]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
user-util: rework maybe_setgroups() a bit
[thirdparty/systemd.git] / src / core / execute.c
1 /***
2 This file is part of systemd.
3
4 Copyright 2010 Lennart Poettering
5
6 systemd is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by
8 the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version.
10
11 systemd is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with systemd; If not, see <http://www.gnu.org/licenses/>.
18 ***/
19
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <glob.h>
23 #include <grp.h>
24 #include <poll.h>
25 #include <signal.h>
26 #include <string.h>
27 #include <sys/capability.h>
28 #include <sys/eventfd.h>
29 #include <sys/mman.h>
30 #include <sys/personality.h>
31 #include <sys/prctl.h>
32 #include <sys/socket.h>
33 #include <sys/stat.h>
34 #include <sys/un.h>
35 #include <unistd.h>
36 #include <utmpx.h>
37
38 #ifdef HAVE_PAM
39 #include <security/pam_appl.h>
40 #endif
41
42 #ifdef HAVE_SELINUX
43 #include <selinux/selinux.h>
44 #endif
45
46 #ifdef HAVE_SECCOMP
47 #include <seccomp.h>
48 #endif
49
50 #ifdef HAVE_APPARMOR
51 #include <sys/apparmor.h>
52 #endif
53
54 #include "sd-messages.h"
55
56 #include "af-list.h"
57 #include "alloc-util.h"
58 #ifdef HAVE_APPARMOR
59 #include "apparmor-util.h"
60 #endif
61 #include "async.h"
62 #include "barrier.h"
63 #include "cap-list.h"
64 #include "capability-util.h"
65 #include "def.h"
66 #include "env-util.h"
67 #include "errno-list.h"
68 #include "execute.h"
69 #include "exit-status.h"
70 #include "fd-util.h"
71 #include "fileio.h"
72 #include "formats-util.h"
73 #include "fs-util.h"
74 #include "glob-util.h"
75 #include "io-util.h"
76 #include "ioprio.h"
77 #include "log.h"
78 #include "macro.h"
79 #include "missing.h"
80 #include "mkdir.h"
81 #include "namespace.h"
82 #include "parse-util.h"
83 #include "path-util.h"
84 #include "process-util.h"
85 #include "rlimit-util.h"
86 #include "rm-rf.h"
87 #ifdef HAVE_SECCOMP
88 #include "seccomp-util.h"
89 #endif
90 #include "securebits.h"
91 #include "selinux-util.h"
92 #include "signal-util.h"
93 #include "smack-util.h"
94 #include "special.h"
95 #include "string-table.h"
96 #include "string-util.h"
97 #include "strv.h"
98 #include "syslog-util.h"
99 #include "terminal-util.h"
100 #include "unit.h"
101 #include "user-util.h"
102 #include "util.h"
103 #include "utmp-wtmp.h"
104
105 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
106 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
107
108 /* This assumes there is a 'tty' group */
109 #define TTY_MODE 0620
110
111 #define SNDBUF_SIZE (8*1024*1024)
112
113 static int shift_fds(int fds[], unsigned n_fds) {
114 int start, restart_from;
115
116 if (n_fds <= 0)
117 return 0;
118
119 /* Modifies the fds array! (sorts it) */
120
121 assert(fds);
122
123 start = 0;
124 for (;;) {
125 int i;
126
127 restart_from = -1;
128
129 for (i = start; i < (int) n_fds; i++) {
130 int nfd;
131
132 /* Already at right index? */
133 if (fds[i] == i+3)
134 continue;
135
136 nfd = fcntl(fds[i], F_DUPFD, i + 3);
137 if (nfd < 0)
138 return -errno;
139
140 safe_close(fds[i]);
141 fds[i] = nfd;
142
143 /* Hmm, the fd we wanted isn't free? Then
144 * let's remember that and try again from here */
145 if (nfd != i+3 && restart_from < 0)
146 restart_from = i;
147 }
148
149 if (restart_from < 0)
150 break;
151
152 start = restart_from;
153 }
154
155 return 0;
156 }
157
158 static int flags_fds(const int fds[], unsigned n_fds, bool nonblock) {
159 unsigned i;
160 int r;
161
162 if (n_fds <= 0)
163 return 0;
164
165 assert(fds);
166
167 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags */
168
169 for (i = 0; i < n_fds; i++) {
170
171 r = fd_nonblock(fds[i], nonblock);
172 if (r < 0)
173 return r;
174
175 /* We unconditionally drop FD_CLOEXEC from the fds,
176 * since after all we want to pass these fds to our
177 * children */
178
179 r = fd_cloexec(fds[i], false);
180 if (r < 0)
181 return r;
182 }
183
184 return 0;
185 }
186
187 static const char *exec_context_tty_path(const ExecContext *context) {
188 assert(context);
189
190 if (context->stdio_as_fds)
191 return NULL;
192
193 if (context->tty_path)
194 return context->tty_path;
195
196 return "/dev/console";
197 }
198
199 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
200 const char *path;
201
202 assert(context);
203
204 path = exec_context_tty_path(context);
205
206 if (context->tty_vhangup) {
207 if (p && p->stdin_fd >= 0)
208 (void) terminal_vhangup_fd(p->stdin_fd);
209 else if (path)
210 (void) terminal_vhangup(path);
211 }
212
213 if (context->tty_reset) {
214 if (p && p->stdin_fd >= 0)
215 (void) reset_terminal_fd(p->stdin_fd, true);
216 else if (path)
217 (void) reset_terminal(path);
218 }
219
220 if (context->tty_vt_disallocate && path)
221 (void) vt_disallocate(path);
222 }
223
224 static bool is_terminal_input(ExecInput i) {
225 return IN_SET(i,
226 EXEC_INPUT_TTY,
227 EXEC_INPUT_TTY_FORCE,
228 EXEC_INPUT_TTY_FAIL);
229 }
230
231 static bool is_terminal_output(ExecOutput o) {
232 return IN_SET(o,
233 EXEC_OUTPUT_TTY,
234 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
235 EXEC_OUTPUT_KMSG_AND_CONSOLE,
236 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
237 }
238
239 static bool exec_context_needs_term(const ExecContext *c) {
240 assert(c);
241
242 /* Return true if the execution context suggests we should set $TERM to something useful. */
243
244 if (is_terminal_input(c->std_input))
245 return true;
246
247 if (is_terminal_output(c->std_output))
248 return true;
249
250 if (is_terminal_output(c->std_error))
251 return true;
252
253 return !!c->tty_path;
254 }
255
256 static int open_null_as(int flags, int nfd) {
257 int fd, r;
258
259 assert(nfd >= 0);
260
261 fd = open("/dev/null", flags|O_NOCTTY);
262 if (fd < 0)
263 return -errno;
264
265 if (fd != nfd) {
266 r = dup2(fd, nfd) < 0 ? -errno : nfd;
267 safe_close(fd);
268 } else
269 r = nfd;
270
271 return r;
272 }
273
274 static int connect_journal_socket(int fd, uid_t uid, gid_t gid) {
275 union sockaddr_union sa = {
276 .un.sun_family = AF_UNIX,
277 .un.sun_path = "/run/systemd/journal/stdout",
278 };
279 uid_t olduid = UID_INVALID;
280 gid_t oldgid = GID_INVALID;
281 int r;
282
283 if (gid != GID_INVALID) {
284 oldgid = getgid();
285
286 r = setegid(gid);
287 if (r < 0)
288 return -errno;
289 }
290
291 if (uid != UID_INVALID) {
292 olduid = getuid();
293
294 r = seteuid(uid);
295 if (r < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
302 if (r < 0)
303 r = -errno;
304
305 /* If we fail to restore the uid or gid, things will likely
306 fail later on. This should only happen if an LSM interferes. */
307
308 if (uid != UID_INVALID)
309 (void) seteuid(olduid);
310
311 restore_gid:
312 if (gid != GID_INVALID)
313 (void) setegid(oldgid);
314
315 return r;
316 }
317
318 static int connect_logger_as(
319 Unit *unit,
320 const ExecContext *context,
321 ExecOutput output,
322 const char *ident,
323 int nfd,
324 uid_t uid,
325 gid_t gid) {
326
327 int fd, r;
328
329 assert(context);
330 assert(output < _EXEC_OUTPUT_MAX);
331 assert(ident);
332 assert(nfd >= 0);
333
334 fd = socket(AF_UNIX, SOCK_STREAM, 0);
335 if (fd < 0)
336 return -errno;
337
338 r = connect_journal_socket(fd, uid, gid);
339 if (r < 0)
340 return r;
341
342 if (shutdown(fd, SHUT_RD) < 0) {
343 safe_close(fd);
344 return -errno;
345 }
346
347 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
348
349 dprintf(fd,
350 "%s\n"
351 "%s\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n"
356 "%i\n",
357 context->syslog_identifier ? context->syslog_identifier : ident,
358 unit->id,
359 context->syslog_priority,
360 !!context->syslog_level_prefix,
361 output == EXEC_OUTPUT_SYSLOG || output == EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
362 output == EXEC_OUTPUT_KMSG || output == EXEC_OUTPUT_KMSG_AND_CONSOLE,
363 is_terminal_output(output));
364
365 if (fd == nfd)
366 return nfd;
367
368 r = dup2(fd, nfd) < 0 ? -errno : nfd;
369 safe_close(fd);
370
371 return r;
372 }
373 static int open_terminal_as(const char *path, mode_t mode, int nfd) {
374 int fd, r;
375
376 assert(path);
377 assert(nfd >= 0);
378
379 fd = open_terminal(path, mode | O_NOCTTY);
380 if (fd < 0)
381 return fd;
382
383 if (fd != nfd) {
384 r = dup2(fd, nfd) < 0 ? -errno : nfd;
385 safe_close(fd);
386 } else
387 r = nfd;
388
389 return r;
390 }
391
392 static int fixup_input(ExecInput std_input, int socket_fd, bool apply_tty_stdin) {
393
394 if (is_terminal_input(std_input) && !apply_tty_stdin)
395 return EXEC_INPUT_NULL;
396
397 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
398 return EXEC_INPUT_NULL;
399
400 return std_input;
401 }
402
403 static int fixup_output(ExecOutput std_output, int socket_fd) {
404
405 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
406 return EXEC_OUTPUT_INHERIT;
407
408 return std_output;
409 }
410
411 static int setup_input(
412 const ExecContext *context,
413 const ExecParameters *params,
414 int socket_fd) {
415
416 ExecInput i;
417
418 assert(context);
419 assert(params);
420
421 if (params->stdin_fd >= 0) {
422 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
423 return -errno;
424
425 /* Try to make this the controlling tty, if it is a tty, and reset it */
426 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
427 (void) reset_terminal_fd(STDIN_FILENO, true);
428
429 return STDIN_FILENO;
430 }
431
432 i = fixup_input(context->std_input, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
433
434 switch (i) {
435
436 case EXEC_INPUT_NULL:
437 return open_null_as(O_RDONLY, STDIN_FILENO);
438
439 case EXEC_INPUT_TTY:
440 case EXEC_INPUT_TTY_FORCE:
441 case EXEC_INPUT_TTY_FAIL: {
442 int fd, r;
443
444 fd = acquire_terminal(exec_context_tty_path(context),
445 i == EXEC_INPUT_TTY_FAIL,
446 i == EXEC_INPUT_TTY_FORCE,
447 false,
448 USEC_INFINITY);
449 if (fd < 0)
450 return fd;
451
452 if (fd != STDIN_FILENO) {
453 r = dup2(fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
454 safe_close(fd);
455 } else
456 r = STDIN_FILENO;
457
458 return r;
459 }
460
461 case EXEC_INPUT_SOCKET:
462 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
463
464 default:
465 assert_not_reached("Unknown input type");
466 }
467 }
468
469 static int setup_output(
470 Unit *unit,
471 const ExecContext *context,
472 const ExecParameters *params,
473 int fileno,
474 int socket_fd,
475 const char *ident,
476 uid_t uid,
477 gid_t gid,
478 dev_t *journal_stream_dev,
479 ino_t *journal_stream_ino) {
480
481 ExecOutput o;
482 ExecInput i;
483 int r;
484
485 assert(unit);
486 assert(context);
487 assert(params);
488 assert(ident);
489 assert(journal_stream_dev);
490 assert(journal_stream_ino);
491
492 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
493
494 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
495 return -errno;
496
497 return STDOUT_FILENO;
498 }
499
500 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
501 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
502 return -errno;
503
504 return STDERR_FILENO;
505 }
506
