]> git.ipfire.org Git - thirdparty/squid.git/blob - src/comm.cc
Upgrade comm layer Connection handling
[thirdparty/squid.git] / src / comm.cc
1 /*
2 * DEBUG: section 05 Socket Functions
3 * AUTHOR: Harvest Derived
4 *
5 * SQUID Web Proxy Cache http://www.squid-cache.org/
6 * ----------------------------------------------------------
7 *
8 * Squid is the result of efforts by numerous individuals from
9 * the Internet community; see the CONTRIBUTORS file for full
10 * details. Many organizations have provided support for Squid's
11 * development; see the SPONSORS file for full details. Squid is
12 * Copyrighted (C) 2001 by the Regents of the University of
13 * California; see the COPYRIGHT file for full details. Squid
14 * incorporates software developed and/or copyrighted by other
15 * sources; see the CREDITS file for full details.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
30 *
31 *
32 * Copyright (c) 2003, Robert Collins <robertc@squid-cache.org>
33 */
34
35 #include "squid.h"
36 #include "base/AsyncCall.h"
37 #include "StoreIOBuffer.h"
38 #include "comm.h"
39 #include "event.h"
40 #include "fde.h"
41 #include "comm/AcceptLimiter.h"
42 #include "comm/comm_internal.h"
43 #include "comm/Connection.h"
44 #include "comm/IoCallback.h"
45 #include "comm/Loops.h"
46 #include "comm/Write.h"
47 #include "comm/TcpAcceptor.h"
48 #include "CommIO.h"
49 #include "CommRead.h"
50 #include "MemBuf.h"
51 #include "pconn.h"
52 #include "SquidTime.h"
53 #include "CommCalls.h"
54 #include "DescriptorSet.h"
55 #include "icmp/net_db.h"
56 #include "ip/Address.h"
57 #include "ip/Intercept.h"
58 #include "ip/QosConfig.h"
59 #include "ip/tools.h"
60 #include "ClientInfo.h"
61 #if USE_SSL
62 #include "ssl/support.h"
63 #endif
64
65 #include "cbdata.h"
66 #if _SQUID_CYGWIN_
67 #include <sys/ioctl.h>
68 #endif
69 #ifdef HAVE_NETINET_TCP_H
70 #include <netinet/tcp.h>
71 #endif
72
73 /*
74 * New C-like simple comm code. This stuff is a mess and doesn't really buy us anything.
75 */
76
77 static void commStopHalfClosedMonitor(int fd);
78 static IOCB commHalfClosedReader;
79 static void comm_init_opened(const Comm::ConnectionPointer &conn, tos_t tos, nfmark_t nfmark, const char *note, struct addrinfo *AI);
80 static int comm_apply_flags(int new_socket, Ip::Address &addr, int flags, struct addrinfo *AI);
81
82 #if USE_DELAY_POOLS
83 CBDATA_CLASS_INIT(CommQuotaQueue);
84
85 static void commHandleWriteHelper(void * data);
86 #endif
87
88 /* STATIC */
89
90 static DescriptorSet *TheHalfClosed = NULL; /// the set of half-closed FDs
91 static bool WillCheckHalfClosed = false; /// true if check is scheduled
92 static EVH commHalfClosedCheck;
93 static void commPlanHalfClosedCheck();
94
95 static comm_err_t commBind(int s, struct addrinfo &);
96 static void commSetReuseAddr(int);
97 static void commSetNoLinger(int);
98 #ifdef TCP_NODELAY
99 static void commSetTcpNoDelay(int);
100 #endif
101 static void commSetTcpRcvbuf(int, int);
102
103 static MemAllocator *conn_close_pool = NULL;
104 fd_debug_t *fdd_table = NULL;
105
106 bool
107 isOpen(const int fd)
108 {
109 return fd >= 0 && fd_table[fd].flags.open != 0;
110 }
111
112 /**
113 * Attempt a read
114 *
115 * If the read attempt succeeds or fails, call the callback.
116 * Else, wait for another IO notification.
117 */
118 void
119 commHandleRead(int fd, void *data)
120 {
121 Comm::IoCallback *ccb = (Comm::IoCallback *) data;
122
123 assert(data == COMMIO_FD_READCB(fd));
124 assert(ccb->active());
125 /* Attempt a read */
126 statCounter.syscalls.sock.reads++;
127 errno = 0;
128 int retval;
129 retval = FD_READ_METHOD(fd, ccb->buf, ccb->size);
130 debugs(5, 3, "comm_read_try: FD " << fd << ", size " << ccb->size << ", retval " << retval << ", errno " << errno);
131
132 if (retval < 0 && !ignoreErrno(errno)) {
133 debugs(5, 3, "comm_read_try: scheduling COMM_ERROR");
134 ccb->offset = 0;
135 ccb->finish(COMM_ERROR, errno);
136 return;
137 };
138
139 /* See if we read anything */
140 /* Note - read 0 == socket EOF, which is a valid read */
141 if (retval >= 0) {
142 fd_bytes(fd, retval, FD_READ);
143 ccb->offset = retval;
144 ccb->finish(COMM_OK, errno);
145 return;
146 }
147
148 /* Nope, register for some more IO */
149 Comm::SetSelect(fd, COMM_SELECT_READ, commHandleRead, data, 0);
150 }
151
152 /**
153 * Queue a read. handler/handler_data are called when the read
154 * completes, on error, or on file descriptor close.
155 */
156 void
157 comm_read(const Comm::ConnectionPointer &conn, char *buf, int size, AsyncCall::Pointer &callback)
158 {
159 debugs(5, 5, "comm_read, queueing read for " << conn << "; asynCall " << callback);
160
161 /* Make sure we are open and not closing */
162 assert(Comm::IsConnOpen(conn));
163 assert(!fd_table[conn->fd].closing());
164 Comm::IoCallback *ccb = COMMIO_FD_READCB(conn->fd);
165
166 // Make sure we are either not reading or just passively monitoring.
167 // Active/passive conflicts are OK and simply cancel passive monitoring.
168 if (ccb->active()) {
169 // if the assertion below fails, we have an active comm_read conflict
170 assert(fd_table[conn->fd].halfClosedReader != NULL);
171 commStopHalfClosedMonitor(conn->fd);
172 assert(!ccb->active());
173 }
174 ccb->conn = conn;
175
176 /* Queue the read */
177 ccb->setCallback(Comm::IOCB_READ, callback, (char *)buf, NULL, size);
178 Comm::SetSelect(conn->fd, COMM_SELECT_READ, commHandleRead, ccb, 0);
179 }
180
181 /**
182 * Empty the read buffers
183 *
184 * This is a magical routine that empties the read buffers.
185 * Under some platforms (Linux) if a buffer has data in it before
186 * you call close(), the socket will hang and take quite a while
187 * to timeout.
188 */
189 static void
190 comm_empty_os_read_buffers(int fd)
191 {
192 #ifdef _SQUID_LINUX_
193 /* prevent those nasty RST packets */
194 char buf[SQUID_TCP_SO_RCVBUF];
195
196 if (fd_table[fd].flags.nonblocking == 1) {
197 while (FD_READ_METHOD(fd, buf, SQUID_TCP_SO_RCVBUF) > 0) {};
198 }
199 #endif
200 }
201
202
203 /**
204 * Return whether the FD has a pending completed callback.
205 * NP: does not work.
206 */
207 int
208 comm_has_pending_read_callback(int fd)
209 {
210 assert(isOpen(fd));
211 // XXX: We do not know whether there is a read callback scheduled.
212 // This is used for pconn management that should probably be more
213 // tightly integrated into comm to minimize the chance that a
214 // closing pconn socket will be used for a new transaction.
215 return false;
216 }
217
218 // Does comm check this fd for read readiness?
219 // Note that when comm is not monitoring, there can be a pending callback
220 // call, which may resume comm monitoring once fired.
221 bool
222 comm_monitors_read(int fd)
223 {
224 assert(isOpen(fd));
225 // Being active is usually the same as monitoring because we always
226 // start monitoring the FD when we configure Comm::IoCallback for I/O
227 // and we usually configure Comm::IoCallback for I/O when we starting
228 // monitoring a FD for reading.
229 return COMMIO_FD_READCB(fd)->active();
230 }
231
232 /**
233 * Cancel a pending read. Assert that we have the right parameters,
234 * and that there are no pending read events!
235 *
236 * XXX: We do not assert that there are no pending read events and
237 * with async calls it becomes even more difficult.
238 * The whole interface should be reworked to do callback->cancel()
239 * instead of searching for places where the callback may be stored and
240 * updating the state of those places.
241 *
242 * AHC Don't call the comm handlers?
243 */
244 void
245 comm_read_cancel(int fd, IOCB *callback, void *data)
246 {
247 if (!isOpen(fd)) {
248 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " closed");
249 return;
250 }
251
252 Comm::IoCallback *cb = COMMIO_FD_READCB(fd);
253 // TODO: is "active" == "monitors FD"?
