]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
use FOREACH_ELEMENT
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <fcntl.h>
4
5 #include "sd-messages.h"
6
7 #include "af-list.h"
8 #include "alloc-util.h"
9 #include "blockdev-util.h"
10 #include "bpf-devices.h"
11 #include "bpf-firewall.h"
12 #include "bpf-foreign.h"
13 #include "bpf-restrict-ifaces.h"
14 #include "bpf-socket-bind.h"
15 #include "btrfs-util.h"
16 #include "bus-error.h"
17 #include "bus-locator.h"
18 #include "cgroup-setup.h"
19 #include "cgroup-util.h"
20 #include "cgroup.h"
21 #include "devnum-util.h"
22 #include "fd-util.h"
23 #include "fileio.h"
24 #include "firewall-util.h"
25 #include "in-addr-prefix-util.h"
26 #include "inotify-util.h"
27 #include "io-util.h"
28 #include "ip-protocol-list.h"
29 #include "limits-util.h"
30 #include "nulstr-util.h"
31 #include "parse-util.h"
32 #include "path-util.h"
33 #include "percent-util.h"
34 #include "process-util.h"
35 #include "procfs-util.h"
36 #include "set.h"
37 #include "serialize.h"
38 #include "special.h"
39 #include "stdio-util.h"
40 #include "string-table.h"
41 #include "string-util.h"
42 #include "virt.h"
43
44 #if BPF_FRAMEWORK
45 #include "bpf-dlopen.h"
46 #include "bpf-link.h"
47 #include "bpf/restrict_fs/restrict-fs-skel.h"
48 #endif
49
50 #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
51
52 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
53 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
54 * out specific attributes from us. */
55 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
56
57 uint64_t cgroup_tasks_max_resolve(const CGroupTasksMax *tasks_max) {
58 if (tasks_max->scale == 0)
59 return tasks_max->value;
60
61 return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
62 }
63
64 bool manager_owns_host_root_cgroup(Manager *m) {
65 assert(m);
66
67 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
68 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
69 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
70 * we run in any kind of container virtualization. */
71
72 if (MANAGER_IS_USER(m))
73 return false;
74
75 if (detect_container() > 0)
76 return false;
77
78 return empty_or_root(m->cgroup_root);
79 }
80
81 bool unit_has_startup_cgroup_constraints(Unit *u) {
82 assert(u);
83
84 /* Returns true if this unit has any directives which apply during
85 * startup/shutdown phases. */
86
87 CGroupContext *c;
88
89 c = unit_get_cgroup_context(u);
90 if (!c)
91 return false;
92
93 return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
94 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
95 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
96 c->startup_cpuset_cpus.set ||
97 c->startup_cpuset_mems.set ||
98 c->startup_memory_high_set ||
99 c->startup_memory_max_set ||
100 c->startup_memory_swap_max_set||
101 c->startup_memory_zswap_max_set ||
102 c->startup_memory_low_set;
103 }
104
105 bool unit_has_host_root_cgroup(Unit *u) {
106 assert(u);
107
108 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
109 * the manager manages the root cgroup. */
110
111 if (!manager_owns_host_root_cgroup(u->manager))
112 return false;
113
114 return unit_has_name(u, SPECIAL_ROOT_SLICE);
115 }
116
117 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
118 int r;
119
120 assert(u);
121
122 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
123 if (!crt || !crt->cgroup_path)
124 return -EOWNERDEAD;
125
126 r = cg_set_attribute(controller, crt->cgroup_path, attribute, value);
127 if (r < 0)
128 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
129 strna(attribute), empty_to_root(crt->cgroup_path), (int) strcspn(value, NEWLINE), value);
130
131 return r;
132 }
133
134 static void cgroup_compat_warn(void) {
135 static bool cgroup_compat_warned = false;
136
137 if (cgroup_compat_warned)
138 return;
139
140 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
141 "See cgroup-compat debug messages for details.");
142
143 cgroup_compat_warned = true;
144 }
145
146 #define log_cgroup_compat(unit, fmt, ...) do { \
147 cgroup_compat_warn(); \
148 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
149 } while (false)
150
151 void cgroup_context_init(CGroupContext *c) {
152 assert(c);
153
154 /* Initialize everything to the kernel defaults. When initializing a bool member to 'true', make
155 * sure to serialize in execute-serialize.c using serialize_bool() instead of
156 * serialize_bool_elide(), as sd-executor will initialize here to 'true', but serialize_bool_elide()
157 * skips serialization if the value is 'false' (as that's the common default), so if the value at
158 * runtime is zero it would be lost after deserialization. Same when initializing uint64_t and other
159 * values, update/add a conditional serialization check. This is to minimize the amount of
160 * serialized data that is sent to the sd-executor, so that there is less work to do on the default
161 * cases. */
162
163 *c = (CGroupContext) {
164 .cpu_weight = CGROUP_WEIGHT_INVALID,
165 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
166 .cpu_quota_per_sec_usec = USEC_INFINITY,
167 .cpu_quota_period_usec = USEC_INFINITY,
168
169 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
170 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
171
172 .memory_high = CGROUP_LIMIT_MAX,
173 .startup_memory_high = CGROUP_LIMIT_MAX,
174 .memory_max = CGROUP_LIMIT_MAX,
175 .startup_memory_max = CGROUP_LIMIT_MAX,
176 .memory_swap_max = CGROUP_LIMIT_MAX,
177 .startup_memory_swap_max = CGROUP_LIMIT_MAX,
178 .memory_zswap_max = CGROUP_LIMIT_MAX,
179 .startup_memory_zswap_max = CGROUP_LIMIT_MAX,
180
181 .memory_limit = CGROUP_LIMIT_MAX,
182
183 .memory_zswap_writeback = true,
184
185 .io_weight = CGROUP_WEIGHT_INVALID,
186 .startup_io_weight = CGROUP_WEIGHT_INVALID,
187
188 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
189 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
190
191 .tasks_max = CGROUP_TASKS_MAX_UNSET,
192
193 .moom_swap = MANAGED_OOM_AUTO,
194 .moom_mem_pressure = MANAGED_OOM_AUTO,
195 .moom_preference = MANAGED_OOM_PREFERENCE_NONE,
196
197 .memory_pressure_watch = _CGROUP_PRESSURE_WATCH_INVALID,
198 .memory_pressure_threshold_usec = USEC_INFINITY,
199 };
200 }
201
202 int cgroup_context_add_io_device_weight_dup(CGroupContext *c, const CGroupIODeviceWeight *w) {
203 _cleanup_free_ CGroupIODeviceWeight *n = NULL;
204
205 assert(c);
206 assert(w);
207
208 n = new(CGroupIODeviceWeight, 1);
209 if (!n)
210 return -ENOMEM;
211
212 *n = (CGroupIODeviceWeight) {
213 .path = strdup(w->path),
214 .weight = w->weight,
215 };
216 if (!n->path)
217 return -ENOMEM;
218
219 LIST_PREPEND(device_weights, c->io_device_weights, TAKE_PTR(n));
220 return 0;
221 }
222
223 int cgroup_context_add_io_device_limit_dup(CGroupContext *c, const CGroupIODeviceLimit *l) {
224 _cleanup_free_ CGroupIODeviceLimit *n = NULL;
225
226 assert(c);
227 assert(l);
228
229 n = new0(CGroupIODeviceLimit, 1);
230 if (!n)
231 return -ENOMEM;
232
233 n->path = strdup(l->path);
234 if (!n->path)
235 return -ENOMEM;
236
237 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
238 n->limits[type] = l->limits[type];
239
240 LIST_PREPEND(device_limits, c->io_device_limits, TAKE_PTR(n));
241 return 0;
242 }
243
244 int cgroup_context_add_io_device_latency_dup(CGroupContext *c, const CGroupIODeviceLatency *l) {
245 _cleanup_free_ CGroupIODeviceLatency *n = NULL;
246
247 assert(c);
248 assert(l);
249
250 n = new(CGroupIODeviceLatency, 1);
251 if (!n)
252 return -ENOMEM;
253
254 *n = (CGroupIODeviceLatency) {
255 .path = strdup(l->path),
256 .target_usec = l->target_usec,
257 };
258 if (!n->path)
259 return -ENOMEM;
260
261 LIST_PREPEND(device_latencies, c->io_device_latencies, TAKE_PTR(n));
262 return 0;
263 }
264
265 int cgroup_context_add_block_io_device_weight_dup(CGroupContext *c, const CGroupBlockIODeviceWeight *w) {
266 _cleanup_free_ CGroupBlockIODeviceWeight *n = NULL;
267
268 assert(c);
269 assert(w);
270
271 n = new(CGroupBlockIODeviceWeight, 1);
272 if (!n)
273 return -ENOMEM;
274
275 *n = (CGroupBlockIODeviceWeight) {
276 .path = strdup(w->path),
277 .weight = w->weight,
278 };
279 if (!n->path)
280 return -ENOMEM;
281
282 LIST_PREPEND(device_weights, c->blockio_device_weights, TAKE_PTR(n));
283 return 0;
284 }
285
286 int cgroup_context_add_block_io_device_bandwidth_dup(CGroupContext *c, const CGroupBlockIODeviceBandwidth *b) {
287 _cleanup_free_ CGroupBlockIODeviceBandwidth *n = NULL;
288
289 assert(c);
290 assert(b);
291
292 n = new(CGroupBlockIODeviceBandwidth, 1);
293 if (!n)
294 return -ENOMEM;
295
296 *n = (CGroupBlockIODeviceBandwidth) {
297 .rbps = b->rbps,
298 .wbps = b->wbps,
299 };
300
301 LIST_PREPEND(device_bandwidths, c->blockio_device_bandwidths, TAKE_PTR(n));
302 return 0;
303 }
304
305 int cgroup_context_add_device_allow_dup(CGroupContext *c, const CGroupDeviceAllow *a) {
306 _cleanup_free_ CGroupDeviceAllow *n = NULL;
307
308 assert(c);
309 assert(a);
310
311 n = new(CGroupDeviceAllow, 1);
312 if (!n)
313 return -ENOMEM;
314
315 *n = (CGroupDeviceAllow) {
316 .path = strdup(a->path),
317 .permissions = a->permissions,
318 };
319 if (!n->path)
320 return -ENOMEM;
321
322 LIST_PREPEND(device_allow, c->device_allow, TAKE_PTR(n));
323 return 0;
324 }
325
326 static int cgroup_context_add_socket_bind_item_dup(CGroupContext *c, const CGroupSocketBindItem *i, CGroupSocketBindItem *h) {
327 _cleanup_free_ CGroupSocketBindItem *n = NULL;
328
329 assert(c);
330 assert(i);
331
332 n = new(CGroupSocketBindItem, 1);
333 if (!n)
334 return -ENOMEM;
335
336 *n = (CGroupSocketBindItem) {
337 .address_family = i->address_family,
338 .ip_protocol = i->ip_protocol,
339 .nr_ports = i->nr_ports,
340 .port_min = i->port_min,
341 };
342
343 LIST_PREPEND(socket_bind_items, h, TAKE_PTR(n));
344 return 0;
345 }
346
347 int cgroup_context_add_socket_bind_item_allow_dup(CGroupContext *c, const CGroupSocketBindItem *i) {
348 return cgroup_context_add_socket_bind_item_dup(c, i, c->socket_bind_allow);
349 }
350
351 int cgroup_context_add_socket_bind_item_deny_dup(CGroupContext *c, const CGroupSocketBindItem *i) {
352 return cgroup_context_add_socket_bind_item_dup(c, i, c->socket_bind_deny);
353 }
354
355 int cgroup_context_copy(CGroupContext *dst, const CGroupContext *src) {
356 struct in_addr_prefix *i;
357 char *iface;
358 int r;
359
360 assert(src);
361 assert(dst);
362
363 dst->cpu_accounting = src->cpu_accounting;
364 dst->io_accounting = src->io_accounting;
365 dst->blockio_accounting = src->blockio_accounting;
366 dst->memory_accounting = src->memory_accounting;
367 dst->tasks_accounting = src->tasks_accounting;
368 dst->ip_accounting = src->ip_accounting;
369
370 dst->memory_oom_group = src->memory_oom_group;
371
372 dst->cpu_weight = src->cpu_weight;
373 dst->startup_cpu_weight = src->startup_cpu_weight;
374 dst->cpu_quota_per_sec_usec = src->cpu_quota_per_sec_usec;
375 dst->cpu_quota_period_usec = src->cpu_quota_period_usec;
376
377 dst->cpuset_cpus = src->cpuset_cpus;
378 dst->startup_cpuset_cpus = src->startup_cpuset_cpus;
379 dst->cpuset_mems = src->cpuset_mems;
380 dst->startup_cpuset_mems = src->startup_cpuset_mems;
381
382 dst->io_weight = src->io_weight;
383 dst->startup_io_weight = src->startup_io_weight;
384
385 LIST_FOREACH_BACKWARDS(device_weights, w, LIST_FIND_TAIL(device_weights, src->io_device_weights)) {
386 r = cgroup_context_add_io_device_weight_dup(dst, w);
387 if (r < 0)
388 return r;
389 }
390
391 LIST_FOREACH_BACKWARDS(device_limits, l, LIST_FIND_TAIL(device_limits, src->io_device_limits)) {
392 r = cgroup_context_add_io_device_limit_dup(dst, l);
393 if (r < 0)
394 return r;
395 }
396
397 LIST_FOREACH_BACKWARDS(device_latencies, l, LIST_FIND_TAIL(device_latencies, src->io_device_latencies)) {
398 r = cgroup_context_add_io_device_latency_dup(dst, l);
399 if (r < 0)
400 return r;
401 }
402
403 dst->default_memory_min = src->default_memory_min;
404 dst->default_memory_low = src->default_memory_low;
405 dst->default_startup_memory_low = src->default_startup_memory_low;
406 dst->memory_min = src->memory_min;
407 dst->memory_low = src->memory_low;
408 dst->startup_memory_low = src->startup_memory_low;
409 dst->memory_high = src->memory_high;
410 dst->startup_memory_high = src->startup_memory_high;
411 dst->memory_max = src->memory_max;
412 dst->startup_memory_max = src->startup_memory_max;
413 dst->memory_swap_max = src->memory_swap_max;
414 dst->startup_memory_swap_max = src->startup_memory_swap_max;
415 dst->memory_zswap_max = src->memory_zswap_max;
416 dst->startup_memory_zswap_max = src->startup_memory_zswap_max;
417
418 dst->default_memory_min_set = src->default_memory_min_set;
419 dst->default_memory_low_set = src->default_memory_low_set;
420 dst->default_startup_memory_low_set = src->default_startup_memory_low_set;
421 dst->memory_min_set = src->memory_min_set;
422 dst->memory_low_set = src->memory_low_set;
423 dst->startup_memory_low_set = src->startup_memory_low_set;
424 dst->startup_memory_high_set = src->startup_memory_high_set;
425 dst->startup_memory_max_set = src->startup_memory_max_set;
426 dst->startup_memory_swap_max_set = src->startup_memory_swap_max_set;
427 dst->startup_memory_zswap_max_set = src->startup_memory_zswap_max_set;
428 dst->memory_zswap_writeback = src->memory_zswap_writeback;
429
430 SET_FOREACH(i, src->ip_address_allow) {
431 r = in_addr_prefix_add(&dst->ip_address_allow, i);
432 if (r < 0)
433 return r;
434 }
435
436 SET_FOREACH(i, src->ip_address_deny) {
437 r = in_addr_prefix_add(&dst->ip_address_deny, i);
438 if (r < 0)
439 return r;
440 }
441
442 dst->ip_address_allow_reduced = src->ip_address_allow_reduced;
443 dst->ip_address_deny_reduced = src->ip_address_deny_reduced;
444
445 if (!strv_isempty(src->ip_filters_ingress)) {
446 dst->ip_filters_ingress = strv_copy(src->ip_filters_ingress);
447 if (!dst->ip_filters_ingress)
448 return -ENOMEM;
449 }
450
451 if (!strv_isempty(src->ip_filters_egress)) {
452 dst->ip_filters_egress = strv_copy(src->ip_filters_egress);
453 if (!dst->ip_filters_egress)
454 return -ENOMEM;
455 }
456
457 LIST_FOREACH_BACKWARDS(programs, l, LIST_FIND_TAIL(programs, src->bpf_foreign_programs)) {
458 r = cgroup_context_add_bpf_foreign_program_dup(dst, l);
459 if (r < 0)
460 return r;
461 }
462
463 SET_FOREACH(iface, src->restrict_network_interfaces) {
464 r = set_put_strdup(&dst->restrict_network_interfaces, iface);
465 if (r < 0)
466 return r;
467 }
468 dst->restrict_network_interfaces_is_allow_list = src->restrict_network_interfaces_is_allow_list;
469
470 dst->cpu_shares = src->cpu_shares;
471 dst->startup_cpu_shares = src->startup_cpu_shares;
472
473 dst->blockio_weight = src->blockio_weight;
474 dst->startup_blockio_weight = src->startup_blockio_weight;
475
476 LIST_FOREACH_BACKWARDS(device_weights, l, LIST_FIND_TAIL(device_weights, src->blockio_device_weights)) {
477 r = cgroup_context_add_block_io_device_weight_dup(dst, l);
478 if (r < 0)
479 return r;
480 }
481
482 LIST_FOREACH_BACKWARDS(device_bandwidths, l, LIST_FIND_TAIL(device_bandwidths, src->blockio_device_bandwidths)) {
483 r = cgroup_context_add_block_io_device_bandwidth_dup(dst, l);
484 if (r < 0)
485 return r;
486 }
487
488 dst->memory_limit = src->memory_limit;
489
490 dst->device_policy = src->device_policy;
491 LIST_FOREACH_BACKWARDS(device_allow, l, LIST_FIND_TAIL(device_allow, src->device_allow)) {
492 r = cgroup_context_add_device_allow_dup(dst, l);
493 if (r < 0)
494 return r;
495 }
496
497 LIST_FOREACH_BACKWARDS(socket_bind_items, l, LIST_FIND_TAIL(socket_bind_items, src->socket_bind_allow)) {
498 r = cgroup_context_add_socket_bind_item_allow_dup(dst, l);
499 if (r < 0)
500 return r;
501
502 }
503
504 LIST_FOREACH_BACKWARDS(socket_bind_items, l, LIST_FIND_TAIL(socket_bind_items, src->socket_bind_deny)) {
505 r = cgroup_context_add_socket_bind_item_deny_dup(dst, l);
506 if (r < 0)
507 return r;
508 }
509
510 dst->tasks_max = src->tasks_max;
511
512 return 0;
513 }
514
515 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
516 assert(c);
517 assert(a);
518
519 LIST_REMOVE(device_allow, c->device_allow, a);
520 free(a->path);
521 free(a);
522 }
523
524 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
525 assert(c);
526 assert(w);
527
528 LIST_REMOVE(device_weights, c->io_device_weights, w);
529 free(w->path);
530 free(w);
531 }
532
533 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
534 assert(c);
535 assert(l);
536
537 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
538 free(l->path);
539 free(l);
540 }
541
542 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
543 assert(c);
544 assert(l);
545
546 LIST_REMOVE(device_limits, c->io_device_limits, l);
547 free(l->path);
548 free(l);
549 }
550
551 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
552 assert(c);
553 assert(w);
554
555 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
556 free(w->path);
557 free(w);
558 }
559
560 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
561 assert(c);
562 assert(b);
563
564 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
565 free(b->path);
566 free(b);
567 }
568
569 void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
570 assert(c);
571 assert(p);
572
573 LIST_REMOVE(programs, c->bpf_foreign_programs, p);
574 free(p->bpffs_path);
575 free(p);
576 }
577
578 void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
579 assert(head);
580
581 LIST_CLEAR(socket_bind_items, *head, free);
582 }
583
584 void cgroup_context_done(CGroupContext *c) {
585 assert(c);
586
587 while (c->io_device_weights)
588 cgroup_context_free_io_device_weight(c, c->io_device_weights);
589
590 while (c->io_device_latencies)
591 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
592
593 while (c->io_device_limits)
594 cgroup_context_free_io_device_limit(c, c->io_device_limits);
595
596 while (c->blockio_device_weights)
597 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
598
599 while (c->blockio_device_bandwidths)
600 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
601
602 while (c->device_allow)
603 cgroup_context_free_device_allow(c, c->device_allow);
604
605 cgroup_context_remove_socket_bind(&c->socket_bind_allow);
606 cgroup_context_remove_socket_bind(&c->socket_bind_deny);
607
608 c->ip_address_allow = set_free(c->ip_address_allow);
609 c->ip_address_deny = set_free(c->ip_address_deny);
610
611 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
612 c->ip_filters_egress = strv_free(c->ip_filters_egress);
613
614 while (c->bpf_foreign_programs)
615 cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
616
617 c->restrict_network_interfaces = set_free_free(c->restrict_network_interfaces);
618
619 cpu_set_reset(&c->cpuset_cpus);
620 cpu_set_reset(&c->startup_cpuset_cpus);
621 cpu_set_reset(&c->cpuset_mems);
622 cpu_set_reset(&c->startup_cpuset_mems);
623
624 c->delegate_subgroup = mfree(c->delegate_subgroup);
625
626 nft_set_context_clear(&c->nft_set_context);
627 }
628
629 static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
630 assert(u);
631
632 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
633 if (!crt || !crt->cgroup_path)
634 return -EOWNERDEAD;
635
636 return cg_get_attribute_as_uint64("memory", crt->cgroup_path, file, ret);
637 }
638
639 static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
640 CGroupContext *c;
641 CGroupMask m;
642 const char *file;
643 uint64_t unit_value;
644 int r;
645
646 /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
647 * return -ENODATA) on cgroup v1.
648 *
649 * Returns:
650 *
651 * <0: On error.
652 * 0: If the kernel memory setting doesn't match our configuration.
653 * >0: If the kernel memory setting matches our configuration.
654 *
655 * The following values are only guaranteed to be populated on return >=0:
656 *
657 * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
658 * - ret_kernel_value will contain the actual value presented by the kernel. */
659
660 assert(u);
661
662 r = cg_all_unified();
663 if (r < 0)
664 return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
665
666 /* Unsupported on v1.
