]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
resolved: rework parsing of /etc/hosts
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <fcntl.h>
4 #include <fnmatch.h>
5
6 #include "alloc-util.h"
7 #include "blockdev-util.h"
8 #include "bpf-firewall.h"
9 #include "btrfs-util.h"
10 #include "bpf-devices.h"
11 #include "bus-error.h"
12 #include "cgroup-util.h"
13 #include "cgroup.h"
14 #include "fd-util.h"
15 #include "fileio.h"
16 #include "fs-util.h"
17 #include "parse-util.h"
18 #include "path-util.h"
19 #include "process-util.h"
20 #include "procfs-util.h"
21 #include "special.h"
22 #include "stat-util.h"
23 #include "stdio-util.h"
24 #include "string-table.h"
25 #include "string-util.h"
26 #include "virt.h"
27
28 #define CGROUP_CPU_QUOTA_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
29
30 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
31 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
32 * out specific attributes from us. */
33 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
34
35 bool manager_owns_host_root_cgroup(Manager *m) {
36 assert(m);
37
38 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
39 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
40 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
41 * we run in any kind of container virtualization. */
42
43 if (MANAGER_IS_USER(m))
44 return false;
45
46 if (detect_container() > 0)
47 return false;
48
49 return empty_or_root(m->cgroup_root);
50 }
51
52 bool unit_has_host_root_cgroup(Unit *u) {
53 assert(u);
54
55 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
56 * the manager manages the root cgroup. */
57
58 if (!manager_owns_host_root_cgroup(u->manager))
59 return false;
60
61 return unit_has_name(u, SPECIAL_ROOT_SLICE);
62 }
63
64 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
65 int r;
66
67 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
68 if (r < 0)
69 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
70 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
71
72 return r;
73 }
74
75 static void cgroup_compat_warn(void) {
76 static bool cgroup_compat_warned = false;
77
78 if (cgroup_compat_warned)
79 return;
80
81 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
82 "See cgroup-compat debug messages for details.");
83
84 cgroup_compat_warned = true;
85 }
86
87 #define log_cgroup_compat(unit, fmt, ...) do { \
88 cgroup_compat_warn(); \
89 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
90 } while (false)
91
92 void cgroup_context_init(CGroupContext *c) {
93 assert(c);
94
95 /* Initialize everything to the kernel defaults. */
96
97 *c = (CGroupContext) {
98 .cpu_weight = CGROUP_WEIGHT_INVALID,
99 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
100 .cpu_quota_per_sec_usec = USEC_INFINITY,
101
102 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
103 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
104
105 .memory_high = CGROUP_LIMIT_MAX,
106 .memory_max = CGROUP_LIMIT_MAX,
107 .memory_swap_max = CGROUP_LIMIT_MAX,
108
109 .memory_limit = CGROUP_LIMIT_MAX,
110
111 .io_weight = CGROUP_WEIGHT_INVALID,
112 .startup_io_weight = CGROUP_WEIGHT_INVALID,
113
114 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
115 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
116
117 .tasks_max = CGROUP_LIMIT_MAX,
118 };
119 }
120
121 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
122 assert(c);
123 assert(a);
124
125 LIST_REMOVE(device_allow, c->device_allow, a);
126 free(a->path);
127 free(a);
128 }
129
130 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
131 assert(c);
132 assert(w);
133
134 LIST_REMOVE(device_weights, c->io_device_weights, w);
135 free(w->path);
136 free(w);
137 }
138
139 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
140 assert(c);
141 assert(l);
142
143 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
144 free(l->path);
145 free(l);
146 }
147
148 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
149 assert(c);
150 assert(l);
151
152 LIST_REMOVE(device_limits, c->io_device_limits, l);
153 free(l->path);
154 free(l);
155 }
156
157 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
158 assert(c);
159 assert(w);
160
161 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
162 free(w->path);
163 free(w);
164 }
165
166 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
167 assert(c);
168 assert(b);
169
170 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
171 free(b->path);
172 free(b);
173 }
174
175 void cgroup_context_done(CGroupContext *c) {
176 assert(c);
177
178 while (c->io_device_weights)
179 cgroup_context_free_io_device_weight(c, c->io_device_weights);
180
181 while (c->io_device_latencies)
182 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
183
184 while (c->io_device_limits)
185 cgroup_context_free_io_device_limit(c, c->io_device_limits);
186
187 while (c->blockio_device_weights)
188 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
189
190 while (c->blockio_device_bandwidths)
191 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
192
193 while (c->device_allow)
194 cgroup_context_free_device_allow(c, c->device_allow);
195
196 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
197 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
198 }
199
200 void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
201 CGroupIODeviceLimit *il;
202 CGroupIODeviceWeight *iw;
203 CGroupIODeviceLatency *l;
204 CGroupBlockIODeviceBandwidth *b;
205 CGroupBlockIODeviceWeight *w;
206 CGroupDeviceAllow *a;
207 IPAddressAccessItem *iaai;
208 char u[FORMAT_TIMESPAN_MAX];
209
210 assert(c);
211 assert(f);
212
213 prefix = strempty(prefix);
214
215 fprintf(f,
216 "%sCPUAccounting=%s\n"
217 "%sIOAccounting=%s\n"
218 "%sBlockIOAccounting=%s\n"
219 "%sMemoryAccounting=%s\n"
220 "%sTasksAccounting=%s\n"
221 "%sIPAccounting=%s\n"
222 "%sCPUWeight=%" PRIu64 "\n"
223 "%sStartupCPUWeight=%" PRIu64 "\n"
224 "%sCPUShares=%" PRIu64 "\n"
225 "%sStartupCPUShares=%" PRIu64 "\n"
226 "%sCPUQuotaPerSecSec=%s\n"
227 "%sIOWeight=%" PRIu64 "\n"
228 "%sStartupIOWeight=%" PRIu64 "\n"
229 "%sBlockIOWeight=%" PRIu64 "\n"
230 "%sStartupBlockIOWeight=%" PRIu64 "\n"
231 "%sMemoryMin=%" PRIu64 "\n"
232 "%sMemoryLow=%" PRIu64 "\n"
233 "%sMemoryHigh=%" PRIu64 "\n"
234 "%sMemoryMax=%" PRIu64 "\n"
235 "%sMemorySwapMax=%" PRIu64 "\n"
236 "%sMemoryLimit=%" PRIu64 "\n"
237 "%sTasksMax=%" PRIu64 "\n"
238 "%sDevicePolicy=%s\n"
239 "%sDelegate=%s\n",
240 prefix, yes_no(c->cpu_accounting),
241 prefix, yes_no(c->io_accounting),
242 prefix, yes_no(c->blockio_accounting),
243 prefix, yes_no(c->memory_accounting),
244 prefix, yes_no(c->tasks_accounting),
245 prefix, yes_no(c->ip_accounting),
246 prefix, c->cpu_weight,
247 prefix, c->startup_cpu_weight,
248 prefix, c->cpu_shares,
249 prefix, c->startup_cpu_shares,
250 prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
251 prefix, c->io_weight,
252 prefix, c->startup_io_weight,
253 prefix, c->blockio_weight,
254 prefix, c->startup_blockio_weight,
255 prefix, c->memory_min,
256 prefix, c->memory_low,
257 prefix, c->memory_high,
258 prefix, c->memory_max,
259 prefix, c->memory_swap_max,
260 prefix, c->memory_limit,
261 prefix, c->tasks_max,
262 prefix, cgroup_device_policy_to_string(c->device_policy),
263 prefix, yes_no(c->delegate));
264
265 if (c->delegate) {
266 _cleanup_free_ char *t = NULL;
267
268 (void) cg_mask_to_string(c->delegate_controllers, &t);
269
270 fprintf(f, "%sDelegateControllers=%s\n",
271 prefix,
272 strempty(t));
273 }
274
275 LIST_FOREACH(device_allow, a, c->device_allow)
276 fprintf(f,
277 "%sDeviceAllow=%s %s%s%s\n",
278 prefix,
279 a->path,
280 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
281
282 LIST_FOREACH(device_weights, iw, c->io_device_weights)
283 fprintf(f,
284 "%sIODeviceWeight=%s %" PRIu64 "\n",
285 prefix,
286 iw->path,
287 iw->weight);
288
289 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
290 fprintf(f,
291 "%sIODeviceLatencyTargetSec=%s %s\n",
292 prefix,
293 l->path,
294 format_timespan(u, sizeof(u), l->target_usec, 1));
295
296 LIST_FOREACH(device_limits, il, c->io_device_limits) {
297 char buf[FORMAT_BYTES_MAX];
298 CGroupIOLimitType type;
299
300 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
301 if (il->limits[type] != cgroup_io_limit_defaults[type])
302 fprintf(f,
303 "%s%s=%s %s\n",
304 prefix,
305 cgroup_io_limit_type_to_string(type),
306 il->path,
307 format_bytes(buf, sizeof(buf), il->limits[type]));
308 }
309
310 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
311 fprintf(f,
312 "%sBlockIODeviceWeight=%s %" PRIu64,
313 prefix,
314 w->path,
315 w->weight);
316
317 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
318 char buf[FORMAT_BYTES_MAX];
319
320 if (b->rbps != CGROUP_LIMIT_MAX)
321 fprintf(f,
322 "%sBlockIOReadBandwidth=%s %s\n",
323 prefix,
324 b->path,
325 format_bytes(buf, sizeof(buf), b->rbps));
326 if (b->wbps != CGROUP_LIMIT_MAX)
327 fprintf(f,
328 "%sBlockIOWriteBandwidth=%s %s\n",
329 prefix,
330 b->path,
331 format_bytes(buf, sizeof(buf), b->wbps));
332 }
333
334 LIST_FOREACH(items, iaai, c->ip_address_allow) {
335 _cleanup_free_ char *k = NULL;
336
337 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
338 fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
339 }
340
341 LIST_FOREACH(items, iaai, c->ip_address_deny) {
342 _cleanup_free_ char *k = NULL;
343
344 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
345 fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
346 }
347 }
348
349 int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
350 _cleanup_free_ CGroupDeviceAllow *a = NULL;
351 _cleanup_free_ char *d = NULL;
352
353 assert(c);
354 assert(dev);
355 assert(isempty(mode) || in_charset(mode, "rwm"));
356
357 a = new(CGroupDeviceAllow, 1);
358 if (!a)
359 return -ENOMEM;
360
361 d = strdup(dev);
362 if (!d)
363 return -ENOMEM;
364
365 *a = (CGroupDeviceAllow) {
366 .path = TAKE_PTR(d),
367 .r = isempty(mode) || strchr(mode, 'r'),
368 .w = isempty(mode) || strchr(mode, 'w'),
369 .m = isempty(mode) || strchr(mode, 'm'),
370 };
371
372 LIST_PREPEND(device_allow, c->device_allow, a);
373 TAKE_PTR(a);
374
375 return 0;
376 }
377
378 static void cgroup_xattr_apply(Unit *u) {
379 char ids[SD_ID128_STRING_MAX];
380 int r;
381
382 assert(u);
383
384 if (!MANAGER_IS_SYSTEM(u->manager))
385 return;
386
387 if (sd_id128_is_null(u->invocation_id))
388 return;
389
390 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
391 "trusted.invocation_id",
392 sd_id128_to_string(u->invocation_id, ids), 32,
393 0);
394 if (r < 0)
395 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
396 }
397
398 static int lookup_block_device(const char *p, dev_t *ret) {
399 struct stat st = {};
400 int r;
401
402 assert(p);
403 assert(ret);
404
405 r = device_path_parse_major_minor(p, &st.st_mode, &st.st_rdev);
406 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
407 if (stat(p, &st) < 0)
408 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
409 } else if (r < 0)
410 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
411
412 if (S_ISCHR(st.st_mode)) {