254 if (!cb->active()) {
255 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " inactive");
256 return;
257 }
258
259 typedef CommCbFunPtrCallT<CommIoCbPtrFun> Call;
260 Call *call = dynamic_cast<Call*>(cb->callback.getRaw());
261 if (!call) {
262 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " lacks callback");
263 return;
264 }
265
266 call->cancel("old comm_read_cancel");
267
268 typedef CommIoCbParams Params;
269 const Params &params = GetCommParams<Params>(cb->callback);
270
271 /* Ok, we can be reasonably sure we won't lose any data here! */
272 assert(call->dialer.handler == callback);
273 assert(params.data == data);
274
275 /* Delete the callback */
276 cb->cancel("old comm_read_cancel");
277
278 /* And the IO event */
279 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
280 }
281
282 void
283 comm_read_cancel(int fd, AsyncCall::Pointer &callback)
284 {
285 callback->cancel("comm_read_cancel");
286
287 if (!isOpen(fd)) {
288 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " closed");
289 return;
290 }
291
292 Comm::IoCallback *cb = COMMIO_FD_READCB(fd);
293
294 if (!cb->active()) {
295 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " inactive");
296 return;
297 }
298
299 AsyncCall::Pointer call = cb->callback;
300 assert(call != NULL); // XXX: should never fail (active() checks for callback==NULL)
301
302 /* Ok, we can be reasonably sure we won't lose any data here! */
303 assert(call == callback);
304
305 /* Delete the callback */
306 cb->cancel("comm_read_cancel");
307
308 /* And the IO event */
309 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
310 }
311
312
313 /**
314 * synchronous wrapper around udp socket functions
315 */
316 int
317 comm_udp_recvfrom(int fd, void *buf, size_t len, int flags, Ip::Address &from)
318 {
319 statCounter.syscalls.sock.recvfroms++;
320 int x = 0;
321 struct addrinfo *AI = NULL;
322
323 debugs(5,8, "comm_udp_recvfrom: FD " << fd << " from " << from);
324
325 assert( NULL == AI );
326
327 from.InitAddrInfo(AI);
328
329 x = recvfrom(fd, buf, len, flags, AI->ai_addr, &AI->ai_addrlen);
330
331 from = *AI;
332
333 from.FreeAddrInfo(AI);
334
335 return x;
336 }
337
338 int
339 comm_udp_recv(int fd, void *buf, size_t len, int flags)
340 {
341 Ip::Address nul;
342 return comm_udp_recvfrom(fd, buf, len, flags, nul);
343 }
344
345 ssize_t
346 comm_udp_send(int s, const void *buf, size_t len, int flags)
347 {
348 return send(s, buf, len, flags);
349 }
350
351
352 bool
353 comm_has_incomplete_write(int fd)
354 {
355 assert(isOpen(fd));
356 return COMMIO_FD_WRITECB(fd)->active();
357 }
358
359 /**
360 * Queue a write. handler/handler_data are called when the write fully
361 * completes, on error, or on file descriptor close.
362 */
363
364 /* Return the local port associated with fd. */
365 u_short
366 comm_local_port(int fd)
367 {
368 Ip::Address temp;
369 struct addrinfo *addr = NULL;
370 fde *F = &fd_table[fd];
371
372 /* If the fd is closed already, just return */
373
374 if (!F->flags.open) {
375 debugs(5, 0, "comm_local_port: FD " << fd << " has been closed.");
376 return 0;
377 }
378
379 if (F->local_addr.GetPort())
380 return F->local_addr.GetPort();
381
382 if (F->sock_family == AF_INET)
383 temp.SetIPv4();
384
385 temp.InitAddrInfo(addr);
386
387 if (getsockname(fd, addr->ai_addr, &(addr->ai_addrlen)) ) {
388 debugs(50, 1, "comm_local_port: Failed to retrieve TCP/UDP port number for socket: FD " << fd << ": " << xstrerror());
389 temp.FreeAddrInfo(addr);
390 return 0;
391 }
392 temp = *addr;
393
394 temp.FreeAddrInfo(addr);
395
396 if (F->local_addr.IsAnyAddr()) {
397 /* save the whole local address, not just the port. */
398 F->local_addr = temp;
399 } else {
400 F->local_addr.SetPort(temp.GetPort());
401 }
402
403 debugs(5, 6, "comm_local_port: FD " << fd << ": port " << F->local_addr.GetPort() << "(family=" << F->sock_family << ")");
404 return F->local_addr.GetPort();
405 }
406
407 static comm_err_t
408 commBind(int s, struct addrinfo &inaddr)
409 {
410 statCounter.syscalls.sock.binds++;
411
412 if (bind(s, inaddr.ai_addr, inaddr.ai_addrlen) == 0) {
413 debugs(50, 6, "commBind: bind socket FD " << s << " to " << fd_table[s].local_addr);
414 return COMM_OK;
415 }
416
417 debugs(50, 0, "commBind: Cannot bind socket FD " << s << " to " << fd_table[s].local_addr << ": " << xstrerror());
418
419 return COMM_ERROR;
420 }
421
422 /**
423 * Create a socket. Default is blocking, stream (TCP) socket. IO_TYPE
424 * is OR of flags specified in comm.h. Defaults TOS
425 */
426 int
427 comm_open(int sock_type,
428 int proto,
429 Ip::Address &addr,
430 int flags,
431 const char *note)
432 {
433 return comm_openex(sock_type, proto, addr, flags, 0, 0, note);
434 }
435
436 void
437 comm_open_listener(int sock_type,
438 int proto,
439 Comm::ConnectionPointer &conn,
440 const char *note)
441 {
442 /* all listener sockets require bind() */
443 conn->flags |= COMM_DOBIND;
444
445 /* attempt native enabled port. */
446 conn->fd = comm_openex(sock_type, proto, conn->local, conn->flags, 0, 0, note);
447 }
448
449 int
450 comm_open_listener(int sock_type,
451 int proto,
452 Ip::Address &addr,
453 int flags,
454 const char *note)
455 {
456 int sock = -1;
457
458 /* all listener sockets require bind() */
459 flags |= COMM_DOBIND;
460
461 /* attempt native enabled port. */
462 sock = comm_openex(sock_type, proto, addr, flags, 0, 0, note);
463
464 return sock;
465 }
466
467 static bool
468 limitError(int const anErrno)
469 {
470 return anErrno == ENFILE || anErrno == EMFILE;
471 }
472
473 void
474 comm_set_v6only(int fd, int tos)
475 {
476 #ifdef IPV6_V6ONLY
477 if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &tos, sizeof(int)) < 0) {
478 debugs(50, 1, "comm_open: setsockopt(IPV6_V6ONLY) " << (tos?"ON":"OFF") << " for FD " << fd << ": " << xstrerror());
479 }
480 #else
481 debugs(50, 0, "WARNING: comm_open: setsockopt(IPV6_V6ONLY) not supported on this platform");
482 #endif /* sockopt */
483 }
484
485 /**
486 * Set the socket IP_TRANSPARENT option for Linux TPROXY v4 support.
487 */
488 void
489 comm_set_transparent(int fd)
490 {
491 #if defined(IP_TRANSPARENT)
492 int tos = 1;
493 if (setsockopt(fd, SOL_IP, IP_TRANSPARENT, (char *) &tos, sizeof(int)) < 0) {
494 debugs(50, DBG_IMPORTANT, "comm_open: setsockopt(IP_TRANSPARENT) on FD " << fd << ": " << xstrerror());
495 } else {
496 /* mark the socket as having transparent options */
497 fd_table[fd].flags.transparent = 1;
498 }
499 #else
500 debugs(50, DBG_CRITICAL, "WARNING: comm_open: setsockopt(IP_TRANSPARENT) not supported on this platform");
501 #endif /* sockopt */
502 }
503
504 /**
505 * Create a socket. Default is blocking, stream (TCP) socket. IO_TYPE
506 * is OR of flags specified in defines.h:COMM_*
507 */
508 int
509 comm_openex(int sock_type,
510 int proto,
511 Ip::Address &addr,
512 int flags,
513 tos_t tos,
514 nfmark_t nfmark,
515 const char *note)
516 {
517 int new_socket;
518 struct addrinfo *AI = NULL;
519
520 PROF_start(comm_open);
521 /* Create socket for accepting new connections. */
522 statCounter.syscalls.sock.sockets++;
523
524 /* Setup the socket addrinfo details for use */
525 addr.GetAddrInfo(AI);
526 AI->ai_socktype = sock_type;
527 AI->ai_protocol = proto;
528
529 debugs(50, 3, "comm_openex: Attempt open socket for: " << addr );
530
531 new_socket = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol);
532
533 /* under IPv6 there is the possibility IPv6 is present but disabled. */
534 /* try again as IPv4-native if possible */
535 if ( new_socket < 0 && Ip::EnableIpv6 && addr.IsIPv6() && addr.SetIPv4() ) {
536 /* attempt to open this IPv4-only. */
537 addr.FreeAddrInfo(AI);
538 /* Setup the socket addrinfo details for use */
539 addr.GetAddrInfo(AI);
540 AI->ai_socktype = sock_type;
541 AI->ai_protocol = proto;
542 debugs(50, 3, "comm_openex: Attempt fallback open socket for: " << addr );
543 new_socket = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol);
544 debugs(50, 2, HERE << "attempt open " << note << " socket on: " << addr);
545 }
546
547 if (new_socket < 0) {
548 /* Increase the number of reserved fd's if calls to socket()
549 * are failing because the open file table is full. This
550 * limits the number of simultaneous clients */
551
552 if (limitError(errno)) {
553 debugs(50, DBG_IMPORTANT, "comm_open: socket failure: " << xstrerror());
554 fdAdjustReserved();
555 } else {
556 debugs(50, DBG_CRITICAL, "comm_open: socket failure: " << xstrerror());
557 }
558
559 addr.FreeAddrInfo(AI);
560
561 PROF_stop(comm_open);
562 return -1;
563 }
564
565 // XXX: temporary for the transition. comm_openex will eventually have a conn to play with.
566 Comm::ConnectionPointer conn = new Comm::Connection;
567 conn->local = addr;
568 conn->fd = new_socket;
569
570 debugs(50, 3, "comm_openex: Opened socket " << conn << " : family=" << AI->ai_family << ", type=" << AI->ai_socktype << ", protocol=" << AI->ai_protocol );
571
572 /* set TOS if needed */
573 if (tos)
574 Ip::Qos::setSockTos(conn, tos);
575
576 /* set netfilter mark if needed */
577 if (nfmark)
578 Ip::Qos::setSockNfmark(conn, nfmark);
579
580 if ( Ip::EnableIpv6&IPV6_SPECIAL_SPLITSTACK && addr.IsIPv6() )
581 comm_set_v6only(conn->fd, 1);
582
583 /* Windows Vista supports Dual-Sockets. BUT defaults them to V6ONLY. Turn it OFF. */
584 /* Other OS may have this administratively disabled for general use. Same deal. */
585 if ( Ip::EnableIpv6&IPV6_SPECIAL_V4MAPPING && addr.IsIPv6() )
586 comm_set_v6only(conn->fd, 0);
587
588 comm_init_opened(conn, tos, nfmark, note, AI);
589 new_socket = comm_apply_flags(conn->fd, addr, flags, AI);
590
591 addr.FreeAddrInfo(AI);
592
593 PROF_stop(comm_open);
594
595 // XXX transition only. prevent conn from closing the new FD on function exit.