667 *
668 * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
669 * silently masked the controller. */
670 if (r == 0)
671 return -ENODATA;
672
673 /* The root slice doesn't have any controller files, so we can't compare anything. */
674 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
675 return -ENODATA;
676
677 /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
678 * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
679 * avoid specious errors in these scenarios, check that we even expect the memory controller to be
680 * enabled at all. */
681 m = unit_get_target_mask(u);
682 if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
683 return -ENODATA;
684
685 assert_se(c = unit_get_cgroup_context(u));
686
687 bool startup = u->manager && IN_SET(manager_state(u->manager), MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
688
689 if (streq(property_name, "MemoryLow")) {
690 unit_value = unit_get_ancestor_memory_low(u);
691 file = "memory.low";
692 } else if (startup && streq(property_name, "StartupMemoryLow")) {
693 unit_value = unit_get_ancestor_startup_memory_low(u);
694 file = "memory.low";
695 } else if (streq(property_name, "MemoryMin")) {
696 unit_value = unit_get_ancestor_memory_min(u);
697 file = "memory.min";
698 } else if (streq(property_name, "MemoryHigh")) {
699 unit_value = c->memory_high;
700 file = "memory.high";
701 } else if (startup && streq(property_name, "StartupMemoryHigh")) {
702 unit_value = c->startup_memory_high;
703 file = "memory.high";
704 } else if (streq(property_name, "MemoryMax")) {
705 unit_value = c->memory_max;
706 file = "memory.max";
707 } else if (startup && streq(property_name, "StartupMemoryMax")) {
708 unit_value = c->startup_memory_max;
709 file = "memory.max";
710 } else if (streq(property_name, "MemorySwapMax")) {
711 unit_value = c->memory_swap_max;
712 file = "memory.swap.max";
713 } else if (startup && streq(property_name, "StartupMemorySwapMax")) {
714 unit_value = c->startup_memory_swap_max;
715 file = "memory.swap.max";
716 } else if (streq(property_name, "MemoryZSwapMax")) {
717 unit_value = c->memory_zswap_max;
718 file = "memory.zswap.max";
719 } else if (startup && streq(property_name, "StartupMemoryZSwapMax")) {
720 unit_value = c->startup_memory_zswap_max;
721 file = "memory.zswap.max";
722 } else
723 return -EINVAL;
724
725 r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
726 if (r < 0)
727 return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
728
729 /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
730 * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
731 * our internal page-counting. To support those future kernels, just check the value itself first
732 * without any page-alignment. */
733 if (*ret_kernel_value == unit_value) {
734 *ret_unit_value = unit_value;
735 return 1;
736 }
737
738 /* The current kernel behaviour, by comparison, is that even if you write a particular number of
739 * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
740 * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
741 * cricket. */
742 if (unit_value != CGROUP_LIMIT_MAX)
743 unit_value = PAGE_ALIGN_DOWN(unit_value);
744
745 *ret_unit_value = unit_value;
746
747 return *ret_kernel_value == *ret_unit_value;
748 }
749
750 #define FORMAT_CGROUP_DIFF_MAX 128
751
752 static char *format_cgroup_memory_limit_comparison(Unit *u, const char *property_name, char *buf, size_t l) {
753 uint64_t kval, sval;
754 int r;
755
756 assert(u);
757 assert(property_name);
758 assert(buf);
759 assert(l > 0);
760
761 r = unit_compare_memory_limit(u, property_name, &sval, &kval);
762
763 /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
764 * In the absence of reliably being able to detect whether memcg swap support is available or not,
765 * only complain if the error is not ENOENT. This is similarly the case for memory.zswap.max relying
766 * on CONFIG_ZSWAP. */
767 if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
768 (r == -ENOENT && STR_IN_SET(property_name,
769 "MemorySwapMax",
770 "StartupMemorySwapMax",
771 "MemoryZSwapMax",
772 "StartupMemoryZSwapMax")))
773 buf[0] = 0;
774 else if (r < 0) {
775 errno = -r;
776 (void) snprintf(buf, l, " (error getting kernel value: %m)");
777 } else
778 (void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
779
780 return buf;
781 }
782
783 const char *cgroup_device_permissions_to_string(CGroupDevicePermissions p) {
784 static const char *table[_CGROUP_DEVICE_PERMISSIONS_MAX] = {
785 /* Lets simply define a table with every possible combination. As long as those are just 8 we
786 * can get away with it. If this ever grows to more we need to revisit this logic though. */
787 [0] = "",
788 [CGROUP_DEVICE_READ] = "r",
789 [CGROUP_DEVICE_WRITE] = "w",
790 [CGROUP_DEVICE_MKNOD] = "m",
791 [CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE] = "rw",
792 [CGROUP_DEVICE_READ|CGROUP_DEVICE_MKNOD] = "rm",
793 [CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "wm",
794 [CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "rwm",
795 };
796
797 if (p < 0 || p >= _CGROUP_DEVICE_PERMISSIONS_MAX)
798 return NULL;
799
800 return table[p];
801 }
802
803 CGroupDevicePermissions cgroup_device_permissions_from_string(const char *s) {
804 CGroupDevicePermissions p = 0;
805
806 if (!s)
807 return _CGROUP_DEVICE_PERMISSIONS_INVALID;
808
809 for (const char *c = s; *c; c++) {
810 if (*c == 'r')
811 p |= CGROUP_DEVICE_READ;
812 else if (*c == 'w')
813 p |= CGROUP_DEVICE_WRITE;
814 else if (*c == 'm')
815 p |= CGROUP_DEVICE_MKNOD;
816 else
817 return _CGROUP_DEVICE_PERMISSIONS_INVALID;
818 }
819
820 return p;
821 }
822
823 void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
824 _cleanup_free_ char *disable_controllers_str = NULL, *delegate_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
825 CGroupContext *c;
826 struct in_addr_prefix *iaai;
827 char cda[FORMAT_CGROUP_DIFF_MAX], cdb[FORMAT_CGROUP_DIFF_MAX], cdc[FORMAT_CGROUP_DIFF_MAX], cdd[FORMAT_CGROUP_DIFF_MAX],
828 cde[FORMAT_CGROUP_DIFF_MAX], cdf[FORMAT_CGROUP_DIFF_MAX], cdg[FORMAT_CGROUP_DIFF_MAX], cdh[FORMAT_CGROUP_DIFF_MAX],
829 cdi[FORMAT_CGROUP_DIFF_MAX], cdj[FORMAT_CGROUP_DIFF_MAX], cdk[FORMAT_CGROUP_DIFF_MAX];
830
831 assert(u);
832 assert(f);
833
834 assert_se(c = unit_get_cgroup_context(u));
835
836 prefix = strempty(prefix);
837
838 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
839 (void) cg_mask_to_string(c->delegate_controllers, &delegate_controllers_str);
840
841 /* "Delegate=" means "yes, but no controllers". Show this as "(none)". */
842 const char *delegate_str = delegate_controllers_str ?: c->delegate ? "(none)" : "no";
843
844 cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
845 startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
846 cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
847 startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
848
849 fprintf(f,
850 "%sCPUAccounting: %s\n"
851 "%sIOAccounting: %s\n"
852 "%sBlockIOAccounting: %s\n"
853 "%sMemoryAccounting: %s\n"
854 "%sTasksAccounting: %s\n"
855 "%sIPAccounting: %s\n"
856 "%sCPUWeight: %" PRIu64 "\n"
857 "%sStartupCPUWeight: %" PRIu64 "\n"
858 "%sCPUShares: %" PRIu64 "\n"
859 "%sStartupCPUShares: %" PRIu64 "\n"
860 "%sCPUQuotaPerSecSec: %s\n"
861 "%sCPUQuotaPeriodSec: %s\n"
862 "%sAllowedCPUs: %s\n"
863 "%sStartupAllowedCPUs: %s\n"
864 "%sAllowedMemoryNodes: %s\n"
865 "%sStartupAllowedMemoryNodes: %s\n"
866 "%sIOWeight: %" PRIu64 "\n"
867 "%sStartupIOWeight: %" PRIu64 "\n"
868 "%sBlockIOWeight: %" PRIu64 "\n"
869 "%sStartupBlockIOWeight: %" PRIu64 "\n"
870 "%sDefaultMemoryMin: %" PRIu64 "\n"
871 "%sDefaultMemoryLow: %" PRIu64 "\n"
872 "%sMemoryMin: %" PRIu64 "%s\n"
873 "%sMemoryLow: %" PRIu64 "%s\n"
874 "%sStartupMemoryLow: %" PRIu64 "%s\n"
875 "%sMemoryHigh: %" PRIu64 "%s\n"
876 "%sStartupMemoryHigh: %" PRIu64 "%s\n"
877 "%sMemoryMax: %" PRIu64 "%s\n"
878 "%sStartupMemoryMax: %" PRIu64 "%s\n"
879 "%sMemorySwapMax: %" PRIu64 "%s\n"
880 "%sStartupMemorySwapMax: %" PRIu64 "%s\n"
881 "%sMemoryZSwapMax: %" PRIu64 "%s\n"
882 "%sStartupMemoryZSwapMax: %" PRIu64 "%s\n"
883 "%sMemoryZSwapWriteback: %s\n"
884 "%sMemoryLimit: %" PRIu64 "\n"
885 "%sTasksMax: %" PRIu64 "\n"
886 "%sDevicePolicy: %s\n"
887 "%sDisableControllers: %s\n"
888 "%sDelegate: %s\n"
889 "%sManagedOOMSwap: %s\n"
890 "%sManagedOOMMemoryPressure: %s\n"
891 "%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
892 "%sManagedOOMPreference: %s\n"
893 "%sMemoryPressureWatch: %s\n"
894 "%sCoredumpReceive: %s\n",
895 prefix, yes_no(c->cpu_accounting),
896 prefix, yes_no(c->io_accounting),
897 prefix, yes_no(c->blockio_accounting),
898 prefix, yes_no(c->memory_accounting),
899 prefix, yes_no(c->tasks_accounting),
900 prefix, yes_no(c->ip_accounting),
901 prefix, c->cpu_weight,
902 prefix, c->startup_cpu_weight,
903 prefix, c->cpu_shares,
904 prefix, c->startup_cpu_shares,
905 prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
906 prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
907 prefix, strempty(cpuset_cpus),
908 prefix, strempty(startup_cpuset_cpus),
909 prefix, strempty(cpuset_mems),
910 prefix, strempty(startup_cpuset_mems),
911 prefix, c->io_weight,
912 prefix, c->startup_io_weight,
913 prefix, c->blockio_weight,
914 prefix, c->startup_blockio_weight,
915 prefix, c->default_memory_min,
916 prefix, c->default_memory_low,
917 prefix, c->memory_min, format_cgroup_memory_limit_comparison(u, "MemoryMin", cda, sizeof(cda)),
918 prefix, c->memory_low, format_cgroup_memory_limit_comparison(u, "MemoryLow", cdb, sizeof(cdb)),
919 prefix, c->startup_memory_low, format_cgroup_memory_limit_comparison(u, "StartupMemoryLow", cdc, sizeof(cdc)),
920 prefix, c->memory_high, format_cgroup_memory_limit_comparison(u, "MemoryHigh", cdd, sizeof(cdd)),
921 prefix, c->startup_memory_high, format_cgroup_memory_limit_comparison(u, "StartupMemoryHigh", cde, sizeof(cde)),
922 prefix, c->memory_max, format_cgroup_memory_limit_comparison(u, "MemoryMax", cdf, sizeof(cdf)),
923 prefix, c->startup_memory_max, format_cgroup_memory_limit_comparison(u, "StartupMemoryMax", cdg, sizeof(cdg)),
924 prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(u, "MemorySwapMax", cdh, sizeof(cdh)),
925 prefix, c->startup_memory_swap_max, format_cgroup_memory_limit_comparison(u, "StartupMemorySwapMax", cdi, sizeof(cdi)),
926 prefix, c->memory_zswap_max, format_cgroup_memory_limit_comparison(u, "MemoryZSwapMax", cdj, sizeof(cdj)),
927 prefix, c->startup_memory_zswap_max, format_cgroup_memory_limit_comparison(u, "StartupMemoryZSwapMax", cdk, sizeof(cdk)),
928 prefix, yes_no(c->memory_zswap_writeback),
929 prefix, c->memory_limit,
930 prefix, cgroup_tasks_max_resolve(&c->tasks_max),
931 prefix, cgroup_device_policy_to_string(c->device_policy),
932 prefix, strempty(disable_controllers_str),
933 prefix, delegate_str,
934 prefix, managed_oom_mode_to_string(c->moom_swap),
935 prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
936 prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
937 prefix, managed_oom_preference_to_string(c->moom_preference),
938 prefix, cgroup_pressure_watch_to_string(c->memory_pressure_watch),
939 prefix, yes_no(c->coredump_receive));
940
941 if (c->delegate_subgroup)
942 fprintf(f, "%sDelegateSubgroup: %s\n",
943 prefix, c->delegate_subgroup);
944
945 if (c->memory_pressure_threshold_usec != USEC_INFINITY)
946 fprintf(f, "%sMemoryPressureThresholdSec: %s\n",
947 prefix, FORMAT_TIMESPAN(c->memory_pressure_threshold_usec, 1));
948
949 LIST_FOREACH(device_allow, a, c->device_allow)
950 /* strna() below should be redundant, for avoiding -Werror=format-overflow= error. See #30223. */
951 fprintf(f,
952 "%sDeviceAllow: %s %s\n",
953 prefix,
954 a->path,
955 strna(cgroup_device_permissions_to_string(a->permissions)));
956
957 LIST_FOREACH(device_weights, iw, c->io_device_weights)
958 fprintf(f,
959 "%sIODeviceWeight: %s %" PRIu64 "\n",
960 prefix,
961 iw->path,
962 iw->weight);
963
964 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
965 fprintf(f,
966 "%sIODeviceLatencyTargetSec: %s %s\n",
967 prefix,
968 l->path,
969 FORMAT_TIMESPAN(l->target_usec, 1));
970
971 LIST_FOREACH(device_limits, il, c->io_device_limits)
972 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
973 if (il->limits[type] != cgroup_io_limit_defaults[type])
974 fprintf(f,
975 "%s%s: %s %s\n",
976 prefix,
977 cgroup_io_limit_type_to_string(type),
978 il->path,
979 FORMAT_BYTES(il->limits[type]));
980
981 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
982 fprintf(f,
983 "%sBlockIODeviceWeight: %s %" PRIu64,
984 prefix,
985 w->path,
986 w->weight);
987
988 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
989 if (b->rbps != CGROUP_LIMIT_MAX)
990 fprintf(f,
991 "%sBlockIOReadBandwidth: %s %s\n",
992 prefix,
993 b->path,
994 FORMAT_BYTES(b->rbps));
995 if (b->wbps != CGROUP_LIMIT_MAX)
996 fprintf(f,
997 "%sBlockIOWriteBandwidth: %s %s\n",
998 prefix,
999 b->path,
1000 FORMAT_BYTES(b->wbps));
1001 }
1002
1003 SET_FOREACH(iaai, c->ip_address_allow)
1004 fprintf(f, "%sIPAddressAllow: %s\n", prefix,
1005 IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
1006 SET_FOREACH(iaai, c->ip_address_deny)
1007 fprintf(f, "%sIPAddressDeny: %s\n", prefix,
1008 IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
1009
1010 STRV_FOREACH(path, c->ip_filters_ingress)
1011 fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
1012 STRV_FOREACH(path, c->ip_filters_egress)
1013 fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
1014
1015 LIST_FOREACH(programs, p, c->bpf_foreign_programs)
1016 fprintf(f, "%sBPFProgram: %s:%s",
1017 prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
1018
1019 if (c->socket_bind_allow) {
1020 fprintf(f, "%sSocketBindAllow: ", prefix);
1021 cgroup_context_dump_socket_bind_items(c->socket_bind_allow, f);
1022 fputc('\n', f);
1023 }
1024
1025 if (c->socket_bind_deny) {
1026 fprintf(f, "%sSocketBindDeny: ", prefix);
1027 cgroup_context_dump_socket_bind_items(c->socket_bind_deny, f);
1028 fputc('\n', f);
1029 }
1030
1031 if (c->restrict_network_interfaces) {
1032 char *iface;
1033 SET_FOREACH(iface, c->restrict_network_interfaces)
1034 fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
1035 }
1036
1037 FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets)
1038 fprintf(f, "%sNFTSet: %s:%s:%s:%s\n", prefix, nft_set_source_to_string(nft_set->source),
1039 nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set);
1040 }
1041
1042 void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
1043 const char *family, *colon1, *protocol = "", *colon2 = "";
1044
1045 family = strempty(af_to_ipv4_ipv6(item->address_family));
1046 colon1 = isempty(family) ? "" : ":";
1047
1048 if (item->ip_protocol != 0) {
1049 protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
1050 colon2 = ":";
1051 }
1052
1053 if (item->nr_ports == 0)
1054 fprintf(f, "%s%s%s%sany", family, colon1, protocol, colon2);
1055 else if (item->nr_ports == 1)
1056 fprintf(f, "%s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
1057 else {
1058 uint16_t port_max = item->port_min + item->nr_ports - 1;
1059 fprintf(f, "%s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
1060 item->port_min, port_max);
1061 }
1062 }
1063
1064 void cgroup_context_dump_socket_bind_items(const CGroupSocketBindItem *items, FILE *f) {
1065 bool first = true;
1066
1067 LIST_FOREACH(socket_bind_items, bi, items) {
1068 if (first)
1069 first = false;
1070 else
1071 fputc(' ', f);
1072
1073 cgroup_context_dump_socket_bind_item(bi, f);
1074 }
1075 }
1076
1077 int cgroup_context_add_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
1078 _cleanup_free_ CGroupDeviceAllow *a = NULL;
1079 _cleanup_free_ char *d = NULL;
1080
1081 assert(c);
1082 assert(dev);
1083 assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
1084
1085 if (p == 0)
1086 p = _CGROUP_DEVICE_PERMISSIONS_ALL;
1087
1088 a = new(CGroupDeviceAllow, 1);
1089 if (!a)
1090 return -ENOMEM;
1091
1092 d = strdup(dev);
1093 if (!d)
1094 return -ENOMEM;
1095
1096 *a = (CGroupDeviceAllow) {
1097 .path = TAKE_PTR(d),
1098 .permissions = p,
1099 };
1100
1101 LIST_PREPEND(device_allow, c->device_allow, a);
1102 TAKE_PTR(a);
1103
1104 return 0;
1105 }
1106
1107 int cgroup_context_add_or_update_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
1108 assert(c);
1109 assert(dev);
1110 assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
1111
1112 if (p == 0)
1113 p = _CGROUP_DEVICE_PERMISSIONS_ALL;
1114
1115 LIST_FOREACH(device_allow, b, c->device_allow)
1116 if (path_equal(b->path, dev)) {
1117 b->permissions = p;
1118 return 0;
1119 }
1120
1121 return cgroup_context_add_device_allow(c, dev, p);
1122 }
1123
1124 int cgroup_context_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
1125 CGroupBPFForeignProgram *p;
1126 _cleanup_free_ char *d = NULL;
1127
1128 assert(c);
1129 assert(bpffs_path);
1130
1131 if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
1132 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized: %m");
1133
1134 d = strdup(bpffs_path);
1135 if (!d)
1136 return log_oom();
1137
1138 p = new(CGroupBPFForeignProgram, 1);
1139 if (!p)
1140 return log_oom();
1141
1142 *p = (CGroupBPFForeignProgram) {
1143 .attach_type = attach_type,
1144 .bpffs_path = TAKE_PTR(d),
1145 };
1146
1147 LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
1148
1149 return 0;
1150 }
1151
1152 #define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
1153 uint64_t unit_get_ancestor_##entry(Unit *u) { \
1154 CGroupContext *c; \
1155 \
1156 /* 1. Is entry set in this unit? If so, use that. \
1157 * 2. Is the default for this entry set in any \
1158 * ancestor? If so, use that. \
1159 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
1160 \
1161 assert(u); \
1162 \
1163 c = unit_get_cgroup_context(u); \
1164 if (c && c->entry##_set) \
1165 return c->entry; \
1166 \
1167 while ((u = UNIT_GET_SLICE(u))) { \
1168 c = unit_get_cgroup_context(u); \
1169 if (c && c->default_##entry##_set) \
1170 return c->default_##entry; \
1171 } \
1172 \
1173 /* We've reached the root, but nobody had default for \
1174 * this entry set, so set it to the kernel default. */ \
1175 return CGROUP_LIMIT_MIN; \
1176 }
1177
1178 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
1179 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(startup_memory_low);
1180 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
1181
1182 static void unit_set_xattr_graceful(Unit *u, const char *name, const void *data, size_t size) {
1183 int r;
1184
1185 assert(u);
1186 assert(name);
1187
1188 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1189 if (!crt || !crt->cgroup_path)
1190 return;
1191
1192 r = cg_set_xattr(crt->cgroup_path, name, data, size, 0);
1193 if (r < 0)
1194 log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(crt->cgroup_path));
1195 }
1196
1197 static void unit_remove_xattr_graceful(Unit *u, const char *name) {
1198 int r;
1199
1200 assert(u);
1201 assert(name);
1202
1203 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1204 if (!crt || !crt->cgroup_path)
1205 return;
1206
1207 r = cg_remove_xattr(crt->cgroup_path, name);
1208 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
1209 log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(crt->cgroup_path));
1210 }
1211
1212 static void cgroup_oomd_xattr_apply(Unit *u) {
1213 CGroupContext *c;
1214
1215 assert(u);
1216
1217 c = unit_get_cgroup_context(u);
1218 if (!c)
1219 return;
1220
1221 if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
1222 unit_set_xattr_graceful(u, "user.oomd_omit", "1", 1);
1223
1224 if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
1225 unit_set_xattr_graceful(u, "user.oomd_avoid", "1", 1);
1226
1227 if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
1228 unit_remove_xattr_graceful(u, "user.oomd_avoid");
1229
1230 if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
1231 unit_remove_xattr_graceful(u, "user.oomd_omit");
1232 }
1233
1234 static int cgroup_log_xattr_apply(Unit *u) {
1235 ExecContext *c;
1236 size_t len, allowed_patterns_len, denied_patterns_len;
1237 _cleanup_free_ char *patterns = NULL, *allowed_patterns = NULL, *denied_patterns = NULL;
1238 char *last;
1239 int r;
1240
1241 assert(u);
1242
1243 c = unit_get_exec_context(u);
1244 if (!c)
1245 /* Some unit types have a cgroup context but no exec context, so we do not log
1246 * any error here to avoid confusion. */
1247 return 0;
1248
1249 if (set_isempty(c->log_filter_allowed_patterns) && set_isempty(c->log_filter_denied_patterns)) {
1250 unit_remove_xattr_graceful(u, "user.journald_log_filter_patterns");
1251 return 0;
1252 }
1253
1254 r = set_make_nulstr(c->log_filter_allowed_patterns, &allowed_patterns, &allowed_patterns_len);
1255 if (r < 0)
1256 return log_debug_errno(r, "Failed to make nulstr from set: %m");
1257
1258 r = set_make_nulstr(c->log_filter_denied_patterns, &denied_patterns, &denied_patterns_len);
1259 if (r < 0)
1260 return log_debug_errno(r, "Failed to make nulstr from set: %m");
1261
1262 /* Use nul character separated strings without trailing nul */
1263 allowed_patterns_len = LESS_BY(allowed_patterns_len, 1u);
1264 denied_patterns_len = LESS_BY(denied_patterns_len, 1u);
1265
1266 len = allowed_patterns_len + 1 + denied_patterns_len;
1267 patterns = new(char, len);
1268 if (!patterns)
1269 return log_oom_debug();
1270
1271 last = mempcpy_safe(patterns, allowed_patterns, allowed_patterns_len);
1272 *(last++) = '\xff';
1273 memcpy_safe(last, denied_patterns, denied_patterns_len);
1274
1275 unit_set_xattr_graceful(u, "user.journald_log_filter_patterns", patterns, len);
1276
1277 return 0;
1278 }
1279
1280 static void cgroup_invocation_id_xattr_apply(Unit *u) {
1281 bool b;
1282
1283 assert(u);
1284
1285 b = !sd_id128_is_null(u->invocation_id);