413 log_warning("Device node '%s' is a character device, but block device needed.", p);
414 return -ENOTBLK;
415 } else if (S_ISBLK(st.st_mode))
416 *ret = st.st_rdev;
417 else if (major(st.st_dev) != 0)
418 *ret = st.st_dev; /* If this is not a device node then use the block device this file is stored on */
419 else {
420 /* If this is btrfs, getting the backing block device is a bit harder */
421 r = btrfs_get_block_device(p, ret);
422 if (r < 0 && r != -ENOTTY)
423 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
424 if (r == -ENOTTY) {
425 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
426 return -ENODEV;
427 }
428 }
429
430 /* If this is a LUKS device, try to get the originating block device */
431 (void) block_get_originating(*ret, ret);
432
433 /* If this is a partition, try to get the originating block device */
434 (void) block_get_whole_disk(*ret, ret);
435 return 0;
436 }
437
438 static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
439 struct stat st = {};
440 int r;
441
442 assert(path);
443 assert(acc);
444
445 /* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
446 * /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
447 * means clients can use these path without the device node actually around */
448 r = device_path_parse_major_minor(node, &st.st_mode, &st.st_rdev);
449 if (r < 0) {
450 if (r != -ENODEV)
451 return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
452
453 if (stat(node, &st) < 0)
454 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
455
456 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
457 log_warning("%s is not a device.", node);
458 return -ENODEV;
459 }
460 }
461
462 if (cg_all_unified() > 0) {
463 if (!prog)
464 return 0;
465
466 return cgroup_bpf_whitelist_device(prog, S_ISCHR(st.st_mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
467 major(st.st_rdev), minor(st.st_rdev), acc);
468
469 } else {
470 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
471
472 sprintf(buf,
473 "%c %u:%u %s",
474 S_ISCHR(st.st_mode) ? 'c' : 'b',
475 major(st.st_rdev), minor(st.st_rdev),
476 acc);
477
478 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
479
480 r = cg_set_attribute("devices", path, "devices.allow", buf);
481 if (r < 0)
482 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
483 r, "Failed to set devices.allow on %s: %m", path);
484
485 return 0;
486 }
487 }
488
489 static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
490 _cleanup_fclose_ FILE *f = NULL;
491 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
492 bool good = false;
493 unsigned maj;
494 int r;
495
496 assert(path);
497 assert(acc);
498 assert(IN_SET(type, 'b', 'c'));
499
500 if (streq(name, "*")) {
501 /* If the name is a wildcard, then apply this list to all devices of this type */
502
503 if (cg_all_unified() > 0) {
504 if (!prog)
505 return 0;
506
507 (void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
508 } else {
509 xsprintf(buf, "%c *:* %s", type, acc);
510
511 r = cg_set_attribute("devices", path, "devices.allow", buf);
512 if (r < 0)
513 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
514 "Failed to set devices.allow on %s: %m", path);
515 return 0;
516 }
517 }
518
519 if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
520 /* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
521 * directly */
522
523 if (cg_all_unified() > 0) {
524 if (!prog)
525 return 0;
526
527 (void) cgroup_bpf_whitelist_major(prog,
528 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
529 maj, acc);
530 } else {
531 xsprintf(buf, "%c %u:* %s", type, maj, acc);
532
533 r = cg_set_attribute("devices", path, "devices.allow", buf);
534 if (r < 0)
535 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
536 "Failed to set devices.allow on %s: %m", path);
537 }
538
539 return 0;
540 }
541
542 f = fopen("/proc/devices", "re");
543 if (!f)
544 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
545
546 for (;;) {
547 _cleanup_free_ char *line = NULL;
548 char *w, *p;
549
550 r = read_line(f, LONG_LINE_MAX, &line);
551 if (r < 0)
552 return log_warning_errno(r, "Failed to read /proc/devices: %m");
553 if (r == 0)
554 break;
555
556 if (type == 'c' && streq(line, "Character devices:")) {
557 good = true;
558 continue;
559 }
560
561 if (type == 'b' && streq(line, "Block devices:")) {
562 good = true;
563 continue;
564 }
565
566 if (isempty(line)) {
567 good = false;
568 continue;
569 }
570
571 if (!good)
572 continue;
573
574 p = strstrip(line);
575
576 w = strpbrk(p, WHITESPACE);
577 if (!w)
578 continue;
579 *w = 0;
580
581 r = safe_atou(p, &maj);
582 if (r < 0)
583 continue;
584 if (maj <= 0)
585 continue;
586
587 w++;
588 w += strspn(w, WHITESPACE);
589
590 if (fnmatch(name, w, 0) != 0)
591 continue;
592
593 if (cg_all_unified() > 0) {
594 if (!prog)
595 continue;
596
597 (void) cgroup_bpf_whitelist_major(prog,
598 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
599 maj, acc);
600 } else {
601 sprintf(buf,
602 "%c %u:* %s",
603 type,
604 maj,
605 acc);
606
607 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
608 * here. */
609
610 r = cg_set_attribute("devices", path, "devices.allow", buf);
611 if (r < 0)
612 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
613 r, "Failed to set devices.allow on %s: %m", path);
614 }
615 }
616
617 return 0;
618 }
619
620 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
621 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
622 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
623 }
624
625 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
626 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
627 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
628 }
629
630 static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
631 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
632 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
633 return c->startup_cpu_weight;
634 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
635 return c->cpu_weight;
636 else
637 return CGROUP_WEIGHT_DEFAULT;
638 }
639
640 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
641 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
642 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
643 return c->startup_cpu_shares;
644 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
645 return c->cpu_shares;
646 else
647 return CGROUP_CPU_SHARES_DEFAULT;
648 }
649
650 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
651 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
652
653 xsprintf(buf, "%" PRIu64 "\n", weight);
654 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
655 }
656
657 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota) {
658 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
659
660 if (quota != USEC_INFINITY)
661 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
662 quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC, CGROUP_CPU_QUOTA_PERIOD_USEC);
663 else
664 xsprintf(buf, "max " USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
665 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
666 }
667
668 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
669 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
670
671 xsprintf(buf, "%" PRIu64 "\n", shares);
672 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
673 }
674
675 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota) {
676 char buf[DECIMAL_STR_MAX(usec_t) + 2];
677
678 xsprintf(buf, USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
679 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
680
681 if (quota != USEC_INFINITY) {
682 xsprintf(buf, USEC_FMT "\n", quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC);
683 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
684 } else
685 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
686 }
687
688 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
689 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
690 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
691 }
692
693 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
694 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
695 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
696 }
697
698 static bool cgroup_context_has_io_config(CGroupContext *c) {
699 return c->io_accounting ||
700 c->io_weight != CGROUP_WEIGHT_INVALID ||
701 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
702 c->io_device_weights ||
703 c->io_device_latencies ||
704 c->io_device_limits;
705 }
706
707 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
708 return c->blockio_accounting ||
709 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
710 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
711 c->blockio_device_weights ||
712 c->blockio_device_bandwidths;
713 }
714
715 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
716 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
717 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
718 return c->startup_io_weight;
719 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
720 return c->io_weight;
721 else
722 return CGROUP_WEIGHT_DEFAULT;
723 }
724
725 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
726 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
727 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
728 return c->startup_blockio_weight;
729 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
730 return c->blockio_weight;
731 else
732 return CGROUP_BLKIO_WEIGHT_DEFAULT;
733 }
734
735 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
736 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
737 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
738 }
739
740 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
741 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
742 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
743 }
744
745 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
746 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
747 dev_t dev;
748 int r;
749
750 r = lookup_block_device(dev_path, &dev);
751 if (r < 0)
752 return;
753
754 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
755 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
756 }
757
758 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
759 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
760 dev_t dev;
761 int r;
762
763 r = lookup_block_device(dev_path, &dev);
764 if (r < 0)
765 return;
766
767 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
768 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
769 }
770
771 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
772 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
773 dev_t dev;
774 int r;
775
776 r = lookup_block_device(dev_path, &dev);
777 if (r < 0)
778 return;
779
780 if (target != USEC_INFINITY)
781 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
782 else
783 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
784
785 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
786 }
787
788 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
