]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/time-util.c
rlimit: don't assume getrlimit() always succeeds
[thirdparty/systemd.git] / src / basic / time-util.c
1 /***
2 This file is part of systemd.
3
4 Copyright 2010 Lennart Poettering
5
6 systemd is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by
8 the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version.
10
11 systemd is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with systemd; If not, see <http://www.gnu.org/licenses/>.
18 ***/
19
20 #include <errno.h>
21 #include <limits.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/mman.h>
25 #include <sys/stat.h>
26 #include <sys/time.h>
27 #include <sys/timerfd.h>
28 #include <sys/timex.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31
32 #include "alloc-util.h"
33 #include "fd-util.h"
34 #include "fileio.h"
35 #include "fs-util.h"
36 #include "log.h"
37 #include "macro.h"
38 #include "parse-util.h"
39 #include "path-util.h"
40 #include "string-util.h"
41 #include "strv.h"
42 #include "time-util.h"
43
44 static clockid_t map_clock_id(clockid_t c) {
45
46 /* Some more exotic archs (s390, ppc, …) lack the "ALARM" flavour of the clocks. Thus, clock_gettime() will
47 * fail for them. Since they are essentially the same as their non-ALARM pendants (their only difference is
48 * when timers are set on them), let's just map them accordingly. This way, we can get the correct time even on
49 * those archs. */
50
51 switch (c) {
52
53 case CLOCK_BOOTTIME_ALARM:
54 return CLOCK_BOOTTIME;
55
56 case CLOCK_REALTIME_ALARM:
57 return CLOCK_REALTIME;
58
59 default:
60 return c;
61 }
62 }
63
64 usec_t now(clockid_t clock_id) {
65 struct timespec ts;
66
67 assert_se(clock_gettime(map_clock_id(clock_id), &ts) == 0);
68
69 return timespec_load(&ts);
70 }
71
72 nsec_t now_nsec(clockid_t clock_id) {
73 struct timespec ts;
74
75 assert_se(clock_gettime(map_clock_id(clock_id), &ts) == 0);
76
77 return timespec_load_nsec(&ts);
78 }
79
80 dual_timestamp* dual_timestamp_get(dual_timestamp *ts) {
81 assert(ts);
82
83 ts->realtime = now(CLOCK_REALTIME);
84 ts->monotonic = now(CLOCK_MONOTONIC);
85
86 return ts;
87 }
88
89 triple_timestamp* triple_timestamp_get(triple_timestamp *ts) {
90 assert(ts);
91
92 ts->realtime = now(CLOCK_REALTIME);
93 ts->monotonic = now(CLOCK_MONOTONIC);
94 ts->boottime = clock_boottime_supported() ? now(CLOCK_BOOTTIME) : USEC_INFINITY;
95
96 return ts;
97 }
98
99 dual_timestamp* dual_timestamp_from_realtime(dual_timestamp *ts, usec_t u) {
100 int64_t delta;
101 assert(ts);
102
103 if (u == USEC_INFINITY || u <= 0) {
104 ts->realtime = ts->monotonic = u;
105 return ts;
106 }
107
108 ts->realtime = u;
109
110 delta = (int64_t) now(CLOCK_REALTIME) - (int64_t) u;
111 ts->monotonic = usec_sub_signed(now(CLOCK_MONOTONIC), delta);
112
113 return ts;
114 }
115
116 triple_timestamp* triple_timestamp_from_realtime(triple_timestamp *ts, usec_t u) {
117 int64_t delta;
118
119 assert(ts);
120
121 if (u == USEC_INFINITY || u <= 0) {
122 ts->realtime = ts->monotonic = ts->boottime = u;
123 return ts;
124 }
125
126 ts->realtime = u;
127 delta = (int64_t) now(CLOCK_REALTIME) - (int64_t) u;
128 ts->monotonic = usec_sub_signed(now(CLOCK_MONOTONIC), delta);
129 ts->boottime = clock_boottime_supported() ? usec_sub_signed(now(CLOCK_BOOTTIME), delta) : USEC_INFINITY;
130
131 return ts;
132 }
133
134 dual_timestamp* dual_timestamp_from_monotonic(dual_timestamp *ts, usec_t u) {
135 int64_t delta;
136 assert(ts);
137
138 if (u == USEC_INFINITY) {
139 ts->realtime = ts->monotonic = USEC_INFINITY;
140 return ts;
141 }
142
143 ts->monotonic = u;
144 delta = (int64_t) now(CLOCK_MONOTONIC) - (int64_t) u;
145 ts->realtime = usec_sub_signed(now(CLOCK_REALTIME), delta);
146
147 return ts;
148 }
149
150 dual_timestamp* dual_timestamp_from_boottime_or_monotonic(dual_timestamp *ts, usec_t u) {
151 int64_t delta;
152
153 if (u == USEC_INFINITY) {