1286 FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
1287 if (b)
1288 unit_set_xattr_graceful(u, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
1289 else
1290 unit_remove_xattr_graceful(u, xn);
1291 }
1292 }
1293
1294 static void cgroup_coredump_xattr_apply(Unit *u) {
1295 CGroupContext *c;
1296
1297 assert(u);
1298
1299 c = unit_get_cgroup_context(u);
1300 if (!c)
1301 return;
1302
1303 if (unit_cgroup_delegate(u) && c->coredump_receive)
1304 unit_set_xattr_graceful(u, "user.coredump_receive", "1", 1);
1305 else
1306 unit_remove_xattr_graceful(u, "user.coredump_receive");
1307 }
1308
1309 static void cgroup_delegate_xattr_apply(Unit *u) {
1310 bool b;
1311
1312 assert(u);
1313
1314 /* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
1315 * didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
1316 * and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
1317 * given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
1318 * since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
1319 * security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
1320 * be a big problem given this communicates delegation state to clients, but the manager never reads
1321 * it. */
1322 b = unit_cgroup_delegate(u);
1323 FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
1324 if (b)
1325 unit_set_xattr_graceful(u, xn, "1", 1);
1326 else
1327 unit_remove_xattr_graceful(u, xn);
1328 }
1329 }
1330
1331 static void cgroup_survive_xattr_apply(Unit *u) {
1332 int r;
1333
1334 assert(u);
1335
1336 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1337 if (!crt)
1338 return;
1339
1340 if (u->survive_final_kill_signal) {
1341 r = cg_set_xattr(
1342 crt->cgroup_path,
1343 "user.survive_final_kill_signal",
1344 "1",
1345 1,
1346 /* flags= */ 0);
1347 /* user xattr support was added in kernel v5.7 */
1348 if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
1349 r = cg_set_xattr(
1350 crt->cgroup_path,
1351 "trusted.survive_final_kill_signal",
1352 "1",
1353 1,
1354 /* flags= */ 0);
1355 if (r < 0)
1356 log_unit_debug_errno(u,
1357 r,
1358 "Failed to set 'survive_final_kill_signal' xattr on control "
1359 "group %s, ignoring: %m",
1360 empty_to_root(crt->cgroup_path));
1361 } else {
1362 unit_remove_xattr_graceful(u, "user.survive_final_kill_signal");
1363 unit_remove_xattr_graceful(u, "trusted.survive_final_kill_signal");
1364 }
1365 }
1366
1367 static void cgroup_xattr_apply(Unit *u) {
1368 assert(u);
1369
1370 /* The 'user.*' xattrs can be set from a user manager. */
1371 cgroup_oomd_xattr_apply(u);
1372 cgroup_log_xattr_apply(u);
1373 cgroup_coredump_xattr_apply(u);
1374
1375 if (!MANAGER_IS_SYSTEM(u->manager))
1376 return;
1377
1378 cgroup_invocation_id_xattr_apply(u);
1379 cgroup_delegate_xattr_apply(u);
1380 cgroup_survive_xattr_apply(u);
1381 }
1382
1383 static int lookup_block_device(const char *p, dev_t *ret) {
1384 dev_t rdev, dev = 0;
1385 mode_t mode;
1386 int r;
1387
1388 assert(p);
1389 assert(ret);
1390
1391 r = device_path_parse_major_minor(p, &mode, &rdev);
1392 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
1393 struct stat st;
1394
1395 if (stat(p, &st) < 0)
1396 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
1397
1398 mode = st.st_mode;
1399 rdev = st.st_rdev;
1400 dev = st.st_dev;
1401 } else if (r < 0)
1402 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
1403
1404 if (S_ISCHR(mode))
1405 return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
1406 "Device node '%s' is a character device, but block device needed.", p);
1407 if (S_ISBLK(mode))
1408 *ret = rdev;
1409 else if (major(dev) != 0)
1410 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
1411 else {
1412 /* If this is btrfs, getting the backing block device is a bit harder */
1413 r = btrfs_get_block_device(p, ret);
1414 if (r == -ENOTTY)
1415 return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
1416 "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
1417 if (r < 0)
1418 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
1419 }
1420
1421 /* If this is a LUKS/DM device, recursively try to get the originating block device */
1422 while (block_get_originating(*ret, ret) > 0);
1423
1424 /* If this is a partition, try to get the originating block device */
1425 (void) block_get_whole_disk(*ret, ret);
1426 return 0;
1427 }
1428
1429 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
1430 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
1431 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
1432 }
1433
1434 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
1435 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
1436 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
1437 }
1438
1439 static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
1440 return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
1441 }
1442
1443 static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
1444 return c->cpuset_mems.set || c->startup_cpuset_mems.set;
1445 }
1446
1447 uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
1448 assert(c);
1449
1450 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1451 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
1452 return c->startup_cpu_weight;
1453 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
1454 return c->cpu_weight;
1455 else
1456 return CGROUP_WEIGHT_DEFAULT;
1457 }
1458
1459 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
1460 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1461 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
1462 return c->startup_cpu_shares;
1463 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
1464 return c->cpu_shares;
1465 else
1466 return CGROUP_CPU_SHARES_DEFAULT;
1467 }
1468
1469 static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
1470 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1471 c->startup_cpuset_cpus.set)
1472 return &c->startup_cpuset_cpus;
1473 else
1474 return &c->cpuset_cpus;
1475 }
1476
1477 static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
1478 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1479 c->startup_cpuset_mems.set)
1480 return &c->startup_cpuset_mems;
1481 else
1482 return &c->cpuset_mems;
1483 }
1484
1485 usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
1486 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
1487 * need to be higher than that boundary. quota is specified in USecPerSec.
1488 * Additionally, period must be at most max_period. */
1489 assert(quota > 0);
1490
1491 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
1492 }
1493
1494 static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
1495 usec_t new_period;
1496
1497 assert(u);
1498
1499 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1500 if (!crt)
1501 return USEC_INFINITY;
1502
1503 if (quota == USEC_INFINITY)
1504 /* Always use default period for infinity quota. */
1505 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
1506
1507 if (period == USEC_INFINITY)
1508 /* Default period was requested. */
1509 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
1510
1511 /* Clamp to interval [1ms, 1s] */
1512 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
1513
1514 if (new_period != period) {
1515 log_unit_full(u, crt->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
1516 "Clamping CPU interval for cpu.max: period is now %s",
1517 FORMAT_TIMESPAN(new_period, 1));
1518 crt->warned_clamping_cpu_quota_period = true;
1519 }
1520
1521 return new_period;
1522 }
1523
1524 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
1525 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1526
1527 if (weight == CGROUP_WEIGHT_IDLE)
1528 return;
1529 xsprintf(buf, "%" PRIu64 "\n", weight);
1530 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
1531 }
1532
1533 static void cgroup_apply_unified_cpu_idle(Unit *u, uint64_t weight) {
1534 int r;
1535 bool is_idle;
1536 const char *idle_val;
1537
1538 assert(u);
1539
1540 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1541 if (!crt || !crt->cgroup_path)
1542 return;
1543
1544 is_idle = weight == CGROUP_WEIGHT_IDLE;
1545 idle_val = one_zero(is_idle);
1546 r = cg_set_attribute("cpu", crt->cgroup_path, "cpu.idle", idle_val);
1547 if (r < 0 && (r != -ENOENT || is_idle))
1548 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%s': %m",
1549 "cpu.idle", empty_to_root(crt->cgroup_path), idle_val);
1550 }
1551
1552 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
1553 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
1554
1555 assert(u);
1556
1557 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
1558 if (quota != USEC_INFINITY)
1559 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
1560 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
1561 else
1562 xsprintf(buf, "max " USEC_FMT "\n", period);
1563 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
1564 }
1565
1566 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
1567 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1568
1569 xsprintf(buf, "%" PRIu64 "\n", shares);
1570 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
1571 }
1572
1573 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
1574 char buf[DECIMAL_STR_MAX(usec_t) + 2];
1575
1576 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
1577
1578 xsprintf(buf, USEC_FMT "\n", period);
1579 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
1580
1581 if (quota != USEC_INFINITY) {
1582 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
1583 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
1584 } else
1585 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
1586 }
1587
1588 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
1589 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
1590 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1591 }
1592
1593 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
1594 /* we don't support idle in cgroupv1 */
1595 if (weight == CGROUP_WEIGHT_IDLE)
1596 return CGROUP_CPU_SHARES_MIN;
1597
1598 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1599 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
1600 }
1601
1602 static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
1603 _cleanup_free_ char *buf = NULL;
1604
1605 buf = cpu_set_to_range_string(cpus);
1606 if (!buf) {
1607 log_oom();
1608 return;
1609 }
1610
1611 (void) set_attribute_and_warn(u, "cpuset", name, buf);
1612 }
1613
1614 static bool cgroup_context_has_io_config(CGroupContext *c) {
1615 return c->io_accounting ||
1616 c->io_weight != CGROUP_WEIGHT_INVALID ||
1617 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
1618 c->io_device_weights ||
1619 c->io_device_latencies ||
1620 c->io_device_limits;
1621 }
1622
1623 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
1624 return c->blockio_accounting ||
1625 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1626 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1627 c->blockio_device_weights ||
1628 c->blockio_device_bandwidths;
1629 }
1630
1631 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
1632 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1633 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
1634 return c->startup_io_weight;
1635 if (c->io_weight != CGROUP_WEIGHT_INVALID)
1636 return c->io_weight;
1637 return CGROUP_WEIGHT_DEFAULT;
1638 }
1639
1640 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
1641 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1642 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1643 return c->startup_blockio_weight;
1644 if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1645 return c->blockio_weight;
1646 return CGROUP_BLKIO_WEIGHT_DEFAULT;
1647 }
1648
1649 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
1650 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
1651 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1652 }
1653
1654 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
1655 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1656 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
1657 }
1658
1659 static int set_bfq_weight(Unit *u, const char *controller, dev_t dev, uint64_t io_weight) {
1660 static const char * const prop_names[] = {
1661 "IOWeight",
1662 "BlockIOWeight",
1663 "IODeviceWeight",
1664 "BlockIODeviceWeight",
1665 };
1666 static bool warned = false;
1667 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
1668 const char *p;
1669 uint64_t bfq_weight;
1670 int r;
1671
1672 assert(u);
1673
1674 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1675 if (!crt || !crt->cgroup_path)
1676 return -EOWNERDEAD;
1677
1678 /* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
1679 * See also: https://github.com/systemd/systemd/pull/13335 and
1680 * https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
1681 p = strjoina(controller, ".bfq.weight");
1682 /* Adjust to kernel range is 1..1000, the default is 100. */
1683 bfq_weight = BFQ_WEIGHT(io_weight);
1684
1685 if (major(dev) > 0)
1686 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), bfq_weight);
1687 else
1688 xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
1689
1690 r = cg_set_attribute(controller, crt->cgroup_path, p, buf);
1691
1692 /* FIXME: drop this when kernels prior
1693 * 795fe54c2a82 ("bfq: Add per-device weight") v5.4
1694 * are not interesting anymore. Old kernels will fail with EINVAL, while new kernels won't return
1695 * EINVAL on properly formatted input by us. Treat EINVAL accordingly. */
1696 if (r == -EINVAL && major(dev) > 0) {
1697 if (!warned) {
1698 log_unit_warning(u, "Kernel version does not accept per-device setting in %s.", p);
1699 warned = true;
1700 }
1701 r = -EOPNOTSUPP; /* mask as unconfigured device */
1702 } else if (r >= 0 && io_weight != bfq_weight)
1703 log_unit_debug(u, "%s=%" PRIu64 " scaled to %s=%" PRIu64,
1704 prop_names[2*(major(dev) > 0) + streq(controller, "blkio")],
1705 io_weight, p, bfq_weight);
1706 return r;
1707 }
1708
1709 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
1710 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1711 dev_t dev;
1712 int r, r1, r2;
1713
1714 assert(u);
1715
1716 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1717 if (!crt || !crt->cgroup_path)
1718 return;
1719
1720 if (lookup_block_device(dev_path, &dev) < 0)
1721 return;
1722
1723 r1 = set_bfq_weight(u, "io", dev, io_weight);
1724
1725 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), io_weight);
1726 r2 = cg_set_attribute("io", crt->cgroup_path, "io.weight", buf);
1727
1728 /* Look at the configured device, when both fail, prefer io.weight errno. */
1729 r = r2 == -EOPNOTSUPP ? r1 : r2;
1730
1731 if (r < 0)
1732 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r),
1733 r, "Failed to set 'io[.bfq].weight' attribute on '%s' to '%.*s': %m",
1734 empty_to_root(crt->cgroup_path), (int) strcspn(buf, NEWLINE), buf);
1735 }
1736
1737 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
1738 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1739 dev_t dev;
1740 int r;
1741
1742 r = lookup_block_device(dev_path, &dev);
1743 if (r < 0)
1744 return;
1745
1746 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), blkio_weight);
1747 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
1748 }
1749
1750 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
1751 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
1752 dev_t dev;
1753 int r;
1754
1755 r = lookup_block_device(dev_path, &dev);
1756 if (r < 0)
1757 return;
1758
1759 if (target != USEC_INFINITY)
1760 xsprintf(buf, DEVNUM_FORMAT_STR " target=%" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), target);
1761 else
1762 xsprintf(buf, DEVNUM_FORMAT_STR " target=max\n", DEVNUM_FORMAT_VAL(dev));
1763
1764 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
1765 }
1766
1767 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
1768 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
1769 buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
1770 dev_t dev;
1771
1772 if (lookup_block_device(dev_path, &dev) < 0)
1773 return;
1774
1775 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1776 if (limits[type] != cgroup_io_limit_defaults[type])
1777 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
1778 else
1779 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
1780
1781 xsprintf(buf, DEVNUM_FORMAT_STR " rbps=%s wbps=%s riops=%s wiops=%s\n", DEVNUM_FORMAT_VAL(dev),
1782 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
1783 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
1784 (void) set_attribute_and_warn(u, "io", "io.max", buf);
1785 }
1786
1787 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
1788 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1789 dev_t dev;
1790
1791 if (lookup_block_device(dev_path, &dev) < 0)
1792 return;
1793
1794 sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), rbps);
1795 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
1796
1797 sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), wbps);
1798 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
1799 }
1800
1801 static bool unit_has_unified_memory_config(Unit *u) {
1802 CGroupContext *c;
1803
1804 assert(u);
1805
1806 assert_se(c = unit_get_cgroup_context(u));
1807
1808 return unit_get_ancestor_memory_min(u) > 0 ||
1809 unit_get_ancestor_memory_low(u) > 0 || unit_get_ancestor_startup_memory_low(u) > 0 ||
1810 c->memory_high != CGROUP_LIMIT_MAX || c->startup_memory_high_set ||
1811 c->memory_max != CGROUP_LIMIT_MAX || c->startup_memory_max_set ||
1812 c->memory_swap_max != CGROUP_LIMIT_MAX || c->startup_memory_swap_max_set ||
1813 c->memory_zswap_max != CGROUP_LIMIT_MAX || c->startup_memory_zswap_max_set;
1814 }
1815
1816 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
1817 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
1818
1819 if (v != CGROUP_LIMIT_MAX)
1820 xsprintf(buf, "%" PRIu64 "\n", v);
1821
1822 (void) set_attribute_and_warn(u, "memory", file, buf);
1823 }
1824
1825 static void cgroup_apply_firewall(Unit *u) {
1826 assert(u);
1827
1828 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
1829
1830 if (bpf_firewall_compile(u) < 0)
1831 return;
1832
1833 (void) bpf_firewall_load_custom(u);
1834 (void) bpf_firewall_install(u);
1835 }
1836
1837 void unit_modify_nft_set(Unit *u, bool add) {
1838 int r;
1839
1840 assert(u);
1841
1842 if (!MANAGER_IS_SYSTEM(u->manager))
1843 return;
1844
1845 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1846 return;
1847
1848 if (cg_all_unified() <= 0)
1849 return;
1850
1851 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1852 if (!crt || crt->cgroup_id == 0)
1853 return;
1854
1855 if (!u->manager->fw_ctx) {
1856 r = fw_ctx_new_full(&u->manager->fw_ctx, /* init_tables= */ false);
1857 if (r < 0)
1858 return;
1859
1860 assert(u->manager->fw_ctx);
1861 }
1862
1863 CGroupContext *c = ASSERT_PTR(unit_get_cgroup_context(u));
1864
1865 FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets) {
1866 if (nft_set->source != NFT_SET_SOURCE_CGROUP)
1867 continue;
1868
1869 uint64_t element = crt->cgroup_id;
1870
1871 r = nft_set_element_modify_any(u->manager->fw_ctx, add, nft_set->nfproto, nft_set->table, nft_set->set, &element, sizeof(element));
1872 if (r < 0)
1873 log_warning_errno(r, "Failed to %s NFT set: family %s, table %s, set %s, cgroup %" PRIu64 ", ignoring: %m",
1874 add? "add" : "delete", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, crt->cgroup_id);
1875 else
1876 log_debug("%s NFT set: family %s, table %s, set %s, cgroup %" PRIu64,
1877 add? "Added" : "Deleted", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, crt->cgroup_id);
1878 }
1879 }
1880
1881 static void cgroup_apply_socket_bind(Unit *u) {
1882 assert(u);
1883
1884 (void) bpf_socket_bind_install(u);
1885 }
1886
1887 static void cgroup_apply_restrict_network_interfaces(Unit *u) {
1888 assert(u);
1889
1890 (void) bpf_restrict_ifaces_install(u);
1891 }
1892
1893 static int cgroup_apply_devices(Unit *u) {
1894 _cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
1895 CGroupContext *c;
1896 CGroupDevicePolicy policy;
1897 int r;
1898
1899 assert_se(c = unit_get_cgroup_context(u));
1900
1901 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
1902 if (!crt || !crt->cgroup_path)
1903 return -EOWNERDEAD;
1904
1905 policy = c->device_policy;
1906
1907 if (cg_all_unified() > 0) {
1908 r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
1909 if (r < 0)
1910 return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1911
1912 } else {
1913 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
1914 * EINVAL here. */
1915
1916 if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
1917 r = cg_set_attribute("devices", crt->cgroup_path, "devices.deny", "a");
1918 else
1919 r = cg_set_attribute("devices", crt->cgroup_path, "devices.allow", "a");
1920 if (r < 0)
1921 log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1922 "Failed to reset devices.allow/devices.deny: %m");
1923 }
1924
1925 bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
1926 (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
1927
1928 bool any = false;
1929 if (allow_list_static) {
1930 r = bpf_devices_allow_list_static(prog, crt->cgroup_path);
1931 if (r > 0)
1932 any = true;
1933 }
1934
1935 LIST_FOREACH(device_allow, a, c->device_allow) {
1936 const char *val;
1937
1938 if (a->permissions == 0)
1939 continue;
1940
1941 if (path_startswith(a->path, "/dev/"))
1942 r = bpf_devices_allow_list_device(prog, crt->cgroup_path, a->path, a->permissions);
1943 else if ((val = startswith(a->path, "block-")))
1944 r = bpf_devices_allow_list_major(prog, crt->cgroup_path, val, 'b', a->permissions);
1945 else if ((val = startswith(a->path, "char-")))
1946 r = bpf_devices_allow_list_major(prog, crt->cgroup_path, val, 'c', a->permissions);