507 i = fixup_input(context->std_input, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
508 o = fixup_output(context->std_output, socket_fd);
509
510 if (fileno == STDERR_FILENO) {
511 ExecOutput e;
512 e = fixup_output(context->std_error, socket_fd);
513
514 /* This expects the input and output are already set up */
515
516 /* Don't change the stderr file descriptor if we inherit all
517 * the way and are not on a tty */
518 if (e == EXEC_OUTPUT_INHERIT &&
519 o == EXEC_OUTPUT_INHERIT &&
520 i == EXEC_INPUT_NULL &&
521 !is_terminal_input(context->std_input) &&
522 getppid () != 1)
523 return fileno;
524
525 /* Duplicate from stdout if possible */
526 if (e == o || e == EXEC_OUTPUT_INHERIT)
527 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
528
529 o = e;
530
531 } else if (o == EXEC_OUTPUT_INHERIT) {
532 /* If input got downgraded, inherit the original value */
533 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
534 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
535
536 /* If the input is connected to anything that's not a /dev/null, inherit that... */
537 if (i != EXEC_INPUT_NULL)
538 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
539
540 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
541 if (getppid() != 1)
542 return fileno;
543
544 /* We need to open /dev/null here anew, to get the right access mode. */
545 return open_null_as(O_WRONLY, fileno);
546 }
547
548 switch (o) {
549
550 case EXEC_OUTPUT_NULL:
551 return open_null_as(O_WRONLY, fileno);
552
553 case EXEC_OUTPUT_TTY:
554 if (is_terminal_input(i))
555 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
556
557 /* We don't reset the terminal if this is just about output */
558 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
559
560 case EXEC_OUTPUT_SYSLOG:
561 case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
562 case EXEC_OUTPUT_KMSG:
563 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
564 case EXEC_OUTPUT_JOURNAL:
565 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
566 r = connect_logger_as(unit, context, o, ident, fileno, uid, gid);
567 if (r < 0) {
568 log_unit_error_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
569 r = open_null_as(O_WRONLY, fileno);
570 } else {
571 struct stat st;
572
573 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
574 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
575 * services to detect whether they are connected to the journal or not. */
576
577 if (fstat(fileno, &st) >= 0) {
578 *journal_stream_dev = st.st_dev;
579 *journal_stream_ino = st.st_ino;
580 }
581 }
582 return r;
583
584 case EXEC_OUTPUT_SOCKET:
585 assert(socket_fd >= 0);
586 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
587
588 default:
589 assert_not_reached("Unknown error type");
590 }
591 }
592
593 static int chown_terminal(int fd, uid_t uid) {
594 struct stat st;
595
596 assert(fd >= 0);
597
598 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
599 if (isatty(fd) < 1)
600 return 0;
601
602 /* This might fail. What matters are the results. */
603 (void) fchown(fd, uid, -1);
604 (void) fchmod(fd, TTY_MODE);
605
606 if (fstat(fd, &st) < 0)
607 return -errno;
608
609 if (st.st_uid != uid || (st.st_mode & 0777) != TTY_MODE)
610 return -EPERM;
611
612 return 0;
613 }
614
615 static int setup_confirm_stdio(int *_saved_stdin, int *_saved_stdout) {
616 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
617 int r;
618
619 assert(_saved_stdin);
620 assert(_saved_stdout);
621
622 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
623 if (saved_stdin < 0)
624 return -errno;
625
626 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
627 if (saved_stdout < 0)
628 return -errno;
629
630 fd = acquire_terminal(
631 "/dev/console",
632 false,
633 false,
634 false,
635 DEFAULT_CONFIRM_USEC);
636 if (fd < 0)
637 return fd;
638
639 r = chown_terminal(fd, getuid());
640 if (r < 0)
641 return r;
642
643 r = reset_terminal_fd(fd, true);
644 if (r < 0)
645 return r;
646
647 if (dup2(fd, STDIN_FILENO) < 0)
648 return -errno;
649
650 if (dup2(fd, STDOUT_FILENO) < 0)
651 return -errno;
652
653 if (fd >= 2)
654 safe_close(fd);
655 fd = -1;
656
657 *_saved_stdin = saved_stdin;
658 *_saved_stdout = saved_stdout;
659
660 saved_stdin = saved_stdout = -1;
661
662 return 0;
663 }
664
665 _printf_(1, 2) static int write_confirm_message(const char *format, ...) {
666 _cleanup_close_ int fd = -1;
667 va_list ap;
668
669 assert(format);
670
671 fd = open_terminal("/dev/console", O_WRONLY|O_NOCTTY|O_CLOEXEC);
672 if (fd < 0)
673 return fd;
674
675 va_start(ap, format);
676 vdprintf(fd, format, ap);
677 va_end(ap);
678
679 return 0;
680 }
681
682 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
683 int r = 0;
684
685 assert(saved_stdin);
686 assert(saved_stdout);
687
688 release_terminal();
689
690 if (*saved_stdin >= 0)
691 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
692 r = -errno;
693
694 if (*saved_stdout >= 0)
695 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
696 r = -errno;
697
698 *saved_stdin = safe_close(*saved_stdin);
699 *saved_stdout = safe_close(*saved_stdout);
700
701 return r;
702 }
703
704 static int ask_for_confirmation(char *response, char **argv) {
705 int saved_stdout = -1, saved_stdin = -1, r;
706 _cleanup_free_ char *line = NULL;
707
708 r = setup_confirm_stdio(&saved_stdin, &saved_stdout);
709 if (r < 0)
710 return r;
711
712 line = exec_command_line(argv);
713 if (!line)
714 return -ENOMEM;
715
716 r = ask_char(response, "yns", "Execute %s? [Yes, No, Skip] ", line);
717
718 restore_confirm_stdio(&saved_stdin, &saved_stdout);
719
720 return r;
721 }
722
723 static int enforce_groups(const ExecContext *context, const char *username, gid_t gid) {
724 bool keep_groups = false;
725 int r;
726
727 assert(context);
728
729 /* Lookup and set GID and supplementary group list. Here too
730 * we avoid NSS lookups for gid=0. */
731
732 if (context->group || username) {
733 /* First step, initialize groups from /etc/groups */
734 if (username && gid != 0) {
735 if (initgroups(username, gid) < 0)
736 return -errno;
737
738 keep_groups = true;
739 }
740
741 /* Second step, set our gids */
742 if (setresgid(gid, gid, gid) < 0)
743 return -errno;
744 }
745
746 if (context->supplementary_groups) {
747 int ngroups_max, k;
748 gid_t *gids;
749 char **i;
750
751 /* Final step, initialize any manually set supplementary groups */
752 assert_se((ngroups_max = (int) sysconf(_SC_NGROUPS_MAX)) > 0);
753
754 if (!(gids = new(gid_t, ngroups_max)))
755 return -ENOMEM;
756
757 if (keep_groups) {
758 k = getgroups(ngroups_max, gids);
759 if (k < 0) {
760 free(gids);
761 return -errno;
762 }
763 } else
764 k = 0;
765
766 STRV_FOREACH(i, context->supplementary_groups) {
767 const char *g;
768
769 if (k >= ngroups_max) {
770 free(gids);
771 return -E2BIG;
772 }
773
774 g = *i;
775 r = get_group_creds(&g, gids+k);
776 if (r < 0) {
777 free(gids);
778 return r;
779 }
780
781 k++;
782 }
783
784 r = maybe_setgroups(k, gids);
785 if (r < 0) {
786 free(gids);
787 return r;
788 }
789
790 free(gids);
791 }
792
793 return 0;
794 }
795
796 static int enforce_user(const ExecContext *context, uid_t uid) {
797 assert(context);
798
799 /* Sets (but doesn't look up) the uid and make sure we keep the
800 * capabilities while doing so. */
801
802 if (context->capability_ambient_set != 0) {
803
804 /* First step: If we need to keep capabilities but
805 * drop privileges we need to make sure we keep our
806 * caps, while we drop privileges. */
807 if (uid != 0) {
808 int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
809
810 if (prctl(PR_GET_SECUREBITS) != sb)
811 if (prctl(PR_SET_SECUREBITS, sb) < 0)
812 return -errno;
813 }
814 }
815
816 /* Second step: actually set the uids */
817 if (setresuid(uid, uid, uid) < 0)
818 return -errno;
819
820 /* At this point we should have all necessary capabilities but
821 are otherwise a normal user. However, the caps might got
822 corrupted due to the setresuid() so we need clean them up
823 later. This is done outside of this call. */
824
825 return 0;
826 }
827
828 #ifdef HAVE_PAM
829
830 static int null_conv(
831 int num_msg,
832 const struct pam_message **msg,
833 struct pam_response **resp,
834 void *appdata_ptr) {
835
836 /* We don't support conversations */
837
838 return PAM_CONV_ERR;
839 }
840
841 #endif
842
843 static int setup_pam(
844 const char *name,
845 const char *user,
846 uid_t uid,
847 gid_t gid,
848 const char *tty,
849 char ***env,
850 int fds[], unsigned n_fds) {
851
852 #ifdef HAVE_PAM
853
854 static const struct pam_conv conv = {
855 .conv = null_conv,
856 .appdata_ptr = NULL
857 };
858
859 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
860 pam_handle_t *handle = NULL;
861 sigset_t old_ss;
862 int pam_code = PAM_SUCCESS, r;
863 char **nv, **e = NULL;
864 bool close_session = false;
865 pid_t pam_pid = 0, parent_pid;
866 int flags = 0;
867
868 assert(name);
869 assert(user);
870 assert(env);
871
872 /* We set up PAM in the parent process, then fork. The child
873 * will then stay around until killed via PR_GET_PDEATHSIG or
874 * systemd via the cgroup logic. It will then remove the PAM
875 * session again. The parent process will exec() the actual
876 * daemon. We do things this way to ensure that the main PID
877 * of the daemon is the one we initially fork()ed. */
878
879 r = barrier_create(&barrier);
880 if (r < 0)
881 goto fail;
882
883 if (log_get_max_level() < LOG_DEBUG)
884 flags |= PAM_SILENT;
885
886 pam_code = pam_start(name, user, &conv, &handle);
887 if (pam_code != PAM_SUCCESS) {
888 handle = NULL;
889 goto fail;
890 }
891
892 if (tty) {
893 pam_code = pam_set_item(handle, PAM_TTY, tty);
894 if (pam_code != PAM_SUCCESS)
895 goto fail;
896 }
897
898 STRV_FOREACH(nv, *env) {
899 pam_code = pam_putenv(handle, *nv);
900 if (pam_code != PAM_SUCCESS)
901 goto fail;
902 }
903
904 pam_code = pam_acct_mgmt(handle, flags);
905 if (pam_code != PAM_SUCCESS)
906 goto fail;
907
908 pam_code = pam_open_session(handle, flags);
909 if (pam_code != PAM_SUCCESS)
910 goto fail;
911
912 close_session = true;
913
914 e = pam_getenvlist(handle);
915 if (!e) {
916 pam_code = PAM_BUF_ERR;
917 goto fail;
918 }
919
920 /* Block SIGTERM, so that we know that it won't get lost in
921 * the child */
922
923 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
924
925 parent_pid = getpid();
926
927 pam_pid = fork();
928 if (pam_pid < 0) {
929 r = -errno;
930 goto fail;
931 }
932
933 if (pam_pid == 0) {
934 int sig, ret = EXIT_PAM;
935
936 /* The child's job is to reset the PAM session on
937 * termination */
938 barrier_set_role(&barrier, BARRIER_CHILD);
939
940 /* This string must fit in 10 chars (i.e. the length
941 * of "/sbin/init"), to look pretty in /bin/ps */
942 rename_process("(sd-pam)");
943
944 /* Make sure we don't keep open the passed fds in this
945 child. We assume that otherwise only those fds are
946 open here that have been opened by PAM. */
947 close_many(fds, n_fds);
948
949 /* Drop privileges - we don't need any to pam_close_session
950 * and this will make PR_SET_PDEATHSIG work in most cases.