154 ts->realtime = ts->monotonic = USEC_INFINITY;
155 return ts;
156 }
157
158 dual_timestamp_get(ts);
159 delta = (int64_t) now(clock_boottime_or_monotonic()) - (int64_t) u;
160 ts->realtime = usec_sub_signed(ts->realtime, delta);
161 ts->monotonic = usec_sub_signed(ts->monotonic, delta);
162
163 return ts;
164 }
165
166 usec_t triple_timestamp_by_clock(triple_timestamp *ts, clockid_t clock) {
167
168 switch (clock) {
169
170 case CLOCK_REALTIME:
171 case CLOCK_REALTIME_ALARM:
172 return ts->realtime;
173
174 case CLOCK_MONOTONIC:
175 return ts->monotonic;
176
177 case CLOCK_BOOTTIME:
178 case CLOCK_BOOTTIME_ALARM:
179 return ts->boottime;
180
181 default:
182 return USEC_INFINITY;
183 }
184 }
185
186 usec_t timespec_load(const struct timespec *ts) {
187 assert(ts);
188
189 if (ts->tv_sec < 0 || ts->tv_nsec < 0)
190 return USEC_INFINITY;
191
192 if ((usec_t) ts->tv_sec > (UINT64_MAX - (ts->tv_nsec / NSEC_PER_USEC)) / USEC_PER_SEC)
193 return USEC_INFINITY;
194
195 return
196 (usec_t) ts->tv_sec * USEC_PER_SEC +
197 (usec_t) ts->tv_nsec / NSEC_PER_USEC;
198 }
199
200 nsec_t timespec_load_nsec(const struct timespec *ts) {
201 assert(ts);
202
203 if (ts->tv_sec < 0 || ts->tv_nsec < 0)
204 return NSEC_INFINITY;
205
206 if ((nsec_t) ts->tv_sec >= (UINT64_MAX - ts->tv_nsec) / NSEC_PER_SEC)
207 return NSEC_INFINITY;
208
209 return (nsec_t) ts->tv_sec * NSEC_PER_SEC + (nsec_t) ts->tv_nsec;
210 }
211
212 struct timespec *timespec_store(struct timespec *ts, usec_t u) {
213 assert(ts);
214
215 if (u == USEC_INFINITY ||
216 u / USEC_PER_SEC >= TIME_T_MAX) {
217 ts->tv_sec = (time_t) -1;
218 ts->tv_nsec = (long) -1;
219 return ts;
220 }
221
222 ts->tv_sec = (time_t) (u / USEC_PER_SEC);
223 ts->tv_nsec = (long int) ((u % USEC_PER_SEC) * NSEC_PER_USEC);
224
225 return ts;
226 }
227
228 usec_t timeval_load(const struct timeval *tv) {
229 assert(tv);
230
231 if (tv->tv_sec < 0 || tv->tv_usec < 0)
232 return USEC_INFINITY;
233
234 if ((usec_t) tv->tv_sec > (UINT64_MAX - tv->tv_usec) / USEC_PER_SEC)
235 return USEC_INFINITY;
236
237 return
238 (usec_t) tv->tv_sec * USEC_PER_SEC +
239 (usec_t) tv->tv_usec;
240 }
241
242 struct timeval *timeval_store(struct timeval *tv, usec_t u) {
243 assert(tv);
244
245 if (u == USEC_INFINITY ||
246 u / USEC_PER_SEC > TIME_T_MAX) {
247 tv->tv_sec = (time_t) -1;
248 tv->tv_usec = (suseconds_t) -1;
249 } else {
250 tv->tv_sec = (time_t) (u / USEC_PER_SEC);
251 tv->tv_usec = (suseconds_t) (u % USEC_PER_SEC);
252 }
253
254 return tv;
255 }
256
257 static char *format_timestamp_internal(
258 char *buf,
259 size_t l,
260 usec_t t,
261 bool utc,
262 bool us) {
263
264 /* The weekdays in non-localized (English) form. We use this instead of the localized form, so that our
265 * generated timestamps may be parsed with parse_timestamp(), and always read the same. */
266 static const char * const weekdays[] = {
267 [0] = "Sun",
268 [1] = "Mon",
269 [2] = "Tue",
270 [3] = "Wed",
271 [4] = "Thu",
272 [5] = "Fri",
273 [6] = "Sat",
274 };
275
276 struct tm tm;
277 time_t sec;
278 size_t n;
279
280 assert(buf);
281
282 if (l <
283 3 + /* week day */
284 1 + 10 + /* space and date */
285 1 + 8 + /* space and time */
286 (us ? 1 + 6 : 0) + /* "." and microsecond part */
287 1 + 1 + /* space and shortest possible zone */
288 1)
289 return NULL; /* Not enough space even for the shortest form. */
290 if (t <= 0 || t == USEC_INFINITY)
291 return NULL; /* Timestamp is unset */
292
293 /* Let's not format times with years > 9999 */
294 if (t > USEC_TIMESTAMP_FORMATTABLE_MAX)
295 return NULL;
296
297 sec = (time_t) (t / USEC_PER_SEC); /* Round down */
298
299 if (!localtime_or_gmtime_r(&sec, &tm, utc))
300 return NULL;
301
302 /* Start with the week day */
303 assert((size_t) tm.tm_wday < ELEMENTSOF(weekdays));
304 memcpy(buf, weekdays[tm.tm_wday], 4);
305
306 /* Add the main components */
307 if (strftime(buf + 3, l - 3, " %Y-%m-%d %H:%M:%S", &tm) <= 0)
308 return NULL; /* Doesn't fit */
309