596 conn->fd = -1;
597 return new_socket;
598 }
599
600 /// update FD tables after a local or remote (IPC) comm_openex();
601 void
602 comm_init_opened(const Comm::ConnectionPointer &conn,
603 tos_t tos,
604 nfmark_t nfmark,
605 const char *note,
606 struct addrinfo *AI)
607 {
608 assert(Comm::IsConnOpen(conn));
609 assert(AI);
610
611 /* update fdstat */
612 debugs(5, 5, HERE << conn << " is a new socket");
613
614 assert(!isOpen(conn->fd)); // NP: global isOpen checks the fde entry for openness not the Comm::Connection
615 fd_open(conn->fd, FD_SOCKET, note);
616
617 fdd_table[conn->fd].close_file = NULL;
618 fdd_table[conn->fd].close_line = 0;
619
620 fde *F = &fd_table[conn->fd];
621 F->local_addr = conn->local;
622 F->tosToServer = tos;
623
624 F->nfmarkToServer = nfmark;
625
626 F->sock_family = AI->ai_family;
627 }
628
629 /// apply flags after a local comm_open*() call;
630 /// returns new_socket or -1 on error
631 static int
632 comm_apply_flags(int new_socket,
633 Ip::Address &addr,
634 int flags,
635 struct addrinfo *AI)
636 {
637 assert(new_socket >= 0);
638 assert(AI);
639 const int sock_type = AI->ai_socktype;
640
641 if (!(flags & COMM_NOCLOEXEC))
642 commSetCloseOnExec(new_socket);
643
644 if ((flags & COMM_REUSEADDR))
645 commSetReuseAddr(new_socket);
646
647 if (addr.GetPort() > (u_short) 0) {
648 #ifdef _SQUID_MSWIN_
649 if (sock_type != SOCK_DGRAM)
650 #endif
651 commSetNoLinger(new_socket);
652
653 if (opt_reuseaddr)
654 commSetReuseAddr(new_socket);
655 }
656
657 /* MUST be done before binding or face OS Error: "(99) Cannot assign requested address"... */
658 if ((flags & COMM_TRANSPARENT)) {
659 comm_set_transparent(new_socket);
660 }
661
662 if ( (flags & COMM_DOBIND) || addr.GetPort() > 0 || !addr.IsAnyAddr() ) {
663 if ( !(flags & COMM_DOBIND) && addr.IsAnyAddr() )
664 debugs(5,1,"WARNING: Squid is attempting to bind() port " << addr << " without being a listener.");
665 if ( addr.IsNoAddr() )
666 debugs(5,0,"CRITICAL: Squid is attempting to bind() port " << addr << "!!");
667
668 if (commBind(new_socket, *AI) != COMM_OK) {
669 comm_close(new_socket);
670 return -1;
671 }
672 }
673
674 if (flags & COMM_NONBLOCKING)
675 if (commSetNonBlocking(new_socket) == COMM_ERROR) {
676 comm_close(new_socket);
677 return -1;
678 }
679
680 #ifdef TCP_NODELAY
681 if (sock_type == SOCK_STREAM)
682 commSetTcpNoDelay(new_socket);
683
684 #endif
685
686 if (Config.tcpRcvBufsz > 0 && sock_type == SOCK_STREAM)
687 commSetTcpRcvbuf(new_socket, Config.tcpRcvBufsz);
688
689 return new_socket;
690 }
691
692 void
693 comm_import_opened(const Comm::ConnectionPointer &conn,
694 const char *note,
695 struct addrinfo *AI)
696 {
697 debugs(5, 2, HERE << conn);
698 assert(Comm::IsConnOpen(conn));
699 assert(AI);
700
701 comm_init_opened(conn, 0, 0, note, AI);
702
703 if (!(conn->flags & COMM_NOCLOEXEC))
704 fd_table[conn->fd].flags.close_on_exec = 1;
705
706 if (conn->local.GetPort() > (u_short) 0) {
707 #ifdef _SQUID_MSWIN_
708 if (AI->ai_socktype != SOCK_DGRAM)
709 #endif
710 fd_table[conn->fd].flags.nolinger = 1;
711 }
712
713 if ((conn->flags & COMM_TRANSPARENT))
714 fd_table[conn->fd].flags.transparent = 1;
715
716 if (conn->flags & COMM_NONBLOCKING)
717 fd_table[conn->fd].flags.nonblocking = 1;
718
719 #ifdef TCP_NODELAY
720 if (AI->ai_socktype == SOCK_STREAM)
721 fd_table[conn->fd].flags.nodelay = 1;
722 #endif
723
724 /* no fd_table[fd].flags. updates needed for these conditions:
725 * if ((flags & COMM_REUSEADDR)) ...
726 * if ((flags & COMM_DOBIND) ...) ...
727 */
728 }
729
730 // Legacy pre-AsyncCalls API for FD timeouts.
731 int
732 commSetTimeout(int fd, int timeout, CTCB * handler, void *data)
733 {
734 AsyncCall::Pointer call;
735 debugs(5, 3, HERE << "FD " << fd << " timeout " << timeout);
736 if (handler != NULL)
737 call=commCbCall(5,4, "SomeTimeoutHandler", CommTimeoutCbPtrFun(handler, data));
738 else
739 call = NULL;
740 return commSetTimeout(fd, timeout, call);
741 }
742
743 // Legacy pre-Comm::Connection API for FD timeouts
744 // still used by non-socket FD code dealing with pipes and IPC sockets.
745 int
746 commSetTimeout(int fd, int timeout, AsyncCall::Pointer &callback)
747 {
748 debugs(5, 3, HERE << "FD " << fd << " timeout " << timeout);
749 assert(fd >= 0);
750 assert(fd < Squid_MaxFD);
751 fde *F = &fd_table[fd];
752 assert(F->flags.open);
753
754 if (timeout < 0) {
755 F->timeoutHandler = NULL;
756 F->timeout = 0;
757 } else {
758 if (callback != NULL) {
759 typedef CommTimeoutCbParams Params;
760 Params &params = GetCommParams<Params>(callback);
761 params.fd = fd;
762 F->timeoutHandler = callback;
763 }
764
765 F->timeout = squid_curtime + (time_t) timeout;
766 }
767
768 return F->timeout;
769 }
770
771 int
772 commSetConnTimeout(const Comm::ConnectionPointer &conn, int timeout, AsyncCall::Pointer &callback)
773 {
774 debugs(5, 3, HERE << conn << " timeout " << timeout);
775 assert(Comm::IsConnOpen(conn));
776 assert(conn->fd < Squid_MaxFD);
777 fde *F = &fd_table[conn->fd];
778 assert(F->flags.open);
779
780 if (timeout < 0) {
781 F->timeoutHandler = NULL;
782 F->timeout = 0;
783 } else {
784 if (callback != NULL) {
785 typedef CommTimeoutCbParams Params;
786 Params &params = GetCommParams<Params>(callback);
787 params.conn = conn;
788 F->timeoutHandler = callback;
789 }
790
791 F->timeout = squid_curtime + (time_t) timeout;
792 }
793
794 return F->timeout;
795 }
796
797 int
798 commUnsetConnTimeout(const Comm::ConnectionPointer &conn)
799 {
800 debugs(5, 3, HERE << "Remove timeout for " << conn);
801 AsyncCall::Pointer nil;
802 return commSetConnTimeout(conn, -1, nil);
803 }
804
805 int
806 comm_connect_addr(int sock, const Ip::Address &address)
807 {
808 comm_err_t status = COMM_OK;
809 fde *F = &fd_table[sock];
810 int x = 0;
811 int err = 0;
812 socklen_t errlen;
813 struct addrinfo *AI = NULL;
814 PROF_start(comm_connect_addr);
815
816 assert(address.GetPort() != 0);
817
818 debugs(5, 9, HERE << "connecting socket FD " << sock << " to " << address << " (want family: " << F->sock_family << ")");
819
820 /* Handle IPv6 over IPv4-only socket case.
821 * this case must presently be handled here since the GetAddrInfo asserts on bad mappings.
822 * NP: because commResetFD is private to ConnStateData we have to return an error and
823 * trust its handled properly.
824 */
825 if (F->sock_family == AF_INET && !address.IsIPv4()) {
826 errno = ENETUNREACH;
827 return COMM_ERR_PROTOCOL;
828 }
829
830 /* Handle IPv4 over IPv6-only socket case.
831 * This case is presently handled here as it's both a known case and it's
832 * uncertain what error will be returned by the IPv6 stack in such case. It's
833 * possible this will also be handled by the errno checks below after connect()
834 * but needs carefull cross-platform verification, and verifying the address
835 * condition here is simple.
836 */
837 if (!F->local_addr.IsIPv4() && address.IsIPv4()) {
838 errno = ENETUNREACH;
839 return COMM_ERR_PROTOCOL;
840 }
841
842 address.GetAddrInfo(AI, F->sock_family);
843
844 /* Establish connection. */
845 errno = 0;
846
847 if (!F->flags.called_connect) {
848 F->flags.called_connect = 1;
849 statCounter.syscalls.sock.connects++;
850
851 x = connect(sock, AI->ai_addr, AI->ai_addrlen);
852
853 // XXX: ICAP code refuses callbacks during a pending comm_ call
854 // Async calls development will fix this.