951 * If this fails, ignore the error - but expect sd-pam threads
952 * to fail to exit normally */
953
954 r = maybe_setgroups(0, NULL);
955 if (r < 0)
956 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
957 if (setresgid(gid, gid, gid) < 0)
958 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
959 if (setresuid(uid, uid, uid) < 0)
960 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
961
962 (void) ignore_signals(SIGPIPE, -1);
963
964 /* Wait until our parent died. This will only work if
965 * the above setresuid() succeeds, otherwise the kernel
966 * will not allow unprivileged parents kill their privileged
967 * children this way. We rely on the control groups kill logic
968 * to do the rest for us. */
969 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
970 goto child_finish;
971
972 /* Tell the parent that our setup is done. This is especially
973 * important regarding dropping privileges. Otherwise, unit
974 * setup might race against our setresuid(2) call. */
975 barrier_place(&barrier);
976
977 /* Check if our parent process might already have
978 * died? */
979 if (getppid() == parent_pid) {
980 sigset_t ss;
981
982 assert_se(sigemptyset(&ss) >= 0);
983 assert_se(sigaddset(&ss, SIGTERM) >= 0);
984
985 for (;;) {
986 if (sigwait(&ss, &sig) < 0) {
987 if (errno == EINTR)
988 continue;
989
990 goto child_finish;
991 }
992
993 assert(sig == SIGTERM);
994 break;
995 }
996 }
997
998 /* If our parent died we'll end the session */
999 if (getppid() != parent_pid) {
1000 pam_code = pam_close_session(handle, flags);
1001 if (pam_code != PAM_SUCCESS)
1002 goto child_finish;
1003 }
1004
1005 ret = 0;
1006
1007 child_finish:
1008 pam_end(handle, pam_code | flags);
1009 _exit(ret);
1010 }
1011
1012 barrier_set_role(&barrier, BARRIER_PARENT);
1013
1014 /* If the child was forked off successfully it will do all the
1015 * cleanups, so forget about the handle here. */
1016 handle = NULL;
1017
1018 /* Unblock SIGTERM again in the parent */
1019 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1020
1021 /* We close the log explicitly here, since the PAM modules
1022 * might have opened it, but we don't want this fd around. */
1023 closelog();
1024
1025 /* Synchronously wait for the child to initialize. We don't care for
1026 * errors as we cannot recover. However, warn loudly if it happens. */
1027 if (!barrier_place_and_sync(&barrier))
1028 log_error("PAM initialization failed");
1029
1030 strv_free(*env);
1031 *env = e;
1032
1033 return 0;
1034
1035 fail:
1036 if (pam_code != PAM_SUCCESS) {
1037 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1038 r = -EPERM; /* PAM errors do not map to errno */
1039 } else
1040 log_error_errno(r, "PAM failed: %m");
1041
1042 if (handle) {
1043 if (close_session)
1044 pam_code = pam_close_session(handle, flags);
1045
1046 pam_end(handle, pam_code | flags);
1047 }
1048
1049 strv_free(e);
1050 closelog();
1051
1052 return r;
1053 #else
1054 return 0;
1055 #endif
1056 }
1057
1058 static void rename_process_from_path(const char *path) {
1059 char process_name[11];
1060 const char *p;
1061 size_t l;
1062
1063 /* This resulting string must fit in 10 chars (i.e. the length
1064 * of "/sbin/init") to look pretty in /bin/ps */
1065
1066 p = basename(path);
1067 if (isempty(p)) {
1068 rename_process("(...)");
1069 return;
1070 }
1071
1072 l = strlen(p);
1073 if (l > 8) {
1074 /* The end of the process name is usually more
1075 * interesting, since the first bit might just be
1076 * "systemd-" */
1077 p = p + l - 8;
1078 l = 8;
1079 }
1080
1081 process_name[0] = '(';
1082 memcpy(process_name+1, p, l);
1083 process_name[1+l] = ')';
1084 process_name[1+l+1] = 0;
1085
1086 rename_process(process_name);
1087 }
1088
1089 #ifdef HAVE_SECCOMP
1090
1091 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1092 if (!is_seccomp_available()) {
1093 log_open();
1094 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1095 log_close();
1096 return true;
1097 }
1098 return false;
1099 }
1100
1101 static int apply_seccomp(const Unit* u, const ExecContext *c) {
1102 uint32_t negative_action, action;
1103 scmp_filter_ctx *seccomp;
1104 Iterator i;
1105 void *id;
1106 int r;
1107
1108 assert(c);
1109
1110 if (skip_seccomp_unavailable(u, "syscall filtering"))
1111 return 0;
1112
1113 negative_action = c->syscall_errno == 0 ? SCMP_ACT_KILL : SCMP_ACT_ERRNO(c->syscall_errno);
1114
1115 seccomp = seccomp_init(c->syscall_whitelist ? negative_action : SCMP_ACT_ALLOW);
1116 if (!seccomp)
1117 return -ENOMEM;
1118
1119 if (c->syscall_archs) {
1120
1121 SET_FOREACH(id, c->syscall_archs, i) {
1122 r = seccomp_arch_add(seccomp, PTR_TO_UINT32(id) - 1);
1123 if (r == -EEXIST)
1124 continue;
1125 if (r < 0)
1126 goto finish;
1127 }
1128
1129 } else {
1130 r = seccomp_add_secondary_archs(seccomp);
1131 if (r < 0)
1132 goto finish;
1133 }
1134
1135 action = c->syscall_whitelist ? SCMP_ACT_ALLOW : negative_action;
1136 SET_FOREACH(id, c->syscall_filter, i) {
1137 r = seccomp_rule_add(seccomp, action, PTR_TO_INT(id) - 1, 0);
1138 if (r < 0)
1139 goto finish;
1140 }
1141
1142 r = seccomp_attr_set(seccomp, SCMP_FLTATR_CTL_NNP, 0);
1143 if (r < 0)
1144 goto finish;
1145
1146 r = seccomp_load(seccomp);
1147
1148 finish:
1149 seccomp_release(seccomp);
1150 return r;
1151 }
1152
1153 static int apply_address_families(const Unit* u, const ExecContext *c) {
1154 scmp_filter_ctx *seccomp;
1155 Iterator i;
1156 int r;
1157
1158 assert(c);
1159
1160 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1161 return 0;
1162
1163 seccomp = seccomp_init(SCMP_ACT_ALLOW);
1164 if (!seccomp)
1165 return -ENOMEM;
1166
1167 r = seccomp_add_secondary_archs(seccomp);
1168 if (r < 0)
1169 goto finish;
1170
1171 if (c->address_families_whitelist) {
1172 int af, first = 0, last = 0;
1173 void *afp;
1174
1175 /* If this is a whitelist, we first block the address
1176 * families that are out of range and then everything
1177 * that is not in the set. First, we find the lowest
1178 * and highest address family in the set. */
1179
1180 SET_FOREACH(afp, c->address_families, i) {
1181 af = PTR_TO_INT(afp);
1182
1183 if (af <= 0 || af >= af_max())
1184 continue;
1185
1186 if (first == 0 || af < first)
1187 first = af;
1188
1189 if (last == 0 || af > last)
1190 last = af;
1191 }
1192
1193 assert((first == 0) == (last == 0));
1194
1195 if (first == 0) {
1196
1197 /* No entries in the valid range, block everything */
1198 r = seccomp_rule_add(
1199 seccomp,
1200 SCMP_ACT_ERRNO(EPROTONOSUPPORT),
1201 SCMP_SYS(socket),
1202 0);
1203 if (r < 0)
1204 goto finish;
1205
1206 } else {
1207
1208 /* Block everything below the first entry */
1209 r = seccomp_rule_add(
1210 seccomp,
1211 SCMP_ACT_ERRNO(EPROTONOSUPPORT),
1212 SCMP_SYS(socket),
1213 1,
1214 SCMP_A0(SCMP_CMP_LT, first));
1215 if (r < 0)
1216 goto finish;
1217
1218 /* Block everything above the last entry */
1219 r = seccomp_rule_add(
1220 seccomp,
1221 SCMP_ACT_ERRNO(EPROTONOSUPPORT),
1222 SCMP_SYS(socket),
1223 1,
1224 SCMP_A0(SCMP_CMP_GT, last));
1225 if (r < 0)
1226 goto finish;
1227
1228 /* Block everything between the first and last
1229 * entry */
1230 for (af = 1; af < af_max(); af++) {
1231
1232 if (set_contains(c->address_families, INT_TO_PTR(af)))
1233 continue;
1234
1235 r = seccomp_rule_add(
1236 seccomp,
1237 SCMP_ACT_ERRNO(EPROTONOSUPPORT),
1238 SCMP_SYS(socket),
1239 1,
1240 SCMP_A0(SCMP_CMP_EQ, af));
1241 if (r < 0)
1242 goto finish;
1243 }
1244 }
1245
1246 } else {
1247 void *af;
1248
1249 /* If this is a blacklist, then generate one rule for
1250 * each address family that are then combined in OR
1251 * checks. */
1252
1253 SET_FOREACH(af, c->address_families, i) {
1254
1255 r = seccomp_rule_add(
1256 seccomp,
1257 SCMP_ACT_ERRNO(EPROTONOSUPPORT),
1258 SCMP_SYS(socket),
1259 1,
1260 SCMP_A0(SCMP_CMP_EQ, PTR_TO_INT(af)));
1261 if (r < 0)
1262 goto finish;
1263 }
1264 }
1265
1266 r = seccomp_attr_set(seccomp, SCMP_FLTATR_CTL_NNP, 0);
1267 if (r < 0)
1268 goto finish;
1269
1270 r = seccomp_load(seccomp);
1271
1272 finish:
1273 seccomp_release(seccomp);
1274 return r;
1275 }
1276
1277 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1278 scmp_filter_ctx *seccomp;
1279 int r;
1280
1281 assert(c);
1282
1283 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1284 return 0;
1285
1286 seccomp = seccomp_init(SCMP_ACT_ALLOW);
1287 if (!seccomp)
1288 return -ENOMEM;
1289
1290 r = seccomp_add_secondary_archs(seccomp);
1291 if (r < 0)
1292 goto finish;
1293
1294 r = seccomp_rule_add(
1295 seccomp,
1296 SCMP_ACT_ERRNO(EPERM),
1297 SCMP_SYS(mmap),
1298 1,
1299 SCMP_A2(SCMP_CMP_MASKED_EQ, PROT_EXEC|PROT_WRITE, PROT_EXEC|PROT_WRITE));
1300 if (r < 0)
1301 goto finish;
1302
1303 r = seccomp_rule_add(
1304 seccomp,
1305 SCMP_ACT_ERRNO(EPERM),
1306 SCMP_SYS(mprotect),
1307 1,
1308 SCMP_A2(SCMP_CMP_MASKED_EQ, PROT_EXEC, PROT_EXEC));
1309 if (r < 0)
1310 goto finish;
1311
1312 r = seccomp_attr_set(seccomp, SCMP_FLTATR_CTL_NNP, 0);
1313 if (r < 0)
1314 goto finish;
1315
1316 r = seccomp_load(seccomp);
1317
1318 finish:
1319 seccomp_release(seccomp);
1320 return r;
1321 }
1322
1323 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1324 static const int permitted_policies[] = {
1325 SCHED_OTHER,
1326 SCHED_BATCH,
1327 SCHED_IDLE,
1328 };
1329
1330 scmp_filter_ctx *seccomp;
1331 unsigned i;
1332 int r, p, max_policy = 0;
1333
1334 assert(c);
1335
1336 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1337 return 0;
1338
1339 seccomp = seccomp_init(SCMP_ACT_ALLOW);
1340 if (!seccomp)
1341 return -ENOMEM;
1342
1343 r = seccomp_add_secondary_archs(seccomp);
1344 if (r < 0)
1345 goto finish;
1346
1347 /* Determine the highest policy constant we want to allow */
1348 for (i = 0; i < ELEMENTSOF(permitted_policies); i++)
1349 if (permitted_policies[i] > max_policy)
1350 max_policy = permitted_policies[i];
1351
1352 /* Go through all policies with lower values than that, and block them -- unless they appear in the
1353 * whitelist. */
1354 for (p = 0; p < max_policy; p++) {
1355 bool good = false;
1356
1357 /* Check if this is in the whitelist. */
1358 for (i = 0; i < ELEMENTSOF(permitted_policies); i++)
1359 if (permitted_policies[i] == p) {
1360 good = true;
1361 break;
1362 }
1363
1364 if (good)
1365 continue;
1366
1367 /* Deny this policy */
1368 r = seccomp_rule_add(
1369 seccomp,
1370 SCMP_ACT_ERRNO(EPERM),
1371 SCMP_SYS(sched_setscheduler),
1372 1,
1373 SCMP_A1(SCMP_CMP_EQ, p));
1374 if (r < 0)
1375 goto finish;
1376 }
1377
1378 /* Blacklist all other policies, i.e. the ones with higher values. Note that all comparisons are unsigned here,
1379 * hence no need no check for < 0 values. */
1380 r = seccomp_rule_add(
1381 seccomp,
1382 SCMP_ACT_ERRNO(EPERM),
1383 SCMP_SYS(sched_setscheduler),
1384 1,
1385 SCMP_A1(SCMP_CMP_GT, max_policy));
1386 if (r < 0)
1387 goto finish;
1388
1389 r = seccomp_attr_set(seccomp, SCMP_FLTATR_CTL_NNP, 0);
1390 if (r < 0)
1391 goto finish;
1392
1393 r = seccomp_load(seccomp);
1394
1395 finish:
1396 seccomp_release(seccomp);
1397 return r;
1398 }
1399
1400 static int apply_protect_sysctl(Unit *u, const ExecContext *c) {
1401 scmp_filter_ctx *seccomp;
1402 int r;
1403
1404 assert(c);
1405
1406 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1407 * let's protect even those systems where this is left on in the kernel. */
1408
1409 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1410 return 0;
1411
1412 seccomp = seccomp_init(SCMP_ACT_ALLOW);
1413 if (!seccomp)