310 /* Append the microseconds part, if that's requested */
311 if (us) {
312 n = strlen(buf);
313 if (n + 8 > l)
314 return NULL; /* Microseconds part doesn't fit. */
315
316 sprintf(buf + n, ".%06"PRI_USEC, t % USEC_PER_SEC);
317 }
318
319 /* Append the timezone */
320 n = strlen(buf);
321 if (utc) {
322 /* If this is UTC then let's explicitly use the "UTC" string here, because gmtime_r() normally uses the
323 * obsolete "GMT" instead. */
324 if (n + 5 > l)
325 return NULL; /* "UTC" doesn't fit. */
326
327 strcpy(buf + n, " UTC");
328
329 } else if (!isempty(tm.tm_zone)) {
330 size_t tn;
331
332 /* An explicit timezone is specified, let's use it, if it fits */
333 tn = strlen(tm.tm_zone);
334 if (n + 1 + tn + 1 > l) {
335 /* The full time zone does not fit in. Yuck. */
336
337 if (n + 1 + _POSIX_TZNAME_MAX + 1 > l)
338 return NULL; /* Not even enough space for the POSIX minimum (of 6)? In that case, complain that it doesn't fit */
339
340 /* So the time zone doesn't fit in fully, but the caller passed enough space for the POSIX
341 * minimum time zone length. In this case suppress the timezone entirely, in order not to dump
342 * an overly long, hard to read string on the user. This should be safe, because the user will
343 * assume the local timezone anyway if none is shown. And so does parse_timestamp(). */
344 } else {
345 buf[n++] = ' ';
346 strcpy(buf + n, tm.tm_zone);
347 }
348 }
349
350 return buf;
351 }
352
353 char *format_timestamp(char *buf, size_t l, usec_t t) {
354 return format_timestamp_internal(buf, l, t, false, false);
355 }
356
357 char *format_timestamp_utc(char *buf, size_t l, usec_t t) {
358 return format_timestamp_internal(buf, l, t, true, false);
359 }
360
361 char *format_timestamp_us(char *buf, size_t l, usec_t t) {
362 return format_timestamp_internal(buf, l, t, false, true);
363 }
364
365 char *format_timestamp_us_utc(char *buf, size_t l, usec_t t) {
366 return format_timestamp_internal(buf, l, t, true, true);
367 }
368
369 char *format_timestamp_relative(char *buf, size_t l, usec_t t) {
370 const char *s;
371 usec_t n, d;
372
373 if (t <= 0 || t == USEC_INFINITY)
374 return NULL;
375
376 n = now(CLOCK_REALTIME);
377 if (n > t) {
378 d = n - t;
379 s = "ago";
380 } else {
381 d = t - n;
382 s = "left";
383 }
384
385 if (d >= USEC_PER_YEAR)
386 snprintf(buf, l, USEC_FMT " years " USEC_FMT " months %s",
387 d / USEC_PER_YEAR,
388 (d % USEC_PER_YEAR) / USEC_PER_MONTH, s);
389 else if (d >= USEC_PER_MONTH)
390 snprintf(buf, l, USEC_FMT " months " USEC_FMT " days %s",
391 d / USEC_PER_MONTH,
392 (d % USEC_PER_MONTH) / USEC_PER_DAY, s);
393 else if (d >= USEC_PER_WEEK)
394 snprintf(buf, l, USEC_FMT " weeks " USEC_FMT " days %s",
395 d / USEC_PER_WEEK,
396 (d % USEC_PER_WEEK) / USEC_PER_DAY, s);
397 else if (d >= 2*USEC_PER_DAY)
398 snprintf(buf, l, USEC_FMT " days %s", d / USEC_PER_DAY, s);
399 else if (d >= 25*USEC_PER_HOUR)
400 snprintf(buf, l, "1 day " USEC_FMT "h %s",
401 (d - USEC_PER_DAY) / USEC_PER_HOUR, s);
402 else if (d >= 6*USEC_PER_HOUR)
403 snprintf(buf, l, USEC_FMT "h %s",
404 d / USEC_PER_HOUR, s);
405 else if (d >= USEC_PER_HOUR)
406 snprintf(buf, l, USEC_FMT "h " USEC_FMT "min %s",
407 d / USEC_PER_HOUR,
408 (d % USEC_PER_HOUR) / USEC_PER_MINUTE, s);
409 else if (d >= 5*USEC_PER_MINUTE)
410 snprintf(buf, l, USEC_FMT "min %s",
411 d / USEC_PER_MINUTE, s);
412 else if (d >= USEC_PER_MINUTE)
413 snprintf(buf, l, USEC_FMT "min " USEC_FMT "s %s",
414 d / USEC_PER_MINUTE,
415 (d % USEC_PER_MINUTE) / USEC_PER_SEC, s);
416 else if (d >= USEC_PER_SEC)
417 snprintf(buf, l, USEC_FMT "s %s",
418 d / USEC_PER_SEC, s);
419 else if (d >= USEC_PER_MSEC)
420 snprintf(buf, l, USEC_FMT "ms %s",
421 d / USEC_PER_MSEC, s);
422 else if (d > 0)
423 snprintf(buf, l, USEC_FMT"us %s",
424 d, s);
425 else
426 snprintf(buf, l, "now");
427
428 buf[l-1] = 0;
429 return buf;
430 }
431
432 char *format_timespan(char *buf, size_t l, usec_t t, usec_t accuracy) {