789 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
790 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
791 CGroupIOLimitType type;
792 dev_t dev;
793 int r;
794
795 r = lookup_block_device(dev_path, &dev);
796 if (r < 0)
797 return;
798
799 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
800 if (limits[type] != cgroup_io_limit_defaults[type])
801 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
802 else
803 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
804
805 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
806 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
807 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
808 (void) set_attribute_and_warn(u, "io", "io.max", buf);
809 }
810
811 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
812 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
813 dev_t dev;
814 int r;
815
816 r = lookup_block_device(dev_path, &dev);
817 if (r < 0)
818 return;
819
820 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
821 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
822
823 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
824 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
825 }
826
827 static bool cgroup_context_has_unified_memory_config(CGroupContext *c) {
828 return c->memory_min > 0 || c->memory_low > 0 || c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX || c->memory_swap_max != CGROUP_LIMIT_MAX;
829 }
830
831 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
832 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
833
834 if (v != CGROUP_LIMIT_MAX)
835 xsprintf(buf, "%" PRIu64 "\n", v);
836
837 (void) set_attribute_and_warn(u, "memory", file, buf);
838 }
839
840 static void cgroup_apply_firewall(Unit *u) {
841 assert(u);
842
843 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
844
845 if (bpf_firewall_compile(u) < 0)
846 return;
847
848 (void) bpf_firewall_install(u);
849 }
850
851 static void cgroup_context_apply(
852 Unit *u,
853 CGroupMask apply_mask,
854 ManagerState state) {
855
856 const char *path;
857 CGroupContext *c;
858 bool is_host_root, is_local_root;
859 int r;
860
861 assert(u);
862
863 /* Nothing to do? Exit early! */
864 if (apply_mask == 0)
865 return;
866
867 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
868 * attributes should only be managed for cgroups further down the tree. */
869 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
870 is_host_root = unit_has_host_root_cgroup(u);
871
872 assert_se(c = unit_get_cgroup_context(u));
873 assert_se(path = u->cgroup_path);
874
875 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
876 path = "/";
877
878 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
879 * then), and missing cgroups, i.e. EROFS and ENOENT. */
880
881 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
882 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
883 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
884 * containers we want to leave control of these to the container manager (and if cgroupsv2 delegation is used
885 * we couldn't even write to them if we wanted to). */
886 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
887
888 if (cg_all_unified() > 0) {
889 uint64_t weight;
890
891 if (cgroup_context_has_cpu_weight(c))
892 weight = cgroup_context_cpu_weight(c, state);
893 else if (cgroup_context_has_cpu_shares(c)) {
894 uint64_t shares;
895
896 shares = cgroup_context_cpu_shares(c, state);
897 weight = cgroup_cpu_shares_to_weight(shares);
898
899 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
900 shares, weight, path);
901 } else
902 weight = CGROUP_WEIGHT_DEFAULT;
903
904 cgroup_apply_unified_cpu_weight(u, weight);
905 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec);
906
907 } else {
908 uint64_t shares;
909
910 if (cgroup_context_has_cpu_weight(c)) {
911 uint64_t weight;
912
913 weight = cgroup_context_cpu_weight(c, state);
914 shares = cgroup_cpu_weight_to_shares(weight);
915
916 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
917 weight, shares, path);
918 } else if (cgroup_context_has_cpu_shares(c))
919 shares = cgroup_context_cpu_shares(c, state);
920 else
921 shares = CGROUP_CPU_SHARES_DEFAULT;
922
923 cgroup_apply_legacy_cpu_shares(u, shares);
924 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec);
925 }
926 }
927
928 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroupsv2
929 * controller), and in case of containers we want to leave control of these attributes to the container manager
930 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
931 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
932 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
933 bool has_io, has_blockio;
934 uint64_t weight;
935
936 has_io = cgroup_context_has_io_config(c);
937 has_blockio = cgroup_context_has_blockio_config(c);
938
939 if (has_io)
940 weight = cgroup_context_io_weight(c, state);
941 else if (has_blockio) {
942 uint64_t blkio_weight;
943
944 blkio_weight = cgroup_context_blkio_weight(c, state);
945 weight = cgroup_weight_blkio_to_io(blkio_weight);
946
947 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
948 blkio_weight, weight);
949 } else
950 weight = CGROUP_WEIGHT_DEFAULT;
951
952 xsprintf(buf, "default %" PRIu64 "\n", weight);
953 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
954
955 if (has_io) {
956 CGroupIODeviceLatency *latency;
957 CGroupIODeviceLimit *limit;
958 CGroupIODeviceWeight *w;
959
960 LIST_FOREACH(device_weights, w, c->io_device_weights)
961 cgroup_apply_io_device_weight(u, w->path, w->weight);
962
963 LIST_FOREACH(device_limits, limit, c->io_device_limits)
964 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
965
966 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
967 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
968
969 } else if (has_blockio) {
970 CGroupBlockIODeviceWeight *w;
971 CGroupBlockIODeviceBandwidth *b;
972
973 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
974 weight = cgroup_weight_blkio_to_io(w->weight);
975
976 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
977 w->weight, weight, w->path);
978
979 cgroup_apply_io_device_weight(u, w->path, weight);
980 }
981
982 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
983 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
984 CGroupIOLimitType type;
985
986 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
987 limits[type] = cgroup_io_limit_defaults[type];
988
989 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
990 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
991
992 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
993 b->rbps, b->wbps, b->path);
994
995 cgroup_apply_io_device_limit(u, b->path, limits);
996 }
997 }
998 }
999
1000 if (apply_mask & CGROUP_MASK_BLKIO) {
1001 bool has_io, has_blockio;
1002
1003 has_io = cgroup_context_has_io_config(c);
1004 has_blockio = cgroup_context_has_blockio_config(c);
1005
1006 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1007 * left to our container manager, too. */
1008 if (!is_local_root) {
1009 char buf[DECIMAL_STR_MAX(uint64_t)+1];
1010 uint64_t weight;
1011
1012 if (has_io) {
1013 uint64_t io_weight;
1014
1015 io_weight = cgroup_context_io_weight(c, state);
1016 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
1017
1018 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
1019 io_weight, weight);
1020 } else if (has_blockio)
1021 weight = cgroup_context_blkio_weight(c, state);
1022 else
1023 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
1024
1025 xsprintf(buf, "%" PRIu64 "\n", weight);
1026 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1027
1028 if (has_io) {
1029 CGroupIODeviceWeight *w;
1030
1031 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1032 weight = cgroup_weight_io_to_blkio(w->weight);
1033
1034 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
1035 w->weight, weight, w->path);
1036
1037 cgroup_apply_blkio_device_weight(u, w->path, weight);
1038 }
1039 } else if (has_blockio) {
1040 CGroupBlockIODeviceWeight *w;
1041
1042 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1043 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
1044 }
1045 }
1046
1047 /* The bandwith limits are something that make sense to be applied to the host's root but not container
1048 * roots, as there we want the container manager to handle it */
1049 if (is_host_root || !is_local_root) {
1050 if (has_io) {
1051 CGroupIODeviceLimit *l;
1052
1053 LIST_FOREACH(device_limits, l, c->io_device_limits) {
1054 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
1055 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
1056
1057 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1058 }
1059 } else if (has_blockio) {
1060 CGroupBlockIODeviceBandwidth *b;
1061
1062 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1063 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1064 }
1065 }
1066 }
1067
1068 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1069 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
1070 * want to leave control to the container manager (and if proper cgroupsv2 delegation is used we couldn't even
1071 * write to this if we wanted to.) */
1072 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
1073
1074 if (cg_all_unified() > 0) {
1075 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1076
1077 if (cgroup_context_has_unified_memory_config(c)) {
1078 max = c->memory_max;
1079 swap_max = c->memory_swap_max;
1080 } else {
1081 max = c->memory_limit;
1082
1083 if (max != CGROUP_LIMIT_MAX)
1084 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
1085 }
1086
1087 cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
1088 cgroup_apply_unified_memory_limit(u, "memory.low", c->memory_low);
1089 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1090 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1091 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
1092
1093 } else {
1094 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1095 uint64_t val;
1096
1097 if (cgroup_context_has_unified_memory_config(c)) {
1098 val = c->memory_max;
1099 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1100 } else
1101 val = c->memory_limit;
1102
1103 if (val == CGROUP_LIMIT_MAX)
1104 strncpy(buf, "-1\n", sizeof(buf));
1105 else
1106 xsprintf(buf, "%" PRIu64 "\n", val);
1107
1108 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
1109 }
1110 }
1111
1112 /* On cgroupsv2 we can apply BPF everywhere. On cgroupsv1 we apply it everywhere except for the root of
1113 * containers, where we leave this to the manager */
1114 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1115 (is_host_root || cg_all_unified() > 0 || !is_local_root)) {
1116 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
1117 CGroupDeviceAllow *a;
1118
1119 if (cg_all_unified() > 0) {
1120 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1121 if (r < 0)
1122 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1123 } else {
1124 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
1125 * here. */
1126