1947 else {
1948 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1949 continue;
1950 }
1951
1952 if (r > 0)
1953 any = true;
1954 }
1955
1956 if (prog && !any) {
1957 log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter.");
1958
1959 /* The kernel verifier would reject a program we would build with the normal intro and outro
1960 but no allow-listing rules (outro would contain an unreachable instruction for successful
1961 return). */
1962 policy = CGROUP_DEVICE_POLICY_STRICT;
1963 }
1964
1965 r = bpf_devices_apply_policy(&prog, policy, any, crt->cgroup_path, &crt->bpf_device_control_installed);
1966 if (r < 0) {
1967 static bool warned = false;
1968
1969 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1970 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1971 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1972 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1973
1974 warned = true;
1975 }
1976 return r;
1977 }
1978
1979 static void set_io_weight(Unit *u, uint64_t weight) {
1980 char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
1981
1982 assert(u);
1983
1984 (void) set_bfq_weight(u, "io", makedev(0, 0), weight);
1985
1986 xsprintf(buf, "default %" PRIu64 "\n", weight);
1987 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1988 }
1989
1990 static void set_blkio_weight(Unit *u, uint64_t weight) {
1991 char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
1992
1993 assert(u);
1994
1995 (void) set_bfq_weight(u, "blkio", makedev(0, 0), weight);
1996
1997 xsprintf(buf, "%" PRIu64 "\n", weight);
1998 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1999 }
2000
2001 static void cgroup_apply_bpf_foreign_program(Unit *u) {
2002 assert(u);
2003
2004 (void) bpf_foreign_install(u);
2005 }
2006
2007 static void cgroup_context_apply(
2008 Unit *u,
2009 CGroupMask apply_mask,
2010 ManagerState state) {
2011
2012 bool is_host_root, is_local_root;
2013 const char *path;
2014 CGroupContext *c;
2015 int r;
2016
2017 assert(u);
2018
2019 /* Nothing to do? Exit early! */
2020 if (apply_mask == 0)
2021 return;
2022
2023 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
2024 * attributes should only be managed for cgroups further down the tree. */
2025 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
2026 is_host_root = unit_has_host_root_cgroup(u);
2027
2028 assert_se(c = unit_get_cgroup_context(u));
2029
2030 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2031 if (!crt || !crt->cgroup_path)
2032 return;
2033
2034 path = crt->cgroup_path;
2035
2036 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
2037 path = "/";
2038
2039 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
2040 * then), and missing cgroups, i.e. EROFS and ENOENT. */
2041
2042 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
2043 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
2044 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
2045 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
2046 * we couldn't even write to them if we wanted to). */
2047 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
2048
2049 if (cg_all_unified() > 0) {
2050 uint64_t weight;
2051
2052 if (cgroup_context_has_cpu_weight(c))
2053 weight = cgroup_context_cpu_weight(c, state);
2054 else if (cgroup_context_has_cpu_shares(c)) {
2055 uint64_t shares;
2056
2057 shares = cgroup_context_cpu_shares(c, state);
2058 weight = cgroup_cpu_shares_to_weight(shares);
2059
2060 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
2061 shares, weight, path);
2062 } else
2063 weight = CGROUP_WEIGHT_DEFAULT;
2064
2065 cgroup_apply_unified_cpu_idle(u, weight);
2066 cgroup_apply_unified_cpu_weight(u, weight);
2067 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
2068
2069 } else {
2070 uint64_t shares;
2071
2072 if (cgroup_context_has_cpu_weight(c)) {
2073 uint64_t weight;
2074
2075 weight = cgroup_context_cpu_weight(c, state);
2076 shares = cgroup_cpu_weight_to_shares(weight);
2077
2078 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
2079 weight, shares, path);
2080 } else if (cgroup_context_has_cpu_shares(c))
2081 shares = cgroup_context_cpu_shares(c, state);
2082 else
2083 shares = CGROUP_CPU_SHARES_DEFAULT;
2084
2085 cgroup_apply_legacy_cpu_shares(u, shares);
2086 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
2087 }
2088 }
2089
2090 if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
2091 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
2092 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
2093 }
2094
2095 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
2096 * controller), and in case of containers we want to leave control of these attributes to the container manager
2097 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
2098 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
2099 bool has_io, has_blockio;
2100 uint64_t weight;
2101
2102 has_io = cgroup_context_has_io_config(c);
2103 has_blockio = cgroup_context_has_blockio_config(c);
2104
2105 if (has_io)
2106 weight = cgroup_context_io_weight(c, state);
2107 else if (has_blockio) {
2108 uint64_t blkio_weight;
2109
2110 blkio_weight = cgroup_context_blkio_weight(c, state);
2111 weight = cgroup_weight_blkio_to_io(blkio_weight);
2112
2113 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
2114 blkio_weight, weight);
2115 } else
2116 weight = CGROUP_WEIGHT_DEFAULT;
2117
2118 set_io_weight(u, weight);
2119
2120 if (has_io) {
2121 LIST_FOREACH(device_weights, w, c->io_device_weights)
2122 cgroup_apply_io_device_weight(u, w->path, w->weight);
2123
2124 LIST_FOREACH(device_limits, limit, c->io_device_limits)
2125 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
2126
2127 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
2128 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
2129
2130 } else if (has_blockio) {
2131 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
2132 weight = cgroup_weight_blkio_to_io(w->weight);
2133
2134 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
2135 w->weight, weight, w->path);
2136
2137 cgroup_apply_io_device_weight(u, w->path, weight);
2138 }
2139
2140 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
2141 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
2142
2143 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
2144 limits[type] = cgroup_io_limit_defaults[type];
2145
2146 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
2147 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
2148
2149 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
2150 b->rbps, b->wbps, b->path);
2151
2152 cgroup_apply_io_device_limit(u, b->path, limits);
2153 }
2154 }
2155 }
2156
2157 if (apply_mask & CGROUP_MASK_BLKIO) {
2158 bool has_io, has_blockio;
2159
2160 has_io = cgroup_context_has_io_config(c);
2161 has_blockio = cgroup_context_has_blockio_config(c);
2162
2163 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
2164 * left to our container manager, too. */
2165 if (!is_local_root) {
2166 uint64_t weight;
2167
2168 if (has_io) {
2169 uint64_t io_weight;
2170
2171 io_weight = cgroup_context_io_weight(c, state);
2172 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
2173
2174 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
2175 io_weight, weight);
2176 } else if (has_blockio)
2177 weight = cgroup_context_blkio_weight(c, state);
2178 else
2179 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
2180
2181 set_blkio_weight(u, weight);
2182
2183 if (has_io)
2184 LIST_FOREACH(device_weights, w, c->io_device_weights) {
2185 weight = cgroup_weight_io_to_blkio(w->weight);
2186
2187 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
2188 w->weight, weight, w->path);
2189
2190 cgroup_apply_blkio_device_weight(u, w->path, weight);
2191 }
2192 else if (has_blockio)
2193 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
2194 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
2195 }
2196
2197 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
2198 * roots, as there we want the container manager to handle it */
2199 if (is_host_root || !is_local_root) {
2200 if (has_io)
2201 LIST_FOREACH(device_limits, l, c->io_device_limits) {
2202 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
2203 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
2204
2205 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
2206 }
2207 else if (has_blockio)
2208 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
2209 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
2210 }
2211 }
2212
2213 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
2214 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
2215 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
2216 * write to this if we wanted to.) */
2217 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
2218
2219 if (cg_all_unified() > 0) {
2220 uint64_t max, swap_max = CGROUP_LIMIT_MAX, zswap_max = CGROUP_LIMIT_MAX, high = CGROUP_LIMIT_MAX;
2221
2222 if (unit_has_unified_memory_config(u)) {
2223 bool startup = IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
2224
2225 high = startup && c->startup_memory_high_set ? c->startup_memory_high : c->memory_high;
2226 max = startup && c->startup_memory_max_set ? c->startup_memory_max : c->memory_max;
2227 swap_max = startup && c->startup_memory_swap_max_set ? c->startup_memory_swap_max : c->memory_swap_max;
2228 zswap_max = startup && c->startup_memory_zswap_max_set ? c->startup_memory_zswap_max : c->memory_zswap_max;
2229 } else {
2230 max = c->memory_limit;
2231
2232 if (max != CGROUP_LIMIT_MAX)
2233 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
2234 }
2235
2236 cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
2237 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
2238 cgroup_apply_unified_memory_limit(u, "memory.high", high);
2239 cgroup_apply_unified_memory_limit(u, "memory.max", max);
2240 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
2241 cgroup_apply_unified_memory_limit(u, "memory.zswap.max", zswap_max);
2242
2243 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
2244 (void) set_attribute_and_warn(u, "memory", "memory.zswap.writeback", one_zero(c->memory_zswap_writeback));
2245
2246 } else {
2247 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
2248 uint64_t val;
2249
2250 if (unit_has_unified_memory_config(u)) {
2251 val = c->memory_max;
2252 if (val != CGROUP_LIMIT_MAX)
2253 log_cgroup_compat(u, "Applying MemoryMax=%" PRIu64 " as MemoryLimit=", val);
2254 } else
2255 val = c->memory_limit;
2256
2257 if (val == CGROUP_LIMIT_MAX)
2258 strncpy(buf, "-1\n", sizeof(buf));
2259 else
2260 xsprintf(buf, "%" PRIu64 "\n", val);
2261
2262 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
2263 }
2264 }
2265
2266 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
2267 * containers, where we leave this to the manager */
2268 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
2269 (is_host_root || cg_all_unified() > 0 || !is_local_root))
2270 (void) cgroup_apply_devices(u);
2271
2272 if (apply_mask & CGROUP_MASK_PIDS) {
2273
2274 if (is_host_root) {
2275 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
2276 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
2277 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
2278 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
2279 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
2280 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
2281 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
2282 * it also counts. But if the user never set a limit through us (i.e. we are the default of
2283 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
2284 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
2285 * which is desirable so that there's an official way to release control of the sysctl from
2286 * systemd: set the limit to unbounded and reload. */
2287
2288 if (cgroup_tasks_max_isset(&c->tasks_max)) {
2289 u->manager->sysctl_pid_max_changed = true;
2290 r = procfs_tasks_set_limit(cgroup_tasks_max_resolve(&c->tasks_max));
2291 } else if (u->manager->sysctl_pid_max_changed)
2292 r = procfs_tasks_set_limit(TASKS_MAX);
2293 else
2294 r = 0;
2295 if (r < 0)
2296 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
2297 "Failed to write to tasks limit sysctls: %m");
2298 }
2299
2300 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
2301 * leave it for the container manager. */
2302 if (!is_local_root) {
2303 if (cgroup_tasks_max_isset(&c->tasks_max)) {
2304 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
2305
2306 xsprintf(buf, "%" PRIu64 "\n", cgroup_tasks_max_resolve(&c->tasks_max));
2307 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
2308 } else
2309 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
2310 }
2311 }
2312
2313 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
2314 cgroup_apply_firewall(u);
2315
2316 if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
2317 cgroup_apply_bpf_foreign_program(u);
2318
2319 if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
2320 cgroup_apply_socket_bind(u);
2321
2322 if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
2323 cgroup_apply_restrict_network_interfaces(u);
2324
2325 unit_modify_nft_set(u, /* add = */ true);
2326 }
2327
2328 static bool unit_get_needs_bpf_firewall(Unit *u) {
2329 CGroupContext *c;
2330 assert(u);
2331
2332 c = unit_get_cgroup_context(u);
2333 if (!c)
2334 return false;
2335
2336 if (c->ip_accounting ||
2337 !set_isempty(c->ip_address_allow) ||
2338 !set_isempty(c->ip_address_deny) ||
2339 c->ip_filters_ingress ||
2340 c->ip_filters_egress)
2341 return true;
2342
2343 /* If any parent slice has an IP access list defined, it applies too */
2344 for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
2345 c = unit_get_cgroup_context(p);
2346 if (!c)
2347 return false;
2348
2349 if (!set_isempty(c->ip_address_allow) ||
2350 !set_isempty(c->ip_address_deny))
2351 return true;
2352 }
2353
2354 return false;
2355 }
2356
2357 static bool unit_get_needs_bpf_foreign_program(Unit *u) {
2358 CGroupContext *c;
2359 assert(u);
2360
2361 c = unit_get_cgroup_context(u);
2362 if (!c)
2363 return false;
2364
2365 return !!c->bpf_foreign_programs;
2366 }
2367
2368 static bool unit_get_needs_socket_bind(Unit *u) {
2369 CGroupContext *c;
2370 assert(u);
2371
2372 c = unit_get_cgroup_context(u);
2373 if (!c)
2374 return false;
2375
2376 return c->socket_bind_allow || c->socket_bind_deny;
2377 }
2378
2379 static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
2380 CGroupContext *c;
2381 assert(u);
2382
2383 c = unit_get_cgroup_context(u);
2384 if (!c)
2385 return false;
2386
2387 return !set_isempty(c->restrict_network_interfaces);
2388 }
2389
2390 static CGroupMask unit_get_cgroup_mask(Unit *u) {
2391 CGroupMask mask = 0;
2392 CGroupContext *c;
2393
2394 assert(u);
2395
2396 assert_se(c = unit_get_cgroup_context(u));
2397
2398 /* Figure out which controllers we need, based on the cgroup context object */
2399
2400 if (c->cpu_accounting)
2401 mask |= get_cpu_accounting_mask();
2402
2403 if (cgroup_context_has_cpu_weight(c) ||
2404 cgroup_context_has_cpu_shares(c) ||
2405 c->cpu_quota_per_sec_usec != USEC_INFINITY)
2406 mask |= CGROUP_MASK_CPU;
2407
2408 if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
2409 mask |= CGROUP_MASK_CPUSET;
2410
2411 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
2412 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
2413
2414 if (c->memory_accounting ||
2415 c->memory_limit != CGROUP_LIMIT_MAX ||
2416 unit_has_unified_memory_config(u))
2417 mask |= CGROUP_MASK_MEMORY;
2418
2419 if (c->device_allow ||
2420 c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
2421 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
2422
2423 if (c->tasks_accounting ||
2424 cgroup_tasks_max_isset(&c->tasks_max))
2425 mask |= CGROUP_MASK_PIDS;
2426
2427 return CGROUP_MASK_EXTEND_JOINED(mask);
2428 }
2429
2430 static CGroupMask unit_get_bpf_mask(Unit *u) {
2431 CGroupMask mask = 0;
2432
2433 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
2434 * too. */
2435
2436 if (unit_get_needs_bpf_firewall(u))
2437 mask |= CGROUP_MASK_BPF_FIREWALL;
2438
2439 if (unit_get_needs_bpf_foreign_program(u))
2440 mask |= CGROUP_MASK_BPF_FOREIGN;
2441
2442 if (unit_get_needs_socket_bind(u))
2443 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
2444
2445 if (unit_get_needs_restrict_network_interfaces(u))
2446 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
2447
2448 return mask;
2449 }
2450
2451 CGroupMask unit_get_own_mask(Unit *u) {
2452 CGroupContext *c;
2453
2454 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
2455 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
2456
2457 if (u->load_state != UNIT_LOADED)
2458 return 0;
2459
2460 c = unit_get_cgroup_context(u);
2461 if (!c)
2462 return 0;
2463
2464 return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
2465 }
2466
2467 CGroupMask unit_get_delegate_mask(Unit *u) {
2468 CGroupContext *c;
2469
2470 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
2471 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
2472 *
2473 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
2474
2475 if (!unit_cgroup_delegate(u))
2476 return 0;
2477
2478 if (cg_all_unified() <= 0) {
2479 ExecContext *e;
2480
2481 e = unit_get_exec_context(u);
2482 if (e && !exec_context_maintains_privileges(e))
2483 return 0;
2484 }
2485
2486 assert_se(c = unit_get_cgroup_context(u));
2487 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
2488 }
2489
2490 static CGroupMask unit_get_subtree_mask(Unit *u) {
2491
2492 /* Returns the mask of this subtree, meaning of the group
2493 * itself and its children. */
2494
2495 return unit_get_own_mask(u) | unit_get_members_mask(u);
2496 }
2497
2498 CGroupMask unit_get_members_mask(Unit *u) {
2499 assert(u);
2500
2501 /* Returns the mask of controllers all of the unit's children require, merged */
2502
2503 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2504 if (crt && crt->cgroup_members_mask_valid)
2505 return crt->cgroup_members_mask; /* Use cached value if possible */
2506
2507 CGroupMask m = 0;
2508 if (u->type == UNIT_SLICE) {
2509 Unit *member;
2510
2511 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
2512 m |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
2513 }
2514
2515 if (crt) {
2516 crt->cgroup_members_mask = m;
2517 crt->cgroup_members_mask_valid = true;
2518 }
2519
2520 return m;
2521 }
2522
2523 CGroupMask unit_get_siblings_mask(Unit *u) {
2524 Unit *slice;
2525 assert(u);
2526
2527 /* Returns the mask of controllers all of the unit's siblings
2528 * require, i.e. the members mask of the unit's parent slice
2529 * if there is one. */
2530
2531 slice = UNIT_GET_SLICE(u);
2532 if (slice)
2533 return unit_get_members_mask(slice);
2534
2535 return unit_get_subtree_mask(u); /* we are the top-level slice */
2536 }
2537
2538 static CGroupMask unit_get_disable_mask(Unit *u) {
2539 CGroupContext *c;
2540
2541 c = unit_get_cgroup_context(u);
2542 if (!c)
2543 return 0;
2544
2545 return c->disable_controllers;
2546 }
2547
2548 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
2549 CGroupMask mask;
2550 Unit *slice;
2551
2552 assert(u);
2553 mask = unit_get_disable_mask(u);
2554
2555 /* Returns the mask of controllers which are marked as forcibly
2556 * disabled in any ancestor unit or the unit in question. */
2557
2558 slice = UNIT_GET_SLICE(u);
2559 if (slice)
2560 mask |= unit_get_ancestor_disable_mask(slice);
2561
2562 return mask;
2563 }
2564
2565 CGroupMask unit_get_target_mask(Unit *u) {
2566 CGroupMask own_mask, mask;
2567
2568 /* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
2569 * it needs itself, plus all that its children need, plus all that its siblings need. This is
2570 * primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
2571 * hierarchy that shall be enabled for it. */
2572
2573 own_mask = unit_get_own_mask(u);
2574
2575 if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
2576 emit_bpf_firewall_warning(u);
2577
2578 mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
2579
2580 mask &= u->manager->cgroup_supported;
2581 mask &= ~unit_get_ancestor_disable_mask(u);
2582
2583 return mask;
2584 }
2585
2586 CGroupMask unit_get_enable_mask(Unit *u) {
2587 CGroupMask mask;
2588
2589 /* This returns the cgroup mask of all controllers to enable
2590 * for the children of a specific cgroup. This is primarily
2591 * useful for the unified cgroup hierarchy, where each cgroup
2592 * controls which controllers are enabled for its children. */
2593
2594 mask = unit_get_members_mask(u);
2595 mask &= u->manager->cgroup_supported;
2596 mask &= ~unit_get_ancestor_disable_mask(u);
2597
2598 return mask;
2599 }
2600
2601 void unit_invalidate_cgroup_members_masks(Unit *u) {
2602 Unit *slice;
2603
2604 assert(u);
2605
2606 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2607 if (!crt)
2608 return;
2609
2610 /* Recurse invalidate the member masks cache all the way up the tree */
2611 crt->cgroup_members_mask_valid = false;
2612
2613 slice = UNIT_GET_SLICE(u);
2614 if (slice)
2615 unit_invalidate_cgroup_members_masks(slice);
2616 }
2617
2618 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
2619
2620 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
2621
2622 while (u) {
2623 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2624 if (crt &&
2625 crt->cgroup_path &&
2626 crt->cgroup_realized &&
2627 FLAGS_SET(crt->cgroup_realized_mask, mask))
2628 return crt->cgroup_path;
2629
2630 u = UNIT_GET_SLICE(u);
2631 }
2632
2633 return NULL;
2634 }
2635
2636 static const char *migrate_callback(CGroupMask mask, void *userdata) {
2637 /* If not realized at all, migrate to root ("").
2638 * It may happen if we're upgrading from older version that didn't clean up.
