]> git.ipfire.org Git - thirdparty/squid.git/blob - src/comm.cc
Bug 3556 Workaround: epoll assertion failed: comm.cc:1093: isOpen(fd)
[thirdparty/squid.git] / src / comm.cc
1 /*
2 * DEBUG: section 05 Socket Functions
3 * AUTHOR: Harvest Derived
4 *
5 * SQUID Web Proxy Cache http://www.squid-cache.org/
6 * ----------------------------------------------------------
7 *
8 * Squid is the result of efforts by numerous individuals from
9 * the Internet community; see the CONTRIBUTORS file for full
10 * details. Many organizations have provided support for Squid's
11 * development; see the SPONSORS file for full details. Squid is
12 * Copyrighted (C) 2001 by the Regents of the University of
13 * California; see the COPYRIGHT file for full details. Squid
14 * incorporates software developed and/or copyrighted by other
15 * sources; see the CREDITS file for full details.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
30 *
31 *
32 * Copyright (c) 2003, Robert Collins <robertc@squid-cache.org>
33 */
34
35 #include "squid-old.h"
36 #include "base/AsyncCall.h"
37 #include "StoreIOBuffer.h"
38 #include "comm.h"
39 #include "event.h"
40 #include "fde.h"
41 #include "comm/AcceptLimiter.h"
42 #include "comm/comm_internal.h"
43 #include "comm/Connection.h"
44 #include "comm/IoCallback.h"
45 #include "comm/Loops.h"
46 #include "comm/Write.h"
47 #include "comm/TcpAcceptor.h"
48 #include "CommRead.h"
49 #include "MemBuf.h"
50 #include "pconn.h"
51 #include "SquidTime.h"
52 #include "CommCalls.h"
53 #include "DescriptorSet.h"
54 #include "icmp/net_db.h"
55 #include "ip/Address.h"
56 #include "ip/Intercept.h"
57 #include "ip/QosConfig.h"
58 #include "ip/tools.h"
59 #include "ClientInfo.h"
60 #include "StatCounters.h"
61 #if USE_SSL
62 #include "ssl/support.h"
63 #endif
64
65 #include "cbdata.h"
66 #if _SQUID_CYGWIN_
67 #include <sys/ioctl.h>
68 #endif
69 #ifdef HAVE_NETINET_TCP_H
70 #include <netinet/tcp.h>
71 #endif
72
73 /*
74 * New C-like simple comm code. This stuff is a mess and doesn't really buy us anything.
75 */
76
77 static void commStopHalfClosedMonitor(int fd);
78 static IOCB commHalfClosedReader;
79 static void comm_init_opened(const Comm::ConnectionPointer &conn, tos_t tos, nfmark_t nfmark, const char *note, struct addrinfo *AI);
80 static int comm_apply_flags(int new_socket, Ip::Address &addr, int flags, struct addrinfo *AI);
81
82 #if USE_DELAY_POOLS
83 CBDATA_CLASS_INIT(CommQuotaQueue);
84
85 static void commHandleWriteHelper(void * data);
86 #endif
87
88 /* STATIC */
89
90 static DescriptorSet *TheHalfClosed = NULL; /// the set of half-closed FDs
91 static bool WillCheckHalfClosed = false; /// true if check is scheduled
92 static EVH commHalfClosedCheck;
93 static void commPlanHalfClosedCheck();
94
95 static comm_err_t commBind(int s, struct addrinfo &);
96 static void commSetReuseAddr(int);
97 static void commSetNoLinger(int);
98 #ifdef TCP_NODELAY
99 static void commSetTcpNoDelay(int);
100 #endif
101 static void commSetTcpRcvbuf(int, int);
102
103 static MemAllocator *conn_close_pool = NULL;
104 fd_debug_t *fdd_table = NULL;
105
106 bool
107 isOpen(const int fd)
108 {
109 return fd >= 0 && fd_table && fd_table[fd].flags.open != 0;
110 }
111
112 /**
113 * Attempt a read
114 *
115 * If the read attempt succeeds or fails, call the callback.
116 * Else, wait for another IO notification.
117 */
118 void
119 commHandleRead(int fd, void *data)
120 {
121 Comm::IoCallback *ccb = (Comm::IoCallback *) data;
122
123 assert(data == COMMIO_FD_READCB(fd));
124 assert(ccb->active());
125 /* Attempt a read */
126 statCounter.syscalls.sock.reads++;
127 errno = 0;
128 int retval;
129 retval = FD_READ_METHOD(fd, ccb->buf, ccb->size);
130 debugs(5, 3, "comm_read_try: FD " << fd << ", size " << ccb->size << ", retval " << retval << ", errno " << errno);
131
132 if (retval < 0 && !ignoreErrno(errno)) {
133 debugs(5, 3, "comm_read_try: scheduling COMM_ERROR");
134 ccb->offset = 0;
135 ccb->finish(COMM_ERROR, errno);
136 return;
137 };
138
139 /* See if we read anything */
140 /* Note - read 0 == socket EOF, which is a valid read */
141 if (retval >= 0) {
142 fd_bytes(fd, retval, FD_READ);
143 ccb->offset = retval;
144 ccb->finish(COMM_OK, errno);
145 return;
146 }
147
148 /* Nope, register for some more IO */
149 Comm::SetSelect(fd, COMM_SELECT_READ, commHandleRead, data, 0);
150 }
151
152 /**
153 * Queue a read. handler/handler_data are called when the read
154 * completes, on error, or on file descriptor close.
155 */
156 void
157 comm_read(const Comm::ConnectionPointer &conn, char *buf, int size, AsyncCall::Pointer &callback)
158 {
159 debugs(5, 5, "comm_read, queueing read for " << conn << "; asynCall " << callback);
160
161 /* Make sure we are open and not closing */
162 assert(Comm::IsConnOpen(conn));
163 assert(!fd_table[conn->fd].closing());
164 Comm::IoCallback *ccb = COMMIO_FD_READCB(conn->fd);
165
166 // Make sure we are either not reading or just passively monitoring.
167 // Active/passive conflicts are OK and simply cancel passive monitoring.
168 if (ccb->active()) {
169 // if the assertion below fails, we have an active comm_read conflict
170 assert(fd_table[conn->fd].halfClosedReader != NULL);
171 commStopHalfClosedMonitor(conn->fd);
172 assert(!ccb->active());
173 }
174 ccb->conn = conn;
175
176 /* Queue the read */
177 ccb->setCallback(Comm::IOCB_READ, callback, (char *)buf, NULL, size);
178 Comm::SetSelect(conn->fd, COMM_SELECT_READ, commHandleRead, ccb, 0);
179 }
180
181 /**
182 * Empty the read buffers
183 *
184 * This is a magical routine that empties the read buffers.
185 * Under some platforms (Linux) if a buffer has data in it before
186 * you call close(), the socket will hang and take quite a while
187 * to timeout.
188 */
189 static void
190 comm_empty_os_read_buffers(int fd)
191 {
192 #if _SQUID_LINUX_
193 /* prevent those nasty RST packets */
194 char buf[SQUID_TCP_SO_RCVBUF];
195
196 if (fd_table[fd].flags.nonblocking == 1) {
197 while (FD_READ_METHOD(fd, buf, SQUID_TCP_SO_RCVBUF) > 0) {};
198 }
199 #endif
200 }
201
202
203 /**
204 * Return whether the FD has a pending completed callback.
205 * NP: does not work.
206 */
207 int
208 comm_has_pending_read_callback(int fd)
209 {
210 assert(isOpen(fd));
211 // XXX: We do not know whether there is a read callback scheduled.
212 // This is used for pconn management that should probably be more
213 // tightly integrated into comm to minimize the chance that a
214 // closing pconn socket will be used for a new transaction.
215 return false;
216 }
217
218 // Does comm check this fd for read readiness?
219 // Note that when comm is not monitoring, there can be a pending callback
220 // call, which may resume comm monitoring once fired.
221 bool
222 comm_monitors_read(int fd)
223 {
224 assert(isOpen(fd));
225 // Being active is usually the same as monitoring because we always
226 // start monitoring the FD when we configure Comm::IoCallback for I/O
227 // and we usually configure Comm::IoCallback for I/O when we starting
228 // monitoring a FD for reading.
229 return COMMIO_FD_READCB(fd)->active();
230 }
231
232 /**
233 * Cancel a pending read. Assert that we have the right parameters,
234 * and that there are no pending read events!
235 *
236 * XXX: We do not assert that there are no pending read events and
237 * with async calls it becomes even more difficult.
238 * The whole interface should be reworked to do callback->cancel()
239 * instead of searching for places where the callback may be stored and
240 * updating the state of those places.
241 *
242 * AHC Don't call the comm handlers?
243 */
244 void
245 comm_read_cancel(int fd, IOCB *callback, void *data)
246 {
247 if (!isOpen(fd)) {
248 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " closed");
249 return;
250 }
251
252 Comm::IoCallback *cb = COMMIO_FD_READCB(fd);
253 // TODO: is "active" == "monitors FD"?