1414 return -ENOMEM;
1415
1416 r = seccomp_add_secondary_archs(seccomp);
1417 if (r < 0)
1418 goto finish;
1419
1420 r = seccomp_rule_add(
1421 seccomp,
1422 SCMP_ACT_ERRNO(EPERM),
1423 SCMP_SYS(_sysctl),
1424 0);
1425 if (r < 0)
1426 goto finish;
1427
1428 r = seccomp_attr_set(seccomp, SCMP_FLTATR_CTL_NNP, 0);
1429 if (r < 0)
1430 goto finish;
1431
1432 r = seccomp_load(seccomp);
1433
1434 finish:
1435 seccomp_release(seccomp);
1436 return r;
1437 }
1438
1439 static int apply_private_devices(Unit *u, const ExecContext *c) {
1440 const SystemCallFilterSet *set;
1441 scmp_filter_ctx *seccomp;
1442 const char *sys;
1443 bool syscalls_found = false;
1444 int r;
1445
1446 assert(c);
1447
1448 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1449
1450 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1451 return 0;
1452
1453 seccomp = seccomp_init(SCMP_ACT_ALLOW);
1454 if (!seccomp)
1455 return -ENOMEM;
1456
1457 r = seccomp_add_secondary_archs(seccomp);
1458 if (r < 0)
1459 goto finish;
1460
1461 for (set = syscall_filter_sets; set->set_name; set++)
1462 if (streq(set->set_name, "@raw-io")) {
1463 syscalls_found = true;
1464 break;
1465 }
1466
1467 /* We should never fail here */
1468 if (!syscalls_found) {
1469 r = -EOPNOTSUPP;
1470 goto finish;
1471 }
1472
1473 NULSTR_FOREACH(sys, set->value) {
1474 int id;
1475 bool add = true;
1476
1477 #ifndef __NR_s390_pci_mmio_read
1478 if (streq(sys, "s390_pci_mmio_read"))
1479 add = false;
1480 #endif
1481 #ifndef __NR_s390_pci_mmio_write
1482 if (streq(sys, "s390_pci_mmio_write"))
1483 add = false;
1484 #endif
1485
1486 if (!add)
1487 continue;
1488
1489 id = seccomp_syscall_resolve_name(sys);
1490
1491 r = seccomp_rule_add(
1492 seccomp,
1493 SCMP_ACT_ERRNO(EPERM),
1494 id, 0);
1495 if (r < 0)
1496 goto finish;
1497 }
1498
1499 r = seccomp_attr_set(seccomp, SCMP_FLTATR_CTL_NNP, 0);
1500 if (r < 0)
1501 goto finish;
1502
1503 r = seccomp_load(seccomp);
1504
1505 finish:
1506 seccomp_release(seccomp);
1507 return r;
1508 }
1509
1510 #endif
1511
1512 static void do_idle_pipe_dance(int idle_pipe[4]) {
1513 assert(idle_pipe);
1514
1515 idle_pipe[1] = safe_close(idle_pipe[1]);
1516 idle_pipe[2] = safe_close(idle_pipe[2]);
1517
1518 if (idle_pipe[0] >= 0) {
1519 int r;
1520
1521 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1522
1523 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1524 ssize_t n;
1525
1526 /* Signal systemd that we are bored and want to continue. */
1527 n = write(idle_pipe[3], "x", 1);
1528 if (n > 0)
1529 /* Wait for systemd to react to the signal above. */
1530 fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1531 }
1532
1533 idle_pipe[0] = safe_close(idle_pipe[0]);
1534
1535 }
1536
1537 idle_pipe[3] = safe_close(idle_pipe[3]);
1538 }
1539
1540 static int build_environment(
1541 Unit *u,
1542 const ExecContext *c,
1543 const ExecParameters *p,
1544 unsigned n_fds,
1545 const char *home,
1546 const char *username,
1547 const char *shell,
1548 dev_t journal_stream_dev,
1549 ino_t journal_stream_ino,
1550 char ***ret) {
1551
1552 _cleanup_strv_free_ char **our_env = NULL;
1553 unsigned n_env = 0;
1554 char *x;
1555
1556 assert(c);
1557 assert(ret);
1558
1559 our_env = new0(char*, 13);
1560 if (!our_env)
1561 return -ENOMEM;
1562
1563 if (n_fds > 0) {
1564 _cleanup_free_ char *joined = NULL;
1565
1566 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid()) < 0)
1567 return -ENOMEM;
1568 our_env[n_env++] = x;
1569
1570 if (asprintf(&x, "LISTEN_FDS=%u", n_fds) < 0)
1571 return -ENOMEM;
1572 our_env[n_env++] = x;
1573
1574 joined = strv_join(p->fd_names, ":");
1575 if (!joined)
1576 return -ENOMEM;
1577
1578 x = strjoin("LISTEN_FDNAMES=", joined, NULL);
1579 if (!x)
1580 return -ENOMEM;
1581 our_env[n_env++] = x;
1582 }
1583
1584 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1585 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid()) < 0)
1586 return -ENOMEM;
1587 our_env[n_env++] = x;
1588
1589 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1590 return -ENOMEM;
1591 our_env[n_env++] = x;
1592 }
1593
1594 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1595 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1596 * check the database directly. */
1597 if (unit_has_name(u, SPECIAL_DBUS_SERVICE)) {
1598 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1599 if (!x)
1600 return -ENOMEM;
1601 our_env[n_env++] = x;
1602 }
1603
1604 if (home) {
1605 x = strappend("HOME=", home);
1606 if (!x)
1607 return -ENOMEM;
1608 our_env[n_env++] = x;
1609 }
1610
1611 if (username) {
1612 x = strappend("LOGNAME=", username);
1613 if (!x)
1614 return -ENOMEM;
1615 our_env[n_env++] = x;
1616
1617 x = strappend("USER=", username);
1618 if (!x)
1619 return -ENOMEM;
1620 our_env[n_env++] = x;
1621 }
1622
1623 if (shell) {
1624 x = strappend("SHELL=", shell);
1625 if (!x)
1626 return -ENOMEM;
1627 our_env[n_env++] = x;
1628 }
1629
1630 if (exec_context_needs_term(c)) {
1631 const char *tty_path, *term = NULL;
1632
1633 tty_path = exec_context_tty_path(c);
1634
1635 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try to inherit
1636 * the $TERM set for PID 1. This is useful for containers so that the $TERM the container manager
1637 * passes to PID 1 ends up all the way in the console login shown. */
1638
1639 if (path_equal(tty_path, "/dev/console") && getppid() == 1)
1640 term = getenv("TERM");
1641 if (!term)
1642 term = default_term_for_tty(tty_path);
1643
1644 x = strappend("TERM=", term);
1645 if (!x)
1646 return -ENOMEM;
1647 our_env[n_env++] = x;
1648 }
1649
1650 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1651 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1652 return -ENOMEM;
1653
1654 our_env[n_env++] = x;
1655 }
1656
1657 our_env[n_env++] = NULL;
1658 assert(n_env <= 12);
1659
1660 *ret = our_env;
1661 our_env = NULL;
1662
1663 return 0;
1664 }
1665
1666 static int build_pass_environment(const ExecContext *c, char ***ret) {
1667 _cleanup_strv_free_ char **pass_env = NULL;
1668 size_t n_env = 0, n_bufsize = 0;
1669 char **i;
1670
1671 STRV_FOREACH(i, c->pass_environment) {
1672 _cleanup_free_ char *x = NULL;
1673 char *v;
1674
1675 v = getenv(*i);
1676 if (!v)
1677 continue;
1678 x = strjoin(*i, "=", v, NULL);
1679 if (!x)
1680 return -ENOMEM;
1681 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1682 return -ENOMEM;
1683 pass_env[n_env++] = x;
1684 pass_env[n_env] = NULL;
1685 x = NULL;
1686 }
1687
1688 *ret = pass_env;
1689 pass_env = NULL;
1690
1691 return 0;
1692 }
1693
1694 static bool exec_needs_mount_namespace(
1695 const ExecContext *context,
1696 const ExecParameters *params,
1697 ExecRuntime *runtime) {
1698
1699 assert(context);
1700 assert(params);
1701
1702 if (!strv_isempty(context->read_write_paths) ||
1703 !strv_isempty(context->read_only_paths) ||
1704 !strv_isempty(context->inaccessible_paths))
1705 return true;
1706
1707 if (context->mount_flags != 0)
1708 return true;
1709
1710 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1711 return true;
1712
1713 if (context->private_devices ||
1714 context->protect_system != PROTECT_SYSTEM_NO ||
1715 context->protect_home != PROTECT_HOME_NO ||
1716 context->protect_kernel_tunables ||
1717 context->protect_control_groups)
1718 return true;
1719
1720 return false;
1721 }
1722
1723 static int setup_private_users(uid_t uid, gid_t gid) {
1724 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1725 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1726 _cleanup_close_ int unshare_ready_fd = -1;
1727 _cleanup_(sigkill_waitp) pid_t pid = 0;
1728 uint64_t c = 1;
1729 siginfo_t si;
1730 ssize_t n;
1731 int r;
1732
1733 /* Set up a user namespace and map root to root, the selected UID/GID to itself, and everything else to
1734 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1735 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1736 * which waits for the parent to create the new user namespace while staying in the original namespace. The
1737 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1738 * continues execution normally. */
1739
1740 if (uid != 0 && uid_is_valid(uid))
1741 asprintf(&uid_map,
1742 "0 0 1\n" /* Map root → root */
1743 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
1744 uid, uid); /* The case where the above is the same */
1745 else
1746 uid_map = strdup("0 0 1\n");
1747 if (!uid_map)
1748 return -ENOMEM;
1749
1750 if (gid != 0 && gid_is_valid(gid))
1751 asprintf(&gid_map,
1752 "0 0 1\n" /* Map root → root */
1753 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
1754 gid, gid);
1755 else
1756 gid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1757 if (!gid_map)
1758 return -ENOMEM;
1759
1760 /* Create a communication channel so that the parent can tell the child when it finished creating the user
1761 * namespace. */
1762 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
1763 if (unshare_ready_fd < 0)
1764 return -errno;
1765
1766 /* Create a communication channel so that the child can tell the parent a proper error code in case it
1767 * failed. */
1768 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
1769 return -errno;
1770
1771 pid = fork();
1772 if (pid < 0)
1773 return -errno;
1774
1775 if (pid == 0) {
1776 _cleanup_close_ int fd = -1;
1777 const char *a;
1778 pid_t ppid;
1779
1780 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
1781 * here, after the parent opened its own user namespace. */
1782
1783 ppid = getppid();
1784 errno_pipe[0] = safe_close(errno_pipe[0]);
1785
1786 /* Wait until the parent unshared the user namespace */
1787 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
1788 r = -errno;
1789 goto child_fail;
1790 }
1791
1792 /* Disable the setgroups() system call in the child user namespace, for good. */
1793 a = procfs_file_alloca(ppid, "setgroups");
1794 fd = open(a, O_WRONLY|O_CLOEXEC);
1795 if (fd < 0) {
1796 if (errno != ENOENT) {
1797 r = -errno;
1798 goto child_fail;
1799 }
1800
1801 /* If the file is missing the kernel is too old, let's continue anyway. */
1802 } else {
1803 if (write(fd, "deny\n", 5) < 0) {
1804 r = -errno;
1805 goto child_fail;
1806 }
1807
1808 fd = safe_close(fd);
1809 }
1810
1811 /* First write the GID map */
1812 a = procfs_file_alloca(ppid, "gid_map");
1813 fd = open(a, O_WRONLY|O_CLOEXEC);
1814 if (fd < 0) {
1815 r = -errno;
1816 goto child_fail;
1817 }
1818 if (write(fd, gid_map, strlen(gid_map)) < 0) {
1819 r = -errno;
1820 goto child_fail;
1821 }
1822 fd = safe_close(fd);
1823
1824 /* The write the UID map */
1825 a = procfs_file_alloca(ppid, "uid_map");
1826 fd = open(a, O_WRONLY|O_CLOEXEC);
1827 if (fd < 0) {
1828 r = -errno;
1829 goto child_fail;
1830 }
1831 if (write(fd, uid_map, strlen(uid_map)) < 0) {
1832 r = -errno;
1833 goto child_fail;
1834 }
1835
1836 _exit(EXIT_SUCCESS);
1837
1838 child_fail:
1839 (void) write(errno_pipe[1], &r, sizeof(r));
1840 _exit(EXIT_FAILURE);
1841 }
1842
1843 errno_pipe[1] = safe_close(errno_pipe[1]);
1844
1845 if (unshare(CLONE_NEWUSER) < 0)
1846 return -errno;
1847
1848 /* Let the child know that the namespace is ready now */
1849 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
1850 return -errno;
1851
1852 /* Try to read an error code from the child */
1853 n = read(errno_pipe[0], &r, sizeof(r));
1854 if (n < 0)
1855 return -errno;
1856 if (n == sizeof(r)) { /* an error code was sent to us */
1857 if (r < 0)
1858 return r;
1859 return -EIO;
1860 }
1861 if (n != 0) /* on success we should have read 0 bytes */