2639 */
2640 return strempty(unit_get_realized_cgroup_path(userdata, mask));
2641 }
2642
2643 int unit_default_cgroup_path(const Unit *u, char **ret) {
2644 _cleanup_free_ char *p = NULL;
2645 int r;
2646
2647 assert(u);
2648 assert(ret);
2649
2650 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2651 p = strdup(u->manager->cgroup_root);
2652 else {
2653 _cleanup_free_ char *escaped = NULL, *slice_path = NULL;
2654 Unit *slice;
2655
2656 slice = UNIT_GET_SLICE(u);
2657 if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
2658 r = cg_slice_to_path(slice->id, &slice_path);
2659 if (r < 0)
2660 return r;
2661 }
2662
2663 r = cg_escape(u->id, &escaped);
2664 if (r < 0)
2665 return r;
2666
2667 p = path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
2668 }
2669 if (!p)
2670 return -ENOMEM;
2671
2672 *ret = TAKE_PTR(p);
2673 return 0;
2674 }
2675
2676 int unit_set_cgroup_path(Unit *u, const char *path) {
2677 _cleanup_free_ char *p = NULL;
2678 CGroupRuntime *crt;
2679 int r;
2680
2681 assert(u);
2682
2683 crt = unit_get_cgroup_runtime(u);
2684
2685 if (crt && streq_ptr(crt->cgroup_path, path))
2686 return 0;
2687
2688 unit_release_cgroup(u);
2689
2690 crt = unit_setup_cgroup_runtime(u);
2691 if (!crt)
2692 return -ENOMEM;
2693
2694 if (path) {
2695 p = strdup(path);
2696 if (!p)
2697 return -ENOMEM;
2698
2699 r = hashmap_put(u->manager->cgroup_unit, p, u);
2700 if (r < 0)
2701 return r;
2702 }
2703
2704 assert(!crt->cgroup_path);
2705 crt->cgroup_path = TAKE_PTR(p);
2706
2707 return 1;
2708 }
2709
2710 int unit_watch_cgroup(Unit *u) {
2711 _cleanup_free_ char *events = NULL;
2712 int r;
2713
2714 assert(u);
2715
2716 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
2717 * cgroupv2 is available. */
2718
2719 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2720 if (!crt || !crt->cgroup_path)
2721 return 0;
2722
2723 if (crt->cgroup_control_inotify_wd >= 0)
2724 return 0;
2725
2726 /* Only applies to the unified hierarchy */
2727 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2728 if (r < 0)
2729 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
2730 if (r == 0)
2731 return 0;
2732
2733 /* No point in watch the top-level slice, it's never going to run empty. */
2734 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2735 return 0;
2736
2737 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
2738 if (r < 0)
2739 return log_oom();
2740
2741 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, "cgroup.events", &events);
2742 if (r < 0)
2743 return log_oom();
2744
2745 crt->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2746 if (crt->cgroup_control_inotify_wd < 0) {
2747
2748 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2749 * is not an error */
2750 return 0;
2751
2752 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(crt->cgroup_path));
2753 }
2754
2755 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(crt->cgroup_control_inotify_wd), u);
2756 if (r < 0)
2757 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(crt->cgroup_path));
2758
2759 return 0;
2760 }
2761
2762 int unit_watch_cgroup_memory(Unit *u) {
2763 _cleanup_free_ char *events = NULL;
2764 int r;
2765
2766 assert(u);
2767
2768 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
2769 * cgroupv2 is available. */
2770
2771 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2772 if (!crt || !crt->cgroup_path)
2773 return 0;
2774
2775 CGroupContext *c = unit_get_cgroup_context(u);
2776 if (!c)
2777 return 0;
2778
2779 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
2780 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
2781 * all. */
2782 if (!c->memory_accounting)
2783 return 0;
2784
2785 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
2786 * we also don't want to generate a log message for each parent cgroup of a process. */
2787 if (u->type == UNIT_SLICE)
2788 return 0;
2789
2790 if (crt->cgroup_memory_inotify_wd >= 0)
2791 return 0;
2792
2793 /* Only applies to the unified hierarchy */
2794 r = cg_all_unified();
2795 if (r < 0)
2796 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
2797 if (r == 0)
2798 return 0;
2799
2800 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
2801 if (r < 0)
2802 return log_oom();
2803
2804 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, "memory.events", &events);
2805 if (r < 0)
2806 return log_oom();
2807
2808 crt->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2809 if (crt->cgroup_memory_inotify_wd < 0) {
2810
2811 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2812 * is not an error */
2813 return 0;
2814
2815 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(crt->cgroup_path));
2816 }
2817
2818 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(crt->cgroup_memory_inotify_wd), u);
2819 if (r < 0)
2820 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(crt->cgroup_path));
2821
2822 return 0;
2823 }
2824
2825 int unit_pick_cgroup_path(Unit *u) {
2826 _cleanup_free_ char *path = NULL;
2827 int r;
2828
2829 assert(u);
2830
2831 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2832 return -EINVAL;
2833
2834 CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
2835 if (!crt)
2836 return -ENOMEM;
2837 if (crt->cgroup_path)
2838 return 0;
2839
2840 r = unit_default_cgroup_path(u, &path);
2841 if (r < 0)
2842 return log_unit_error_errno(u, r, "Failed to generate default cgroup path: %m");
2843
2844 r = unit_set_cgroup_path(u, path);
2845 if (r == -EEXIST)
2846 return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
2847 if (r < 0)
2848 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
2849
2850 return 0;
2851 }
2852
2853 static int unit_update_cgroup(
2854 Unit *u,
2855 CGroupMask target_mask,
2856 CGroupMask enable_mask,
2857 ManagerState state) {
2858
2859 bool created, is_root_slice;
2860 CGroupMask migrate_mask = 0;
2861 _cleanup_free_ char *cgroup_full_path = NULL;
2862 int r;
2863
2864 assert(u);
2865
2866 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2867 return 0;
2868
2869 /* Figure out our cgroup path */
2870 r = unit_pick_cgroup_path(u);
2871 if (r < 0)
2872 return r;
2873
2874 CGroupRuntime *crt = ASSERT_PTR(unit_get_cgroup_runtime(u));
2875
2876 /* First, create our own group */
2877 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, crt->cgroup_path);
2878 if (r < 0)
2879 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(crt->cgroup_path));
2880 created = r;
2881
2882 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2883 uint64_t cgroup_id = 0;
2884
2885 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, NULL, &cgroup_full_path);
2886 if (r == 0) {
2887 r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
2888 if (r < 0)
2889 log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
2890 "Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
2891 } else
2892 log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(crt->cgroup_path));
2893
2894 crt->cgroup_id = cgroup_id;
2895 }
2896
2897 /* Start watching it */
2898 (void) unit_watch_cgroup(u);
2899 (void) unit_watch_cgroup_memory(u);
2900
2901 /* For v2 we preserve enabled controllers in delegated units, adjust others,
2902 * for v1 we figure out which controller hierarchies need migration. */
2903 if (created || !crt->cgroup_realized || !unit_cgroup_delegate(u)) {
2904 CGroupMask result_mask = 0;
2905
2906 /* Enable all controllers we need */
2907 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, crt->cgroup_path, &result_mask);
2908 if (r < 0)
2909 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(crt->cgroup_path));
2910
2911 /* Remember what's actually enabled now */
2912 crt->cgroup_enabled_mask = result_mask;
2913
2914 migrate_mask = crt->cgroup_realized_mask ^ target_mask;
2915 }
2916
2917 /* Keep track that this is now realized */
2918 crt->cgroup_realized = true;
2919 crt->cgroup_realized_mask = target_mask;
2920
2921 /* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
2922 *
2923 * Unnecessary controller cgroups are trimmed (after emptied by upward migration).
2924 * We perform migration also with whole slices for cases when users don't care about leave
2925 * granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
2926 * delegated units.
2927 */
2928 if (cg_all_unified() == 0) {
2929 r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, crt->cgroup_path, migrate_callback, u);
2930 if (r < 0)
2931 log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(crt->cgroup_path));
2932
2933 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2934 r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, crt->cgroup_path, !is_root_slice);
2935 if (r < 0)
2936 log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(crt->cgroup_path));
2937 }
2938
2939 /* Set attributes */
2940 cgroup_context_apply(u, target_mask, state);
2941 cgroup_xattr_apply(u);
2942
2943 /* For most units we expect that memory monitoring is set up before the unit is started and we won't
2944 * touch it after. For PID 1 this is different though, because we couldn't possibly do that given
2945 * that PID 1 runs before init.scope is even set up. Hence, whenever init.scope is realized, let's
2946 * try to open the memory pressure interface anew. */
2947 if (unit_has_name(u, SPECIAL_INIT_SCOPE))
2948 (void) manager_setup_memory_pressure_event_source(u->manager);
2949
2950 return 0;
2951 }
2952
2953 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
2954 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2955 char *pp;
2956 int r;
2957
2958 assert(u);
2959
2960 if (MANAGER_IS_SYSTEM(u->manager))
2961 return -EINVAL;
2962
2963 if (!u->manager->system_bus)
2964 return -EIO;
2965
2966 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
2967 if (!crt || !crt->cgroup_path)
2968 return -EOWNERDEAD;
2969
2970 /* Determine this unit's cgroup path relative to our cgroup root */
2971 pp = path_startswith(crt->cgroup_path, u->manager->cgroup_root);
2972 if (!pp)
2973 return -EINVAL;
2974
2975 pp = strjoina("/", pp, suffix_path);
2976 path_simplify(pp);
2977
2978 r = bus_call_method(u->manager->system_bus,
2979 bus_systemd_mgr,
2980 "AttachProcessesToUnit",
2981 &error, NULL,
2982 "ssau",
2983 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
2984 if (r < 0)
2985 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
2986
2987 return 0;
2988 }
2989
2990 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
2991 _cleanup_free_ char *joined = NULL;
2992 CGroupMask delegated_mask;
2993 const char *p;
2994 PidRef *pid;
2995 int ret, r;
2996
2997 assert(u);
2998
2999 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3000 return -EINVAL;
3001
3002 if (set_isempty(pids))
3003 return 0;
3004
3005 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
3006 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
3007 r = bpf_firewall_load_custom(u);
3008 if (r < 0)
3009 return r;
3010
3011 r = unit_realize_cgroup(u);
3012 if (r < 0)
3013 return r;
3014
3015 CGroupRuntime *crt = ASSERT_PTR(unit_get_cgroup_runtime(u));
3016
3017 if (isempty(suffix_path))
3018 p = crt->cgroup_path;
3019 else {
3020 joined = path_join(crt->cgroup_path, suffix_path);
3021 if (!joined)
3022 return -ENOMEM;
3023
3024 p = joined;
3025 }
3026
3027 delegated_mask = unit_get_delegate_mask(u);
3028
3029 ret = 0;
3030 SET_FOREACH(pid, pids) {
3031
3032 /* Unfortunately we cannot add pids by pidfd to a cgroup. Hence we have to use PIDs instead,
3033 * which of course is racy. Let's shorten the race a bit though, and re-validate the PID
3034 * before we use it */
3035 r = pidref_verify(pid);
3036 if (r < 0) {
3037 log_unit_info_errno(u, r, "PID " PID_FMT " vanished before we could move it to target cgroup '%s', skipping: %m", pid->pid, empty_to_root(p));
3038 continue;
3039 }
3040
3041 /* First, attach the PID to the main cgroup hierarchy */
3042 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid->pid);
3043 if (r < 0) {
3044 bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_PRIVILEGE(r);
3045
3046 log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO, r,
3047 "Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
3048 pid->pid, again ? " directly" : "", empty_to_root(p));
3049
3050 if (again) {
3051 int z;
3052
3053 /* If we are in a user instance, and we can't move the process ourselves due
3054 * to permission problems, let's ask the system instance about it instead.
3055 * Since it's more privileged it might be able to move the process across the
3056 * leaves of a subtree whose top node is not owned by us. */
3057
3058 z = unit_attach_pid_to_cgroup_via_bus(u, pid->pid, suffix_path);
3059 if (z < 0)
3060 log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid->pid, empty_to_root(p));
3061 else {
3062 if (ret >= 0)
3063 ret++; /* Count successful additions */
3064 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
3065 }
3066 }
3067
3068 if (ret >= 0)
3069 ret = r; /* Remember first error */
3070
3071 continue;
3072 } else if (ret >= 0)
3073 ret++; /* Count successful additions */
3074
3075 r = cg_all_unified();
3076 if (r < 0)
3077 return r;
3078 if (r > 0)
3079 continue;
3080
3081 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
3082 * innermost realized one */
3083
3084 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
3085 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
3086 const char *realized;
3087
3088 if (!(u->manager->cgroup_supported & bit))
3089 continue;
3090
3091 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
3092 if (delegated_mask & crt->cgroup_realized_mask & bit) {
3093 r = cg_attach(cgroup_controller_to_string(c), p, pid->pid);
3094 if (r >= 0)
3095 continue; /* Success! */
3096
3097 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
3098 pid->pid, empty_to_root(p), cgroup_controller_to_string(c));
3099 }
3100
3101 /* So this controller is either not delegate or realized, or something else weird happened. In
3102 * that case let's attach the PID at least to the closest cgroup up the tree that is
3103 * realized. */
3104 realized = unit_get_realized_cgroup_path(u, bit);
3105 if (!realized)
3106 continue; /* Not even realized in the root slice? Then let's not bother */
3107
3108 r = cg_attach(cgroup_controller_to_string(c), realized, pid->pid);
3109 if (r < 0)
3110 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
3111 pid->pid, realized, cgroup_controller_to_string(c));
3112 }
3113 }
3114
3115 return ret;
3116 }
3117
3118 static bool unit_has_mask_realized(
3119 Unit *u,
3120 CGroupMask target_mask,
3121 CGroupMask enable_mask) {
3122
3123 assert(u);
3124
3125 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3126 if (!crt)
3127 return false;
3128
3129 /* Returns true if this unit is fully realized. We check four things:
3130 *
3131 * 1. Whether the cgroup was created at all
3132 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
3133 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
3134 * 4. Whether the invalidation mask is currently zero
3135 *
3136 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
3137 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
3138 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
3139 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
3140 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
3141 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
3142 * simply don't matter. */
3143
3144 return crt->cgroup_realized &&
3145 ((crt->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
3146 ((crt->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
3147 crt->cgroup_invalidated_mask == 0;
3148 }
3149
3150 static bool unit_has_mask_disables_realized(
3151 Unit *u,
3152 CGroupMask target_mask,
3153 CGroupMask enable_mask) {
3154
3155 assert(u);
3156
3157 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3158 if (!crt)
3159 return true;
3160
3161 /* Returns true if all controllers which should be disabled are indeed disabled.
3162 *
3163 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
3164 * already removed. */
3165
3166 return !crt->cgroup_realized ||
3167 (FLAGS_SET(crt->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
3168 FLAGS_SET(crt->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
3169 }
3170
3171 static bool unit_has_mask_enables_realized(
3172 Unit *u,
3173 CGroupMask target_mask,
3174 CGroupMask enable_mask) {
3175
3176 assert(u);
3177
3178 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3179 if (!crt)
3180 return false;
3181
3182 /* Returns true if all controllers which should be enabled are indeed enabled.
3183 *
3184 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
3185 * we want to add is already added. */
3186
3187 return crt->cgroup_realized &&
3188 ((crt->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (crt->cgroup_realized_mask & CGROUP_MASK_V1) &&
3189 ((crt->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (crt->cgroup_enabled_mask & CGROUP_MASK_V2);
3190 }
3191
3192 void unit_add_to_cgroup_realize_queue(Unit *u) {
3193 assert(u);
3194
3195 if (u->in_cgroup_realize_queue)
3196 return;
3197
3198 LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
3199 u->in_cgroup_realize_queue = true;
3200 }
3201
3202 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
3203 assert(u);
3204
3205 if (!u->in_cgroup_realize_queue)
3206 return;
3207
3208 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
3209 u->in_cgroup_realize_queue = false;
3210 }
3211
3212 /* Controllers can only be enabled breadth-first, from the root of the
3213 * hierarchy downwards to the unit in question. */
3214 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
3215 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
3216 Unit *slice;
3217 int r;
3218
3219 assert(u);
3220
3221 /* First go deal with this unit's parent, or we won't be able to enable
3222 * any new controllers at this layer. */
3223 slice = UNIT_GET_SLICE(u);
3224 if (slice) {
3225 r = unit_realize_cgroup_now_enable(slice, state);
3226 if (r < 0)
3227 return r;
3228 }
3229
3230 target_mask = unit_get_target_mask(u);
3231 enable_mask = unit_get_enable_mask(u);
3232
3233 /* We can only enable in this direction, don't try to disable anything.
3234 */
3235 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
3236 return 0;
3237
3238 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3239
3240 new_target_mask = (crt ? crt->cgroup_realized_mask : 0) | target_mask;
3241 new_enable_mask = (crt ? crt->cgroup_enabled_mask : 0) | enable_mask;
3242
3243 return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
3244 }
3245
3246 /* Controllers can only be disabled depth-first, from the leaves of the
3247 * hierarchy upwards to the unit in question. */
3248 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
3249 Unit *m;
3250
3251 assert(u);
3252
3253 if (u->type != UNIT_SLICE)
3254 return 0;
3255
3256 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
3257 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
3258 int r;
3259
3260 CGroupRuntime *rt = unit_get_cgroup_runtime(m);
3261 if (!rt)
3262 continue;
3263
3264 /* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
3265 * holding any controllers open anyway. */
3266 if (!rt->cgroup_realized)
3267 continue;
3268
3269 /* We must disable those below us first in order to release the controller. */
3270 if (m->type == UNIT_SLICE)
3271 (void) unit_realize_cgroup_now_disable(m, state);
3272
3273 target_mask = unit_get_target_mask(m);
3274 enable_mask = unit_get_enable_mask(m);
3275
3276 /* We can only disable in this direction, don't try to enable anything. */
3277 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
3278 continue;
3279
3280 new_target_mask = rt->cgroup_realized_mask & target_mask;
3281 new_enable_mask = rt->cgroup_enabled_mask & enable_mask;
3282
3283 r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
3284 if (r < 0)
3285 return r;
3286 }
3287
3288 return 0;
3289 }
3290
3291 /* Check if necessary controllers and attributes for a unit are in place.
3292 *
3293 * - If so, do nothing.
3294 * - If not, create paths, move processes over, and set attributes.
3295 *
3296 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
3297 * a depth-first way. As such the process looks like this:
3298 *
3299 * Suppose we have a cgroup hierarchy which looks like this:
3300 *
3301 * root
3302 * / \
3303 * / \
3304 * / \
3305 * a b
3306 * / \ / \
3307 * / \ / \
3308 * c d e f
3309 * / \ / \ / \ / \
3310 * h i j k l m n o
3311 *
3312 * 1. We want to realise cgroup "d" now.
3313 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
3314 * 3. cgroup "k" just started requesting the memory controller.
3315 *
3316 * To make this work we must do the following in order:
3317 *
3318 * 1. Disable CPU controller in k, j
3319 * 2. Disable CPU controller in d
3320 * 3. Enable memory controller in root
3321 * 4. Enable memory controller in a
3322 * 5. Enable memory controller in d
3323 * 6. Enable memory controller in k
3324 *
3325 * Notice that we need to touch j in one direction, but not the other. We also
3326 * don't go beyond d when disabling -- it's up to "a" to get realized if it
3327 * wants to disable further. The basic rules are therefore:
3328 *
3329 * - If you're disabling something, you need to realise all of the cgroups from
3330 * your recursive descendants to the root. This starts from the leaves.
3331 * - If you're enabling something, you need to realise from the root cgroup
3332 * downwards, but you don't need to iterate your recursive descendants.
3333 *
3334 * Returns 0 on success and < 0 on failure. */
3335 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
3336 CGroupMask target_mask, enable_mask;
3337 Unit *slice;
3338 int r;
3339
3340 assert(u);
3341
3342 unit_remove_from_cgroup_realize_queue(u);
3343
3344 target_mask = unit_get_target_mask(u);
3345 enable_mask = unit_get_enable_mask(u);
3346
3347 if (unit_has_mask_realized(u, target_mask, enable_mask))
3348 return 0;
3349
3350 /* Disable controllers below us, if there are any */
3351 r = unit_realize_cgroup_now_disable(u, state);
3352 if (r < 0)
3353 return r;
3354
3355 /* Enable controllers above us, if there are any */
3356 slice = UNIT_GET_SLICE(u);
3357 if (slice) {
3358 r = unit_realize_cgroup_now_enable(slice, state);
3359 if (r < 0)
3360 return r;
3361 }
3362
3363 /* Now actually deal with the cgroup we were trying to realise and set attributes */
3364 r = unit_update_cgroup(u, target_mask, enable_mask, state);
3365 if (r < 0)
3366 return r;
3367
3368 CGroupRuntime *crt = ASSERT_PTR(unit_get_cgroup_runtime(u));
3369
3370 /* Now, reset the invalidation mask */
3371 crt->cgroup_invalidated_mask = 0;
3372 return 0;
3373 }
3374
3375 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
3376 ManagerState state;
3377 unsigned n = 0;
3378 Unit *i;
3379 int r;
3380
3381 assert(m);
3382
3383 state = manager_state(m);
3384
3385 while ((i = m->cgroup_realize_queue)) {
3386 assert(i->in_cgroup_realize_queue);
3387
3388 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
3389 /* Maybe things changed, and the unit is not actually active anymore? */
3390 unit_remove_from_cgroup_realize_queue(i);
3391 continue;
3392 }
3393
3394 r = unit_realize_cgroup_now(i, state);
3395 if (r < 0)
3396 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
3397
3398 n++;
3399 }
3400
3401 return n;
3402 }
3403
3404 void unit_add_family_to_cgroup_realize_queue(Unit *u) {
3405 assert(u);
3406 assert(u->type == UNIT_SLICE);
3407
3408 /* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
3409 * its ancestors.
3410 *
3411 * Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
3412 * very weird if two units that own processes reside in the same slice, but one is realized in the
3413 * "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
3414 * not), because that means individual processes need to be scheduled against whole cgroups. Let's
3415 * avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
3416 * controller hierarchies too (if unit requires the controller to be realized).
3417 *
3418 * The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
3419 * masks. */
3420
3421 do {
3422 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3423
3424 /* Children of u likely changed when we're called */
3425 if (crt)
3426 crt->cgroup_members_mask_valid = false;
3427
3428 Unit *m;
3429 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
3430
3431 /* No point in doing cgroup application for units without active processes. */
3432 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
3433 continue;
3434
3435 /* We only enqueue siblings if they were realized once at least, in the main
3436 * hierarchy. */
3437 crt = unit_get_cgroup_runtime(m);
3438 if (!crt || !crt->cgroup_realized)
3439 continue;
3440
3441 /* If the unit doesn't need any new controllers and has current ones
3442 * realized, it doesn't need any changes. */
3443 if (unit_has_mask_realized(m,
3444 unit_get_target_mask(m),
3445 unit_get_enable_mask(m)))
3446 continue;
3447
3448 unit_add_to_cgroup_realize_queue(m);
3449 }
3450
3451 /* Parent comes after children */
3452 unit_add_to_cgroup_realize_queue(u);
3453
3454 u = UNIT_GET_SLICE(u);
3455 } while (u);
3456 }
3457
3458 int unit_realize_cgroup(Unit *u) {
3459 Unit *slice;
3460
3461 assert(u);
3462
3463 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3464 return 0;
3465
3466 /* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
3467 * parents, but there's more actually: for the weight-based controllers we also need to make sure
3468 * that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too. On the
3469 * other hand, when a controller is removed from realized set, it may become unnecessary in siblings
3470 * and ancestors and they should be (de)realized too.
3471 *
3472 * This call will defer work on the siblings and derealized ancestors to the next event loop
3473 * iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
3474
3475 slice = UNIT_GET_SLICE(u);
3476 if (slice)
3477 unit_add_family_to_cgroup_realize_queue(slice);
3478
3479 /* And realize this one now (and apply the values) */
3480 return unit_realize_cgroup_now(u, manager_state(u->manager));
3481 }
3482
3483 void unit_release_cgroup(Unit *u) {
3484 assert(u);
3485
3486 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
3487 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
3488
3489 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3490 if (!crt)
3491 return;
3492
3493 if (crt->cgroup_path) {
3494 (void) hashmap_remove(u->manager->cgroup_unit, crt->cgroup_path);
3495 crt->cgroup_path = mfree(crt->cgroup_path);
3496 }
3497
3498 if (crt->cgroup_control_inotify_wd >= 0) {
3499 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, crt->cgroup_control_inotify_wd) < 0)
3500 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", crt->cgroup_control_inotify_wd, u->id);
3501
3502 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(crt->cgroup_control_inotify_wd));
3503 crt->cgroup_control_inotify_wd = -1;
3504 }
3505
3506 if (crt->cgroup_memory_inotify_wd >= 0) {
3507 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, crt->cgroup_memory_inotify_wd) < 0)
3508 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", crt->cgroup_memory_inotify_wd, u->id);
3509
3510 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(crt->cgroup_memory_inotify_wd));
3511 crt->cgroup_memory_inotify_wd = -1;
3512 }
3513
3514 *(CGroupRuntime**) ((uint8_t*) u + UNIT_VTABLE(u)->cgroup_runtime_offset) = cgroup_runtime_free(crt);
3515 }
3516
3517 int unit_cgroup_is_empty(Unit *u) {
3518 int r;
3519
3520 assert(u);
3521
3522 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3523 if (!crt)
3524 return -ENXIO;
3525 if (!crt->cgroup_path)
3526 return -EOWNERDEAD;
3527
3528 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path);
3529 if (r < 0)
3530 return log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty, ignoring: %m", empty_to_root(crt->cgroup_path));
3531
3532 return r;
3533 }
3534
3535 bool unit_maybe_release_cgroup(Unit *u) {
3536 int r;
3537
3538 assert(u);
3539
3540 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3541 if (!crt || !crt->cgroup_path)
3542 return true;
3543
3544 /* Don't release the cgroup if there are still processes under it. If we get notified later when all
3545 * the processes exit (e.g. the processes were in D-state and exited after the unit was marked as
3546 * failed) we need the cgroup paths to continue to be tracked by the manager so they can be looked up
3547 * and cleaned up later. */
3548 r = unit_cgroup_is_empty(u);
3549 if (r == 1) {
3550 unit_release_cgroup(u);
3551 return true;
3552 }
3553
3554 return false;
3555 }
3556
3557 void unit_prune_cgroup(Unit *u) {
3558 int r;
3559 bool is_root_slice;
3560
3561 assert(u);
3562
3563 /* Removes the cgroup, if empty and possible, and stops watching it. */
3564 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3565 if (!crt || !crt->cgroup_path)
3566 return;
3567
3568 /* Cache the last CPU and memory usage values before we destroy the cgroup */
3569 (void) unit_get_cpu_usage(u, /* ret = */ NULL);
3570
3571 for (CGroupMemoryAccountingMetric metric = 0; metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST; metric++)
3572 (void) unit_get_memory_accounting(u, metric, /* ret = */ NULL);
3573
3574 #if BPF_FRAMEWORK
3575 (void) bpf_restrict_fs_cleanup(u); /* Remove cgroup from the global LSM BPF map */
3576 #endif
3577
3578 unit_modify_nft_set(u, /* add = */ false);
3579
3580 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
3581
3582 r = cg_trim_everywhere(u->manager->cgroup_supported, crt->cgroup_path, !is_root_slice);
3583 if (r < 0)
3584 /* One reason we could have failed here is, that the cgroup still contains a process.