254 if (!cb->active()) {
255 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " inactive");
256 return;
257 }
258
259 typedef CommCbFunPtrCallT<CommIoCbPtrFun> Call;
260 Call *call = dynamic_cast<Call*>(cb->callback.getRaw());
261 if (!call) {
262 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " lacks callback");
263 return;
264 }
265
266 call->cancel("old comm_read_cancel");
267
268 typedef CommIoCbParams Params;
269 const Params &params = GetCommParams<Params>(cb->callback);
270
271 /* Ok, we can be reasonably sure we won't lose any data here! */
272 assert(call->dialer.handler == callback);
273 assert(params.data == data);
274
275 /* Delete the callback */
276 cb->cancel("old comm_read_cancel");
277
278 /* And the IO event */
279 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
280 }
281
282 void
283 comm_read_cancel(int fd, AsyncCall::Pointer &callback)
284 {
285 callback->cancel("comm_read_cancel");
286
287 if (!isOpen(fd)) {
288 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " closed");
289 return;
290 }
291
292 Comm::IoCallback *cb = COMMIO_FD_READCB(fd);
293
294 if (!cb->active()) {
295 debugs(5, 4, "comm_read_cancel fails: FD " << fd << " inactive");
296 return;
297 }
298
299 AsyncCall::Pointer call = cb->callback;
300 assert(call != NULL); // XXX: should never fail (active() checks for callback==NULL)
301
302 /* Ok, we can be reasonably sure we won't lose any data here! */
303 assert(call == callback);
304
305 /* Delete the callback */
306 cb->cancel("comm_read_cancel");
307
308 /* And the IO event */
309 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
310 }
311
312
313 /**
314 * synchronous wrapper around udp socket functions
315 */
316 int
317 comm_udp_recvfrom(int fd, void *buf, size_t len, int flags, Ip::Address &from)
318 {
319 statCounter.syscalls.sock.recvfroms++;
320 int x = 0;
321 struct addrinfo *AI = NULL;
322
323 debugs(5,8, "comm_udp_recvfrom: FD " << fd << " from " << from);
324
325 assert( NULL == AI );
326
327 from.InitAddrInfo(AI);
328
329 x = recvfrom(fd, buf, len, flags, AI->ai_addr, &AI->ai_addrlen);
330
331 from = *AI;
332
333 from.FreeAddrInfo(AI);
334
335 return x;
336 }
337
338 int
339 comm_udp_recv(int fd, void *buf, size_t len, int flags)
340 {
341 Ip::Address nul;
342 return comm_udp_recvfrom(fd, buf, len, flags, nul);
343 }
344
345 ssize_t
346 comm_udp_send(int s, const void *buf, size_t len, int flags)
347 {
348 return send(s, buf, len, flags);
349 }
350
351
352 bool
353 comm_has_incomplete_write(int fd)
354 {
355 assert(isOpen(fd));
356 return COMMIO_FD_WRITECB(fd)->active();
357 }
358
359 /**
360 * Queue a write. handler/handler_data are called when the write fully
361 * completes, on error, or on file descriptor close.
362 */
363
364 /* Return the local port associated with fd. */
365 unsigned short
366 comm_local_port(int fd)
367 {
368 Ip::Address temp;
369 struct addrinfo *addr = NULL;
370 fde *F = &fd_table[fd];
371
372 /* If the fd is closed already, just return */
373
374 if (!F->flags.open) {
375 debugs(5, 0, "comm_local_port: FD " << fd << " has been closed.");
376 return 0;
377 }
378
379 if (F->local_addr.GetPort())
380 return F->local_addr.GetPort();
381
382 if (F->sock_family == AF_INET)
383 temp.SetIPv4();
384
385 temp.InitAddrInfo(addr);
386
387 if (getsockname(fd, addr->ai_addr, &(addr->ai_addrlen)) ) {
388 debugs(50, 1, "comm_local_port: Failed to retrieve TCP/UDP port number for socket: FD " << fd << ": " << xstrerror());
389 temp.FreeAddrInfo(addr);
390 return 0;
391 }
392 temp = *addr;
393
394 temp.FreeAddrInfo(addr);
395
396 if (F->local_addr.IsAnyAddr()) {
397 /* save the whole local address, not just the port. */
398 F->local_addr = temp;
399 } else {
400 F->local_addr.SetPort(temp.GetPort());
401 }
402
403 debugs(5, 6, "comm_local_port: FD " << fd << ": port " << F->local_addr.GetPort() << "(family=" << F->sock_family << ")");
404 return F->local_addr.GetPort();
405 }
406
407 static comm_err_t
408 commBind(int s, struct addrinfo &inaddr)
409 {
410 statCounter.syscalls.sock.binds++;
411
412 if (bind(s, inaddr.ai_addr, inaddr.ai_addrlen) == 0) {
413 debugs(50, 6, "commBind: bind socket FD " << s << " to " << fd_table[s].local_addr);
414 return COMM_OK;
415 }
416
417 debugs(50, 0, "commBind: Cannot bind socket FD " << s << " to " << fd_table[s].local_addr << ": " << xstrerror());
418
419 return COMM_ERROR;
420 }
421
422 /**
423 * Create a socket. Default is blocking, stream (TCP) socket. IO_TYPE
424 * is OR of flags specified in comm.h. Defaults TOS
425 */
426 int
427 comm_open(int sock_type,
428 int proto,
429 Ip::Address &addr,
430 int flags,
431 const char *note)
432 {
433 return comm_openex(sock_type, proto, addr, flags, 0, 0, note);
434 }
435
436 void
437 comm_open_listener(int sock_type,
438 int proto,
439 Comm::ConnectionPointer &conn,
440 const char *note)
441 {
442 /* all listener sockets require bind() */
443 conn->flags |= COMM_DOBIND;
444
445 /* attempt native enabled port. */
446 conn->fd = comm_openex(sock_type, proto, conn->local, conn->flags, 0, 0, note);
447 }
448
449 int
450 comm_open_listener(int sock_type,
451 int proto,
452 Ip::Address &addr,
453 int flags,
454 const char *note)
455 {
456 int sock = -1;
457
458 /* all listener sockets require bind() */
459 flags |= COMM_DOBIND;
460
461 /* attempt native enabled port. */
462 sock = comm_openex(sock_type, proto, addr, flags, 0, 0, note);
463
464 return sock;
465 }
466
467 static bool
468 limitError(int const anErrno)
469 {
470 return anErrno == ENFILE || anErrno == EMFILE;
471 }
472
473 void
474 comm_set_v6only(int fd, int tos)
475 {
476 #ifdef IPV6_V6ONLY
477 if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &tos, sizeof(int)) < 0) {
478 debugs(50, 1, "comm_open: setsockopt(IPV6_V6ONLY) " << (tos?"ON":"OFF") << " for FD " << fd << ": " << xstrerror());
479 }
480 #else
481 debugs(50, 0, "WARNING: comm_open: setsockopt(IPV6_V6ONLY) not supported on this platform");
482 #endif /* sockopt */
483 }
484
485 /**
486 * Set the socket IP_TRANSPARENT option for Linux TPROXY v4 support.
487 */
488 void
489 comm_set_transparent(int fd)
490 {
491 #if defined(IP_TRANSPARENT)
492 int tos = 1;
493 if (setsockopt(fd, SOL_IP, IP_TRANSPARENT, (char *) &tos, sizeof(int)) < 0) {
494 debugs(50, DBG_IMPORTANT, "comm_open: setsockopt(IP_TRANSPARENT) on FD " << fd << ": " << xstrerror());
495 } else {
496 /* mark the socket as having transparent options */
497 fd_table[fd].flags.transparent = 1;
498 }
499 #else
500 debugs(50, DBG_CRITICAL, "WARNING: comm_open: setsockopt(IP_TRANSPARENT) not supported on this platform");
501 #endif /* sockopt */
502 }
503
504 /**
505 * Create a socket. Default is blocking, stream (TCP) socket. IO_TYPE
506 * is OR of flags specified in defines.h:COMM_*
507 */
508 int
509 comm_openex(int sock_type,
510 int proto,
511 Ip::Address &addr,
512 int flags,
513 tos_t tos,
514 nfmark_t nfmark,
515 const char *note)
516 {
517 int new_socket;
518 struct addrinfo *AI = NULL;
519
520 PROF_start(comm_open);
521 /* Create socket for accepting new connections. */
522 statCounter.syscalls.sock.sockets++;
523
524 /* Setup the socket addrinfo details for use */
525 addr.GetAddrInfo(AI);
526 AI->ai_socktype = sock_type;
527 AI->ai_protocol = proto;
528
529 debugs(50, 3, "comm_openex: Attempt open socket for: " << addr );
530
531 new_socket = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol);
532
533 /* under IPv6 there is the possibility IPv6 is present but disabled. */
534 /* try again as IPv4-native if possible */
535 if ( new_socket < 0 && Ip::EnableIpv6 && addr.IsIPv6() && addr.SetIPv4() ) {
536 /* attempt to open this IPv4-only. */
537 addr.FreeAddrInfo(AI);
538 /* Setup the socket addrinfo details for use */
539 addr.GetAddrInfo(AI);
540 AI->ai_socktype = sock_type;
541 AI->ai_protocol = proto;
542 debugs(50, 3, "comm_openex: Attempt fallback open socket for: " << addr );
543 new_socket = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol);
544 debugs(50, 2, HERE << "attempt open " << note << " socket on: " << addr);
545 }
546
547 if (new_socket < 0) {
548 /* Increase the number of reserved fd's if calls to socket()
549 * are failing because the open file table is full. This
550 * limits the number of simultaneous clients */
551
552 if (limitError(errno)) {
553 debugs(50, DBG_IMPORTANT, "comm_open: socket failure: " << xstrerror());
554 fdAdjustReserved();
555 } else {
556 debugs(50, DBG_CRITICAL, "comm_open: socket failure: " << xstrerror());
557 }
558
559 addr.FreeAddrInfo(AI);
560
561 PROF_stop(comm_open);
562 return -1;
563 }
564
565 // XXX: temporary for the transition. comm_openex will eventually have a conn to play with.