1127 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1128 r = cg_set_attribute("devices", path, "devices.deny", "a");
1129 else
1130 r = cg_set_attribute("devices", path, "devices.allow", "a");
1131 if (r < 0)
1132 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1133 "Failed to reset devices.allow/devices.deny: %m");
1134 }
1135
1136 if (c->device_policy == CGROUP_CLOSED ||
1137 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1138 static const char auto_devices[] =
1139 "/dev/null\0" "rwm\0"
1140 "/dev/zero\0" "rwm\0"
1141 "/dev/full\0" "rwm\0"
1142 "/dev/random\0" "rwm\0"
1143 "/dev/urandom\0" "rwm\0"
1144 "/dev/tty\0" "rwm\0"
1145 "/dev/ptmx\0" "rwm\0"
1146 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
1147 "/run/systemd/inaccessible/chr\0" "rwm\0"
1148 "/run/systemd/inaccessible/blk\0" "rwm\0";
1149
1150 const char *x, *y;
1151
1152 NULSTR_FOREACH_PAIR(x, y, auto_devices)
1153 (void) whitelist_device(prog, path, x, y);
1154
1155 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
1156 (void) whitelist_major(prog, path, "pts", 'c', "rw");
1157 }
1158
1159 LIST_FOREACH(device_allow, a, c->device_allow) {
1160 char acc[4], *val;
1161 unsigned k = 0;
1162
1163 if (a->r)
1164 acc[k++] = 'r';
1165 if (a->w)
1166 acc[k++] = 'w';
1167 if (a->m)
1168 acc[k++] = 'm';
1169
1170 if (k == 0)
1171 continue;
1172
1173 acc[k++] = 0;
1174
1175 if (path_startswith(a->path, "/dev/"))
1176 (void) whitelist_device(prog, path, a->path, acc);
1177 else if ((val = startswith(a->path, "block-")))
1178 (void) whitelist_major(prog, path, val, 'b', acc);
1179 else if ((val = startswith(a->path, "char-")))
1180 (void) whitelist_major(prog, path, val, 'c', acc);
1181 else
1182 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1183 }
1184
1185 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1186 if (r < 0) {
1187 static bool warned = false;
1188
1189 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1190 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1191 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1192 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1193
1194 warned = true;
1195 }
1196 }
1197
1198 if (apply_mask & CGROUP_MASK_PIDS) {
1199
1200 if (is_host_root) {
1201 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1202 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1203 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1204 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1205 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1206 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1207 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1208 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1209 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1210 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1211 * which is desirable so that there's an offical way to release control of the sysctl from
1212 * systemd: set the limit to unbounded and reload. */
1213
1214 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1215 u->manager->sysctl_pid_max_changed = true;
1216 r = procfs_tasks_set_limit(c->tasks_max);
1217 } else if (u->manager->sysctl_pid_max_changed)
1218 r = procfs_tasks_set_limit(TASKS_MAX);
1219 else
1220 r = 0;
1221 if (r < 0)
1222 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1223 "Failed to write to tasks limit sysctls: %m");
1224 }
1225
1226 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1227 * leave it for the container manager. */
1228 if (!is_local_root) {
1229 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1230 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1231
1232 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
1233 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
1234 } else
1235 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
1236 }
1237 }
1238
1239 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
1240 cgroup_apply_firewall(u);
1241 }
1242
1243 static bool unit_get_needs_bpf_firewall(Unit *u) {
1244 CGroupContext *c;
1245 Unit *p;
1246 assert(u);
1247
1248 c = unit_get_cgroup_context(u);
1249 if (!c)
1250 return false;
1251
1252 if (c->ip_accounting ||
1253 c->ip_address_allow ||
1254 c->ip_address_deny)
1255 return true;
1256
1257 /* If any parent slice has an IP access list defined, it applies too */
1258 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1259 c = unit_get_cgroup_context(p);
1260 if (!c)
1261 return false;
1262
1263 if (c->ip_address_allow ||
1264 c->ip_address_deny)
1265 return true;
1266 }
1267
1268 return false;
1269 }
1270
1271 static CGroupMask cgroup_context_get_mask(CGroupContext *c) {
1272 CGroupMask mask = 0;
1273
1274 /* Figure out which controllers we need, based on the cgroup context object */
1275
1276 if (c->cpu_accounting)
1277 mask |= get_cpu_accounting_mask();
1278
1279 if (cgroup_context_has_cpu_weight(c) ||
1280 cgroup_context_has_cpu_shares(c) ||
1281 c->cpu_quota_per_sec_usec != USEC_INFINITY)
1282 mask |= CGROUP_MASK_CPU;
1283
1284 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1285 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
1286
1287 if (c->memory_accounting ||
1288 c->memory_limit != CGROUP_LIMIT_MAX ||
1289 cgroup_context_has_unified_memory_config(c))
1290 mask |= CGROUP_MASK_MEMORY;
1291
1292 if (c->device_allow ||
1293 c->device_policy != CGROUP_AUTO)
1294 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
1295
1296 if (c->tasks_accounting ||
1297 c->tasks_max != CGROUP_LIMIT_MAX)
1298 mask |= CGROUP_MASK_PIDS;
1299
1300 return CGROUP_MASK_EXTEND_JOINED(mask);
1301 }
1302
1303 static CGroupMask unit_get_bpf_mask(Unit *u) {
1304 CGroupMask mask = 0;
1305
1306 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1307 * too. */
1308
1309 if (unit_get_needs_bpf_firewall(u))
1310 mask |= CGROUP_MASK_BPF_FIREWALL;
1311
1312 return mask;
1313 }
1314
1315 CGroupMask unit_get_own_mask(Unit *u) {
1316 CGroupContext *c;
1317
1318 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1319 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1320
1321 if (u->load_state != UNIT_LOADED)
1322 return 0;
1323
1324 c = unit_get_cgroup_context(u);
1325 if (!c)
1326 return 0;
1327
1328 return (cgroup_context_get_mask(c) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
1329 }
1330
1331 CGroupMask unit_get_delegate_mask(Unit *u) {
1332 CGroupContext *c;
1333
1334 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1335 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
1336 *
1337 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
1338
1339 if (!unit_cgroup_delegate(u))
1340 return 0;
1341
1342 if (cg_all_unified() <= 0) {
1343 ExecContext *e;
1344
1345 e = unit_get_exec_context(u);
1346 if (e && !exec_context_maintains_privileges(e))
1347 return 0;
1348 }
1349
1350 assert_se(c = unit_get_cgroup_context(u));
1351 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
1352 }
1353
1354 CGroupMask unit_get_members_mask(Unit *u) {
1355 assert(u);
1356
1357 /* Returns the mask of controllers all of the unit's children require, merged */
1358
1359 if (u->cgroup_members_mask_valid)
1360 return u->cgroup_members_mask; /* Use cached value if possible */
1361
1362 u->cgroup_members_mask = 0;
1363
1364 if (u->type == UNIT_SLICE) {
1365 void *v;
1366 Unit *member;
1367 Iterator i;
1368
1369 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
1370
1371 if (member == u)
1372 continue;
1373
1374 if (UNIT_DEREF(member->slice) != u)
1375 continue;
1376
1377 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
1378 }
1379 }
1380
1381 u->cgroup_members_mask_valid = true;
1382 return u->cgroup_members_mask;
1383 }
1384
1385 CGroupMask unit_get_siblings_mask(Unit *u) {
1386 assert(u);
1387
1388 /* Returns the mask of controllers all of the unit's siblings
1389 * require, i.e. the members mask of the unit's parent slice
1390 * if there is one. */
1391
1392 if (UNIT_ISSET(u->slice))
1393 return unit_get_members_mask(UNIT_DEREF(u->slice));
1394
1395 return unit_get_subtree_mask(u); /* we are the top-level slice */
1396 }
1397
1398 CGroupMask unit_get_disable_mask(Unit *u) {
1399 CGroupContext *c;
1400
1401 c = unit_get_cgroup_context(u);
1402 if (!c)
1403 return 0;
1404
1405 return c->disable_controllers;
1406 }
1407
1408 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1409 CGroupMask mask;
1410
1411 assert(u);
1412 mask = unit_get_disable_mask(u);
1413
1414 /* Returns the mask of controllers which are marked as forcibly
1415 * disabled in any ancestor unit or the unit in question. */
1416
1417 if (UNIT_ISSET(u->slice))
1418 mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
1419
1420 return mask;
1421 }
1422
1423 CGroupMask unit_get_subtree_mask(Unit *u) {
1424
1425 /* Returns the mask of this subtree, meaning of the group
1426 * itself and its children. */
1427
1428 return unit_get_own_mask(u) | unit_get_members_mask(u);
1429 }
1430
1431 CGroupMask unit_get_target_mask(Unit *u) {
1432 CGroupMask mask;
1433
1434 /* This returns the cgroup mask of all controllers to enable
1435 * for a specific cgroup, i.e. everything it needs itself,
1436 * plus all that its children need, plus all that its siblings
1437 * need. This is primarily useful on the legacy cgroup
1438 * hierarchy, where we need to duplicate each cgroup in each
1439 * hierarchy that shall be enabled for it. */
1440
1441 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1442 mask &= u->manager->cgroup_supported;
1443 mask &= ~unit_get_ancestor_disable_mask(u);
1444
1445 return mask;
1446 }
1447
1448 CGroupMask unit_get_enable_mask(Unit *u) {
1449 CGroupMask mask;
1450
1451 /* This returns the cgroup mask of all controllers to enable
1452 * for the children of a specific cgroup. This is primarily
1453 * useful for the unified cgroup hierarchy, where each cgroup
1454 * controls which controllers are enabled for its children. */
1455
1456 mask = unit_get_members_mask(u);
1457 mask &= u->manager->cgroup_supported;
1458 mask &= ~unit_get_ancestor_disable_mask(u);
1459
1460 return mask;
1461 }
1462
1463 void unit_invalidate_cgroup_members_masks(Unit *u) {
1464 assert(u);
1465
1466 /* Recurse invalidate the member masks cache all the way up the tree */
1467 u->cgroup_members_mask_valid = false;
1468
1469 if (UNIT_ISSET(u->slice))
1470 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
1471 }
1472
1473 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
1474
1475 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
1476
1477 while (u) {
1478
1479 if (u->cgroup_path &&
1480 u->cgroup_realized &&
1481 FLAGS_SET(u->cgroup_realized_mask, mask))
1482 return u->cgroup_path;
1483
1484 u = UNIT_DEREF(u->slice);
1485 }
1486
1487 return NULL;
1488 }
1489
1490 static const char *migrate_callback(CGroupMask mask, void *userdata) {
1491 return unit_get_realized_cgroup_path(userdata, mask);
1492 }
1493
1494 char *unit_default_cgroup_path(Unit *u) {
1495 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1496 int r;
1497
1498 assert(u);
1499
1500 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1501 return strdup(u->manager->cgroup_root);
1502