3585 * However, if the cgroup becomes removable at a later time, it might be removed when
3586 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
3587 * that the cgroup is still realized the next time it is started. Do not return early
3588 * on error, continue cleanup. */
3589 log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", empty_to_root(crt->cgroup_path));
3590
3591 if (is_root_slice)
3592 return;
3593
3594 if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
3595 return;
3596
3597 crt = unit_get_cgroup_runtime(u); /* The above might have destroyed the runtime object, let's see if it's still there */
3598 if (!crt)
3599 return;
3600
3601 crt->cgroup_realized = false;
3602 crt->cgroup_realized_mask = 0;
3603 crt->cgroup_enabled_mask = 0;
3604
3605 crt->bpf_device_control_installed = bpf_program_free(crt->bpf_device_control_installed);
3606 }
3607
3608 int unit_search_main_pid(Unit *u, PidRef *ret) {
3609 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
3610 _cleanup_fclose_ FILE *f = NULL;
3611 int r;
3612
3613 assert(u);
3614 assert(ret);
3615
3616 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3617 if (!crt || !crt->cgroup_path)
3618 return -ENXIO;
3619
3620 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, &f);
3621 if (r < 0)
3622 return r;
3623
3624 for (;;) {
3625 _cleanup_(pidref_done) PidRef npidref = PIDREF_NULL;
3626
3627 r = cg_read_pidref(f, &npidref);
3628 if (r < 0)
3629 return r;
3630 if (r == 0)
3631 break;
3632
3633 if (pidref_equal(&pidref, &npidref)) /* seen already, cgroupfs reports duplicates! */
3634 continue;
3635
3636 if (pidref_is_my_child(&npidref) <= 0) /* ignore processes further down the tree */
3637 continue;
3638
3639 if (pidref_is_set(&pidref) != 0)
3640 /* Dang, there's more than one daemonized PID in this group, so we don't know what
3641 * process is the main process. */
3642 return -ENODATA;
3643
3644 pidref = TAKE_PIDREF(npidref);
3645 }
3646
3647 if (!pidref_is_set(&pidref))
3648 return -ENODATA;
3649
3650 *ret = TAKE_PIDREF(pidref);
3651 return 0;
3652 }
3653
3654 static int unit_watch_pids_in_path(Unit *u, const char *path) {
3655 _cleanup_closedir_ DIR *d = NULL;
3656 _cleanup_fclose_ FILE *f = NULL;
3657 int ret = 0, r;
3658
3659 assert(u);
3660 assert(path);
3661
3662 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
3663 if (r < 0)
3664 RET_GATHER(ret, r);
3665 else {
3666 for (;;) {
3667 _cleanup_(pidref_done) PidRef pid = PIDREF_NULL;
3668
3669 r = cg_read_pidref(f, &pid);
3670 if (r == 0)
3671 break;
3672 if (r < 0) {
3673 RET_GATHER(ret, r);
3674 break;
3675 }
3676
3677 RET_GATHER(ret, unit_watch_pidref(u, &pid, /* exclusive= */ false));
3678 }
3679 }
3680
3681 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
3682 if (r < 0)
3683 RET_GATHER(ret, r);
3684 else {
3685 for (;;) {
3686 _cleanup_free_ char *fn = NULL, *p = NULL;
3687
3688 r = cg_read_subgroup(d, &fn);
3689 if (r == 0)
3690 break;
3691 if (r < 0) {
3692 RET_GATHER(ret, r);
3693 break;
3694 }
3695
3696 p = path_join(empty_to_root(path), fn);
3697 if (!p)
3698 return -ENOMEM;
3699
3700 RET_GATHER(ret, unit_watch_pids_in_path(u, p));
3701 }
3702 }
3703
3704 return ret;
3705 }
3706
3707 int unit_synthesize_cgroup_empty_event(Unit *u) {
3708 int r;
3709
3710 assert(u);
3711
3712 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
3713 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
3714 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
3715
3716 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3717 if (!crt || !crt->cgroup_path)
3718 return -ENOENT;
3719
3720 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3721 if (r < 0)
3722 return r;
3723 if (r > 0) /* On unified we have reliable notifications, and don't need this */
3724 return 0;
3725
3726 if (!set_isempty(u->pids))
3727 return 0;
3728
3729 unit_add_to_cgroup_empty_queue(u);
3730 return 0;
3731 }
3732
3733 int unit_watch_all_pids(Unit *u) {
3734 int r;
3735
3736 assert(u);
3737
3738 /* Adds all PIDs from our cgroup to the set of PIDs we
3739 * watch. This is a fallback logic for cases where we do not
3740 * get reliable cgroup empty notifications: we try to use
3741 * SIGCHLD as replacement. */
3742
3743 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3744 if (!crt || !crt->cgroup_path)
3745 return -ENOENT;
3746
3747 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3748 if (r < 0)
3749 return r;
3750 if (r > 0) /* On unified we can use proper notifications */
3751 return 0;
3752
3753 return unit_watch_pids_in_path(u, crt->cgroup_path);
3754 }
3755
3756 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
3757 Manager *m = ASSERT_PTR(userdata);
3758 Unit *u;
3759 int r;
3760
3761 assert(s);
3762
3763 u = m->cgroup_empty_queue;
3764 if (!u)
3765 return 0;
3766
3767 assert(u->in_cgroup_empty_queue);
3768 u->in_cgroup_empty_queue = false;
3769 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
3770
3771 if (m->cgroup_empty_queue) {
3772 /* More stuff queued, let's make sure we remain enabled */
3773 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3774 if (r < 0)
3775 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
3776 }
3777
3778 /* Update state based on OOM kills before we notify about cgroup empty event */
3779 (void) unit_check_oom(u);
3780 (void) unit_check_oomd_kill(u);
3781
3782 unit_add_to_gc_queue(u);
3783
3784 if (IN_SET(unit_active_state(u), UNIT_INACTIVE, UNIT_FAILED))
3785 unit_prune_cgroup(u);
3786 else if (UNIT_VTABLE(u)->notify_cgroup_empty)
3787 UNIT_VTABLE(u)->notify_cgroup_empty(u);
3788
3789 return 0;
3790 }
3791
3792 void unit_add_to_cgroup_empty_queue(Unit *u) {
3793 int r;
3794
3795 assert(u);
3796
3797 /* Note that there are four different ways how cgroup empty events reach us:
3798 *
3799 * 1. On the unified hierarchy we get an inotify event on the cgroup
3800 *
3801 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
3802 *
3803 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
3804 *
3805 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
3806 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
3807 *
3808 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
3809 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
3810 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
3811 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
3812 * case for scope units). */
3813
3814 if (u->in_cgroup_empty_queue)
3815 return;
3816
3817 /* Let's verify that the cgroup is really empty */
3818 r = unit_cgroup_is_empty(u);
3819 if (r <= 0)
3820 return;
3821
3822 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3823 u->in_cgroup_empty_queue = true;
3824
3825 /* Trigger the defer event */
3826 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
3827 if (r < 0)
3828 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
3829 }
3830
3831 static void unit_remove_from_cgroup_empty_queue(Unit *u) {
3832 assert(u);
3833
3834 if (!u->in_cgroup_empty_queue)
3835 return;
3836
3837 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3838 u->in_cgroup_empty_queue = false;
3839 }
3840
3841 int unit_check_oomd_kill(Unit *u) {
3842 _cleanup_free_ char *value = NULL;
3843 bool increased;
3844 uint64_t n = 0;
3845 int r;
3846
3847 assert(u);
3848
3849 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3850 if (!crt || !crt->cgroup_path)
3851 return 0;
3852
3853 r = cg_all_unified();
3854 if (r < 0)
3855 return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
3856 else if (r == 0)
3857 return 0;
3858
3859 r = cg_get_xattr_malloc(crt->cgroup_path, "user.oomd_ooms", &value);
3860 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3861 return r;
3862
3863 if (!isempty(value)) {
3864 r = safe_atou64(value, &n);
3865 if (r < 0)
3866 return r;
3867 }
3868
3869 increased = n > crt->managed_oom_kill_last;
3870 crt->managed_oom_kill_last = n;
3871
3872 if (!increased)
3873 return 0;
3874
3875 n = 0;
3876 value = mfree(value);
3877 r = cg_get_xattr_malloc(crt->cgroup_path, "user.oomd_kill", &value);
3878 if (r >= 0 && !isempty(value))
3879 (void) safe_atou64(value, &n);
3880
3881 if (n > 0)
3882 log_unit_struct(u, LOG_NOTICE,
3883 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3884 LOG_UNIT_INVOCATION_ID(u),
3885 LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
3886 "N_PROCESSES=%" PRIu64, n);
3887 else
3888 log_unit_struct(u, LOG_NOTICE,
3889 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3890 LOG_UNIT_INVOCATION_ID(u),
3891 LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
3892
3893 unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
3894
3895 return 1;
3896 }
3897
3898 int unit_check_oom(Unit *u) {
3899 _cleanup_free_ char *oom_kill = NULL;
3900 bool increased;
3901 uint64_t c;
3902 int r;
3903
3904 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3905 if (!crt || !crt->cgroup_path)
3906 return 0;
3907
3908 r = cg_get_keyed_attribute(
3909 "memory",
3910 crt->cgroup_path,
3911 "memory.events",
3912 STRV_MAKE("oom_kill"),
3913 &oom_kill);
3914 if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
3915 c = 0;
3916 else if (r < 0)
3917 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
3918 else {
3919 r = safe_atou64(oom_kill, &c);
3920 if (r < 0)
3921 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
3922 }
3923
3924 increased = c > crt->oom_kill_last;
3925 crt->oom_kill_last = c;
3926
3927 if (!increased)
3928 return 0;
3929
3930 log_unit_struct(u, LOG_NOTICE,
3931 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
3932 LOG_UNIT_INVOCATION_ID(u),
3933 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
3934
3935 unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
3936
3937 return 1;
3938 }
3939
3940 static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
3941 Manager *m = ASSERT_PTR(userdata);
3942 Unit *u;
3943 int r;
3944
3945 assert(s);
3946
3947 u = m->cgroup_oom_queue;
3948 if (!u)
3949 return 0;
3950
3951 assert(u->in_cgroup_oom_queue);
3952 u->in_cgroup_oom_queue = false;
3953 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
3954
3955 if (m->cgroup_oom_queue) {
3956 /* More stuff queued, let's make sure we remain enabled */
3957 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3958 if (r < 0)
3959 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
3960 }
3961
3962 (void) unit_check_oom(u);
3963 unit_add_to_gc_queue(u);
3964
3965 return 0;
3966 }
3967
3968 static void unit_add_to_cgroup_oom_queue(Unit *u) {
3969 int r;
3970
3971 assert(u);
3972
3973 if (u->in_cgroup_oom_queue)
3974 return;
3975
3976 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
3977 if (!crt || !crt->cgroup_path)
3978 return;
3979
3980 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
3981 u->in_cgroup_oom_queue = true;
3982
3983 /* Trigger the defer event */
3984 if (!u->manager->cgroup_oom_event_source) {
3985 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3986
3987 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
3988 if (r < 0) {
3989 log_error_errno(r, "Failed to create cgroup oom event source: %m");
3990 return;
3991 }
3992
3993 r = sd_event_source_set_priority(s, EVENT_PRIORITY_CGROUP_OOM);
3994 if (r < 0) {
3995 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
3996 return;
3997 }
3998
3999 (void) sd_event_source_set_description(s, "cgroup-oom");
4000 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
4001 }
4002
4003 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
4004 if (r < 0)
4005 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
4006 }
4007
4008 static int unit_check_cgroup_events(Unit *u) {
4009 char *values[2] = {};
4010 int r;
4011
4012 assert(u);
4013
4014 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4015 if (!crt || !crt->cgroup_path)
4016 return 0;
4017
4018 r = cg_get_keyed_attribute_graceful(
4019 SYSTEMD_CGROUP_CONTROLLER,
4020 crt->cgroup_path,
4021 "cgroup.events",
4022 STRV_MAKE("populated", "frozen"),
4023 values);
4024 if (r < 0)
4025 return r;
4026
4027 /* The cgroup.events notifications can be merged together so act as we saw the given state for the
4028 * first time. The functions we call to handle given state are idempotent, which makes them
4029 * effectively remember the previous state. */
4030 if (values[0]) {
4031 if (streq(values[0], "1"))
4032 unit_remove_from_cgroup_empty_queue(u);
4033 else
4034 unit_add_to_cgroup_empty_queue(u);
4035 }
4036
4037 /* Disregard freezer state changes due to operations not initiated by us.
4038 * See: https://github.com/systemd/systemd/pull/13512/files#r416469963 and
4039 * https://github.com/systemd/systemd/pull/13512#issuecomment-573007207 */
4040 if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_FREEZING_BY_PARENT, FREEZER_THAWING)) {
4041 if (streq(values[1], "0"))
4042 unit_thawed(u);
4043 else
4044 unit_frozen(u);
4045 }
4046
4047 free(values[0]);
4048 free(values[1]);
4049
4050 return 0;
4051 }
4052
4053 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
4054 Manager *m = ASSERT_PTR(userdata);
4055
4056 assert(s);
4057 assert(fd >= 0);
4058
4059 for (;;) {
4060 union inotify_event_buffer buffer;
4061 ssize_t l;
4062
4063 l = read(fd, &buffer, sizeof(buffer));
4064 if (l < 0) {
4065 if (ERRNO_IS_TRANSIENT(errno))
4066 return 0;
4067
4068 return log_error_errno(errno, "Failed to read control group inotify events: %m");
4069 }
4070
4071 FOREACH_INOTIFY_EVENT_WARN(e, buffer, l) {
4072 Unit *u;
4073
4074 if (e->wd < 0)
4075 /* Queue overflow has no watch descriptor */
4076 continue;
4077
4078 if (e->mask & IN_IGNORED)
4079 /* The watch was just removed */
4080 continue;
4081
4082 /* Note that inotify might deliver events for a watch even after it was removed,
4083 * because it was queued before the removal. Let's ignore this here safely. */
4084
4085 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
4086 if (u)
4087 unit_check_cgroup_events(u);
4088
4089 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
4090 if (u)
4091 unit_add_to_cgroup_oom_queue(u);
4092 }
4093 }
4094 }
4095
4096 static int cg_bpf_mask_supported(CGroupMask *ret) {
4097 CGroupMask mask = 0;
4098 int r;
4099
4100 /* BPF-based firewall */
4101 r = bpf_firewall_supported();
4102 if (r < 0)
4103 return r;
4104 if (r > 0)
4105 mask |= CGROUP_MASK_BPF_FIREWALL;
4106
4107 /* BPF-based device access control */
4108 r = bpf_devices_supported();
4109 if (r < 0)
4110 return r;
4111 if (r > 0)
4112 mask |= CGROUP_MASK_BPF_DEVICES;
4113
4114 /* BPF pinned prog */
4115 r = bpf_foreign_supported();
4116 if (r < 0)
4117 return r;
4118 if (r > 0)
4119 mask |= CGROUP_MASK_BPF_FOREIGN;
4120
4121 /* BPF-based bind{4|6} hooks */
4122 r = bpf_socket_bind_supported();
4123 if (r < 0)
4124 return r;
4125 if (r > 0)
4126 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
4127
4128 /* BPF-based cgroup_skb/{egress|ingress} hooks */
4129 r = bpf_restrict_ifaces_supported();
4130 if (r < 0)
4131 return r;
4132 if (r > 0)
4133 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
4134
4135 *ret = mask;
4136 return 0;
4137 }
4138
4139 int manager_setup_cgroup(Manager *m) {
4140 _cleanup_free_ char *path = NULL;
4141 const char *scope_path;
4142 int r, all_unified;
4143 CGroupMask mask;
4144 char *e;
4145
4146 assert(m);
4147
4148 /* 1. Determine hierarchy */
4149 m->cgroup_root = mfree(m->cgroup_root);
4150 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
4151 if (r < 0)
4152 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
4153
4154 /* Chop off the init scope, if we are already located in it */
4155 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
4156
4157 /* LEGACY: Also chop off the system slice if we are in
4158 * it. This is to support live upgrades from older systemd
4159 * versions where PID 1 was moved there. Also see
4160 * cg_get_root_path(). */
4161 if (!e && MANAGER_IS_SYSTEM(m)) {
4162 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
4163 if (!e)
4164 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
4165 }
4166 if (e)
4167 *e = 0;
4168
4169 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
4170 * easily prepend it everywhere. */
4171 delete_trailing_chars(m->cgroup_root, "/");
4172
4173 /* 2. Show data */
4174 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
4175 if (r < 0)
4176 return log_error_errno(r, "Cannot find cgroup mount point: %m");
4177
4178 r = cg_unified();
4179 if (r < 0)
4180 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
4181
4182 all_unified = cg_all_unified();
4183 if (all_unified < 0)
4184 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
4185 if (all_unified > 0)
4186 log_debug("Unified cgroup hierarchy is located at %s.", path);
4187 else {
4188 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
4189 if (r < 0)
4190 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
4191 if (r > 0)
4192 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
4193 else
4194 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
4195 }
4196
4197 /* 3. Allocate cgroup empty defer event source */
4198 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
4199 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
4200 if (r < 0)
4201 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
4202
4203 /* Schedule cgroup empty checks early, but after having processed service notification messages or
4204 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
4205 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
4206 r = sd_event_source_set_priority(m->cgroup_empty_event_source, EVENT_PRIORITY_CGROUP_EMPTY);
4207 if (r < 0)
4208 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
4209
4210 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
4211 if (r < 0)
4212 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
4213
4214 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
4215
4216 /* 4. Install notifier inotify object, or agent */
4217 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
4218
4219 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
4220
4221 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
4222 safe_close(m->cgroup_inotify_fd);
4223
4224 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
4225 if (m->cgroup_inotify_fd < 0)
4226 return log_error_errno(errno, "Failed to create control group inotify object: %m");
4227
4228 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
4229 if (r < 0)
4230 return log_error_errno(r, "Failed to watch control group inotify object: %m");
4231
4232 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
4233 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
4234 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
4235 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, EVENT_PRIORITY_CGROUP_INOTIFY);
4236 if (r < 0)
4237 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
4238
4239 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
4240
4241 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
4242
4243 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
4244 * since it does not generate events when control groups with children run empty. */
4245
4246 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUPS_AGENT_PATH);
4247 if (r < 0)
4248 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
4249 else if (r > 0)
4250 log_debug("Installed release agent.");
4251 else if (r == 0)
4252 log_debug("Release agent already installed.");
4253 }
4254
4255 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
4256 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
4257 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
4258 if (r >= 0) {
4259 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
4260 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
4261 if (r < 0)
4262 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
4263
4264 /* 6. And pin it, so that it cannot be unmounted */
4265 safe_close(m->pin_cgroupfs_fd);
4266 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
4267 if (m->pin_cgroupfs_fd < 0)
4268 return log_error_errno(errno, "Failed to open pin file: %m");
4269
4270 } else if (!MANAGER_IS_TEST_RUN(m))
4271 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
4272
4273 /* 7. Always enable hierarchical support if it exists... */
4274 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
4275 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
4276
4277 /* 8. Figure out which controllers are supported */
4278 r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
4279 if (r < 0)
4280 return log_error_errno(r, "Failed to determine supported controllers: %m");
4281
4282 /* 9. Figure out which bpf-based pseudo-controllers are supported */