566 Comm::ConnectionPointer conn = new Comm::Connection;
567 conn->local = addr;
568 conn->fd = new_socket;
569
570 debugs(50, 3, "comm_openex: Opened socket " << conn << " : family=" << AI->ai_family << ", type=" << AI->ai_socktype << ", protocol=" << AI->ai_protocol );
571
572 /* set TOS if needed */
573 if (tos)
574 Ip::Qos::setSockTos(conn, tos);
575
576 /* set netfilter mark if needed */
577 if (nfmark)
578 Ip::Qos::setSockNfmark(conn, nfmark);
579
580 if ( Ip::EnableIpv6&IPV6_SPECIAL_SPLITSTACK && addr.IsIPv6() )
581 comm_set_v6only(conn->fd, 1);
582
583 /* Windows Vista supports Dual-Sockets. BUT defaults them to V6ONLY. Turn it OFF. */
584 /* Other OS may have this administratively disabled for general use. Same deal. */
585 if ( Ip::EnableIpv6&IPV6_SPECIAL_V4MAPPING && addr.IsIPv6() )
586 comm_set_v6only(conn->fd, 0);
587
588 comm_init_opened(conn, tos, nfmark, note, AI);
589 new_socket = comm_apply_flags(conn->fd, addr, flags, AI);
590
591 addr.FreeAddrInfo(AI);
592
593 PROF_stop(comm_open);
594
595 // XXX transition only. prevent conn from closing the new FD on function exit.
596 conn->fd = -1;
597 return new_socket;
598 }
599
600 /// update FD tables after a local or remote (IPC) comm_openex();
601 void
602 comm_init_opened(const Comm::ConnectionPointer &conn,
603 tos_t tos,
604 nfmark_t nfmark,
605 const char *note,
606 struct addrinfo *AI)
607 {
608 assert(Comm::IsConnOpen(conn));
609 assert(AI);
610
611 /* update fdstat */
612 debugs(5, 5, HERE << conn << " is a new socket");
613
614 assert(!isOpen(conn->fd)); // NP: global isOpen checks the fde entry for openness not the Comm::Connection
615 fd_open(conn->fd, FD_SOCKET, note);
616
617 fdd_table[conn->fd].close_file = NULL;
618 fdd_table[conn->fd].close_line = 0;
619
620 fde *F = &fd_table[conn->fd];
621 F->local_addr = conn->local;
622 F->tosToServer = tos;
623
624 F->nfmarkToServer = nfmark;
625
626 F->sock_family = AI->ai_family;
627 }
628
629 /// apply flags after a local comm_open*() call;
630 /// returns new_socket or -1 on error
631 static int
632 comm_apply_flags(int new_socket,
633 Ip::Address &addr,
634 int flags,
635 struct addrinfo *AI)
636 {
637 assert(new_socket >= 0);
638 assert(AI);
639 const int sock_type = AI->ai_socktype;
640
641 if (!(flags & COMM_NOCLOEXEC))
642 commSetCloseOnExec(new_socket);
643
644 if ((flags & COMM_REUSEADDR))
645 commSetReuseAddr(new_socket);
646
647 if (addr.GetPort() > (unsigned short) 0) {
648 #if _SQUID_MSWIN_
649 if (sock_type != SOCK_DGRAM)
650 #endif
651 commSetNoLinger(new_socket);
652
653 if (opt_reuseaddr)
654 commSetReuseAddr(new_socket);
655 }
656
657 /* MUST be done before binding or face OS Error: "(99) Cannot assign requested address"... */
658 if ((flags & COMM_TRANSPARENT)) {
659 comm_set_transparent(new_socket);
660 }
661
662 if ( (flags & COMM_DOBIND) || addr.GetPort() > 0 || !addr.IsAnyAddr() ) {
663 if ( !(flags & COMM_DOBIND) && addr.IsAnyAddr() )
664 debugs(5,1,"WARNING: Squid is attempting to bind() port " << addr << " without being a listener.");
665 if ( addr.IsNoAddr() )
666 debugs(5,0,"CRITICAL: Squid is attempting to bind() port " << addr << "!!");
667
668 if (commBind(new_socket, *AI) != COMM_OK) {
669 comm_close(new_socket);
670 return -1;
671 }
672 }
673
674 if (flags & COMM_NONBLOCKING)
675 if (commSetNonBlocking(new_socket) == COMM_ERROR) {
676 comm_close(new_socket);
677 return -1;
678 }
679
680 #ifdef TCP_NODELAY
681 if (sock_type == SOCK_STREAM)
682 commSetTcpNoDelay(new_socket);
683
684 #endif
685
686 if (Config.tcpRcvBufsz > 0 && sock_type == SOCK_STREAM)
687 commSetTcpRcvbuf(new_socket, Config.tcpRcvBufsz);
688
689 return new_socket;
690 }
691
692 void
693 comm_import_opened(const Comm::ConnectionPointer &conn,
694 const char *note,
695 struct addrinfo *AI)
696 {
697 debugs(5, 2, HERE << conn);
698 assert(Comm::IsConnOpen(conn));
699 assert(AI);
700
701 comm_init_opened(conn, 0, 0, note, AI);
702
703 if (!(conn->flags & COMM_NOCLOEXEC))
704 fd_table[conn->fd].flags.close_on_exec = 1;
705
706 if (conn->local.GetPort() > (unsigned short) 0) {
707 #if _SQUID_MSWIN_
708 if (AI->ai_socktype != SOCK_DGRAM)
709 #endif
710 fd_table[conn->fd].flags.nolinger = 1;
711 }
712
713 if ((conn->flags & COMM_TRANSPARENT))
714 fd_table[conn->fd].flags.transparent = 1;
715
716 if (conn->flags & COMM_NONBLOCKING)
717 fd_table[conn->fd].flags.nonblocking = 1;
718
719 #ifdef TCP_NODELAY
720 if (AI->ai_socktype == SOCK_STREAM)
721 fd_table[conn->fd].flags.nodelay = 1;
722 #endif
723
724 /* no fd_table[fd].flags. updates needed for these conditions:
725 * if ((flags & COMM_REUSEADDR)) ...
726 * if ((flags & COMM_DOBIND) ...) ...
727 */
728 }
729
730 // XXX: now that raw-FD timeouts are only unset for pipes and files this SHOULD be a no-op.
731 // With handler already unset. Leaving this present until that can be verified for all code paths.
732 void
733 commUnsetFdTimeout(int fd)
734 {
735 debugs(5, 3, HERE << "Remove timeout for FD " << fd);
736 assert(fd >= 0);
737 assert(fd < Squid_MaxFD);
738 fde *F = &fd_table[fd];
739 assert(F->flags.open);
740
741 F->timeoutHandler = NULL;
742 F->timeout = 0;
743 }
744
745 int
746 commSetConnTimeout(const Comm::ConnectionPointer &conn, int timeout, AsyncCall::Pointer &callback)
747 {
748 debugs(5, 3, HERE << conn << " timeout " << timeout);
749 assert(Comm::IsConnOpen(conn));
750 assert(conn->fd < Squid_MaxFD);
751 fde *F = &fd_table[conn->fd];
752 assert(F->flags.open);
753
754 if (timeout < 0) {
755 F->timeoutHandler = NULL;
756 F->timeout = 0;
757 } else {
758 if (callback != NULL) {
759 typedef CommTimeoutCbParams Params;
760 Params &params = GetCommParams<Params>(callback);
761 params.conn = conn;
762 F->timeoutHandler = callback;
763 }
764
765 F->timeout = squid_curtime + (time_t) timeout;
766 }
767
768 return F->timeout;
769 }
770
771 int
772 commUnsetConnTimeout(const Comm::ConnectionPointer &conn)
773 {
774 debugs(5, 3, HERE << "Remove timeout for " << conn);
775 AsyncCall::Pointer nil;
776 return commSetConnTimeout(conn, -1, nil);
777 }
778
779 int
780 comm_connect_addr(int sock, const Ip::Address &address)
781 {
782 comm_err_t status = COMM_OK;
783 fde *F = &fd_table[sock];
784 int x = 0;
785 int err = 0;
786 socklen_t errlen;
787 struct addrinfo *AI = NULL;
788 PROF_start(comm_connect_addr);
789
790 assert(address.GetPort() != 0);
791
792 debugs(5, 9, HERE << "connecting socket FD " << sock << " to " << address << " (want family: " << F->sock_family << ")");
793
794 /* Handle IPv6 over IPv4-only socket case.
795 * this case must presently be handled here since the GetAddrInfo asserts on bad mappings.
796 * NP: because commResetFD is private to ConnStateData we have to return an error and
797 * trust its handled properly.
798 */
799 if (F->sock_family == AF_INET && !address.IsIPv4()) {
800 errno = ENETUNREACH;
801 return COMM_ERR_PROTOCOL;
802 }
803
804 /* Handle IPv4 over IPv6-only socket case.
805 * This case is presently handled here as it's both a known case and it's
806 * uncertain what error will be returned by the IPv6 stack in such case. It's
807 * possible this will also be handled by the errno checks below after connect()
808 * but needs carefull cross-platform verification, and verifying the address
809 * condition here is simple.
810 */
811 if (!F->local_addr.IsIPv4() && address.IsIPv4()) {
812 errno = ENETUNREACH;
813 return COMM_ERR_PROTOCOL;
814 }
815
816 address.GetAddrInfo(AI, F->sock_family);
817
818 /* Establish connection. */
819 errno = 0;
820
821 if (!F->flags.called_connect) {
822 F->flags.called_connect = 1;
823 statCounter.syscalls.sock.connects++;
824
825 x = connect(sock, AI->ai_addr, AI->ai_addrlen);
826
827 // XXX: ICAP code refuses callbacks during a pending comm_ call
828 // Async calls development will fix this.