433 static const struct {
434 const char *suffix;
435 usec_t usec;
436 } table[] = {
437 { "y", USEC_PER_YEAR },
438 { "month", USEC_PER_MONTH },
439 { "w", USEC_PER_WEEK },
440 { "d", USEC_PER_DAY },
441 { "h", USEC_PER_HOUR },
442 { "min", USEC_PER_MINUTE },
443 { "s", USEC_PER_SEC },
444 { "ms", USEC_PER_MSEC },
445 { "us", 1 },
446 };
447
448 unsigned i;
449 char *p = buf;
450 bool something = false;
451
452 assert(buf);
453 assert(l > 0);
454
455 if (t == USEC_INFINITY) {
456 strncpy(p, "infinity", l-1);
457 p[l-1] = 0;
458 return p;
459 }
460
461 if (t <= 0) {
462 strncpy(p, "0", l-1);
463 p[l-1] = 0;
464 return p;
465 }
466
467 /* The result of this function can be parsed with parse_sec */
468
469 for (i = 0; i < ELEMENTSOF(table); i++) {
470 int k = 0;
471 size_t n;
472 bool done = false;
473 usec_t a, b;
474
475 if (t <= 0)
476 break;
477
478 if (t < accuracy && something)
479 break;
480
481 if (t < table[i].usec)
482 continue;
483
484 if (l <= 1)
485 break;
486
487 a = t / table[i].usec;
488 b = t % table[i].usec;
489
490 /* Let's see if we should shows this in dot notation */
491 if (t < USEC_PER_MINUTE && b > 0) {
492 usec_t cc;
493 int j;
494
495 j = 0;
496 for (cc = table[i].usec; cc > 1; cc /= 10)
497 j++;
498
499 for (cc = accuracy; cc > 1; cc /= 10) {
500 b /= 10;
501 j--;
502 }
503
504 if (j > 0) {
505 k = snprintf(p, l,
506 "%s"USEC_FMT".%0*"PRI_USEC"%s",
507 p > buf ? " " : "",
508 a,
509 j,
510 b,
511 table[i].suffix);
512
513 t = 0;
514 done = true;
515 }
516 }
517
518 /* No? Then let's show it normally */
519 if (!done) {
520 k = snprintf(p, l,
521 "%s"USEC_FMT"%s",
522 p > buf ? " " : "",
523 a,
524 table[i].suffix);
525
526 t = b;
527 }
528
529 n = MIN((size_t) k, l);
530
531 l -= n;
532 p += n;
533
534 something = true;
535 }
536
537 *p = 0;
538
539 return buf;
540 }
541
542 void dual_timestamp_serialize(FILE *f, const char *name, dual_timestamp *t) {
543
544 assert(f);
545 assert(name);
546 assert(t);
547
548 if (!dual_timestamp_is_set(t))
549 return;
550
551 fprintf(f, "%s="USEC_FMT" "USEC_FMT"\n",
552 name,
553 t->realtime,
554 t->monotonic);
555 }
556
557 int dual_timestamp_deserialize(const char *value, dual_timestamp *t) {
558 uint64_t a, b;
559 int r, pos;
560
561 assert(value);
562 assert(t);
563
564 pos = strspn(value, WHITESPACE);
565 if (value[pos] == '-')
566 return -EINVAL;
567 pos += strspn(value + pos, DIGITS);
568 pos += strspn(value + pos, WHITESPACE);
569 if (value[pos] == '-')
570 return -EINVAL;
571
572 r = sscanf(value, "%" PRIu64 "%" PRIu64 "%n", &a, &b, &pos);
573 if (r != 2) {
574 log_debug("Failed to parse dual timestamp value \"%s\".", value);
575 return -EINVAL;
576 }
577
578 if (value[pos] != '\0')
579 /* trailing garbage */
580 return -EINVAL;
581
582 t->realtime = a;
583 t->monotonic = b;
584
585 return 0;
586 }
587
588 int timestamp_deserialize(const char *value, usec_t *timestamp) {
589 int r;
590
591 assert(value);
592
593 r = safe_atou64(value, timestamp);
594 if (r < 0)
595 return log_debug_errno(r, "Failed to parse timestamp value \"%s\": %m", value);
596
597 return r;
598 }
599
600 static int parse_timestamp_impl(const char *t, usec_t *usec, bool with_tz) {
601 static const struct {
602 const char *name;
603 const int nr;
604 } day_nr[] = {
605 { "Sunday", 0 },
606 { "Sun", 0 },
607 { "Monday", 1 },
608 { "Mon", 1 },
609 { "Tuesday", 2 },
610 { "Tue", 2 },
611 { "Wednesday", 3 },
612 { "Wed", 3 },
613 { "Thursday", 4 },
614 { "Thu", 4 },
615 { "Friday", 5 },
616 { "Fri", 5 },
617 { "Saturday", 6 },
618 { "Sat", 6 },
619 };
620
621 const char *k, *utc = NULL, *tzn = NULL;
622 struct tm tm, copy;
623 time_t x;
624 usec_t x_usec, plus = 0, minus = 0, ret;
625 int r, weekday = -1, dst = -1;
626 unsigned i;
627
628 /*
629 * Allowed syntaxes:
630 *
631 * 2012-09-22 16:34:22
632 * 2012-09-22 16:34 (seconds will be set to 0)
633 * 2012-09-22 (time will be set to 00:00:00)
634 * 16:34:22 (date will be set to today)