855 if (x == 0) {
856 x = -1;
857 errno = EINPROGRESS;
858 }
859
860 if (x < 0) {
861 debugs(5,5, "comm_connect_addr: sock=" << sock << ", addrinfo( " <<
862 " flags=" << AI->ai_flags <<
863 ", family=" << AI->ai_family <<
864 ", socktype=" << AI->ai_socktype <<
865 ", protocol=" << AI->ai_protocol <<
866 ", &addr=" << AI->ai_addr <<
867 ", addrlen=" << AI->ai_addrlen <<
868 " )" );
869 debugs(5, 9, "connect FD " << sock << ": (" << x << ") " << xstrerror());
870 debugs(14,9, "connecting to: " << address );
871 }
872 } else {
873 #if defined(_SQUID_NEWSOS6_)
874 /* Makoto MATSUSHITA <matusita@ics.es.osaka-u.ac.jp> */
875
876 connect(sock, AI->ai_addr, AI->ai_addrlen);
877
878 if (errno == EINVAL) {
879 errlen = sizeof(err);
880 x = getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &errlen);
881
882 if (x >= 0)
883 errno = x;
884 }
885
886 #else
887 errlen = sizeof(err);
888
889 x = getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &errlen);
890
891 if (x == 0)
892 errno = err;
893
894 #if defined(_SQUID_SOLARIS_)
895 /*
896 * Solaris 2.4's socket emulation doesn't allow you
897 * to determine the error from a failed non-blocking
898 * connect and just returns EPIPE. Create a fake
899 * error message for connect. -- fenner@parc.xerox.com
900 */
901 if (x < 0 && errno == EPIPE)
902 errno = ENOTCONN;
903
904 #endif
905 #endif
906
907 }
908
909 /* Squid seems to be working fine without this code. With this code,
910 * we leak memory on many connect requests because of EINPROGRESS.
911 * If you find that this code is needed, please file a bug report. */
912 #if 0
913 #ifdef _SQUID_LINUX_
914 /* 2007-11-27:
915 * Linux Debian replaces our allocated AI pointer with garbage when
916 * connect() fails. This leads to segmentation faults deallocating
917 * the system-allocated memory when we go to clean up our pointer.
918 * HACK: is to leak the memory returned since we can't deallocate.
919 */
920 if (errno != 0) {
921 AI = NULL;
922 }
923 #endif
924 #endif
925
926 address.FreeAddrInfo(AI);
927
928 PROF_stop(comm_connect_addr);
929
930 if (errno == 0 || errno == EISCONN)
931 status = COMM_OK;
932 else if (ignoreErrno(errno))
933 status = COMM_INPROGRESS;
934 else if (errno == EAFNOSUPPORT || errno == EINVAL)
935 return COMM_ERR_PROTOCOL;
936 else
937 return COMM_ERROR;
938
939 address.NtoA(F->ipaddr, MAX_IPSTRLEN);
940
941 F->remote_port = address.GetPort(); /* remote_port is HS */
942
943 if (status == COMM_OK) {
944 debugs(5, 10, "comm_connect_addr: FD " << sock << " connected to " << address);
945 } else if (status == COMM_INPROGRESS) {
946 debugs(5, 10, "comm_connect_addr: FD " << sock << " connection pending");
947 }
948
949 return status;
950 }
951
952 void
953 commCallCloseHandlers(int fd)
954 {
955 fde *F = &fd_table[fd];
956 debugs(5, 5, "commCallCloseHandlers: FD " << fd);
957
958 while (F->closeHandler != NULL) {
959 AsyncCall::Pointer call = F->closeHandler;
960 F->closeHandler = call->Next();
961 call->setNext(NULL);
962 // If call is not canceled schedule it for execution else ignore it
963 if (!call->canceled()) {
964 debugs(5, 5, "commCallCloseHandlers: ch->handler=" << call);
965 typedef CommCloseCbParams Params;
966 Params &params = GetCommParams<Params>(call);
967 params.fd = fd;
968 ScheduleCallHere(call);
969 }
970 }
971 }
972
973 #if LINGERING_CLOSE
974 static void
975 commLingerClose(int fd, void *unused)
976 {
977 LOCAL_ARRAY(char, buf, 1024);
978 int n;
979 n = FD_READ_METHOD(fd, buf, 1024);
980
981 if (n < 0)
982 debugs(5, 3, "commLingerClose: FD " << fd << " read: " << xstrerror());
983
984 comm_close(fd);
985 }
986
987 static void
988 commLingerTimeout(int fd, void *unused)
989 {
990 debugs(5, 3, "commLingerTimeout: FD " << fd);
991 comm_close(fd);
992 }
993
994 /*
995 * Inspired by apache
996 */
997 void
998 comm_lingering_close(int fd)
999 {
1000 #if USE_SSL
1001
1002 if (fd_table[fd].ssl)
1003 ssl_shutdown_method(fd);
1004
1005 #endif
1006
1007 if (shutdown(fd, 1) < 0) {
1008 comm_close(fd);
1009 return;
1010 }
1011
1012 fd_note(fd, "lingering close");
1013 commSetTimeout(fd, 10, commLingerTimeout, NULL);
1014 Comm::SetSelect(fd, COMM_SELECT_READ, commLingerClose, NULL, 0);
1015 }
1016
1017 #endif
1018
1019 /**
1020 * enable linger with time of 0 so that when the socket is
1021 * closed, TCP generates a RESET
1022 */
1023 void
1024 comm_reset_close(Comm::ConnectionPointer &conn)
1025 {
1026 struct linger L;
1027 L.l_onoff = 1;
1028 L.l_linger = 0;
1029
1030 if (setsockopt(conn->fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1031 debugs(50, DBG_CRITICAL, "ERROR: Closing " << conn << " with TCP RST: " << xstrerror());
1032
1033 conn->close();
1034 }
1035
1036 // Legacy close function.
1037 void
1038 old_comm_reset_close(int fd)
1039 {
1040 struct linger L;
1041 L.l_onoff = 1;
1042 L.l_linger = 0;
1043
1044 if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1045 debugs(50, DBG_CRITICAL, "ERROR: Closing FD " << fd << " with TCP RST: " << xstrerror());
1046
1047 comm_close(fd);
1048 }
1049
1050 void
1051 comm_close_start(int fd, void *data)
1052 {
1053 #if USE_SSL
1054 fde *F = &fd_table[fd];
1055 if (F->ssl)
1056 ssl_shutdown_method(fd);
1057
1058 #endif
1059
1060 }
1061
1062 void
1063 comm_close_complete(int fd, void *data)
1064 {
1065 #if USE_SSL
1066 fde *F = &fd_table[fd];
1067
1068 if (F->ssl) {
1069 SSL_free(F->ssl);
1070 F->ssl = NULL;
1071 }
1072
1073 if (F->dynamicSslContext) {
1074 SSL_CTX_free(F->dynamicSslContext);
1075 F->dynamicSslContext = NULL;
1076 }
1077 #endif
1078 fd_close(fd); /* update fdstat */
1079
1080 close(fd);
1081
1082 statCounter.syscalls.sock.closes++;
1083
1084 /* When an fd closes, give accept() a chance, if need be */
1085 Comm::AcceptLimiter::Instance().kick();
1086 }
1087
1088 /*
1089 * Close the socket fd.
1090 *
1091 * + call write handlers with ERR_CLOSING
1092 * + call read handlers with ERR_CLOSING
1093 * + call closing handlers
1094 *
1095 * NOTE: COMM_ERR_CLOSING will NOT be called for CommReads' sitting in a
1096 * DeferredReadManager.