829 if (x == 0) {
830 x = -1;
831 errno = EINPROGRESS;
832 }
833
834 if (x < 0) {
835 debugs(5,5, "comm_connect_addr: sock=" << sock << ", addrinfo( " <<
836 " flags=" << AI->ai_flags <<
837 ", family=" << AI->ai_family <<
838 ", socktype=" << AI->ai_socktype <<
839 ", protocol=" << AI->ai_protocol <<
840 ", &addr=" << AI->ai_addr <<
841 ", addrlen=" << AI->ai_addrlen <<
842 " )" );
843 debugs(5, 9, "connect FD " << sock << ": (" << x << ") " << xstrerror());
844 debugs(14,9, "connecting to: " << address );
845 }
846 } else {
847 #if _SQUID_NEWSOS6_
848 /* Makoto MATSUSHITA <matusita@ics.es.osaka-u.ac.jp> */
849
850 connect(sock, AI->ai_addr, AI->ai_addrlen);
851
852 if (errno == EINVAL) {
853 errlen = sizeof(err);
854 x = getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &errlen);
855
856 if (x >= 0)
857 errno = x;
858 }
859
860 #else
861 errlen = sizeof(err);
862
863 x = getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &errlen);
864
865 if (x == 0)
866 errno = err;
867
868 #if _SQUID_SOLARIS_
869 /*
870 * Solaris 2.4's socket emulation doesn't allow you
871 * to determine the error from a failed non-blocking
872 * connect and just returns EPIPE. Create a fake
873 * error message for connect. -- fenner@parc.xerox.com
874 */
875 if (x < 0 && errno == EPIPE)
876 errno = ENOTCONN;
877
878 #endif
879 #endif
880
881 }
882
883 /* Squid seems to be working fine without this code. With this code,
884 * we leak memory on many connect requests because of EINPROGRESS.
885 * If you find that this code is needed, please file a bug report. */
886 #if 0
887 #if _SQUID_LINUX_
888 /* 2007-11-27:
889 * Linux Debian replaces our allocated AI pointer with garbage when
890 * connect() fails. This leads to segmentation faults deallocating
891 * the system-allocated memory when we go to clean up our pointer.
892 * HACK: is to leak the memory returned since we can't deallocate.
893 */
894 if (errno != 0) {
895 AI = NULL;
896 }
897 #endif
898 #endif
899
900 address.FreeAddrInfo(AI);
901
902 PROF_stop(comm_connect_addr);
903
904 if (errno == 0 || errno == EISCONN)
905 status = COMM_OK;
906 else if (ignoreErrno(errno))
907 status = COMM_INPROGRESS;
908 else if (errno == EAFNOSUPPORT || errno == EINVAL)
909 return COMM_ERR_PROTOCOL;
910 else
911 return COMM_ERROR;
912
913 address.NtoA(F->ipaddr, MAX_IPSTRLEN);
914
915 F->remote_port = address.GetPort(); /* remote_port is HS */
916
917 if (status == COMM_OK) {
918 debugs(5, 10, "comm_connect_addr: FD " << sock << " connected to " << address);
919 } else if (status == COMM_INPROGRESS) {
920 debugs(5, 10, "comm_connect_addr: FD " << sock << " connection pending");
921 }
922
923 return status;
924 }
925
926 void
927 commCallCloseHandlers(int fd)
928 {
929 fde *F = &fd_table[fd];
930 debugs(5, 5, "commCallCloseHandlers: FD " << fd);
931
932 while (F->closeHandler != NULL) {
933 AsyncCall::Pointer call = F->closeHandler;
934 F->closeHandler = call->Next();
935 call->setNext(NULL);
936 // If call is not canceled schedule it for execution else ignore it
937 if (!call->canceled()) {
938 debugs(5, 5, "commCallCloseHandlers: ch->handler=" << call);
939 ScheduleCallHere(call);
940 }
941 }
942 }
943
944 #if LINGERING_CLOSE
945 static void
946 commLingerClose(int fd, void *unused)
947 {
948 LOCAL_ARRAY(char, buf, 1024);
949 int n;
950 n = FD_READ_METHOD(fd, buf, 1024);
951
952 if (n < 0)
953 debugs(5, 3, "commLingerClose: FD " << fd << " read: " << xstrerror());
954
955 comm_close(fd);
956 }
957
958 static void
959 commLingerTimeout(const FdeCbParams &params)
960 {
961 debugs(5, 3, "commLingerTimeout: FD " << params.fd);
962 comm_close(params.fd);
963 }
964
965 /*
966 * Inspired by apache
967 */
968 void
969 comm_lingering_close(int fd)
970 {
971 #if USE_SSL
972 if (fd_table[fd].ssl)
973 ssl_shutdown_method(fd_table[fd].ssl);
974 #endif
975
976 if (shutdown(fd, 1) < 0) {
977 comm_close(fd);
978 return;
979 }
980
981 fd_note(fd, "lingering close");
982 AsyncCall::Pointer call = commCbCall(5,4, "commLingerTimeout", FdeCbPtrFun(commLingerTimeout, NULL));
983
984 debugs(5, 3, HERE << "FD " << fd << " timeout " << timeout);
985 assert(fd_table[fd].flags.open);
986 if (callback != NULL) {
987 typedef FdeCbParams Params;
988 Params &params = GetCommParams<Params>(callback);
989 params.fd = fd;
990 fd_table[fd].timeoutHandler = callback;
991 fd_table[fd].timeout = squid_curtime + static_cast<time_t>(10);
992 }
993
994 Comm::SetSelect(fd, COMM_SELECT_READ, commLingerClose, NULL, 0);
995 }
996
997 #endif
998
999 /**
1000 * enable linger with time of 0 so that when the socket is
1001 * closed, TCP generates a RESET
1002 */
1003 void
1004 comm_reset_close(const Comm::ConnectionPointer &conn)
1005 {
1006 struct linger L;
1007 L.l_onoff = 1;
1008 L.l_linger = 0;
1009
1010 if (setsockopt(conn->fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1011 debugs(50, DBG_CRITICAL, "ERROR: Closing " << conn << " with TCP RST: " << xstrerror());
1012
1013 conn->close();
1014 }
1015
1016 // Legacy close function.
1017 void
1018 old_comm_reset_close(int fd)
1019 {
1020 struct linger L;
1021 L.l_onoff = 1;
1022 L.l_linger = 0;
1023
1024 if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1025 debugs(50, DBG_CRITICAL, "ERROR: Closing FD " << fd << " with TCP RST: " << xstrerror());
1026
1027 comm_close(fd);
1028 }
1029
1030 #if USE_SSL
1031 void
1032 commStartSslClose(const FdeCbParams &params)
1033 {
1034 assert(&fd_table[params.fd].ssl);
1035 ssl_shutdown_method(fd_table[params.fd].ssl);
1036 }
1037 #endif
1038
1039 void
1040 comm_close_complete(const FdeCbParams &params)
1041 {
1042 #if USE_SSL
1043 fde *F = &fd_table[params.fd];
1044
1045 if (F->ssl) {
1046 SSL_free(F->ssl);
1047 F->ssl = NULL;
1048 }
1049
1050 if (F->dynamicSslContext) {
1051 SSL_CTX_free(F->dynamicSslContext);
1052 F->dynamicSslContext = NULL;
1053 }
1054 #endif
1055 fd_close(params.fd); /* update fdstat */
1056 close(params.fd);
1057
1058 statCounter.syscalls.sock.closes++;
1059
1060 /* When one connection closes, give accept() a chance, if need be */
1061 Comm::AcceptLimiter::Instance().kick();
1062 }
1063
1064 /*
1065 * Close the socket fd.
1066 *
1067 * + call write handlers with ERR_CLOSING
1068 * + call read handlers with ERR_CLOSING
1069 * + call closing handlers
1070 *
1071 * NOTE: COMM_ERR_CLOSING will NOT be called for CommReads' sitting in a
1072 * DeferredReadManager.
1073 */
1074 void
1075 _comm_close(int fd, char const *file, int line)
1076 {
1077 debugs(5, 3, "comm_close: start closing FD " << fd);
1078 assert(fd >= 0);
1079 assert(fd < Squid_MaxFD);
1080
1081 fde *F = &fd_table[fd];
1082 fdd_table[fd].close_file = file;
1083 fdd_table[fd].close_line = line;
1084
1085 if (F->closing())
1086 return;
1087
1088 /* XXX: is this obsolete behind F->closing() ? */
1089 if ( (shutting_down || reconfiguring) && (!F->flags.open || F->type == FD_FILE))
1090 return;
1091
1092 /* The following fails because ipc.c is doing calls to pipe() to create sockets! */
1093 if (!isOpen(fd)) {
1094 debugs(50, DBG_IMPORTANT, HERE << "BUG 3556: FD " << fd << " is not an open socket.");
1095 // XXX: do we need to run close(fd) or fd_close(fd) here?