635 * 16:34 (date will be set to today, seconds to 0)
636 * now
637 * yesterday (time is set to 00:00:00)
638 * today (time is set to 00:00:00)
639 * tomorrow (time is set to 00:00:00)
640 * +5min
641 * -5days
642 * @2147483647 (seconds since epoch)
643 *
644 */
645
646 assert(t);
647 assert(usec);
648
649 if (t[0] == '@' && !with_tz)
650 return parse_sec(t + 1, usec);
651
652 ret = now(CLOCK_REALTIME);
653
654 if (!with_tz) {
655 if (streq(t, "now"))
656 goto finish;
657
658 else if (t[0] == '+') {
659 r = parse_sec(t+1, &plus);
660 if (r < 0)
661 return r;
662
663 goto finish;
664
665 } else if (t[0] == '-') {
666 r = parse_sec(t+1, &minus);
667 if (r < 0)
668 return r;
669
670 goto finish;
671
672 } else if ((k = endswith(t, " ago"))) {
673 t = strndupa(t, k - t);
674
675 r = parse_sec(t, &minus);
676 if (r < 0)
677 return r;
678
679 goto finish;
680
681 } else if ((k = endswith(t, " left"))) {
682 t = strndupa(t, k - t);
683
684 r = parse_sec(t, &plus);
685 if (r < 0)
686 return r;
687
688 goto finish;
689 }
690
691 /* See if the timestamp is suffixed with UTC */
692 utc = endswith_no_case(t, " UTC");
693 if (utc)
694 t = strndupa(t, utc - t);
695 else {
696 const char *e = NULL;
697 int j;
698
699 tzset();
700
701 /* See if the timestamp is suffixed by either the DST or non-DST local timezone. Note that we only
702 * support the local timezones here, nothing else. Not because we wouldn't want to, but simply because
703 * there are no nice APIs available to cover this. By accepting the local time zone strings, we make
704 * sure that all timestamps written by format_timestamp() can be parsed correctly, even though we don't
705 * support arbitrary timezone specifications. */
706
707 for (j = 0; j <= 1; j++) {
708
709 if (isempty(tzname[j]))
710 continue;
711
712 e = endswith_no_case(t, tzname[j]);
713 if (!e)
714 continue;
715 if (e == t)
716 continue;
717 if (e[-1] != ' ')
718 continue;
719
720 break;
721 }
722
723 if (IN_SET(j, 0, 1)) {
724 /* Found one of the two timezones specified. */
725 t = strndupa(t, e - t - 1);
726 dst = j;
727 tzn = tzname[j];
728 }
729 }
730 }
731
732 x = (time_t) (ret / USEC_PER_SEC);
733 x_usec = 0;
734
735 if (!localtime_or_gmtime_r(&x, &tm, utc))
736 return -EINVAL;
737
738 tm.tm_isdst = dst;
739 if (!with_tz && tzn)
740 tm.tm_zone = tzn;
741
742 if (streq(t, "today")) {
743 tm.tm_sec = tm.tm_min = tm.tm_hour = 0;
744 goto from_tm;
745
746 } else if (streq(t, "yesterday")) {
747 tm.tm_mday--;
748 tm.tm_sec = tm.tm_min = tm.tm_hour = 0;
749 goto from_tm;
750
751 } else if (streq(t, "tomorrow")) {
752 tm.tm_mday++;
753 tm.tm_sec = tm.tm_min = tm.tm_hour = 0;
754 goto from_tm;
755 }
756
757 for (i = 0; i < ELEMENTSOF(day_nr); i++) {
758 size_t skip;
759
760 if (!startswith_no_case(t, day_nr[i].name))
761 continue;
762
763 skip = strlen(day_nr[i].name);
764 if (t[skip] != ' ')
765 continue;
766
767 weekday = day_nr[i].nr;
768 t += skip + 1;
769 break;
770 }
771
772 copy = tm;
773 k = strptime(t, "%y-%m-%d %H:%M:%S", &tm);
774 if (k) {
775 if (*k == '.')
776 goto parse_usec;
777 else if (*k == 0)
778 goto from_tm;
779 }
780
781 tm = copy;
782 k = strptime(t, "%Y-%m-%d %H:%M:%S", &tm);
783 if (k) {
784 if (*k == '.')
785 goto parse_usec;
786 else if (*k == 0)
787 goto from_tm;
788 }
789
790 tm = copy;
791 k = strptime(t, "%y-%m-%d %H:%M", &tm);
792 if (k && *k == 0) {
793 tm.tm_sec = 0;
794 goto from_tm;
795 }
796
797 tm = copy;
798 k = strptime(t, "%Y-%m-%d %H:%M", &tm);
799 if (k && *k == 0) {
800 tm.tm_sec = 0;
801 goto from_tm;
802 }
803
804 tm = copy;
805 k = strptime(t, "%y-%m-%d", &tm);
806 if (k && *k == 0) {
807 tm.tm_sec = tm.tm_min = tm.tm_hour = 0;
808 goto from_tm;
809 }
810
811 tm = copy;
812 k = strptime(t, "%Y-%m-%d", &tm);
813 if (k && *k == 0) {
814 tm.tm_sec = tm.tm_min = tm.tm_hour = 0;
815 goto from_tm;
816 }
817
818 tm = copy;
819 k = strptime(t, "%H:%M:%S", &tm);
820 if (k) {
821 if (*k == '.')