1097 */
1098 void
1099 _comm_close(int fd, char const *file, int line)
1100 {
1101 debugs(5, 3, "comm_close: start closing FD " << fd);
1102 assert(fd >= 0);
1103 assert(fd < Squid_MaxFD);
1104
1105 fde *F = &fd_table[fd];
1106 fdd_table[fd].close_file = file;
1107 fdd_table[fd].close_line = line;
1108
1109 if (F->closing())
1110 return;
1111
1112 /* XXX: is this obsolete behind F->closing() ? */
1113 if ( (shutting_down || reconfiguring) && (!F->flags.open || F->type == FD_FILE))
1114 return;
1115
1116 /* The following fails because ipc.c is doing calls to pipe() to create sockets! */
1117 assert(isOpen(fd));
1118
1119 assert(F->type != FD_FILE);
1120
1121 PROF_start(comm_close);
1122
1123 F->flags.close_request = 1;
1124
1125 AsyncCall::Pointer startCall=commCbCall(5,4, "comm_close_start",
1126 CommCloseCbPtrFun(comm_close_start, NULL));
1127 typedef CommCloseCbParams Params;
1128 Params &startParams = GetCommParams<Params>(startCall);
1129 startParams.fd = fd;
1130 ScheduleCallHere(startCall);
1131
1132 // a half-closed fd may lack a reader, so we stop monitoring explicitly
1133 if (commHasHalfClosedMonitor(fd))
1134 commStopHalfClosedMonitor(fd);
1135 commSetTimeout(fd, -1, NULL, NULL);
1136
1137 // notify read/write handlers after canceling select reservations, if any
1138 if (COMMIO_FD_WRITECB(fd)->active()) {
1139 Comm::SetSelect(fd, COMM_SELECT_WRITE, NULL, NULL, 0);
1140 COMMIO_FD_WRITECB(fd)->finish(COMM_ERR_CLOSING, errno);
1141 }
1142 if (COMMIO_FD_READCB(fd)->active()) {
1143 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
1144 COMMIO_FD_READCB(fd)->finish(COMM_ERR_CLOSING, errno);
1145 }
1146
1147 #if USE_DELAY_POOLS
1148 if (ClientInfo *clientInfo = F->clientInfo) {
1149 if (clientInfo->selectWaiting) {
1150 clientInfo->selectWaiting = false;
1151 // kick queue or it will get stuck as commWriteHandle is not called
1152 clientInfo->kickQuotaQueue();
1153 }
1154 }
1155 #endif
1156
1157 commCallCloseHandlers(fd);
1158
1159 if (F->pconn.uses)
1160 F->pconn.pool->noteUses(F->pconn.uses);
1161
1162 comm_empty_os_read_buffers(fd);
1163
1164
1165 AsyncCall::Pointer completeCall=commCbCall(5,4, "comm_close_complete",
1166 CommCloseCbPtrFun(comm_close_complete, NULL));
1167 Params &completeParams = GetCommParams<Params>(completeCall);
1168 completeParams.fd = fd;
1169 // must use async call to wait for all callbacks
1170 // scheduled before comm_close() to finish
1171 ScheduleCallHere(completeCall);
1172
1173 PROF_stop(comm_close);
1174 }
1175
1176 /* Send a udp datagram to specified TO_ADDR. */
1177 int
1178 comm_udp_sendto(int fd,
1179 const Ip::Address &to_addr,
1180 const void *buf,
1181 int len)
1182 {
1183 int x = 0;
1184 struct addrinfo *AI = NULL;
1185
1186 PROF_start(comm_udp_sendto);
1187 statCounter.syscalls.sock.sendtos++;
1188
1189 debugs(50, 3, "comm_udp_sendto: Attempt to send UDP packet to " << to_addr <<
1190 " using FD " << fd << " using Port " << comm_local_port(fd) );
1191
1192 /* BUG: something in the above macro appears to occasionally be setting AI to garbage. */
1193 /* AYJ: 2007-08-27 : or was it because I wasn't then setting 'fd_table[fd].sock_family' to fill properly. */
1194 assert( NULL == AI );
1195
1196 to_addr.GetAddrInfo(AI, fd_table[fd].sock_family);
1197
1198 x = sendto(fd, buf, len, 0, AI->ai_addr, AI->ai_addrlen);
1199
1200 to_addr.FreeAddrInfo(AI);
1201
1202 PROF_stop(comm_udp_sendto);
1203
1204 if (x >= 0)
1205 return x;
1206
1207 #ifdef _SQUID_LINUX_
1208
1209 if (ECONNREFUSED != errno)
1210 #endif
1211
1212 debugs(50, 1, "comm_udp_sendto: FD " << fd << ", (family=" << fd_table[fd].sock_family << ") " << to_addr << ": " << xstrerror());
1213
1214 return COMM_ERROR;
1215 }
1216
1217 void
1218 comm_add_close_handler(int fd, PF * handler, void *data)
1219 {
1220 debugs(5, 5, "comm_add_close_handler: FD " << fd << ", handler=" <<
1221 handler << ", data=" << data);
1222
1223 AsyncCall::Pointer call=commCbCall(5,4, "SomeCloseHandler",
1224 CommCloseCbPtrFun(handler, data));
1225 comm_add_close_handler(fd, call);
1226 }
1227
1228 void
1229 comm_add_close_handler(int fd, AsyncCall::Pointer &call)
1230 {
1231 debugs(5, 5, "comm_add_close_handler: FD " << fd << ", AsyncCall=" << call);
1232
1233 /*TODO:Check for a similar scheduled AsyncCall*/
1234 // for (c = fd_table[fd].closeHandler; c; c = c->next)
1235 // assert(c->handler != handler || c->data != data);
1236
1237 call->setNext(fd_table[fd].closeHandler);
1238
1239 fd_table[fd].closeHandler = call;
1240 }
1241
1242
1243 // remove function-based close handler
1244 void
1245 comm_remove_close_handler(int fd, PF * handler, void *data)
1246 {
1247 assert (isOpen(fd));
1248 /* Find handler in list */
1249 debugs(5, 5, "comm_remove_close_handler: FD " << fd << ", handler=" <<
1250 handler << ", data=" << data);
1251
1252 AsyncCall::Pointer p, prev = NULL;
1253 for (p = fd_table[fd].closeHandler; p != NULL; prev = p, p = p->Next()) {
1254 typedef CommCbFunPtrCallT<CommCloseCbPtrFun> Call;
1255 const Call *call = dynamic_cast<const Call*>(p.getRaw());
1256 if (!call) // method callbacks have their own comm_remove_close_handler
1257 continue;
1258
1259 typedef CommCloseCbParams Params;
1260 const Params &params = GetCommParams<Params>(p);
1261 if (call->dialer.handler == handler && params.data == data)
1262 break; /* This is our handler */
1263 }
1264
1265 // comm_close removes all close handlers so our handler may be gone
1266 if (p != NULL) {
1267 p->dequeue(fd_table[fd].closeHandler, prev);
1268 p->cancel("comm_remove_close_handler");
1269 }
1270 }
1271
1272 // remove method-based close handler
1273 void
1274 comm_remove_close_handler(int fd, AsyncCall::Pointer &call)
1275 {
1276 assert (isOpen(fd));
1277 debugs(5, 5, "comm_remove_close_handler: FD " << fd << ", AsyncCall=" << call);
1278
1279 // comm_close removes all close handlers so our handler may be gone
1280 AsyncCall::Pointer p, prev = NULL;
1281 for (p = fd_table[fd].closeHandler; p != NULL && p != call; prev = p, p = p->Next());
1282
1283 if (p != NULL)
1284 p->dequeue(fd_table[fd].closeHandler, prev);
1285 call->cancel("comm_remove_close_handler");
1286 }
1287
1288 static void
1289 commSetNoLinger(int fd)
1290 {
1291
1292 struct linger L;
1293 L.l_onoff = 0; /* off */
1294 L.l_linger = 0;
1295
1296 if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1297 debugs(50, 0, "commSetNoLinger: FD " << fd << ": " << xstrerror());
1298
1299 fd_table[fd].flags.nolinger = 1;
1300 }
1301
1302 static void
1303 commSetReuseAddr(int fd)
1304 {
1305 int on = 1;
1306
1307 if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on)) < 0)
1308 debugs(50, 1, "commSetReuseAddr: FD " << fd << ": " << xstrerror());
1309 }
1310
1311 static void
1312 commSetTcpRcvbuf(int fd, int size)
1313 {
1314 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (char *) &size, sizeof(size)) < 0)
1315 debugs(50, 1, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1316 if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, (char *) &size, sizeof(size)) < 0)
1317 debugs(50, 1, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1318 #ifdef TCP_WINDOW_CLAMP
1319 if (setsockopt(fd, SOL_TCP, TCP_WINDOW_CLAMP, (char *) &size, sizeof(size)) < 0)
1320 debugs(50, 1, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1321 #endif
1322 }
1323
1324 int
1325 commSetNonBlocking(int fd)
1326 {
1327 #ifndef _SQUID_MSWIN_
1328 int flags;
1329 int dummy = 0;
1330 #endif
1331 #if _SQUID_WINDOWS_
1332 int nonblocking = TRUE;
1333
1334 #if _SQUID_CYGWIN_
1335 if (fd_table[fd].type != FD_PIPE) {
1336 #endif
1337
1338 if (ioctl(fd, FIONBIO, &nonblocking) < 0) {
1339 debugs(50, 0, "commSetNonBlocking: FD " << fd << ": " << xstrerror() << " " << fd_table[fd].type);
1340 return COMM_ERROR;
1341 }
1342
1343 #if _SQUID_CYGWIN_
1344 } else {
1345 #endif
1346 #endif
1347 #ifndef _SQUID_MSWIN_
1348
1349 if ((flags = fcntl(fd, F_GETFL, dummy)) < 0) {
1350 debugs(50, 0, "FD " << fd << ": fcntl F_GETFL: " << xstrerror());
1351 return COMM_ERROR;
1352 }
1353
1354 if (fcntl(fd, F_SETFL, flags | SQUID_NONBLOCK) < 0) {
1355 debugs(50, 0, "commSetNonBlocking: FD " << fd << ": " << xstrerror());
1356 return COMM_ERROR;
1357 }
1358
1359 #endif
1360 #if _SQUID_CYGWIN_
1361 }
1362 #endif
1363 fd_table[fd].flags.nonblocking = 1;
1364
1365 return 0;
1366 }
1367
1368 int
1369 commUnsetNonBlocking(int fd)
1370 {
1371 #ifdef _SQUID_MSWIN_
1372 int nonblocking = FALSE;
1373
1374 if (ioctlsocket(fd, FIONBIO, (unsigned long *) &nonblocking) < 0) {
1375 #else
1376 int flags;
1377 int dummy = 0;
1378
1379 if ((flags = fcntl(fd, F_GETFL, dummy)) < 0) {
1380 debugs(50, 0, "FD " << fd << ": fcntl F_GETFL: " << xstrerror());
1381 return COMM_ERROR;
1382 }
1383
1384 if (fcntl(fd, F_SETFL, flags & (~SQUID_NONBLOCK)) < 0) {
1385 #endif
1386 debugs(50, 0, "commUnsetNonBlocking: FD " << fd << ": " << xstrerror());
1387 return COMM_ERROR;
1388 }
1389
1390 fd_table[fd].flags.nonblocking = 0;
1391 return 0;
1392 }
1393
1394 void
1395 commSetCloseOnExec(int fd)
1396 {
1397 #ifdef FD_CLOEXEC
1398 int flags;
1399 int dummy = 0;
1400
1401 if ((flags = fcntl(fd, F_GETFD, dummy)) < 0) {
1402 debugs(50, 0, "FD " << fd << ": fcntl F_GETFD: " << xstrerror());
1403 return;
1404 }
1405
1406 if (fcntl(fd, F_SETFD, flags | FD_CLOEXEC) < 0)
1407 debugs(50, 0, "FD " << fd << ": set close-on-exec failed: " << xstrerror());
1408
1409 fd_table[fd].flags.close_on_exec = 1;
1410
1411 #endif
1412 }
1413
1414 #ifdef TCP_NODELAY
1415 static void
1416 commSetTcpNoDelay(int fd)
1417 {
1418 int on = 1;
1419
1420 if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &on, sizeof(on)) < 0)
1421 debugs(50, 1, "commSetTcpNoDelay: FD " << fd << ": " << xstrerror());
1422
1423 fd_table[fd].flags.nodelay = 1;
1424 }
1425
1426 #endif
1427
1428 void
1429 commSetTcpKeepalive(int fd, int idle, int interval, int timeout)
1430 {
1431 int on = 1;
1432 #ifdef TCP_KEEPCNT
1433 if (timeout && interval) {
1434 int count = (timeout + interval - 1) / interval;
1435 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &count, sizeof(on)) < 0)
1436 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1437 }
1438 #endif
1439 #ifdef TCP_KEEPIDLE
1440 if (idle) {
1441 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &idle, sizeof(on)) < 0)
1442 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1443 }
1444 #endif
1445 #ifdef TCP_KEEPINTVL
1446 if (interval) {
1447 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &interval, sizeof(on)) < 0)
1448 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1449 }
1450 #endif
1451 if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &on, sizeof(on)) < 0)
1452 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1453 }
1454
1455 void
1456 comm_init(void)
1457 {
1458 fd_table =(fde *) xcalloc(Squid_MaxFD, sizeof(fde));
1459 fdd_table = (fd_debug_t *)xcalloc(Squid_MaxFD, sizeof(fd_debug_t));
1460
1461 /* make sure the accept() socket FIFO delay queue exists */
1462 Comm::AcceptLimiter::Instance();
1463
1464 // make sure the IO pending callback table exists
1465 Comm::CallbackTableInit();
1466
1467 /* XXX account fd_table */
1468 /* Keep a few file descriptors free so that we don't run out of FD's
1469 * after accepting a client but before it opens a socket or a file.