1096 return;
1097 }
1098
1099 assert(F->type != FD_FILE);
1100
1101 PROF_start(comm_close);
1102
1103 F->flags.close_request = 1;
1104
1105 #if USE_SSL
1106 if (F->ssl) {
1107 AsyncCall::Pointer startCall=commCbCall(5,4, "commStartSslClose",
1108 FdeCbPtrFun(commStartSslClose, NULL));
1109 FdeCbParams &startParams = GetCommParams<FdeCbParams>(startCall);
1110 startParams.fd = fd;
1111 ScheduleCallHere(startCall);
1112 }
1113 #endif
1114
1115 // a half-closed fd may lack a reader, so we stop monitoring explicitly
1116 if (commHasHalfClosedMonitor(fd))
1117 commStopHalfClosedMonitor(fd);
1118 commUnsetFdTimeout(fd);
1119
1120 // notify read/write handlers after canceling select reservations, if any
1121 if (COMMIO_FD_WRITECB(fd)->active()) {
1122 Comm::SetSelect(fd, COMM_SELECT_WRITE, NULL, NULL, 0);
1123 COMMIO_FD_WRITECB(fd)->finish(COMM_ERR_CLOSING, errno);
1124 }
1125 if (COMMIO_FD_READCB(fd)->active()) {
1126 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
1127 COMMIO_FD_READCB(fd)->finish(COMM_ERR_CLOSING, errno);
1128 }
1129
1130 #if USE_DELAY_POOLS
1131 if (ClientInfo *clientInfo = F->clientInfo) {
1132 if (clientInfo->selectWaiting) {
1133 clientInfo->selectWaiting = false;
1134 // kick queue or it will get stuck as commWriteHandle is not called
1135 clientInfo->kickQuotaQueue();
1136 }
1137 }
1138 #endif
1139
1140 commCallCloseHandlers(fd);
1141
1142 if (F->pconn.uses && F->pconn.pool)
1143 F->pconn.pool->noteUses(F->pconn.uses);
1144
1145 comm_empty_os_read_buffers(fd);
1146
1147
1148 AsyncCall::Pointer completeCall=commCbCall(5,4, "comm_close_complete",
1149 FdeCbPtrFun(comm_close_complete, NULL));
1150 FdeCbParams &completeParams = GetCommParams<FdeCbParams>(completeCall);
1151 completeParams.fd = fd;
1152 // must use async call to wait for all callbacks
1153 // scheduled before comm_close() to finish
1154 ScheduleCallHere(completeCall);
1155
1156 PROF_stop(comm_close);
1157 }
1158
1159 /* Send a udp datagram to specified TO_ADDR. */
1160 int
1161 comm_udp_sendto(int fd,
1162 const Ip::Address &to_addr,
1163 const void *buf,
1164 int len)
1165 {
1166 int x = 0;
1167 struct addrinfo *AI = NULL;
1168
1169 PROF_start(comm_udp_sendto);
1170 statCounter.syscalls.sock.sendtos++;
1171
1172 debugs(50, 3, "comm_udp_sendto: Attempt to send UDP packet to " << to_addr <<
1173 " using FD " << fd << " using Port " << comm_local_port(fd) );
1174
1175 /* BUG: something in the above macro appears to occasionally be setting AI to garbage. */
1176 /* AYJ: 2007-08-27 : or was it because I wasn't then setting 'fd_table[fd].sock_family' to fill properly. */
1177 assert( NULL == AI );
1178
1179 to_addr.GetAddrInfo(AI, fd_table[fd].sock_family);
1180
1181 x = sendto(fd, buf, len, 0, AI->ai_addr, AI->ai_addrlen);
1182
1183 to_addr.FreeAddrInfo(AI);
1184
1185 PROF_stop(comm_udp_sendto);
1186
1187 if (x >= 0)
1188 return x;
1189
1190 #if _SQUID_LINUX_
1191
1192 if (ECONNREFUSED != errno)
1193 #endif
1194
1195 debugs(50, 1, "comm_udp_sendto: FD " << fd << ", (family=" << fd_table[fd].sock_family << ") " << to_addr << ": " << xstrerror());
1196
1197 return COMM_ERROR;
1198 }
1199
1200 void
1201 comm_add_close_handler(int fd, CLCB * handler, void *data)
1202 {
1203 debugs(5, 5, "comm_add_close_handler: FD " << fd << ", handler=" <<
1204 handler << ", data=" << data);
1205
1206 AsyncCall::Pointer call=commCbCall(5,4, "SomeCloseHandler",
1207 CommCloseCbPtrFun(handler, data));
1208 comm_add_close_handler(fd, call);
1209 }
1210
1211 void
1212 comm_add_close_handler(int fd, AsyncCall::Pointer &call)
1213 {
1214 debugs(5, 5, "comm_add_close_handler: FD " << fd << ", AsyncCall=" << call);
1215
1216 /*TODO:Check for a similar scheduled AsyncCall*/
1217 // for (c = fd_table[fd].closeHandler; c; c = c->next)
1218 // assert(c->handler != handler || c->data != data);
1219
1220 call->setNext(fd_table[fd].closeHandler);
1221
1222 fd_table[fd].closeHandler = call;
1223 }
1224
1225
1226 // remove function-based close handler
1227 void
1228 comm_remove_close_handler(int fd, CLCB * handler, void *data)
1229 {
1230 assert (isOpen(fd));
1231 /* Find handler in list */
1232 debugs(5, 5, "comm_remove_close_handler: FD " << fd << ", handler=" <<
1233 handler << ", data=" << data);
1234
1235 AsyncCall::Pointer p, prev = NULL;
1236 for (p = fd_table[fd].closeHandler; p != NULL; prev = p, p = p->Next()) {
1237 typedef CommCbFunPtrCallT<CommCloseCbPtrFun> Call;
1238 const Call *call = dynamic_cast<const Call*>(p.getRaw());
1239 if (!call) // method callbacks have their own comm_remove_close_handler
1240 continue;
1241
1242 typedef CommCloseCbParams Params;
1243 const Params &params = GetCommParams<Params>(p);
1244 if (call->dialer.handler == handler && params.data == data)
1245 break; /* This is our handler */
1246 }
1247
1248 // comm_close removes all close handlers so our handler may be gone
1249 if (p != NULL) {
1250 p->dequeue(fd_table[fd].closeHandler, prev);
1251 p->cancel("comm_remove_close_handler");
1252 }
1253 }
1254
1255 // remove method-based close handler
1256 void
1257 comm_remove_close_handler(int fd, AsyncCall::Pointer &call)
1258 {
1259 assert (isOpen(fd));
1260 debugs(5, 5, "comm_remove_close_handler: FD " << fd << ", AsyncCall=" << call);
1261
1262 // comm_close removes all close handlers so our handler may be gone
1263 AsyncCall::Pointer p, prev = NULL;
1264 for (p = fd_table[fd].closeHandler; p != NULL && p != call; prev = p, p = p->Next());
1265
1266 if (p != NULL)
1267 p->dequeue(fd_table[fd].closeHandler, prev);
1268 call->cancel("comm_remove_close_handler");
1269 }
1270
1271 static void
1272 commSetNoLinger(int fd)
1273 {
1274
1275 struct linger L;
1276 L.l_onoff = 0; /* off */
1277 L.l_linger = 0;
1278
1279 if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1280 debugs(50, 0, "commSetNoLinger: FD " << fd << ": " << xstrerror());
1281
1282 fd_table[fd].flags.nolinger = 1;
1283 }
1284
1285 static void
1286 commSetReuseAddr(int fd)
1287 {
1288 int on = 1;
1289
1290 if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on)) < 0)
1291 debugs(50, 1, "commSetReuseAddr: FD " << fd << ": " << xstrerror());
1292 }
1293
1294 static void
1295 commSetTcpRcvbuf(int fd, int size)
1296 {
1297 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (char *) &size, sizeof(size)) < 0)
1298 debugs(50, 1, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1299 if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, (char *) &size, sizeof(size)) < 0)
1300 debugs(50, 1, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1301 #ifdef TCP_WINDOW_CLAMP
1302 if (setsockopt(fd, SOL_TCP, TCP_WINDOW_CLAMP, (char *) &size, sizeof(size)) < 0)
1303 debugs(50, 1, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1304 #endif
1305 }
1306
1307 int
1308 commSetNonBlocking(int fd)
1309 {
1310 #if !_SQUID_MSWIN_
1311 int flags;
1312 int dummy = 0;
1313 #endif
1314 #if _SQUID_WINDOWS_
1315 int nonblocking = TRUE;
1316
1317 #if _SQUID_CYGWIN_
1318 if (fd_table[fd].type != FD_PIPE) {
1319 #endif
1320
1321 if (ioctl(fd, FIONBIO, &nonblocking) < 0) {
1322 debugs(50, 0, "commSetNonBlocking: FD " << fd << ": " << xstrerror() << " " << fd_table[fd].type);
1323 return COMM_ERROR;
1324 }
1325
1326 #if _SQUID_CYGWIN_
1327 } else {
1328 #endif
1329 #endif
1330 #if !_SQUID_MSWIN_
1331
1332 if ((flags = fcntl(fd, F_GETFL, dummy)) < 0) {
1333 debugs(50, 0, "FD " << fd << ": fcntl F_GETFL: " << xstrerror());
1334 return COMM_ERROR;
1335 }
1336
1337 if (fcntl(fd, F_SETFL, flags | SQUID_NONBLOCK) < 0) {
1338 debugs(50, 0, "commSetNonBlocking: FD " << fd << ": " << xstrerror());
1339 return COMM_ERROR;
1340 }
1341
1342 #endif
1343 #if _SQUID_CYGWIN_
1344 }
1345 #endif
1346 fd_table[fd].flags.nonblocking = 1;
1347
1348 return 0;
1349 }
1350
1351 int
1352 commUnsetNonBlocking(int fd)
1353 {
1354 #if _SQUID_MSWIN_
1355 int nonblocking = FALSE;
1356
1357 if (ioctlsocket(fd, FIONBIO, (unsigned long *) &nonblocking) < 0) {
1358 #else
1359 int flags;
1360 int dummy = 0;
1361
1362 if ((flags = fcntl(fd, F_GETFL, dummy)) < 0) {
1363 debugs(50, 0, "FD " << fd << ": fcntl F_GETFL: " << xstrerror());
1364 return COMM_ERROR;
1365 }
1366
1367 if (fcntl(fd, F_SETFL, flags & (~SQUID_NONBLOCK)) < 0) {
1368 #endif
1369 debugs(50, 0, "commUnsetNonBlocking: FD " << fd << ": " << xstrerror());
1370 return COMM_ERROR;
1371 }
1372
1373 fd_table[fd].flags.nonblocking = 0;
1374 return 0;
1375 }
1376
1377 void
1378 commSetCloseOnExec(int fd)
1379 {
1380 #ifdef FD_CLOEXEC
1381 int flags;
1382 int dummy = 0;
1383
1384 if ((flags = fcntl(fd, F_GETFD, dummy)) < 0) {
1385 debugs(50, 0, "FD " << fd << ": fcntl F_GETFD: " << xstrerror());
1386 return;
1387 }
1388
1389 if (fcntl(fd, F_SETFD, flags | FD_CLOEXEC) < 0)
1390 debugs(50, 0, "FD " << fd << ": set close-on-exec failed: " << xstrerror());
1391
1392 fd_table[fd].flags.close_on_exec = 1;
1393
1394 #endif
1395 }
1396
1397 #ifdef TCP_NODELAY
1398 static void
1399 commSetTcpNoDelay(int fd)
1400 {
1401 int on = 1;
1402
1403 if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &on, sizeof(on)) < 0)
1404 debugs(50, 1, "commSetTcpNoDelay: FD " << fd << ": " << xstrerror());
1405
1406 fd_table[fd].flags.nodelay = 1;
1407 }
1408
1409 #endif
1410
1411 void
1412 commSetTcpKeepalive(int fd, int idle, int interval, int timeout)
1413 {
1414 int on = 1;
1415 #ifdef TCP_KEEPCNT
1416 if (timeout && interval) {
1417 int count = (timeout + interval - 1) / interval;
1418 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &count, sizeof(on)) < 0)
1419 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1420 }
1421 #endif
1422 #ifdef TCP_KEEPIDLE
1423 if (idle) {
1424 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &idle, sizeof(on)) < 0)
1425 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1426 }
1427 #endif
1428 #ifdef TCP_KEEPINTVL
1429 if (interval) {
1430 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &interval, sizeof(on)) < 0)
1431 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1432 }
1433 #endif
1434 if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &on, sizeof(on)) < 0)
1435 debugs(5, 1, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1436 }
1437
1438 void
1439 comm_init(void)
1440 {
1441 fd_table =(fde *) xcalloc(Squid_MaxFD, sizeof(fde));
1442 fdd_table = (fd_debug_t *)xcalloc(Squid_MaxFD, sizeof(fd_debug_t));
1443
1444 /* make sure the accept() socket FIFO delay queue exists */
1445 Comm::AcceptLimiter::Instance();
1446
1447 // make sure the IO pending callback table exists
1448 Comm::CallbackTableInit();
1449
1450 /* XXX account fd_table */
1451 /* Keep a few file descriptors free so that we don't run out of FD's
1452 * after accepting a client but before it opens a socket or a file.