1862 return -EIO;
1863
1864 r = wait_for_terminate(pid, &si);
1865 if (r < 0)
1866 return r;
1867 pid = 0;
1868
1869 /* If something strange happened with the child, let's consider this fatal, too */
1870 if (si.si_code != CLD_EXITED || si.si_status != 0)
1871 return -EIO;
1872
1873 return 0;
1874 }
1875
1876 static int setup_runtime_directory(
1877 const ExecContext *context,
1878 const ExecParameters *params,
1879 uid_t uid,
1880 gid_t gid) {
1881
1882 char **rt;
1883 int r;
1884
1885 assert(context);
1886 assert(params);
1887
1888 STRV_FOREACH(rt, context->runtime_directory) {
1889 _cleanup_free_ char *p;
1890
1891 p = strjoin(params->runtime_prefix, "/", *rt, NULL);
1892 if (!p)
1893 return -ENOMEM;
1894
1895 r = mkdir_p_label(p, context->runtime_directory_mode);
1896 if (r < 0)
1897 return r;
1898
1899 r = chmod_and_chown(p, context->runtime_directory_mode, uid, gid);
1900 if (r < 0)
1901 return r;
1902 }
1903
1904 return 0;
1905 }
1906
1907 static int setup_smack(
1908 const ExecContext *context,
1909 const ExecCommand *command) {
1910
1911 #ifdef HAVE_SMACK
1912 int r;
1913
1914 assert(context);
1915 assert(command);
1916
1917 if (!mac_smack_use())
1918 return 0;
1919
1920 if (context->smack_process_label) {
1921 r = mac_smack_apply_pid(0, context->smack_process_label);
1922 if (r < 0)
1923 return r;
1924 }
1925 #ifdef SMACK_DEFAULT_PROCESS_LABEL
1926 else {
1927 _cleanup_free_ char *exec_label = NULL;
1928
1929 r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
1930 if (r < 0 && r != -ENODATA && r != -EOPNOTSUPP)
1931 return r;
1932
1933 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
1934 if (r < 0)
1935 return r;
1936 }
1937 #endif
1938 #endif
1939
1940 return 0;
1941 }
1942
1943 static int compile_read_write_paths(
1944 const ExecContext *context,
1945 const ExecParameters *params,
1946 char ***ret) {
1947
1948 _cleanup_strv_free_ char **l = NULL;
1949 char **rt;
1950
1951 /* Compile the list of writable paths. This is the combination of the explicitly configured paths, plus all
1952 * runtime directories. */
1953
1954 if (strv_isempty(context->read_write_paths) &&
1955 strv_isempty(context->runtime_directory)) {
1956 *ret = NULL; /* NOP if neither is set */
1957 return 0;
1958 }
1959
1960 l = strv_copy(context->read_write_paths);
1961 if (!l)
1962 return -ENOMEM;
1963
1964 STRV_FOREACH(rt, context->runtime_directory) {
1965 char *s;
1966
1967 s = strjoin(params->runtime_prefix, "/", *rt, NULL);
1968 if (!s)
1969 return -ENOMEM;
1970
1971 if (strv_consume(&l, s) < 0)
1972 return -ENOMEM;
1973 }
1974
1975 *ret = l;
1976 l = NULL;
1977
1978 return 0;
1979 }
1980
1981 static void append_socket_pair(int *array, unsigned *n, int pair[2]) {
1982 assert(array);
1983 assert(n);
1984
1985 if (!pair)
1986 return;
1987
1988 if (pair[0] >= 0)
1989 array[(*n)++] = pair[0];
1990 if (pair[1] >= 0)
1991 array[(*n)++] = pair[1];
1992 }
1993
1994 static int close_remaining_fds(
1995 const ExecParameters *params,
1996 ExecRuntime *runtime,
1997 DynamicCreds *dcreds,
1998 int user_lookup_fd,
1999 int socket_fd,
2000 int *fds, unsigned n_fds) {
2001
2002 unsigned n_dont_close = 0;
2003 int dont_close[n_fds + 12];
2004
2005 assert(params);
2006
2007 if (params->stdin_fd >= 0)
2008 dont_close[n_dont_close++] = params->stdin_fd;
2009 if (params->stdout_fd >= 0)
2010 dont_close[n_dont_close++] = params->stdout_fd;
2011 if (params->stderr_fd >= 0)
2012 dont_close[n_dont_close++] = params->stderr_fd;
2013
2014 if (socket_fd >= 0)
2015 dont_close[n_dont_close++] = socket_fd;
2016 if (n_fds > 0) {
2017 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2018 n_dont_close += n_fds;
2019 }
2020
2021 if (runtime)
2022 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2023
2024 if (dcreds) {
2025 if (dcreds->user)
2026 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2027 if (dcreds->group)
2028 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2029 }
2030
2031 if (user_lookup_fd >= 0)
2032 dont_close[n_dont_close++] = user_lookup_fd;
2033
2034 return close_all_fds(dont_close, n_dont_close);
2035 }
2036
2037 static bool context_has_address_families(const ExecContext *c) {
2038 assert(c);
2039
2040 return c->address_families_whitelist ||
2041 !set_isempty(c->address_families);
2042 }
2043
2044 static bool context_has_syscall_filters(const ExecContext *c) {
2045 assert(c);
2046
2047 return c->syscall_whitelist ||
2048 !set_isempty(c->syscall_filter) ||
2049 !set_isempty(c->syscall_archs);
2050 }
2051
2052 static bool context_has_no_new_privileges(const ExecContext *c) {
2053 assert(c);
2054
2055 if (c->no_new_privileges)
2056 return true;
2057
2058 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
2059 return false;
2060
2061 return context_has_address_families(c) || /* we need NNP if we have any form of seccomp and are unprivileged */
2062 c->memory_deny_write_execute ||
2063 c->restrict_realtime ||
2064 c->protect_kernel_tunables ||
2065 context_has_syscall_filters(c);
2066 }
2067
2068 static int send_user_lookup(
2069 Unit *unit,
2070 int user_lookup_fd,
2071 uid_t uid,
2072 gid_t gid) {
2073
2074 assert(unit);
2075
2076 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2077 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2078 * specified. */
2079
2080 if (user_lookup_fd < 0)
2081 return 0;
2082
2083 if (!uid_is_valid(uid) && !gid_is_valid(gid))
2084 return 0;
2085
2086 if (writev(user_lookup_fd,
2087 (struct iovec[]) {
2088 { .iov_base = &uid, .iov_len = sizeof(uid) },
2089 { .iov_base = &gid, .iov_len = sizeof(gid) },
2090 { .iov_base = unit->id, .iov_len = strlen(unit->id) }}, 3) < 0)
2091 return -errno;
2092
2093 return 0;
2094 }
2095
2096 static int exec_child(
2097 Unit *unit,
2098 ExecCommand *command,
2099 const ExecContext *context,
2100 const ExecParameters *params,
2101 ExecRuntime *runtime,
2102 DynamicCreds *dcreds,
2103 char **argv,
2104 int socket_fd,
2105 int *fds, unsigned n_fds,
2106 char **files_env,
2107 int user_lookup_fd,
2108 int *exit_status) {
2109
2110 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **final_argv = NULL;
2111 _cleanup_free_ char *mac_selinux_context_net = NULL;
2112 const char *username = NULL, *home = NULL, *shell = NULL, *wd;
2113 dev_t journal_stream_dev = 0;
2114 ino_t journal_stream_ino = 0;
2115 bool needs_mount_namespace;
2116 uid_t uid = UID_INVALID;
2117 gid_t gid = GID_INVALID;
2118 int i, r;
2119
2120 assert(unit);
2121 assert(command);
2122 assert(context);
2123 assert(params);
2124 assert(exit_status);
2125
2126 rename_process_from_path(command->path);
2127
2128 /* We reset exactly these signals, since they are the
2129 * only ones we set to SIG_IGN in the main daemon. All
2130 * others we leave untouched because we set them to
2131 * SIG_DFL or a valid handler initially, both of which
2132 * will be demoted to SIG_DFL. */
2133 (void) default_signals(SIGNALS_CRASH_HANDLER,
2134 SIGNALS_IGNORE, -1);
2135
2136 if (context->ignore_sigpipe)
2137 (void) ignore_signals(SIGPIPE, -1);
2138
2139 r = reset_signal_mask();
2140 if (r < 0) {
2141 *exit_status = EXIT_SIGNAL_MASK;
2142 return r;
2143 }
2144
2145 if (params->idle_pipe)
2146 do_idle_pipe_dance(params->idle_pipe);
2147
2148 /* Close sockets very early to make sure we don't
2149 * block init reexecution because it cannot bind its
2150 * sockets */
2151
2152 log_forget_fds();
2153
2154 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, fds, n_fds);
2155 if (r < 0) {
2156 *exit_status = EXIT_FDS;
2157 return r;
2158 }
2159
2160 if (!context->same_pgrp)
2161 if (setsid() < 0) {
2162 *exit_status = EXIT_SETSID;
2163 return -errno;
2164 }
2165
2166 exec_context_tty_reset(context, params);
2167
2168 if (params->flags & EXEC_CONFIRM_SPAWN) {
2169 char response;
2170
2171 r = ask_for_confirmation(&response, argv);
2172 if (r == -ETIMEDOUT)
2173 write_confirm_message("Confirmation question timed out, assuming positive response.\n");
2174 else if (r < 0)
2175 write_confirm_message("Couldn't ask confirmation question, assuming positive response: %s\n", strerror(-r));
2176 else if (response == 's') {
2177 write_confirm_message("Skipping execution.\n");
2178 *exit_status = EXIT_CONFIRM;
2179 return -ECANCELED;
2180 } else if (response == 'n') {
2181 write_confirm_message("Failing execution.\n");
2182 *exit_status = 0;
2183 return 0;
2184 }
2185 }
2186
2187 if (context->dynamic_user && dcreds) {
2188
2189 /* Make sure we bypass our own NSS module for any NSS checks */
2190 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
2191 *exit_status = EXIT_USER;
2192 return -errno;
2193 }
2194
2195 r = dynamic_creds_realize(dcreds, &uid, &gid);
2196 if (r < 0) {
2197 *exit_status = EXIT_USER;
2198 return r;
2199 }
2200
2201 if (!uid_is_valid(uid) || !gid_is_valid(gid)) {
2202 *exit_status = EXIT_USER;
2203 return -ESRCH;
2204 }
2205
2206 if (dcreds->user)
2207 username = dcreds->user->name;
2208
2209 } else {
2210 if (context->user) {
2211 username = context->user;
2212 r = get_user_creds_clean(&username, &uid, &gid, &home, &shell);
2213 if (r < 0) {
2214 *exit_status = EXIT_USER;
2215 return r;
2216 }
2217
2218 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
2219 * (i.e. are "/" or "/bin/nologin"). */
2220 }
2221
2222 if (context->group) {
2223 const char *g = context->group;
2224
2225 r = get_group_creds(&g, &gid);
2226 if (r < 0) {
2227 *exit_status = EXIT_GROUP;
2228 return r;
2229 }
2230 }
2231 }
2232
2233 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
2234 if (r < 0) {
2235 *exit_status = EXIT_USER;
2236 return r;
2237 }
2238
2239 user_lookup_fd = safe_close(user_lookup_fd);
2240
2241 /* If a socket is connected to STDIN/STDOUT/STDERR, we
2242 * must sure to drop O_NONBLOCK */
2243 if (socket_fd >= 0)
2244 (void) fd_nonblock(socket_fd, false);
2245
2246 r = setup_input(context, params, socket_fd);
2247 if (r < 0) {
2248 *exit_status = EXIT_STDIN;
2249 return r;
2250 }
2251
2252 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
2253 if (r < 0) {
2254 *exit_status = EXIT_STDOUT;
2255 return r;
2256 }
2257
2258 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
2259 if (r < 0) {
2260 *exit_status = EXIT_STDERR;
2261 return r;
2262 }
2263
2264 if (params->cgroup_path) {
2265 r = cg_attach_everywhere(params->cgroup_supported, params->cgroup_path, 0, NULL, NULL);
2266 if (r < 0) {
2267 *exit_status = EXIT_CGROUP;
2268 return r;
2269 }
2270 }
2271
2272 if (context->oom_score_adjust_set) {
2273 char t[DECIMAL_STR_MAX(context->oom_score_adjust)];
2274
2275 /* When we can't make this change due to EPERM, then
2276 * let's silently skip over it. User namespaces
2277 * prohibit write access to this file, and we
2278 * shouldn't trip up over that. */
2279
2280 sprintf(t, "%i", context->oom_score_adjust);
2281 r = write_string_file("/proc/self/oom_score_adj", t, 0);
2282 if (r == -EPERM || r == -EACCES) {
2283 log_open();
2284 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
2285 log_close();
2286 } else if (r < 0) {
2287 *exit_status = EXIT_OOM_ADJUST;
2288 return -errno;
2289 }
2290 }
2291
2292 if (context->nice_set)
2293 if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
2294 *exit_status = EXIT_NICE;
2295 return -errno;
2296 }
2297
2298 if (context->cpu_sched_set) {
2299 struct sched_param param = {
2300 .sched_priority = context->cpu_sched_priority,
2301 };
2302
2303 r = sched_setscheduler(0,
2304 context->cpu_sched_policy |
2305 (context->cpu_sched_reset_on_fork ?