4283 r = cg_bpf_mask_supported(&mask);
4284 if (r < 0)
4285 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
4286 m->cgroup_supported |= mask;
4287
4288 /* 10. Log which controllers are supported */
4289 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
4290 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
4291 yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
4292
4293 return 0;
4294 }
4295
4296 void manager_shutdown_cgroup(Manager *m, bool delete) {
4297 assert(m);
4298
4299 /* We can't really delete the group, since we are in it. But
4300 * let's trim it. */
4301 if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
4302 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
4303
4304 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
4305
4306 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
4307 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
4308
4309 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
4310 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
4311
4312 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
4313
4314 m->cgroup_root = mfree(m->cgroup_root);
4315 }
4316
4317 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
4318 char *p;
4319 Unit *u;
4320
4321 assert(m);
4322 assert(cgroup);
4323
4324 u = hashmap_get(m->cgroup_unit, cgroup);
4325 if (u)
4326 return u;
4327
4328 p = strdupa_safe(cgroup);
4329 for (;;) {
4330 char *e;
4331
4332 e = strrchr(p, '/');
4333 if (!e || e == p)
4334 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
4335
4336 *e = 0;
4337
4338 u = hashmap_get(m->cgroup_unit, p);
4339 if (u)
4340 return u;
4341 }
4342 }
4343
4344 Unit *manager_get_unit_by_pidref_cgroup(Manager *m, const PidRef *pid) {
4345 _cleanup_free_ char *cgroup = NULL;
4346
4347 assert(m);
4348
4349 if (cg_pidref_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
4350 return NULL;
4351
4352 return manager_get_unit_by_cgroup(m, cgroup);
4353 }
4354
4355 Unit *manager_get_unit_by_pidref_watching(Manager *m, const PidRef *pid) {
4356 Unit *u, **array;
4357
4358 assert(m);
4359
4360 if (!pidref_is_set(pid))
4361 return NULL;
4362
4363 u = hashmap_get(m->watch_pids, pid);
4364 if (u)
4365 return u;
4366
4367 array = hashmap_get(m->watch_pids_more, pid);
4368 if (array)
4369 return array[0];
4370
4371 return NULL;
4372 }
4373
4374 Unit *manager_get_unit_by_pidref(Manager *m, const PidRef *pid) {
4375 Unit *u;
4376
4377 assert(m);
4378
4379 /* Note that a process might be owned by multiple units, we return only one here, which is good
4380 * enough for most cases, though not strictly correct. We prefer the one reported by cgroup
4381 * membership, as that's the most relevant one as children of the process will be assigned to that
4382 * one, too, before all else. */
4383
4384 if (!pidref_is_set(pid))
4385 return NULL;
4386
4387 if (pidref_is_self(pid))
4388 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
4389 if (pid->pid == 1)
4390 return NULL;
4391
4392 u = manager_get_unit_by_pidref_cgroup(m, pid);
4393 if (u)
4394 return u;
4395
4396 u = manager_get_unit_by_pidref_watching(m, pid);
4397 if (u)
4398 return u;
4399
4400 return NULL;
4401 }
4402
4403 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
4404 assert(m);
4405
4406 if (!pid_is_valid(pid))
4407 return NULL;
4408
4409 return manager_get_unit_by_pidref(m, &PIDREF_MAKE_FROM_PID(pid));
4410 }
4411
4412 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
4413 Unit *u;
4414
4415 assert(m);
4416 assert(cgroup);
4417
4418 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
4419 * or from the --system instance */
4420
4421 log_debug("Got cgroup empty notification for: %s", cgroup);
4422
4423 u = manager_get_unit_by_cgroup(m, cgroup);
4424 if (!u)
4425 return 0;
4426
4427 unit_add_to_cgroup_empty_queue(u);
4428 return 1;
4429 }
4430
4431 int unit_get_memory_available(Unit *u, uint64_t *ret) {
4432 uint64_t available = UINT64_MAX, current = 0;
4433
4434 assert(u);
4435 assert(ret);
4436
4437 /* If data from cgroups can be accessed, try to find out how much more memory a unit can
4438 * claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
4439 * and MemoryMax, and also any slice the unit might be nested below. */
4440
4441 do {
4442 uint64_t unit_available, unit_limit = UINT64_MAX;
4443 CGroupContext *unit_context;
4444
4445 /* No point in continuing if we can't go any lower */
4446 if (available == 0)
4447 break;
4448
4449 unit_context = unit_get_cgroup_context(u);
4450 if (!unit_context)
4451 return -ENODATA;
4452
4453 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4454 if (!crt || !crt->cgroup_path)
4455 continue;
4456
4457 (void) unit_get_memory_current(u, &current);
4458 /* in case of error, previous current propagates as lower bound */
4459
4460 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
4461 unit_limit = physical_memory();
4462 else if (unit_context->memory_max == UINT64_MAX && unit_context->memory_high == UINT64_MAX)
4463 continue;
4464 unit_limit = MIN3(unit_limit, unit_context->memory_max, unit_context->memory_high);
4465
4466 unit_available = LESS_BY(unit_limit, current);
4467 available = MIN(unit_available, available);
4468 } while ((u = UNIT_GET_SLICE(u)));
4469
4470 *ret = available;
4471
4472 return 0;
4473 }
4474
4475 int unit_get_memory_current(Unit *u, uint64_t *ret) {
4476 int r;
4477
4478 // FIXME: Merge this into unit_get_memory_accounting after support for cgroup v1 is dropped
4479
4480 assert(u);
4481 assert(ret);
4482
4483 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
4484 return -ENODATA;
4485
4486 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4487 if (!crt || !crt->cgroup_path)
4488 return -ENODATA;
4489
4490 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
4491 if (unit_has_host_root_cgroup(u))
4492 return procfs_memory_get_used(ret);
4493
4494 if ((crt->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
4495 return -ENODATA;
4496
4497 r = cg_all_unified();
4498 if (r < 0)
4499 return r;
4500
4501 return cg_get_attribute_as_uint64("memory", crt->cgroup_path, r > 0 ? "memory.current" : "memory.usage_in_bytes", ret);
4502 }
4503
4504 int unit_get_memory_accounting(Unit *u, CGroupMemoryAccountingMetric metric, uint64_t *ret) {
4505
4506 static const char* const attributes_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
4507 [CGROUP_MEMORY_PEAK] = "memory.peak",
4508 [CGROUP_MEMORY_SWAP_CURRENT] = "memory.swap.current",
4509 [CGROUP_MEMORY_SWAP_PEAK] = "memory.swap.peak",
4510 [CGROUP_MEMORY_ZSWAP_CURRENT] = "memory.zswap.current",
4511 };
4512
4513 uint64_t bytes;
4514 bool updated = false;
4515 int r;
4516
4517 assert(u);
4518 assert(metric >= 0);
4519 assert(metric < _CGROUP_MEMORY_ACCOUNTING_METRIC_MAX);
4520
4521 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
4522 return -ENODATA;
4523
4524 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4525 if (!crt)
4526 return -ENODATA;
4527 if (!crt->cgroup_path)
4528 /* If the cgroup is already gone, we try to find the last cached value. */
4529 goto finish;
4530
4531 /* The root cgroup doesn't expose this information. */
4532 if (unit_has_host_root_cgroup(u))
4533 return -ENODATA;
4534
4535 if (!FLAGS_SET(crt->cgroup_realized_mask, CGROUP_MASK_MEMORY))
4536 return -ENODATA;
4537
4538 r = cg_all_unified();
4539 if (r < 0)
4540 return r;
4541 if (r == 0)
4542 return -ENODATA;
4543
4544 r = cg_get_attribute_as_uint64("memory", crt->cgroup_path, attributes_table[metric], &bytes);
4545 if (r < 0 && r != -ENODATA)
4546 return r;
4547 updated = r >= 0;
4548
4549 finish:
4550 if (metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST) {
4551 uint64_t *last = &crt->memory_accounting_last[metric];
4552
4553 if (updated)
4554 *last = bytes;
4555 else if (*last != UINT64_MAX)
4556 bytes = *last;
4557 else
4558 return -ENODATA;
4559
4560 } else if (!updated)
4561 return -ENODATA;
4562
4563 if (ret)
4564 *ret = bytes;
4565
4566 return 0;
4567 }
4568
4569 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
4570 assert(u);
4571 assert(ret);
4572
4573 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
4574 return -ENODATA;
4575
4576 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4577 if (!crt || !crt->cgroup_path)
4578 return -ENODATA;
4579
4580 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
4581 if (unit_has_host_root_cgroup(u))
4582 return procfs_tasks_get_current(ret);
4583
4584 if ((crt->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
4585 return -ENODATA;
4586
4587 return cg_get_attribute_as_uint64("pids", crt->cgroup_path, "pids.current", ret);
4588 }
4589
4590 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
4591 uint64_t ns;
4592 int r;
4593
4594 assert(u);
4595 assert(ret);
4596
4597 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4598 if (!crt || !crt->cgroup_path)
4599 return -ENODATA;
4600
4601 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
4602 if (unit_has_host_root_cgroup(u))
4603 return procfs_cpu_get_usage(ret);
4604
4605 /* Requisite controllers for CPU accounting are not enabled */
4606 if ((get_cpu_accounting_mask() & ~crt->cgroup_realized_mask) != 0)
4607 return -ENODATA;
4608
4609 r = cg_all_unified();
4610 if (r < 0)
4611 return r;
4612 if (r > 0) {
4613 _cleanup_free_ char *val = NULL;
4614 uint64_t us;
4615
4616 r = cg_get_keyed_attribute("cpu", crt->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
4617 if (IN_SET(r, -ENOENT, -ENXIO))
4618 return -ENODATA;
4619 if (r < 0)
4620 return r;
4621
4622 r = safe_atou64(val, &us);
4623 if (r < 0)
4624 return r;
4625
4626 ns = us * NSEC_PER_USEC;
4627 } else
4628 return cg_get_attribute_as_uint64("cpuacct", crt->cgroup_path, "cpuacct.usage", ret);
4629
4630 *ret = ns;
4631 return 0;
4632 }
4633
4634 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
4635 nsec_t ns;
4636 int r;
4637
4638 assert(u);
4639
4640 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
4641 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
4642 * call this function with a NULL return value. */
4643
4644 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4645 if (!crt || !crt->cgroup_path)
4646 return -ENODATA;
4647
4648 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
4649 return -ENODATA;
4650
4651 r = unit_get_cpu_usage_raw(u, &ns);
4652 if (r == -ENODATA && crt->cpu_usage_last != NSEC_INFINITY) {
4653 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
4654 * cached value. */
4655
4656 if (ret)
4657 *ret = crt->cpu_usage_last;
4658 return 0;
4659 }
4660 if (r < 0)
4661 return r;
4662
4663 if (ns > crt->cpu_usage_base)
4664 ns -= crt->cpu_usage_base;
4665 else
4666 ns = 0;
4667
4668 crt->cpu_usage_last = ns;
4669 if (ret)
4670 *ret = ns;
4671
4672 return 0;
4673 }
4674
4675 int unit_get_ip_accounting(
4676 Unit *u,
4677 CGroupIPAccountingMetric metric,
4678 uint64_t *ret) {
4679
4680 uint64_t value;
4681 int fd, r;
4682
4683 assert(u);
4684 assert(metric >= 0);
4685 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
4686 assert(ret);
4687
4688 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
4689 return -ENODATA;
4690
4691 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4692 if (!crt || !crt->cgroup_path)
4693 return -ENODATA;
4694
4695 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
4696 crt->ip_accounting_ingress_map_fd :
4697 crt->ip_accounting_egress_map_fd;
4698 if (fd < 0)
4699 return -ENODATA;
4700
4701 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
4702 r = bpf_firewall_read_accounting(fd, &value, NULL);
4703 else
4704 r = bpf_firewall_read_accounting(fd, NULL, &value);
4705 if (r < 0)
4706 return r;
4707
4708 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
4709 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
4710 * ip_accounting_extra[] field, and add them in here transparently. */
4711
4712 *ret = value + crt->ip_accounting_extra[metric];
4713
4714 return r;
4715 }
4716
4717 static uint64_t unit_get_effective_limit_one(Unit *u, CGroupLimitType type) {
4718 CGroupContext *cc;
4719
4720 assert(u);
4721 assert(UNIT_HAS_CGROUP_CONTEXT(u));
4722
4723 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
4724 switch (type) {
4725 case CGROUP_LIMIT_MEMORY_MAX:
4726 case CGROUP_LIMIT_MEMORY_HIGH:
4727 return physical_memory();
4728 case CGROUP_LIMIT_TASKS_MAX:
4729 return system_tasks_max();
4730 default:
4731 assert_not_reached();
4732 }
4733
4734 cc = ASSERT_PTR(unit_get_cgroup_context(u));
4735 switch (type) {
4736 /* Note: on legacy/hybrid hierarchies memory_max stays CGROUP_LIMIT_MAX unless configured
4737 * explicitly. Effective value of MemoryLimit= (cgroup v1) is not implemented. */
4738 case CGROUP_LIMIT_MEMORY_MAX:
4739 return cc->memory_max;
4740 case CGROUP_LIMIT_MEMORY_HIGH:
4741 return cc->memory_high;
4742 case CGROUP_LIMIT_TASKS_MAX:
4743 return cgroup_tasks_max_resolve(&cc->tasks_max);
4744 default:
4745 assert_not_reached();
4746 }
4747 }
4748
4749 int unit_get_effective_limit(Unit *u, CGroupLimitType type, uint64_t *ret) {
4750 uint64_t infimum;
4751
4752 assert(u);
4753 assert(ret);
4754 assert(type >= 0);
4755 assert(type < _CGROUP_LIMIT_TYPE_MAX);
4756
4757 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4758 return -EINVAL;
4759
4760 infimum = unit_get_effective_limit_one(u, type);
4761 for (Unit *slice = UNIT_GET_SLICE(u); slice; slice = UNIT_GET_SLICE(slice))
4762 infimum = MIN(infimum, unit_get_effective_limit_one(slice, type));
4763
4764 *ret = infimum;
4765 return 0;
4766 }
4767
4768 static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
4769 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
4770 [CGROUP_IO_READ_BYTES] = "rbytes=",
4771 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
4772 [CGROUP_IO_READ_OPERATIONS] = "rios=",
4773 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
4774 };
4775 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
4776 _cleanup_free_ char *path = NULL;
4777 _cleanup_fclose_ FILE *f = NULL;
4778 int r;
4779
4780 assert(u);
4781
4782 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4783 if (!crt || !crt->cgroup_path)
4784 return -ENODATA;
4785
4786 if (unit_has_host_root_cgroup(u))
4787 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
4788
4789 r = cg_all_unified();
4790 if (r < 0)
4791 return r;
4792 if (r == 0)
4793 return -ENODATA;
4794
4795 if (!FLAGS_SET(crt->cgroup_realized_mask, CGROUP_MASK_IO))
4796 return -ENODATA;
4797
4798 r = cg_get_path("io", crt->cgroup_path, "io.stat", &path);
4799 if (r < 0)
4800 return r;
4801
4802 f = fopen(path, "re");
4803 if (!f)
4804 return -errno;
4805
4806 for (;;) {
4807 _cleanup_free_ char *line = NULL;
4808 const char *p;
4809
4810 r = read_line(f, LONG_LINE_MAX, &line);
4811 if (r < 0)
4812 return r;
4813 if (r == 0)
4814 break;
4815
4816 p = line;
4817 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
4818 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
4819
4820 for (;;) {
4821 _cleanup_free_ char *word = NULL;
4822
4823 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
4824 if (r < 0)
4825 return r;
4826 if (r == 0)
4827 break;
4828
4829 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
4830 const char *x;
4831
4832 x = startswith(word, field_names[i]);
4833 if (x) {
4834 uint64_t w;
4835
4836 r = safe_atou64(x, &w);
4837 if (r < 0)
4838 return r;
4839
4840 /* Sum up the stats of all devices */
4841 acc[i] += w;
4842 break;
4843 }
4844 }
4845 }
4846 }
4847
4848 memcpy(ret, acc, sizeof(acc));
4849 return 0;
4850 }
4851
4852 int unit_get_io_accounting(
4853 Unit *u,
4854 CGroupIOAccountingMetric metric,
4855 bool allow_cache,
4856 uint64_t *ret) {
4857
4858 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
4859 int r;
4860
4861 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
4862
4863 if (!UNIT_CGROUP_BOOL(u, io_accounting))
4864 return -ENODATA;
4865
4866 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4867 if (!crt || !crt->cgroup_path)
4868 return -ENODATA;
4869
4870 if (allow_cache && crt->io_accounting_last[metric] != UINT64_MAX)
4871 goto done;
4872
4873 r = unit_get_io_accounting_raw(u, raw);
4874 if (r == -ENODATA && crt->io_accounting_last[metric] != UINT64_MAX)
4875 goto done;
4876 if (r < 0)
4877 return r;
4878
4879 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
4880 /* Saturated subtraction */
4881 if (raw[i] > crt->io_accounting_base[i])
4882 crt->io_accounting_last[i] = raw[i] - crt->io_accounting_base[i];
4883 else
4884 crt->io_accounting_last[i] = 0;
4885 }
4886
4887 done:
4888 if (ret)
4889 *ret = crt->io_accounting_last[metric];
4890
4891 return 0;
4892 }
4893
4894 int unit_reset_cpu_accounting(Unit *u) {
4895 int r;
4896
4897 assert(u);
4898
4899 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4900 if (!crt || !crt->cgroup_path)
4901 return 0;
4902
4903 crt->cpu_usage_last = NSEC_INFINITY;
4904
4905 r = unit_get_cpu_usage_raw(u, &crt->cpu_usage_base);
4906 if (r < 0) {
4907 crt->cpu_usage_base = 0;
4908 return r;
4909 }
4910
4911 return 0;
4912 }
4913
4914 void unit_reset_memory_accounting_last(Unit *u) {
4915 assert(u);
4916
4917 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4918 if (!crt || !crt->cgroup_path)
4919 return;
4920
4921 FOREACH_ELEMENT(i, crt->memory_accounting_last)
4922 *i = UINT64_MAX;
4923 }
4924
4925 int unit_reset_ip_accounting(Unit *u) {
4926 int r = 0;
4927
4928 assert(u);
4929
4930 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4931 if (!crt || !crt->cgroup_path)
4932 return 0;
4933
4934 if (crt->ip_accounting_ingress_map_fd >= 0)
4935 RET_GATHER(r, bpf_firewall_reset_accounting(crt->ip_accounting_ingress_map_fd));
4936
4937 if (crt->ip_accounting_egress_map_fd >= 0)
4938 RET_GATHER(r, bpf_firewall_reset_accounting(crt->ip_accounting_egress_map_fd));
4939
4940 zero(crt->ip_accounting_extra);
4941
4942 return r;
4943 }
4944
4945 void unit_reset_io_accounting_last(Unit *u) {
4946 assert(u);
4947
4948 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4949 if (!crt || !crt->cgroup_path)
4950 return;
4951
4952 FOREACH_ARRAY(i, crt->io_accounting_last, _CGROUP_IO_ACCOUNTING_METRIC_MAX)
4953 *i = UINT64_MAX;
4954 }
4955
4956 int unit_reset_io_accounting(Unit *u) {
4957 int r;
4958
4959 assert(u);
4960
4961 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4962 if (!crt || !crt->cgroup_path)
4963 return 0;
4964
4965 unit_reset_io_accounting_last(u);
4966
4967 r = unit_get_io_accounting_raw(u, crt->io_accounting_base);
4968 if (r < 0) {
4969 zero(crt->io_accounting_base);
4970 return r;
4971 }
4972
4973 return 0;
4974 }
4975
4976 int unit_reset_accounting(Unit *u) {
4977 int r = 0;
4978
4979 assert(u);
4980
4981 RET_GATHER(r, unit_reset_cpu_accounting(u));
4982 RET_GATHER(r, unit_reset_io_accounting(u));
4983 RET_GATHER(r, unit_reset_ip_accounting(u));
4984 unit_reset_memory_accounting_last(u);
4985
4986 return r;
4987 }
4988
4989 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
4990 assert(u);
4991
4992 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4993 return;
4994
4995 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
4996 if (!crt)
4997 return;
4998
4999 if (m == 0)
5000 return;
5001
5002 /* always invalidate compat pairs together */
5003 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
5004 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
5005
5006 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
5007 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
5008
5009 if (FLAGS_SET(crt->cgroup_invalidated_mask, m)) /* NOP? */
5010 return;
5011
5012 crt->cgroup_invalidated_mask |= m;
5013 unit_add_to_cgroup_realize_queue(u);
5014 }
5015
5016 void unit_invalidate_cgroup_bpf(Unit *u) {
5017 assert(u);
5018
5019 if (!UNIT_HAS_CGROUP_CONTEXT(u))
5020 return;
5021
5022 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
5023 if (!crt)
5024 return;
5025
5026 if (crt->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
5027 return;
5028
5029 crt->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
5030 unit_add_to_cgroup_realize_queue(u);
5031
5032 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
5033 * list of our children includes our own. */
5034 if (u->type == UNIT_SLICE) {
5035 Unit *member;
5036
5037 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
5038 unit_invalidate_cgroup_bpf(member);
5039 }
5040 }
5041
5042 void unit_cgroup_catchup(Unit *u) {
5043 assert(u);
5044
5045 if (!UNIT_HAS_CGROUP_CONTEXT(u))
5046 return;
5047
5048 /* We dropped the inotify watch during reexec/reload, so we need to
5049 * check these as they may have changed.