1453 * Since Squid_MaxFD can be as high as several thousand, don't waste them */
1454 RESERVED_FD = min(100, Squid_MaxFD / 4);
1455
1456 conn_close_pool = memPoolCreate("close_handler", sizeof(close_handler));
1457
1458 TheHalfClosed = new DescriptorSet;
1459
1460 /* setup the select loop module */
1461 Comm::SelectLoopInit();
1462 }
1463
1464 void
1465 comm_exit(void)
1466 {
1467 delete TheHalfClosed;
1468 TheHalfClosed = NULL;
1469
1470 safe_free(fd_table);
1471 safe_free(fdd_table);
1472 Comm::CallbackTableDestruct();
1473 }
1474
1475 #if USE_DELAY_POOLS
1476 // called when the queue is done waiting for the client bucket to fill
1477 void
1478 commHandleWriteHelper(void * data)
1479 {
1480 CommQuotaQueue *queue = static_cast<CommQuotaQueue*>(data);
1481 assert(queue);
1482
1483 ClientInfo *clientInfo = queue->clientInfo;
1484 // ClientInfo invalidates queue if freed, so if we got here through,
1485 // evenAdd cbdata protections, everything should be valid and consistent
1486 assert(clientInfo);
1487 assert(clientInfo->hasQueue());
1488 assert(clientInfo->hasQueue(queue));
1489 assert(!clientInfo->selectWaiting);
1490 assert(clientInfo->eventWaiting);
1491 clientInfo->eventWaiting = false;
1492
1493 do {
1494 // check that the head descriptor is still relevant
1495 const int head = clientInfo->quotaPeekFd();
1496 Comm::IoCallback *ccb = COMMIO_FD_WRITECB(head);
1497
1498 if (fd_table[head].clientInfo == clientInfo &&
1499 clientInfo->quotaPeekReserv() == ccb->quotaQueueReserv &&
1500 !fd_table[head].closing()) {
1501
1502 // wait for the head descriptor to become ready for writing
1503 Comm::SetSelect(head, COMM_SELECT_WRITE, Comm::HandleWrite, ccb, 0);
1504 clientInfo->selectWaiting = true;
1505 return;
1506 }
1507
1508 clientInfo->quotaDequeue(); // remove the no longer relevant descriptor
1509 // and continue looking for a relevant one
1510 } while (clientInfo->hasQueue());
1511
1512 debugs(77,3, HERE << "emptied queue");
1513 }
1514
1515 bool
1516 ClientInfo::hasQueue() const
1517 {
1518 assert(quotaQueue);
1519 return !quotaQueue->empty();
1520 }
1521
1522 bool
1523 ClientInfo::hasQueue(const CommQuotaQueue *q) const
1524 {
1525 assert(quotaQueue);
1526 return quotaQueue == q;
1527 }
1528
1529 /// returns the first descriptor to be dequeued
1530 int
1531 ClientInfo::quotaPeekFd() const
1532 {
1533 assert(quotaQueue);
1534 return quotaQueue->front();
1535 }
1536
1537 /// returns the reservation ID of the first descriptor to be dequeued
1538 unsigned int
1539 ClientInfo::quotaPeekReserv() const
1540 {
1541 assert(quotaQueue);
1542 return quotaQueue->outs + 1;
1543 }
1544
1545 /// queues a given fd, creating the queue if necessary; returns reservation ID
1546 unsigned int
1547 ClientInfo::quotaEnqueue(int fd)
1548 {
1549 assert(quotaQueue);
1550 return quotaQueue->enqueue(fd);
1551 }
1552
1553 /// removes queue head
1554 void
1555 ClientInfo::quotaDequeue()
1556 {
1557 assert(quotaQueue);
1558 quotaQueue->dequeue();
1559 }
1560
1561 void
1562 ClientInfo::kickQuotaQueue()
1563 {
1564 if (!eventWaiting && !selectWaiting && hasQueue()) {
1565 // wait at least a second if the bucket is empty
1566 const double delay = (bucketSize < 1.0) ? 1.0 : 0.0;
1567 eventAdd("commHandleWriteHelper", &commHandleWriteHelper,
1568 quotaQueue, delay, 0, true);
1569 eventWaiting = true;
1570 }
1571 }
1572
1573 /// calculates how much to write for a single dequeued client
1574 int
1575 ClientInfo::quotaForDequed()
1576 {
1577 /* If we have multiple clients and give full bucketSize to each client then
1578 * clt1 may often get a lot more because clt1->clt2 time distance in the
1579 * select(2) callback order may be a lot smaller than cltN->clt1 distance.
1580 * We divide quota evenly to be more fair. */
1581
1582 if (!rationedCount) {
1583 rationedCount = quotaQueue->size() + 1;
1584
1585 // The delay in ration recalculation _temporary_ deprives clients from
1586 // bytes that should have trickled in while rationedCount was positive.
1587 refillBucket();
1588
1589 // Rounding errors do not accumulate here, but we round down to avoid
1590 // negative bucket sizes after write with rationedCount=1.
1591 rationedQuota = static_cast<int>(floor(bucketSize/rationedCount));
1592 debugs(77,5, HERE << "new rationedQuota: " << rationedQuota <<
1593 '*' << rationedCount);
1594 }
1595
1596 --rationedCount;
1597 debugs(77,7, HERE << "rationedQuota: " << rationedQuota <<
1598 " rations remaining: " << rationedCount);
1599
1600 // update 'last seen' time to prevent clientdb GC from dropping us
1601 last_seen = squid_curtime;
1602 return rationedQuota;
1603 }
1604
1605 ///< adds bytes to the quota bucket based on the rate and passed time
1606 void
1607 ClientInfo::refillBucket()
1608 {
1609 // all these times are in seconds, with double precision
1610 const double currTime = current_dtime;
1611 const double timePassed = currTime - prevTime;
1612
1613 // Calculate allowance for the time passed. Use double to avoid
1614 // accumulating rounding errors for small intervals. For example, always
1615 // adding 1 byte instead of 1.4 results in 29% bandwidth allocation error.