1503 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1504 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1505 if (r < 0)
1506 return NULL;
1507 }
1508
1509 escaped = cg_escape(u->id);
1510 if (!escaped)
1511 return NULL;
1512
1513 if (slice)
1514 return strjoin(u->manager->cgroup_root, "/", slice, "/",
1515 escaped);
1516 else
1517 return strjoin(u->manager->cgroup_root, "/", escaped);
1518 }
1519
1520 int unit_set_cgroup_path(Unit *u, const char *path) {
1521 _cleanup_free_ char *p = NULL;
1522 int r;
1523
1524 assert(u);
1525
1526 if (path) {
1527 p = strdup(path);
1528 if (!p)
1529 return -ENOMEM;
1530 } else
1531 p = NULL;
1532
1533 if (streq_ptr(u->cgroup_path, p))
1534 return 0;
1535
1536 if (p) {
1537 r = hashmap_put(u->manager->cgroup_unit, p, u);
1538 if (r < 0)
1539 return r;
1540 }
1541
1542 unit_release_cgroup(u);
1543
1544 u->cgroup_path = TAKE_PTR(p);
1545
1546 return 1;
1547 }
1548
1549 int unit_watch_cgroup(Unit *u) {
1550 _cleanup_free_ char *events = NULL;
1551 int r;
1552
1553 assert(u);
1554
1555 if (!u->cgroup_path)
1556 return 0;
1557
1558 if (u->cgroup_inotify_wd >= 0)
1559 return 0;
1560
1561 /* Only applies to the unified hierarchy */
1562 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
1563 if (r < 0)
1564 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1565 if (r == 0)
1566 return 0;
1567
1568 /* Don't watch the root slice, it's pointless. */
1569 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1570 return 0;
1571
1572 r = hashmap_ensure_allocated(&u->manager->cgroup_inotify_wd_unit, &trivial_hash_ops);
1573 if (r < 0)
1574 return log_oom();
1575
1576 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
1577 if (r < 0)
1578 return log_oom();
1579
1580 u->cgroup_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1581 if (u->cgroup_inotify_wd < 0) {
1582
1583 if (errno == ENOENT) /* If the directory is already
1584 * gone we don't need to track
1585 * it, so this is not an error */
1586 return 0;
1587
1588 return log_unit_error_errno(u, errno, "Failed to add inotify watch descriptor for control group %s: %m", u->cgroup_path);
1589 }
1590
1591 r = hashmap_put(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd), u);
1592 if (r < 0)
1593 return log_unit_error_errno(u, r, "Failed to add inotify watch descriptor to hash map: %m");
1594
1595 return 0;
1596 }
1597
1598 int unit_pick_cgroup_path(Unit *u) {
1599 _cleanup_free_ char *path = NULL;
1600 int r;
1601
1602 assert(u);
1603
1604 if (u->cgroup_path)
1605 return 0;
1606
1607 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1608 return -EINVAL;
1609
1610 path = unit_default_cgroup_path(u);
1611 if (!path)
1612 return log_oom();
1613
1614 r = unit_set_cgroup_path(u, path);
1615 if (r == -EEXIST)
1616 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1617 if (r < 0)
1618 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1619
1620 return 0;
1621 }
1622
1623 static int unit_create_cgroup(
1624 Unit *u,
1625 CGroupMask target_mask,
1626 CGroupMask enable_mask,
1627 ManagerState state) {
1628
1629 bool created;
1630 int r;
1631
1632 assert(u);
1633
1634 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1635 return 0;
1636
1637 /* Figure out our cgroup path */
1638 r = unit_pick_cgroup_path(u);
1639 if (r < 0)
1640 return r;
1641
1642 /* First, create our own group */
1643 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
1644 if (r < 0)
1645 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
1646 created = r;
1647
1648 /* Start watching it */
1649 (void) unit_watch_cgroup(u);
1650
1651 /* Preserve enabled controllers in delegated units, adjust others. */
1652 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
1653 CGroupMask result_mask = 0;
1654
1655 /* Enable all controllers we need */
1656 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
1657 if (r < 0)
1658 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
1659
1660 /* If we just turned off a controller, this might release the controller for our parent too, let's
1661 * enqueue the parent for re-realization in that case again. */
1662 if (UNIT_ISSET(u->slice)) {
1663 CGroupMask turned_off;
1664
1665 turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
1666 if (turned_off != 0) {
1667 Unit *parent;
1668
1669 /* Force the parent to propagate the enable mask to the kernel again, by invalidating
1670 * the controller we just turned off. */
1671
1672 for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
1673 unit_invalidate_cgroup(parent, turned_off);
1674 }
1675 }
1676
1677 /* Remember what's actually enabled now */
1678 u->cgroup_enabled_mask = result_mask;
1679 }
1680
1681 /* Keep track that this is now realized */
1682 u->cgroup_realized = true;
1683 u->cgroup_realized_mask = target_mask;
1684
1685 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
1686
1687 /* Then, possibly move things over, but not if
1688 * subgroups may contain processes, which is the case
1689 * for slice and delegation units. */
1690 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
1691 if (r < 0)
1692 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
1693 }
1694
1695 /* Set attributes */
1696 cgroup_context_apply(u, target_mask, state);
1697 cgroup_xattr_apply(u);
1698
1699 return 0;
1700 }
1701
1702 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
1703 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1704 char *pp;
1705 int r;
1706
1707 assert(u);
1708
1709 if (MANAGER_IS_SYSTEM(u->manager))
1710 return -EINVAL;
1711
1712 if (!u->manager->system_bus)
1713 return -EIO;
1714
1715 if (!u->cgroup_path)
1716 return -EINVAL;
1717
1718 /* Determine this unit's cgroup path relative to our cgroup root */
1719 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
1720 if (!pp)
1721 return -EINVAL;
1722
1723 pp = strjoina("/", pp, suffix_path);
1724 path_simplify(pp, false);
1725
1726 r = sd_bus_call_method(u->manager->system_bus,
1727 "org.freedesktop.systemd1",
1728 "/org/freedesktop/systemd1",
1729 "org.freedesktop.systemd1.Manager",
1730 "AttachProcessesToUnit",
1731 &error, NULL,
1732 "ssau",
1733 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
1734 if (r < 0)
1735 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
1736
1737 return 0;
1738 }
1739
1740 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
1741 CGroupMask delegated_mask;
1742 const char *p;
1743 Iterator i;
1744 void *pidp;
1745 int r, q;
1746
1747 assert(u);
1748
1749 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1750 return -EINVAL;
1751
1752 if (set_isempty(pids))
1753 return 0;
1754
1755 r = unit_realize_cgroup(u);
1756 if (r < 0)
1757 return r;
1758
1759 if (isempty(suffix_path))
1760 p = u->cgroup_path;
1761 else
1762 p = strjoina(u->cgroup_path, "/", suffix_path);
1763
1764 delegated_mask = unit_get_delegate_mask(u);
1765
1766 r = 0;
1767 SET_FOREACH(pidp, pids, i) {
1768 pid_t pid = PTR_TO_PID(pidp);
1769 CGroupController c;
1770
1771 /* First, attach the PID to the main cgroup hierarchy */
1772 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
1773 if (q < 0) {
1774 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
1775
1776 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
1777 int z;
1778
1779 /* If we are in a user instance, and we can't move the process ourselves due to
1780 * permission problems, let's ask the system instance about it instead. Since it's more
1781 * privileged it might be able to move the process across the leaves of a subtree who's
1782 * top node is not owned by us. */
1783
1784 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
1785 if (z < 0)
1786 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
1787 else
1788 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
1789 }
1790
1791 if (r >= 0)
1792 r = q; /* Remember first error */
1793
1794 continue;
1795 }
1796
1797 q = cg_all_unified();
1798 if (q < 0)
1799 return q;
1800 if (q > 0)
1801 continue;
1802
1803 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
1804 * innermost realized one */
1805
1806 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1807 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1808 const char *realized;
1809
1810 if (!(u->manager->cgroup_supported & bit))
1811 continue;
1812
1813 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
1814 if (delegated_mask & u->cgroup_realized_mask & bit) {
1815 q = cg_attach(cgroup_controller_to_string(c), p, pid);
1816 if (q >= 0)
1817 continue; /* Success! */
1818
1819 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
1820 pid, p, cgroup_controller_to_string(c));
1821 }
1822
1823 /* So this controller is either not delegate or realized, or something else weird happened. In
1824 * that case let's attach the PID at least to the closest cgroup up the tree that is
1825 * realized. */
1826 realized = unit_get_realized_cgroup_path(u, bit);
1827 if (!realized)
1828 continue; /* Not even realized in the root slice? Then let's not bother */
1829
1830 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
1831 if (q < 0)
1832 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
1833 pid, realized, cgroup_controller_to_string(c));
1834 }
1835 }
1836
1837 return r;
1838 }
1839
1840 static bool unit_has_mask_realized(
1841 Unit *u,
1842 CGroupMask target_mask,
1843 CGroupMask enable_mask) {
1844
1845 assert(u);
1846
1847 /* Returns true if this unit is fully realized. We check four things:
1848 *
1849 * 1. Whether the cgroup was created at all
1850 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroupsv1)
1851 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroupsv2)
1852 * 4. Whether the invalidation mask is currently zero
1853 *
1854 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
1855 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroupv1 controllers), CGROUP_MASK_V2 (for
1856 * real cgroupv2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
1857 * is only matters for cgroupsv1 controllers, and cgroup_enabled_mask only used for cgroupsv2, and if they
1858 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
1859 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
1860 * simply don't matter. */
1861
1862 return u->cgroup_realized &&
1863 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
1864 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
1865 u->cgroup_invalidated_mask == 0;
1866 }
1867
1868 static bool unit_has_mask_disables_realized(
1869 Unit *u,
1870 CGroupMask target_mask,
1871 CGroupMask enable_mask) {
1872
1873 assert(u);
1874
1875 /* Returns true if all controllers which should be disabled are indeed disabled.
1876 *
1877 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
1878 * already removed. */
1879
1880 return !u->cgroup_realized ||
1881 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
1882 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
1883 }
1884
1885 static bool unit_has_mask_enables_realized(
1886 Unit *u,
1887 CGroupMask target_mask,
1888 CGroupMask enable_mask) {
1889
1890 assert(u);
1891
1892 /* Returns true if all controllers which should be enabled are indeed enabled.