1470 * Since Squid_MaxFD can be as high as several thousand, don't waste them */
1471 RESERVED_FD = min(100, Squid_MaxFD / 4);
1472
1473 conn_close_pool = memPoolCreate("close_handler", sizeof(close_handler));
1474
1475 TheHalfClosed = new DescriptorSet;
1476
1477 /* setup the select loop module */
1478 Comm::SelectLoopInit();
1479 }
1480
1481 void
1482 comm_exit(void)
1483 {
1484 delete TheHalfClosed;
1485 TheHalfClosed = NULL;
1486
1487 safe_free(fd_table);
1488 safe_free(fdd_table);
1489 Comm::CallbackTableDestruct();
1490 }
1491
1492 #if USE_DELAY_POOLS
1493 // called when the queue is done waiting for the client bucket to fill
1494 void
1495 commHandleWriteHelper(void * data)
1496 {
1497 CommQuotaQueue *queue = static_cast<CommQuotaQueue*>(data);
1498 assert(queue);
1499
1500 ClientInfo *clientInfo = queue->clientInfo;
1501 // ClientInfo invalidates queue if freed, so if we got here through,
1502 // evenAdd cbdata protections, everything should be valid and consistent
1503 assert(clientInfo);
1504 assert(clientInfo->hasQueue());
1505 assert(clientInfo->hasQueue(queue));
1506 assert(!clientInfo->selectWaiting);
1507 assert(clientInfo->eventWaiting);
1508 clientInfo->eventWaiting = false;
1509
1510 do {
1511 // check that the head descriptor is still relevant
1512 const int head = clientInfo->quotaPeekFd();
1513 Comm::IoCallback *ccb = COMMIO_FD_WRITECB(head);
1514
1515 if (fd_table[head].clientInfo == clientInfo &&
1516 clientInfo->quotaPeekReserv() == ccb->quotaQueueReserv &&
1517 !fd_table[head].closing()) {
1518
1519 // wait for the head descriptor to become ready for writing
1520 Comm::SetSelect(head, COMM_SELECT_WRITE, Comm::HandleWrite, ccb, 0);
1521 clientInfo->selectWaiting = true;
1522 return;
1523 }
1524
1525 clientInfo->quotaDequeue(); // remove the no longer relevant descriptor
1526 // and continue looking for a relevant one
1527 } while (clientInfo->hasQueue());
1528
1529 debugs(77,3, HERE << "emptied queue");
1530 }
1531
1532 bool
1533 ClientInfo::hasQueue() const
1534 {
1535 assert(quotaQueue);
1536 return !quotaQueue->empty();
1537 }
1538
1539 bool
1540 ClientInfo::hasQueue(const CommQuotaQueue *q) const
1541 {
1542 assert(quotaQueue);
1543 return quotaQueue == q;
1544 }
1545
1546 /// returns the first descriptor to be dequeued
1547 int
1548 ClientInfo::quotaPeekFd() const
1549 {
1550 assert(quotaQueue);
1551 return quotaQueue->front();
1552 }
1553
1554 /// returns the reservation ID of the first descriptor to be dequeued
1555 unsigned int
1556 ClientInfo::quotaPeekReserv() const
1557 {
1558 assert(quotaQueue);
1559 return quotaQueue->outs + 1;
1560 }
1561
1562 /// queues a given fd, creating the queue if necessary; returns reservation ID
1563 unsigned int
1564 ClientInfo::quotaEnqueue(int fd)
1565 {
1566 assert(quotaQueue);
1567 return quotaQueue->enqueue(fd);
1568 }
1569
1570 /// removes queue head
1571 void
1572 ClientInfo::quotaDequeue()
1573 {
1574 assert(quotaQueue);
1575 quotaQueue->dequeue();
1576 }
1577
1578 void
1579 ClientInfo::kickQuotaQueue()
1580 {
1581 if (!eventWaiting && !selectWaiting && hasQueue()) {
1582 // wait at least a second if the bucket is empty
1583 const double delay = (bucketSize < 1.0) ? 1.0 : 0.0;
1584 eventAdd("commHandleWriteHelper", &commHandleWriteHelper,
1585 quotaQueue, delay, 0, true);
1586 eventWaiting = true;
1587 }
1588 }
1589
1590 /// calculates how much to write for a single dequeued client
1591 int
1592 ClientInfo::quotaForDequed()
1593 {
1594 /* If we have multiple clients and give full bucketSize to each client then
1595 * clt1 may often get a lot more because clt1->clt2 time distance in the
1596 * select(2) callback order may be a lot smaller than cltN->clt1 distance.
1597 * We divide quota evenly to be more fair. */
1598
1599 if (!rationedCount) {
1600 rationedCount = quotaQueue->size() + 1;
1601
1602 // The delay in ration recalculation _temporary_ deprives clients from
1603 // bytes that should have trickled in while rationedCount was positive.
1604 refillBucket();
1605
1606 // Rounding errors do not accumulate here, but we round down to avoid
1607 // negative bucket sizes after write with rationedCount=1.
1608 rationedQuota = static_cast<int>(floor(bucketSize/rationedCount));
1609 debugs(77,5, HERE << "new rationedQuota: " << rationedQuota <<
1610 '*' << rationedCount);
1611 }
1612
1613 --rationedCount;
1614 debugs(77,7, HERE << "rationedQuota: " << rationedQuota <<
1615 " rations remaining: " << rationedCount);
1616
1617 // update 'last seen' time to prevent clientdb GC from dropping us
1618 last_seen = squid_curtime;
1619 return rationedQuota;
1620 }
1621
1622 ///< adds bytes to the quota bucket based on the rate and passed time
1623 void
1624 ClientInfo::refillBucket()
1625 {
1626 // all these times are in seconds, with double precision
1627 const double currTime = current_dtime;
1628 const double timePassed = currTime - prevTime;
1629
1630 // Calculate allowance for the time passed. Use double to avoid
1631 // accumulating rounding errors for small intervals. For example, always
1632 // adding 1 byte instead of 1.4 results in 29% bandwidth allocation error.
1633 const double gain = timePassed * writeSpeedLimit;
1634
1635 debugs(77,5, HERE << currTime << " clt" << (const char*)hash.key << ": " <<
1636 bucketSize << " + (" << timePassed << " * " << writeSpeedLimit <<
1637 " = " << gain << ')');
1638
1639 // to further combat error accumulation during micro updates,
1640 // quit before updating time if we cannot add at least one byte
1641 if (gain < 1.0)
1642 return;
1643
1644 prevTime = currTime;
1645
1646 // for "first" connections, drain initial fat before refilling but keep
1647 // updating prevTime to avoid bursts after the fat is gone
1648 if (bucketSize > bucketSizeLimit) {
1649 debugs(77,4, HERE << "not refilling while draining initial fat");
1650 return;
1651 }
1652
1653 bucketSize += gain;
1654
1655 // obey quota limits
1656 if (bucketSize > bucketSizeLimit)
1657 bucketSize = bucketSizeLimit;
1658 }
1659
1660 void
1661 ClientInfo::setWriteLimiter(const int aWriteSpeedLimit, const double anInitialBurst, const double aHighWatermark)
1662 {
1663 debugs(77,5, HERE << "Write limits for " << (const char*)hash.key <<
1664 " speed=" << aWriteSpeedLimit << " burst=" << anInitialBurst <<
1665 " highwatermark=" << aHighWatermark);
1666
1667 // set or possibly update traffic shaping parameters
1668 writeLimitingActive = true;
1669 writeSpeedLimit = aWriteSpeedLimit;
1670 bucketSizeLimit = aHighWatermark;
1671
1672 // but some members should only be set once for a newly activated bucket
1673 if (firstTimeConnection) {
1674 firstTimeConnection = false;
1675
1676 assert(!selectWaiting);
1677 assert(!quotaQueue);
1678 quotaQueue = new CommQuotaQueue(this);
1679
1680 bucketSize = anInitialBurst;
1681 prevTime = current_dtime;
1682 }
1683 }
1684
1685 CommQuotaQueue::CommQuotaQueue(ClientInfo *info): clientInfo(info),
1686 ins(0), outs(0)
1687 {
1688 assert(clientInfo);
1689 }
1690
1691 CommQuotaQueue::~CommQuotaQueue()
1692 {
1693 assert(!clientInfo); // ClientInfo should clear this before destroying us
1694 }
1695
1696 /// places the given fd at the end of the queue; returns reservation ID
1697 unsigned int
1698 CommQuotaQueue::enqueue(int fd)
1699 {
1700 debugs(77,5, HERE << "clt" << (const char*)clientInfo->hash.key <<
1701 ": FD " << fd << " with qqid" << (ins+1) << ' ' << fds.size());
1702 fds.push_back(fd);
1703 return ++ins;
1704 }
1705
1706 /// removes queue head
1707 void
1708 CommQuotaQueue::dequeue()
1709 {
1710 assert(!fds.empty());
1711 debugs(77,5, HERE << "clt" << (const char*)clientInfo->hash.key <<
1712 ": FD " << fds.front() << " with qqid" << (outs+1) << ' ' <<
1713 fds.size());
1714 fds.pop_front();
1715 ++outs;
1716 }
1717 #endif
1718
1719 /*
1720 * hm, this might be too general-purpose for all the places we'd
1721 * like to use it.