2306 SCHED_RESET_ON_FORK : 0),
2307 &param);
2308 if (r < 0) {
2309 *exit_status = EXIT_SETSCHEDULER;
2310 return -errno;
2311 }
2312 }
2313
2314 if (context->cpuset)
2315 if (sched_setaffinity(0, CPU_ALLOC_SIZE(context->cpuset_ncpus), context->cpuset) < 0) {
2316 *exit_status = EXIT_CPUAFFINITY;
2317 return -errno;
2318 }
2319
2320 if (context->ioprio_set)
2321 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
2322 *exit_status = EXIT_IOPRIO;
2323 return -errno;
2324 }
2325
2326 if (context->timer_slack_nsec != NSEC_INFINITY)
2327 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
2328 *exit_status = EXIT_TIMERSLACK;
2329 return -errno;
2330 }
2331
2332 if (context->personality != PERSONALITY_INVALID)
2333 if (personality(context->personality) < 0) {
2334 *exit_status = EXIT_PERSONALITY;
2335 return -errno;
2336 }
2337
2338 if (context->utmp_id)
2339 utmp_put_init_process(context->utmp_id, getpid(), getsid(0), context->tty_path,
2340 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
2341 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
2342 USER_PROCESS,
2343 username ? "root" : context->user);
2344
2345 if (context->user && is_terminal_input(context->std_input)) {
2346 r = chown_terminal(STDIN_FILENO, uid);
2347 if (r < 0) {
2348 *exit_status = EXIT_STDIN;
2349 return r;
2350 }
2351 }
2352
2353 /* If delegation is enabled we'll pass ownership of the cgroup
2354 * (but only in systemd's own controller hierarchy!) to the
2355 * user of the new process. */
2356 if (params->cgroup_path && context->user && params->cgroup_delegate) {
2357 r = cg_set_task_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, 0644, uid, gid);
2358 if (r < 0) {
2359 *exit_status = EXIT_CGROUP;
2360 return r;
2361 }
2362
2363
2364 r = cg_set_group_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, 0755, uid, gid);
2365 if (r < 0) {
2366 *exit_status = EXIT_CGROUP;
2367 return r;
2368 }
2369 }
2370
2371 if (!strv_isempty(context->runtime_directory) && params->runtime_prefix) {
2372 r = setup_runtime_directory(context, params, uid, gid);
2373 if (r < 0) {
2374 *exit_status = EXIT_RUNTIME_DIRECTORY;
2375 return r;
2376 }
2377 }
2378
2379 r = build_environment(
2380 unit,
2381 context,
2382 params,
2383 n_fds,
2384 home,
2385 username,
2386 shell,
2387 journal_stream_dev,
2388 journal_stream_ino,
2389 &our_env);
2390 if (r < 0) {
2391 *exit_status = EXIT_MEMORY;
2392 return r;
2393 }
2394
2395 r = build_pass_environment(context, &pass_env);
2396 if (r < 0) {
2397 *exit_status = EXIT_MEMORY;
2398 return r;
2399 }
2400
2401 accum_env = strv_env_merge(5,
2402 params->environment,
2403 our_env,
2404 pass_env,
2405 context->environment,
2406 files_env,
2407 NULL);
2408 if (!accum_env) {
2409 *exit_status = EXIT_MEMORY;
2410 return -ENOMEM;
2411 }
2412 accum_env = strv_env_clean(accum_env);
2413
2414 (void) umask(context->umask);
2415
2416 if ((params->flags & EXEC_APPLY_PERMISSIONS) && !command->privileged) {
2417 r = setup_smack(context, command);
2418 if (r < 0) {
2419 *exit_status = EXIT_SMACK_PROCESS_LABEL;
2420 return r;
2421 }
2422
2423 if (context->pam_name && username) {
2424 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
2425 if (r < 0) {
2426 *exit_status = EXIT_PAM;
2427 return r;
2428 }
2429 }
2430 }
2431
2432 if (context->private_network && runtime && runtime->netns_storage_socket[0] >= 0) {
2433 r = setup_netns(runtime->netns_storage_socket);
2434 if (r < 0) {
2435 *exit_status = EXIT_NETWORK;
2436 return r;
2437 }
2438 }
2439
2440 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
2441 if (needs_mount_namespace) {
2442 _cleanup_free_ char **rw = NULL;
2443 char *tmp = NULL, *var = NULL;
2444
2445 /* The runtime struct only contains the parent
2446 * of the private /tmp, which is
2447 * non-accessible to world users. Inside of it
2448 * there's a /tmp that is sticky, and that's
2449 * the one we want to use here. */
2450
2451 if (context->private_tmp && runtime) {
2452 if (runtime->tmp_dir)
2453 tmp = strjoina(runtime->tmp_dir, "/tmp");
2454 if (runtime->var_tmp_dir)
2455 var = strjoina(runtime->var_tmp_dir, "/tmp");
2456 }
2457
2458 r = compile_read_write_paths(context, params, &rw);
2459 if (r < 0) {
2460 *exit_status = EXIT_NAMESPACE;
2461 return r;
2462 }
2463
2464 r = setup_namespace(
2465 (params->flags & EXEC_APPLY_CHROOT) ? context->root_directory : NULL,
2466 rw,
2467 context->read_only_paths,
2468 context->inaccessible_paths,
2469 tmp,
2470 var,
2471 context->private_devices,
2472 context->protect_kernel_tunables,
2473 context->protect_control_groups,
2474 context->protect_home,
2475 context->protect_system,
2476 context->mount_flags);
2477
2478 /* If we couldn't set up the namespace this is
2479 * probably due to a missing capability. In this case,
2480 * silently proceeed. */
2481 if (r == -EPERM || r == -EACCES) {
2482 log_open();
2483 log_unit_debug_errno(unit, r, "Failed to set up namespace, assuming containerized execution, ignoring: %m");
2484 log_close();
2485 } else if (r < 0) {
2486 *exit_status = EXIT_NAMESPACE;
2487 return r;
2488 }
2489 }
2490
2491 if ((params->flags & EXEC_APPLY_PERMISSIONS) && !command->privileged) {
2492 r = enforce_groups(context, username, gid);
2493 if (r < 0) {
2494 *exit_status = EXIT_GROUP;
2495 return r;
2496 }
2497 }
2498
2499 if (context->working_directory_home)
2500 wd = home;
2501 else if (context->working_directory)
2502 wd = context->working_directory;
2503 else
2504 wd = "/";
2505
2506 if (params->flags & EXEC_APPLY_CHROOT) {
2507 if (!needs_mount_namespace && context->root_directory)
2508 if (chroot(context->root_directory) < 0) {
2509 *exit_status = EXIT_CHROOT;
2510 return -errno;
2511 }
2512
2513 if (chdir(wd) < 0 &&
2514 !context->working_directory_missing_ok) {
2515 *exit_status = EXIT_CHDIR;
2516 return -errno;
2517 }
2518 } else {
2519 const char *d;
2520
2521 d = strjoina(strempty(context->root_directory), "/", strempty(wd));
2522 if (chdir(d) < 0 &&
2523 !context->working_directory_missing_ok) {
2524 *exit_status = EXIT_CHDIR;
2525 return -errno;
2526 }
2527 }
2528
2529 #ifdef HAVE_SELINUX
2530 if ((params->flags & EXEC_APPLY_PERMISSIONS) &&
2531 mac_selinux_use() &&
2532 params->selinux_context_net &&
2533 socket_fd >= 0 &&
2534 !command->privileged) {
2535
2536 r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
2537 if (r < 0) {
2538 *exit_status = EXIT_SELINUX_CONTEXT;
2539 return r;
2540 }
2541 }
2542 #endif
2543
2544 if ((params->flags & EXEC_APPLY_PERMISSIONS) && context->private_users) {
2545 r = setup_private_users(uid, gid);
2546 if (r < 0) {
2547 *exit_status = EXIT_USER;
2548 return r;
2549 }
2550 }
2551
2552 /* We repeat the fd closing here, to make sure that
2553 * nothing is leaked from the PAM modules. Note that
2554 * we are more aggressive this time since socket_fd
2555 * and the netns fds we don't need anymore. The custom
2556 * endpoint fd was needed to upload the policy and can
2557 * now be closed as well. */
2558 r = close_all_fds(fds, n_fds);
2559 if (r >= 0)
2560 r = shift_fds(fds, n_fds);
2561 if (r >= 0)
2562 r = flags_fds(fds, n_fds, context->non_blocking);
2563 if (r < 0) {
2564 *exit_status = EXIT_FDS;
2565 return r;
2566 }
2567
2568 if ((params->flags & EXEC_APPLY_PERMISSIONS) && !command->privileged) {
2569
2570 int secure_bits = context->secure_bits;
2571
2572 for (i = 0; i < _RLIMIT_MAX; i++) {
2573
2574 if (!context->rlimit[i])
2575 continue;
2576
2577 r = setrlimit_closest(i, context->rlimit[i]);
2578 if (r < 0) {
2579 *exit_status = EXIT_LIMITS;
2580 return r;
2581 }
2582 }
2583
2584 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested. */
2585 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
2586 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
2587 *exit_status = EXIT_LIMITS;
2588 return -errno;
2589 }
2590 }
2591
2592 if (!cap_test_all(context->capability_bounding_set)) {
2593 r = capability_bounding_set_drop(context->capability_bounding_set, false);
2594 if (r < 0) {
2595 *exit_status = EXIT_CAPABILITIES;
2596 return r;
2597 }
2598 }
2599
2600 /* This is done before enforce_user, but ambient set
2601 * does not survive over setresuid() if keep_caps is not set. */
2602 if (context->capability_ambient_set != 0) {
2603 r = capability_ambient_set_apply(context->capability_ambient_set, true);
2604 if (r < 0) {
2605 *exit_status = EXIT_CAPABILITIES;
2606 return r;
2607 }
2608 }
2609
2610 if (context->user) {
2611 r = enforce_user(context, uid);
2612 if (r < 0) {
2613 *exit_status = EXIT_USER;
2614 return r;
2615 }
2616 if (context->capability_ambient_set != 0) {
2617
2618 /* Fix the ambient capabilities after user change. */
2619 r = capability_ambient_set_apply(context->capability_ambient_set, false);
2620 if (r < 0) {
2621 *exit_status = EXIT_CAPABILITIES;
2622 return r;
2623 }
2624
2625 /* If we were asked to change user and ambient capabilities
2626 * were requested, we had to add keep-caps to the securebits
2627 * so that we would maintain the inherited capability set
2628 * through the setresuid(). Make sure that the bit is added
2629 * also to the context secure_bits so that we don't try to
2630 * drop the bit away next. */
2631
2632 secure_bits |= 1<<SECURE_KEEP_CAPS;
2633 }
2634 }
2635
2636 /* PR_GET_SECUREBITS is not privileged, while