1893 *
1894 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
1895 * we want to add is already added. */
1896
1897 return u->cgroup_realized &&
1898 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
1899 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
1900 }
1901
1902 void unit_add_to_cgroup_realize_queue(Unit *u) {
1903 assert(u);
1904
1905 if (u->in_cgroup_realize_queue)
1906 return;
1907
1908 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1909 u->in_cgroup_realize_queue = true;
1910 }
1911
1912 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
1913 assert(u);
1914
1915 if (!u->in_cgroup_realize_queue)
1916 return;
1917
1918 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1919 u->in_cgroup_realize_queue = false;
1920 }
1921
1922 /* Controllers can only be enabled breadth-first, from the root of the
1923 * hierarchy downwards to the unit in question. */
1924 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
1925 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
1926 int r;
1927
1928 assert(u);
1929
1930 /* First go deal with this unit's parent, or we won't be able to enable
1931 * any new controllers at this layer. */
1932 if (UNIT_ISSET(u->slice)) {
1933 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
1934 if (r < 0)
1935 return r;
1936 }
1937
1938 target_mask = unit_get_target_mask(u);
1939 enable_mask = unit_get_enable_mask(u);
1940
1941 /* We can only enable in this direction, don't try to disable anything.
1942 */
1943 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
1944 return 0;
1945
1946 new_target_mask = u->cgroup_realized_mask | target_mask;
1947 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
1948
1949 return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
1950 }
1951
1952 /* Controllers can only be disabled depth-first, from the leaves of the
1953 * hierarchy upwards to the unit in question. */
1954 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
1955 Iterator i;
1956 Unit *m;
1957 void *v;
1958
1959 assert(u);
1960
1961 if (u->type != UNIT_SLICE)
1962 return 0;
1963
1964 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
1965 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
1966 int r;
1967
1968 if (UNIT_DEREF(m->slice) != u)
1969 continue;
1970
1971 /* The cgroup for this unit might not actually be fully
1972 * realised yet, in which case it isn't holding any controllers
1973 * open anyway. */
1974 if (!m->cgroup_path)
1975 continue;
1976
1977 /* We must disable those below us first in order to release the
1978 * controller. */
1979 if (m->type == UNIT_SLICE)
1980 (void) unit_realize_cgroup_now_disable(m, state);
1981
1982 target_mask = unit_get_target_mask(m);
1983 enable_mask = unit_get_enable_mask(m);
1984
1985 /* We can only disable in this direction, don't try to enable
1986 * anything. */
1987 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
1988 continue;
1989
1990 new_target_mask = m->cgroup_realized_mask & target_mask;
1991 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
1992
1993 r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
1994 if (r < 0)
1995 return r;
1996 }
1997
1998 return 0;
1999 }
2000
2001 /* Check if necessary controllers and attributes for a unit are in place.
2002 *
2003 * - If so, do nothing.
2004 * - If not, create paths, move processes over, and set attributes.
2005 *
2006 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2007 * a depth-first way. As such the process looks like this:
2008 *
2009 * Suppose we have a cgroup hierarchy which looks like this:
2010 *
2011 * root
2012 * / \
2013 * / \
2014 * / \
2015 * a b
2016 * / \ / \
2017 * / \ / \
2018 * c d e f
2019 * / \ / \ / \ / \
2020 * h i j k l m n o
2021 *
2022 * 1. We want to realise cgroup "d" now.
2023 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
2024 * 3. cgroup "k" just started requesting the memory controller.
2025 *
2026 * To make this work we must do the following in order:
2027 *
2028 * 1. Disable CPU controller in k, j
2029 * 2. Disable CPU controller in d
2030 * 3. Enable memory controller in root
2031 * 4. Enable memory controller in a
2032 * 5. Enable memory controller in d
2033 * 6. Enable memory controller in k
2034 *
2035 * Notice that we need to touch j in one direction, but not the other. We also
2036 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2037 * wants to disable further. The basic rules are therefore:
2038 *
2039 * - If you're disabling something, you need to realise all of the cgroups from
2040 * your recursive descendants to the root. This starts from the leaves.
2041 * - If you're enabling something, you need to realise from the root cgroup
2042 * downwards, but you don't need to iterate your recursive descendants.
2043 *
2044 * Returns 0 on success and < 0 on failure. */
2045 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
2046 CGroupMask target_mask, enable_mask;
2047 int r;
2048
2049 assert(u);
2050
2051 unit_remove_from_cgroup_realize_queue(u);
2052
2053 target_mask = unit_get_target_mask(u);
2054 enable_mask = unit_get_enable_mask(u);
2055
2056 if (unit_has_mask_realized(u, target_mask, enable_mask))
2057 return 0;
2058
2059 /* Disable controllers below us, if there are any */
2060 r = unit_realize_cgroup_now_disable(u, state);
2061 if (r < 0)
2062 return r;
2063
2064 /* Enable controllers above us, if there are any */
2065 if (UNIT_ISSET(u->slice)) {
2066 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2067 if (r < 0)
2068 return r;
2069 }
2070
2071 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2072 r = unit_create_cgroup(u, target_mask, enable_mask, state);
2073 if (r < 0)
2074 return r;
2075
2076 /* Now, reset the invalidation mask */
2077 u->cgroup_invalidated_mask = 0;
2078 return 0;
2079 }
2080
2081 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
2082 ManagerState state;
2083 unsigned n = 0;
2084 Unit *i;
2085 int r;
2086
2087 assert(m);
2088
2089 state = manager_state(m);
2090
2091 while ((i = m->cgroup_realize_queue)) {
2092 assert(i->in_cgroup_realize_queue);
2093
2094 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2095 /* Maybe things changed, and the unit is not actually active anymore? */
2096 unit_remove_from_cgroup_realize_queue(i);
2097 continue;
2098 }
2099
2100 r = unit_realize_cgroup_now(i, state);
2101 if (r < 0)
2102 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
2103
2104 n++;
2105 }
2106
2107 return n;
2108 }
2109
2110 static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
2111 Unit *slice;
2112
2113 /* This adds the siblings of the specified unit and the
2114 * siblings of all parent units to the cgroup queue. (But
2115 * neither the specified unit itself nor the parents.) */
2116
2117 while ((slice = UNIT_DEREF(u->slice))) {
2118 Iterator i;
2119 Unit *m;
2120 void *v;
2121
2122 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2123 if (m == u)
2124 continue;
2125
2126 /* Skip units that have a dependency on the slice
2127 * but aren't actually in it. */
2128 if (UNIT_DEREF(m->slice) != slice)
2129 continue;
2130
2131 /* No point in doing cgroup application for units
2132 * without active processes. */
2133 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2134 continue;
2135
2136 /* If the unit doesn't need any new controllers
2137 * and has current ones realized, it doesn't need
2138 * any changes. */
2139 if (unit_has_mask_realized(m,
2140 unit_get_target_mask(m),
2141 unit_get_enable_mask(m)))
2142 continue;
2143
2144 unit_add_to_cgroup_realize_queue(m);
2145 }
2146
2147 u = slice;
2148 }
2149 }
2150
2151 int unit_realize_cgroup(Unit *u) {
2152 assert(u);
2153
2154 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2155 return 0;
2156
2157 /* So, here's the deal: when realizing the cgroups for this
2158 * unit, we need to first create all parents, but there's more
2159 * actually: for the weight-based controllers we also need to
2160 * make sure that all our siblings (i.e. units that are in the
2161 * same slice as we are) have cgroups, too. Otherwise, things
2162 * would become very uneven as each of their processes would
2163 * get as much resources as all our group together. This call
2164 * will synchronously create the parent cgroups, but will
2165 * defer work on the siblings to the next event loop
2166 * iteration. */
2167
2168 /* Add all sibling slices to the cgroup queue. */
2169 unit_add_siblings_to_cgroup_realize_queue(u);
2170
2171 /* And realize this one now (and apply the values) */
2172 return unit_realize_cgroup_now(u, manager_state(u->manager));
2173 }
2174
2175 void unit_release_cgroup(Unit *u) {
2176 assert(u);
2177
2178 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2179 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
2180
2181 if (u->cgroup_path) {
2182 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2183 u->cgroup_path = mfree(u->cgroup_path);
2184 }
2185
2186 if (u->cgroup_inotify_wd >= 0) {
2187 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_inotify_wd) < 0)
2188 log_unit_debug_errno(u, errno, "Failed to remove cgroup inotify watch %i for %s, ignoring: %m", u->cgroup_inotify_wd, u->id);
2189
2190 (void) hashmap_remove(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd));
2191 u->cgroup_inotify_wd = -1;
2192 }
2193 }
2194
2195 void unit_prune_cgroup(Unit *u) {
2196 int r;
2197 bool is_root_slice;
2198
2199 assert(u);
2200
2201 /* Removes the cgroup, if empty and possible, and stops watching it. */
2202
2203 if (!u->cgroup_path)
2204 return;
2205
2206 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2207
2208 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2209
2210 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
2211 if (r < 0) {
2212 log_unit_debug_errno(u, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
2213 return;
2214 }
2215
2216 if (is_root_slice)
2217 return;
2218
2219 unit_release_cgroup(u);
2220
2221 u->cgroup_realized = false;
2222 u->cgroup_realized_mask = 0;
2223 u->cgroup_enabled_mask = 0;
2224
2225 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
2226 }
2227
2228 int unit_search_main_pid(Unit *u, pid_t *ret) {
2229 _cleanup_fclose_ FILE *f = NULL;
2230 pid_t pid = 0, npid, mypid;
2231 int r;
2232
2233 assert(u);
2234 assert(ret);
2235
2236 if (!u->cgroup_path)
2237 return -ENXIO;
2238
2239 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2240 if (r < 0)
2241 return r;
2242
2243 mypid = getpid_cached();
2244 while (cg_read_pid(f, &npid) > 0) {
2245 pid_t ppid;
2246
2247 if (npid == pid)
2248 continue;
2249
2250 /* Ignore processes that aren't our kids */
2251 if (get_process_ppid(npid, &ppid) >= 0 && ppid != mypid)
2252 continue;
2253
2254 if (pid != 0)
2255 /* Dang, there's more than one daemonized PID
2256 in this group, so we don't know what process
2257 is the main process. */
2258
2259 return -ENODATA;
2260
2261 pid = npid;
2262 }
2263
2264 *ret = pid;