1722 */
1723 int
1724 ignoreErrno(int ierrno)
1725 {
1726 switch (ierrno) {
1727
1728 case EINPROGRESS:
1729
1730 case EWOULDBLOCK:
1731 #if EAGAIN != EWOULDBLOCK
1732
1733 case EAGAIN:
1734 #endif
1735
1736 case EALREADY:
1737
1738 case EINTR:
1739 #ifdef ERESTART
1740
1741 case ERESTART:
1742 #endif
1743
1744 return 1;
1745
1746 default:
1747 return 0;
1748 }
1749
1750 /* NOTREACHED */
1751 }
1752
1753 void
1754 commCloseAllSockets(void)
1755 {
1756 int fd;
1757 fde *F = NULL;
1758
1759 for (fd = 0; fd <= Biggest_FD; fd++) {
1760 F = &fd_table[fd];
1761
1762 if (!F->flags.open)
1763 continue;
1764
1765 if (F->type != FD_SOCKET)
1766 continue;
1767
1768 if (F->flags.ipc) /* don't close inter-process sockets */
1769 continue;
1770
1771 if (F->timeoutHandler != NULL) {
1772 AsyncCall::Pointer callback = F->timeoutHandler;
1773 F->timeoutHandler = NULL;
1774 debugs(5, 5, "commCloseAllSockets: FD " << fd << ": Calling timeout handler");
1775 ScheduleCallHere(callback);
1776 } else {
1777 debugs(5, 5, "commCloseAllSockets: FD " << fd << ": calling comm_reset_close()");
1778 old_comm_reset_close(fd);
1779 }
1780 }
1781 }
1782
1783 static bool
1784 AlreadyTimedOut(fde *F)
1785 {
1786 if (!F->flags.open)
1787 return true;
1788
1789 if (F->timeout == 0)
1790 return true;
1791
1792 if (F->timeout > squid_curtime)
1793 return true;
1794
1795 return false;
1796 }
1797
1798 static bool
1799 writeTimedOut(int fd)
1800 {
1801 if (!COMMIO_FD_WRITECB(fd)->active())
1802 return false;
1803
1804 if ((squid_curtime - fd_table[fd].writeStart) < Config.Timeout.write)
1805 return false;
1806
1807 return true;
1808 }
1809
1810 void
1811 checkTimeouts(void)
1812 {
1813 int fd;
1814 fde *F = NULL;
1815 AsyncCall::Pointer callback;
1816
1817 for (fd = 0; fd <= Biggest_FD; fd++) {
1818 F = &fd_table[fd];
1819
1820 if (writeTimedOut(fd)) {
1821 // We have an active write callback and we are timed out
1822 debugs(5, 5, "checkTimeouts: FD " << fd << " auto write timeout");
1823 Comm::SetSelect(fd, COMM_SELECT_WRITE, NULL, NULL, 0);
1824 COMMIO_FD_WRITECB(fd)->finish(COMM_ERROR, ETIMEDOUT);
1825 } else if (AlreadyTimedOut(F))
1826 continue;
1827
1828 debugs(5, 5, "checkTimeouts: FD " << fd << " Expired");
1829
1830 if (F->timeoutHandler != NULL) {
1831 debugs(5, 5, "checkTimeouts: FD " << fd << ": Call timeout handler");
1832 callback = F->timeoutHandler;
1833 F->timeoutHandler = NULL;
1834 ScheduleCallHere(callback);
1835 } else {
1836 debugs(5, 5, "checkTimeouts: FD " << fd << ": Forcing comm_close()");
1837 comm_close(fd);
1838 }
1839 }
1840 }
1841
1842 void CommIO::Initialise()
1843 {
1844 /* Initialize done pipe signal */
1845 int DonePipe[2];
1846 if (pipe(DonePipe)) {}
1847 DoneFD = DonePipe[1];
1848 DoneReadFD = DonePipe[0];
1849 fd_open(DoneReadFD, FD_PIPE, "async-io completetion event: main");
1850 fd_open(DoneFD, FD_PIPE, "async-io completetion event: threads");
1851 commSetNonBlocking(DoneReadFD);
1852 commSetNonBlocking(DoneFD);
1853 Comm::SetSelect(DoneReadFD, COMM_SELECT_READ, NULLFDHandler, NULL, 0);
1854 Initialised = true;
1855 }
1856
1857 void CommIO::NotifyIOClose()
1858 {
1859 /* Close done pipe signal */
1860 FlushPipe();
1861 close(DoneFD);
1862 close(DoneReadFD);
1863 fd_close(DoneFD);
1864 fd_close(DoneReadFD);
1865 Initialised = false;
1866 }
1867
1868 bool CommIO::Initialised = false;
1869 bool CommIO::DoneSignalled = false;
1870 int CommIO::DoneFD = -1;
1871 int CommIO::DoneReadFD = -1;
1872
1873 void
1874 CommIO::FlushPipe()
1875 {
1876 char buf[256];
1877 FD_READ_METHOD(DoneReadFD, buf, sizeof(buf));
1878 }
1879
1880 void
1881 CommIO::NULLFDHandler(int fd, void *data)
1882 {
1883 FlushPipe();
1884 Comm::SetSelect(fd, COMM_SELECT_READ, NULLFDHandler, NULL, 0);
1885 }
1886
1887 void
1888 CommIO::ResetNotifications()
1889 {
1890 if (DoneSignalled) {
1891 FlushPipe();
1892 DoneSignalled = false;
1893 }
1894 }
1895
1896 /// Start waiting for a possibly half-closed connection to close
1897 // by scheduling a read callback to a monitoring handler that
1898 // will close the connection on read errors.
1899 void
1900 commStartHalfClosedMonitor(int fd)
1901 {
1902 debugs(5, 5, HERE << "adding FD " << fd << " to " << *TheHalfClosed);
1903 assert(isOpen(fd));
1904 assert(!commHasHalfClosedMonitor(fd));
1905 (void)TheHalfClosed->add(fd); // could also assert the result
1906 commPlanHalfClosedCheck(); // may schedule check if we added the first FD
1907 }
1908
1909 static
1910 void
1911 commPlanHalfClosedCheck()
1912 {
1913 if (!WillCheckHalfClosed && !TheHalfClosed->empty()) {
1914 eventAdd("commHalfClosedCheck", &commHalfClosedCheck, NULL, 1.0, 1);
1915 WillCheckHalfClosed = true;
1916 }
1917 }
1918
1919 /// iterates over all descriptors that may need half-closed tests and
1920 /// calls comm_read for those that do; re-schedules the check if needed
1921 static
1922 void
1923 commHalfClosedCheck(void *)
1924 {
1925 debugs(5, 5, HERE << "checking " << *TheHalfClosed);
1926
1927 typedef DescriptorSet::const_iterator DSCI;
1928 const DSCI end = TheHalfClosed->end();
1929 for (DSCI i = TheHalfClosed->begin(); i != end; ++i) {
1930 Comm::ConnectionPointer c = new Comm::Connection; // XXX: temporary. make HalfClosed a list of these.
1931 c->fd = *i;
1932 if (!fd_table[c->fd].halfClosedReader) { // not reading already
1933 AsyncCall::Pointer call = commCbCall(5,4, "commHalfClosedReader",
1934 CommIoCbPtrFun(&commHalfClosedReader, NULL));
1935 comm_read(c, NULL, 0, call);
1936 fd_table[c->fd].halfClosedReader = call;
1937 } else
1938 c->fd = -1; // XXX: temporary. prevent c replacement erase closing listed FD
1939 }
1940
1941 WillCheckHalfClosed = false; // as far as we know
1942 commPlanHalfClosedCheck(); // may need to check again
1943 }
1944
1945 /// checks whether we are waiting for possibly half-closed connection to close
1946 // We are monitoring if the read handler for the fd is the monitoring handler.