2637 * PR_SET_SECUREBITS is. So to suppress
2638 * potential EPERMs we'll try not to call
2639 * PR_SET_SECUREBITS unless necessary. */
2640 if (prctl(PR_GET_SECUREBITS) != secure_bits)
2641 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
2642 *exit_status = EXIT_SECUREBITS;
2643 return -errno;
2644 }
2645
2646 if (context_has_no_new_privileges(context))
2647 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
2648 *exit_status = EXIT_NO_NEW_PRIVILEGES;
2649 return -errno;
2650 }
2651
2652 #ifdef HAVE_SECCOMP
2653 if (context_has_address_families(context)) {
2654 r = apply_address_families(unit, context);
2655 if (r < 0) {
2656 *exit_status = EXIT_ADDRESS_FAMILIES;
2657 return r;
2658 }
2659 }
2660
2661 if (context->memory_deny_write_execute) {
2662 r = apply_memory_deny_write_execute(unit, context);
2663 if (r < 0) {
2664 *exit_status = EXIT_SECCOMP;
2665 return r;
2666 }
2667 }
2668
2669 if (context->restrict_realtime) {
2670 r = apply_restrict_realtime(unit, context);
2671 if (r < 0) {
2672 *exit_status = EXIT_SECCOMP;
2673 return r;
2674 }
2675 }
2676
2677 if (context->protect_kernel_tunables) {
2678 r = apply_protect_sysctl(unit, context);
2679 if (r < 0) {
2680 *exit_status = EXIT_SECCOMP;
2681 return r;
2682 }
2683 }
2684
2685 if (context->private_devices) {
2686 r = apply_private_devices(unit, context);
2687 if (r < 0) {
2688 *exit_status = EXIT_SECCOMP;
2689 return r;
2690 }
2691 }
2692
2693 if (context_has_syscall_filters(context)) {
2694 r = apply_seccomp(unit, context);
2695 if (r < 0) {
2696 *exit_status = EXIT_SECCOMP;
2697 return r;
2698 }
2699 }
2700 #endif
2701
2702 #ifdef HAVE_SELINUX
2703 if (mac_selinux_use()) {
2704 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
2705
2706 if (exec_context) {
2707 r = setexeccon(exec_context);
2708 if (r < 0) {
2709 *exit_status = EXIT_SELINUX_CONTEXT;
2710 return r;
2711 }
2712 }
2713 }
2714 #endif
2715
2716 #ifdef HAVE_APPARMOR
2717 if (context->apparmor_profile && mac_apparmor_use()) {
2718 r = aa_change_onexec(context->apparmor_profile);
2719 if (r < 0 && !context->apparmor_profile_ignore) {
2720 *exit_status = EXIT_APPARMOR_PROFILE;
2721 return -errno;
2722 }
2723 }
2724 #endif
2725 }
2726
2727 final_argv = replace_env_argv(argv, accum_env);
2728 if (!final_argv) {
2729 *exit_status = EXIT_MEMORY;
2730 return -ENOMEM;
2731 }
2732
2733 if (_unlikely_(log_get_max_level() >= LOG_DEBUG)) {
2734 _cleanup_free_ char *line;
2735
2736 line = exec_command_line(final_argv);
2737 if (line) {
2738 log_open();
2739 log_struct(LOG_DEBUG,
2740 LOG_UNIT_ID(unit),
2741 "EXECUTABLE=%s", command->path,
2742 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
2743 NULL);
2744 log_close();
2745 }
2746 }
2747
2748 execve(command->path, final_argv, accum_env);
2749 *exit_status = EXIT_EXEC;
2750 return -errno;
2751 }
2752
2753 int exec_spawn(Unit *unit,
2754 ExecCommand *command,
2755 const ExecContext *context,
2756 const ExecParameters *params,
2757 ExecRuntime *runtime,
2758 DynamicCreds *dcreds,
2759 pid_t *ret) {
2760
2761 _cleanup_strv_free_ char **files_env = NULL;
2762 int *fds = NULL; unsigned n_fds = 0;
2763 _cleanup_free_ char *line = NULL;
2764 int socket_fd, r;
2765 char **argv;
2766 pid_t pid;
2767
2768 assert(unit);
2769 assert(command);
2770 assert(context);
2771 assert(ret);
2772 assert(params);
2773 assert(params->fds || params->n_fds <= 0);
2774
2775 if (context->std_input == EXEC_INPUT_SOCKET ||
2776 context->std_output == EXEC_OUTPUT_SOCKET ||
2777 context->std_error == EXEC_OUTPUT_SOCKET) {
2778
2779 if (params->n_fds != 1) {
2780 log_unit_error(unit, "Got more than one socket.");
2781 return -EINVAL;
2782 }
2783
2784 socket_fd = params->fds[0];
2785 } else {
2786 socket_fd = -1;
2787 fds = params->fds;
2788 n_fds = params->n_fds;
2789 }
2790
2791 r = exec_context_load_environment(unit, context, &files_env);
2792 if (r < 0)
2793 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
2794
2795 argv = params->argv ?: command->argv;
2796 line = exec_command_line(argv);
2797 if (!line)
2798 return log_oom();
2799
2800 log_struct(LOG_DEBUG,
2801 LOG_UNIT_ID(unit),
2802 LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
2803 "EXECUTABLE=%s", command->path,
2804 NULL);
2805 pid = fork();
2806 if (pid < 0)
2807 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
2808
2809 if (pid == 0) {
2810 int exit_status;
2811
2812 r = exec_child(unit,
2813 command,
2814 context,
2815 params,
2816 runtime,
2817 dcreds,
2818 argv,
2819 socket_fd,
2820 fds, n_fds,
2821 files_env,
2822 unit->manager->user_lookup_fds[1],
2823 &exit_status);
2824 if (r < 0) {
2825 log_open();
2826 log_struct_errno(LOG_ERR, r,
2827 LOG_MESSAGE_ID(SD_MESSAGE_SPAWN_FAILED),
2828 LOG_UNIT_ID(unit),
2829 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
2830 exit_status_to_string(exit_status, EXIT_STATUS_SYSTEMD),
2831 command->path),
2832 "EXECUTABLE=%s", command->path,
2833 NULL);
2834 }
2835
2836 _exit(exit_status);
2837 }
2838
2839 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
2840
2841 /* We add the new process to the cgroup both in the child (so
2842 * that we can be sure that no user code is ever executed
2843 * outside of the cgroup) and in the parent (so that we can be
2844 * sure that when we kill the cgroup the process will be
2845 * killed too). */
2846 if (params->cgroup_path)
2847 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, pid);
2848
2849 exec_status_start(&command->exec_status, pid);
2850
2851 *ret = pid;
2852 return 0;
2853 }
2854
2855 void exec_context_init(ExecContext *c) {
2856 assert(c);
2857
2858 c->umask = 0022;
2859 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
2860 c->cpu_sched_policy = SCHED_OTHER;
2861 c->syslog_priority = LOG_DAEMON|LOG_INFO;
2862 c->syslog_level_prefix = true;
2863 c->ignore_sigpipe = true;
2864 c->timer_slack_nsec = NSEC_INFINITY;
2865 c->personality = PERSONALITY_INVALID;
2866 c->runtime_directory_mode = 0755;
2867 c->capability_bounding_set = CAP_ALL;
2868 }
2869
2870 void exec_context_done(ExecContext *c) {
2871 unsigned l;
2872
2873 assert(c);
2874
2875 c->environment = strv_free(c->environment);
2876 c->environment_files = strv_free(c->environment_files);
2877 c->pass_environment = strv_free(c->pass_environment);
2878
2879 for (l = 0; l < ELEMENTSOF(c->rlimit); l++)
2880 c->rlimit[l] = mfree(c->rlimit[l]);
2881
2882 c->working_directory = mfree(c->working_directory);
2883 c->root_directory = mfree(c->root_directory);
2884 c->tty_path = mfree(c->tty_path);
2885 c->syslog_identifier = mfree(c->syslog_identifier);
2886 c->user = mfree(c->user);
2887 c->group = mfree(c->group);
2888
2889 c->supplementary_groups = strv_free(c->supplementary_groups);
2890
2891 c->pam_name = mfree(c->pam_name);
2892
2893 c->read_only_paths = strv_free(c->read_only_paths);
2894 c->read_write_paths = strv_free(c->read_write_paths);
2895 c->inaccessible_paths = strv_free(c->inaccessible_paths);
2896
2897 if (c->cpuset)
2898 CPU_FREE(c->cpuset);
2899
2900 c->utmp_id = mfree(c->utmp_id);
2901 c->selinux_context = mfree(c->selinux_context);
2902 c->apparmor_profile = mfree(c->apparmor_profile);
2903
2904 c->syscall_filter = set_free(c->syscall_filter);
2905 c->syscall_archs = set_free(c->syscall_archs);
2906 c->address_families = set_free(c->address_families);
2907
2908 c->runtime_directory = strv_free(c->runtime_directory);
2909 }
2910
2911 int exec_context_destroy_runtime_directory(ExecContext *c, const char *runtime_prefix) {
2912 char **i;
2913
2914 assert(c);
2915
2916 if (!runtime_prefix)
2917 return 0;
2918
2919 STRV_FOREACH(i, c->runtime_directory) {
2920 _cleanup_free_ char *p;
2921
2922 p = strjoin(runtime_prefix, "/", *i, NULL);
2923 if (!p)
2924 return -ENOMEM;
2925
2926 /* We execute this synchronously, since we need to be
2927 * sure this is gone when we start the service
2928 * next. */
2929 (void) rm_rf(p, REMOVE_ROOT);
2930 }
2931
2932 return 0;
2933 }
2934
2935 void exec_command_done(ExecCommand *c) {
2936 assert(c);
2937
2938 c->path = mfree(c->path);
2939
2940 c->argv = strv_free(c->argv);
2941 }
2942
2943 void exec_command_done_array(ExecCommand *c, unsigned n) {
2944 unsigned i;
2945
2946 for (i = 0; i < n; i++)
2947 exec_command_done(c+i);
2948 }
2949
2950 ExecCommand* exec_command_free_list(ExecCommand *c) {
2951 ExecCommand *i;
2952
2953 while ((i = c)) {
2954 LIST_REMOVE(command, c, i);
2955 exec_command_done(i);
2956 free(i);
2957 }
2958
2959 return NULL;
2960 }
2961
2962 void exec_command_free_array(ExecCommand **c, unsigned n) {
2963 unsigned i;
2964
2965 for (i = 0; i < n; i++)
2966 c[i] = exec_command_free_list(c[i]);
2967 }
2968
2969 typedef struct InvalidEnvInfo {
2970 Unit *unit;
2971 const char *path;
2972 } InvalidEnvInfo;
2973
2974 static void invalid_env(const char *p, void *userdata) {
2975 InvalidEnvInfo *info = userdata;
2976
2977 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
2978 }
2979
2980 int exec_context_load_environment(Unit *unit, const ExecContext *c, char ***l) {
2981 char **i, **r = NULL;
2982
2983 assert(c);
2984 assert(l);
2985
2986 STRV_FOREACH(i, c->environment_files) {
2987 char *fn;
2988 int k;
2989 bool ignore = false;
2990 char **p;
2991 _cleanup_globfree_ glob_t pglob = {};
2992 int count, n;
2993