822 goto parse_usec;
823 else if (*k == 0)
824 goto from_tm;
825 }
826
827 tm = copy;
828 k = strptime(t, "%H:%M", &tm);
829 if (k && *k == 0) {
830 tm.tm_sec = 0;
831 goto from_tm;
832 }
833
834 return -EINVAL;
835
836 parse_usec:
837 {
838 unsigned add;
839
840 k++;
841 r = parse_fractional_part_u(&k, 6, &add);
842 if (r < 0)
843 return -EINVAL;
844
845 if (*k)
846 return -EINVAL;
847
848 x_usec = add;
849 }
850
851 from_tm:
852 x = mktime_or_timegm(&tm, utc);
853 if (x < 0)
854 return -EINVAL;
855
856 if (weekday >= 0 && tm.tm_wday != weekday)
857 return -EINVAL;
858
859 ret = (usec_t) x * USEC_PER_SEC + x_usec;
860 if (ret > USEC_TIMESTAMP_FORMATTABLE_MAX)
861 return -EINVAL;
862
863 finish:
864 if (ret + plus < ret) /* overflow? */
865 return -EINVAL;
866 ret += plus;
867 if (ret > USEC_TIMESTAMP_FORMATTABLE_MAX)
868 return -EINVAL;
869
870 if (ret >= minus)
871 ret -= minus;
872 else
873 return -EINVAL;
874
875 *usec = ret;
876
877 return 0;
878 }
879
880 typedef struct ParseTimestampResult {
881 usec_t usec;
882 int return_value;
883 } ParseTimestampResult;
884
885 int parse_timestamp(const char *t, usec_t *usec) {
886 char *last_space, *timezone = NULL;
887 ParseTimestampResult *shared, tmp;
888 int r;
889 pid_t pid;
890
891 last_space = strrchr(t, ' ');
892 if (last_space != NULL && timezone_is_valid(last_space + 1))
893 timezone = last_space + 1;
894
895 if (timezone == NULL || endswith_no_case(t, " UTC"))
896 return parse_timestamp_impl(t, usec, false);
897
898 t = strndupa(t, last_space - t);
899
900 shared = mmap(NULL, sizeof *shared, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, -1, 0);
901 if (shared == MAP_FAILED)
902 return negative_errno();
903
904 pid = fork();
905
906 if (pid == -1) {
907 int fork_errno = errno;
908 (void) munmap(shared, sizeof *shared);
909 return -fork_errno;
910 }
911
912 if (pid == 0) {
913 if (setenv("TZ", timezone, 1) != 0) {
914 shared->return_value = negative_errno();
915 _exit(EXIT_FAILURE);
916 }
917
918 tzset();
919
920 shared->return_value = parse_timestamp_impl(t, &shared->usec, true);
921
922 _exit(EXIT_SUCCESS);
923 }
924
925 r = wait_for_terminate(pid, NULL);
926 if (r < 0) {
927 (void) munmap(shared, sizeof *shared);
928 return r;
929 }
930
931 tmp = *shared;
932 if (munmap(shared, sizeof *shared) != 0)
933 return negative_errno();
934
935 if (tmp.return_value == 0)
936 *usec = tmp.usec;
937
938 return tmp.return_value;
939 }
940
941 static char* extract_multiplier(char *p, usec_t *multiplier) {
942 static const struct {
943 const char *suffix;
944 usec_t usec;
945 } table[] = {
946 { "seconds", USEC_PER_SEC },
947 { "second", USEC_PER_SEC },
948 { "sec", USEC_PER_SEC },
949 { "s", USEC_PER_SEC },
950 { "minutes", USEC_PER_MINUTE },
951 { "minute", USEC_PER_MINUTE },
952 { "min", USEC_PER_MINUTE },
953 { "months", USEC_PER_MONTH },
954 { "month", USEC_PER_MONTH },
955 { "M", USEC_PER_MONTH },
956 { "msec", USEC_PER_MSEC },
957 { "ms", USEC_PER_MSEC },
958 { "m", USEC_PER_MINUTE },
959 { "hours", USEC_PER_HOUR },
960 { "hour", USEC_PER_HOUR },
961 { "hr", USEC_PER_HOUR },
962 { "h", USEC_PER_HOUR },
963 { "days", USEC_PER_DAY },
964 { "day", USEC_PER_DAY },
965 { "d", USEC_PER_DAY },
966 { "weeks", USEC_PER_WEEK },
967 { "week", USEC_PER_WEEK },
968 { "w", USEC_PER_WEEK },
969 { "years", USEC_PER_YEAR },
970 { "year", USEC_PER_YEAR },
971 { "y", USEC_PER_YEAR },
972 { "usec", 1ULL },
973 { "us", 1ULL },
974 { "µs", 1ULL },
975 };
976 unsigned i;
977
978 for (i = 0; i < ELEMENTSOF(table); i++) {
979 char *e;
980
981 e = startswith(p, table[i].suffix);
982 if (e) {
983 *multiplier = table[i].usec;
984 return e;
985 }
986 }
987
988 return p;
989 }
990
991 int parse_time(const char *t, usec_t *usec, usec_t default_unit) {
992 const char *p, *s;
993 usec_t r = 0;
994 bool something = false;
995
996 assert(t);
997 assert(usec);
998 assert(default_unit > 0);
999
1000 p = t;
1001
1002 p += strspn(p, WHITESPACE);
1003 s = startswith(p, "infinity");
1004 if (s) {
1005 s += strspn(s, WHITESPACE);
1006 if (*s != 0)
1007 return -EINVAL;
1008
1009 *usec = USEC_INFINITY;
1010 return 0;
1011 }
1012
1013 for (;;) {
1014 long long l, z = 0;
1015 char *e;
1016 unsigned n = 0;
1017 usec_t multiplier = default_unit, k;
1018
1019 p += strspn(p, WHITESPACE);
1020
1021 if (*p == 0) {
1022 if (!something)