2265 return 0;
2266 }
2267
2268 static int unit_watch_pids_in_path(Unit *u, const char *path) {
2269 _cleanup_closedir_ DIR *d = NULL;
2270 _cleanup_fclose_ FILE *f = NULL;
2271 int ret = 0, r;
2272
2273 assert(u);
2274 assert(path);
2275
2276 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2277 if (r < 0)
2278 ret = r;
2279 else {
2280 pid_t pid;
2281
2282 while ((r = cg_read_pid(f, &pid)) > 0) {
2283 r = unit_watch_pid(u, pid);
2284 if (r < 0 && ret >= 0)
2285 ret = r;
2286 }
2287
2288 if (r < 0 && ret >= 0)
2289 ret = r;
2290 }
2291
2292 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2293 if (r < 0) {
2294 if (ret >= 0)
2295 ret = r;
2296 } else {
2297 char *fn;
2298
2299 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2300 _cleanup_free_ char *p = NULL;
2301
2302 p = strjoin(path, "/", fn);
2303 free(fn);
2304
2305 if (!p)
2306 return -ENOMEM;
2307
2308 r = unit_watch_pids_in_path(u, p);
2309 if (r < 0 && ret >= 0)
2310 ret = r;
2311 }
2312
2313 if (r < 0 && ret >= 0)
2314 ret = r;
2315 }
2316
2317 return ret;
2318 }
2319
2320 int unit_synthesize_cgroup_empty_event(Unit *u) {
2321 int r;
2322
2323 assert(u);
2324
2325 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2326 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2327 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2328
2329 if (!u->cgroup_path)
2330 return -ENOENT;
2331
2332 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2333 if (r < 0)
2334 return r;
2335 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2336 return 0;
2337
2338 if (!set_isempty(u->pids))
2339 return 0;
2340
2341 unit_add_to_cgroup_empty_queue(u);
2342 return 0;
2343 }
2344
2345 int unit_watch_all_pids(Unit *u) {
2346 int r;
2347
2348 assert(u);
2349
2350 /* Adds all PIDs from our cgroup to the set of PIDs we
2351 * watch. This is a fallback logic for cases where we do not
2352 * get reliable cgroup empty notifications: we try to use
2353 * SIGCHLD as replacement. */
2354
2355 if (!u->cgroup_path)
2356 return -ENOENT;
2357
2358 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2359 if (r < 0)
2360 return r;
2361 if (r > 0) /* On unified we can use proper notifications */
2362 return 0;
2363
2364 return unit_watch_pids_in_path(u, u->cgroup_path);
2365 }
2366
2367 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2368 Manager *m = userdata;
2369 Unit *u;
2370 int r;
2371
2372 assert(s);
2373 assert(m);
2374
2375 u = m->cgroup_empty_queue;
2376 if (!u)
2377 return 0;
2378
2379 assert(u->in_cgroup_empty_queue);
2380 u->in_cgroup_empty_queue = false;
2381 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2382
2383 if (m->cgroup_empty_queue) {
2384 /* More stuff queued, let's make sure we remain enabled */
2385 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2386 if (r < 0)
2387 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
2388 }
2389
2390 unit_add_to_gc_queue(u);
2391
2392 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2393 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2394
2395 return 0;
2396 }
2397
2398 void unit_add_to_cgroup_empty_queue(Unit *u) {
2399 int r;
2400
2401 assert(u);
2402
2403 /* Note that there are four different ways how cgroup empty events reach us:
2404 *
2405 * 1. On the unified hierarchy we get an inotify event on the cgroup
2406 *
2407 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2408 *
2409 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2410 *
2411 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2412 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2413 *
2414 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2415 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2416 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2417 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2418 * case for scope units). */
2419
2420 if (u->in_cgroup_empty_queue)
2421 return;
2422
2423 /* Let's verify that the cgroup is really empty */
2424 if (!u->cgroup_path)
2425 return;
2426 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2427 if (r < 0) {
2428 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2429 return;
2430 }
2431 if (r == 0)
2432 return;
2433
2434 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2435 u->in_cgroup_empty_queue = true;
2436
2437 /* Trigger the defer event */
2438 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2439 if (r < 0)
2440 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2441 }
2442
2443 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2444 Manager *m = userdata;
2445
2446 assert(s);
2447 assert(fd >= 0);
2448 assert(m);
2449
2450 for (;;) {
2451 union inotify_event_buffer buffer;
2452 struct inotify_event *e;
2453 ssize_t l;
2454
2455 l = read(fd, &buffer, sizeof(buffer));
2456 if (l < 0) {
2457 if (IN_SET(errno, EINTR, EAGAIN))
2458 return 0;
2459
2460 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2461 }
2462
2463 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2464 Unit *u;
2465
2466 if (e->wd < 0)
2467 /* Queue overflow has no watch descriptor */
2468 continue;
2469
2470 if (e->mask & IN_IGNORED)
2471 /* The watch was just removed */
2472 continue;
2473
2474 u = hashmap_get(m->cgroup_inotify_wd_unit, INT_TO_PTR(e->wd));
2475 if (!u) /* Not that inotify might deliver
2476 * events for a watch even after it
2477 * was removed, because it was queued
2478 * before the removal. Let's ignore
2479 * this here safely. */
2480 continue;
2481
2482 unit_add_to_cgroup_empty_queue(u);
2483 }
2484 }
2485 }
2486
2487 static int cg_bpf_mask_supported(CGroupMask *ret) {
2488 CGroupMask mask = 0;
2489 int r;
2490
2491 /* BPF-based firewall */
2492 r = bpf_firewall_supported();
2493 if (r > 0)
2494 mask |= CGROUP_MASK_BPF_FIREWALL;
2495
2496 /* BPF-based device access control */
2497 r = bpf_devices_supported();
2498 if (r > 0)
2499 mask |= CGROUP_MASK_BPF_DEVICES;
2500
2501 *ret = mask;
2502 return 0;
2503 }
2504
2505 int manager_setup_cgroup(Manager *m) {
2506 _cleanup_free_ char *path = NULL;
2507 const char *scope_path;
2508 CGroupController c;
2509 int r, all_unified;
2510 CGroupMask mask;
2511 char *e;
2512
2513 assert(m);
2514
2515 /* 1. Determine hierarchy */
2516 m->cgroup_root = mfree(m->cgroup_root);
2517 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
2518 if (r < 0)
2519 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
2520
2521 /* Chop off the init scope, if we are already located in it */
2522 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2523
2524 /* LEGACY: Also chop off the system slice if we are in
2525 * it. This is to support live upgrades from older systemd
2526 * versions where PID 1 was moved there. Also see
2527 * cg_get_root_path(). */
2528 if (!e && MANAGER_IS_SYSTEM(m)) {
2529 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
2530 if (!e)
2531 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
2532 }
2533 if (e)
2534 *e = 0;
2535
2536 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
2537 * easily prepend it everywhere. */
2538 delete_trailing_chars(m->cgroup_root, "/");
2539
2540 /* 2. Show data */
2541 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
2542 if (r < 0)
2543 return log_error_errno(r, "Cannot find cgroup mount point: %m");
2544
2545 r = cg_unified_flush();
2546 if (r < 0)
2547 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
2548
2549 all_unified = cg_all_unified();
2550 if (all_unified < 0)
2551 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
2552 if (all_unified > 0)
2553 log_debug("Unified cgroup hierarchy is located at %s.", path);
2554 else {
2555 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2556 if (r < 0)
2557 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
2558 if (r > 0)
2559 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
2560 else
2561 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
2562 }
2563
2564 /* 3. Allocate cgroup empty defer event source */
2565 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2566 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
2567 if (r < 0)
2568 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
2569
2570 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
2571 if (r < 0)
2572 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
2573
2574 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
2575 if (r < 0)
2576 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
2577
2578 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
2579
2580 /* 4. Install notifier inotify object, or agent */
2581 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2582
2583 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
2584
2585 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2586 safe_close(m->cgroup_inotify_fd);
2587
2588 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
2589 if (m->cgroup_inotify_fd < 0)
2590 return log_error_errno(errno, "Failed to create control group inotify object: %m");
2591
2592 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
2593 if (r < 0)
2594 return log_error_errno(r, "Failed to watch control group inotify object: %m");
2595
2596 /* Process cgroup empty notifications early, but after service notifications and SIGCHLD. Also
2597 * see handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
2598 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-4);
2599 if (r < 0)
2600 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
2601
2602 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
2603
2604 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
2605
2606 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
2607 * since it does not generate events when control groups with children run empty. */
2608
2609 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
2610 if (r < 0)
2611 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
2612 else if (r > 0)
2613 log_debug("Installed release agent.");
2614 else if (r == 0)
2615 log_debug("Release agent already installed.");
2616 }
2617
2618 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
2619 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2620 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2621 if (r >= 0) {
2622 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
2623 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2624 if (r < 0)
2625 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
2626
2627 /* 6. And pin it, so that it cannot be unmounted */
2628 safe_close(m->pin_cgroupfs_fd);
2629 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
2630 if (m->pin_cgroupfs_fd < 0)
2631 return log_error_errno(errno, "Failed to open pin file: %m");
2632
2633 } else if (!MANAGER_IS_TEST_RUN(m))
2634 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
2635
2636 /* 7. Always enable hierarchical support if it exists... */
2637 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