5050 * Note that (currently) the kernel doesn't actually update cgroup
5051 * file modification times, so we can't just serialize and then check
5052 * the mtime for file(s) we are interested in. */
5053 (void) unit_check_cgroup_events(u);
5054 unit_add_to_cgroup_oom_queue(u);
5055 }
5056
5057 bool unit_cgroup_delegate(Unit *u) {
5058 CGroupContext *c;
5059
5060 assert(u);
5061
5062 if (!UNIT_VTABLE(u)->can_delegate)
5063 return false;
5064
5065 c = unit_get_cgroup_context(u);
5066 if (!c)
5067 return false;
5068
5069 return c->delegate;
5070 }
5071
5072 void manager_invalidate_startup_units(Manager *m) {
5073 Unit *u;
5074
5075 assert(m);
5076
5077 SET_FOREACH(u, m->startup_units)
5078 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
5079 }
5080
5081 static int unit_cgroup_freezer_kernel_state(Unit *u, FreezerState *ret) {
5082 _cleanup_free_ char *val = NULL;
5083 FreezerState s;
5084 int r;
5085
5086 assert(u);
5087 assert(ret);
5088
5089 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
5090 if (!crt || !crt->cgroup_path)
5091 return -EOWNERDEAD;
5092
5093 r = cg_get_keyed_attribute(
5094 SYSTEMD_CGROUP_CONTROLLER,
5095 crt->cgroup_path,
5096 "cgroup.events",
5097 STRV_MAKE("frozen"),
5098 &val);
5099 if (IN_SET(r, -ENOENT, -ENXIO))
5100 return -ENODATA;
5101 if (r < 0)
5102 return r;
5103
5104 if (streq(val, "0"))
5105 s = FREEZER_RUNNING;
5106 else if (streq(val, "1"))
5107 s = FREEZER_FROZEN;
5108 else {
5109 log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "Unexpected cgroup frozen state: %s", val);
5110 s = _FREEZER_STATE_INVALID;
5111 }
5112
5113 *ret = s;
5114 return 0;
5115 }
5116
5117 int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
5118 _cleanup_free_ char *path = NULL;
5119 FreezerState target, current, next;
5120 int r;
5121
5122 assert(u);
5123 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_PARENT_FREEZE,
5124 FREEZER_THAW, FREEZER_PARENT_THAW));
5125
5126 if (!cg_freezer_supported())
5127 return 0;
5128
5129 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
5130 if (!crt || !crt->cgroup_realized)
5131 return 0; /* No cgroup = nothing running to freeze */
5132
5133 unit_next_freezer_state(u, action, &next, &target);
5134
5135 r = unit_cgroup_freezer_kernel_state(u, &current);
5136 if (r < 0)
5137 return r;
5138
5139 if (current == target)
5140 next = freezer_state_finish(next);
5141 else if (IN_SET(next, FREEZER_FROZEN, FREEZER_FROZEN_BY_PARENT, FREEZER_RUNNING)) {
5142 /* We're transitioning into a finished state, which implies that the cgroup's
5143 * current state already matches the target and thus we'd return 0. But, reality
5144 * shows otherwise. This indicates that our freezer_state tracking has diverged
5145 * from the real state of the cgroup, which can happen if someone meddles with the
5146 * cgroup from underneath us. This really shouldn't happen during normal operation,
5147 * though. So, let's warn about it and fix up the state to be valid */
5148
5149 log_unit_warning(u, "Unit wants to transition to %s freezer state but cgroup is unexpectedly %s, fixing up.",
5150 freezer_state_to_string(next), freezer_state_to_string(current) ?: "(invalid)");
5151
5152 if (next == FREEZER_FROZEN)
5153 next = FREEZER_FREEZING;
5154 else if (next == FREEZER_FROZEN_BY_PARENT)
5155 next = FREEZER_FREEZING_BY_PARENT;
5156 else if (next == FREEZER_RUNNING)
5157 next = FREEZER_THAWING;
5158 }
5159
5160 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, crt->cgroup_path, "cgroup.freeze", &path);
5161 if (r < 0)
5162 return r;
5163
5164 log_unit_debug(u, "Unit freezer state was %s, now %s.",
5165 freezer_state_to_string(u->freezer_state),
5166 freezer_state_to_string(next));
5167
5168 r = write_string_file(path, one_zero(target == FREEZER_FROZEN), WRITE_STRING_FILE_DISABLE_BUFFER);
5169 if (r < 0)
5170 return r;
5171
5172 u->freezer_state = next;
5173 return target != current;
5174 }
5175
5176 int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
5177 _cleanup_free_ char *v = NULL;
5178 int r;
5179
5180 assert(u);
5181 assert(cpus);
5182
5183 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
5184 if (!crt || !crt->cgroup_path)
5185 return -ENODATA;
5186
5187 if ((crt->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
5188 return -ENODATA;
5189
5190 r = cg_all_unified();
5191 if (r < 0)
5192 return r;
5193 if (r == 0)
5194 return -ENODATA;
5195
5196 r = cg_get_attribute("cpuset", crt->cgroup_path, name, &v);
5197 if (r == -ENOENT)
5198 return -ENODATA;
5199 if (r < 0)
5200 return r;
5201
5202 return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
5203 }
5204
5205 CGroupRuntime *cgroup_runtime_new(void) {
5206 _cleanup_(cgroup_runtime_freep) CGroupRuntime *crt = NULL;
5207
5208 crt = new(CGroupRuntime, 1);
5209 if (!crt)
5210 return NULL;
5211
5212 *crt = (CGroupRuntime) {
5213 .cpu_usage_last = NSEC_INFINITY,
5214
5215 .cgroup_control_inotify_wd = -1,
5216 .cgroup_memory_inotify_wd = -1,
5217
5218 .ip_accounting_ingress_map_fd = -EBADF,
5219 .ip_accounting_egress_map_fd = -EBADF,
5220
5221 .ipv4_allow_map_fd = -EBADF,
5222 .ipv6_allow_map_fd = -EBADF,
5223 .ipv4_deny_map_fd = -EBADF,
5224 .ipv6_deny_map_fd = -EBADF,
5225
5226 .cgroup_invalidated_mask = _CGROUP_MASK_ALL,
5227 };
5228
5229 FOREACH_ELEMENT(i, crt->memory_accounting_last)
5230 *i = UINT64_MAX;
5231 FOREACH_ELEMENT(i, crt->io_accounting_base)
5232 *i = UINT64_MAX;
5233 FOREACH_ELEMENT(i, crt->io_accounting_last)
5234 *i = UINT64_MAX;
5235 FOREACH_ELEMENT(i, crt->ip_accounting_extra)
5236 *i = UINT64_MAX;
5237
5238 return TAKE_PTR(crt);
5239 }
5240
5241 CGroupRuntime *cgroup_runtime_free(CGroupRuntime *crt) {
5242 if (!crt)
5243 return NULL;
5244
5245 fdset_free(crt->initial_socket_bind_link_fds);
5246 #if BPF_FRAMEWORK
5247 bpf_link_free(crt->ipv4_socket_bind_link);
5248 bpf_link_free(crt->ipv6_socket_bind_link);
5249 #endif
5250 hashmap_free(crt->bpf_foreign_by_key);
5251
5252 bpf_program_free(crt->bpf_device_control_installed);
5253
5254 #if BPF_FRAMEWORK
5255 bpf_link_free(crt->restrict_ifaces_ingress_bpf_link);
5256 bpf_link_free(crt->restrict_ifaces_egress_bpf_link);
5257 #endif
5258 fdset_free(crt->initial_restrict_ifaces_link_fds);
5259
5260 safe_close(crt->ipv4_allow_map_fd);
5261 safe_close(crt->ipv6_allow_map_fd);
5262 safe_close(crt->ipv4_deny_map_fd);
5263 safe_close(crt->ipv6_deny_map_fd);
5264
5265 bpf_program_free(crt->ip_bpf_ingress);
5266 bpf_program_free(crt->ip_bpf_ingress_installed);
5267 bpf_program_free(crt->ip_bpf_egress);
5268 bpf_program_free(crt->ip_bpf_egress_installed);
5269
5270 set_free(crt->ip_bpf_custom_ingress);
5271 set_free(crt->ip_bpf_custom_ingress_installed);
5272 set_free(crt->ip_bpf_custom_egress);
5273 set_free(crt->ip_bpf_custom_egress_installed);
5274
5275 free(crt->cgroup_path);
5276
5277 return mfree(crt);
5278 }
5279
5280 static const char* const ip_accounting_metric_field_table[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
5281 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
5282 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
5283 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
5284 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
5285 };
5286
5287 DEFINE_PRIVATE_STRING_TABLE_LOOKUP(ip_accounting_metric_field, CGroupIPAccountingMetric);
5288
5289 static const char* const io_accounting_metric_field_base_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
5290 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
5291 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
5292 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
5293 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
5294 };
5295
5296 DEFINE_PRIVATE_STRING_TABLE_LOOKUP(io_accounting_metric_field_base, CGroupIOAccountingMetric);
5297
5298 static const char* const io_accounting_metric_field_last_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
5299 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
5300 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
5301 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
5302 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
5303 };
5304
5305 DEFINE_PRIVATE_STRING_TABLE_LOOKUP(io_accounting_metric_field_last, CGroupIOAccountingMetric);
5306
5307 static const char* const memory_accounting_metric_field_last_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST + 1] = {
5308 [CGROUP_MEMORY_PEAK] = "memory-accounting-peak",
5309 [CGROUP_MEMORY_SWAP_PEAK] = "memory-accounting-swap-peak",
5310 };
5311
5312 DEFINE_PRIVATE_STRING_TABLE_LOOKUP(memory_accounting_metric_field_last, CGroupMemoryAccountingMetric);
5313
5314 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
5315 _cleanup_free_ char *s = NULL;
5316 int r;
5317
5318 assert(f);
5319 assert(key);
5320
5321 if (mask == 0)
5322 return 0;
5323
5324 r = cg_mask_to_string(mask, &s);
5325 if (r < 0)
5326 return log_error_errno(r, "Failed to format cgroup mask: %m");
5327
5328 return serialize_item(f, key, s);
5329 }
5330
5331 int cgroup_runtime_serialize(Unit *u, FILE *f, FDSet *fds) {
5332 int r;
5333
5334 assert(u);
5335 assert(f);
5336 assert(fds);
5337
5338 CGroupRuntime *crt = unit_get_cgroup_runtime(u);
5339 if (!crt)
5340 return 0;
5341
5342 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, crt->cpu_usage_base);
5343 if (crt->cpu_usage_last != NSEC_INFINITY)
5344 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, crt->cpu_usage_last);
5345
5346 if (crt->managed_oom_kill_last > 0)
5347 (void) serialize_item_format(f, "managed-oom-kill-last", "%" PRIu64, crt->managed_oom_kill_last);
5348
5349 if (crt->oom_kill_last > 0)
5350 (void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, crt->oom_kill_last);
5351
5352 for (CGroupMemoryAccountingMetric metric = 0; metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST; metric++) {
5353 uint64_t v;
5354
5355 r = unit_get_memory_accounting(u, metric, &v);
5356 if (r >= 0)
5357 (void) serialize_item_format(f, memory_accounting_metric_field_last_to_string(metric), "%" PRIu64, v);
5358 }
5359
5360 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
5361 uint64_t v;
5362
5363 r = unit_get_ip_accounting(u, m, &v);
5364 if (r >= 0)
5365 (void) serialize_item_format(f, ip_accounting_metric_field_to_string(m), "%" PRIu64, v);
5366 }
5367
5368 for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
5369 (void) serialize_item_format(f, io_accounting_metric_field_base_to_string(im), "%" PRIu64, crt->io_accounting_base[im]);
5370
5371 if (crt->io_accounting_last[im] != UINT64_MAX)
5372 (void) serialize_item_format(f, io_accounting_metric_field_last_to_string(im), "%" PRIu64, crt->io_accounting_last[im]);
5373 }
5374
5375 if (crt->cgroup_path)
5376 (void) serialize_item(f, "cgroup", crt->cgroup_path);
5377 if (crt->cgroup_id != 0)
5378 (void) serialize_item_format(f, "cgroup-id", "%" PRIu64, crt->cgroup_id);
5379
5380 (void) serialize_bool(f, "cgroup-realized", crt->cgroup_realized);
5381 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", crt->cgroup_realized_mask);
5382 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", crt->cgroup_enabled_mask);
5383 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", crt->cgroup_invalidated_mask);
5384
5385 (void) bpf_socket_bind_serialize(u, f, fds);
5386
5387 (void) bpf_program_serialize_attachment(f, fds, "ip-bpf-ingress-installed", crt->ip_bpf_ingress_installed);
5388 (void) bpf_program_serialize_attachment(f, fds, "ip-bpf-egress-installed", crt->ip_bpf_egress_installed);
5389 (void) bpf_program_serialize_attachment(f, fds, "bpf-device-control-installed", crt->bpf_device_control_installed);
5390 (void) bpf_program_serialize_attachment_set(f, fds, "ip-bpf-custom-ingress-installed", crt->ip_bpf_custom_ingress_installed);
5391 (void) bpf_program_serialize_attachment_set(f, fds, "ip-bpf-custom-egress-installed", crt->ip_bpf_custom_egress_installed);
5392
5393 (void) bpf_restrict_ifaces_serialize(u, f, fds);
5394
5395 return 0;
5396 }
5397
5398 #define MATCH_DESERIALIZE(u, key, l, v, parse_func, target) \
5399 ({ \
5400 bool _deserialize_matched = streq(l, key); \
5401 if (_deserialize_matched) { \
5402 CGroupRuntime *crt = unit_setup_cgroup_runtime(u); \
5403 if (!crt) \
5404 log_oom_debug(); \
5405 else { \
5406 int _deserialize_r = parse_func(v); \
5407 if (_deserialize_r < 0) \
5408 log_unit_debug_errno(u, _deserialize_r, \
5409 "Failed to parse \"%s=%s\", ignoring.", l, v); \
5410 else \
5411 crt->target = _deserialize_r; \
5412 } \
5413 } \
5414 _deserialize_matched; \
5415 })
5416
5417 #define MATCH_DESERIALIZE_IMMEDIATE(u, key, l, v, parse_func, target) \
5418 ({ \
5419 bool _deserialize_matched = streq(l, key); \
5420 if (_deserialize_matched) { \
5421 CGroupRuntime *crt = unit_setup_cgroup_runtime(u); \
5422 if (!crt) \
5423 log_oom_debug(); \
5424 else { \
5425 int _deserialize_r = parse_func(v, &crt->target); \
5426 if (_deserialize_r < 0) \
5427 log_unit_debug_errno(u, _deserialize_r, \
5428 "Failed to parse \"%s=%s\", ignoring", l, v); \
5429 } \
5430 } \
5431 _deserialize_matched; \
5432 })
5433
5434 #define MATCH_DESERIALIZE_METRIC(u, key, l, v, parse_func, target) \
5435 ({ \
5436 bool _deserialize_matched = streq(l, key); \
5437 if (_deserialize_matched) { \
5438 CGroupRuntime *crt = unit_setup_cgroup_runtime(u); \
5439 if (!crt) \
5440 log_oom_debug(); \
5441 else { \
5442 int _deserialize_r = parse_func(v); \
5443 if (_deserialize_r < 0) \
5444 log_unit_debug_errno(u, _deserialize_r, \
5445 "Failed to parse \"%s=%s\", ignoring.", l, v); \
5446 else \
5447 crt->target = _deserialize_r; \
5448 } \
5449 } \
5450 _deserialize_matched; \
5451 })
5452
5453 int cgroup_runtime_deserialize_one(Unit *u, const char *key, const char *value, FDSet *fds) {
5454 int r;
5455
5456 assert(u);
5457 assert(value);
5458
5459 if (!UNIT_HAS_CGROUP_CONTEXT(u))
5460 return 0;
5461
5462 if (MATCH_DESERIALIZE_IMMEDIATE(u, "cpu-usage-base", key, value, safe_atou64, cpu_usage_base) ||
5463 MATCH_DESERIALIZE_IMMEDIATE(u, "cpuacct-usage-base", key, value, safe_atou64, cpu_usage_base))
5464 return 1;
5465
5466 if (MATCH_DESERIALIZE_IMMEDIATE(u, "cpu-usage-last", key, value, safe_atou64, cpu_usage_last))
5467 return 1;
5468
5469 if (MATCH_DESERIALIZE_IMMEDIATE(u, "managed-oom-kill-last", key, value, safe_atou64, managed_oom_kill_last))
5470 return 1;
5471
5472 if (MATCH_DESERIALIZE_IMMEDIATE(u, "oom-kill-last", key, value, safe_atou64, oom_kill_last))
5473 return 1;
5474
5475 if (streq(key, "cgroup")) {
5476 r = unit_set_cgroup_path(u, value);
5477 if (r < 0)
5478 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", value);
5479
5480 (void) unit_watch_cgroup(u);
5481 (void) unit_watch_cgroup_memory(u);
5482 return 1;
5483 }
5484
5485 if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-id", key, value, safe_atou64, cgroup_id))
5486 return 1;
5487
5488 if (MATCH_DESERIALIZE(u, "cgroup-realized", key, value, parse_boolean, cgroup_realized))
5489 return 1;
5490
5491 if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-realized-mask", key, value, cg_mask_from_string, cgroup_realized_mask))
5492 return 1;
5493
5494 if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-enabled-mask", key, value, cg_mask_from_string, cgroup_enabled_mask))
5495 return 1;
5496
5497 if (MATCH_DESERIALIZE_IMMEDIATE(u, "cgroup-invalidated-mask", key, value, cg_mask_from_string, cgroup_invalidated_mask))
5498 return 1;
5499
5500 if (STR_IN_SET(key, "ipv4-socket-bind-bpf-link-fd", "ipv6-socket-bind-bpf-link-fd")) {
5501 int fd;
5502
5503 fd = deserialize_fd(fds, value);
5504 if (fd >= 0)
5505 (void) bpf_socket_bind_add_initial_link_fd(u, fd);
5506
5507 return 1;
5508 }
5509
5510 if (STR_IN_SET(key,
5511 "ip-bpf-ingress-installed", "ip-bpf-egress-installed",
5512 "bpf-device-control-installed",
5513 "ip-bpf-custom-ingress-installed", "ip-bpf-custom-egress-installed")) {
5514
5515 CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
5516 if (!crt)
5517 log_oom_debug();
5518 else {
5519 if (streq(key, "ip-bpf-ingress-installed"))
5520 (void) bpf_program_deserialize_attachment(value, fds, &crt->ip_bpf_ingress_installed);
5521
5522 if (streq(key, "ip-bpf-egress-installed"))
5523 (void) bpf_program_deserialize_attachment(value, fds, &crt->ip_bpf_egress_installed);
5524
5525 if (streq(key, "bpf-device-control-installed"))
5526 (void) bpf_program_deserialize_attachment(value, fds, &crt->bpf_device_control_installed);
5527
5528 if (streq(key, "ip-bpf-custom-ingress-installed"))
5529 (void) bpf_program_deserialize_attachment_set(value, fds, &crt->ip_bpf_custom_ingress_installed);
5530
5531 if (streq(key, "ip-bpf-custom-egress-installed"))
5532 (void) bpf_program_deserialize_attachment_set(value, fds, &crt->ip_bpf_custom_egress_installed);
5533 }
5534
5535 return 1;
5536 }
5537
5538 if (streq(key, "restrict-ifaces-bpf-fd")) {
5539 int fd;
5540
5541 fd = deserialize_fd(fds, value);
5542 if (fd >= 0)
5543 (void) bpf_restrict_ifaces_add_initial_link_fd(u, fd);
5544 return 1;
5545 }
5546
5547 CGroupMemoryAccountingMetric mm = memory_accounting_metric_field_last_from_string(key);
5548 if (mm >= 0) {
5549 uint64_t c;
5550
5551 r = safe_atou64(value, &c);
5552 if (r < 0)
5553 log_unit_debug(u, "Failed to parse memory accounting last value %s, ignoring.", value);
5554 else {
5555 CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
5556 if (!crt)
5557 log_oom_debug();
5558 else
5559 crt->memory_accounting_last[mm] = c;
5560 }
5561
5562 return 1;
5563 }
5564
5565 CGroupIPAccountingMetric ipm = ip_accounting_metric_field_from_string(key);
5566 if (ipm >= 0) {
5567 uint64_t c;
5568
5569 r = safe_atou64(value, &c);
5570 if (r < 0)
5571 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", value);
5572 else {
5573 CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
5574 if (!crt)
5575 log_oom_debug();
5576 else
5577 crt->ip_accounting_extra[ipm] = c;
5578 }
5579
5580 return 1;
5581 }
5582
5583 CGroupIOAccountingMetric iom = io_accounting_metric_field_base_from_string(key);
5584 if (iom >= 0) {
5585 uint64_t c;
5586
5587 r = safe_atou64(value, &c);
5588 if (r < 0)
5589 log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", value);
5590 else {
5591 CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
5592 if (!crt)
5593 log_oom_debug();
5594 else
5595 crt->io_accounting_base[iom] = c;
5596 }
5597
5598 return 1;
5599 }
5600
5601 iom = io_accounting_metric_field_last_from_string(key);
5602 if (iom >= 0) {
5603 uint64_t c;
5604
5605 r = safe_atou64(value, &c);
5606 if (r < 0)
5607 log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", value);
5608 else {
5609 CGroupRuntime *crt = unit_setup_cgroup_runtime(u);
5610 if (!crt)
5611 log_oom_debug();
5612 else
5613 crt->io_accounting_last[iom] = c;
5614 }
5615 return 1;
5616 }
5617
5618 return 0;
5619 }
5620
5621 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
5622 [CGROUP_DEVICE_POLICY_AUTO] = "auto",
5623 [CGROUP_DEVICE_POLICY_CLOSED] = "closed",
5624 [CGROUP_DEVICE_POLICY_STRICT] = "strict",
5625 };
5626
5627 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
5628
5629 static const char* const cgroup_pressure_watch_table[_CGROUP_PRESSURE_WATCH_MAX] = {
5630 [CGROUP_PRESSURE_WATCH_OFF] = "off",
5631 [CGROUP_PRESSURE_WATCH_AUTO] = "auto",
5632 [CGROUP_PRESSURE_WATCH_ON] = "on",
5633 [CGROUP_PRESSURE_WATCH_SKIP] = "skip",
5634 };
5635
5636 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(cgroup_pressure_watch, CGroupPressureWatch, CGROUP_PRESSURE_WATCH_ON);
5637
5638 static const char* const cgroup_ip_accounting_metric_table[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
5639 [CGROUP_IP_INGRESS_BYTES] = "IPIngressBytes",
5640 [CGROUP_IP_EGRESS_BYTES] = "IPEgressBytes",
5641 [CGROUP_IP_INGRESS_PACKETS] = "IPIngressPackets",
5642 [CGROUP_IP_EGRESS_PACKETS] = "IPEgressPackets",
5643 };
5644
5645 DEFINE_STRING_TABLE_LOOKUP(cgroup_ip_accounting_metric, CGroupIPAccountingMetric);
5646
5647 static const char* const cgroup_io_accounting_metric_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
5648 [CGROUP_IO_READ_BYTES] = "IOReadBytes",
5649 [CGROUP_IO_WRITE_BYTES] = "IOWriteBytes",
5650 [CGROUP_IO_READ_OPERATIONS] = "IOReadOperations",
5651 [CGROUP_IO_WRITE_OPERATIONS] = "IOWriteOperations",
5652 };
5653
5654 DEFINE_STRING_TABLE_LOOKUP(cgroup_io_accounting_metric, CGroupIOAccountingMetric);
5655
5656 static const char* const cgroup_memory_accounting_metric_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
5657 [CGROUP_MEMORY_PEAK] = "MemoryPeak",
5658 [CGROUP_MEMORY_SWAP_CURRENT] = "MemorySwapCurrent",
5659 [CGROUP_MEMORY_SWAP_PEAK] = "MemorySwapPeak",
5660 [CGROUP_MEMORY_ZSWAP_CURRENT] = "MemoryZSwapCurrent",
5661 };
5662
5663 DEFINE_STRING_TABLE_LOOKUP(cgroup_memory_accounting_metric, CGroupMemoryAccountingMetric);
5664
5665 static const char *const cgroup_effective_limit_type_table[_CGROUP_LIMIT_TYPE_MAX] = {
5666 [CGROUP_LIMIT_MEMORY_MAX] = "EffectiveMemoryMax",
5667 [CGROUP_LIMIT_MEMORY_HIGH] = "EffectiveMemoryHigh",
5668 [CGROUP_LIMIT_TASKS_MAX] = "EffectiveTasksMax",
5669 };
5670
5671 DEFINE_STRING_TABLE_LOOKUP(cgroup_effective_limit_type, CGroupLimitType);