1023 return -EINVAL;
1024
1025 break;
1026 }
1027
1028 errno = 0;
1029 l = strtoll(p, &e, 10);
1030 if (errno > 0)
1031 return -errno;
1032 if (l < 0)
1033 return -ERANGE;
1034
1035 if (*e == '.') {
1036 char *b = e + 1;
1037
1038 errno = 0;
1039 z = strtoll(b, &e, 10);
1040 if (errno > 0)
1041 return -errno;
1042
1043 if (z < 0)
1044 return -ERANGE;
1045
1046 if (e == b)
1047 return -EINVAL;
1048
1049 n = e - b;
1050
1051 } else if (e == p)
1052 return -EINVAL;
1053
1054 e += strspn(e, WHITESPACE);
1055 p = extract_multiplier(e, &multiplier);
1056
1057 something = true;
1058
1059 k = (usec_t) z * multiplier;
1060
1061 for (; n > 0; n--)
1062 k /= 10;
1063
1064 r += (usec_t) l * multiplier + k;
1065 }
1066
1067 *usec = r;
1068
1069 return 0;
1070 }
1071
1072 int parse_sec(const char *t, usec_t *usec) {
1073 return parse_time(t, usec, USEC_PER_SEC);
1074 }
1075
1076 int parse_sec_fix_0(const char *t, usec_t *usec) {
1077 t += strspn(t, WHITESPACE);
1078 if (streq(t, "0")) {
1079 *usec = USEC_INFINITY;
1080 return 0;
1081 }
1082
1083 return parse_sec(t, usec);
1084 }
1085
1086 int parse_nsec(const char *t, nsec_t *nsec) {
1087 static const struct {
1088 const char *suffix;
1089 nsec_t nsec;
1090 } table[] = {
1091 { "seconds", NSEC_PER_SEC },
1092 { "second", NSEC_PER_SEC },
1093 { "sec", NSEC_PER_SEC },
1094 { "s", NSEC_PER_SEC },
1095 { "minutes", NSEC_PER_MINUTE },
1096 { "minute", NSEC_PER_MINUTE },
1097 { "min", NSEC_PER_MINUTE },
1098 { "months", NSEC_PER_MONTH },
1099 { "month", NSEC_PER_MONTH },
1100 { "msec", NSEC_PER_MSEC },
1101 { "ms", NSEC_PER_MSEC },
1102 { "m", NSEC_PER_MINUTE },
1103 { "hours", NSEC_PER_HOUR },
1104 { "hour", NSEC_PER_HOUR },
1105 { "hr", NSEC_PER_HOUR },
1106 { "h", NSEC_PER_HOUR },
1107 { "days", NSEC_PER_DAY },
1108 { "day", NSEC_PER_DAY },
1109 { "d", NSEC_PER_DAY },
1110 { "weeks", NSEC_PER_WEEK },
1111 { "week", NSEC_PER_WEEK },
1112 { "w", NSEC_PER_WEEK },
1113 { "years", NSEC_PER_YEAR },
1114 { "year", NSEC_PER_YEAR },
1115 { "y", NSEC_PER_YEAR },
1116 { "usec", NSEC_PER_USEC },
1117 { "us", NSEC_PER_USEC },
1118 { "µs", NSEC_PER_USEC },
1119 { "nsec", 1ULL },
1120 { "ns", 1ULL },
1121 { "", 1ULL }, /* default is nsec */
1122 };
1123
1124 const char *p, *s;
1125 nsec_t r = 0;
1126 bool something = false;
1127
1128 assert(t);
1129 assert(nsec);
1130
1131 p = t;
1132
1133 p += strspn(p, WHITESPACE);
1134 s = startswith(p, "infinity");
1135 if (s) {
1136 s += strspn(s, WHITESPACE);
1137 if (*s != 0)
1138 return -EINVAL;
1139
1140 *nsec = NSEC_INFINITY;
1141 return 0;
1142 }
1143
1144 for (;;) {
1145 long long l, z = 0;
1146 char *e;
1147 unsigned i, n = 0;
1148
1149 p += strspn(p, WHITESPACE);
1150
1151 if (*p == 0) {
1152 if (!something)
1153 return -EINVAL;
1154
1155 break;
1156 }
1157
1158 errno = 0;
1159 l = strtoll(p, &e, 10);
1160
1161 if (errno > 0)
1162 return -errno;
1163
1164 if (l < 0)
1165 return -ERANGE;
1166
1167 if (*e == '.') {
1168 char *b = e + 1;
1169
1170 errno = 0;
1171 z = strtoll(b, &e, 10);
1172 if (errno > 0)
1173 return -errno;
1174
1175 if (z < 0)
1176 return -ERANGE;
1177
1178 if (e == b)
1179 return -EINVAL;
1180
1181 n = e - b;
1182
1183 } else if (e == p)
1184 return -EINVAL;
1185
1186 e += strspn(e, WHITESPACE);
1187
1188 for (i = 0; i < ELEMENTSOF(table); i++)
1189 if (startswith(e, table[i].suffix)) {
1190 nsec_t k = (nsec_t) z * table[i].nsec;
1191
1192 for (; n > 0; n--)
1193 k /= 10;
1194
1195 r += (nsec_t) l * table[i].nsec + k;
1196 p = e + strlen(table[i].suffix);
1197
1198 something = true;
1199 break;
1200 }
1201
1202 if (i >= ELEMENTSOF(table))
1203 return -EINVAL;
1204
1205 }
1206
1207 *nsec = r;
1208
1209 return 0;
1210 }
1211
1212 bool ntp_synced(void) {
1213 struct timex txc = {};
1214
1215 if (adjtimex(&txc) < 0)
1216 return false;
1217
1218 if (txc.status & STA_UNSYNC)
1219 return false;
1220
1221 return true;
1222 }
1223
1224 int get_timezones(char ***ret) {
1225 _cleanup_fclose_ FILE *f = NULL;
1226 _cleanup_strv_free_ char **zones = NULL;
1227 size_t n_zones = 0, n_allocated = 0;
1228
1229 assert(ret);
1230
1231 zones = strv_new("UTC", NULL);
1232 if (!zones)
1233 return -ENOMEM;
1234
1235 n_allocated = 2;
1236 n_zones = 1;
1237
1238 f = fopen("/usr/share/zoneinfo/zone.tab", "re");
1239 if (f) {
1240 char l[LINE_MAX];
1241
1242 FOREACH_LINE(l, f, return -errno) {