1616 const double gain = timePassed * writeSpeedLimit;
1617
1618 debugs(77,5, HERE << currTime << " clt" << (const char*)hash.key << ": " <<
1619 bucketSize << " + (" << timePassed << " * " << writeSpeedLimit <<
1620 " = " << gain << ')');
1621
1622 // to further combat error accumulation during micro updates,
1623 // quit before updating time if we cannot add at least one byte
1624 if (gain < 1.0)
1625 return;
1626
1627 prevTime = currTime;
1628
1629 // for "first" connections, drain initial fat before refilling but keep
1630 // updating prevTime to avoid bursts after the fat is gone
1631 if (bucketSize > bucketSizeLimit) {
1632 debugs(77,4, HERE << "not refilling while draining initial fat");
1633 return;
1634 }
1635
1636 bucketSize += gain;
1637
1638 // obey quota limits
1639 if (bucketSize > bucketSizeLimit)
1640 bucketSize = bucketSizeLimit;
1641 }
1642
1643 void
1644 ClientInfo::setWriteLimiter(const int aWriteSpeedLimit, const double anInitialBurst, const double aHighWatermark)
1645 {
1646 debugs(77,5, HERE << "Write limits for " << (const char*)hash.key <<
1647 " speed=" << aWriteSpeedLimit << " burst=" << anInitialBurst <<
1648 " highwatermark=" << aHighWatermark);
1649
1650 // set or possibly update traffic shaping parameters
1651 writeLimitingActive = true;
1652 writeSpeedLimit = aWriteSpeedLimit;
1653 bucketSizeLimit = aHighWatermark;
1654
1655 // but some members should only be set once for a newly activated bucket
1656 if (firstTimeConnection) {
1657 firstTimeConnection = false;
1658
1659 assert(!selectWaiting);
1660 assert(!quotaQueue);
1661 quotaQueue = new CommQuotaQueue(this);
1662
1663 bucketSize = anInitialBurst;
1664 prevTime = current_dtime;
1665 }
1666 }
1667
1668 CommQuotaQueue::CommQuotaQueue(ClientInfo *info): clientInfo(info),
1669 ins(0), outs(0)
1670 {
1671 assert(clientInfo);
1672 }
1673
1674 CommQuotaQueue::~CommQuotaQueue()
1675 {
1676 assert(!clientInfo); // ClientInfo should clear this before destroying us
1677 }
1678
1679 /// places the given fd at the end of the queue; returns reservation ID
1680 unsigned int
1681 CommQuotaQueue::enqueue(int fd)
1682 {
1683 debugs(77,5, HERE << "clt" << (const char*)clientInfo->hash.key <<
1684 ": FD " << fd << " with qqid" << (ins+1) << ' ' << fds.size());
1685 fds.push_back(fd);
1686 return ++ins;
1687 }
1688
1689 /// removes queue head
1690 void
1691 CommQuotaQueue::dequeue()
1692 {
1693 assert(!fds.empty());
1694 debugs(77,5, HERE << "clt" << (const char*)clientInfo->hash.key <<
1695 ": FD " << fds.front() << " with qqid" << (outs+1) << ' ' <<
1696 fds.size());
1697 fds.pop_front();
1698 ++outs;
1699 }
1700 #endif
1701
1702 /*
1703 * hm, this might be too general-purpose for all the places we'd
1704 * like to use it.
1705 */
1706 int
1707 ignoreErrno(int ierrno)
1708 {
1709 switch (ierrno) {
1710
1711 case EINPROGRESS:
1712
1713 case EWOULDBLOCK:
1714 #if EAGAIN != EWOULDBLOCK
1715
1716 case EAGAIN:
1717 #endif
1718
1719 case EALREADY:
1720
1721 case EINTR:
1722 #ifdef ERESTART
1723
1724 case ERESTART:
1725 #endif
1726
1727 return 1;
1728
1729 default:
1730 return 0;
1731 }
1732
1733 /* NOTREACHED */
1734 }
1735
1736 void
1737 commCloseAllSockets(void)
1738 {
1739 int fd;
1740 fde *F = NULL;
1741
1742 for (fd = 0; fd <= Biggest_FD; fd++) {
1743 F = &fd_table[fd];
1744
1745 if (!F->flags.open)
1746 continue;
1747
1748 if (F->type != FD_SOCKET)
1749 continue;
1750
1751 if (F->flags.ipc) /* don't close inter-process sockets */
1752 continue;
1753
1754 if (F->timeoutHandler != NULL) {
1755 AsyncCall::Pointer callback = F->timeoutHandler;
1756 F->timeoutHandler = NULL;
1757 debugs(5, 5, "commCloseAllSockets: FD " << fd << ": Calling timeout handler");
1758 ScheduleCallHere(callback);
1759 } else {
1760 debugs(5, 5, "commCloseAllSockets: FD " << fd << ": calling comm_reset_close()");
1761 old_comm_reset_close(fd);
1762 }
1763 }
1764 }
1765
1766 static bool
1767 AlreadyTimedOut(fde *F)
1768 {
1769 if (!F->flags.open)
1770 return true;
1771
1772 if (F->timeout == 0)
1773 return true;
1774
1775 if (F->timeout > squid_curtime)
1776 return true;
1777
1778 return false;
1779 }
1780
1781 static bool
1782 writeTimedOut(int fd)
1783 {
1784 if (!COMMIO_FD_WRITECB(fd)->active())
1785 return false;
1786
1787 if ((squid_curtime - fd_table[fd].writeStart) < Config.Timeout.write)
1788 return false;
1789
1790 return true;
1791 }
1792
1793 void
1794 checkTimeouts(void)
1795 {
1796 int fd;
1797 fde *F = NULL;
1798 AsyncCall::Pointer callback;
1799
1800 for (fd = 0; fd <= Biggest_FD; fd++) {
1801 F = &fd_table[fd];
1802
1803 if (writeTimedOut(fd)) {
1804 // We have an active write callback and we are timed out
1805 debugs(5, 5, "checkTimeouts: FD " << fd << " auto write timeout");
1806 Comm::SetSelect(fd, COMM_SELECT_WRITE, NULL, NULL, 0);
1807 COMMIO_FD_WRITECB(fd)->finish(COMM_ERROR, ETIMEDOUT);
1808 } else if (AlreadyTimedOut(F))
1809 continue;
1810
1811 debugs(5, 5, "checkTimeouts: FD " << fd << " Expired");
1812
1813 if (F->timeoutHandler != NULL) {
1814 debugs(5, 5, "checkTimeouts: FD " << fd << ": Call timeout handler");
1815 callback = F->timeoutHandler;
1816 F->timeoutHandler = NULL;
1817 ScheduleCallHere(callback);
1818 } else {
1819 debugs(5, 5, "checkTimeouts: FD " << fd << ": Forcing comm_close()");
1820 comm_close(fd);
1821 }
1822 }
1823 }
1824
1825 /// Start waiting for a possibly half-closed connection to close
1826 // by scheduling a read callback to a monitoring handler that
1827 // will close the connection on read errors.
1828 void
1829 commStartHalfClosedMonitor(int fd)
1830 {
1831 debugs(5, 5, HERE << "adding FD " << fd << " to " << *TheHalfClosed);
1832 assert(isOpen(fd));
1833 assert(!commHasHalfClosedMonitor(fd));
1834 (void)TheHalfClosed->add(fd); // could also assert the result
1835 commPlanHalfClosedCheck(); // may schedule check if we added the first FD
1836 }
1837
1838 static
1839 void
1840 commPlanHalfClosedCheck()
1841 {
1842 if (!WillCheckHalfClosed && !TheHalfClosed->empty()) {
1843 eventAdd("commHalfClosedCheck", &commHalfClosedCheck, NULL, 1.0, 1);
1844 WillCheckHalfClosed = true;
1845 }
1846 }
1847
1848 /// iterates over all descriptors that may need half-closed tests and
1849 /// calls comm_read for those that do; re-schedules the check if needed
1850 static
1851 void
1852 commHalfClosedCheck(void *)
1853 {
1854 debugs(5, 5, HERE << "checking " << *TheHalfClosed);
1855
1856 typedef DescriptorSet::const_iterator DSCI;
1857 const DSCI end = TheHalfClosed->end();
1858 for (DSCI i = TheHalfClosed->begin(); i != end; ++i) {
1859 Comm::ConnectionPointer c = new Comm::Connection; // XXX: temporary. make HalfClosed a list of these.
1860 c->fd = *i;
1861 if (!fd_table[c->fd].halfClosedReader) { // not reading already
1862 AsyncCall::Pointer call = commCbCall(5,4, "commHalfClosedReader",
1863 CommIoCbPtrFun(&commHalfClosedReader, NULL));
1864 comm_read(c, NULL, 0, call);
1865 fd_table[c->fd].halfClosedReader = call;
1866 } else
1867 c->fd = -1; // XXX: temporary. prevent c replacement erase closing listed FD
1868 }
1869
1870 WillCheckHalfClosed = false; // as far as we know
1871 commPlanHalfClosedCheck(); // may need to check again
1872 }
1873
1874 /// checks whether we are waiting for possibly half-closed connection to close
1875 // We are monitoring if the read handler for the fd is the monitoring handler.