1947 bool
1948 commHasHalfClosedMonitor(int fd)
1949 {
1950 return TheHalfClosed->has(fd);
1951 }
1952
1953 /// stop waiting for possibly half-closed connection to close
1954 static void
1955 commStopHalfClosedMonitor(int const fd)
1956 {
1957 debugs(5, 5, HERE << "removing FD " << fd << " from " << *TheHalfClosed);
1958
1959 // cancel the read if one was scheduled
1960 AsyncCall::Pointer reader = fd_table[fd].halfClosedReader;
1961 if (reader != NULL)
1962 comm_read_cancel(fd, reader);
1963 fd_table[fd].halfClosedReader = NULL;
1964
1965 TheHalfClosed->del(fd);
1966 }
1967
1968 /// I/O handler for the possibly half-closed connection monitoring code
1969 static void
1970 commHalfClosedReader(const Comm::ConnectionPointer &conn, char *, size_t size, comm_err_t flag, int, void *)
1971 {
1972 // there cannot be more data coming in on half-closed connections
1973 assert(size == 0);
1974 assert(conn != NULL);
1975 assert(commHasHalfClosedMonitor(conn->fd)); // or we would have canceled the read
1976
1977 fd_table[conn->fd].halfClosedReader = NULL; // done reading, for now
1978
1979 // nothing to do if fd is being closed
1980 if (flag == COMM_ERR_CLOSING)
1981 return;
1982
1983 // if read failed, close the connection
1984 if (flag != COMM_OK) {
1985 debugs(5, 3, HERE << "closing " << conn);
1986 conn->close();
1987 return;
1988 }
1989
1990 // continue waiting for close or error
1991 commPlanHalfClosedCheck(); // make sure this fd will be checked again
1992 }
1993
1994
1995 CommRead::CommRead() : conn(NULL), buf(NULL), len(0), callback(NULL) {}
1996
1997 CommRead::CommRead(const Comm::ConnectionPointer &c, char *buf_, int len_, AsyncCall::Pointer &callback_)
1998 : conn(c), buf(buf_), len(len_), callback(callback_) {}
1999
2000 DeferredRead::DeferredRead () : theReader(NULL), theContext(NULL), theRead(), cancelled(false) {}
2001
2002 DeferredRead::DeferredRead (DeferrableRead *aReader, void *data, CommRead const &aRead) : theReader(aReader), theContext (data), theRead(aRead), cancelled(false) {}
2003
2004 DeferredReadManager::~DeferredReadManager()
2005 {
2006 flushReads();
2007 assert (deferredReads.empty());
2008 }
2009
2010 /* explicit instantiation required for some systems */
2011
2012 /// \cond AUTODOCS-IGNORE
2013 template cbdata_type CbDataList<DeferredRead>::CBDATA_CbDataList;
2014 /// \endcond
2015
2016 void
2017 DeferredReadManager::delayRead(DeferredRead const &aRead)
2018 {
2019 debugs(5, 3, "Adding deferred read on " << aRead.theRead.conn);
2020 CbDataList<DeferredRead> *temp = deferredReads.push_back(aRead);
2021
2022 // We have to use a global function as a closer and point to temp
2023 // instead of "this" because DeferredReadManager is not a job and
2024 // is not even cbdata protected
2025 AsyncCall::Pointer closer = commCbCall(5,4,
2026 "DeferredReadManager::CloseHandler",
2027 CommCloseCbPtrFun(&CloseHandler, temp));
2028 comm_add_close_handler(aRead.theRead.conn->fd, closer);
2029 temp->element.closer = closer; // remeber so that we can cancel
2030 }
2031
2032 void
2033 DeferredReadManager::CloseHandler(int fd, void *thecbdata)
2034 {
2035 if (!cbdataReferenceValid (thecbdata))
2036 return;
2037
2038 CbDataList<DeferredRead> *temp = (CbDataList<DeferredRead> *)thecbdata;
2039
2040 temp->element.closer = NULL;
2041 temp->element.markCancelled();
2042 }
2043
2044 DeferredRead
2045 DeferredReadManager::popHead(CbDataListContainer<DeferredRead> &deferredReads)
2046 {
2047 assert (!deferredReads.empty());
2048
2049 DeferredRead &read = deferredReads.head->element;
2050 if (!read.cancelled) {
2051 comm_remove_close_handler(read.theRead.conn->fd, read.closer);
2052 read.closer = NULL;
2053 }
2054
2055 DeferredRead result = deferredReads.pop_front();
2056
2057 return result;
2058 }
2059
2060 void
2061 DeferredReadManager::kickReads(int const count)
2062 {
2063 /* if we had CbDataList::size() we could consolidate this and flushReads */
2064
2065 if (count < 1) {
2066 flushReads();
2067 return;
2068 }
2069
2070 size_t remaining = count;
2071
2072 while (!deferredReads.empty() && remaining) {
2073 DeferredRead aRead = popHead(deferredReads);
2074 kickARead(aRead);
2075
2076 if (!aRead.cancelled)
2077 --remaining;
2078 }
2079 }
2080
2081 void
2082 DeferredReadManager::flushReads()
2083 {
2084 CbDataListContainer<DeferredRead> reads;
2085 reads = deferredReads;
2086 deferredReads = CbDataListContainer<DeferredRead>();
2087
2088 // XXX: For fairness this SHOULD randomize the order
2089 while (!reads.empty()) {
2090 DeferredRead aRead = popHead(reads);
2091 kickARead(aRead);
2092 }
2093 }
2094
2095 void
2096 DeferredReadManager::kickARead(DeferredRead const &aRead)
2097 {
2098 if (aRead.cancelled)
2099 return;
2100
2101 if (Comm::IsConnOpen(aRead.theRead.conn) && fd_table[aRead.theRead.conn->fd].closing())
2102 return;
2103
2104 debugs(5, 3, "Kicking deferred read on " << aRead.theRead.conn);
2105
2106 aRead.theReader(aRead.theContext, aRead.theRead);
2107 }
2108
2109 void
2110 DeferredRead::markCancelled()
2111 {
2112 cancelled = true;
2113 }
2114
2115 int
2116 CommSelectEngine::checkEvents(int timeout)
2117 {
2118 static time_t last_timeout = 0;
2119
2120 /* No, this shouldn't be here. But it shouldn't be in each comm handler. -adrian */
2121 if (squid_curtime > last_timeout) {
2122 last_timeout = squid_curtime;
2123 checkTimeouts();
2124 }
2125
2126 switch (Comm::DoSelect(timeout)) {
2127
2128 case COMM_OK:
2129
2130 case COMM_TIMEOUT:
2131 return 0;
2132
2133 case COMM_IDLE:
2134
2135 case COMM_SHUTDOWN:
2136 return EVENT_IDLE;
2137
2138 case COMM_ERROR:
2139 return EVENT_ERROR;
2140
2141 default:
2142 fatal_dump("comm.cc: Internal error -- this should never happen.");
2143 return EVENT_ERROR;
2144 };
2145 }
2146
2147 /// Create a unix-domain socket (UDS) that only supports FD_MSGHDR I/O.
2148 int
2149 comm_open_uds(int sock_type,
2150 int proto,
2151 struct sockaddr_un* addr,
2152 int flags)
2153 {
2154 // TODO: merge with comm_openex() when Ip::Address becomes NetAddress
2155
2156 int new_socket;
2157
2158 PROF_start(comm_open);
2159 /* Create socket for accepting new connections. */
2160 statCounter.syscalls.sock.sockets++;
2161
2162 /* Setup the socket addrinfo details for use */
2163 struct addrinfo AI;
2164 AI.ai_flags = 0;
2165 AI.ai_family = PF_UNIX;
2166 AI.ai_socktype = sock_type;
2167 AI.ai_protocol = proto;
2168 AI.ai_addrlen = SUN_LEN(addr);
2169 AI.ai_addr = (sockaddr*)addr;
2170 AI.ai_canonname = NULL;
2171 AI.ai_next = NULL;
2172
2173 debugs(50, 3, HERE << "Attempt open socket for: " << addr->sun_path);
2174
2175 if ((new_socket = socket(AI.ai_family, AI.ai_socktype, AI.ai_protocol)) < 0) {
2176 /* Increase the number of reserved fd's if calls to socket()
2177 * are failing because the open file table is full. This
2178 * limits the number of simultaneous clients */
2179
2180 if (limitError(errno)) {
2181 debugs(50, DBG_IMPORTANT, HERE << "socket failure: " << xstrerror());
2182 fdAdjustReserved();
2183 } else {
2184 debugs(50, DBG_CRITICAL, HERE << "socket failure: " << xstrerror());
2185 }
2186
2187 PROF_stop(comm_open);
2188 return -1;
2189 }
2190
2191 debugs(50, 3, HERE "Opened UDS FD " << new_socket << " : family=" << AI.ai_family << ", type=" << AI.ai_socktype << ", protocol=" << AI.ai_protocol);
2192
2193 /* update fdstat */
2194 debugs(50, 5, HERE << "FD " << new_socket << " is a new socket");
2195
2196 assert(!isOpen(new_socket));
2197 fd_open(new_socket, FD_MSGHDR, NULL);
2198
2199 fdd_table[new_socket].close_file = NULL;
2200
2201 fdd_table[new_socket].close_line = 0;
2202
2203 fd_table[new_socket].sock_family = AI.ai_family;
2204
2205 if (!(flags & COMM_NOCLOEXEC))
2206 commSetCloseOnExec(new_socket);
2207
2208 if (flags & COMM_REUSEADDR)
2209 commSetReuseAddr(new_socket);
2210
2211 if (flags & COMM_NONBLOCKING) {
2212 if (commSetNonBlocking(new_socket) != COMM_OK) {
2213 comm_close(new_socket);
2214 PROF_stop(comm_open);
2215 return -1;
2216 }
2217 }
2218
2219 if (flags & COMM_DOBIND) {
2220 if (commBind(new_socket, AI) != COMM_OK) {
2221 comm_close(new_socket);
2222 PROF_stop(comm_open);
2223 return -1;
2224 }
2225 }
2226
2227 #ifdef TCP_NODELAY
2228 if (sock_type == SOCK_STREAM)
2229 commSetTcpNoDelay(new_socket);
2230
2231 #endif
2232
2233 if (Config.tcpRcvBufsz > 0 && sock_type == SOCK_STREAM)
2234 commSetTcpRcvbuf(new_socket, Config.tcpRcvBufsz);
2235
2236 PROF_stop(comm_open);
2237
2238 return new_socket;
2239 }