1243 char *p, *w;
1244 size_t k;
1245
1246 p = strstrip(l);
1247
1248 if (isempty(p) || *p == '#')
1249 continue;
1250
1251 /* Skip over country code */
1252 p += strcspn(p, WHITESPACE);
1253 p += strspn(p, WHITESPACE);
1254
1255 /* Skip over coordinates */
1256 p += strcspn(p, WHITESPACE);
1257 p += strspn(p, WHITESPACE);
1258
1259 /* Found timezone name */
1260 k = strcspn(p, WHITESPACE);
1261 if (k <= 0)
1262 continue;
1263
1264 w = strndup(p, k);
1265 if (!w)
1266 return -ENOMEM;
1267
1268 if (!GREEDY_REALLOC(zones, n_allocated, n_zones + 2)) {
1269 free(w);
1270 return -ENOMEM;
1271 }
1272
1273 zones[n_zones++] = w;
1274 zones[n_zones] = NULL;
1275 }
1276
1277 strv_sort(zones);
1278
1279 } else if (errno != ENOENT)
1280 return -errno;
1281
1282 *ret = zones;
1283 zones = NULL;
1284
1285 return 0;
1286 }
1287
1288 bool timezone_is_valid(const char *name) {
1289 bool slash = false;
1290 const char *p, *t;
1291 struct stat st;
1292
1293 if (isempty(name))
1294 return false;
1295
1296 if (name[0] == '/')
1297 return false;
1298
1299 for (p = name; *p; p++) {
1300 if (!(*p >= '0' && *p <= '9') &&
1301 !(*p >= 'a' && *p <= 'z') &&
1302 !(*p >= 'A' && *p <= 'Z') &&
1303 !(*p == '-' || *p == '_' || *p == '+' || *p == '/'))
1304 return false;
1305
1306 if (*p == '/') {
1307
1308 if (slash)
1309 return false;
1310
1311 slash = true;
1312 } else
1313 slash = false;
1314 }
1315
1316 if (slash)
1317 return false;
1318
1319 t = strjoina("/usr/share/zoneinfo/", name);
1320 if (stat(t, &st) < 0)
1321 return false;
1322
1323 if (!S_ISREG(st.st_mode))
1324 return false;
1325
1326 return true;
1327 }
1328
1329 bool clock_boottime_supported(void) {
1330 static int supported = -1;
1331
1332 /* Note that this checks whether CLOCK_BOOTTIME is available in general as well as available for timerfds()! */
1333
1334 if (supported < 0) {
1335 int fd;
1336
1337 fd = timerfd_create(CLOCK_BOOTTIME, TFD_NONBLOCK|TFD_CLOEXEC);
1338 if (fd < 0)
1339 supported = false;
1340 else {
1341 safe_close(fd);
1342 supported = true;
1343 }
1344 }
1345
1346 return supported;
1347 }
1348
1349 clockid_t clock_boottime_or_monotonic(void) {
1350 if (clock_boottime_supported())
1351 return CLOCK_BOOTTIME;
1352 else
1353 return CLOCK_MONOTONIC;
1354 }
1355
1356 bool clock_supported(clockid_t clock) {
1357 struct timespec ts;
1358
1359 switch (clock) {
1360
1361 case CLOCK_MONOTONIC:
1362 case CLOCK_REALTIME:
1363 return true;
1364
1365 case CLOCK_BOOTTIME:
1366 return clock_boottime_supported();
1367
1368 case CLOCK_BOOTTIME_ALARM:
1369 if (!clock_boottime_supported())
1370 return false;
1371
1372 /* fall through */
1373
1374 default:
1375 /* For everything else, check properly */
1376 return clock_gettime(clock, &ts) >= 0;
1377 }
1378 }
1379
1380 int get_timezone(char **tz) {
1381 _cleanup_free_ char *t = NULL;
1382 const char *e;
1383 char *z;
1384 int r;
1385
1386 r = readlink_malloc("/etc/localtime", &t);
1387 if (r < 0)
1388 return r; /* returns EINVAL if not a symlink */
1389
1390 e = path_startswith(t, "/usr/share/zoneinfo/");
1391 if (!e)
1392 e = path_startswith(t, "../usr/share/zoneinfo/");
1393 if (!e)
1394 return -EINVAL;
1395
1396 if (!timezone_is_valid(e))
1397 return -EINVAL;
1398
1399 z = strdup(e);
1400 if (!z)
1401 return -ENOMEM;
1402
1403 *tz = z;
1404 return 0;
1405 }
1406
1407 time_t mktime_or_timegm(struct tm *tm, bool utc) {
1408 return utc ? timegm(tm) : mktime(tm);
1409 }
1410
1411 struct tm *localtime_or_gmtime_r(const time_t *t, struct tm *tm, bool utc) {
1412 return utc ? gmtime_r(t, tm) : localtime_r(t, tm);
1413 }
1414
1415 unsigned long usec_to_jiffies(usec_t u) {
1416 static thread_local unsigned long hz = 0;
1417 long r;
1418
1419 if (hz == 0) {
1420 r = sysconf(_SC_CLK_TCK);
1421
1422 assert(r > 0);
1423 hz = r;
1424 }
1425
1426 return DIV_ROUND_UP(u , USEC_PER_SEC / hz);
1427 }
1428
1429 usec_t usec_shift_clock(usec_t x, clockid_t from, clockid_t to) {
1430 usec_t a, b;
1431
1432 if (x == USEC_INFINITY)
1433 return USEC_INFINITY;
1434 if (map_clock_id(from) == map_clock_id(to))
1435 return x;
1436
1437 a = now(from);
1438 b = now(to);
1439
1440 if (x > a)
1441 /* x lies in the future */
1442 return usec_add(b, usec_sub_unsigned(x, a));
1443 else
1444 /* x lies in the past */
1445 return usec_sub_unsigned(b, usec_sub_unsigned(a, x));
1446 }