING : LOG_DEBUG,
1327 r, "Failed to rename process, ignoring: %m");
1328 }
1329
1330 if (flags & FORK_DEATHSIG)
1331 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) {
1332 log_full_errno(prio, errno, "Failed to set death signal: %m");
1333 _exit(EXIT_FAILURE);
1334 }
1335
1336 if (flags & FORK_RESET_SIGNALS) {
1337 r = reset_all_signal_handlers();
1338 if (r < 0) {
1339 log_full_errno(prio, r, "Failed to reset signal handlers: %m");
1340 _exit(EXIT_FAILURE);
1341 }
1342
1343 /* This implicitly undoes the signal mask stuff we did before the fork()ing above */
1344 r = reset_signal_mask();
1345 if (r < 0) {
1346 log_full_errno(prio, r, "Failed to reset signal mask: %m");
1347 _exit(EXIT_FAILURE);
1348 }
1349 } else if (block_signals) { /* undo what we did above */
1350 if (sigprocmask(SIG_SETMASK, &saved_ss, NULL) < 0) {
1351 log_full_errno(prio, errno, "Failed to restore signal mask: %m");
1352 _exit(EXIT_FAILURE);
1353 }
1354 }
1355
1356 if (flags & FORK_DEATHSIG) {
1357 pid_t ppid;
1358 /* Let's see if the parent PID is still the one we started from? If not, then the parent
1359 * already died by the time we set PR_SET_PDEATHSIG, hence let's emulate the effect */
1360
1361 ppid = getppid();
1362 if (ppid == 0)
1363 /* Parent is in a differn't PID namespace. */;
1364 else if (ppid != original_pid) {
1365 log_debug("Parent died early, raising SIGTERM.");
1366 (void) raise(SIGTERM);
1367 _exit(EXIT_FAILURE);
1368 }
1369 }
1370
1371 if (FLAGS_SET(flags, FORK_NEW_MOUNTNS | FORK_MOUNTNS_SLAVE)) {
1372
1373 /* Optionally, make sure we never propagate mounts to the host. */
1374
1375 if (mount(NULL, "/", NULL, MS_SLAVE | MS_REC, NULL) < 0) {
1376 log_full_errno(prio, errno, "Failed to remount root directory as MS_SLAVE: %m");
1377 _exit(EXIT_FAILURE);
1378 }
1379 }
1380
1381 if (flags & FORK_CLOSE_ALL_FDS) {
1382 /* Close the logs here in case it got reopened above, as close_all_fds() would close them for us */
1383 log_close();
1384
1385 r = close_all_fds(except_fds, n_except_fds);
1386 if (r < 0) {
1387 log_full_errno(prio, r, "Failed to close all file descriptors: %m");
1388 _exit(EXIT_FAILURE);
1389 }
1390 }
1391
1392 /* When we were asked to reopen the logs, do so again now */
1393 if (flags & FORK_REOPEN_LOG) {
1394 log_open();
1395 log_set_open_when_needed(false);
1396 }
1397
1398 if (flags & FORK_NULL_STDIO) {
1399 r = make_null_stdio();
1400 if (r < 0) {
1401 log_full_errno(prio, r, "Failed to connect stdin/stdout to /dev/null: %m");
1402 _exit(EXIT_FAILURE);
1403 }
1404 }
1405
1406 if (ret_pid)
1407 *ret_pid = getpid_cached();
1408
1409 return 0;
1410 }
1411
1412 int fork_agent(const char *name, const int except[], size_t n_except, pid_t *ret_pid, const char *path, ...) {
1413 bool stdout_is_tty, stderr_is_tty;
1414 size_t n, i;
1415 va_list ap;
1416 char **l;
1417 int r;
1418
1419 assert(path);
1420
1421 /* Spawns a temporary TTY agent, making sure it goes away when we go away */
1422
1423 r = safe_fork_full(name, except, n_except, FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_CLOSE_ALL_FDS, ret_pid);
1424 if (r < 0)
1425 return r;
1426 if (r > 0)
1427 return 0;
1428
1429 /* In the child: */
1430
1431 stdout_is_tty = isatty(STDOUT_FILENO);
1432 stderr_is_tty = isatty(STDERR_FILENO);
1433
1434 if (!stdout_is_tty || !stderr_is_tty) {
1435 int fd;
1436
1437 /* Detach from stdout/stderr. and reopen
1438 * /dev/tty for them. This is important to
1439 * ensure that when systemctl is started via
1440 * popen() or a similar call that expects to
1441 * read EOF we actually do generate EOF and
1442 * not delay this indefinitely by because we
1443 * keep an unused copy of stdin around. */
1444 fd = open("/dev/tty", O_WRONLY);
1445 if (fd < 0) {
1446 log_error_errno(errno, "Failed to open /dev/tty: %m");
1447 _exit(EXIT_FAILURE);
1448 }
1449
1450 if (!stdout_is_tty && dup2(fd, STDOUT_FILENO) < 0) {
1451 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1452 _exit(EXIT_FAILURE);
1453 }
1454
1455 if (!stderr_is_tty && dup2(fd, STDERR_FILENO) < 0) {
1456 log_error_errno(errno, "Failed to dup2 /dev/tty: %m");
1457 _exit(EXIT_FAILURE);
1458 }
1459
1460 safe_close_above_stdio(fd);
1461 }
1462
1463 /* Count arguments */
1464 va_start(ap, path);
1465 for (n = 0; va_arg(ap, char*); n++)
1466 ;
1467 va_end(ap);
1468
1469 /* Allocate strv */
1470 l = newa(char*, n + 1);
1471
1472 /* Fill in arguments */
1473 va_start(ap, path);
1474 for (i = 0; i <= n; i++)
1475 l[i] = va_arg(ap, char*);
1476 va_end(ap);
1477
1478 execv(path, l);
1479 _exit(EXIT_FAILURE);
1480 }
1481
1482 int set_oom_score_adjust(int value) {
1483 char t[DECIMAL_STR_MAX(int)];
1484
1485 sprintf(t, "%i", value);
1486
1487 return write_string_file("/proc/self/oom_score_adj", t,
1488 WRITE_STRING_FILE_VERIFY_ON_FAILURE|WRITE_STRING_FILE_DISABLE_BUFFER);
1489 }
1490
1491 static const char *const ioprio_class_table[] = {
1492 [IOPRIO_CLASS_NONE] = "none",
1493 [IOPRIO_CLASS_RT] = "realtime",
1494 [IOPRIO_CLASS_BE] = "best-effort",
1495 [IOPRIO_CLASS_IDLE] = "idle"
1496 };
1497
1498 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ioprio_class, int, IOPRIO_N_CLASSES);
1499
1500 static const char *const sigchld_code_table[] = {
1501 [CLD_EXITED] = "exited",
1502 [CLD_KILLED] = "killed",
1503 [CLD_DUMPED] = "dumped",
1504 [CLD_TRAPPED] = "trapped",
1505 [CLD_STOPPED] = "stopped",
1506 [CLD_CONTINUED] = "continued",
1507 };
1508
1509 DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int);
1510
1511 static const char* const sched_policy_table[] = {
1512 [SCHED_OTHER] = "other",
1513 [SCHED_BATCH] = "batch",
1514 [SCHED_IDLE] = "idle",
1515 [SCHED_FIFO] = "fifo",
1516 [SCHED_RR] = "rr"
1517 };
1518
1519 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX);