]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
add support for KSM
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "argv-util.h"
43 #include "async.h"
44 #include "barrier.h"
45 #include "bpf-lsm.h"
46 #include "cap-list.h"
47 #include "capability-util.h"
48 #include "cgroup-setup.h"
49 #include "chase.h"
50 #include "chown-recursive.h"
51 #include "constants.h"
52 #include "cpu-set-util.h"
53 #include "creds-util.h"
54 #include "data-fd-util.h"
55 #include "env-file.h"
56 #include "env-util.h"
57 #include "errno-list.h"
58 #include "escape.h"
59 #include "execute.h"
60 #include "exit-status.h"
61 #include "fd-util.h"
62 #include "fileio.h"
63 #include "format-util.h"
64 #include "glob-util.h"
65 #include "hexdecoct.h"
66 #include "io-util.h"
67 #include "ioprio-util.h"
68 #include "label-util.h"
69 #include "log.h"
70 #include "macro.h"
71 #include "manager.h"
72 #include "manager-dump.h"
73 #include "memory-util.h"
74 #include "missing_fs.h"
75 #include "missing_ioprio.h"
76 #include "missing_prctl.h"
77 #include "mkdir-label.h"
78 #include "mount-util.h"
79 #include "mountpoint-util.h"
80 #include "namespace.h"
81 #include "parse-util.h"
82 #include "path-util.h"
83 #include "proc-cmdline.h"
84 #include "process-util.h"
85 #include "psi-util.h"
86 #include "random-util.h"
87 #include "recurse-dir.h"
88 #include "rlimit-util.h"
89 #include "rm-rf.h"
90 #if HAVE_SECCOMP
91 #include "seccomp-util.h"
92 #endif
93 #include "securebits-util.h"
94 #include "selinux-util.h"
95 #include "signal-util.h"
96 #include "smack-util.h"
97 #include "socket-util.h"
98 #include "sort-util.h"
99 #include "special.h"
100 #include "stat-util.h"
101 #include "string-table.h"
102 #include "string-util.h"
103 #include "strv.h"
104 #include "syslog-util.h"
105 #include "terminal-util.h"
106 #include "tmpfile-util.h"
107 #include "umask-util.h"
108 #include "unit-serialize.h"
109 #include "user-util.h"
110 #include "utmp-wtmp.h"
111
112 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
113 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
114
115 #define SNDBUF_SIZE (8*1024*1024)
116
117 static int shift_fds(int fds[], size_t n_fds) {
118 if (n_fds <= 0)
119 return 0;
120
121 /* Modifies the fds array! (sorts it) */
122
123 assert(fds);
124
125 for (int start = 0;;) {
126 int restart_from = -1;
127
128 for (int i = start; i < (int) n_fds; i++) {
129 int nfd;
130
131 /* Already at right index? */
132 if (fds[i] == i+3)
133 continue;
134
135 nfd = fcntl(fds[i], F_DUPFD, i + 3);
136 if (nfd < 0)
137 return -errno;
138
139 safe_close(fds[i]);
140 fds[i] = nfd;
141
142 /* Hmm, the fd we wanted isn't free? Then
143 * let's remember that and try again from here */
144 if (nfd != i+3 && restart_from < 0)
145 restart_from = i;
146 }
147
148 if (restart_from < 0)
149 break;
150
151 start = restart_from;
152 }
153
154 return 0;
155 }
156
157 static int flags_fds(
158 const int fds[],
159 size_t n_socket_fds,
160 size_t n_fds,
161 bool nonblock) {
162
163 int r;
164
165 if (n_fds <= 0)
166 return 0;
167
168 assert(fds);
169
170 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
171 * O_NONBLOCK only applies to socket activation though. */
172
173 for (size_t i = 0; i < n_fds; i++) {
174
175 if (i < n_socket_fds) {
176 r = fd_nonblock(fds[i], nonblock);
177 if (r < 0)
178 return r;
179 }
180
181 /* We unconditionally drop FD_CLOEXEC from the fds,
182 * since after all we want to pass these fds to our
183 * children */
184
185 r = fd_cloexec(fds[i], false);
186 if (r < 0)
187 return r;
188 }
189
190 return 0;
191 }
192
193 static const char *exec_context_tty_path(const ExecContext *context) {
194 assert(context);
195
196 if (context->stdio_as_fds)
197 return NULL;
198
199 if (context->tty_path)
200 return context->tty_path;
201
202 return "/dev/console";
203 }
204
205 static int exec_context_tty_size(const ExecContext *context, unsigned *ret_rows, unsigned *ret_cols) {
206 _cleanup_free_ char *rowskey = NULL, *rowsvalue = NULL, *colskey = NULL, *colsvalue = NULL;
207 unsigned rows, cols;
208 const char *tty;
209 int r;
210
211 assert(context);
212 assert(ret_rows);
213 assert(ret_cols);
214
215 rows = context->tty_rows;
216 cols = context->tty_cols;
217
218 tty = exec_context_tty_path(context);
219 if (!tty || (rows != UINT_MAX && cols != UINT_MAX)) {
220 *ret_rows = rows;
221 *ret_cols = cols;
222 return 0;
223 }
224
225 tty = skip_dev_prefix(tty);
226 if (!in_charset(tty, ALPHANUMERICAL)) {
227 log_debug("%s contains non-alphanumeric characters, ignoring", tty);
228 *ret_rows = rows;
229 *ret_cols = cols;
230 return 0;
231 }
232
233 rowskey = strjoin("systemd.tty.rows.", tty);
234 if (!rowskey)
235 return -ENOMEM;
236
237 colskey = strjoin("systemd.tty.columns.", tty);
238 if (!colskey)
239 return -ENOMEM;
240
241 r = proc_cmdline_get_key_many(/* flags = */ 0,
242 rowskey, &rowsvalue,
243 colskey, &colsvalue);
244 if (r < 0)
245 log_debug_errno(r, "Failed to read TTY size of %s from kernel cmdline, ignoring: %m", tty);
246
247 if (rows == UINT_MAX && rowsvalue) {
248 r = safe_atou(rowsvalue, &rows);
249 if (r < 0)
250 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", rowskey, rowsvalue);
251 }
252
253 if (cols == UINT_MAX && colsvalue) {
254 r = safe_atou(colsvalue, &cols);
255 if (r < 0)
256 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", colskey, colsvalue);
257 }
258
259 *ret_rows = rows;
260 *ret_cols = cols;
261
262 return 0;
263 }
264
265 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
266 const char *path;
267
268 assert(context);
269
270 path = exec_context_tty_path(context);
271
272 if (context->tty_vhangup) {
273 if (p && p->stdin_fd >= 0)
274 (void) terminal_vhangup_fd(p->stdin_fd);
275 else if (path)
276 (void) terminal_vhangup(path);
277 }
278
279 if (context->tty_reset) {
280 if (p && p->stdin_fd >= 0)
281 (void) reset_terminal_fd(p->stdin_fd, true);
282 else if (path)
283 (void) reset_terminal(path);
284 }
285
286 if (p && p->stdin_fd >= 0) {
287 unsigned rows = context->tty_rows, cols = context->tty_cols;
288
289 (void) exec_context_tty_size(context, &rows, &cols);
290 (void) terminal_set_size_fd(p->stdin_fd, path, rows, cols);
291 }
292
293 if (context->tty_vt_disallocate && path)
294 (void) vt_disallocate(path);
295 }
296
297 static bool is_terminal_input(ExecInput i) {
298 return IN_SET(i,
299 EXEC_INPUT_TTY,
300 EXEC_INPUT_TTY_FORCE,
301 EXEC_INPUT_TTY_FAIL);
302 }
303
304 static bool is_terminal_output(ExecOutput o) {
305 return IN_SET(o,
306 EXEC_OUTPUT_TTY,
307 EXEC_OUTPUT_KMSG_AND_CONSOLE,
308 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
309 }
310
311 static bool is_kmsg_output(ExecOutput o) {
312 return IN_SET(o,
313 EXEC_OUTPUT_KMSG,
314 EXEC_OUTPUT_KMSG_AND_CONSOLE);
315 }
316
317 static bool exec_context_needs_term(const ExecContext *c) {
318 assert(c);
319
320 /* Return true if the execution context suggests we should set $TERM to something useful. */
321
322 if (is_terminal_input(c->std_input))
323 return true;
324
325 if (is_terminal_output(c->std_output))
326 return true;
327
328 if (is_terminal_output(c->std_error))
329 return true;
330
331 return !!c->tty_path;
332 }
333
334 static int open_null_as(int flags, int nfd) {
335 int fd;
336
337 assert(nfd >= 0);
338
339 fd = open("/dev/null", flags|O_NOCTTY);
340 if (fd < 0)
341 return -errno;
342
343 return move_fd(fd, nfd, false);
344 }
345
346 static int connect_journal_socket(
347 int fd,
348 const char *log_namespace,
349 uid_t uid,
350 gid_t gid) {
351
352 uid_t olduid = UID_INVALID;
353 gid_t oldgid = GID_INVALID;
354 const char *j;
355 int r;
356
357 j = log_namespace ?
358 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
359 "/run/systemd/journal/stdout";
360
361 if (gid_is_valid(gid)) {
362 oldgid = getgid();
363
364 if (setegid(gid) < 0)
365 return -errno;
366 }
367
368 if (uid_is_valid(uid)) {
369 olduid = getuid();
370
371 if (seteuid(uid) < 0) {
372 r = -errno;
373 goto restore_gid;
374 }
375 }
376
377 r = connect_unix_path(fd, AT_FDCWD, j);
378
379 /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if
380 an LSM interferes. */
381
382 if (uid_is_valid(uid))
383 (void) seteuid(olduid);
384
385 restore_gid:
386 if (gid_is_valid(gid))
387 (void) setegid(oldgid);
388
389 return r;
390 }
391
392 static int connect_logger_as(
393 const Unit *unit,
394 const ExecContext *context,
395 const ExecParameters *params,
396 ExecOutput output,
397 const char *ident,
398 int nfd,
399 uid_t uid,
400 gid_t gid) {
401
402 _cleanup_close_ int fd = -EBADF;
403 int r;
404
405 assert(context);
406 assert(params);
407 assert(output < _EXEC_OUTPUT_MAX);
408 assert(ident);
409 assert(nfd >= 0);
410
411 fd = socket(AF_UNIX, SOCK_STREAM, 0);
412 if (fd < 0)
413 return -errno;
414
415 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
416 if (r < 0)
417 return r;
418
419 if (shutdown(fd, SHUT_RD) < 0)
420 return -errno;
421
422 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
423
424 if (dprintf(fd,
425 "%s\n"
426 "%s\n"
427 "%i\n"
428 "%i\n"
429 "%i\n"
430 "%i\n"
431 "%i\n",
432 context->syslog_identifier ?: ident,
433 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
434 context->syslog_priority,
435 !!context->syslog_level_prefix,
436 false,
437 is_kmsg_output(output),
438 is_terminal_output(output)) < 0)
439 return -errno;
440
441 return move_fd(TAKE_FD(fd), nfd, false);
442 }
443
444 static int open_terminal_as(const char *path, int flags, int nfd) {
445 int fd;
446
447 assert(path);
448 assert(nfd >= 0);
449
450 fd = open_terminal(path, flags | O_NOCTTY);
451 if (fd < 0)
452 return fd;
453
454 return move_fd(fd, nfd, false);
455 }
456
457 static int acquire_path(const char *path, int flags, mode_t mode) {
458 _cleanup_close_ int fd = -EBADF;
459 int r;
460
461 assert(path);
462
463 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
464 flags |= O_CREAT;
465
466 fd = open(path, flags|O_NOCTTY, mode);
467 if (fd >= 0)
468 return TAKE_FD(fd);
469
470 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
471 return -errno;
472
473 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
474
475 fd = socket(AF_UNIX, SOCK_STREAM, 0);
476 if (fd < 0)
477 return -errno;
478
479 r = connect_unix_path(fd, AT_FDCWD, path);
480 if (IN_SET(r, -ENOTSOCK, -EINVAL))
481 /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this
482 * wasn't an AF_UNIX socket after all */
483 return -ENXIO;
484 if (r < 0)
485 return r;
486
487 if ((flags & O_ACCMODE) == O_RDONLY)
488 r = shutdown(fd, SHUT_WR);
489 else if ((flags & O_ACCMODE) == O_WRONLY)
490 r = shutdown(fd, SHUT_RD);
491 else
492 r = 0;
493 if (r < 0)
494 return -errno;
495
496 return TAKE_FD(fd);
497 }
498
499 static int fixup_input(
500 const ExecContext *context,
501 int socket_fd,
502 bool apply_tty_stdin) {
503
504 ExecInput std_input;
505
506 assert(context);
507
508 std_input = context->std_input;
509
510 if (is_terminal_input(std_input) && !apply_tty_stdin)
511 return EXEC_INPUT_NULL;
512
513 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
514 return EXEC_INPUT_NULL;
515
516 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
517 return EXEC_INPUT_NULL;
518
519 return std_input;
520 }
521
522 static int fixup_output(ExecOutput output, int socket_fd) {
523
524 if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
525 return EXEC_OUTPUT_INHERIT;
526
527 return output;
528 }
529
530 static int setup_input(
531 const ExecContext *context,
532 const ExecParameters *params,
533 int socket_fd,
534 const int named_iofds[static 3]) {
535
536 ExecInput i;
537 int r;
538
539 assert(context);
540 assert(params);
541 assert(named_iofds);
542
543 if (params->stdin_fd >= 0) {
544 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
545 return -errno;
546
547 /* Try to make this the controlling tty, if it is a tty, and reset it */
548 if (isatty(STDIN_FILENO)) {
549 unsigned rows = context->tty_rows, cols = context->tty_cols;
550
551 (void) exec_context_tty_size(context, &rows, &cols);
552 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
553 (void) reset_terminal_fd(STDIN_FILENO, true);
554 (void) terminal_set_size_fd(STDIN_FILENO, NULL, rows, cols);
555 }
556
557 return STDIN_FILENO;
558 }
559
560 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
561
562 switch (i) {
563
564 case EXEC_INPUT_NULL:
565 return open_null_as(O_RDONLY, STDIN_FILENO);
566
567 case EXEC_INPUT_TTY:
568 case EXEC_INPUT_TTY_FORCE:
569 case EXEC_INPUT_TTY_FAIL: {
570 unsigned rows, cols;
571 int fd;
572
573 fd = acquire_terminal(exec_context_tty_path(context),
574 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
575 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
576 ACQUIRE_TERMINAL_WAIT,
577 USEC_INFINITY);
578 if (fd < 0)
579 return fd;
580
581 r = exec_context_tty_size(context, &rows, &cols);
582 if (r < 0)
583 return r;
584
585 r = terminal_set_size_fd(fd, exec_context_tty_path(context), rows, cols);
586 if (r < 0)
587 return r;
588
589 return move_fd(fd, STDIN_FILENO, false);
590 }
591
592 case EXEC_INPUT_SOCKET:
593 assert(socket_fd >= 0);
594
595 return RET_NERRNO(dup2(socket_fd, STDIN_FILENO));
596
597 case EXEC_INPUT_NAMED_FD:
598 assert(named_iofds[STDIN_FILENO] >= 0);
599
600 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
601 return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO));
602
603 case EXEC_INPUT_DATA: {
604 int fd;
605
606 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
607 if (fd < 0)
608 return fd;
609
610 return move_fd(fd, STDIN_FILENO, false);
611 }
612
613 case EXEC_INPUT_FILE: {
614 bool rw;
615 int fd;
616
617 assert(context->stdio_file[STDIN_FILENO]);
618
619 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
620 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
621
622 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
623 if (fd < 0)
624 return fd;
625
626 return move_fd(fd, STDIN_FILENO, false);
627 }
628
629 default:
630 assert_not_reached();
631 }
632 }
633
634 static bool can_inherit_stderr_from_stdout(
635 const ExecContext *context,
636 ExecOutput o,
637 ExecOutput e) {
638
639 assert(context);
640
641 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
642 * stderr fd */
643
644 if (e == EXEC_OUTPUT_INHERIT)
645 return true;
646 if (e != o)
647 return false;
648
649 if (e == EXEC_OUTPUT_NAMED_FD)
650 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
651
652 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
653 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
654
655 return true;
656 }
657
658 static int setup_output(
659 const Unit *unit,
660 const ExecContext *context,
661 const ExecParameters *params,
662 int fileno,
663 int socket_fd,
664 const int named_iofds[static 3],
665 const char *ident,
666 uid_t uid,
667 gid_t gid,
668 dev_t *journal_stream_dev,
669 ino_t *journal_stream_ino) {
670
671 ExecOutput o;
672 ExecInput i;
673 int r;
674
675 assert(unit);
676 assert(context);
677 assert(params);
678 assert(ident);
679 assert(journal_stream_dev);
680 assert(journal_stream_ino);
681
682 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
683
684 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
685 return -errno;
686
687 return STDOUT_FILENO;
688 }
689
690 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
691 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
692 return -errno;
693
694 return STDERR_FILENO;
695 }
696
697 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
698 o = fixup_output(context->std_output, socket_fd);
699
700 if (fileno == STDERR_FILENO) {
701 ExecOutput e;
702 e = fixup_output(context->std_error, socket_fd);
703
704 /* This expects the input and output are already set up */
705
706 /* Don't change the stderr file descriptor if we inherit all
707 * the way and are not on a tty */
708 if (e == EXEC_OUTPUT_INHERIT &&
709 o == EXEC_OUTPUT_INHERIT &&
710 i == EXEC_INPUT_NULL &&
711 !is_terminal_input(context->std_input) &&
712 getppid() != 1)
713 return fileno;
714
715 /* Duplicate from stdout if possible */
716 if (can_inherit_stderr_from_stdout(context, o, e))
717 return RET_NERRNO(dup2(STDOUT_FILENO, fileno));
718
719 o = e;
720
721 } else if (o == EXEC_OUTPUT_INHERIT) {
722 /* If input got downgraded, inherit the original value */
723 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
724 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
725
726 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
727 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
728 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
729
730 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
731 if (getppid() != 1)
732 return fileno;
733
734 /* We need to open /dev/null here anew, to get the right access mode. */
735 return open_null_as(O_WRONLY, fileno);
736 }
737
738 switch (o) {
739
740 case EXEC_OUTPUT_NULL:
741 return open_null_as(O_WRONLY, fileno);
742
743 case EXEC_OUTPUT_TTY:
744 if (is_terminal_input(i))
745 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
746
747 /* We don't reset the terminal if this is just about output */
748 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
749
750 case EXEC_OUTPUT_KMSG:
751 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
752 case EXEC_OUTPUT_JOURNAL:
753 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
754 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
755 if (r < 0) {
756 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m",
757 fileno == STDOUT_FILENO ? "stdout" : "stderr");
758 r = open_null_as(O_WRONLY, fileno);
759 } else {
760 struct stat st;
761
762 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
763 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
764 * services to detect whether they are connected to the journal or not.
765 *
766 * If both stdout and stderr are connected to a stream then let's make sure to store the data
767 * about STDERR as that's usually the best way to do logging. */
768
769 if (fstat(fileno, &st) >= 0 &&
770 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
771 *journal_stream_dev = st.st_dev;
772 *journal_stream_ino = st.st_ino;
773 }
774 }
775 return r;
776
777 case EXEC_OUTPUT_SOCKET:
778 assert(socket_fd >= 0);
779
780 return RET_NERRNO(dup2(socket_fd, fileno));
781
782 case EXEC_OUTPUT_NAMED_FD:
783 assert(named_iofds[fileno] >= 0);
784
785 (void) fd_nonblock(named_iofds[fileno], false);
786 return RET_NERRNO(dup2(named_iofds[fileno], fileno));
787
788 case EXEC_OUTPUT_FILE:
789 case EXEC_OUTPUT_FILE_APPEND:
790 case EXEC_OUTPUT_FILE_TRUNCATE: {
791 bool rw;
792 int fd, flags;
793
794 assert(context->stdio_file[fileno]);
795
796 rw = context->std_input == EXEC_INPUT_FILE &&
797 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
798
799 if (rw)
800 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
801
802 flags = O_WRONLY;
803 if (o == EXEC_OUTPUT_FILE_APPEND)
804 flags |= O_APPEND;
805 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
806 flags |= O_TRUNC;
807
808 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
809 if (fd < 0)
810 return fd;
811
812 return move_fd(fd, fileno, 0);
813 }
814
815 default:
816 assert_not_reached();
817 }
818 }
819
820 static int chown_terminal(int fd, uid_t uid) {
821 int r;
822
823 assert(fd >= 0);
824
825 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
826 if (isatty(fd) < 1) {
827 if (IN_SET(errno, EINVAL, ENOTTY))
828 return 0; /* not a tty */
829
830 return -errno;
831 }
832
833 /* This might fail. What matters are the results. */
834 r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID);
835 if (r < 0)
836 return r;
837
838 return 1;
839 }
840
841 static int setup_confirm_stdio(
842 const ExecContext *context,
843 const char *vc,
844 int *ret_saved_stdin,
845 int *ret_saved_stdout) {
846
847 _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF;
848 unsigned rows, cols;
849 int r;
850
851 assert(ret_saved_stdin);
852 assert(ret_saved_stdout);
853
854 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
855 if (saved_stdin < 0)
856 return -errno;
857
858 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
859 if (saved_stdout < 0)
860 return -errno;
861
862 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
863 if (fd < 0)
864 return fd;
865
866 r = chown_terminal(fd, getuid());
867 if (r < 0)
868 return r;
869
870 r = reset_terminal_fd(fd, true);
871 if (r < 0)
872 return r;
873
874 r = exec_context_tty_size(context, &rows, &cols);
875 if (r < 0)
876 return r;
877
878 r = terminal_set_size_fd(fd, vc, rows, cols);
879 if (r < 0)
880 return r;
881
882 r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */
883 TAKE_FD(fd);
884 if (r < 0)
885 return r;
886
887 *ret_saved_stdin = TAKE_FD(saved_stdin);
888 *ret_saved_stdout = TAKE_FD(saved_stdout);
889 return 0;
890 }
891
892 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
893 assert(err < 0);
894
895 if (err == -ETIMEDOUT)
896 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
897 else {
898 errno = -err;
899 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
900 }
901 }
902
903 static void write_confirm_error(int err, const char *vc, const Unit *u) {
904 _cleanup_close_ int fd = -EBADF;
905
906 assert(vc);
907
908 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
909 if (fd < 0)
910 return;
911
912 write_confirm_error_fd(err, fd, u);
913 }
914
915 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
916 int r = 0;
917
918 assert(saved_stdin);
919 assert(saved_stdout);
920
921 release_terminal();
922
923 if (*saved_stdin >= 0)
924 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
925 r = -errno;
926
927 if (*saved_stdout >= 0)
928 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
929 r = -errno;
930
931 *saved_stdin = safe_close(*saved_stdin);
932 *saved_stdout = safe_close(*saved_stdout);
933
934 return r;
935 }
936
937 enum {
938 CONFIRM_PRETEND_FAILURE = -1,
939 CONFIRM_PRETEND_SUCCESS = 0,
940 CONFIRM_EXECUTE = 1,
941 };
942
943 static int ask_for_confirmation(const ExecContext *context, const char *vc, Unit *u, const char *cmdline) {
944 int saved_stdout = -1, saved_stdin = -1, r;
945 _cleanup_free_ char *e = NULL;
946 char c;
947
948 /* For any internal errors, assume a positive response. */
949 r = setup_confirm_stdio(context, vc, &saved_stdin, &saved_stdout);
950 if (r < 0) {
951 write_confirm_error(r, vc, u);
952 return CONFIRM_EXECUTE;
953 }
954
955 /* confirm_spawn might have been disabled while we were sleeping. */
956 if (manager_is_confirm_spawn_disabled(u->manager)) {
957 r = 1;
958 goto restore_stdio;
959 }
960
961 e = ellipsize(cmdline, 60, 100);
962 if (!e) {
963 log_oom();
964 r = CONFIRM_EXECUTE;
965 goto restore_stdio;
966 }
967
968 for (;;) {
969 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
970 if (r < 0) {
971 write_confirm_error_fd(r, STDOUT_FILENO, u);
972 r = CONFIRM_EXECUTE;
973 goto restore_stdio;
974 }
975
976 switch (c) {
977 case 'c':
978 printf("Resuming normal execution.\n");
979 manager_disable_confirm_spawn();
980 r = 1;
981 break;
982 case 'D':
983 unit_dump(u, stdout, " ");
984 continue; /* ask again */
985 case 'f':
986 printf("Failing execution.\n");
987 r = CONFIRM_PRETEND_FAILURE;
988 break;
989 case 'h':
990 printf(" c - continue, proceed without asking anymore\n"
991 " D - dump, show the state of the unit\n"
992 " f - fail, don't execute the command and pretend it failed\n"
993 " h - help\n"
994 " i - info, show a short summary of the unit\n"
995 " j - jobs, show jobs that are in progress\n"
996 " s - skip, don't execute the command and pretend it succeeded\n"
997 " y - yes, execute the command\n");
998 continue; /* ask again */
999 case 'i':
1000 printf(" Description: %s\n"
1001 " Unit: %s\n"
1002 " Command: %s\n",
1003 u->id, u->description, cmdline);
1004 continue; /* ask again */
1005 case 'j':
1006 manager_dump_jobs(u->manager, stdout, /* patterns= */ NULL, " ");
1007 continue; /* ask again */
1008 case 'n':
1009 /* 'n' was removed in favor of 'f'. */
1010 printf("Didn't understand 'n', did you mean 'f'?\n");
1011 continue; /* ask again */
1012 case 's':
1013 printf("Skipping execution.\n");
1014 r = CONFIRM_PRETEND_SUCCESS;
1015 break;
1016 case 'y':
1017 r = CONFIRM_EXECUTE;
1018 break;
1019 default:
1020 assert_not_reached();
1021 }
1022 break;
1023 }
1024
1025 restore_stdio:
1026 restore_confirm_stdio(&saved_stdin, &saved_stdout);
1027 return r;
1028 }
1029
1030 static int get_fixed_user(const ExecContext *c, const char **user,
1031 uid_t *uid, gid_t *gid,
1032 const char **home, const char **shell) {
1033 int r;
1034 const char *name;
1035
1036 assert(c);
1037
1038 if (!c->user)
1039 return 0;
1040
1041 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
1042 * (i.e. are "/" or "/bin/nologin"). */
1043
1044 name = c->user;
1045 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
1046 if (r < 0)
1047 return r;
1048
1049 *user = name;
1050 return 0;
1051 }
1052
1053 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
1054 int r;
1055 const char *name;
1056
1057 assert(c);
1058
1059 if (!c->group)
1060 return 0;
1061
1062 name = c->group;
1063 r = get_group_creds(&name, gid, 0);
1064 if (r < 0)
1065 return r;
1066
1067 *group = name;
1068 return 0;
1069 }
1070
1071 static int get_supplementary_groups(const ExecContext *c, const char *user,
1072 const char *group, gid_t gid,
1073 gid_t **supplementary_gids, int *ngids) {
1074 int r, k = 0;
1075 int ngroups_max;
1076 bool keep_groups = false;
1077 gid_t *groups = NULL;
1078 _cleanup_free_ gid_t *l_gids = NULL;
1079
1080 assert(c);
1081
1082 /*
1083 * If user is given, then lookup GID and supplementary groups list.
1084 * We avoid NSS lookups for gid=0. Also we have to initialize groups
1085 * here and as early as possible so we keep the list of supplementary
1086 * groups of the caller.
1087 */
1088 if (user && gid_is_valid(gid) && gid != 0) {
1089 /* First step, initialize groups from /etc/groups */
1090 if (initgroups(user, gid) < 0)
1091 return -errno;
1092
1093 keep_groups = true;
1094 }
1095
1096 if (strv_isempty(c->supplementary_groups))
1097 return 0;
1098
1099 /*
1100 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1101 * be positive, otherwise fail.
1102 */
1103 errno = 0;
1104 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1105 if (ngroups_max <= 0)
1106 return errno_or_else(EOPNOTSUPP);
1107
1108 l_gids = new(gid_t, ngroups_max);
1109 if (!l_gids)
1110 return -ENOMEM;
1111
1112 if (keep_groups) {
1113 /*
1114 * Lookup the list of groups that the user belongs to, we
1115 * avoid NSS lookups here too for gid=0.
1116 */
1117 k = ngroups_max;
1118 if (getgrouplist(user, gid, l_gids, &k) < 0)
1119 return -EINVAL;
1120 } else
1121 k = 0;
1122
1123 STRV_FOREACH(i, c->supplementary_groups) {
1124 const char *g;
1125
1126 if (k >= ngroups_max)
1127 return -E2BIG;
1128
1129 g = *i;
1130 r = get_group_creds(&g, l_gids+k, 0);
1131 if (r < 0)
1132 return r;
1133
1134 k++;
1135 }
1136
1137 /*
1138 * Sets ngids to zero to drop all supplementary groups, happens
1139 * when we are under root and SupplementaryGroups= is empty.
1140 */
1141 if (k == 0) {
1142 *ngids = 0;
1143 return 0;
1144 }
1145
1146 /* Otherwise get the final list of supplementary groups */
1147 groups = memdup(l_gids, sizeof(gid_t) * k);
1148 if (!groups)
1149 return -ENOMEM;
1150
1151 *supplementary_gids = groups;
1152 *ngids = k;
1153
1154 groups = NULL;
1155
1156 return 0;
1157 }
1158
1159 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1160 int r;
1161
1162 /* Handle SupplementaryGroups= if it is not empty */
1163 if (ngids > 0) {
1164 r = maybe_setgroups(ngids, supplementary_gids);
1165 if (r < 0)
1166 return r;
1167 }
1168
1169 if (gid_is_valid(gid)) {
1170 /* Then set our gids */
1171 if (setresgid(gid, gid, gid) < 0)
1172 return -errno;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static int set_securebits(unsigned bits, unsigned mask) {
1179 unsigned applied;
1180 int current;
1181
1182 current = prctl(PR_GET_SECUREBITS);
1183 if (current < 0)
1184 return -errno;
1185
1186 /* Clear all securebits defined in mask and set bits */
1187 applied = ((unsigned) current & ~mask) | bits;
1188 if ((unsigned) current == applied)
1189 return 0;
1190
1191 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1192 return -errno;
1193
1194 return 1;
1195 }
1196
1197 static int enforce_user(
1198 const ExecContext *context,
1199 uid_t uid,
1200 uint64_t capability_ambient_set) {
1201 assert(context);
1202 int r;
1203
1204 if (!uid_is_valid(uid))
1205 return 0;
1206
1207 /* Sets (but doesn't look up) the UIS and makes sure we keep the capabilities while doing so. For
1208 * setting secure bits the capability CAP_SETPCAP is required, so we also need keep-caps in this
1209 * case. */
1210
1211 if ((capability_ambient_set != 0 || context->secure_bits != 0) && uid != 0) {
1212
1213 /* First step: If we need to keep capabilities but drop privileges we need to make sure we
1214 * keep our caps, while we drop privileges. Add KEEP_CAPS to the securebits */
1215 r = set_securebits(1U << SECURE_KEEP_CAPS, 0);
1216 if (r < 0)
1217 return r;
1218 }
1219
1220 /* Second step: actually set the uids */
1221 if (setresuid(uid, uid, uid) < 0)
1222 return -errno;
1223
1224 /* At this point we should have all necessary capabilities but are otherwise a normal user. However,
1225 * the caps might got corrupted due to the setresuid() so we need clean them up later. This is done
1226 * outside of this call. */
1227 return 0;
1228 }
1229
1230 #if HAVE_PAM
1231
1232 static int null_conv(
1233 int num_msg,
1234 const struct pam_message **msg,
1235 struct pam_response **resp,
1236 void *appdata_ptr) {
1237
1238 /* We don't support conversations */
1239
1240 return PAM_CONV_ERR;
1241 }
1242
1243 #endif
1244
1245 static int setup_pam(
1246 const char *name,
1247 const char *user,
1248 uid_t uid,
1249 gid_t gid,
1250 const char *tty,
1251 char ***env, /* updated on success */
1252 const int fds[], size_t n_fds) {
1253
1254 #if HAVE_PAM
1255
1256 static const struct pam_conv conv = {
1257 .conv = null_conv,
1258 .appdata_ptr = NULL
1259 };
1260
1261 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1262 _cleanup_strv_free_ char **e = NULL;
1263 pam_handle_t *handle = NULL;
1264 sigset_t old_ss;
1265 int pam_code = PAM_SUCCESS, r;
1266 bool close_session = false;
1267 pid_t pam_pid = 0, parent_pid;
1268 int flags = 0;
1269
1270 assert(name);
1271 assert(user);
1272 assert(env);
1273
1274 /* We set up PAM in the parent process, then fork. The child
1275 * will then stay around until killed via PR_GET_PDEATHSIG or
1276 * systemd via the cgroup logic. It will then remove the PAM
1277 * session again. The parent process will exec() the actual
1278 * daemon. We do things this way to ensure that the main PID
1279 * of the daemon is the one we initially fork()ed. */
1280
1281 r = barrier_create(&barrier);
1282 if (r < 0)
1283 goto fail;
1284
1285 if (log_get_max_level() < LOG_DEBUG)
1286 flags |= PAM_SILENT;
1287
1288 pam_code = pam_start(name, user, &conv, &handle);
1289 if (pam_code != PAM_SUCCESS) {
1290 handle = NULL;
1291 goto fail;
1292 }
1293
1294 if (!tty) {
1295 _cleanup_free_ char *q = NULL;
1296
1297 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1298 * out if that's the case, and read the TTY off it. */
1299
1300 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1301 tty = strjoina("/dev/", q);
1302 }
1303
1304 if (tty) {
1305 pam_code = pam_set_item(handle, PAM_TTY, tty);
1306 if (pam_code != PAM_SUCCESS)
1307 goto fail;
1308 }
1309
1310 STRV_FOREACH(nv, *env) {
1311 pam_code = pam_putenv(handle, *nv);
1312 if (pam_code != PAM_SUCCESS)
1313 goto fail;
1314 }
1315
1316 pam_code = pam_acct_mgmt(handle, flags);
1317 if (pam_code != PAM_SUCCESS)
1318 goto fail;
1319
1320 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1321 if (pam_code != PAM_SUCCESS)
1322 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1323
1324 pam_code = pam_open_session(handle, flags);
1325 if (pam_code != PAM_SUCCESS)
1326 goto fail;
1327
1328 close_session = true;
1329
1330 e = pam_getenvlist(handle);
1331 if (!e) {
1332 pam_code = PAM_BUF_ERR;
1333 goto fail;
1334 }
1335
1336 /* Block SIGTERM, so that we know that it won't get lost in the child */
1337
1338 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1339
1340 parent_pid = getpid_cached();
1341
1342 r = safe_fork("(sd-pam)", 0, &pam_pid);
1343 if (r < 0)
1344 goto fail;
1345 if (r == 0) {
1346 int sig, ret = EXIT_PAM;
1347
1348 /* The child's job is to reset the PAM session on termination */
1349 barrier_set_role(&barrier, BARRIER_CHILD);
1350
1351 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1352 * those fds are open here that have been opened by PAM. */
1353 (void) close_many(fds, n_fds);
1354
1355 /* Drop privileges - we don't need any to pam_close_session and this will make
1356 * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam
1357 * threads to fail to exit normally */
1358
1359 r = maybe_setgroups(0, NULL);
1360 if (r < 0)
1361 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1362 if (setresgid(gid, gid, gid) < 0)
1363 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1364 if (setresuid(uid, uid, uid) < 0)
1365 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1366
1367 (void) ignore_signals(SIGPIPE);
1368
1369 /* Wait until our parent died. This will only work if the above setresuid() succeeds,
1370 * otherwise the kernel will not allow unprivileged parents kill their privileged children
1371 * this way. We rely on the control groups kill logic to do the rest for us. */
1372 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1373 goto child_finish;
1374
1375 /* Tell the parent that our setup is done. This is especially important regarding dropping
1376 * privileges. Otherwise, unit setup might race against our setresuid(2) call.
1377 *
1378 * If the parent aborted, we'll detect this below, hence ignore return failure here. */
1379 (void) barrier_place(&barrier);
1380
1381 /* Check if our parent process might already have died? */
1382 if (getppid() == parent_pid) {
1383 sigset_t ss;
1384
1385 assert_se(sigemptyset(&ss) >= 0);
1386 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1387
1388 for (;;) {
1389 if (sigwait(&ss, &sig) < 0) {
1390 if (errno == EINTR)
1391 continue;
1392
1393 goto child_finish;
1394 }
1395
1396 assert(sig == SIGTERM);
1397 break;
1398 }
1399 }
1400
1401 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1402 if (pam_code != PAM_SUCCESS)
1403 goto child_finish;
1404
1405 /* If our parent died we'll end the session */
1406 if (getppid() != parent_pid) {
1407 pam_code = pam_close_session(handle, flags);
1408 if (pam_code != PAM_SUCCESS)
1409 goto child_finish;
1410 }
1411
1412 ret = 0;
1413
1414 child_finish:
1415 /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module
1416 * know about this. See pam_end(3) */
1417 (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT);
1418 _exit(ret);
1419 }
1420
1421 barrier_set_role(&barrier, BARRIER_PARENT);
1422
1423 /* If the child was forked off successfully it will do all the cleanups, so forget about the handle
1424 * here. */
1425 handle = NULL;
1426
1427 /* Unblock SIGTERM again in the parent */
1428 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1429
1430 /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want
1431 * this fd around. */
1432 closelog();
1433
1434 /* Synchronously wait for the child to initialize. We don't care for errors as we cannot
1435 * recover. However, warn loudly if it happens. */
1436 if (!barrier_place_and_sync(&barrier))
1437 log_error("PAM initialization failed");
1438
1439 return strv_free_and_replace(*env, e);
1440
1441 fail:
1442 if (pam_code != PAM_SUCCESS) {
1443 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1444 r = -EPERM; /* PAM errors do not map to errno */
1445 } else
1446 log_error_errno(r, "PAM failed: %m");
1447
1448 if (handle) {
1449 if (close_session)
1450 pam_code = pam_close_session(handle, flags);
1451
1452 (void) pam_end(handle, pam_code | flags);
1453 }
1454
1455 closelog();
1456 return r;
1457 #else
1458 return 0;
1459 #endif
1460 }
1461
1462 static void rename_process_from_path(const char *path) {
1463 _cleanup_free_ char *buf = NULL;
1464 const char *p;
1465
1466 assert(path);
1467
1468 /* This resulting string must fit in 10 chars (i.e. the length of "/sbin/init") to look pretty in
1469 * /bin/ps */
1470
1471 if (path_extract_filename(path, &buf) < 0) {
1472 rename_process("(...)");
1473 return;
1474 }
1475
1476 size_t l = strlen(buf);
1477 if (l > 8) {
1478 /* The end of the process name is usually more interesting, since the first bit might just be
1479 * "systemd-" */
1480 p = buf + l - 8;
1481 l = 8;
1482 } else
1483 p = buf;
1484
1485 char process_name[11];
1486 process_name[0] = '(';
1487 memcpy(process_name+1, p, l);
1488 process_name[1+l] = ')';
1489 process_name[1+l+1] = 0;
1490
1491 rename_process(process_name);
1492 }
1493
1494 static bool context_has_address_families(const ExecContext *c) {
1495 assert(c);
1496
1497 return c->address_families_allow_list ||
1498 !set_isempty(c->address_families);
1499 }
1500
1501 static bool context_has_syscall_filters(const ExecContext *c) {
1502 assert(c);
1503
1504 return c->syscall_allow_list ||
1505 !hashmap_isempty(c->syscall_filter);
1506 }
1507
1508 static bool context_has_syscall_logs(const ExecContext *c) {
1509 assert(c);
1510
1511 return c->syscall_log_allow_list ||
1512 !hashmap_isempty(c->syscall_log);
1513 }
1514
1515 static bool context_has_no_new_privileges(const ExecContext *c) {
1516 assert(c);
1517
1518 if (c->no_new_privileges)
1519 return true;
1520
1521 if (have_effective_cap(CAP_SYS_ADMIN) > 0) /* if we are privileged, we don't need NNP */
1522 return false;
1523
1524 /* We need NNP if we have any form of seccomp and are unprivileged */
1525 return c->lock_personality ||
1526 c->memory_deny_write_execute ||
1527 c->private_devices ||
1528 c->protect_clock ||
1529 c->protect_hostname ||
1530 c->protect_kernel_tunables ||
1531 c->protect_kernel_modules ||
1532 c->protect_kernel_logs ||
1533 context_has_address_families(c) ||
1534 exec_context_restrict_namespaces_set(c) ||
1535 c->restrict_realtime ||
1536 c->restrict_suid_sgid ||
1537 !set_isempty(c->syscall_archs) ||
1538 context_has_syscall_filters(c) ||
1539 context_has_syscall_logs(c);
1540 }
1541
1542 bool exec_context_has_credentials(const ExecContext *context) {
1543
1544 assert(context);
1545
1546 return !hashmap_isempty(context->set_credentials) ||
1547 !hashmap_isempty(context->load_credentials);
1548 }
1549
1550 #if HAVE_SECCOMP
1551
1552 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1553
1554 if (is_seccomp_available())
1555 return false;
1556
1557 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1558 return true;
1559 }
1560
1561 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1562 uint32_t negative_action, default_action, action;
1563 int r;
1564
1565 assert(u);
1566 assert(c);
1567
1568 if (!context_has_syscall_filters(c))
1569 return 0;
1570
1571 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1572 return 0;
1573
1574 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1575
1576 if (c->syscall_allow_list) {
1577 default_action = negative_action;
1578 action = SCMP_ACT_ALLOW;
1579 } else {
1580 default_action = SCMP_ACT_ALLOW;
1581 action = negative_action;
1582 }
1583
1584 if (needs_ambient_hack) {
1585 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1586 if (r < 0)
1587 return r;
1588 }
1589
1590 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1591 }
1592
1593 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1594 #ifdef SCMP_ACT_LOG
1595 uint32_t default_action, action;
1596 #endif
1597
1598 assert(u);
1599 assert(c);
1600
1601 if (!context_has_syscall_logs(c))
1602 return 0;
1603
1604 #ifdef SCMP_ACT_LOG
1605 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1606 return 0;
1607
1608 if (c->syscall_log_allow_list) {
1609 /* Log nothing but the ones listed */
1610 default_action = SCMP_ACT_ALLOW;
1611 action = SCMP_ACT_LOG;
1612 } else {
1613 /* Log everything but the ones listed */
1614 default_action = SCMP_ACT_LOG;
1615 action = SCMP_ACT_ALLOW;
1616 }
1617
1618 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1619 #else
1620 /* old libseccomp */
1621 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1622 return 0;
1623 #endif
1624 }
1625
1626 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1627 assert(u);
1628 assert(c);
1629
1630 if (set_isempty(c->syscall_archs))
1631 return 0;
1632
1633 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1634 return 0;
1635
1636 return seccomp_restrict_archs(c->syscall_archs);
1637 }
1638
1639 static int apply_address_families(const Unit* u, const ExecContext *c) {
1640 assert(u);
1641 assert(c);
1642
1643 if (!context_has_address_families(c))
1644 return 0;
1645
1646 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1647 return 0;
1648
1649 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1650 }
1651
1652 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1653 int r;
1654
1655 assert(u);
1656 assert(c);
1657
1658 if (!c->memory_deny_write_execute)
1659 return 0;
1660
1661 /* use prctl() if kernel supports it (6.3) */
1662 r = prctl(PR_SET_MDWE, PR_MDWE_REFUSE_EXEC_GAIN, 0, 0, 0);
1663 if (r == 0) {
1664 log_unit_debug(u, "Enabled MemoryDenyWriteExecute= with PR_SET_MDWE");
1665 return 0;
1666 }
1667 if (r < 0 && errno != EINVAL)
1668 return log_unit_debug_errno(u, errno, "Failed to enable MemoryDenyWriteExecute= with PR_SET_MDWE: %m");
1669 /* else use seccomp */
1670 log_unit_debug(u, "Kernel doesn't support PR_SET_MDWE: falling back to seccomp");
1671
1672 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1673 return 0;
1674
1675 return seccomp_memory_deny_write_execute();
1676 }
1677
1678 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1679 assert(u);
1680 assert(c);
1681
1682 if (!c->restrict_realtime)
1683 return 0;
1684
1685 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1686 return 0;
1687
1688 return seccomp_restrict_realtime();
1689 }
1690
1691 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1692 assert(u);
1693 assert(c);
1694
1695 if (!c->restrict_suid_sgid)
1696 return 0;
1697
1698 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1699 return 0;
1700
1701 return seccomp_restrict_suid_sgid();
1702 }
1703
1704 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1705 assert(u);
1706 assert(c);
1707
1708 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1709 * let's protect even those systems where this is left on in the kernel. */
1710
1711 if (!c->protect_kernel_tunables)
1712 return 0;
1713
1714 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1715 return 0;
1716
1717 return seccomp_protect_sysctl();
1718 }
1719
1720 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1721 assert(u);
1722 assert(c);
1723
1724 /* Turn off module syscalls on ProtectKernelModules=yes */
1725
1726 if (!c->protect_kernel_modules)
1727 return 0;
1728
1729 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1730 return 0;
1731
1732 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1733 }
1734
1735 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1736 assert(u);
1737 assert(c);
1738
1739 if (!c->protect_kernel_logs)
1740 return 0;
1741
1742 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1743 return 0;
1744
1745 return seccomp_protect_syslog();
1746 }
1747
1748 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1749 assert(u);
1750 assert(c);
1751
1752 if (!c->protect_clock)
1753 return 0;
1754
1755 if (skip_seccomp_unavailable(u, "ProtectClock="))
1756 return 0;
1757
1758 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1759 }
1760
1761 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1762 assert(u);
1763 assert(c);
1764
1765 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1766
1767 if (!c->private_devices)
1768 return 0;
1769
1770 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1771 return 0;
1772
1773 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1774 }
1775
1776 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1777 assert(u);
1778 assert(c);
1779
1780 if (!exec_context_restrict_namespaces_set(c))
1781 return 0;
1782
1783 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1784 return 0;
1785
1786 return seccomp_restrict_namespaces(c->restrict_namespaces);
1787 }
1788
1789 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1790 unsigned long personality;
1791 int r;
1792
1793 assert(u);
1794 assert(c);
1795
1796 if (!c->lock_personality)
1797 return 0;
1798
1799 if (skip_seccomp_unavailable(u, "LockPersonality="))
1800 return 0;
1801
1802 personality = c->personality;
1803
1804 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1805 if (personality == PERSONALITY_INVALID) {
1806
1807 r = opinionated_personality(&personality);
1808 if (r < 0)
1809 return r;
1810 }
1811
1812 return seccomp_lock_personality(personality);
1813 }
1814
1815 #endif
1816
1817 #if HAVE_LIBBPF
1818 static int apply_restrict_filesystems(Unit *u, const ExecContext *c) {
1819 assert(u);
1820 assert(c);
1821
1822 if (!exec_context_restrict_filesystems_set(c))
1823 return 0;
1824
1825 if (!u->manager->restrict_fs) {
1826 /* LSM BPF is unsupported or lsm_bpf_setup failed */
1827 log_unit_debug(u, "LSM BPF not supported, skipping RestrictFileSystems=");
1828 return 0;
1829 }
1830
1831 return lsm_bpf_unit_restrict_filesystems(u, c->restrict_filesystems, c->restrict_filesystems_allow_list);
1832 }
1833 #endif
1834
1835 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1836 assert(u);
1837 assert(c);
1838
1839 if (!c->protect_hostname)
1840 return 0;
1841
1842 if (ns_type_supported(NAMESPACE_UTS)) {
1843 if (unshare(CLONE_NEWUTS) < 0) {
1844 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1845 *ret_exit_status = EXIT_NAMESPACE;
1846 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1847 }
1848
1849 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1850 }
1851 } else
1852 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1853
1854 #if HAVE_SECCOMP
1855 int r;
1856
1857 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1858 return 0;
1859
1860 r = seccomp_protect_hostname();
1861 if (r < 0) {
1862 *ret_exit_status = EXIT_SECCOMP;
1863 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1864 }
1865 #endif
1866
1867 return 0;
1868 }
1869
1870 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1871 assert(idle_pipe);
1872
1873 idle_pipe[1] = safe_close(idle_pipe[1]);
1874 idle_pipe[2] = safe_close(idle_pipe[2]);
1875
1876 if (idle_pipe[0] >= 0) {
1877 int r;
1878
1879 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1880
1881 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1882 ssize_t n;
1883
1884 /* Signal systemd that we are bored and want to continue. */
1885 n = write(idle_pipe[3], "x", 1);
1886 if (n > 0)
1887 /* Wait for systemd to react to the signal above. */
1888 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1889 }
1890
1891 idle_pipe[0] = safe_close(idle_pipe[0]);
1892
1893 }
1894
1895 idle_pipe[3] = safe_close(idle_pipe[3]);
1896 }
1897
1898 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1899
1900 static int build_environment(
1901 const Unit *u,
1902 const ExecContext *c,
1903 const ExecParameters *p,
1904 const CGroupContext *cgroup_context,
1905 size_t n_fds,
1906 char **fdnames,
1907 const char *home,
1908 const char *username,
1909 const char *shell,
1910 dev_t journal_stream_dev,
1911 ino_t journal_stream_ino,
1912 const char *memory_pressure_path,
1913 char ***ret) {
1914
1915 _cleanup_strv_free_ char **our_env = NULL;
1916 size_t n_env = 0;
1917 char *x;
1918 int r;
1919
1920 assert(u);
1921 assert(c);
1922 assert(p);
1923 assert(ret);
1924
1925 #define N_ENV_VARS 19
1926 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1927 if (!our_env)
1928 return -ENOMEM;
1929
1930 if (n_fds > 0) {
1931 _cleanup_free_ char *joined = NULL;
1932
1933 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1934 return -ENOMEM;
1935 our_env[n_env++] = x;
1936
1937 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1938 return -ENOMEM;
1939 our_env[n_env++] = x;
1940
1941 joined = strv_join(fdnames, ":");
1942 if (!joined)
1943 return -ENOMEM;
1944
1945 x = strjoin("LISTEN_FDNAMES=", joined);
1946 if (!x)
1947 return -ENOMEM;
1948 our_env[n_env++] = x;
1949 }
1950
1951 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1952 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1953 return -ENOMEM;
1954 our_env[n_env++] = x;
1955
1956 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1957 return -ENOMEM;
1958 our_env[n_env++] = x;
1959 }
1960
1961 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking
1962 * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and
1963 * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */
1964 if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) {
1965 x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1");
1966 if (!x)
1967 return -ENOMEM;
1968 our_env[n_env++] = x;
1969 }
1970
1971 if (home) {
1972 x = strjoin("HOME=", home);
1973 if (!x)
1974 return -ENOMEM;
1975
1976 path_simplify(x + 5);
1977 our_env[n_env++] = x;
1978 }
1979
1980 if (username) {
1981 x = strjoin("LOGNAME=", username);
1982 if (!x)
1983 return -ENOMEM;
1984 our_env[n_env++] = x;
1985
1986 x = strjoin("USER=", username);
1987 if (!x)
1988 return -ENOMEM;
1989 our_env[n_env++] = x;
1990 }
1991
1992 if (shell) {
1993 x = strjoin("SHELL=", shell);
1994 if (!x)
1995 return -ENOMEM;
1996
1997 path_simplify(x + 6);
1998 our_env[n_env++] = x;
1999 }
2000
2001 if (!sd_id128_is_null(u->invocation_id)) {
2002 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
2003 return -ENOMEM;
2004
2005 our_env[n_env++] = x;
2006 }
2007
2008 if (exec_context_needs_term(c)) {
2009 _cleanup_free_ char *cmdline = NULL;
2010 const char *tty_path, *term = NULL;
2011
2012 tty_path = exec_context_tty_path(c);
2013
2014 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
2015 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
2016 * container manager passes to PID 1 ends up all the way in the console login shown. */
2017
2018 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
2019 term = getenv("TERM");
2020 else if (tty_path && in_charset(skip_dev_prefix(tty_path), ALPHANUMERICAL)) {
2021 _cleanup_free_ char *key = NULL;
2022
2023 key = strjoin("systemd.tty.term.", skip_dev_prefix(tty_path));
2024 if (!key)
2025 return -ENOMEM;
2026
2027 r = proc_cmdline_get_key(key, 0, &cmdline);
2028 if (r < 0)
2029 log_debug_errno(r, "Failed to read %s from kernel cmdline, ignoring: %m", key);
2030 else if (r > 0)
2031 term = cmdline;
2032 }
2033
2034 if (!term)
2035 term = default_term_for_tty(tty_path);
2036
2037 x = strjoin("TERM=", term);
2038 if (!x)
2039 return -ENOMEM;
2040 our_env[n_env++] = x;
2041 }
2042
2043 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
2044 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
2045 return -ENOMEM;
2046
2047 our_env[n_env++] = x;
2048 }
2049
2050 if (c->log_namespace) {
2051 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
2052 if (!x)
2053 return -ENOMEM;
2054
2055 our_env[n_env++] = x;
2056 }
2057
2058 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2059 _cleanup_free_ char *joined = NULL;
2060 const char *n;
2061
2062 if (!p->prefix[t])
2063 continue;
2064
2065 if (c->directories[t].n_items == 0)
2066 continue;
2067
2068 n = exec_directory_env_name_to_string(t);
2069 if (!n)
2070 continue;
2071
2072 for (size_t i = 0; i < c->directories[t].n_items; i++) {
2073 _cleanup_free_ char *prefixed = NULL;
2074
2075 prefixed = path_join(p->prefix[t], c->directories[t].items[i].path);
2076 if (!prefixed)
2077 return -ENOMEM;
2078
2079 if (!strextend_with_separator(&joined, ":", prefixed))
2080 return -ENOMEM;
2081 }
2082
2083 x = strjoin(n, "=", joined);
2084 if (!x)
2085 return -ENOMEM;
2086
2087 our_env[n_env++] = x;
2088 }
2089
2090 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
2091 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
2092 if (!x)
2093 return -ENOMEM;
2094
2095 our_env[n_env++] = x;
2096 }
2097
2098 if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0)
2099 return -ENOMEM;
2100
2101 our_env[n_env++] = x;
2102
2103 if (memory_pressure_path) {
2104 x = strjoin("MEMORY_PRESSURE_WATCH=", memory_pressure_path);
2105 if (!x)
2106 return -ENOMEM;
2107
2108 our_env[n_env++] = x;
2109
2110 if (cgroup_context && !path_equal(memory_pressure_path, "/dev/null")) {
2111 _cleanup_free_ char *b = NULL, *e = NULL;
2112
2113 if (asprintf(&b, "%s " USEC_FMT " " USEC_FMT,
2114 MEMORY_PRESSURE_DEFAULT_TYPE,
2115 cgroup_context->memory_pressure_threshold_usec == USEC_INFINITY ? MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC :
2116 CLAMP(cgroup_context->memory_pressure_threshold_usec, 1U, MEMORY_PRESSURE_DEFAULT_WINDOW_USEC),
2117 MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0)
2118 return -ENOMEM;
2119
2120 if (base64mem(b, strlen(b) + 1, &e) < 0)
2121 return -ENOMEM;
2122
2123 x = strjoin("MEMORY_PRESSURE_WRITE=", e);
2124 if (!x)
2125 return -ENOMEM;
2126
2127 our_env[n_env++] = x;
2128 }
2129 }
2130
2131 assert(n_env < N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
2132 #undef N_ENV_VARS
2133
2134 *ret = TAKE_PTR(our_env);
2135
2136 return 0;
2137 }
2138
2139 static int build_pass_environment(const ExecContext *c, char ***ret) {
2140 _cleanup_strv_free_ char **pass_env = NULL;
2141 size_t n_env = 0;
2142
2143 STRV_FOREACH(i, c->pass_environment) {
2144 _cleanup_free_ char *x = NULL;
2145 char *v;
2146
2147 v = getenv(*i);
2148 if (!v)
2149 continue;
2150 x = strjoin(*i, "=", v);
2151 if (!x)
2152 return -ENOMEM;
2153
2154 if (!GREEDY_REALLOC(pass_env, n_env + 2))
2155 return -ENOMEM;
2156
2157 pass_env[n_env++] = TAKE_PTR(x);
2158 pass_env[n_env] = NULL;
2159 }
2160
2161 *ret = TAKE_PTR(pass_env);
2162
2163 return 0;
2164 }
2165
2166 bool exec_needs_network_namespace(const ExecContext *context) {
2167 assert(context);
2168
2169 return context->private_network || context->network_namespace_path;
2170 }
2171
2172 static bool exec_needs_ipc_namespace(const ExecContext *context) {
2173 assert(context);
2174
2175 return context->private_ipc || context->ipc_namespace_path;
2176 }
2177
2178 bool exec_needs_mount_namespace(
2179 const ExecContext *context,
2180 const ExecParameters *params,
2181 const ExecRuntime *runtime) {
2182
2183 assert(context);
2184
2185 if (context->root_image)
2186 return true;
2187
2188 if (!strv_isempty(context->read_write_paths) ||
2189 !strv_isempty(context->read_only_paths) ||
2190 !strv_isempty(context->inaccessible_paths) ||
2191 !strv_isempty(context->exec_paths) ||
2192 !strv_isempty(context->no_exec_paths))
2193 return true;
2194
2195 if (context->n_bind_mounts > 0)
2196 return true;
2197
2198 if (context->n_temporary_filesystems > 0)
2199 return true;
2200
2201 if (context->n_mount_images > 0)
2202 return true;
2203
2204 if (context->n_extension_images > 0)
2205 return true;
2206
2207 if (!strv_isempty(context->extension_directories))
2208 return true;
2209
2210 if (!IN_SET(context->mount_propagation_flag, 0, MS_SHARED))
2211 return true;
2212
2213 if (context->private_tmp && runtime && runtime->shared && (runtime->shared->tmp_dir || runtime->shared->var_tmp_dir))
2214 return true;
2215
2216 if (context->private_devices ||
2217 context->private_mounts > 0 ||
2218 (context->private_mounts < 0 && exec_needs_network_namespace(context)) ||
2219 context->protect_system != PROTECT_SYSTEM_NO ||
2220 context->protect_home != PROTECT_HOME_NO ||
2221 context->protect_kernel_tunables ||
2222 context->protect_kernel_modules ||
2223 context->protect_kernel_logs ||
2224 context->protect_control_groups ||
2225 context->protect_proc != PROTECT_PROC_DEFAULT ||
2226 context->proc_subset != PROC_SUBSET_ALL ||
2227 exec_needs_ipc_namespace(context))
2228 return true;
2229
2230 if (context->root_directory) {
2231 if (exec_context_get_effective_mount_apivfs(context))
2232 return true;
2233
2234 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2235 if (params && !params->prefix[t])
2236 continue;
2237
2238 if (context->directories[t].n_items > 0)
2239 return true;
2240 }
2241 }
2242
2243 if (context->dynamic_user &&
2244 (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
2245 context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
2246 context->directories[EXEC_DIRECTORY_LOGS].n_items > 0))
2247 return true;
2248
2249 if (context->log_namespace)
2250 return true;
2251
2252 return false;
2253 }
2254
2255 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2256 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2257 _cleanup_close_pair_ int errno_pipe[2] = PIPE_EBADF;
2258 _cleanup_close_ int unshare_ready_fd = -EBADF;
2259 _cleanup_(sigkill_waitp) pid_t pid = 0;
2260 uint64_t c = 1;
2261 ssize_t n;
2262 int r;
2263
2264 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2265 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2266 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2267 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2268 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2269 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2270 * continues execution normally.
2271 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2272 * does not need CAP_SETUID to write the single line mapping to itself. */
2273
2274 /* Can only set up multiple mappings with CAP_SETUID. */
2275 if (have_effective_cap(CAP_SETUID) > 0 && uid != ouid && uid_is_valid(uid))
2276 r = asprintf(&uid_map,
2277 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2278 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2279 ouid, ouid, uid, uid);
2280 else
2281 r = asprintf(&uid_map,
2282 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2283 ouid, ouid);
2284
2285 if (r < 0)
2286 return -ENOMEM;
2287
2288 /* Can only set up multiple mappings with CAP_SETGID. */
2289 if (have_effective_cap(CAP_SETGID) > 0 && gid != ogid && gid_is_valid(gid))
2290 r = asprintf(&gid_map,
2291 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2292 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2293 ogid, ogid, gid, gid);
2294 else
2295 r = asprintf(&gid_map,
2296 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2297 ogid, ogid);
2298
2299 if (r < 0)
2300 return -ENOMEM;
2301
2302 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2303 * namespace. */
2304 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2305 if (unshare_ready_fd < 0)
2306 return -errno;
2307
2308 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2309 * failed. */
2310 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2311 return -errno;
2312
2313 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2314 if (r < 0)
2315 return r;
2316 if (r == 0) {
2317 _cleanup_close_ int fd = -EBADF;
2318 const char *a;
2319 pid_t ppid;
2320
2321 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2322 * here, after the parent opened its own user namespace. */
2323
2324 ppid = getppid();
2325 errno_pipe[0] = safe_close(errno_pipe[0]);
2326
2327 /* Wait until the parent unshared the user namespace */
2328 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2329 r = -errno;
2330 goto child_fail;
2331 }
2332
2333 /* Disable the setgroups() system call in the child user namespace, for good. */
2334 a = procfs_file_alloca(ppid, "setgroups");
2335 fd = open(a, O_WRONLY|O_CLOEXEC);
2336 if (fd < 0) {
2337 if (errno != ENOENT) {
2338 r = -errno;
2339 goto child_fail;
2340 }
2341
2342 /* If the file is missing the kernel is too old, let's continue anyway. */
2343 } else {
2344 if (write(fd, "deny\n", 5) < 0) {
2345 r = -errno;
2346 goto child_fail;
2347 }
2348
2349 fd = safe_close(fd);
2350 }
2351
2352 /* First write the GID map */
2353 a = procfs_file_alloca(ppid, "gid_map");
2354 fd = open(a, O_WRONLY|O_CLOEXEC);
2355 if (fd < 0) {
2356 r = -errno;
2357 goto child_fail;
2358 }
2359 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2360 r = -errno;
2361 goto child_fail;
2362 }
2363 fd = safe_close(fd);
2364
2365 /* The write the UID map */
2366 a = procfs_file_alloca(ppid, "uid_map");
2367 fd = open(a, O_WRONLY|O_CLOEXEC);
2368 if (fd < 0) {
2369 r = -errno;
2370 goto child_fail;
2371 }
2372 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2373 r = -errno;
2374 goto child_fail;
2375 }
2376
2377 _exit(EXIT_SUCCESS);
2378
2379 child_fail:
2380 (void) write(errno_pipe[1], &r, sizeof(r));
2381 _exit(EXIT_FAILURE);
2382 }
2383
2384 errno_pipe[1] = safe_close(errno_pipe[1]);
2385
2386 if (unshare(CLONE_NEWUSER) < 0)
2387 return -errno;
2388
2389 /* Let the child know that the namespace is ready now */
2390 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2391 return -errno;
2392
2393 /* Try to read an error code from the child */
2394 n = read(errno_pipe[0], &r, sizeof(r));
2395 if (n < 0)
2396 return -errno;
2397 if (n == sizeof(r)) { /* an error code was sent to us */
2398 if (r < 0)
2399 return r;
2400 return -EIO;
2401 }
2402 if (n != 0) /* on success we should have read 0 bytes */
2403 return -EIO;
2404
2405 r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0);
2406 if (r < 0)
2407 return r;
2408 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2409 return -EIO;
2410
2411 return 0;
2412 }
2413
2414 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2415 assert(context);
2416
2417 if (!context->dynamic_user)
2418 return false;
2419
2420 if (type == EXEC_DIRECTORY_CONFIGURATION)
2421 return false;
2422
2423 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2424 return false;
2425
2426 return true;
2427 }
2428
2429 static int create_many_symlinks(const char *root, const char *source, char **symlinks) {
2430 _cleanup_free_ char *src_abs = NULL;
2431 int r;
2432
2433 assert(source);
2434
2435 src_abs = path_join(root, source);
2436 if (!src_abs)
2437 return -ENOMEM;
2438
2439 STRV_FOREACH(dst, symlinks) {
2440 _cleanup_free_ char *dst_abs = NULL;
2441
2442 dst_abs = path_join(root, *dst);
2443 if (!dst_abs)
2444 return -ENOMEM;
2445
2446 r = mkdir_parents_label(dst_abs, 0755);
2447 if (r < 0)
2448 return r;
2449
2450 r = symlink_idempotent(src_abs, dst_abs, true);
2451 if (r < 0)
2452 return r;
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int setup_exec_directory(
2459 const ExecContext *context,
2460 const ExecParameters *params,
2461 uid_t uid,
2462 gid_t gid,
2463 ExecDirectoryType type,
2464 bool needs_mount_namespace,
2465 int *exit_status) {
2466
2467 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2468 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2469 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2470 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2471 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2472 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2473 };
2474 int r;
2475
2476 assert(context);
2477 assert(params);
2478 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2479 assert(exit_status);
2480
2481 if (!params->prefix[type])
2482 return 0;
2483
2484 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2485 if (!uid_is_valid(uid))
2486 uid = 0;
2487 if (!gid_is_valid(gid))
2488 gid = 0;
2489 }
2490
2491 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2492 _cleanup_free_ char *p = NULL, *pp = NULL;
2493
2494 p = path_join(params->prefix[type], context->directories[type].items[i].path);
2495 if (!p) {
2496 r = -ENOMEM;
2497 goto fail;
2498 }
2499
2500 r = mkdir_parents_label(p, 0755);
2501 if (r < 0)
2502 goto fail;
2503
2504 if (exec_directory_is_private(context, type)) {
2505 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2506 * case we want to avoid leaving a directory around fully accessible that is owned by
2507 * a dynamic user whose UID is later on reused. To lock this down we use the same
2508 * trick used by container managers to prohibit host users to get access to files of
2509 * the same UID in containers: we place everything inside a directory that has an
2510 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2511 * for unprivileged host code. We then use fs namespacing to make this directory
2512 * permeable for the service itself.
2513 *
2514 * Specifically: for a service which wants a special directory "foo/" we first create
2515 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2516 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2517 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2518 * unprivileged host users can't look into it. Inside of the namespace of the unit
2519 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2520 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2521 * for the service and making sure it only gets access to the dirs it needs but no
2522 * others. Tricky? Yes, absolutely, but it works!
2523 *
2524 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2525 * to be owned by the service itself.
2526 *
2527 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2528 * for sharing files or sockets with other services. */
2529
2530 pp = path_join(params->prefix[type], "private");
2531 if (!pp) {
2532 r = -ENOMEM;
2533 goto fail;
2534 }
2535
2536 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2537 r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE);
2538 if (r < 0)
2539 goto fail;
2540
2541 if (!path_extend(&pp, context->directories[type].items[i].path)) {
2542 r = -ENOMEM;
2543 goto fail;
2544 }
2545
2546 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2547 r = mkdir_parents_label(pp, 0755);
2548 if (r < 0)
2549 goto fail;
2550
2551 if (is_dir(p, false) > 0 &&
2552 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2553
2554 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2555 * it over. Most likely the service has been upgraded from one that didn't use
2556 * DynamicUser=1, to one that does. */
2557
2558 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2559 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2560 exec_directory_type_to_string(type), p, pp);
2561
2562 if (rename(p, pp) < 0) {
2563 r = -errno;
2564 goto fail;
2565 }
2566 } else {
2567 /* Otherwise, create the actual directory for the service */
2568
2569 r = mkdir_label(pp, context->directories[type].mode);
2570 if (r < 0 && r != -EEXIST)
2571 goto fail;
2572 }
2573
2574 if (!context->directories[type].items[i].only_create) {
2575 /* And link it up from the original place.
2576 * Notes
2577 * 1) If a mount namespace is going to be used, then this symlink remains on
2578 * the host, and a new one for the child namespace will be created later.
2579 * 2) It is not necessary to create this symlink when one of its parent
2580 * directories is specified and already created. E.g.
2581 * StateDirectory=foo foo/bar
2582 * In that case, the inode points to pp and p for "foo/bar" are the same:
2583 * pp = "/var/lib/private/foo/bar"
2584 * p = "/var/lib/foo/bar"
2585 * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only
2586 * we do not need to create the symlink, but we cannot create the symlink.
2587 * See issue #24783. */
2588 r = symlink_idempotent(pp, p, true);
2589 if (r < 0)
2590 goto fail;
2591 }
2592
2593 } else {
2594 _cleanup_free_ char *target = NULL;
2595
2596 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2597 readlink_and_make_absolute(p, &target) >= 0) {
2598 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2599
2600 /* This already exists and is a symlink? Interesting. Maybe it's one created
2601 * by DynamicUser=1 (see above)?
2602 *
2603 * We do this for all directory types except for ConfigurationDirectory=,
2604 * since they all support the private/ symlink logic at least in some
2605 * configurations, see above. */
2606
2607 r = chase(target, NULL, 0, &target_resolved, NULL);
2608 if (r < 0)
2609 goto fail;
2610
2611 q = path_join(params->prefix[type], "private", context->directories[type].items[i].path);
2612 if (!q) {
2613 r = -ENOMEM;
2614 goto fail;
2615 }
2616
2617 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2618 r = chase(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2619 if (r < 0)
2620 goto fail;
2621
2622 if (path_equal(q_resolved, target_resolved)) {
2623
2624 /* Hmm, apparently DynamicUser= was once turned on for this service,
2625 * but is no longer. Let's move the directory back up. */
2626
2627 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2628 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2629 exec_directory_type_to_string(type), q, p);
2630
2631 if (unlink(p) < 0) {
2632 r = -errno;
2633 goto fail;
2634 }
2635
2636 if (rename(q, p) < 0) {
2637 r = -errno;
2638 goto fail;
2639 }
2640 }
2641 }
2642
2643 r = mkdir_label(p, context->directories[type].mode);
2644 if (r < 0) {
2645 if (r != -EEXIST)
2646 goto fail;
2647
2648 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2649 struct stat st;
2650
2651 /* Don't change the owner/access mode of the configuration directory,
2652 * as in the common case it is not written to by a service, and shall
2653 * not be writable. */
2654
2655 if (stat(p, &st) < 0) {
2656 r = -errno;
2657 goto fail;
2658 }
2659
2660 /* Still complain if the access mode doesn't match */
2661 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2662 log_warning("%s \'%s\' already exists but the mode is different. "
2663 "(File system: %o %sMode: %o)",
2664 exec_directory_type_to_string(type), context->directories[type].items[i].path,
2665 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2666
2667 continue;
2668 }
2669 }
2670 }
2671
2672 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2673 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2674 * current UID/GID ownership.) */
2675 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2676 if (r < 0)
2677 goto fail;
2678
2679 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2680 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2681 * assignments to exist. */
2682 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2683 if (r < 0)
2684 goto fail;
2685 }
2686
2687 /* If we are not going to run in a namespace, set up the symlinks - otherwise
2688 * they are set up later, to allow configuring empty var/run/etc. */
2689 if (!needs_mount_namespace)
2690 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2691 r = create_many_symlinks(params->prefix[type],
2692 context->directories[type].items[i].path,
2693 context->directories[type].items[i].symlinks);
2694 if (r < 0)
2695 goto fail;
2696 }
2697
2698 return 0;
2699
2700 fail:
2701 *exit_status = exit_status_table[type];
2702 return r;
2703 }
2704
2705 static int write_credential(
2706 int dfd,
2707 const char *id,
2708 const void *data,
2709 size_t size,
2710 uid_t uid,
2711 bool ownership_ok) {
2712
2713 _cleanup_(unlink_and_freep) char *tmp = NULL;
2714 _cleanup_close_ int fd = -EBADF;
2715 int r;
2716
2717 r = tempfn_random_child("", "cred", &tmp);
2718 if (r < 0)
2719 return r;
2720
2721 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2722 if (fd < 0) {
2723 tmp = mfree(tmp);
2724 return -errno;
2725 }
2726
2727 r = loop_write(fd, data, size, /* do_poll = */ false);
2728 if (r < 0)
2729 return r;
2730
2731 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2732 return -errno;
2733
2734 if (uid_is_valid(uid) && uid != getuid()) {
2735 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2736 if (r < 0) {
2737 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2738 return r;
2739
2740 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2741 * to express: that the user gets read access and nothing
2742 * else. But if the backing fs can't support that (e.g. ramfs)
2743 * then we can use file ownership instead. But that's only safe if
2744 * we can then re-mount the whole thing read-only, so that the
2745 * user can no longer chmod() the file to gain write access. */
2746 return r;
2747
2748 if (fchown(fd, uid, GID_INVALID) < 0)
2749 return -errno;
2750 }
2751 }
2752
2753 if (renameat(dfd, tmp, dfd, id) < 0)
2754 return -errno;
2755
2756 tmp = mfree(tmp);
2757 return 0;
2758 }
2759
2760 static char **credential_search_path(
2761 const ExecParameters *params,
2762 bool encrypted) {
2763
2764 _cleanup_strv_free_ char **l = NULL;
2765
2766 assert(params);
2767
2768 /* Assemble a search path to find credentials in. We'll look in /etc/credstore/ (and similar
2769 * directories in /usr/lib/ + /run/) for all types of credentials. If we are looking for encrypted
2770 * credentials, also look in /etc/credstore.encrypted/ (and similar dirs). */
2771
2772 if (encrypted) {
2773 if (strv_extend(&l, params->received_encrypted_credentials_directory) < 0)
2774 return NULL;
2775
2776 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore.encrypted"), /* filter_duplicates= */ true) < 0)
2777 return NULL;
2778 }
2779
2780 if (params->received_credentials_directory)
2781 if (strv_extend(&l, params->received_credentials_directory) < 0)
2782 return NULL;
2783
2784 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore"), /* filter_duplicates= */ true) < 0)
2785 return NULL;
2786
2787 if (DEBUG_LOGGING) {
2788 _cleanup_free_ char *t = strv_join(l, ":");
2789
2790 log_debug("Credential search path is: %s", strempty(t));
2791 }
2792
2793 return TAKE_PTR(l);
2794 }
2795
2796 static int load_credential(
2797 const ExecContext *context,
2798 const ExecParameters *params,
2799 const char *id,
2800 const char *path,
2801 bool encrypted,
2802 const char *unit,
2803 int read_dfd,
2804 int write_dfd,
2805 uid_t uid,
2806 bool ownership_ok,
2807 uint64_t *left) {
2808
2809 ReadFullFileFlags flags = READ_FULL_FILE_SECURE|READ_FULL_FILE_FAIL_WHEN_LARGER;
2810 _cleanup_strv_free_ char **search_path = NULL;
2811 _cleanup_(erase_and_freep) char *data = NULL;
2812 _cleanup_free_ char *bindname = NULL;
2813 const char *source = NULL;
2814 bool missing_ok = true;
2815 size_t size, add, maxsz;
2816 int r;
2817
2818 assert(context);
2819 assert(params);
2820 assert(id);
2821 assert(path);
2822 assert(unit);
2823 assert(read_dfd >= 0 || read_dfd == AT_FDCWD);
2824 assert(write_dfd >= 0);
2825 assert(left);
2826
2827 if (read_dfd >= 0) {
2828 /* If a directory fd is specified, then read the file directly from that dir. In this case we
2829 * won't do AF_UNIX stuff (we simply don't want to recursively iterate down a tree of AF_UNIX
2830 * IPC sockets). It's OK if a file vanishes here in the time we enumerate it and intend to
2831 * open it. */
2832
2833 if (!filename_is_valid(path)) /* safety check */
2834 return -EINVAL;
2835
2836 missing_ok = true;
2837 source = path;
2838
2839 } else if (path_is_absolute(path)) {
2840 /* If this is an absolute path, read the data directly from it, and support AF_UNIX
2841 * sockets */
2842
2843 if (!path_is_valid(path)) /* safety check */
2844 return -EINVAL;
2845
2846 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2847
2848 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2849 * via the source socket address in case we read off an AF_UNIX socket. */
2850 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, id) < 0)
2851 return -ENOMEM;
2852
2853 missing_ok = false;
2854 source = path;
2855
2856 } else if (credential_name_valid(path)) {
2857 /* If this is a relative path, take it as credential name relative to the credentials
2858 * directory we received ourselves. We don't support the AF_UNIX stuff in this mode, since we
2859 * are operating on a credential store, i.e. this is guaranteed to be regular files. */
2860
2861 search_path = credential_search_path(params, encrypted);
2862 if (!search_path)
2863 return -ENOMEM;
2864
2865 missing_ok = true;
2866 } else
2867 source = NULL;
2868
2869 if (encrypted)
2870 flags |= READ_FULL_FILE_UNBASE64;
2871
2872 maxsz = encrypted ? CREDENTIAL_ENCRYPTED_SIZE_MAX : CREDENTIAL_SIZE_MAX;
2873
2874 if (search_path) {
2875 STRV_FOREACH(d, search_path) {
2876 _cleanup_free_ char *j = NULL;
2877
2878 j = path_join(*d, path);
2879 if (!j)
2880 return -ENOMEM;
2881
2882 r = read_full_file_full(
2883 AT_FDCWD, j, /* path is absolute, hence pass AT_FDCWD as nop dir fd here */
2884 UINT64_MAX,
2885 maxsz,
2886 flags,
2887 NULL,
2888 &data, &size);
2889 if (r != -ENOENT)
2890 break;
2891 }
2892 } else if (source)
2893 r = read_full_file_full(
2894 read_dfd, source,
2895 UINT64_MAX,
2896 maxsz,
2897 flags,
2898 bindname,
2899 &data, &size);
2900 else
2901 r = -ENOENT;
2902
2903 if (r == -ENOENT && (missing_ok || hashmap_contains(context->set_credentials, id))) {
2904 /* Make a missing inherited credential non-fatal, let's just continue. After all apps
2905 * will get clear errors if we don't pass such a missing credential on as they
2906 * themselves will get ENOENT when trying to read them, which should not be much
2907 * worse than when we handle the error here and make it fatal.
2908 *
2909 * Also, if the source file doesn't exist, but a fallback is set via SetCredentials=
2910 * we are fine, too. */
2911 log_debug_errno(r, "Couldn't read inherited credential '%s', skipping: %m", path);
2912 return 0;
2913 }
2914 if (r < 0)
2915 return log_debug_errno(r, "Failed to read credential '%s': %m", path);
2916
2917 if (encrypted) {
2918 _cleanup_free_ void *plaintext = NULL;
2919 size_t plaintext_size = 0;
2920
2921 r = decrypt_credential_and_warn(id, now(CLOCK_REALTIME), NULL, NULL, data, size, &plaintext, &plaintext_size);
2922 if (r < 0)
2923 return r;
2924
2925 free_and_replace(data, plaintext);
2926 size = plaintext_size;
2927 }
2928
2929 add = strlen(id) + size;
2930 if (add > *left)
2931 return -E2BIG;
2932
2933 r = write_credential(write_dfd, id, data, size, uid, ownership_ok);
2934 if (r < 0)
2935 return log_debug_errno(r, "Failed to write credential '%s': %m", id);
2936
2937 *left -= add;
2938 return 0;
2939 }
2940
2941 struct load_cred_args {
2942 const ExecContext *context;
2943 const ExecParameters *params;
2944 bool encrypted;
2945 const char *unit;
2946 int dfd;
2947 uid_t uid;
2948 bool ownership_ok;
2949 uint64_t *left;
2950 };
2951
2952 static int load_cred_recurse_dir_cb(
2953 RecurseDirEvent event,
2954 const char *path,
2955 int dir_fd,
2956 int inode_fd,
2957 const struct dirent *de,
2958 const struct statx *sx,
2959 void *userdata) {
2960
2961 struct load_cred_args *args = ASSERT_PTR(userdata);
2962 _cleanup_free_ char *sub_id = NULL;
2963 int r;
2964
2965 if (event != RECURSE_DIR_ENTRY)
2966 return RECURSE_DIR_CONTINUE;
2967
2968 if (!IN_SET(de->d_type, DT_REG, DT_SOCK))
2969 return RECURSE_DIR_CONTINUE;
2970
2971 sub_id = strreplace(path, "/", "_");
2972 if (!sub_id)
2973 return -ENOMEM;
2974
2975 if (!credential_name_valid(sub_id))
2976 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Credential would get ID %s, which is not valid, refusing", sub_id);
2977
2978 if (faccessat(args->dfd, sub_id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) {
2979 log_debug("Skipping credential with duplicated ID %s at %s", sub_id, path);
2980 return RECURSE_DIR_CONTINUE;
2981 }
2982 if (errno != ENOENT)
2983 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sub_id);
2984
2985 r = load_credential(
2986 args->context,
2987 args->params,
2988 sub_id,
2989 de->d_name,
2990 args->encrypted,
2991 args->unit,
2992 dir_fd,
2993 args->dfd,
2994 args->uid,
2995 args->ownership_ok,
2996 args->left);
2997 if (r < 0)
2998 return r;
2999
3000 return RECURSE_DIR_CONTINUE;
3001 }
3002
3003 static int acquire_credentials(
3004 const ExecContext *context,
3005 const ExecParameters *params,
3006 const char *unit,
3007 const char *p,
3008 uid_t uid,
3009 bool ownership_ok) {
3010
3011 uint64_t left = CREDENTIALS_TOTAL_SIZE_MAX;
3012 _cleanup_close_ int dfd = -EBADF;
3013 ExecLoadCredential *lc;
3014 ExecSetCredential *sc;
3015 int r;
3016
3017 assert(context);
3018 assert(p);
3019
3020 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
3021 if (dfd < 0)
3022 return -errno;
3023
3024 /* First, load credentials off disk (or acquire via AF_UNIX socket) */
3025 HASHMAP_FOREACH(lc, context->load_credentials) {
3026 _cleanup_close_ int sub_fd = -EBADF;
3027
3028 /* If this is an absolute path, then try to open it as a directory. If that works, then we'll
3029 * recurse into it. If it is an absolute path but it isn't a directory, then we'll open it as
3030 * a regular file. Finally, if it's a relative path we will use it as a credential name to
3031 * propagate a credential passed to us from further up. */
3032
3033 if (path_is_absolute(lc->path)) {
3034 sub_fd = open(lc->path, O_DIRECTORY|O_CLOEXEC|O_RDONLY);
3035 if (sub_fd < 0 && !IN_SET(errno,
3036 ENOTDIR, /* Not a directory */
3037 ENOENT)) /* Doesn't exist? */
3038 return log_debug_errno(errno, "Failed to open '%s': %m", lc->path);
3039 }
3040
3041 if (sub_fd < 0)
3042 /* Regular file (incl. a credential passed in from higher up) */
3043 r = load_credential(
3044 context,
3045 params,
3046 lc->id,
3047 lc->path,
3048 lc->encrypted,
3049 unit,
3050 AT_FDCWD,
3051 dfd,
3052 uid,
3053 ownership_ok,
3054 &left);
3055 else
3056 /* Directory */
3057 r = recurse_dir(
3058 sub_fd,
3059 /* path= */ lc->id, /* recurse_dir() will suffix the subdir paths from here to the top-level id */
3060 /* statx_mask= */ 0,
3061 /* n_depth_max= */ UINT_MAX,
3062 RECURSE_DIR_SORT|RECURSE_DIR_IGNORE_DOT|RECURSE_DIR_ENSURE_TYPE,
3063 load_cred_recurse_dir_cb,
3064 &(struct load_cred_args) {
3065 .context = context,
3066 .params = params,
3067 .encrypted = lc->encrypted,
3068 .unit = unit,
3069 .dfd = dfd,
3070 .uid = uid,
3071 .ownership_ok = ownership_ok,
3072 .left = &left,
3073 });
3074 if (r < 0)
3075 return r;
3076 }
3077
3078 /* Second, we add in literally specified credentials. If the credentials already exist, we'll not add
3079 * them, so that they can act as a "default" if the same credential is specified multiple times. */
3080 HASHMAP_FOREACH(sc, context->set_credentials) {
3081 _cleanup_(erase_and_freep) void *plaintext = NULL;
3082 const char *data;
3083 size_t size, add;
3084
3085 /* Note that we check ahead of time here instead of relying on O_EXCL|O_CREAT later to return
3086 * EEXIST if the credential already exists. That's because the TPM2-based decryption is kinda
3087 * slow and involved, hence it's nice to be able to skip that if the credential already
3088 * exists anyway. */
3089 if (faccessat(dfd, sc->id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
3090 continue;
3091 if (errno != ENOENT)
3092 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sc->id);
3093
3094 if (sc->encrypted) {
3095 r = decrypt_credential_and_warn(sc->id, now(CLOCK_REALTIME), NULL, NULL, sc->data, sc->size, &plaintext, &size);
3096 if (r < 0)
3097 return r;
3098
3099 data = plaintext;
3100 } else {
3101 data = sc->data;
3102 size = sc->size;
3103 }
3104
3105 add = strlen(sc->id) + size;
3106 if (add > left)
3107 return -E2BIG;
3108
3109 r = write_credential(dfd, sc->id, data, size, uid, ownership_ok);
3110 if (r < 0)
3111 return r;
3112
3113 left -= add;
3114 }
3115
3116 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
3117 return -errno;
3118
3119 /* After we created all keys with the right perms, also make sure the credential store as a whole is
3120 * accessible */
3121
3122 if (uid_is_valid(uid) && uid != getuid()) {
3123 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
3124 if (r < 0) {
3125 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3126 return r;
3127
3128 if (!ownership_ok)
3129 return r;
3130
3131 if (fchown(dfd, uid, GID_INVALID) < 0)
3132 return -errno;
3133 }
3134 }
3135
3136 return 0;
3137 }
3138
3139 static int setup_credentials_internal(
3140 const ExecContext *context,
3141 const ExecParameters *params,
3142 const char *unit,
3143 const char *final, /* This is where the credential store shall eventually end up at */
3144 const char *workspace, /* This is where we can prepare it before moving it to the final place */
3145 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
3146 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
3147 uid_t uid) {
3148
3149 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
3150 * if we mounted something; false if we definitely can't mount anything */
3151 bool final_mounted;
3152 const char *where;
3153
3154 assert(context);
3155 assert(final);
3156 assert(workspace);
3157
3158 if (reuse_workspace) {
3159 r = path_is_mount_point(workspace, NULL, 0);
3160 if (r < 0)
3161 return r;
3162 if (r > 0)
3163 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
3164 else
3165 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
3166 } else
3167 workspace_mounted = -1; /* ditto */
3168
3169 r = path_is_mount_point(final, NULL, 0);
3170 if (r < 0)
3171 return r;
3172 if (r > 0) {
3173 /* If the final place already has something mounted, we use that. If the workspace also has
3174 * something mounted we assume it's actually the same mount (but with MS_RDONLY
3175 * different). */
3176 final_mounted = true;
3177
3178 if (workspace_mounted < 0) {
3179 /* If the final place is mounted, but the workspace isn't, then let's bind mount
3180 * the final version to the workspace, and make it writable, so that we can make
3181 * changes */
3182
3183 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3184 if (r < 0)
3185 return r;
3186
3187 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3188 if (r < 0)
3189 return r;
3190
3191 workspace_mounted = true;
3192 }
3193 } else
3194 final_mounted = false;
3195
3196 if (workspace_mounted < 0) {
3197 /* Nothing is mounted on the workspace yet, let's try to mount something now */
3198 for (int try = 0;; try++) {
3199
3200 if (try == 0) {
3201 /* Try "ramfs" first, since it's not swap backed */
3202 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
3203 if (r >= 0) {
3204 workspace_mounted = true;
3205 break;
3206 }
3207
3208 } else if (try == 1) {
3209 _cleanup_free_ char *opts = NULL;
3210
3211 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%zu", (size_t) CREDENTIALS_TOTAL_SIZE_MAX) < 0)
3212 return -ENOMEM;
3213
3214 /* Fall back to "tmpfs" otherwise */
3215 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
3216 if (r >= 0) {
3217 workspace_mounted = true;
3218 break;
3219 }
3220
3221 } else {
3222 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
3223 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3224 if (r < 0) {
3225 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
3226 return r;
3227
3228 if (must_mount) /* If we it's not OK to use the plain directory
3229 * fallback, propagate all errors too */
3230 return r;
3231
3232 /* If we lack privileges to bind mount stuff, then let's gracefully
3233 * proceed for compat with container envs, and just use the final dir
3234 * as is. */
3235
3236 workspace_mounted = false;
3237 break;
3238 }
3239
3240 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
3241 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3242 if (r < 0)
3243 return r;
3244
3245 workspace_mounted = true;
3246 break;
3247 }
3248 }
3249 }
3250
3251 assert(!must_mount || workspace_mounted > 0);
3252 where = workspace_mounted ? workspace : final;
3253
3254 (void) label_fix_full(AT_FDCWD, where, final, 0);
3255
3256 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
3257 if (r < 0)
3258 return r;
3259
3260 if (workspace_mounted) {
3261 bool install;
3262
3263 /* Determine if we should actually install the prepared mount in the final location by bind
3264 * mounting it there. We do so only if the mount is not established there already, and if the
3265 * mount is actually non-empty (i.e. carries at least one credential). Not that in the best
3266 * case we are doing all this in a mount namespace, thus no one else will see that we
3267 * allocated a file system we are getting rid of again here. */
3268 if (final_mounted)
3269 install = false; /* already installed */
3270 else {
3271 r = dir_is_empty(where, /* ignore_hidden_or_backup= */ false);
3272 if (r < 0)
3273 return r;
3274
3275 install = r == 0; /* install only if non-empty */
3276 }
3277
3278 if (install) {
3279 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
3280 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3281 if (r < 0)
3282 return r;
3283
3284 /* And mount it to the final place, read-only */
3285 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
3286 } else
3287 /* Otherwise get rid of it */
3288 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
3289 if (r < 0)
3290 return r;
3291 } else {
3292 _cleanup_free_ char *parent = NULL;
3293
3294 /* If we do not have our own mount put used the plain directory fallback, then we need to
3295 * open access to the top-level credential directory and the per-service directory now */
3296
3297 r = path_extract_directory(final, &parent);
3298 if (r < 0)
3299 return r;
3300 if (chmod(parent, 0755) < 0)
3301 return -errno;
3302 }
3303
3304 return 0;
3305 }
3306
3307 static int setup_credentials(
3308 const ExecContext *context,
3309 const ExecParameters *params,
3310 const char *unit,
3311 uid_t uid) {
3312
3313 _cleanup_free_ char *p = NULL, *q = NULL;
3314 int r;
3315
3316 assert(context);
3317 assert(params);
3318
3319 if (!exec_context_has_credentials(context))
3320 return 0;
3321
3322 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
3323 return -EINVAL;
3324
3325 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
3326 * and the subdir we mount over with a read-only file system readable by the service's user */
3327 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
3328 if (!q)
3329 return -ENOMEM;
3330
3331 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
3332 if (r < 0 && r != -EEXIST)
3333 return r;
3334
3335 p = path_join(q, unit);
3336 if (!p)
3337 return -ENOMEM;
3338
3339 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
3340 if (r < 0 && r != -EEXIST)
3341 return r;
3342
3343 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
3344 if (r < 0) {
3345 _cleanup_free_ char *t = NULL, *u = NULL;
3346
3347 /* If this is not a privilege or support issue then propagate the error */
3348 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3349 return r;
3350
3351 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
3352 * it into place, so that users can't access half-initialized credential stores. */
3353 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
3354 if (!t)
3355 return -ENOMEM;
3356
3357 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
3358 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
3359 * after it is fully set up */
3360 u = path_join(t, unit);
3361 if (!u)
3362 return -ENOMEM;
3363
3364 FOREACH_STRING(i, t, u) {
3365 r = mkdir_label(i, 0700);
3366 if (r < 0 && r != -EEXIST)
3367 return r;
3368 }
3369
3370 r = setup_credentials_internal(
3371 context,
3372 params,
3373 unit,
3374 p, /* final mount point */
3375 u, /* temporary workspace to overmount */
3376 true, /* reuse the workspace if it is already a mount */
3377 false, /* it's OK to fall back to a plain directory if we can't mount anything */
3378 uid);
3379
3380 (void) rmdir(u); /* remove the workspace again if we can. */
3381
3382 if (r < 0)
3383 return r;
3384
3385 } else if (r == 0) {
3386
3387 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
3388 * we can use the same directory for all cases, after turning off propagation. Question
3389 * though is: where do we turn off propagation exactly, and where do we place the workspace
3390 * directory? We need some place that is guaranteed to be a mount point in the host, and
3391 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
3392 * since we ultimately want to move the resulting file system there, i.e. we need propagation
3393 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
3394 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
3395 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
3396 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
3397 * propagation on the former, and then overmount the latter.
3398 *
3399 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
3400 * for this purpose, but there are few other candidates that work equally well for us, and
3401 * given that the we do this in a privately namespaced short-lived single-threaded process
3402 * that no one else sees this should be OK to do. */
3403
3404 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
3405 if (r < 0)
3406 goto child_fail;
3407
3408 r = setup_credentials_internal(
3409 context,
3410 params,
3411 unit,
3412 p, /* final mount point */
3413 "/dev/shm", /* temporary workspace to overmount */
3414 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
3415 true, /* insist that something is mounted, do not allow fallback to plain directory */
3416 uid);
3417 if (r < 0)
3418 goto child_fail;
3419
3420 _exit(EXIT_SUCCESS);
3421
3422 child_fail:
3423 _exit(EXIT_FAILURE);
3424 }
3425
3426 /* If the credentials dir is empty and not a mount point, then there's no point in having it. Let's
3427 * try to remove it. This matters in particular if we created the dir as mount point but then didn't
3428 * actually end up mounting anything on it. In that case we'd rather have ENOENT than EACCESS being
3429 * seen by users when trying access this inode. */
3430 (void) rmdir(p);
3431 return 0;
3432 }
3433
3434 #if ENABLE_SMACK
3435 static int setup_smack(
3436 const Manager *manager,
3437 const ExecContext *context,
3438 int executable_fd) {
3439 int r;
3440
3441 assert(context);
3442 assert(executable_fd >= 0);
3443
3444 if (context->smack_process_label) {
3445 r = mac_smack_apply_pid(0, context->smack_process_label);
3446 if (r < 0)
3447 return r;
3448 } else if (manager->default_smack_process_label) {
3449 _cleanup_free_ char *exec_label = NULL;
3450
3451 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
3452 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3453 return r;
3454
3455 r = mac_smack_apply_pid(0, exec_label ?: manager->default_smack_process_label);
3456 if (r < 0)
3457 return r;
3458 }
3459
3460 return 0;
3461 }
3462 #endif
3463
3464 static int compile_bind_mounts(
3465 const ExecContext *context,
3466 const ExecParameters *params,
3467 BindMount **ret_bind_mounts,
3468 size_t *ret_n_bind_mounts,
3469 char ***ret_empty_directories) {
3470
3471 _cleanup_strv_free_ char **empty_directories = NULL;
3472 BindMount *bind_mounts = NULL;
3473 size_t n, h = 0;
3474 int r;
3475
3476 assert(context);
3477 assert(params);
3478 assert(ret_bind_mounts);
3479 assert(ret_n_bind_mounts);
3480 assert(ret_empty_directories);
3481
3482 CLEANUP_ARRAY(bind_mounts, h, bind_mount_free_many);
3483
3484 n = context->n_bind_mounts;
3485 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3486 if (!params->prefix[t])
3487 continue;
3488
3489 for (size_t i = 0; i < context->directories[t].n_items; i++)
3490 n += !context->directories[t].items[i].only_create;
3491 }
3492
3493 if (n <= 0) {
3494 *ret_bind_mounts = NULL;
3495 *ret_n_bind_mounts = 0;
3496 *ret_empty_directories = NULL;
3497 return 0;
3498 }
3499
3500 bind_mounts = new(BindMount, n);
3501 if (!bind_mounts)
3502 return -ENOMEM;
3503
3504 for (size_t i = 0; i < context->n_bind_mounts; i++) {
3505 BindMount *item = context->bind_mounts + i;
3506 _cleanup_free_ char *s = NULL, *d = NULL;
3507
3508 s = strdup(item->source);
3509 if (!s)
3510 return -ENOMEM;
3511
3512 d = strdup(item->destination);
3513 if (!d)
3514 return -ENOMEM;
3515
3516 bind_mounts[h++] = (BindMount) {
3517 .source = TAKE_PTR(s),
3518 .destination = TAKE_PTR(d),
3519 .read_only = item->read_only,
3520 .recursive = item->recursive,
3521 .ignore_enoent = item->ignore_enoent,
3522 };
3523 }
3524
3525 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3526 if (!params->prefix[t])
3527 continue;
3528
3529 if (context->directories[t].n_items == 0)
3530 continue;
3531
3532 if (exec_directory_is_private(context, t) &&
3533 !exec_context_with_rootfs(context)) {
3534 char *private_root;
3535
3536 /* So this is for a dynamic user, and we need to make sure the process can access its own
3537 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3538 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3539
3540 private_root = path_join(params->prefix[t], "private");
3541 if (!private_root)
3542 return -ENOMEM;
3543
3544 r = strv_consume(&empty_directories, private_root);
3545 if (r < 0)
3546 return r;
3547 }
3548
3549 for (size_t i = 0; i < context->directories[t].n_items; i++) {
3550 _cleanup_free_ char *s = NULL, *d = NULL;
3551
3552 /* When one of the parent directories is in the list, we cannot create the symlink
3553 * for the child directory. See also the comments in setup_exec_directory(). */
3554 if (context->directories[t].items[i].only_create)
3555 continue;
3556
3557 if (exec_directory_is_private(context, t))
3558 s = path_join(params->prefix[t], "private", context->directories[t].items[i].path);
3559 else
3560 s = path_join(params->prefix[t], context->directories[t].items[i].path);
3561 if (!s)
3562 return -ENOMEM;
3563
3564 if (exec_directory_is_private(context, t) &&
3565 exec_context_with_rootfs(context))
3566 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3567 * directory is not created on the root directory. So, let's bind-mount the directory
3568 * on the 'non-private' place. */
3569 d = path_join(params->prefix[t], context->directories[t].items[i].path);
3570 else
3571 d = strdup(s);
3572 if (!d)
3573 return -ENOMEM;
3574
3575 bind_mounts[h++] = (BindMount) {
3576 .source = TAKE_PTR(s),
3577 .destination = TAKE_PTR(d),
3578 .read_only = false,
3579 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3580 .recursive = true,
3581 .ignore_enoent = false,
3582 };
3583 }
3584 }
3585
3586 assert(h == n);
3587
3588 *ret_bind_mounts = TAKE_PTR(bind_mounts);
3589 *ret_n_bind_mounts = n;
3590 *ret_empty_directories = TAKE_PTR(empty_directories);
3591
3592 return (int) n;
3593 }
3594
3595 /* ret_symlinks will contain a list of pairs src:dest that describes
3596 * the symlinks to create later on. For example, the symlinks needed
3597 * to safely give private directories to DynamicUser=1 users. */
3598 static int compile_symlinks(
3599 const ExecContext *context,
3600 const ExecParameters *params,
3601 char ***ret_symlinks) {
3602
3603 _cleanup_strv_free_ char **symlinks = NULL;
3604 int r;
3605
3606 assert(context);
3607 assert(params);
3608 assert(ret_symlinks);
3609
3610 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3611 for (size_t i = 0; i < context->directories[dt].n_items; i++) {
3612 _cleanup_free_ char *private_path = NULL, *path = NULL;
3613
3614 STRV_FOREACH(symlink, context->directories[dt].items[i].symlinks) {
3615 _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL;
3616
3617 src_abs = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3618 dst_abs = path_join(params->prefix[dt], *symlink);
3619 if (!src_abs || !dst_abs)
3620 return -ENOMEM;
3621
3622 r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs));
3623 if (r < 0)
3624 return r;
3625 }
3626
3627 if (!exec_directory_is_private(context, dt) ||
3628 exec_context_with_rootfs(context) ||
3629 context->directories[dt].items[i].only_create)
3630 continue;
3631
3632 private_path = path_join(params->prefix[dt], "private", context->directories[dt].items[i].path);
3633 if (!private_path)
3634 return -ENOMEM;
3635
3636 path = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3637 if (!path)
3638 return -ENOMEM;
3639
3640 r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path));
3641 if (r < 0)
3642 return r;
3643 }
3644 }
3645
3646 *ret_symlinks = TAKE_PTR(symlinks);
3647
3648 return 0;
3649 }
3650
3651 static bool insist_on_sandboxing(
3652 const ExecContext *context,
3653 const char *root_dir,
3654 const char *root_image,
3655 const BindMount *bind_mounts,
3656 size_t n_bind_mounts) {
3657
3658 assert(context);
3659 assert(n_bind_mounts == 0 || bind_mounts);
3660
3661 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3662 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3663 * rearrange stuff in a way we cannot ignore gracefully. */
3664
3665 if (context->n_temporary_filesystems > 0)
3666 return true;
3667
3668 if (root_dir || root_image)
3669 return true;
3670
3671 if (context->n_mount_images > 0)
3672 return true;
3673
3674 if (context->dynamic_user)
3675 return true;
3676
3677 if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories))
3678 return true;
3679
3680 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3681 * essential. */
3682 for (size_t i = 0; i < n_bind_mounts; i++)
3683 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3684 return true;
3685
3686 if (context->log_namespace)
3687 return true;
3688
3689 return false;
3690 }
3691
3692 static int apply_mount_namespace(
3693 const Unit *u,
3694 ExecCommandFlags command_flags,
3695 const ExecContext *context,
3696 const ExecParameters *params,
3697 const ExecRuntime *runtime,
3698 const char *memory_pressure_path,
3699 char **error_path) {
3700
3701 _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL,
3702 **read_write_paths_cleanup = NULL;
3703 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3704 const char *root_dir = NULL, *root_image = NULL;
3705 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL,
3706 *extension_dir = NULL;
3707 char **read_write_paths;
3708 NamespaceInfo ns_info;
3709 bool needs_sandboxing;
3710 BindMount *bind_mounts = NULL;
3711 size_t n_bind_mounts = 0;
3712 int r;
3713
3714 assert(context);
3715
3716 CLEANUP_ARRAY(bind_mounts, n_bind_mounts, bind_mount_free_many);
3717
3718 if (params->flags & EXEC_APPLY_CHROOT) {
3719 root_image = context->root_image;
3720
3721 if (!root_image)
3722 root_dir = context->root_directory;
3723 }
3724
3725 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3726 if (r < 0)
3727 return r;
3728
3729 /* Symlinks for exec dirs are set up after other mounts, before they are made read-only. */
3730 r = compile_symlinks(context, params, &symlinks);
3731 if (r < 0)
3732 return r;
3733
3734 /* We need to make the pressure path writable even if /sys/fs/cgroups is made read-only, as the
3735 * service will need to write to it in order to start the notifications. */
3736 if (context->protect_control_groups && memory_pressure_path && !streq(memory_pressure_path, "/dev/null")) {
3737 read_write_paths_cleanup = strv_copy(context->read_write_paths);
3738 if (!read_write_paths_cleanup)
3739 return -ENOMEM;
3740
3741 r = strv_extend(&read_write_paths_cleanup, memory_pressure_path);
3742 if (r < 0)
3743 return r;
3744
3745 read_write_paths = read_write_paths_cleanup;
3746 } else
3747 read_write_paths = context->read_write_paths;
3748
3749 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3750 if (needs_sandboxing) {
3751 /* The runtime struct only contains the parent of the private /tmp,
3752 * which is non-accessible to world users. Inside of it there's a /tmp
3753 * that is sticky, and that's the one we want to use here.
3754 * This does not apply when we are using /run/systemd/empty as fallback. */
3755
3756 if (context->private_tmp && runtime && runtime->shared) {
3757 if (streq_ptr(runtime->shared->tmp_dir, RUN_SYSTEMD_EMPTY))
3758 tmp_dir = runtime->shared->tmp_dir;
3759 else if (runtime->shared->tmp_dir)
3760 tmp_dir = strjoina(runtime->shared->tmp_dir, "/tmp");
3761
3762 if (streq_ptr(runtime->shared->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3763 var_tmp_dir = runtime->shared->var_tmp_dir;
3764 else if (runtime->shared->var_tmp_dir)
3765 var_tmp_dir = strjoina(runtime->shared->var_tmp_dir, "/tmp");
3766 }
3767
3768 ns_info = (NamespaceInfo) {
3769 .ignore_protect_paths = false,
3770 .private_dev = context->private_devices,
3771 .protect_control_groups = context->protect_control_groups,
3772 .protect_kernel_tunables = context->protect_kernel_tunables,
3773 .protect_kernel_modules = context->protect_kernel_modules,
3774 .protect_kernel_logs = context->protect_kernel_logs,
3775 .protect_hostname = context->protect_hostname,
3776 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3777 .protect_home = context->protect_home,
3778 .protect_system = context->protect_system,
3779 .protect_proc = context->protect_proc,
3780 .proc_subset = context->proc_subset,
3781 .private_network = exec_needs_network_namespace(context),
3782 .private_ipc = exec_needs_ipc_namespace(context),
3783 /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */
3784 .mount_nosuid = context->no_new_privileges && !mac_selinux_use(),
3785 };
3786 } else if (!context->dynamic_user && root_dir)
3787 /*
3788 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3789 * sandbox info, otherwise enforce it, don't ignore protected paths and
3790 * fail if we are enable to apply the sandbox inside the mount namespace.
3791 */
3792 ns_info = (NamespaceInfo) {
3793 .ignore_protect_paths = true,
3794 };
3795 else
3796 ns_info = (NamespaceInfo) {};
3797
3798 if (context->mount_propagation_flag == MS_SHARED)
3799 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3800
3801 if (exec_context_has_credentials(context) &&
3802 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3803 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3804 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3805 if (!creds_path)
3806 return -ENOMEM;
3807 }
3808
3809 if (MANAGER_IS_SYSTEM(u->manager)) {
3810 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3811 if (!propagate_dir)
3812 return -ENOMEM;
3813
3814 incoming_dir = strdup("/run/systemd/incoming");
3815 if (!incoming_dir)
3816 return -ENOMEM;
3817
3818 extension_dir = strdup("/run/systemd/unit-extensions");
3819 if (!extension_dir)
3820 return -ENOMEM;
3821 } else
3822 if (asprintf(&extension_dir, "/run/user/" UID_FMT "/systemd/unit-extensions", geteuid()) < 0)
3823 return -ENOMEM;
3824
3825 r = setup_namespace(
3826 root_dir,
3827 root_image,
3828 context->root_image_options,
3829 context->root_image_policy ?: &image_policy_service,
3830 &ns_info,
3831 read_write_paths,
3832 needs_sandboxing ? context->read_only_paths : NULL,
3833 needs_sandboxing ? context->inaccessible_paths : NULL,
3834 needs_sandboxing ? context->exec_paths : NULL,
3835 needs_sandboxing ? context->no_exec_paths : NULL,
3836 empty_directories,
3837 symlinks,
3838 bind_mounts,
3839 n_bind_mounts,
3840 context->temporary_filesystems,
3841 context->n_temporary_filesystems,
3842 context->mount_images,
3843 context->n_mount_images,
3844 context->mount_image_policy ?: &image_policy_service,
3845 tmp_dir,
3846 var_tmp_dir,
3847 creds_path,
3848 context->log_namespace,
3849 context->mount_propagation_flag,
3850 context->root_hash, context->root_hash_size, context->root_hash_path,
3851 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3852 context->root_verity,
3853 context->extension_images,
3854 context->n_extension_images,
3855 context->extension_image_policy ?: &image_policy_sysext,
3856 context->extension_directories,
3857 propagate_dir,
3858 incoming_dir,
3859 extension_dir,
3860 root_dir || root_image ? params->notify_socket : NULL,
3861 error_path);
3862
3863 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3864 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3865 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3866 * completely different execution environment. */
3867 if (r == -ENOANO) {
3868 if (insist_on_sandboxing(
3869 context,
3870 root_dir, root_image,
3871 bind_mounts,
3872 n_bind_mounts))
3873 return log_unit_debug_errno(u,
3874 SYNTHETIC_ERRNO(EOPNOTSUPP),
3875 "Failed to set up namespace, and refusing to continue since "
3876 "the selected namespacing options alter mount environment non-trivially.\n"
3877 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3878 n_bind_mounts,
3879 context->n_temporary_filesystems,
3880 yes_no(root_dir),
3881 yes_no(root_image),
3882 yes_no(context->dynamic_user));
3883
3884 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3885 return 0;
3886 }
3887
3888 return r;
3889 }
3890
3891 static int apply_working_directory(
3892 const ExecContext *context,
3893 const ExecParameters *params,
3894 const char *home,
3895 int *exit_status) {
3896
3897 const char *d, *wd;
3898
3899 assert(context);
3900 assert(exit_status);
3901
3902 if (context->working_directory_home) {
3903
3904 if (!home) {
3905 *exit_status = EXIT_CHDIR;
3906 return -ENXIO;
3907 }
3908
3909 wd = home;
3910
3911 } else
3912 wd = empty_to_root(context->working_directory);
3913
3914 if (params->flags & EXEC_APPLY_CHROOT)
3915 d = wd;
3916 else
3917 d = prefix_roota(context->root_directory, wd);
3918
3919 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3920 *exit_status = EXIT_CHDIR;
3921 return -errno;
3922 }
3923
3924 return 0;
3925 }
3926
3927 static int apply_root_directory(
3928 const ExecContext *context,
3929 const ExecParameters *params,
3930 const bool needs_mount_ns,
3931 int *exit_status) {
3932
3933 assert(context);
3934 assert(exit_status);
3935
3936 if (params->flags & EXEC_APPLY_CHROOT)
3937 if (!needs_mount_ns && context->root_directory)
3938 if (chroot(context->root_directory) < 0) {
3939 *exit_status = EXIT_CHROOT;
3940 return -errno;
3941 }
3942
3943 return 0;
3944 }
3945
3946 static int setup_keyring(
3947 const Unit *u,
3948 const ExecContext *context,
3949 const ExecParameters *p,
3950 uid_t uid, gid_t gid) {
3951
3952 key_serial_t keyring;
3953 int r = 0;
3954 uid_t saved_uid;
3955 gid_t saved_gid;
3956
3957 assert(u);
3958 assert(context);
3959 assert(p);
3960
3961 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3962 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3963 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3964 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3965 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3966 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3967
3968 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3969 return 0;
3970
3971 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3972 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3973 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3974 * & group is just as nasty as acquiring a reference to the user keyring. */
3975
3976 saved_uid = getuid();
3977 saved_gid = getgid();
3978
3979 if (gid_is_valid(gid) && gid != saved_gid) {
3980 if (setregid(gid, -1) < 0)
3981 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3982 }
3983
3984 if (uid_is_valid(uid) && uid != saved_uid) {
3985 if (setreuid(uid, -1) < 0) {
3986 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3987 goto out;
3988 }
3989 }
3990
3991 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3992 if (keyring == -1) {
3993 if (errno == ENOSYS)
3994 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3995 else if (ERRNO_IS_PRIVILEGE(errno))
3996 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3997 else if (errno == EDQUOT)
3998 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3999 else
4000 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
4001
4002 goto out;
4003 }
4004
4005 /* When requested link the user keyring into the session keyring. */
4006 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
4007
4008 if (keyctl(KEYCTL_LINK,
4009 KEY_SPEC_USER_KEYRING,
4010 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
4011 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
4012 goto out;
4013 }
4014 }
4015
4016 /* Restore uid/gid back */
4017 if (uid_is_valid(uid) && uid != saved_uid) {
4018 if (setreuid(saved_uid, -1) < 0) {
4019 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
4020 goto out;
4021 }
4022 }
4023
4024 if (gid_is_valid(gid) && gid != saved_gid) {
4025 if (setregid(saved_gid, -1) < 0)
4026 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
4027 }
4028
4029 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
4030 if (!sd_id128_is_null(u->invocation_id)) {
4031 key_serial_t key;
4032
4033 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
4034 if (key == -1)
4035 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
4036 else {
4037 if (keyctl(KEYCTL_SETPERM, key,
4038 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
4039 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
4040 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
4041 }
4042 }
4043
4044 out:
4045 /* Revert back uid & gid for the last time, and exit */
4046 /* no extra logging, as only the first already reported error matters */
4047 if (getuid() != saved_uid)
4048 (void) setreuid(saved_uid, -1);
4049
4050 if (getgid() != saved_gid)
4051 (void) setregid(saved_gid, -1);
4052
4053 return r;
4054 }
4055
4056 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
4057 assert(array);
4058 assert(n);
4059 assert(pair);
4060
4061 if (pair[0] >= 0)
4062 array[(*n)++] = pair[0];
4063 if (pair[1] >= 0)
4064 array[(*n)++] = pair[1];
4065 }
4066
4067 static int close_remaining_fds(
4068 const ExecParameters *params,
4069 const ExecRuntime *runtime,
4070 int user_lookup_fd,
4071 int socket_fd,
4072 const int *fds, size_t n_fds) {
4073
4074 size_t n_dont_close = 0;
4075 int dont_close[n_fds + 12];
4076
4077 assert(params);
4078
4079 if (params->stdin_fd >= 0)
4080 dont_close[n_dont_close++] = params->stdin_fd;
4081 if (params->stdout_fd >= 0)
4082 dont_close[n_dont_close++] = params->stdout_fd;
4083 if (params->stderr_fd >= 0)
4084 dont_close[n_dont_close++] = params->stderr_fd;
4085
4086 if (socket_fd >= 0)
4087 dont_close[n_dont_close++] = socket_fd;
4088 if (n_fds > 0) {
4089 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
4090 n_dont_close += n_fds;
4091 }
4092
4093 if (runtime && runtime->shared) {
4094 append_socket_pair(dont_close, &n_dont_close, runtime->shared->netns_storage_socket);
4095 append_socket_pair(dont_close, &n_dont_close, runtime->shared->ipcns_storage_socket);
4096 }
4097
4098 if (runtime && runtime->dynamic_creds) {
4099 if (runtime->dynamic_creds->user)
4100 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->user->storage_socket);
4101 if (runtime->dynamic_creds->group)
4102 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->group->storage_socket);
4103 }
4104
4105 if (user_lookup_fd >= 0)
4106 dont_close[n_dont_close++] = user_lookup_fd;
4107
4108 return close_all_fds(dont_close, n_dont_close);
4109 }
4110
4111 static int send_user_lookup(
4112 Unit *unit,
4113 int user_lookup_fd,
4114 uid_t uid,
4115 gid_t gid) {
4116
4117 assert(unit);
4118
4119 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
4120 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
4121 * specified. */
4122
4123 if (user_lookup_fd < 0)
4124 return 0;
4125
4126 if (!uid_is_valid(uid) && !gid_is_valid(gid))
4127 return 0;
4128
4129 if (writev(user_lookup_fd,
4130 (struct iovec[]) {
4131 IOVEC_MAKE(&uid, sizeof(uid)),
4132 IOVEC_MAKE(&gid, sizeof(gid)),
4133 IOVEC_MAKE_STRING(unit->id) }, 3) < 0)
4134 return -errno;
4135
4136 return 0;
4137 }
4138
4139 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
4140 int r;
4141
4142 assert(c);
4143 assert(home);
4144 assert(buf);
4145
4146 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
4147
4148 if (*home)
4149 return 0;
4150
4151 if (!c->working_directory_home)
4152 return 0;
4153
4154 r = get_home_dir(buf);
4155 if (r < 0)
4156 return r;
4157
4158 *home = *buf;
4159 return 1;
4160 }
4161
4162 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
4163 _cleanup_strv_free_ char ** list = NULL;
4164 int r;
4165
4166 assert(c);
4167 assert(p);
4168 assert(ret);
4169
4170 assert(c->dynamic_user);
4171
4172 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
4173 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
4174 * directories. */
4175
4176 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
4177 if (t == EXEC_DIRECTORY_CONFIGURATION)
4178 continue;
4179
4180 if (!p->prefix[t])
4181 continue;
4182
4183 for (size_t i = 0; i < c->directories[t].n_items; i++) {
4184 char *e;
4185
4186 if (exec_directory_is_private(c, t))
4187 e = path_join(p->prefix[t], "private", c->directories[t].items[i].path);
4188 else
4189 e = path_join(p->prefix[t], c->directories[t].items[i].path);
4190 if (!e)
4191 return -ENOMEM;
4192
4193 r = strv_consume(&list, e);
4194 if (r < 0)
4195 return r;
4196 }
4197 }
4198
4199 *ret = TAKE_PTR(list);
4200
4201 return 0;
4202 }
4203
4204 static int exec_parameters_get_cgroup_path(
4205 const ExecParameters *params,
4206 const CGroupContext *c,
4207 char **ret) {
4208
4209 const char *subgroup = NULL;
4210 char *p;
4211
4212 assert(params);
4213 assert(ret);
4214
4215 if (!params->cgroup_path)
4216 return -EINVAL;
4217
4218 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
4219 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
4220 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
4221 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
4222 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
4223 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
4224 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
4225 * flag, which is only passed for the former statements, not for the latter. */
4226
4227 if (FLAGS_SET(params->flags, EXEC_CGROUP_DELEGATE) && (FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP) || c->delegate_subgroup)) {
4228 if (FLAGS_SET(params->flags, EXEC_IS_CONTROL))
4229 subgroup = ".control";
4230 else
4231 subgroup = c->delegate_subgroup;
4232 }
4233
4234 if (subgroup)
4235 p = path_join(params->cgroup_path, subgroup);
4236 else
4237 p = strdup(params->cgroup_path);
4238 if (!p)
4239 return -ENOMEM;
4240
4241 *ret = p;
4242 return !!subgroup;
4243 }
4244
4245 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
4246 _cleanup_(cpu_set_reset) CPUSet s = {};
4247 int r;
4248
4249 assert(c);
4250 assert(ret);
4251
4252 if (!c->numa_policy.nodes.set) {
4253 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
4254 return 0;
4255 }
4256
4257 r = numa_to_cpu_set(&c->numa_policy, &s);
4258 if (r < 0)
4259 return r;
4260
4261 cpu_set_reset(ret);
4262
4263 return cpu_set_add_all(ret, &s);
4264 }
4265
4266 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
4267 assert(c);
4268
4269 return c->cpu_affinity_from_numa;
4270 }
4271
4272 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
4273 int r;
4274
4275 assert(fds);
4276 assert(n_fds);
4277 assert(*n_fds < fds_size);
4278 assert(ret_fd);
4279
4280 if (fd < 0) {
4281 *ret_fd = -EBADF;
4282 return 0;
4283 }
4284
4285 if (fd < 3 + (int) *n_fds) {
4286 /* Let's move the fd up, so that it's outside of the fd range we will use to store
4287 * the fds we pass to the process (or which are closed only during execve). */
4288
4289 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
4290 if (r < 0)
4291 return -errno;
4292
4293 close_and_replace(fd, r);
4294 }
4295
4296 *ret_fd = fds[*n_fds] = fd;
4297 (*n_fds) ++;
4298 return 1;
4299 }
4300
4301 static int connect_unix_harder(Unit *u, const OpenFile *of, int ofd) {
4302 union sockaddr_union addr = {
4303 .un.sun_family = AF_UNIX,
4304 };
4305 socklen_t sa_len;
4306 static const int socket_types[] = { SOCK_DGRAM, SOCK_STREAM, SOCK_SEQPACKET };
4307 int r;
4308
4309 assert(u);
4310 assert(of);
4311 assert(ofd >= 0);
4312
4313 r = sockaddr_un_set_path(&addr.un, FORMAT_PROC_FD_PATH(ofd));
4314 if (r < 0)
4315 return log_unit_error_errno(u, r, "Failed to set sockaddr for %s: %m", of->path);
4316
4317 sa_len = r;
4318
4319 for (size_t i = 0; i < ELEMENTSOF(socket_types); i++) {
4320 _cleanup_close_ int fd = -EBADF;
4321
4322 fd = socket(AF_UNIX, socket_types[i] | SOCK_CLOEXEC, 0);
4323 if (fd < 0)
4324 return log_unit_error_errno(u, errno, "Failed to create socket for %s: %m", of->path);
4325
4326 r = RET_NERRNO(connect(fd, &addr.sa, sa_len));
4327 if (r == -EPROTOTYPE)
4328 continue;
4329 if (r < 0)
4330 return log_unit_error_errno(u, r, "Failed to connect socket for %s: %m", of->path);
4331
4332 return TAKE_FD(fd);
4333 }
4334
4335 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EPROTOTYPE), "Failed to connect socket for \"%s\".", of->path);
4336 }
4337
4338 static int get_open_file_fd(Unit *u, const OpenFile *of) {
4339 struct stat st;
4340 _cleanup_close_ int fd = -EBADF, ofd = -EBADF;
4341
4342 assert(u);
4343 assert(of);
4344
4345 ofd = open(of->path, O_PATH | O_CLOEXEC);
4346 if (ofd < 0)
4347 return log_unit_error_errno(u, errno, "Could not open \"%s\": %m", of->path);
4348
4349 if (fstat(ofd, &st) < 0)
4350 return log_unit_error_errno(u, errno, "Failed to stat %s: %m", of->path);
4351
4352 if (S_ISSOCK(st.st_mode)) {
4353 fd = connect_unix_harder(u, of, ofd);
4354 if (fd < 0)
4355 return fd;
4356
4357 if (FLAGS_SET(of->flags, OPENFILE_READ_ONLY) && shutdown(fd, SHUT_WR) < 0)
4358 return log_unit_error_errno(u, errno, "Failed to shutdown send for socket %s: %m",
4359 of->path);
4360
4361 log_unit_debug(u, "socket %s opened (fd=%d)", of->path, fd);
4362 } else {
4363 int flags = FLAGS_SET(of->flags, OPENFILE_READ_ONLY) ? O_RDONLY : O_RDWR;
4364 if (FLAGS_SET(of->flags, OPENFILE_APPEND))
4365 flags |= O_APPEND;
4366 else if (FLAGS_SET(of->flags, OPENFILE_TRUNCATE))
4367 flags |= O_TRUNC;
4368
4369 fd = fd_reopen(ofd, flags | O_CLOEXEC);
4370 if (fd < 0)
4371 return log_unit_error_errno(u, fd, "Failed to open file %s: %m", of->path);
4372
4373 log_unit_debug(u, "file %s opened (fd=%d)", of->path, fd);
4374 }
4375
4376 return TAKE_FD(fd);
4377 }
4378
4379 static int collect_open_file_fds(
4380 Unit *u,
4381 OpenFile* open_files,
4382 int **fds,
4383 char ***fdnames,
4384 size_t *n_fds) {
4385 int r;
4386
4387 assert(u);
4388 assert(fds);
4389 assert(fdnames);
4390 assert(n_fds);
4391
4392 LIST_FOREACH(open_files, of, open_files) {
4393 _cleanup_close_ int fd = -EBADF;
4394
4395 fd = get_open_file_fd(u, of);
4396 if (fd < 0) {
4397 if (FLAGS_SET(of->flags, OPENFILE_GRACEFUL)) {
4398 log_unit_debug_errno(u, fd, "Failed to get OpenFile= file descriptor for %s, ignoring: %m", of->path);
4399 continue;
4400 }
4401
4402 return fd;
4403 }
4404
4405 if (!GREEDY_REALLOC(*fds, *n_fds + 1))
4406 return -ENOMEM;
4407
4408 r = strv_extend(fdnames, of->fdname);
4409 if (r < 0)
4410 return r;
4411
4412 (*fds)[*n_fds] = TAKE_FD(fd);
4413
4414 (*n_fds)++;
4415 }
4416
4417 return 0;
4418 }
4419
4420 static void log_command_line(Unit *unit, const char *msg, const char *executable, char **argv) {
4421 assert(unit);
4422 assert(msg);
4423 assert(executable);
4424
4425 if (!DEBUG_LOGGING)
4426 return;
4427
4428 _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY);
4429
4430 log_unit_struct(unit, LOG_DEBUG,
4431 "EXECUTABLE=%s", executable,
4432 LOG_UNIT_MESSAGE(unit, "%s: %s", msg, strnull(cmdline)),
4433 LOG_UNIT_INVOCATION_ID(unit));
4434 }
4435
4436 static bool exec_context_need_unprivileged_private_users(const ExecContext *context, const Manager *manager) {
4437 assert(context);
4438 assert(manager);
4439
4440 /* These options require PrivateUsers= when used in user units, as we need to be in a user namespace
4441 * to have permission to enable them when not running as root. If we have effective CAP_SYS_ADMIN
4442 * (system manager) then we have privileges and don't need this. */
4443 if (MANAGER_IS_SYSTEM(manager))
4444 return false;
4445
4446 return context->private_users ||
4447 context->private_tmp ||
4448 context->private_devices ||
4449 context->private_network ||
4450 context->network_namespace_path ||
4451 context->private_ipc ||
4452 context->ipc_namespace_path ||
4453 context->private_mounts ||
4454 context->mount_apivfs ||
4455 context->n_bind_mounts > 0 ||
4456 context->n_temporary_filesystems > 0 ||
4457 context->root_directory ||
4458 !strv_isempty(context->extension_directories) ||
4459 context->protect_system != PROTECT_SYSTEM_NO ||
4460 context->protect_home != PROTECT_HOME_NO ||
4461 context->protect_kernel_tunables ||
4462 context->protect_kernel_modules ||
4463 context->protect_kernel_logs ||
4464 context->protect_control_groups ||
4465 context->protect_clock ||
4466 context->protect_hostname ||
4467 !strv_isempty(context->read_write_paths) ||
4468 !strv_isempty(context->read_only_paths) ||
4469 !strv_isempty(context->inaccessible_paths) ||
4470 !strv_isempty(context->exec_paths) ||
4471 !strv_isempty(context->no_exec_paths);
4472 }
4473
4474 static int exec_child(
4475 Unit *unit,
4476 const ExecCommand *command,
4477 const ExecContext *context,
4478 const ExecParameters *params,
4479 ExecRuntime *runtime,
4480 const CGroupContext *cgroup_context,
4481 int socket_fd,
4482 const int named_iofds[static 3],
4483 int *params_fds,
4484 size_t n_socket_fds,
4485 size_t n_storage_fds,
4486 char **files_env,
4487 int user_lookup_fd,
4488 int *exit_status) {
4489
4490 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL;
4491 int r, ngids = 0, exec_fd;
4492 _cleanup_free_ gid_t *supplementary_gids = NULL;
4493 const char *username = NULL, *groupname = NULL;
4494 _cleanup_free_ char *home_buffer = NULL, *memory_pressure_path = NULL;
4495 const char *home = NULL, *shell = NULL;
4496 char **final_argv = NULL;
4497 dev_t journal_stream_dev = 0;
4498 ino_t journal_stream_ino = 0;
4499 bool userns_set_up = false;
4500 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
4501 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
4502 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
4503 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
4504 #if HAVE_SELINUX
4505 _cleanup_free_ char *mac_selinux_context_net = NULL;
4506 bool use_selinux = false;
4507 #endif
4508 #if ENABLE_SMACK
4509 bool use_smack = false;
4510 #endif
4511 #if HAVE_APPARMOR
4512 bool use_apparmor = false;
4513 #endif
4514 uid_t saved_uid = getuid();
4515 gid_t saved_gid = getgid();
4516 uid_t uid = UID_INVALID;
4517 gid_t gid = GID_INVALID;
4518 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
4519 n_keep_fds; /* total number of fds not to close */
4520 int secure_bits;
4521 _cleanup_free_ gid_t *gids_after_pam = NULL;
4522 int ngids_after_pam = 0;
4523 _cleanup_free_ int *fds = NULL;
4524 _cleanup_strv_free_ char **fdnames = NULL;
4525
4526 assert(unit);
4527 assert(command);
4528 assert(context);
4529 assert(params);
4530 assert(exit_status);
4531
4532 /* Explicitly test for CVE-2021-4034 inspired invocations */
4533 assert(command->path);
4534 assert(!strv_isempty(command->argv));
4535
4536 rename_process_from_path(command->path);
4537
4538 /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main
4539 * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially,
4540 * both of which will be demoted to SIG_DFL. */
4541 (void) default_signals(SIGNALS_CRASH_HANDLER,
4542 SIGNALS_IGNORE);
4543
4544 if (context->ignore_sigpipe)
4545 (void) ignore_signals(SIGPIPE);
4546
4547 r = reset_signal_mask();
4548 if (r < 0) {
4549 *exit_status = EXIT_SIGNAL_MASK;
4550 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
4551 }
4552
4553 if (params->idle_pipe)
4554 do_idle_pipe_dance(params->idle_pipe);
4555
4556 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
4557 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
4558 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
4559 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
4560
4561 log_forget_fds();
4562 log_set_open_when_needed(true);
4563 log_settle_target();
4564
4565 /* In case anything used libc syslog(), close this here, too */
4566 closelog();
4567
4568 fds = newdup(int, params_fds, n_fds);
4569 if (!fds) {
4570 *exit_status = EXIT_MEMORY;
4571 return log_oom();
4572 }
4573
4574 fdnames = strv_copy((char**) params->fd_names);
4575 if (!fdnames) {
4576 *exit_status = EXIT_MEMORY;
4577 return log_oom();
4578 }
4579
4580 r = collect_open_file_fds(unit, params->open_files, &fds, &fdnames, &n_fds);
4581 if (r < 0) {
4582 *exit_status = EXIT_FDS;
4583 return log_unit_error_errno(unit, r, "Failed to get OpenFile= file descriptors: %m");
4584 }
4585
4586 int keep_fds[n_fds + 3];
4587 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
4588 n_keep_fds = n_fds;
4589
4590 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
4591 if (r < 0) {
4592 *exit_status = EXIT_FDS;
4593 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4594 }
4595
4596 #if HAVE_LIBBPF
4597 if (unit->manager->restrict_fs) {
4598 int bpf_map_fd = lsm_bpf_map_restrict_fs_fd(unit);
4599 if (bpf_map_fd < 0) {
4600 *exit_status = EXIT_FDS;
4601 return log_unit_error_errno(unit, bpf_map_fd, "Failed to get restrict filesystems BPF map fd: %m");
4602 }
4603
4604 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, bpf_map_fd, &bpf_map_fd);
4605 if (r < 0) {
4606 *exit_status = EXIT_FDS;
4607 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4608 }
4609 }
4610 #endif
4611
4612 r = close_remaining_fds(params, runtime, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
4613 if (r < 0) {
4614 *exit_status = EXIT_FDS;
4615 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
4616 }
4617
4618 if (!context->same_pgrp &&
4619 setsid() < 0) {
4620 *exit_status = EXIT_SETSID;
4621 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
4622 }
4623
4624 exec_context_tty_reset(context, params);
4625
4626 if (unit_shall_confirm_spawn(unit)) {
4627 _cleanup_free_ char *cmdline = NULL;
4628
4629 cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
4630 if (!cmdline) {
4631 *exit_status = EXIT_MEMORY;
4632 return log_oom();
4633 }
4634
4635 r = ask_for_confirmation(context, params->confirm_spawn, unit, cmdline);
4636 if (r != CONFIRM_EXECUTE) {
4637 if (r == CONFIRM_PRETEND_SUCCESS) {
4638 *exit_status = EXIT_SUCCESS;
4639 return 0;
4640 }
4641 *exit_status = EXIT_CONFIRM;
4642 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
4643 "Execution cancelled by the user");
4644 }
4645 }
4646
4647 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
4648 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
4649 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
4650 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
4651 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
4652 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
4653 setenv("SYSTEMD_ACTIVATION_SCOPE", runtime_scope_to_string(unit->manager->runtime_scope), true) != 0) {
4654 *exit_status = EXIT_MEMORY;
4655 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4656 }
4657
4658 if (context->dynamic_user && runtime && runtime->dynamic_creds) {
4659 _cleanup_strv_free_ char **suggested_paths = NULL;
4660
4661 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
4662 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */
4663 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
4664 *exit_status = EXIT_USER;
4665 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4666 }
4667
4668 r = compile_suggested_paths(context, params, &suggested_paths);
4669 if (r < 0) {
4670 *exit_status = EXIT_MEMORY;
4671 return log_oom();
4672 }
4673
4674 r = dynamic_creds_realize(runtime->dynamic_creds, suggested_paths, &uid, &gid);
4675 if (r < 0) {
4676 *exit_status = EXIT_USER;
4677 if (r == -EILSEQ)
4678 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4679 "Failed to update dynamic user credentials: User or group with specified name already exists.");
4680 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
4681 }
4682
4683 if (!uid_is_valid(uid)) {
4684 *exit_status = EXIT_USER;
4685 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
4686 }
4687
4688 if (!gid_is_valid(gid)) {
4689 *exit_status = EXIT_USER;
4690 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
4691 }
4692
4693 if (runtime->dynamic_creds->user)
4694 username = runtime->dynamic_creds->user->name;
4695
4696 } else {
4697 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
4698 if (r < 0) {
4699 *exit_status = EXIT_USER;
4700 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
4701 }
4702
4703 r = get_fixed_group(context, &groupname, &gid);
4704 if (r < 0) {
4705 *exit_status = EXIT_GROUP;
4706 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
4707 }
4708 }
4709
4710 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
4711 r = get_supplementary_groups(context, username, groupname, gid,
4712 &supplementary_gids, &ngids);
4713 if (r < 0) {
4714 *exit_status = EXIT_GROUP;
4715 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
4716 }
4717
4718 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
4719 if (r < 0) {
4720 *exit_status = EXIT_USER;
4721 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
4722 }
4723
4724 user_lookup_fd = safe_close(user_lookup_fd);
4725
4726 r = acquire_home(context, uid, &home, &home_buffer);
4727 if (r < 0) {
4728 *exit_status = EXIT_CHDIR;
4729 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
4730 }
4731
4732 /* If a socket is connected to STDIN/STDOUT/STDERR, we must drop O_NONBLOCK */
4733 if (socket_fd >= 0)
4734 (void) fd_nonblock(socket_fd, false);
4735
4736 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
4737 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
4738 if (params->cgroup_path) {
4739 _cleanup_free_ char *p = NULL;
4740
4741 r = exec_parameters_get_cgroup_path(params, cgroup_context, &p);
4742 if (r < 0) {
4743 *exit_status = EXIT_CGROUP;
4744 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4745 }
4746
4747 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
4748 if (r == -EUCLEAN) {
4749 *exit_status = EXIT_CGROUP;
4750 return log_unit_error_errno(unit, r, "Failed to attach process to cgroup %s "
4751 "because the cgroup or one of its parents or "
4752 "siblings is in the threaded mode: %m", p);
4753 }
4754 if (r < 0) {
4755 *exit_status = EXIT_CGROUP;
4756 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
4757 }
4758 }
4759
4760 if (context->network_namespace_path && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
4761 r = open_shareable_ns_path(runtime->shared->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET);
4762 if (r < 0) {
4763 *exit_status = EXIT_NETWORK;
4764 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
4765 }
4766 }
4767
4768 if (context->ipc_namespace_path && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
4769 r = open_shareable_ns_path(runtime->shared->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC);
4770 if (r < 0) {
4771 *exit_status = EXIT_NAMESPACE;
4772 return log_unit_error_errno(unit, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path);
4773 }
4774 }
4775
4776 r = setup_input(context, params, socket_fd, named_iofds);
4777 if (r < 0) {
4778 *exit_status = EXIT_STDIN;
4779 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
4780 }
4781
4782 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4783 if (r < 0) {
4784 *exit_status = EXIT_STDOUT;
4785 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
4786 }
4787
4788 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4789 if (r < 0) {
4790 *exit_status = EXIT_STDERR;
4791 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
4792 }
4793
4794 if (context->oom_score_adjust_set) {
4795 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
4796 * prohibit write access to this file, and we shouldn't trip up over that. */
4797 r = set_oom_score_adjust(context->oom_score_adjust);
4798 if (ERRNO_IS_PRIVILEGE(r))
4799 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
4800 else if (r < 0) {
4801 *exit_status = EXIT_OOM_ADJUST;
4802 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
4803 }
4804 }
4805
4806 if (context->coredump_filter_set) {
4807 r = set_coredump_filter(context->coredump_filter);
4808 if (ERRNO_IS_PRIVILEGE(r))
4809 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
4810 else if (r < 0)
4811 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
4812 }
4813
4814 if (context->nice_set) {
4815 r = setpriority_closest(context->nice);
4816 if (r < 0)
4817 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
4818 }
4819
4820 if (context->cpu_sched_set) {
4821 struct sched_param param = {
4822 .sched_priority = context->cpu_sched_priority,
4823 };
4824
4825 r = sched_setscheduler(0,
4826 context->cpu_sched_policy |
4827 (context->cpu_sched_reset_on_fork ?
4828 SCHED_RESET_ON_FORK : 0),
4829 &param);
4830 if (r < 0) {
4831 *exit_status = EXIT_SETSCHEDULER;
4832 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
4833 }
4834 }
4835
4836 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
4837 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
4838 const CPUSet *cpu_set;
4839
4840 if (context->cpu_affinity_from_numa) {
4841 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
4842 if (r < 0) {
4843 *exit_status = EXIT_CPUAFFINITY;
4844 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
4845 }
4846
4847 cpu_set = &converted_cpu_set;
4848 } else
4849 cpu_set = &context->cpu_set;
4850
4851 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
4852 *exit_status = EXIT_CPUAFFINITY;
4853 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
4854 }
4855 }
4856
4857 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
4858 r = apply_numa_policy(&context->numa_policy);
4859 if (r < 0) {
4860 if (ERRNO_IS_NOT_SUPPORTED(r))
4861 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
4862 else {
4863 *exit_status = EXIT_NUMA_POLICY;
4864 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4865 }
4866 }
4867 }
4868
4869 if (context->ioprio_set)
4870 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4871 *exit_status = EXIT_IOPRIO;
4872 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4873 }
4874
4875 if (context->timer_slack_nsec != NSEC_INFINITY)
4876 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4877 *exit_status = EXIT_TIMERSLACK;
4878 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4879 }
4880
4881 if (context->personality != PERSONALITY_INVALID) {
4882 r = safe_personality(context->personality);
4883 if (r < 0) {
4884 *exit_status = EXIT_PERSONALITY;
4885 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4886 }
4887 }
4888
4889 if (context->utmp_id) {
4890 const char *line = context->tty_path ?
4891 (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) :
4892 NULL;
4893 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4894 line,
4895 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4896 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4897 USER_PROCESS,
4898 username);
4899 }
4900
4901 if (uid_is_valid(uid)) {
4902 r = chown_terminal(STDIN_FILENO, uid);
4903 if (r < 0) {
4904 *exit_status = EXIT_STDIN;
4905 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4906 }
4907 }
4908
4909 if (params->cgroup_path) {
4910 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4911 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4912 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4913 * touch a single hierarchy too. */
4914
4915 if (params->flags & EXEC_CGROUP_DELEGATE) {
4916 _cleanup_free_ char *p = NULL;
4917
4918 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4919 if (r < 0) {
4920 *exit_status = EXIT_CGROUP;
4921 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4922 }
4923
4924 r = exec_parameters_get_cgroup_path(params, cgroup_context, &p);
4925 if (r < 0) {
4926 *exit_status = EXIT_CGROUP;
4927 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4928 }
4929 if (r > 0) {
4930 r = cg_set_access_recursive(SYSTEMD_CGROUP_CONTROLLER, p, uid, gid);
4931 if (r < 0) {
4932 *exit_status = EXIT_CGROUP;
4933 return log_unit_error_errno(unit, r, "Failed to adjust control subgroup access: %m");
4934 }
4935 }
4936 }
4937
4938 if (cgroup_context && cg_unified() > 0 && is_pressure_supported() > 0) {
4939 if (cgroup_context_want_memory_pressure(cgroup_context)) {
4940 r = cg_get_path("memory", params->cgroup_path, "memory.pressure", &memory_pressure_path);
4941 if (r < 0) {
4942 *exit_status = EXIT_MEMORY;
4943 return log_oom();
4944 }
4945
4946 r = chmod_and_chown(memory_pressure_path, 0644, uid, gid);
4947 if (r < 0) {
4948 log_unit_full_errno(unit, r == -ENOENT || ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r,
4949 "Failed to adjust ownership of '%s', ignoring: %m", memory_pressure_path);
4950 memory_pressure_path = mfree(memory_pressure_path);
4951 }
4952 } else if (cgroup_context->memory_pressure_watch == CGROUP_PRESSURE_WATCH_OFF) {
4953 memory_pressure_path = strdup("/dev/null"); /* /dev/null is explicit indicator for turning of memory pressure watch */
4954 if (!memory_pressure_path) {
4955 *exit_status = EXIT_MEMORY;
4956 return log_oom();
4957 }
4958 }
4959 }
4960 }
4961
4962 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4963
4964 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4965 r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status);
4966 if (r < 0)
4967 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4968 }
4969
4970 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4971 r = setup_credentials(context, params, unit->id, uid);
4972 if (r < 0) {
4973 *exit_status = EXIT_CREDENTIALS;
4974 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4975 }
4976 }
4977
4978 r = build_environment(
4979 unit,
4980 context,
4981 params,
4982 cgroup_context,
4983 n_fds,
4984 fdnames,
4985 home,
4986 username,
4987 shell,
4988 journal_stream_dev,
4989 journal_stream_ino,
4990 memory_pressure_path,
4991 &our_env);
4992 if (r < 0) {
4993 *exit_status = EXIT_MEMORY;
4994 return log_oom();
4995 }
4996
4997 r = build_pass_environment(context, &pass_env);
4998 if (r < 0) {
4999 *exit_status = EXIT_MEMORY;
5000 return log_oom();
5001 }
5002
5003 /* The $PATH variable is set to the default path in params->environment. However, this is overridden
5004 * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does
5005 * not specify PATH but the unit has ExecSearchPath. */
5006 if (!strv_isempty(context->exec_search_path)) {
5007 _cleanup_free_ char *joined = NULL;
5008
5009 joined = strv_join(context->exec_search_path, ":");
5010 if (!joined) {
5011 *exit_status = EXIT_MEMORY;
5012 return log_oom();
5013 }
5014
5015 r = strv_env_assign(&joined_exec_search_path, "PATH", joined);
5016 if (r < 0) {
5017 *exit_status = EXIT_MEMORY;
5018 return log_oom();
5019 }
5020 }
5021
5022 accum_env = strv_env_merge(params->environment,
5023 our_env,
5024 joined_exec_search_path,
5025 pass_env,
5026 context->environment,
5027 files_env);
5028 if (!accum_env) {
5029 *exit_status = EXIT_MEMORY;
5030 return log_oom();
5031 }
5032 accum_env = strv_env_clean(accum_env);
5033
5034 (void) umask(context->umask);
5035
5036 r = setup_keyring(unit, context, params, uid, gid);
5037 if (r < 0) {
5038 *exit_status = EXIT_KEYRING;
5039 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
5040 }
5041
5042 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted
5043 * from it. */
5044 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
5045
5046 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked
5047 * for it, and the kernel doesn't actually support ambient caps. */
5048 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
5049
5050 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly
5051 * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not
5052 * desired. */
5053 if (needs_ambient_hack)
5054 needs_setuid = false;
5055 else
5056 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
5057
5058 uint64_t capability_ambient_set = context->capability_ambient_set;
5059
5060 if (needs_sandboxing) {
5061 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on
5062 * /sys being present. The actual MAC context application will happen later, as late as
5063 * possible, to avoid impacting our own code paths. */
5064
5065 #if HAVE_SELINUX
5066 use_selinux = mac_selinux_use();
5067 #endif
5068 #if ENABLE_SMACK
5069 use_smack = mac_smack_use();
5070 #endif
5071 #if HAVE_APPARMOR
5072 use_apparmor = mac_apparmor_use();
5073 #endif
5074 }
5075
5076 if (needs_sandboxing) {
5077 int which_failed;
5078
5079 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
5080 * is set here. (See below.) */
5081
5082 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
5083 if (r < 0) {
5084 *exit_status = EXIT_LIMITS;
5085 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
5086 }
5087 }
5088
5089 if (needs_setuid && context->pam_name && username) {
5090 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
5091 * wins here. (See above.) */
5092
5093 /* All fds passed in the fds array will be closed in the pam child process. */
5094 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
5095 if (r < 0) {
5096 *exit_status = EXIT_PAM;
5097 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
5098 }
5099
5100 if (ambient_capabilities_supported()) {
5101 uint64_t ambient_after_pam;
5102
5103 /* PAM modules might have set some ambient caps. Query them here and merge them into
5104 * the caps we want to set in the end, so that we don't end up unsetting them. */
5105 r = capability_get_ambient(&ambient_after_pam);
5106 if (r < 0) {
5107 *exit_status = EXIT_CAPABILITIES;
5108 return log_unit_error_errno(unit, r, "Failed to query ambient caps: %m");
5109 }
5110
5111 capability_ambient_set |= ambient_after_pam;
5112 }
5113
5114 ngids_after_pam = getgroups_alloc(&gids_after_pam);
5115 if (ngids_after_pam < 0) {
5116 *exit_status = EXIT_MEMORY;
5117 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
5118 }
5119 }
5120
5121 if (needs_sandboxing && exec_context_need_unprivileged_private_users(context, unit->manager)) {
5122 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
5123 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
5124 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
5125
5126 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5127 /* If it was requested explicitly and we can't set it up, fail early. Otherwise, continue and let
5128 * the actual requested operations fail (or silently continue). */
5129 if (r < 0 && context->private_users) {
5130 *exit_status = EXIT_USER;
5131 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
5132 }
5133 if (r < 0)
5134 log_unit_info_errno(unit, r, "Failed to set up user namespacing for unprivileged user, ignoring: %m");
5135 else
5136 userns_set_up = true;
5137 }
5138
5139 if (exec_needs_network_namespace(context) && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
5140
5141 if (ns_type_supported(NAMESPACE_NET)) {
5142 r = setup_shareable_ns(runtime->shared->netns_storage_socket, CLONE_NEWNET);
5143 if (r < 0) {
5144 if (ERRNO_IS_PRIVILEGE(r))
5145 log_unit_warning_errno(unit, r,
5146 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
5147 else {
5148 *exit_status = EXIT_NETWORK;
5149 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
5150 }
5151 }
5152 } else if (context->network_namespace_path) {
5153 *exit_status = EXIT_NETWORK;
5154 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5155 "NetworkNamespacePath= is not supported, refusing.");
5156 } else
5157 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
5158 }
5159
5160 if (exec_needs_ipc_namespace(context) && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
5161
5162 if (ns_type_supported(NAMESPACE_IPC)) {
5163 r = setup_shareable_ns(runtime->shared->ipcns_storage_socket, CLONE_NEWIPC);
5164 if (r == -EPERM)
5165 log_unit_warning_errno(unit, r,
5166 "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m");
5167 else if (r < 0) {
5168 *exit_status = EXIT_NAMESPACE;
5169 return log_unit_error_errno(unit, r, "Failed to set up IPC namespacing: %m");
5170 }
5171 } else if (context->ipc_namespace_path) {
5172 *exit_status = EXIT_NAMESPACE;
5173 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5174 "IPCNamespacePath= is not supported, refusing.");
5175 } else
5176 log_unit_warning(unit, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring.");
5177 }
5178
5179 if (needs_mount_namespace) {
5180 _cleanup_free_ char *error_path = NULL;
5181
5182 r = apply_mount_namespace(unit, command->flags, context, params, runtime, memory_pressure_path, &error_path);
5183 if (r < 0) {
5184 *exit_status = EXIT_NAMESPACE;
5185 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
5186 error_path ? ": " : "", strempty(error_path));
5187 }
5188 }
5189
5190 if (needs_sandboxing) {
5191 r = apply_protect_hostname(unit, context, exit_status);
5192 if (r < 0)
5193 return r;
5194 }
5195
5196 if (context->memory_ksm >= 0)
5197 if (prctl(PR_SET_MEMORY_MERGE, context->memory_ksm) < 0) {
5198 if (ERRNO_IS_NOT_SUPPORTED(errno))
5199 log_unit_debug_errno(unit, errno, "KSM support not available, ignoring.");
5200 else {
5201 *exit_status = EXIT_KSM;
5202 return log_unit_error_errno(unit, errno, "Failed to set KSM: %m");
5203 }
5204 }
5205
5206 /* Drop groups as early as possible.
5207 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
5208 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
5209 if (needs_setuid) {
5210 _cleanup_free_ gid_t *gids_to_enforce = NULL;
5211 int ngids_to_enforce = 0;
5212
5213 ngids_to_enforce = merge_gid_lists(supplementary_gids,
5214 ngids,
5215 gids_after_pam,
5216 ngids_after_pam,
5217 &gids_to_enforce);
5218 if (ngids_to_enforce < 0) {
5219 *exit_status = EXIT_MEMORY;
5220 return log_unit_error_errno(unit,
5221 ngids_to_enforce,
5222 "Failed to merge group lists. Group membership might be incorrect: %m");
5223 }
5224
5225 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
5226 if (r < 0) {
5227 *exit_status = EXIT_GROUP;
5228 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
5229 }
5230 }
5231
5232 /* If the user namespace was not set up above, try to do it now.
5233 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
5234 * restricted by rules pertaining to combining user namespaces with other namespaces (e.g. in the
5235 * case of mount namespaces being less privileged when the mount point list is copied from a
5236 * different user namespace). */
5237
5238 if (needs_sandboxing && context->private_users && !userns_set_up) {
5239 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5240 if (r < 0) {
5241 *exit_status = EXIT_USER;
5242 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
5243 }
5244 }
5245
5246 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
5247 * shall execute. */
5248
5249 _cleanup_free_ char *executable = NULL;
5250 _cleanup_close_ int executable_fd = -EBADF;
5251 r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd);
5252 if (r < 0) {
5253 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
5254 log_unit_struct_errno(unit, LOG_INFO, r,
5255 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5256 LOG_UNIT_INVOCATION_ID(unit),
5257 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
5258 command->path),
5259 "EXECUTABLE=%s", command->path);
5260 return 0;
5261 }
5262
5263 *exit_status = EXIT_EXEC;
5264
5265 return log_unit_struct_errno(unit, LOG_INFO, r,
5266 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5267 LOG_UNIT_INVOCATION_ID(unit),
5268 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
5269 command->path),
5270 "EXECUTABLE=%s", command->path);
5271 }
5272
5273 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
5274 if (r < 0) {
5275 *exit_status = EXIT_FDS;
5276 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
5277 }
5278
5279 #if HAVE_SELINUX
5280 if (needs_sandboxing && use_selinux && params->selinux_context_net) {
5281 int fd = -EBADF;
5282
5283 if (socket_fd >= 0)
5284 fd = socket_fd;
5285 else if (params->n_socket_fds == 1)
5286 /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we
5287 * use context from that fd to compute the label. */
5288 fd = params->fds[0];
5289
5290 if (fd >= 0) {
5291 r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net);
5292 if (r < 0) {
5293 if (!context->selinux_context_ignore) {
5294 *exit_status = EXIT_SELINUX_CONTEXT;
5295 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
5296 }
5297 log_unit_debug_errno(unit, r, "Failed to determine SELinux context, ignoring: %m");
5298 }
5299 }
5300 }
5301 #endif
5302
5303 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that
5304 * we are more aggressive this time, since we don't need socket_fd and the netns and ipcns fds any
5305 * more. We do keep exec_fd however, if we have it, since we need to keep it open until the final
5306 * execve(). */
5307
5308 r = close_all_fds(keep_fds, n_keep_fds);
5309 if (r >= 0)
5310 r = shift_fds(fds, n_fds);
5311 if (r >= 0)
5312 r = flags_fds(fds, n_socket_fds, n_fds, context->non_blocking);
5313 if (r < 0) {
5314 *exit_status = EXIT_FDS;
5315 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
5316 }
5317
5318 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
5319 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
5320 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
5321 * came this far. */
5322
5323 secure_bits = context->secure_bits;
5324
5325 if (needs_sandboxing) {
5326 uint64_t bset;
5327
5328 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested.
5329 * (Note this is placed after the general resource limit initialization, see above, in order
5330 * to take precedence.) */
5331 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
5332 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
5333 *exit_status = EXIT_LIMITS;
5334 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
5335 }
5336 }
5337
5338 #if ENABLE_SMACK
5339 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
5340 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
5341 if (use_smack) {
5342 r = setup_smack(unit->manager, context, executable_fd);
5343 if (r < 0 && !context->smack_process_label_ignore) {
5344 *exit_status = EXIT_SMACK_PROCESS_LABEL;
5345 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
5346 }
5347 }
5348 #endif
5349
5350 bset = context->capability_bounding_set;
5351 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
5352 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
5353 * instead of us doing that */
5354 if (needs_ambient_hack)
5355 bset |= (UINT64_C(1) << CAP_SETPCAP) |
5356 (UINT64_C(1) << CAP_SETUID) |
5357 (UINT64_C(1) << CAP_SETGID);
5358
5359 if (!cap_test_all(bset)) {
5360 r = capability_bounding_set_drop(bset, /* right_now= */ false);
5361 if (r < 0) {
5362 *exit_status = EXIT_CAPABILITIES;
5363 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
5364 }
5365 }
5366
5367 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
5368 * keep-caps set.
5369 *
5370 * To be able to raise the ambient capabilities after setresuid() they have to be added to
5371 * the inherited set and keep caps has to be set (done in enforce_user()). After setresuid()
5372 * the ambient capabilities can be raised as they are present in the permitted and
5373 * inhertiable set. However it is possible that someone wants to set ambient capabilities
5374 * without changing the user, so we also set the ambient capabilities here.
5375 *
5376 * The requested ambient capabilities are raised in the inheritable set if the second
5377 * argument is true. */
5378 if (!needs_ambient_hack) {
5379 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ true);
5380 if (r < 0) {
5381 *exit_status = EXIT_CAPABILITIES;
5382 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
5383 }
5384 }
5385 }
5386
5387 /* chroot to root directory first, before we lose the ability to chroot */
5388 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
5389 if (r < 0)
5390 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
5391
5392 if (needs_setuid) {
5393 if (uid_is_valid(uid)) {
5394 r = enforce_user(context, uid, capability_ambient_set);
5395 if (r < 0) {
5396 *exit_status = EXIT_USER;
5397 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
5398 }
5399
5400 if (!needs_ambient_hack && capability_ambient_set != 0) {
5401
5402 /* Raise the ambient capabilities after user change. */
5403 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ false);
5404 if (r < 0) {
5405 *exit_status = EXIT_CAPABILITIES;
5406 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
5407 }
5408 }
5409 }
5410 }
5411
5412 /* Apply working directory here, because the working directory might be on NFS and only the user running
5413 * this service might have the correct privilege to change to the working directory */
5414 r = apply_working_directory(context, params, home, exit_status);
5415 if (r < 0)
5416 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
5417
5418 if (needs_sandboxing) {
5419 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
5420 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
5421 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
5422 * are restricted. */
5423
5424 #if HAVE_SELINUX
5425 if (use_selinux) {
5426 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
5427
5428 if (exec_context) {
5429 r = setexeccon(exec_context);
5430 if (r < 0) {
5431 if (!context->selinux_context_ignore) {
5432 *exit_status = EXIT_SELINUX_CONTEXT;
5433 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
5434 }
5435 log_unit_debug_errno(unit, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context);
5436 }
5437 }
5438 }
5439 #endif
5440
5441 #if HAVE_APPARMOR
5442 if (use_apparmor && context->apparmor_profile) {
5443 r = aa_change_onexec(context->apparmor_profile);
5444 if (r < 0 && !context->apparmor_profile_ignore) {
5445 *exit_status = EXIT_APPARMOR_PROFILE;
5446 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
5447 }
5448 }
5449 #endif
5450
5451 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential
5452 * EPERMs we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits
5453 * requires CAP_SETPCAP. */
5454 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
5455 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
5456 * effective set here.
5457 *
5458 * The effective set is overwritten during execve() with the following values:
5459 *
5460 * - ambient set (for non-root processes)
5461 *
5462 * - (inheritable | bounding) set for root processes)
5463 *
5464 * Hence there is no security impact to raise it in the effective set before execve
5465 */
5466 r = capability_gain_cap_setpcap(/* return_caps= */ NULL);
5467 if (r < 0) {
5468 *exit_status = EXIT_CAPABILITIES;
5469 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
5470 }
5471 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
5472 *exit_status = EXIT_SECUREBITS;
5473 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
5474 }
5475 }
5476
5477 if (context_has_no_new_privileges(context))
5478 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
5479 *exit_status = EXIT_NO_NEW_PRIVILEGES;
5480 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
5481 }
5482
5483 #if HAVE_SECCOMP
5484 r = apply_address_families(unit, context);
5485 if (r < 0) {
5486 *exit_status = EXIT_ADDRESS_FAMILIES;
5487 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
5488 }
5489
5490 r = apply_memory_deny_write_execute(unit, context);
5491 if (r < 0) {
5492 *exit_status = EXIT_SECCOMP;
5493 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
5494 }
5495
5496 r = apply_restrict_realtime(unit, context);
5497 if (r < 0) {
5498 *exit_status = EXIT_SECCOMP;
5499 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
5500 }
5501
5502 r = apply_restrict_suid_sgid(unit, context);
5503 if (r < 0) {
5504 *exit_status = EXIT_SECCOMP;
5505 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
5506 }
5507
5508 r = apply_restrict_namespaces(unit, context);
5509 if (r < 0) {
5510 *exit_status = EXIT_SECCOMP;
5511 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
5512 }
5513
5514 r = apply_protect_sysctl(unit, context);
5515 if (r < 0) {
5516 *exit_status = EXIT_SECCOMP;
5517 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
5518 }
5519
5520 r = apply_protect_kernel_modules(unit, context);
5521 if (r < 0) {
5522 *exit_status = EXIT_SECCOMP;
5523 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
5524 }
5525
5526 r = apply_protect_kernel_logs(unit, context);
5527 if (r < 0) {
5528 *exit_status = EXIT_SECCOMP;
5529 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
5530 }
5531
5532 r = apply_protect_clock(unit, context);
5533 if (r < 0) {
5534 *exit_status = EXIT_SECCOMP;
5535 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
5536 }
5537
5538 r = apply_private_devices(unit, context);
5539 if (r < 0) {
5540 *exit_status = EXIT_SECCOMP;
5541 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
5542 }
5543
5544 r = apply_syscall_archs(unit, context);
5545 if (r < 0) {
5546 *exit_status = EXIT_SECCOMP;
5547 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
5548 }
5549
5550 r = apply_lock_personality(unit, context);
5551 if (r < 0) {
5552 *exit_status = EXIT_SECCOMP;
5553 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
5554 }
5555
5556 r = apply_syscall_log(unit, context);
5557 if (r < 0) {
5558 *exit_status = EXIT_SECCOMP;
5559 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
5560 }
5561
5562 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
5563 * by the filter as little as possible. */
5564 r = apply_syscall_filter(unit, context, needs_ambient_hack);
5565 if (r < 0) {
5566 *exit_status = EXIT_SECCOMP;
5567 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
5568 }
5569 #endif
5570
5571 #if HAVE_LIBBPF
5572 r = apply_restrict_filesystems(unit, context);
5573 if (r < 0) {
5574 *exit_status = EXIT_BPF;
5575 return log_unit_error_errno(unit, r, "Failed to restrict filesystems: %m");
5576 }
5577 #endif
5578
5579 }
5580
5581 if (!strv_isempty(context->unset_environment)) {
5582 char **ee = NULL;
5583
5584 ee = strv_env_delete(accum_env, 1, context->unset_environment);
5585 if (!ee) {
5586 *exit_status = EXIT_MEMORY;
5587 return log_oom();
5588 }
5589
5590 strv_free_and_replace(accum_env, ee);
5591 }
5592
5593 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
5594 replaced_argv = replace_env_argv(command->argv, accum_env);
5595 if (!replaced_argv) {
5596 *exit_status = EXIT_MEMORY;
5597 return log_oom();
5598 }
5599 final_argv = replaced_argv;
5600 } else
5601 final_argv = command->argv;
5602
5603 log_command_line(unit, "Executing", executable, final_argv);
5604
5605 if (exec_fd >= 0) {
5606 uint8_t hot = 1;
5607
5608 /* We have finished with all our initializations. Let's now let the manager know that. From this point
5609 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
5610
5611 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5612 *exit_status = EXIT_EXEC;
5613 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
5614 }
5615 }
5616
5617 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
5618
5619 if (exec_fd >= 0) {
5620 uint8_t hot = 0;
5621
5622 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
5623 * that POLLHUP on it no longer means execve() succeeded. */
5624
5625 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5626 *exit_status = EXIT_EXEC;
5627 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
5628 }
5629 }
5630
5631 *exit_status = EXIT_EXEC;
5632 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
5633 }
5634
5635 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
5636 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
5637
5638 int exec_spawn(Unit *unit,
5639 ExecCommand *command,
5640 const ExecContext *context,
5641 const ExecParameters *params,
5642 ExecRuntime *runtime,
5643 const CGroupContext *cgroup_context,
5644 pid_t *ret) {
5645
5646 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
5647 _cleanup_free_ char *subcgroup_path = NULL;
5648 _cleanup_strv_free_ char **files_env = NULL;
5649 size_t n_storage_fds = 0, n_socket_fds = 0;
5650 pid_t pid;
5651
5652 assert(unit);
5653 assert(command);
5654 assert(context);
5655 assert(ret);
5656 assert(params);
5657 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
5658
5659 LOG_CONTEXT_PUSH_UNIT(unit);
5660
5661 if (context->std_input == EXEC_INPUT_SOCKET ||
5662 context->std_output == EXEC_OUTPUT_SOCKET ||
5663 context->std_error == EXEC_OUTPUT_SOCKET) {
5664
5665 if (params->n_socket_fds > 1)
5666 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
5667
5668 if (params->n_socket_fds == 0)
5669 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
5670
5671 socket_fd = params->fds[0];
5672 } else {
5673 socket_fd = -EBADF;
5674 fds = params->fds;
5675 n_socket_fds = params->n_socket_fds;
5676 n_storage_fds = params->n_storage_fds;
5677 }
5678
5679 r = exec_context_named_iofds(context, params, named_iofds);
5680 if (r < 0)
5681 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
5682
5683 r = exec_context_load_environment(unit, context, &files_env);
5684 if (r < 0)
5685 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
5686
5687 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
5688 and, until the next SELinux policy changes, we save further reloads in future children. */
5689 mac_selinux_maybe_reload();
5690
5691 /* We won't know the real executable path until we create the mount namespace in the child, but we
5692 want to log from the parent, so we use the possibly inaccurate path here. */
5693 log_command_line(unit, "About to execute", command->path, command->argv);
5694
5695 if (params->cgroup_path) {
5696 r = exec_parameters_get_cgroup_path(params, cgroup_context, &subcgroup_path);
5697 if (r < 0)
5698 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
5699 if (r > 0) {
5700 /* If there's a subcgroup, then let's create it here now (the main cgroup was already
5701 * realized by the unit logic) */
5702
5703 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
5704 if (r < 0)
5705 return log_unit_error_errno(unit, r, "Failed to create subcgroup '%s': %m", subcgroup_path);
5706 }
5707 }
5708
5709 pid = fork();
5710 if (pid < 0)
5711 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
5712
5713 if (pid == 0) {
5714 int exit_status = EXIT_SUCCESS;
5715
5716 r = exec_child(unit,
5717 command,
5718 context,
5719 params,
5720 runtime,
5721 cgroup_context,
5722 socket_fd,
5723 named_iofds,
5724 fds,
5725 n_socket_fds,
5726 n_storage_fds,
5727 files_env,
5728 unit->manager->user_lookup_fds[1],
5729 &exit_status);
5730
5731 if (r < 0) {
5732 const char *status =
5733 exit_status_to_string(exit_status,
5734 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
5735
5736 log_unit_struct_errno(unit, LOG_ERR, r,
5737 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5738 LOG_UNIT_INVOCATION_ID(unit),
5739 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
5740 status, command->path),
5741 "EXECUTABLE=%s", command->path);
5742 }
5743
5744 _exit(exit_status);
5745 }
5746
5747 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
5748
5749 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
5750 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
5751 * process will be killed too). */
5752 if (subcgroup_path)
5753 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
5754
5755 exec_status_start(&command->exec_status, pid);
5756
5757 *ret = pid;
5758 return 0;
5759 }
5760
5761 void exec_context_init(ExecContext *c) {
5762 assert(c);
5763
5764 c->umask = 0022;
5765 c->ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO;
5766 c->cpu_sched_policy = SCHED_OTHER;
5767 c->syslog_priority = LOG_DAEMON|LOG_INFO;
5768 c->syslog_level_prefix = true;
5769 c->ignore_sigpipe = true;
5770 c->timer_slack_nsec = NSEC_INFINITY;
5771 c->personality = PERSONALITY_INVALID;
5772 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5773 c->directories[t].mode = 0755;
5774 c->timeout_clean_usec = USEC_INFINITY;
5775 c->capability_bounding_set = CAP_MASK_UNSET;
5776 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
5777 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
5778 c->log_level_max = -1;
5779 #if HAVE_SECCOMP
5780 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
5781 #endif
5782 c->tty_rows = UINT_MAX;
5783 c->tty_cols = UINT_MAX;
5784 numa_policy_reset(&c->numa_policy);
5785 c->private_mounts = -1;
5786 c->memory_ksm = -1;
5787 }
5788
5789 void exec_context_done(ExecContext *c) {
5790 assert(c);
5791
5792 c->environment = strv_free(c->environment);
5793 c->environment_files = strv_free(c->environment_files);
5794 c->pass_environment = strv_free(c->pass_environment);
5795 c->unset_environment = strv_free(c->unset_environment);
5796
5797 rlimit_free_all(c->rlimit);
5798
5799 for (size_t l = 0; l < 3; l++) {
5800 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
5801 c->stdio_file[l] = mfree(c->stdio_file[l]);
5802 }
5803
5804 c->working_directory = mfree(c->working_directory);
5805 c->root_directory = mfree(c->root_directory);
5806 c->root_image = mfree(c->root_image);
5807 c->root_image_options = mount_options_free_all(c->root_image_options);
5808 c->root_hash = mfree(c->root_hash);
5809 c->root_hash_size = 0;
5810 c->root_hash_path = mfree(c->root_hash_path);
5811 c->root_hash_sig = mfree(c->root_hash_sig);
5812 c->root_hash_sig_size = 0;
5813 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
5814 c->root_verity = mfree(c->root_verity);
5815 c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images);
5816 c->extension_directories = strv_free(c->extension_directories);
5817 c->tty_path = mfree(c->tty_path);
5818 c->syslog_identifier = mfree(c->syslog_identifier);
5819 c->user = mfree(c->user);
5820 c->group = mfree(c->group);
5821
5822 c->supplementary_groups = strv_free(c->supplementary_groups);
5823
5824 c->pam_name = mfree(c->pam_name);
5825
5826 c->read_only_paths = strv_free(c->read_only_paths);
5827 c->read_write_paths = strv_free(c->read_write_paths);
5828 c->inaccessible_paths = strv_free(c->inaccessible_paths);
5829 c->exec_paths = strv_free(c->exec_paths);
5830 c->no_exec_paths = strv_free(c->no_exec_paths);
5831 c->exec_search_path = strv_free(c->exec_search_path);
5832
5833 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
5834 c->bind_mounts = NULL;
5835 c->n_bind_mounts = 0;
5836 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
5837 c->temporary_filesystems = NULL;
5838 c->n_temporary_filesystems = 0;
5839 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
5840
5841 cpu_set_reset(&c->cpu_set);
5842 numa_policy_reset(&c->numa_policy);
5843
5844 c->utmp_id = mfree(c->utmp_id);
5845 c->selinux_context = mfree(c->selinux_context);
5846 c->apparmor_profile = mfree(c->apparmor_profile);
5847 c->smack_process_label = mfree(c->smack_process_label);
5848
5849 c->restrict_filesystems = set_free(c->restrict_filesystems);
5850
5851 c->syscall_filter = hashmap_free(c->syscall_filter);
5852 c->syscall_archs = set_free(c->syscall_archs);
5853 c->address_families = set_free(c->address_families);
5854
5855 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5856 exec_directory_done(&c->directories[t]);
5857
5858 c->log_level_max = -1;
5859
5860 exec_context_free_log_extra_fields(c);
5861 c->log_filter_allowed_patterns = set_free(c->log_filter_allowed_patterns);
5862 c->log_filter_denied_patterns = set_free(c->log_filter_denied_patterns);
5863
5864 c->log_ratelimit_interval_usec = 0;
5865 c->log_ratelimit_burst = 0;
5866
5867 c->stdin_data = mfree(c->stdin_data);
5868 c->stdin_data_size = 0;
5869
5870 c->network_namespace_path = mfree(c->network_namespace_path);
5871 c->ipc_namespace_path = mfree(c->ipc_namespace_path);
5872
5873 c->log_namespace = mfree(c->log_namespace);
5874
5875 c->load_credentials = hashmap_free(c->load_credentials);
5876 c->set_credentials = hashmap_free(c->set_credentials);
5877
5878 c->root_image_policy = image_policy_free(c->root_image_policy);
5879 c->mount_image_policy = image_policy_free(c->mount_image_policy);
5880 c->extension_image_policy = image_policy_free(c->extension_image_policy);
5881 }
5882
5883 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
5884 assert(c);
5885
5886 if (!runtime_prefix)
5887 return 0;
5888
5889 for (size_t i = 0; i < c->directories[EXEC_DIRECTORY_RUNTIME].n_items; i++) {
5890 _cleanup_free_ char *p = NULL;
5891
5892 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5893 p = path_join(runtime_prefix, "private", c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5894 else
5895 p = path_join(runtime_prefix, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5896 if (!p)
5897 return -ENOMEM;
5898
5899 /* We execute this synchronously, since we need to be sure this is gone when we start the
5900 * service next. */
5901 (void) rm_rf(p, REMOVE_ROOT);
5902
5903 STRV_FOREACH(symlink, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].symlinks) {
5904 _cleanup_free_ char *symlink_abs = NULL;
5905
5906 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5907 symlink_abs = path_join(runtime_prefix, "private", *symlink);
5908 else
5909 symlink_abs = path_join(runtime_prefix, *symlink);
5910 if (!symlink_abs)
5911 return -ENOMEM;
5912
5913 (void) unlink(symlink_abs);
5914 }
5915 }
5916
5917 return 0;
5918 }
5919
5920 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
5921 _cleanup_free_ char *p = NULL;
5922
5923 assert(c);
5924
5925 if (!runtime_prefix || !unit)
5926 return 0;
5927
5928 p = path_join(runtime_prefix, "credentials", unit);
5929 if (!p)
5930 return -ENOMEM;
5931
5932 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
5933 * unmount it, and afterwards remove the mount point */
5934 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
5935 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
5936
5937 return 0;
5938 }
5939
5940 int exec_context_destroy_mount_ns_dir(Unit *u) {
5941 _cleanup_free_ char *p = NULL;
5942
5943 if (!u || !MANAGER_IS_SYSTEM(u->manager))
5944 return 0;
5945
5946 p = path_join("/run/systemd/propagate/", u->id);
5947 if (!p)
5948 return -ENOMEM;
5949
5950 /* This is only filled transiently (see mount_in_namespace()), should be empty or even non-existent*/
5951 if (rmdir(p) < 0 && errno != ENOENT)
5952 log_unit_debug_errno(u, errno, "Unable to remove propagation dir '%s', ignoring: %m", p);
5953
5954 return 0;
5955 }
5956
5957 static void exec_command_done(ExecCommand *c) {
5958 assert(c);
5959
5960 c->path = mfree(c->path);
5961 c->argv = strv_free(c->argv);
5962 }
5963
5964 void exec_command_done_array(ExecCommand *c, size_t n) {
5965 for (size_t i = 0; i < n; i++)
5966 exec_command_done(c+i);
5967 }
5968
5969 ExecCommand* exec_command_free_list(ExecCommand *c) {
5970 ExecCommand *i;
5971
5972 while ((i = c)) {
5973 LIST_REMOVE(command, c, i);
5974 exec_command_done(i);
5975 free(i);
5976 }
5977
5978 return NULL;
5979 }
5980
5981 void exec_command_free_array(ExecCommand **c, size_t n) {
5982 for (size_t i = 0; i < n; i++)
5983 c[i] = exec_command_free_list(c[i]);
5984 }
5985
5986 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
5987 for (size_t i = 0; i < n; i++)
5988 exec_status_reset(&c[i].exec_status);
5989 }
5990
5991 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
5992 for (size_t i = 0; i < n; i++)
5993 LIST_FOREACH(command, z, c[i])
5994 exec_status_reset(&z->exec_status);
5995 }
5996
5997 typedef struct InvalidEnvInfo {
5998 const Unit *unit;
5999 const char *path;
6000 } InvalidEnvInfo;
6001
6002 static void invalid_env(const char *p, void *userdata) {
6003 InvalidEnvInfo *info = userdata;
6004
6005 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
6006 }
6007
6008 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
6009 assert(c);
6010
6011 switch (fd_index) {
6012
6013 case STDIN_FILENO:
6014 if (c->std_input != EXEC_INPUT_NAMED_FD)
6015 return NULL;
6016
6017 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
6018
6019 case STDOUT_FILENO:
6020 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
6021 return NULL;
6022
6023 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
6024
6025 case STDERR_FILENO:
6026 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
6027 return NULL;
6028
6029 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
6030
6031 default:
6032 return NULL;
6033 }
6034 }
6035
6036 static int exec_context_named_iofds(
6037 const ExecContext *c,
6038 const ExecParameters *p,
6039 int named_iofds[static 3]) {
6040
6041 size_t targets;
6042 const char* stdio_fdname[3];
6043 size_t n_fds;
6044
6045 assert(c);
6046 assert(p);
6047 assert(named_iofds);
6048
6049 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
6050 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
6051 (c->std_error == EXEC_OUTPUT_NAMED_FD);
6052
6053 for (size_t i = 0; i < 3; i++)
6054 stdio_fdname[i] = exec_context_fdname(c, i);
6055
6056 n_fds = p->n_storage_fds + p->n_socket_fds;
6057
6058 for (size_t i = 0; i < n_fds && targets > 0; i++)
6059 if (named_iofds[STDIN_FILENO] < 0 &&
6060 c->std_input == EXEC_INPUT_NAMED_FD &&
6061 stdio_fdname[STDIN_FILENO] &&
6062 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
6063
6064 named_iofds[STDIN_FILENO] = p->fds[i];
6065 targets--;
6066
6067 } else if (named_iofds[STDOUT_FILENO] < 0 &&
6068 c->std_output == EXEC_OUTPUT_NAMED_FD &&
6069 stdio_fdname[STDOUT_FILENO] &&
6070 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
6071
6072 named_iofds[STDOUT_FILENO] = p->fds[i];
6073 targets--;
6074
6075 } else if (named_iofds[STDERR_FILENO] < 0 &&
6076 c->std_error == EXEC_OUTPUT_NAMED_FD &&
6077 stdio_fdname[STDERR_FILENO] &&
6078 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
6079
6080 named_iofds[STDERR_FILENO] = p->fds[i];
6081 targets--;
6082 }
6083
6084 return targets == 0 ? 0 : -ENOENT;
6085 }
6086
6087 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) {
6088 _cleanup_strv_free_ char **v = NULL;
6089 int r;
6090
6091 assert(c);
6092 assert(ret);
6093
6094 STRV_FOREACH(i, c->environment_files) {
6095 _cleanup_globfree_ glob_t pglob = {};
6096 bool ignore = false;
6097 char *fn = *i;
6098
6099 if (fn[0] == '-') {
6100 ignore = true;
6101 fn++;
6102 }
6103
6104 if (!path_is_absolute(fn)) {
6105 if (ignore)
6106 continue;
6107 return -EINVAL;
6108 }
6109
6110 /* Filename supports globbing, take all matching files */
6111 r = safe_glob(fn, 0, &pglob);
6112 if (r < 0) {
6113 if (ignore)
6114 continue;
6115 return r;
6116 }
6117
6118 /* When we don't match anything, -ENOENT should be returned */
6119 assert(pglob.gl_pathc > 0);
6120
6121 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
6122 _cleanup_strv_free_ char **p = NULL;
6123
6124 r = load_env_file(NULL, pglob.gl_pathv[n], &p);
6125 if (r < 0) {
6126 if (ignore)
6127 continue;
6128 return r;
6129 }
6130
6131 /* Log invalid environment variables with filename */
6132 if (p) {
6133 InvalidEnvInfo info = {
6134 .unit = unit,
6135 .path = pglob.gl_pathv[n]
6136 };
6137
6138 p = strv_env_clean_with_callback(p, invalid_env, &info);
6139 }
6140
6141 if (!v)
6142 v = TAKE_PTR(p);
6143 else {
6144 char **m = strv_env_merge(v, p);
6145 if (!m)
6146 return -ENOMEM;
6147
6148 strv_free_and_replace(v, m);
6149 }
6150 }
6151 }
6152
6153 *ret = TAKE_PTR(v);
6154
6155 return 0;
6156 }
6157
6158 static bool tty_may_match_dev_console(const char *tty) {
6159 _cleanup_free_ char *resolved = NULL;
6160
6161 if (!tty)
6162 return true;
6163
6164 tty = skip_dev_prefix(tty);
6165
6166 /* trivial identity? */
6167 if (streq(tty, "console"))
6168 return true;
6169
6170 if (resolve_dev_console(&resolved) < 0)
6171 return true; /* if we could not resolve, assume it may */
6172
6173 /* "tty0" means the active VC, so it may be the same sometimes */
6174 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
6175 }
6176
6177 static bool exec_context_may_touch_tty(const ExecContext *ec) {
6178 assert(ec);
6179
6180 return ec->tty_reset ||
6181 ec->tty_vhangup ||
6182 ec->tty_vt_disallocate ||
6183 is_terminal_input(ec->std_input) ||
6184 is_terminal_output(ec->std_output) ||
6185 is_terminal_output(ec->std_error);
6186 }
6187
6188 bool exec_context_may_touch_console(const ExecContext *ec) {
6189
6190 return exec_context_may_touch_tty(ec) &&
6191 tty_may_match_dev_console(exec_context_tty_path(ec));
6192 }
6193
6194 static void strv_fprintf(FILE *f, char **l) {
6195 assert(f);
6196
6197 STRV_FOREACH(g, l)
6198 fprintf(f, " %s", *g);
6199 }
6200
6201 static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
6202 assert(f);
6203 assert(prefix);
6204 assert(name);
6205
6206 if (!strv_isempty(strv)) {
6207 fprintf(f, "%s%s:", prefix, name);
6208 strv_fprintf(f, strv);
6209 fputs("\n", f);
6210 }
6211 }
6212
6213 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
6214 int r;
6215
6216 assert(c);
6217 assert(f);
6218
6219 prefix = strempty(prefix);
6220
6221 fprintf(f,
6222 "%sUMask: %04o\n"
6223 "%sWorkingDirectory: %s\n"
6224 "%sRootDirectory: %s\n"
6225 "%sNonBlocking: %s\n"
6226 "%sPrivateTmp: %s\n"
6227 "%sPrivateDevices: %s\n"
6228 "%sProtectKernelTunables: %s\n"
6229 "%sProtectKernelModules: %s\n"
6230 "%sProtectKernelLogs: %s\n"
6231 "%sProtectClock: %s\n"
6232 "%sProtectControlGroups: %s\n"
6233 "%sPrivateNetwork: %s\n"
6234 "%sPrivateUsers: %s\n"
6235 "%sProtectHome: %s\n"
6236 "%sProtectSystem: %s\n"
6237 "%sMountAPIVFS: %s\n"
6238 "%sIgnoreSIGPIPE: %s\n"
6239 "%sMemoryDenyWriteExecute: %s\n"
6240 "%sRestrictRealtime: %s\n"
6241 "%sRestrictSUIDSGID: %s\n"
6242 "%sKeyringMode: %s\n"
6243 "%sProtectHostname: %s\n"
6244 "%sProtectProc: %s\n"
6245 "%sProcSubset: %s\n",
6246 prefix, c->umask,
6247 prefix, empty_to_root(c->working_directory),
6248 prefix, empty_to_root(c->root_directory),
6249 prefix, yes_no(c->non_blocking),
6250 prefix, yes_no(c->private_tmp),
6251 prefix, yes_no(c->private_devices),
6252 prefix, yes_no(c->protect_kernel_tunables),
6253 prefix, yes_no(c->protect_kernel_modules),
6254 prefix, yes_no(c->protect_kernel_logs),
6255 prefix, yes_no(c->protect_clock),
6256 prefix, yes_no(c->protect_control_groups),
6257 prefix, yes_no(c->private_network),
6258 prefix, yes_no(c->private_users),
6259 prefix, protect_home_to_string(c->protect_home),
6260 prefix, protect_system_to_string(c->protect_system),
6261 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
6262 prefix, yes_no(c->ignore_sigpipe),
6263 prefix, yes_no(c->memory_deny_write_execute),
6264 prefix, yes_no(c->restrict_realtime),
6265 prefix, yes_no(c->restrict_suid_sgid),
6266 prefix, exec_keyring_mode_to_string(c->keyring_mode),
6267 prefix, yes_no(c->protect_hostname),
6268 prefix, protect_proc_to_string(c->protect_proc),
6269 prefix, proc_subset_to_string(c->proc_subset));
6270
6271 if (c->root_image)
6272 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
6273
6274 if (c->root_image_options) {
6275 fprintf(f, "%sRootImageOptions:", prefix);
6276 LIST_FOREACH(mount_options, o, c->root_image_options)
6277 if (!isempty(o->options))
6278 fprintf(f, " %s:%s",
6279 partition_designator_to_string(o->partition_designator),
6280 o->options);
6281 fprintf(f, "\n");
6282 }
6283
6284 if (c->root_hash) {
6285 _cleanup_free_ char *encoded = NULL;
6286 encoded = hexmem(c->root_hash, c->root_hash_size);
6287 if (encoded)
6288 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
6289 }
6290
6291 if (c->root_hash_path)
6292 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
6293
6294 if (c->root_hash_sig) {
6295 _cleanup_free_ char *encoded = NULL;
6296 ssize_t len;
6297 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
6298 if (len)
6299 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
6300 }
6301
6302 if (c->root_hash_sig_path)
6303 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
6304
6305 if (c->root_verity)
6306 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
6307
6308 STRV_FOREACH(e, c->environment)
6309 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
6310
6311 STRV_FOREACH(e, c->environment_files)
6312 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
6313
6314 STRV_FOREACH(e, c->pass_environment)
6315 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
6316
6317 STRV_FOREACH(e, c->unset_environment)
6318 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
6319
6320 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
6321
6322 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
6323 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
6324
6325 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
6326 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path);
6327
6328 STRV_FOREACH(d, c->directories[dt].items[i].symlinks)
6329 fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d);
6330 }
6331 }
6332
6333 fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC));
6334
6335 if (c->nice_set)
6336 fprintf(f, "%sNice: %i\n", prefix, c->nice);
6337
6338 if (c->oom_score_adjust_set)
6339 fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust);
6340
6341 if (c->coredump_filter_set)
6342 fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter);
6343
6344 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
6345 if (c->rlimit[i]) {
6346 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
6347 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
6348 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
6349 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
6350 }
6351
6352 if (c->ioprio_set) {
6353 _cleanup_free_ char *class_str = NULL;
6354
6355 r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str);
6356 if (r >= 0)
6357 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
6358
6359 fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio));
6360 }
6361
6362 if (c->cpu_sched_set) {
6363 _cleanup_free_ char *policy_str = NULL;
6364
6365 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
6366 if (r >= 0)
6367 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
6368
6369 fprintf(f,
6370 "%sCPUSchedulingPriority: %i\n"
6371 "%sCPUSchedulingResetOnFork: %s\n",
6372 prefix, c->cpu_sched_priority,
6373 prefix, yes_no(c->cpu_sched_reset_on_fork));
6374 }
6375
6376 if (c->cpu_set.set) {
6377 _cleanup_free_ char *affinity = NULL;
6378
6379 affinity = cpu_set_to_range_string(&c->cpu_set);
6380 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
6381 }
6382
6383 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
6384 _cleanup_free_ char *nodes = NULL;
6385
6386 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
6387 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
6388 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
6389 }
6390
6391 if (c->timer_slack_nsec != NSEC_INFINITY)
6392 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
6393
6394 fprintf(f,
6395 "%sStandardInput: %s\n"
6396 "%sStandardOutput: %s\n"
6397 "%sStandardError: %s\n",
6398 prefix, exec_input_to_string(c->std_input),
6399 prefix, exec_output_to_string(c->std_output),
6400 prefix, exec_output_to_string(c->std_error));
6401
6402 if (c->std_input == EXEC_INPUT_NAMED_FD)
6403 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
6404 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
6405 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
6406 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
6407 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
6408
6409 if (c->std_input == EXEC_INPUT_FILE)
6410 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
6411 if (c->std_output == EXEC_OUTPUT_FILE)
6412 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6413 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
6414 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6415 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
6416 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6417 if (c->std_error == EXEC_OUTPUT_FILE)
6418 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6419 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
6420 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6421 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
6422 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6423
6424 if (c->tty_path)
6425 fprintf(f,
6426 "%sTTYPath: %s\n"
6427 "%sTTYReset: %s\n"
6428 "%sTTYVHangup: %s\n"
6429 "%sTTYVTDisallocate: %s\n"
6430 "%sTTYRows: %u\n"
6431 "%sTTYColumns: %u\n",
6432 prefix, c->tty_path,
6433 prefix, yes_no(c->tty_reset),
6434 prefix, yes_no(c->tty_vhangup),
6435 prefix, yes_no(c->tty_vt_disallocate),
6436 prefix, c->tty_rows,
6437 prefix, c->tty_cols);
6438
6439 if (IN_SET(c->std_output,
6440 EXEC_OUTPUT_KMSG,
6441 EXEC_OUTPUT_JOURNAL,
6442 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6443 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
6444 IN_SET(c->std_error,
6445 EXEC_OUTPUT_KMSG,
6446 EXEC_OUTPUT_JOURNAL,
6447 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6448 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
6449
6450 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
6451
6452 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
6453 if (r >= 0)
6454 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
6455
6456 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
6457 if (r >= 0)
6458 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
6459 }
6460
6461 if (c->log_level_max >= 0) {
6462 _cleanup_free_ char *t = NULL;
6463
6464 (void) log_level_to_string_alloc(c->log_level_max, &t);
6465
6466 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
6467 }
6468
6469 if (c->log_ratelimit_interval_usec > 0)
6470 fprintf(f,
6471 "%sLogRateLimitIntervalSec: %s\n",
6472 prefix, FORMAT_TIMESPAN(c->log_ratelimit_interval_usec, USEC_PER_SEC));
6473
6474 if (c->log_ratelimit_burst > 0)
6475 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
6476
6477 if (!set_isempty(c->log_filter_allowed_patterns) || !set_isempty(c->log_filter_denied_patterns)) {
6478 fprintf(f, "%sLogFilterPatterns:", prefix);
6479
6480 char *pattern;
6481 SET_FOREACH(pattern, c->log_filter_allowed_patterns)
6482 fprintf(f, " %s", pattern);
6483 SET_FOREACH(pattern, c->log_filter_denied_patterns)
6484 fprintf(f, " ~%s", pattern);
6485 fputc('\n', f);
6486 }
6487
6488 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
6489 fprintf(f, "%sLogExtraFields: ", prefix);
6490 fwrite(c->log_extra_fields[j].iov_base,
6491 1, c->log_extra_fields[j].iov_len,
6492 f);
6493 fputc('\n', f);
6494 }
6495
6496 if (c->log_namespace)
6497 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
6498
6499 if (c->secure_bits) {
6500 _cleanup_free_ char *str = NULL;
6501
6502 r = secure_bits_to_string_alloc(c->secure_bits, &str);
6503 if (r >= 0)
6504 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
6505 }
6506
6507 if (c->capability_bounding_set != CAP_MASK_UNSET) {
6508 _cleanup_free_ char *str = NULL;
6509
6510 r = capability_set_to_string(c->capability_bounding_set, &str);
6511 if (r >= 0)
6512 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
6513 }
6514
6515 if (c->capability_ambient_set != 0) {
6516 _cleanup_free_ char *str = NULL;
6517
6518 r = capability_set_to_string(c->capability_ambient_set, &str);
6519 if (r >= 0)
6520 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
6521 }
6522
6523 if (c->user)
6524 fprintf(f, "%sUser: %s\n", prefix, c->user);
6525 if (c->group)
6526 fprintf(f, "%sGroup: %s\n", prefix, c->group);
6527
6528 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
6529
6530 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
6531
6532 if (c->pam_name)
6533 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
6534
6535 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
6536 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
6537 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
6538 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
6539 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
6540 strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path);
6541
6542 for (size_t i = 0; i < c->n_bind_mounts; i++)
6543 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
6544 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
6545 c->bind_mounts[i].ignore_enoent ? "-": "",
6546 c->bind_mounts[i].source,
6547 c->bind_mounts[i].destination,
6548 c->bind_mounts[i].recursive ? "rbind" : "norbind");
6549
6550 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
6551 const TemporaryFileSystem *t = c->temporary_filesystems + i;
6552
6553 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
6554 t->path,
6555 isempty(t->options) ? "" : ":",
6556 strempty(t->options));
6557 }
6558
6559 if (c->utmp_id)
6560 fprintf(f,
6561 "%sUtmpIdentifier: %s\n",
6562 prefix, c->utmp_id);
6563
6564 if (c->selinux_context)
6565 fprintf(f,
6566 "%sSELinuxContext: %s%s\n",
6567 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
6568
6569 if (c->apparmor_profile)
6570 fprintf(f,
6571 "%sAppArmorProfile: %s%s\n",
6572 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
6573
6574 if (c->smack_process_label)
6575 fprintf(f,
6576 "%sSmackProcessLabel: %s%s\n",
6577 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
6578
6579 if (c->personality != PERSONALITY_INVALID)
6580 fprintf(f,
6581 "%sPersonality: %s\n",
6582 prefix, strna(personality_to_string(c->personality)));
6583
6584 fprintf(f,
6585 "%sLockPersonality: %s\n",
6586 prefix, yes_no(c->lock_personality));
6587
6588 if (c->syscall_filter) {
6589 fprintf(f,
6590 "%sSystemCallFilter: ",
6591 prefix);
6592
6593 if (!c->syscall_allow_list)
6594 fputc('~', f);
6595
6596 #if HAVE_SECCOMP
6597 void *id, *val;
6598 bool first = true;
6599 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
6600 _cleanup_free_ char *name = NULL;
6601 const char *errno_name = NULL;
6602 int num = PTR_TO_INT(val);
6603
6604 if (first)
6605 first = false;
6606 else
6607 fputc(' ', f);
6608
6609 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
6610 fputs(strna(name), f);
6611
6612 if (num >= 0) {
6613 errno_name = seccomp_errno_or_action_to_string(num);
6614 if (errno_name)
6615 fprintf(f, ":%s", errno_name);
6616 else
6617 fprintf(f, ":%d", num);
6618 }
6619 }
6620 #endif
6621
6622 fputc('\n', f);
6623 }
6624
6625 if (c->syscall_archs) {
6626 fprintf(f,
6627 "%sSystemCallArchitectures:",
6628 prefix);
6629
6630 #if HAVE_SECCOMP
6631 void *id;
6632 SET_FOREACH(id, c->syscall_archs)
6633 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
6634 #endif
6635 fputc('\n', f);
6636 }
6637
6638 if (exec_context_restrict_namespaces_set(c)) {
6639 _cleanup_free_ char *s = NULL;
6640
6641 r = namespace_flags_to_string(c->restrict_namespaces, &s);
6642 if (r >= 0)
6643 fprintf(f, "%sRestrictNamespaces: %s\n",
6644 prefix, strna(s));
6645 }
6646
6647 #if HAVE_LIBBPF
6648 if (exec_context_restrict_filesystems_set(c)) {
6649 char *fs;
6650 SET_FOREACH(fs, c->restrict_filesystems)
6651 fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs);
6652 }
6653 #endif
6654
6655 if (c->network_namespace_path)
6656 fprintf(f,
6657 "%sNetworkNamespacePath: %s\n",
6658 prefix, c->network_namespace_path);
6659
6660 if (c->syscall_errno > 0) {
6661 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
6662
6663 #if HAVE_SECCOMP
6664 const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
6665 if (errno_name)
6666 fputs(errno_name, f);
6667 else
6668 fprintf(f, "%d", c->syscall_errno);
6669 #endif
6670 fputc('\n', f);
6671 }
6672
6673 for (size_t i = 0; i < c->n_mount_images; i++) {
6674 fprintf(f, "%sMountImages: %s%s:%s", prefix,
6675 c->mount_images[i].ignore_enoent ? "-": "",
6676 c->mount_images[i].source,
6677 c->mount_images[i].destination);
6678 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
6679 fprintf(f, ":%s:%s",
6680 partition_designator_to_string(o->partition_designator),
6681 strempty(o->options));
6682 fprintf(f, "\n");
6683 }
6684
6685 for (size_t i = 0; i < c->n_extension_images; i++) {
6686 fprintf(f, "%sExtensionImages: %s%s", prefix,
6687 c->extension_images[i].ignore_enoent ? "-": "",
6688 c->extension_images[i].source);
6689 LIST_FOREACH(mount_options, o, c->extension_images[i].mount_options)
6690 fprintf(f, ":%s:%s",
6691 partition_designator_to_string(o->partition_designator),
6692 strempty(o->options));
6693 fprintf(f, "\n");
6694 }
6695
6696 strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories);
6697 }
6698
6699 bool exec_context_maintains_privileges(const ExecContext *c) {
6700 assert(c);
6701
6702 /* Returns true if the process forked off would run under
6703 * an unchanged UID or as root. */
6704
6705 if (!c->user)
6706 return true;
6707
6708 if (streq(c->user, "root") || streq(c->user, "0"))
6709 return true;
6710
6711 return false;
6712 }
6713
6714 int exec_context_get_effective_ioprio(const ExecContext *c) {
6715 int p;
6716
6717 assert(c);
6718
6719 if (c->ioprio_set)
6720 return c->ioprio;
6721
6722 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
6723 if (p < 0)
6724 return IOPRIO_DEFAULT_CLASS_AND_PRIO;
6725
6726 return ioprio_normalize(p);
6727 }
6728
6729 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
6730 assert(c);
6731
6732 /* Explicit setting wins */
6733 if (c->mount_apivfs_set)
6734 return c->mount_apivfs;
6735
6736 /* Default to "yes" if root directory or image are specified */
6737 if (exec_context_with_rootfs(c))
6738 return true;
6739
6740 return false;
6741 }
6742
6743 void exec_context_free_log_extra_fields(ExecContext *c) {
6744 assert(c);
6745
6746 for (size_t l = 0; l < c->n_log_extra_fields; l++)
6747 free(c->log_extra_fields[l].iov_base);
6748 c->log_extra_fields = mfree(c->log_extra_fields);
6749 c->n_log_extra_fields = 0;
6750 }
6751
6752 void exec_context_revert_tty(ExecContext *c) {
6753 _cleanup_close_ int fd = -EBADF;
6754 const char *path;
6755 struct stat st;
6756 int r;
6757
6758 assert(c);
6759
6760 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
6761 exec_context_tty_reset(c, NULL);
6762
6763 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
6764 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
6765 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
6766 if (!exec_context_may_touch_tty(c))
6767 return;
6768
6769 path = exec_context_tty_path(c);
6770 if (!path)
6771 return;
6772
6773 fd = open(path, O_PATH|O_CLOEXEC);
6774 if (fd < 0)
6775 return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno,
6776 "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m",
6777 path);
6778
6779 if (fstat(fd, &st) < 0)
6780 return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path);
6781
6782 /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check
6783 * if things are a character device, since a proper check either means we'd have to open the TTY and
6784 * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects
6785 * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother
6786 * with this at all? → https://github.com/systemd/systemd/issues/19213 */
6787 if (!S_ISCHR(st.st_mode))
6788 return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path);
6789
6790 r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID);
6791 if (r < 0)
6792 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
6793 }
6794
6795 int exec_context_get_clean_directories(
6796 ExecContext *c,
6797 char **prefix,
6798 ExecCleanMask mask,
6799 char ***ret) {
6800
6801 _cleanup_strv_free_ char **l = NULL;
6802 int r;
6803
6804 assert(c);
6805 assert(prefix);
6806 assert(ret);
6807
6808 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
6809 if (!FLAGS_SET(mask, 1U << t))
6810 continue;
6811
6812 if (!prefix[t])
6813 continue;
6814
6815 for (size_t i = 0; i < c->directories[t].n_items; i++) {
6816 char *j;
6817
6818 j = path_join(prefix[t], c->directories[t].items[i].path);
6819 if (!j)
6820 return -ENOMEM;
6821
6822 r = strv_consume(&l, j);
6823 if (r < 0)
6824 return r;
6825
6826 /* Also remove private directories unconditionally. */
6827 if (t != EXEC_DIRECTORY_CONFIGURATION) {
6828 j = path_join(prefix[t], "private", c->directories[t].items[i].path);
6829 if (!j)
6830 return -ENOMEM;
6831
6832 r = strv_consume(&l, j);
6833 if (r < 0)
6834 return r;
6835 }
6836
6837 STRV_FOREACH(symlink, c->directories[t].items[i].symlinks) {
6838 j = path_join(prefix[t], *symlink);
6839 if (!j)
6840 return -ENOMEM;
6841
6842 r = strv_consume(&l, j);
6843 if (r < 0)
6844 return r;
6845 }
6846 }
6847 }
6848
6849 *ret = TAKE_PTR(l);
6850 return 0;
6851 }
6852
6853 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
6854 ExecCleanMask mask = 0;
6855
6856 assert(c);
6857 assert(ret);
6858
6859 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
6860 if (c->directories[t].n_items > 0)
6861 mask |= 1U << t;
6862
6863 *ret = mask;
6864 return 0;
6865 }
6866
6867 bool exec_context_has_encrypted_credentials(ExecContext *c) {
6868 ExecLoadCredential *load_cred;
6869 ExecSetCredential *set_cred;
6870
6871 assert(c);
6872
6873 HASHMAP_FOREACH(load_cred, c->load_credentials)
6874 if (load_cred->encrypted)
6875 return true;
6876
6877 HASHMAP_FOREACH(set_cred, c->set_credentials)
6878 if (set_cred->encrypted)
6879 return true;
6880
6881 return false;
6882 }
6883
6884 int exec_context_add_default_dependencies(Unit *u, const ExecContext *c) {
6885 assert(u);
6886 assert(u->default_dependencies);
6887
6888 if (c && exec_context_needs_term(c))
6889 return unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_VCONSOLE_SETUP_SERVICE,
6890 /* add_reference= */ true, UNIT_DEPENDENCY_DEFAULT);
6891 return 0;
6892 }
6893
6894 void exec_status_start(ExecStatus *s, pid_t pid) {
6895 assert(s);
6896
6897 *s = (ExecStatus) {
6898 .pid = pid,
6899 };
6900
6901 dual_timestamp_get(&s->start_timestamp);
6902 }
6903
6904 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
6905 assert(s);
6906
6907 if (s->pid != pid)
6908 *s = (ExecStatus) {
6909 .pid = pid,
6910 };
6911
6912 dual_timestamp_get(&s->exit_timestamp);
6913
6914 s->code = code;
6915 s->status = status;
6916
6917 if (context && context->utmp_id)
6918 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
6919 }
6920
6921 void exec_status_reset(ExecStatus *s) {
6922 assert(s);
6923
6924 *s = (ExecStatus) {};
6925 }
6926
6927 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
6928 assert(s);
6929 assert(f);
6930
6931 if (s->pid <= 0)
6932 return;
6933
6934 prefix = strempty(prefix);
6935
6936 fprintf(f,
6937 "%sPID: "PID_FMT"\n",
6938 prefix, s->pid);
6939
6940 if (dual_timestamp_is_set(&s->start_timestamp))
6941 fprintf(f,
6942 "%sStart Timestamp: %s\n",
6943 prefix, FORMAT_TIMESTAMP(s->start_timestamp.realtime));
6944
6945 if (dual_timestamp_is_set(&s->exit_timestamp))
6946 fprintf(f,
6947 "%sExit Timestamp: %s\n"
6948 "%sExit Code: %s\n"
6949 "%sExit Status: %i\n",
6950 prefix, FORMAT_TIMESTAMP(s->exit_timestamp.realtime),
6951 prefix, sigchld_code_to_string(s->code),
6952 prefix, s->status);
6953 }
6954
6955 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
6956 _cleanup_free_ char *cmd = NULL;
6957 const char *prefix2;
6958
6959 assert(c);
6960 assert(f);
6961
6962 prefix = strempty(prefix);
6963 prefix2 = strjoina(prefix, "\t");
6964
6965 cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY);
6966
6967 fprintf(f,
6968 "%sCommand Line: %s\n",
6969 prefix, strnull(cmd));
6970
6971 exec_status_dump(&c->exec_status, f, prefix2);
6972 }
6973
6974 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
6975 assert(f);
6976
6977 prefix = strempty(prefix);
6978
6979 LIST_FOREACH(command, i, c)
6980 exec_command_dump(i, f, prefix);
6981 }
6982
6983 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
6984 ExecCommand *end;
6985
6986 assert(l);
6987 assert(e);
6988
6989 if (*l) {
6990 /* It's kind of important, that we keep the order here */
6991 end = LIST_FIND_TAIL(command, *l);
6992 LIST_INSERT_AFTER(command, *l, end, e);
6993 } else
6994 *l = e;
6995 }
6996
6997 int exec_command_set(ExecCommand *c, const char *path, ...) {
6998 va_list ap;
6999 char **l, *p;
7000
7001 assert(c);
7002 assert(path);
7003
7004 va_start(ap, path);
7005 l = strv_new_ap(path, ap);
7006 va_end(ap);
7007
7008 if (!l)
7009 return -ENOMEM;
7010
7011 p = strdup(path);
7012 if (!p) {
7013 strv_free(l);
7014 return -ENOMEM;
7015 }
7016
7017 free_and_replace(c->path, p);
7018
7019 return strv_free_and_replace(c->argv, l);
7020 }
7021
7022 int exec_command_append(ExecCommand *c, const char *path, ...) {
7023 _cleanup_strv_free_ char **l = NULL;
7024 va_list ap;
7025 int r;
7026
7027 assert(c);
7028 assert(path);
7029
7030 va_start(ap, path);
7031 l = strv_new_ap(path, ap);
7032 va_end(ap);
7033
7034 if (!l)
7035 return -ENOMEM;
7036
7037 r = strv_extend_strv(&c->argv, l, false);
7038 if (r < 0)
7039 return r;
7040
7041 return 0;
7042 }
7043
7044 static void *remove_tmpdir_thread(void *p) {
7045 _cleanup_free_ char *path = p;
7046
7047 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
7048 return NULL;
7049 }
7050
7051 static ExecSharedRuntime* exec_shared_runtime_free(ExecSharedRuntime *rt) {
7052 if (!rt)
7053 return NULL;
7054
7055 if (rt->manager)
7056 (void) hashmap_remove(rt->manager->exec_shared_runtime_by_id, rt->id);
7057
7058 rt->id = mfree(rt->id);
7059 rt->tmp_dir = mfree(rt->tmp_dir);
7060 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
7061 safe_close_pair(rt->netns_storage_socket);
7062 safe_close_pair(rt->ipcns_storage_socket);
7063 return mfree(rt);
7064 }
7065
7066 DEFINE_TRIVIAL_UNREF_FUNC(ExecSharedRuntime, exec_shared_runtime, exec_shared_runtime_free);
7067 DEFINE_TRIVIAL_CLEANUP_FUNC(ExecSharedRuntime*, exec_shared_runtime_free);
7068
7069 ExecSharedRuntime* exec_shared_runtime_destroy(ExecSharedRuntime *rt) {
7070 int r;
7071
7072 if (!rt)
7073 return NULL;
7074
7075 assert(rt->n_ref > 0);
7076 rt->n_ref--;
7077
7078 if (rt->n_ref > 0)
7079 return NULL;
7080
7081 if (rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
7082 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
7083
7084 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
7085 if (r < 0)
7086 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
7087 else
7088 rt->tmp_dir = NULL;
7089 }
7090
7091 if (rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
7092 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
7093
7094 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
7095 if (r < 0)
7096 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
7097 else
7098 rt->var_tmp_dir = NULL;
7099 }
7100
7101 return exec_shared_runtime_free(rt);
7102 }
7103
7104 static int exec_shared_runtime_allocate(ExecSharedRuntime **ret, const char *id) {
7105 _cleanup_free_ char *id_copy = NULL;
7106 ExecSharedRuntime *n;
7107
7108 assert(ret);
7109
7110 id_copy = strdup(id);
7111 if (!id_copy)
7112 return -ENOMEM;
7113
7114 n = new(ExecSharedRuntime, 1);
7115 if (!n)
7116 return -ENOMEM;
7117
7118 *n = (ExecSharedRuntime) {
7119 .id = TAKE_PTR(id_copy),
7120 .netns_storage_socket = PIPE_EBADF,
7121 .ipcns_storage_socket = PIPE_EBADF,
7122 };
7123
7124 *ret = n;
7125 return 0;
7126 }
7127
7128 static int exec_shared_runtime_add(
7129 Manager *m,
7130 const char *id,
7131 char **tmp_dir,
7132 char **var_tmp_dir,
7133 int netns_storage_socket[2],
7134 int ipcns_storage_socket[2],
7135 ExecSharedRuntime **ret) {
7136
7137 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt = NULL;
7138 int r;
7139
7140 assert(m);
7141 assert(id);
7142
7143 /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */
7144
7145 r = exec_shared_runtime_allocate(&rt, id);
7146 if (r < 0)
7147 return r;
7148
7149 r = hashmap_ensure_put(&m->exec_shared_runtime_by_id, &string_hash_ops, rt->id, rt);
7150 if (r < 0)
7151 return r;
7152
7153 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
7154 rt->tmp_dir = TAKE_PTR(*tmp_dir);
7155 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
7156
7157 if (netns_storage_socket) {
7158 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
7159 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
7160 }
7161
7162 if (ipcns_storage_socket) {
7163 rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]);
7164 rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]);
7165 }
7166
7167 rt->manager = m;
7168
7169 if (ret)
7170 *ret = rt;
7171 /* do not remove created ExecSharedRuntime object when the operation succeeds. */
7172 TAKE_PTR(rt);
7173 return 0;
7174 }
7175
7176 static int exec_shared_runtime_make(
7177 Manager *m,
7178 const ExecContext *c,
7179 const char *id,
7180 ExecSharedRuntime **ret) {
7181
7182 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
7183 _cleanup_close_pair_ int netns_storage_socket[2] = PIPE_EBADF, ipcns_storage_socket[2] = PIPE_EBADF;
7184 int r;
7185
7186 assert(m);
7187 assert(c);
7188 assert(id);
7189
7190 /* It is not necessary to create ExecSharedRuntime object. */
7191 if (!exec_needs_network_namespace(c) && !exec_needs_ipc_namespace(c) && !c->private_tmp) {
7192 *ret = NULL;
7193 return 0;
7194 }
7195
7196 if (c->private_tmp &&
7197 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
7198 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
7199 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
7200 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
7201 if (r < 0)
7202 return r;
7203 }
7204
7205 if (exec_needs_network_namespace(c)) {
7206 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
7207 return -errno;
7208 }
7209
7210 if (exec_needs_ipc_namespace(c)) {
7211 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0)
7212 return -errno;
7213 }
7214
7215 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret);
7216 if (r < 0)
7217 return r;
7218
7219 return 1;
7220 }
7221
7222 int exec_shared_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecSharedRuntime **ret) {
7223 ExecSharedRuntime *rt;
7224 int r;
7225
7226 assert(m);
7227 assert(id);
7228 assert(ret);
7229
7230 rt = hashmap_get(m->exec_shared_runtime_by_id, id);
7231 if (rt)
7232 /* We already have an ExecSharedRuntime object, let's increase the ref count and reuse it */
7233 goto ref;
7234
7235 if (!create) {
7236 *ret = NULL;
7237 return 0;
7238 }
7239
7240 /* If not found, then create a new object. */
7241 r = exec_shared_runtime_make(m, c, id, &rt);
7242 if (r < 0)
7243 return r;
7244 if (r == 0) {
7245 /* When r == 0, it is not necessary to create ExecSharedRuntime object. */
7246 *ret = NULL;
7247 return 0;
7248 }
7249
7250 ref:
7251 /* increment reference counter. */
7252 rt->n_ref++;
7253 *ret = rt;
7254 return 1;
7255 }
7256
7257 int exec_shared_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
7258 ExecSharedRuntime *rt;
7259
7260 assert(m);
7261 assert(f);
7262 assert(fds);
7263
7264 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7265 fprintf(f, "exec-runtime=%s", rt->id);
7266
7267 if (rt->tmp_dir)
7268 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
7269
7270 if (rt->var_tmp_dir)
7271 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
7272
7273 if (rt->netns_storage_socket[0] >= 0) {
7274 int copy;
7275
7276 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
7277 if (copy < 0)
7278 return copy;
7279
7280 fprintf(f, " netns-socket-0=%i", copy);
7281 }
7282
7283 if (rt->netns_storage_socket[1] >= 0) {
7284 int copy;
7285
7286 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
7287 if (copy < 0)
7288 return copy;
7289
7290 fprintf(f, " netns-socket-1=%i", copy);
7291 }
7292
7293 if (rt->ipcns_storage_socket[0] >= 0) {
7294 int copy;
7295
7296 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]);
7297 if (copy < 0)
7298 return copy;
7299
7300 fprintf(f, " ipcns-socket-0=%i", copy);
7301 }
7302
7303 if (rt->ipcns_storage_socket[1] >= 0) {
7304 int copy;
7305
7306 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]);
7307 if (copy < 0)
7308 return copy;
7309
7310 fprintf(f, " ipcns-socket-1=%i", copy);
7311 }
7312
7313 fputc('\n', f);
7314 }
7315
7316 return 0;
7317 }
7318
7319 int exec_shared_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
7320 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt_create = NULL;
7321 ExecSharedRuntime *rt;
7322 int r;
7323
7324 /* This is for the migration from old (v237 or earlier) deserialization text.
7325 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
7326 * Even if the ExecSharedRuntime object originally created by the other unit, we cannot judge
7327 * so or not from the serialized text, then we always creates a new object owned by this. */
7328
7329 assert(u);
7330 assert(key);
7331 assert(value);
7332
7333 /* Manager manages ExecSharedRuntime objects by the unit id.
7334 * So, we omit the serialized text when the unit does not have id (yet?)... */
7335 if (isempty(u->id)) {
7336 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
7337 return 0;
7338 }
7339
7340 if (hashmap_ensure_allocated(&u->manager->exec_shared_runtime_by_id, &string_hash_ops) < 0)
7341 return log_oom();
7342
7343 rt = hashmap_get(u->manager->exec_shared_runtime_by_id, u->id);
7344 if (!rt) {
7345 if (exec_shared_runtime_allocate(&rt_create, u->id) < 0)
7346 return log_oom();
7347
7348 rt = rt_create;
7349 }
7350
7351 if (streq(key, "tmp-dir")) {
7352 if (free_and_strdup_warn(&rt->tmp_dir, value) < 0)
7353 return -ENOMEM;
7354
7355 } else if (streq(key, "var-tmp-dir")) {
7356 if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0)
7357 return -ENOMEM;
7358
7359 } else if (streq(key, "netns-socket-0")) {
7360 int fd;
7361
7362 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd)) {
7363 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7364 return 0;
7365 }
7366
7367 safe_close(rt->netns_storage_socket[0]);
7368 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
7369
7370 } else if (streq(key, "netns-socket-1")) {
7371 int fd;
7372
7373 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd)) {
7374 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7375 return 0;
7376 }
7377
7378 safe_close(rt->netns_storage_socket[1]);
7379 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
7380
7381 } else
7382 return 0;
7383
7384 /* If the object is newly created, then put it to the hashmap which manages ExecSharedRuntime objects. */
7385 if (rt_create) {
7386 r = hashmap_put(u->manager->exec_shared_runtime_by_id, rt_create->id, rt_create);
7387 if (r < 0) {
7388 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
7389 return 0;
7390 }
7391
7392 rt_create->manager = u->manager;
7393
7394 /* Avoid cleanup */
7395 TAKE_PTR(rt_create);
7396 }
7397
7398 return 1;
7399 }
7400
7401 int exec_shared_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
7402 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
7403 char *id = NULL;
7404 int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1};
7405 const char *p, *v = ASSERT_PTR(value);
7406 size_t n;
7407
7408 assert(m);
7409 assert(fds);
7410
7411 n = strcspn(v, " ");
7412 id = strndupa_safe(v, n);
7413 if (v[n] != ' ')
7414 goto finalize;
7415 p = v + n + 1;
7416
7417 v = startswith(p, "tmp-dir=");
7418 if (v) {
7419 n = strcspn(v, " ");
7420 tmp_dir = strndup(v, n);
7421 if (!tmp_dir)
7422 return log_oom();
7423 if (v[n] != ' ')
7424 goto finalize;
7425 p = v + n + 1;
7426 }
7427
7428 v = startswith(p, "var-tmp-dir=");
7429 if (v) {
7430 n = strcspn(v, " ");
7431 var_tmp_dir = strndup(v, n);
7432 if (!var_tmp_dir)
7433 return log_oom();
7434 if (v[n] != ' ')
7435 goto finalize;
7436 p = v + n + 1;
7437 }
7438
7439 v = startswith(p, "netns-socket-0=");
7440 if (v) {
7441 char *buf;
7442
7443 n = strcspn(v, " ");
7444 buf = strndupa_safe(v, n);
7445
7446 netns_fdpair[0] = parse_fd(buf);
7447 if (netns_fdpair[0] < 0)
7448 return log_debug_errno(netns_fdpair[0], "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
7449 if (!fdset_contains(fds, netns_fdpair[0]))
7450 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7451 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", netns_fdpair[0]);
7452 netns_fdpair[0] = fdset_remove(fds, netns_fdpair[0]);
7453 if (v[n] != ' ')
7454 goto finalize;
7455 p = v + n + 1;
7456 }
7457
7458 v = startswith(p, "netns-socket-1=");
7459 if (v) {
7460 char *buf;
7461
7462 n = strcspn(v, " ");
7463 buf = strndupa_safe(v, n);
7464
7465 netns_fdpair[1] = parse_fd(buf);
7466 if (netns_fdpair[1] < 0)
7467 return log_debug_errno(netns_fdpair[1], "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
7468 if (!fdset_contains(fds, netns_fdpair[1]))
7469 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7470 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", netns_fdpair[1]);
7471 netns_fdpair[1] = fdset_remove(fds, netns_fdpair[1]);
7472 if (v[n] != ' ')
7473 goto finalize;
7474 p = v + n + 1;
7475 }
7476
7477 v = startswith(p, "ipcns-socket-0=");
7478 if (v) {
7479 char *buf;
7480
7481 n = strcspn(v, " ");
7482 buf = strndupa_safe(v, n);
7483
7484 ipcns_fdpair[0] = parse_fd(buf);
7485 if (ipcns_fdpair[0] < 0)
7486 return log_debug_errno(ipcns_fdpair[0], "Unable to parse exec-runtime specification ipcns-socket-0=%s: %m", buf);
7487 if (!fdset_contains(fds, ipcns_fdpair[0]))
7488 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7489 "exec-runtime specification ipcns-socket-0= refers to unknown fd %d: %m", ipcns_fdpair[0]);
7490 ipcns_fdpair[0] = fdset_remove(fds, ipcns_fdpair[0]);
7491 if (v[n] != ' ')
7492 goto finalize;
7493 p = v + n + 1;
7494 }
7495
7496 v = startswith(p, "ipcns-socket-1=");
7497 if (v) {
7498 char *buf;
7499
7500 n = strcspn(v, " ");
7501 buf = strndupa_safe(v, n);
7502
7503 ipcns_fdpair[1] = parse_fd(buf);
7504 if (ipcns_fdpair[1] < 0)
7505 return log_debug_errno(ipcns_fdpair[1], "Unable to parse exec-runtime specification ipcns-socket-1=%s: %m", buf);
7506 if (!fdset_contains(fds, ipcns_fdpair[1]))
7507 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7508 "exec-runtime specification ipcns-socket-1= refers to unknown fd %d: %m", ipcns_fdpair[1]);
7509 ipcns_fdpair[1] = fdset_remove(fds, ipcns_fdpair[1]);
7510 }
7511
7512 finalize:
7513 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL);
7514 if (r < 0)
7515 return log_debug_errno(r, "Failed to add exec-runtime: %m");
7516 return 0;
7517 }
7518
7519 void exec_shared_runtime_vacuum(Manager *m) {
7520 ExecSharedRuntime *rt;
7521
7522 assert(m);
7523
7524 /* Free unreferenced ExecSharedRuntime objects. This is used after manager deserialization process. */
7525
7526 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7527 if (rt->n_ref > 0)
7528 continue;
7529
7530 (void) exec_shared_runtime_free(rt);
7531 }
7532 }
7533
7534 int exec_runtime_make(ExecSharedRuntime *shared, DynamicCreds *creds, ExecRuntime **ret) {
7535 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
7536
7537 assert(ret);
7538
7539 if (!shared && !creds) {
7540 *ret = NULL;
7541 return 0;
7542 }
7543
7544 rt = new(ExecRuntime, 1);
7545 if (!rt)
7546 return -ENOMEM;
7547
7548 *rt = (ExecRuntime) {
7549 .shared = shared,
7550 .dynamic_creds = creds,
7551 };
7552
7553 *ret = TAKE_PTR(rt);
7554 return 1;
7555 }
7556
7557 ExecRuntime* exec_runtime_free(ExecRuntime *rt) {
7558 if (!rt)
7559 return NULL;
7560
7561 exec_shared_runtime_unref(rt->shared);
7562 dynamic_creds_unref(rt->dynamic_creds);
7563 return mfree(rt);
7564 }
7565
7566 ExecRuntime* exec_runtime_destroy(ExecRuntime *rt) {
7567 if (!rt)
7568 return NULL;
7569
7570 rt->shared = exec_shared_runtime_destroy(rt->shared);
7571 rt->dynamic_creds = dynamic_creds_destroy(rt->dynamic_creds);
7572 return exec_runtime_free(rt);
7573 }
7574
7575 void exec_params_clear(ExecParameters *p) {
7576 if (!p)
7577 return;
7578
7579 p->environment = strv_free(p->environment);
7580 p->fd_names = strv_free(p->fd_names);
7581 p->fds = mfree(p->fds);
7582 p->exec_fd = safe_close(p->exec_fd);
7583 }
7584
7585 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
7586 if (!sc)
7587 return NULL;
7588
7589 free(sc->id);
7590 free(sc->data);
7591 return mfree(sc);
7592 }
7593
7594 ExecLoadCredential *exec_load_credential_free(ExecLoadCredential *lc) {
7595 if (!lc)
7596 return NULL;
7597
7598 free(lc->id);
7599 free(lc->path);
7600 return mfree(lc);
7601 }
7602
7603 void exec_directory_done(ExecDirectory *d) {
7604 if (!d)
7605 return;
7606
7607 for (size_t i = 0; i < d->n_items; i++) {
7608 free(d->items[i].path);
7609 strv_free(d->items[i].symlinks);
7610 }
7611
7612 d->items = mfree(d->items);
7613 d->n_items = 0;
7614 d->mode = 0755;
7615 }
7616
7617 static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) {
7618 assert(d);
7619 assert(path);
7620
7621 for (size_t i = 0; i < d->n_items; i++)
7622 if (path_equal(d->items[i].path, path))
7623 return &d->items[i];
7624
7625 return NULL;
7626 }
7627
7628 int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) {
7629 _cleanup_strv_free_ char **s = NULL;
7630 _cleanup_free_ char *p = NULL;
7631 ExecDirectoryItem *existing;
7632 int r;
7633
7634 assert(d);
7635 assert(path);
7636
7637 existing = exec_directory_find(d, path);
7638 if (existing) {
7639 r = strv_extend(&existing->symlinks, symlink);
7640 if (r < 0)
7641 return r;
7642
7643 return 0; /* existing item is updated */
7644 }
7645
7646 p = strdup(path);
7647 if (!p)
7648 return -ENOMEM;
7649
7650 if (symlink) {
7651 s = strv_new(symlink);
7652 if (!s)
7653 return -ENOMEM;
7654 }
7655
7656 if (!GREEDY_REALLOC(d->items, d->n_items + 1))
7657 return -ENOMEM;
7658
7659 d->items[d->n_items++] = (ExecDirectoryItem) {
7660 .path = TAKE_PTR(p),
7661 .symlinks = TAKE_PTR(s),
7662 };
7663
7664 return 1; /* new item is added */
7665 }
7666
7667 static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) {
7668 assert(a);
7669 assert(b);
7670
7671 return path_compare(a->path, b->path);
7672 }
7673
7674 void exec_directory_sort(ExecDirectory *d) {
7675 assert(d);
7676
7677 /* Sort the exec directories to make always parent directories processed at first in
7678 * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first,
7679 * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the
7680 * list. See also comments in setup_exec_directory() and issue #24783. */
7681
7682 if (d->n_items <= 1)
7683 return;
7684
7685 typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func);
7686
7687 for (size_t i = 1; i < d->n_items; i++)
7688 for (size_t j = 0; j < i; j++)
7689 if (path_startswith(d->items[i].path, d->items[j].path)) {
7690 d->items[i].only_create = true;
7691 break;
7692 }
7693 }
7694
7695 ExecCleanMask exec_clean_mask_from_string(const char *s) {
7696 ExecDirectoryType t;
7697
7698 assert(s);
7699
7700 if (streq(s, "all"))
7701 return EXEC_CLEAN_ALL;
7702 if (streq(s, "fdstore"))
7703 return EXEC_CLEAN_FDSTORE;
7704
7705 t = exec_resource_type_from_string(s);
7706 if (t < 0)
7707 return (ExecCleanMask) t;
7708
7709 return 1U << t;
7710 }
7711
7712 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
7713 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_load_credential_hash_ops, char, string_hash_func, string_compare_func, ExecLoadCredential, exec_load_credential_free);
7714
7715 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
7716 [EXEC_INPUT_NULL] = "null",
7717 [EXEC_INPUT_TTY] = "tty",
7718 [EXEC_INPUT_TTY_FORCE] = "tty-force",
7719 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
7720 [EXEC_INPUT_SOCKET] = "socket",
7721 [EXEC_INPUT_NAMED_FD] = "fd",
7722 [EXEC_INPUT_DATA] = "data",
7723 [EXEC_INPUT_FILE] = "file",
7724 };
7725
7726 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
7727
7728 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
7729 [EXEC_OUTPUT_INHERIT] = "inherit",
7730 [EXEC_OUTPUT_NULL] = "null",
7731 [EXEC_OUTPUT_TTY] = "tty",
7732 [EXEC_OUTPUT_KMSG] = "kmsg",
7733 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
7734 [EXEC_OUTPUT_JOURNAL] = "journal",
7735 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
7736 [EXEC_OUTPUT_SOCKET] = "socket",
7737 [EXEC_OUTPUT_NAMED_FD] = "fd",
7738 [EXEC_OUTPUT_FILE] = "file",
7739 [EXEC_OUTPUT_FILE_APPEND] = "append",
7740 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
7741 };
7742
7743 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
7744
7745 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
7746 [EXEC_UTMP_INIT] = "init",
7747 [EXEC_UTMP_LOGIN] = "login",
7748 [EXEC_UTMP_USER] = "user",
7749 };
7750
7751 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
7752
7753 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
7754 [EXEC_PRESERVE_NO] = "no",
7755 [EXEC_PRESERVE_YES] = "yes",
7756 [EXEC_PRESERVE_RESTART] = "restart",
7757 };
7758
7759 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
7760
7761 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
7762 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7763 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
7764 [EXEC_DIRECTORY_STATE] = "StateDirectory",
7765 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
7766 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
7767 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
7768 };
7769
7770 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
7771
7772 /* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */
7773 static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7774 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink",
7775 [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink",
7776 [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink",
7777 [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink",
7778 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink",
7779 };
7780
7781 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType);
7782
7783 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
7784 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
7785 * directories, specifically .timer units with their timestamp touch file. */
7786 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7787 [EXEC_DIRECTORY_RUNTIME] = "runtime",
7788 [EXEC_DIRECTORY_STATE] = "state",
7789 [EXEC_DIRECTORY_CACHE] = "cache",
7790 [EXEC_DIRECTORY_LOGS] = "logs",
7791 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
7792 };
7793
7794 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
7795
7796 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
7797 * the service payload in. */
7798 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7799 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
7800 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
7801 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
7802 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
7803 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
7804 };
7805
7806 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
7807
7808 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
7809 [EXEC_KEYRING_INHERIT] = "inherit",
7810 [EXEC_KEYRING_PRIVATE] = "private",
7811 [EXEC_KEYRING_SHARED] = "shared",
7812 };
7813
7814 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);