1876 bool
1877 commHasHalfClosedMonitor(int fd)
1878 {
1879 return TheHalfClosed->has(fd);
1880 }
1881
1882 /// stop waiting for possibly half-closed connection to close
1883 static void
1884 commStopHalfClosedMonitor(int const fd)
1885 {
1886 debugs(5, 5, HERE << "removing FD " << fd << " from " << *TheHalfClosed);
1887
1888 // cancel the read if one was scheduled
1889 AsyncCall::Pointer reader = fd_table[fd].halfClosedReader;
1890 if (reader != NULL)
1891 comm_read_cancel(fd, reader);
1892 fd_table[fd].halfClosedReader = NULL;
1893
1894 TheHalfClosed->del(fd);
1895 }
1896
1897 /// I/O handler for the possibly half-closed connection monitoring code
1898 static void
1899 commHalfClosedReader(const Comm::ConnectionPointer &conn, char *, size_t size, comm_err_t flag, int, void *)
1900 {
1901 // there cannot be more data coming in on half-closed connections
1902 assert(size == 0);
1903 assert(conn != NULL);
1904 assert(commHasHalfClosedMonitor(conn->fd)); // or we would have canceled the read
1905
1906 fd_table[conn->fd].halfClosedReader = NULL; // done reading, for now
1907
1908 // nothing to do if fd is being closed
1909 if (flag == COMM_ERR_CLOSING)
1910 return;
1911
1912 // if read failed, close the connection
1913 if (flag != COMM_OK) {
1914 debugs(5, 3, HERE << "closing " << conn);
1915 conn->close();
1916 return;
1917 }
1918
1919 // continue waiting for close or error
1920 commPlanHalfClosedCheck(); // make sure this fd will be checked again
1921 }
1922
1923
1924 CommRead::CommRead() : conn(NULL), buf(NULL), len(0), callback(NULL) {}
1925
1926 CommRead::CommRead(const Comm::ConnectionPointer &c, char *buf_, int len_, AsyncCall::Pointer &callback_)
1927 : conn(c), buf(buf_), len(len_), callback(callback_) {}
1928
1929 DeferredRead::DeferredRead () : theReader(NULL), theContext(NULL), theRead(), cancelled(false) {}
1930
1931 DeferredRead::DeferredRead (DeferrableRead *aReader, void *data, CommRead const &aRead) : theReader(aReader), theContext (data), theRead(aRead), cancelled(false) {}
1932
1933 DeferredReadManager::~DeferredReadManager()
1934 {
1935 flushReads();
1936 assert (deferredReads.empty());
1937 }
1938
1939 /* explicit instantiation required for some systems */
1940
1941 /// \cond AUTODOCS-IGNORE
1942 template cbdata_type CbDataList<DeferredRead>::CBDATA_CbDataList;
1943 /// \endcond
1944
1945 void
1946 DeferredReadManager::delayRead(DeferredRead const &aRead)
1947 {
1948 debugs(5, 3, "Adding deferred read on " << aRead.theRead.conn);
1949 CbDataList<DeferredRead> *temp = deferredReads.push_back(aRead);
1950
1951 // We have to use a global function as a closer and point to temp
1952 // instead of "this" because DeferredReadManager is not a job and
1953 // is not even cbdata protected
1954 // XXX: and yet we use cbdata protection functions on it??
1955 AsyncCall::Pointer closer = commCbCall(5,4,
1956 "DeferredReadManager::CloseHandler",
1957 CommCloseCbPtrFun(&CloseHandler, temp));
1958 comm_add_close_handler(aRead.theRead.conn->fd, closer);
1959 temp->element.closer = closer; // remeber so that we can cancel
1960 }
1961
1962 void
1963 DeferredReadManager::CloseHandler(const CommCloseCbParams &params)
1964 {
1965 if (!cbdataReferenceValid(params.data))
1966 return;
1967
1968 CbDataList<DeferredRead> *temp = (CbDataList<DeferredRead> *)params.data;
1969
1970 temp->element.closer = NULL;
1971 temp->element.markCancelled();
1972 }
1973
1974 DeferredRead
1975 DeferredReadManager::popHead(CbDataListContainer<DeferredRead> &deferredReads)
1976 {
1977 assert (!deferredReads.empty());
1978
1979 DeferredRead &read = deferredReads.head->element;
1980
1981 // NOTE: at this point the connection has been paused/stalled for an unknown
1982 // amount of time. We must re-validate that it is active and usable.
1983
1984 // If the connection has been closed already. Cancel this read.
1985 if (!Comm::IsConnOpen(read.theRead.conn)) {
1986 if (read.closer != NULL) {
1987 read.closer->cancel("Connection closed before.");
1988 read.closer = NULL;
1989 }
1990 read.markCancelled();
1991 }
1992
1993 if (!read.cancelled) {
1994 comm_remove_close_handler(read.theRead.conn->fd, read.closer);
1995 read.closer = NULL;
1996 }
1997
1998 DeferredRead result = deferredReads.pop_front();
1999
2000 return result;
2001 }
2002
2003 void
2004 DeferredReadManager::kickReads(int const count)
2005 {
2006 /* if we had CbDataList::size() we could consolidate this and flushReads */
2007
2008 if (count < 1) {
2009 flushReads();
2010 return;
2011 }
2012
2013 size_t remaining = count;
2014
2015 while (!deferredReads.empty() && remaining) {
2016 DeferredRead aRead = popHead(deferredReads);
2017 kickARead(aRead);
2018
2019 if (!aRead.cancelled)
2020 --remaining;
2021 }
2022 }
2023
2024 void
2025 DeferredReadManager::flushReads()
2026 {
2027 CbDataListContainer<DeferredRead> reads;
2028 reads = deferredReads;
2029 deferredReads = CbDataListContainer<DeferredRead>();
2030
2031 // XXX: For fairness this SHOULD randomize the order
2032 while (!reads.empty()) {
2033 DeferredRead aRead = popHead(reads);
2034 kickARead(aRead);
2035 }
2036 }
2037
2038 void
2039 DeferredReadManager::kickARead(DeferredRead const &aRead)
2040 {
2041 if (aRead.cancelled)
2042 return;
2043
2044 if (Comm::IsConnOpen(aRead.theRead.conn) && fd_table[aRead.theRead.conn->fd].closing())
2045 return;
2046
2047 debugs(5, 3, "Kicking deferred read on " << aRead.theRead.conn);
2048
2049 aRead.theReader(aRead.theContext, aRead.theRead);
2050 }
2051
2052 void
2053 DeferredRead::markCancelled()
2054 {
2055 cancelled = true;
2056 }
2057
2058 int
2059 CommSelectEngine::checkEvents(int timeout)
2060 {
2061 static time_t last_timeout = 0;
2062
2063 /* No, this shouldn't be here. But it shouldn't be in each comm handler. -adrian */
2064 if (squid_curtime > last_timeout) {
2065 last_timeout = squid_curtime;
2066 checkTimeouts();
2067 }
2068
2069 switch (Comm::DoSelect(timeout)) {
2070
2071 case COMM_OK:
2072
2073 case COMM_TIMEOUT:
2074 return 0;
2075
2076 case COMM_IDLE:
2077
2078 case COMM_SHUTDOWN:
2079 return EVENT_IDLE;
2080
2081 case COMM_ERROR:
2082 return EVENT_ERROR;
2083
2084 default:
2085 fatal_dump("comm.cc: Internal error -- this should never happen.");
2086 return EVENT_ERROR;
2087 };
2088 }
2089
2090 /// Create a unix-domain socket (UDS) that only supports FD_MSGHDR I/O.
2091 int
2092 comm_open_uds(int sock_type,
2093 int proto,
2094 struct sockaddr_un* addr,
2095 int flags)
2096 {
2097 // TODO: merge with comm_openex() when Ip::Address becomes NetAddress
2098
2099 int new_socket;
2100
2101 PROF_start(comm_open);
2102 /* Create socket for accepting new connections. */
2103 statCounter.syscalls.sock.sockets++;
2104
2105 /* Setup the socket addrinfo details for use */
2106 struct addrinfo AI;
2107 AI.ai_flags = 0;
2108 AI.ai_family = PF_UNIX;
2109 AI.ai_socktype = sock_type;
2110 AI.ai_protocol = proto;
2111 AI.ai_addrlen = SUN_LEN(addr);
2112 AI.ai_addr = (sockaddr*)addr;
2113 AI.ai_canonname = NULL;
2114 AI.ai_next = NULL;
2115
2116 debugs(50, 3, HERE << "Attempt open socket for: " << addr->sun_path);
2117
2118 if ((new_socket = socket(AI.ai_family, AI.ai_socktype, AI.ai_protocol)) < 0) {
2119 /* Increase the number of reserved fd's if calls to socket()
2120 * are failing because the open file table is full. This
2121 * limits the number of simultaneous clients */
2122
2123 if (limitError(errno)) {
2124 debugs(50, DBG_IMPORTANT, HERE << "socket failure: " << xstrerror());
2125 fdAdjustReserved();
2126 } else {
2127 debugs(50, DBG_CRITICAL, HERE << "socket failure: " << xstrerror());
2128 }
2129
2130 PROF_stop(comm_open);
2131 return -1;
2132 }
2133
2134 debugs(50, 3, HERE "Opened UDS FD " << new_socket << " : family=" << AI.ai_family << ", type=" << AI.ai_socktype << ", protocol=" << AI.ai_protocol);
2135
2136 /* update fdstat */
2137 debugs(50, 5, HERE << "FD " << new_socket << " is a new socket");
2138
2139 assert(!isOpen(new_socket));
2140 fd_open(new_socket, FD_MSGHDR, NULL);
2141
2142 fdd_table[new_socket].close_file = NULL;
2143
2144 fdd_table[new_socket].close_line = 0;
2145
2146 fd_table[new_socket].sock_family = AI.ai_family;
2147
2148 if (!(flags & COMM_NOCLOEXEC))
2149 commSetCloseOnExec(new_socket);
2150
2151 if (flags & COMM_REUSEADDR)
2152 commSetReuseAddr(new_socket);
2153
2154 if (flags & COMM_NONBLOCKING) {
2155 if (commSetNonBlocking(new_socket) != COMM_OK) {
2156 comm_close(new_socket);
2157 PROF_stop(comm_open);
2158 return -1;
2159 }
2160 }
2161
2162 if (flags & COMM_DOBIND) {
2163 if (commBind(new_socket, AI) != COMM_OK) {
2164 comm_close(new_socket);
2165 PROF_stop(comm_open);
2166 return -1;
2167 }
2168 }
2169
2170 #ifdef TCP_NODELAY
2171 if (sock_type == SOCK_STREAM)
2172 commSetTcpNoDelay(new_socket);
2173
2174 #endif
2175
2176 if (Config.tcpRcvBufsz > 0 && sock_type == SOCK_STREAM)
2177 commSetTcpRcvbuf(new_socket, Config.tcpRcvBufsz);
2178
2179 PROF_stop(comm_open);
2180
2181 return new_socket;
2182 }