2638 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
2639
2640 /* 8. Figure out which controllers are supported */
2641 r = cg_mask_supported(&m->cgroup_supported);
2642 if (r < 0)
2643 return log_error_errno(r, "Failed to determine supported controllers: %m");
2644
2645 /* 9. Figure out which bpf-based pseudo-controllers are supported */
2646 r = cg_bpf_mask_supported(&mask);
2647 if (r < 0)
2648 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
2649 m->cgroup_supported |= mask;
2650
2651 /* 10. Log which controllers are supported */
2652 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
2653 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
2654
2655 return 0;
2656 }
2657
2658 void manager_shutdown_cgroup(Manager *m, bool delete) {
2659 assert(m);
2660
2661 /* We can't really delete the group, since we are in it. But
2662 * let's trim it. */
2663 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
2664 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
2665
2666 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2667
2668 m->cgroup_inotify_wd_unit = hashmap_free(m->cgroup_inotify_wd_unit);
2669
2670 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2671 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
2672
2673 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
2674
2675 m->cgroup_root = mfree(m->cgroup_root);
2676 }
2677
2678 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
2679 char *p;
2680 Unit *u;
2681
2682 assert(m);
2683 assert(cgroup);
2684
2685 u = hashmap_get(m->cgroup_unit, cgroup);
2686 if (u)
2687 return u;
2688
2689 p = strdupa(cgroup);
2690 for (;;) {
2691 char *e;
2692
2693 e = strrchr(p, '/');
2694 if (!e || e == p)
2695 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
2696
2697 *e = 0;
2698
2699 u = hashmap_get(m->cgroup_unit, p);
2700 if (u)
2701 return u;
2702 }
2703 }
2704
2705 Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
2706 _cleanup_free_ char *cgroup = NULL;
2707
2708 assert(m);
2709
2710 if (!pid_is_valid(pid))
2711 return NULL;
2712
2713 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
2714 return NULL;
2715
2716 return manager_get_unit_by_cgroup(m, cgroup);
2717 }
2718
2719 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
2720 Unit *u, **array;
2721
2722 assert(m);
2723
2724 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
2725 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
2726 * relevant one as children of the process will be assigned to that one, too, before all else. */
2727
2728 if (!pid_is_valid(pid))
2729 return NULL;
2730
2731 if (pid == getpid_cached())
2732 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
2733
2734 u = manager_get_unit_by_pid_cgroup(m, pid);
2735 if (u)
2736 return u;
2737
2738 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
2739 if (u)
2740 return u;
2741
2742 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
2743 if (array)
2744 return array[0];
2745
2746 return NULL;
2747 }
2748
2749 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
2750 Unit *u;
2751
2752 assert(m);
2753 assert(cgroup);
2754
2755 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
2756 * or from the --system instance */
2757
2758 log_debug("Got cgroup empty notification for: %s", cgroup);
2759
2760 u = manager_get_unit_by_cgroup(m, cgroup);
2761 if (!u)
2762 return 0;
2763
2764 unit_add_to_cgroup_empty_queue(u);
2765 return 1;
2766 }
2767
2768 int unit_get_memory_current(Unit *u, uint64_t *ret) {
2769 _cleanup_free_ char *v = NULL;
2770 int r;
2771
2772 assert(u);
2773 assert(ret);
2774
2775 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
2776 return -ENODATA;
2777
2778 if (!u->cgroup_path)
2779 return -ENODATA;
2780
2781 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2782 if (unit_has_host_root_cgroup(u))
2783 return procfs_memory_get_current(ret);
2784
2785 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
2786 return -ENODATA;
2787
2788 r = cg_all_unified();
2789 if (r < 0)
2790 return r;
2791 if (r > 0)
2792 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
2793 else
2794 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
2795 if (r == -ENOENT)
2796 return -ENODATA;
2797 if (r < 0)
2798 return r;
2799
2800 return safe_atou64(v, ret);
2801 }
2802
2803 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
2804 _cleanup_free_ char *v = NULL;
2805 int r;
2806
2807 assert(u);
2808 assert(ret);
2809
2810 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
2811 return -ENODATA;
2812
2813 if (!u->cgroup_path)
2814 return -ENODATA;
2815
2816 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2817 if (unit_has_host_root_cgroup(u))
2818 return procfs_tasks_get_current(ret);
2819
2820 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
2821 return -ENODATA;
2822
2823 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
2824 if (r == -ENOENT)
2825 return -ENODATA;
2826 if (r < 0)
2827 return r;
2828
2829 return safe_atou64(v, ret);
2830 }
2831
2832 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
2833 _cleanup_free_ char *v = NULL;
2834 uint64_t ns;
2835 int r;
2836
2837 assert(u);
2838 assert(ret);
2839
2840 if (!u->cgroup_path)
2841 return -ENODATA;
2842
2843 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
2844 if (unit_has_host_root_cgroup(u))
2845 return procfs_cpu_get_usage(ret);
2846
2847 r = cg_all_unified();
2848 if (r < 0)
2849 return r;
2850
2851 /* Requisite controllers for CPU accounting are not enabled */
2852 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
2853 return -ENODATA;
2854
2855 if (r > 0) {
2856 _cleanup_free_ char *val = NULL;
2857 uint64_t us;
2858
2859 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
2860 if (r < 0)
2861 return r;
2862 if (IN_SET(r, -ENOENT, -ENXIO))
2863 return -ENODATA;
2864
2865 r = safe_atou64(val, &us);
2866 if (r < 0)
2867 return r;
2868
2869 ns = us * NSEC_PER_USEC;
2870 } else {
2871 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
2872 if (r == -ENOENT)
2873 return -ENODATA;
2874 if (r < 0)
2875 return r;
2876
2877 r = safe_atou64(v, &ns);
2878 if (r < 0)
2879 return r;
2880 }
2881
2882 *ret = ns;
2883 return 0;
2884 }
2885
2886 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
2887 nsec_t ns;
2888 int r;
2889
2890 assert(u);
2891
2892 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
2893 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
2894 * call this function with a NULL return value. */
2895
2896 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
2897 return -ENODATA;
2898
2899 r = unit_get_cpu_usage_raw(u, &ns);
2900 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
2901 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
2902 * cached value. */
2903
2904 if (ret)
2905 *ret = u->cpu_usage_last;
2906 return 0;
2907 }
2908 if (r < 0)
2909 return r;
2910
2911 if (ns > u->cpu_usage_base)
2912 ns -= u->cpu_usage_base;
2913 else
2914 ns = 0;
2915
2916 u->cpu_usage_last = ns;
2917 if (ret)
2918 *ret = ns;
2919
2920 return 0;
2921 }
2922
2923 int unit_get_ip_accounting(
2924 Unit *u,
2925 CGroupIPAccountingMetric metric,
2926 uint64_t *ret) {
2927
2928 uint64_t value;
2929 int fd, r;
2930
2931 assert(u);
2932 assert(metric >= 0);
2933 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
2934 assert(ret);
2935
2936 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
2937 return -ENODATA;
2938
2939 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
2940 u->ip_accounting_ingress_map_fd :
2941 u->ip_accounting_egress_map_fd;
2942 if (fd < 0)
2943 return -ENODATA;
2944
2945 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2946 r = bpf_firewall_read_accounting(fd, &value, NULL);
2947 else
2948 r = bpf_firewall_read_accounting(fd, NULL, &value);
2949 if (r < 0)
2950 return r;
2951
2952 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
2953 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
2954 * ip_accounting_extra[] field, and add them in here transparently. */
2955
2956 *ret = value + u->ip_accounting_extra[metric];
2957
2958 return r;
2959 }
2960
2961 int unit_reset_cpu_accounting(Unit *u) {
2962 nsec_t ns;
2963 int r;
2964
2965 assert(u);
2966
2967 u->cpu_usage_last = NSEC_INFINITY;
2968
2969 r = unit_get_cpu_usage_raw(u, &ns);
2970 if (r < 0) {
2971 u->cpu_usage_base = 0;
2972 return r;
2973 }
2974
2975 u->cpu_usage_base = ns;
2976 return 0;
2977 }
2978
2979 int unit_reset_ip_accounting(Unit *u) {
2980 int r = 0, q = 0;
2981
2982 assert(u);
2983
2984 if (u->ip_accounting_ingress_map_fd >= 0)
2985 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
2986
2987 if (u->ip_accounting_egress_map_fd >= 0)
2988 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
2989
2990 zero(u->ip_accounting_extra);
2991
2992 return r < 0 ? r : q;
2993 }
2994
2995 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
2996 assert(u);
2997
2998 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2999 return;
3000
3001 if (m == 0)
3002 return;
3003
3004 /* always invalidate compat pairs together */
3005 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
3006 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
3007
3008 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
3009 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
3010
3011 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
3012 return;
3013
3014 u->cgroup_invalidated_mask |= m;
3015 unit_add_to_cgroup_realize_queue(u);
3016 }
3017
3018 void unit_invalidate_cgroup_bpf(Unit *u) {
3019 assert(u);
3020
3021 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3022 return;
3023
3024 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
3025 return;
3026
3027 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
3028 unit_add_to_cgroup_realize_queue(u);
3029
3030 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
3031 * list of our children includes our own. */
3032 if (u->type == UNIT_SLICE) {
3033 Unit *member;
3034 Iterator i;
3035 void *v;
3036
3037 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
3038 if (member == u)
3039 continue;
3040
3041 if (UNIT_DEREF(member->slice) != u)
3042 continue;
3043
3044 unit_invalidate_cgroup_bpf(member);
3045 }
3046 }
3047 }
3048
3049 bool unit_cgroup_delegate(Unit *u) {
3050 CGroupContext *c;
3051
3052 assert(u);
3053
3054 if (!UNIT_VTABLE(u)->can_delegate)
3055 return false;
3056
3057 c = unit_get_cgroup_context(u);
3058 if (!c)
3059 return false;
3060
3061 return c->delegate;
3062 }
3063
3064 void manager_invalidate_startup_units(Manager *m) {
3065 Iterator i;
3066 Unit *u;
3067
3068 assert(m);
3069
3070 SET_FOREACH(u, m->startup_units, i)
3071 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
3072 }
3073
3074 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
3075 [CGROUP_AUTO] = "auto",
3076 [CGROUP_CLOSED] = "closed",
3077 [CGROUP_STRICT] = "strict",
3078 };
3079
3080 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);