2994 fn = *i;
2995
2996 if (fn[0] == '-') {
2997 ignore = true;
2998 fn++;
2999 }
3000
3001 if (!path_is_absolute(fn)) {
3002 if (ignore)
3003 continue;
3004
3005 strv_free(r);
3006 return -EINVAL;
3007 }
3008
3009 /* Filename supports globbing, take all matching files */
3010 errno = 0;
3011 if (glob(fn, 0, NULL, &pglob) != 0) {
3012 if (ignore)
3013 continue;
3014
3015 strv_free(r);
3016 return errno > 0 ? -errno : -EINVAL;
3017 }
3018 count = pglob.gl_pathc;
3019 if (count == 0) {
3020 if (ignore)
3021 continue;
3022
3023 strv_free(r);
3024 return -EINVAL;
3025 }
3026 for (n = 0; n < count; n++) {
3027 k = load_env_file(NULL, pglob.gl_pathv[n], NULL, &p);
3028 if (k < 0) {
3029 if (ignore)
3030 continue;
3031
3032 strv_free(r);
3033 return k;
3034 }
3035 /* Log invalid environment variables with filename */
3036 if (p) {
3037 InvalidEnvInfo info = {
3038 .unit = unit,
3039 .path = pglob.gl_pathv[n]
3040 };
3041
3042 p = strv_env_clean_with_callback(p, invalid_env, &info);
3043 }
3044
3045 if (r == NULL)
3046 r = p;
3047 else {
3048 char **m;
3049
3050 m = strv_env_merge(2, r, p);
3051 strv_free(r);
3052 strv_free(p);
3053 if (!m)
3054 return -ENOMEM;
3055
3056 r = m;
3057 }
3058 }
3059 }
3060
3061 *l = r;
3062
3063 return 0;
3064 }
3065
3066 static bool tty_may_match_dev_console(const char *tty) {
3067 _cleanup_free_ char *active = NULL;
3068 char *console;
3069
3070 if (!tty)
3071 return true;
3072
3073 if (startswith(tty, "/dev/"))
3074 tty += 5;
3075
3076 /* trivial identity? */
3077 if (streq(tty, "console"))
3078 return true;
3079
3080 console = resolve_dev_console(&active);
3081 /* if we could not resolve, assume it may */
3082 if (!console)
3083 return true;
3084
3085 /* "tty0" means the active VC, so it may be the same sometimes */
3086 return streq(console, tty) || (streq(console, "tty0") && tty_is_vc(tty));
3087 }
3088
3089 bool exec_context_may_touch_console(ExecContext *ec) {
3090
3091 return (ec->tty_reset ||
3092 ec->tty_vhangup ||
3093 ec->tty_vt_disallocate ||
3094 is_terminal_input(ec->std_input) ||
3095 is_terminal_output(ec->std_output) ||
3096 is_terminal_output(ec->std_error)) &&
3097 tty_may_match_dev_console(exec_context_tty_path(ec));
3098 }
3099
3100 static void strv_fprintf(FILE *f, char **l) {
3101 char **g;
3102
3103 assert(f);
3104
3105 STRV_FOREACH(g, l)
3106 fprintf(f, " %s", *g);
3107 }
3108
3109 void exec_context_dump(ExecContext *c, FILE* f, const char *prefix) {
3110 char **e, **d;
3111 unsigned i;
3112
3113 assert(c);
3114 assert(f);
3115
3116 prefix = strempty(prefix);
3117
3118 fprintf(f,
3119 "%sUMask: %04o\n"
3120 "%sWorkingDirectory: %s\n"
3121 "%sRootDirectory: %s\n"
3122 "%sNonBlocking: %s\n"
3123 "%sPrivateTmp: %s\n"
3124 "%sPrivateDevices: %s\n"
3125 "%sProtectKernelTunables: %s\n"
3126 "%sProtectControlGroups: %s\n"
3127 "%sPrivateNetwork: %s\n"
3128 "%sPrivateUsers: %s\n"
3129 "%sProtectHome: %s\n"
3130 "%sProtectSystem: %s\n"
3131 "%sIgnoreSIGPIPE: %s\n"
3132 "%sMemoryDenyWriteExecute: %s\n"
3133 "%sRestrictRealtime: %s\n",
3134 prefix, c->umask,
3135 prefix, c->working_directory ? c->working_directory : "/",
3136 prefix, c->root_directory ? c->root_directory : "/",
3137 prefix, yes_no(c->non_blocking),
3138 prefix, yes_no(c->private_tmp),
3139 prefix, yes_no(c->private_devices),
3140 prefix, yes_no(c->protect_kernel_tunables),
3141 prefix, yes_no(c->protect_control_groups),
3142 prefix, yes_no(c->private_network),
3143 prefix, yes_no(c->private_users),
3144 prefix, protect_home_to_string(c->protect_home),
3145 prefix, protect_system_to_string(c->protect_system),
3146 prefix, yes_no(c->ignore_sigpipe),
3147 prefix, yes_no(c->memory_deny_write_execute),
3148 prefix, yes_no(c->restrict_realtime));
3149
3150 STRV_FOREACH(e, c->environment)
3151 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
3152
3153 STRV_FOREACH(e, c->environment_files)
3154 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
3155
3156 STRV_FOREACH(e, c->pass_environment)
3157 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
3158
3159 fprintf(f, "%sRuntimeDirectoryMode: %04o\n", prefix, c->runtime_directory_mode);
3160
3161 STRV_FOREACH(d, c->runtime_directory)
3162 fprintf(f, "%sRuntimeDirectory: %s\n", prefix, *d);
3163
3164 if (c->nice_set)
3165 fprintf(f,
3166 "%sNice: %i\n",
3167 prefix, c->nice);
3168
3169 if (c->oom_score_adjust_set)
3170 fprintf(f,
3171 "%sOOMScoreAdjust: %i\n",
3172 prefix, c->oom_score_adjust);
3173
3174 for (i = 0; i < RLIM_NLIMITS; i++)
3175 if (c->rlimit[i]) {
3176 fprintf(f, "%s%s: " RLIM_FMT "\n",
3177 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
3178 fprintf(f, "%s%sSoft: " RLIM_FMT "\n",
3179 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
3180 }
3181
3182 if (c->ioprio_set) {
3183 _cleanup_free_ char *class_str = NULL;
3184
3185 ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
3186 fprintf(f,
3187 "%sIOSchedulingClass: %s\n"
3188 "%sIOPriority: %i\n",
3189 prefix, strna(class_str),
3190 prefix, (int) IOPRIO_PRIO_DATA(c->ioprio));
3191 }
3192
3193 if (c->cpu_sched_set) {
3194 _cleanup_free_ char *policy_str = NULL;
3195
3196 sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
3197 fprintf(f,
3198 "%sCPUSchedulingPolicy: %s\n"
3199 "%sCPUSchedulingPriority: %i\n"
3200 "%sCPUSchedulingResetOnFork: %s\n",
3201 prefix, strna(policy_str),
3202 prefix, c->cpu_sched_priority,
3203 prefix, yes_no(c->cpu_sched_reset_on_fork));
3204 }
3205
3206 if (c->cpuset) {
3207 fprintf(f, "%sCPUAffinity:", prefix);
3208 for (i = 0; i < c->cpuset_ncpus; i++)
3209 if (CPU_ISSET_S(i, CPU_ALLOC_SIZE(c->cpuset_ncpus), c->cpuset))
3210 fprintf(f, " %u", i);
3211 fputs("\n", f);
3212 }
3213
3214 if (c->timer_slack_nsec != NSEC_INFINITY)
3215 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
3216
3217 fprintf(f,
3218 "%sStandardInput: %s\n"
3219 "%sStandardOutput: %s\n"
3220 "%sStandardError: %s\n",
3221 prefix, exec_input_to_string(c->std_input),
3222 prefix, exec_output_to_string(c->std_output),
3223 prefix, exec_output_to_string(c->std_error));
3224
3225 if (c->tty_path)
3226 fprintf(f,
3227 "%sTTYPath: %s\n"
3228 "%sTTYReset: %s\n"
3229 "%sTTYVHangup: %s\n"
3230 "%sTTYVTDisallocate: %s\n",
3231 prefix, c->tty_path,
3232 prefix, yes_no(c->tty_reset),
3233 prefix, yes_no(c->tty_vhangup),
3234 prefix, yes_no(c->tty_vt_disallocate));
3235
3236 if (c->std_output == EXEC_OUTPUT_SYSLOG ||
3237 c->std_output == EXEC_OUTPUT_KMSG ||
3238 c->std_output == EXEC_OUTPUT_JOURNAL ||
3239 c->std_output == EXEC_OUTPUT_SYSLOG_AND_CONSOLE ||
3240 c->std_output == EXEC_OUTPUT_KMSG_AND_CONSOLE ||
3241 c->std_output == EXEC_OUTPUT_JOURNAL_AND_CONSOLE ||
3242 c->std_error == EXEC_OUTPUT_SYSLOG ||
3243 c->std_error == EXEC_OUTPUT_KMSG ||
3244 c->std_error == EXEC_OUTPUT_JOURNAL ||
3245 c->std_error == EXEC_OUTPUT_SYSLOG_AND_CONSOLE ||
3246 c->std_error == EXEC_OUTPUT_KMSG_AND_CONSOLE ||
3247 c->std_error == EXEC_OUTPUT_JOURNAL_AND_CONSOLE) {
3248
3249 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
3250
3251 log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
3252 log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
3253
3254 fprintf(f,
3255 "%sSyslogFacility: %s\n"
3256 "%sSyslogLevel: %s\n",
3257 prefix, strna(fac_str),
3258 prefix, strna(lvl_str));
3259 }
3260
3261 if (c->secure_bits)
3262 fprintf(f, "%sSecure Bits:%s%s%s%s%s%s\n",
3263 prefix,
3264 (c->secure_bits & 1<<SECURE_KEEP_CAPS) ? " keep-caps" : "",
3265 (c->secure_bits & 1<<SECURE_KEEP_CAPS_LOCKED) ? " keep-caps-locked" : "",
3266 (c->secure_bits & 1<<SECURE_NO_SETUID_FIXUP) ? " no-setuid-fixup" : "",
3267 (c->secure_bits & 1<<SECURE_NO_SETUID_FIXUP_LOCKED) ? " no-setuid-fixup-locked" : "",
3268 (c->secure_bits & 1<<SECURE_NOROOT) ? " noroot" : "",
3269 (c->secure_bits & 1<<SECURE_NOROOT_LOCKED) ? "noroot-locked" : "");
3270
3271 if (c->capability_bounding_set != CAP_ALL) {
3272 unsigned long l;
3273 fprintf(f, "%sCapabilityBoundingSet:", prefix);
3274
3275 for (l = 0; l <= cap_last_cap(); l++)
3276 if (c->capability_bounding_set & (UINT64_C(1) << l))
3277 fprintf(f, " %s", strna(capability_to_name(l)));
3278
3279 fputs("\n", f);
3280 }
3281
3282 if (c->capability_ambient_set != 0) {
3283 unsigned long l;
3284 fprintf(f, "%sAmbientCapabilities:", prefix);
3285
3286 for (l = 0; l <= cap_last_cap(); l++)
3287 if (c->capability_ambient_set & (UINT64_C(1) << l))
3288 fprintf(f, " %s", strna(capability_to_name(l)));
3289
3290 fputs("\n", f);
3291 }
3292
3293 if (c->user)
3294 fprintf(f, "%sUser: %s\n", prefix, c->user);
3295 if (c->group)
3296 fprintf(f, "%sGroup: %s\n", prefix, c->group);
3297
3298 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
3299
3300 if (strv_length(c->supplementary_groups) > 0) {
3301 fprintf(f, "%sSupplementaryGroups:", prefix);
3302 strv_fprintf(f, c->supplementary_groups);
3303 fputs("\n", f);
3304 }
3305
3306 if (c->pam_name)
3307 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
3308
3309 if (strv_length(c->read_write_paths) > 0) {
3310 fprintf(f, "%sReadWritePaths:", prefix);
3311 strv_fprintf(f, c->read_write_paths);
3312 fputs("\n", f);
3313 }
3314
3315 if (strv_length(c->read_only_paths) > 0) {
3316 fprintf(f, "%sReadOnlyPaths:", prefix);
3317 strv_fprintf(f, c->read_only_paths);
3318 fputs("\n", f);
3319 }
3320
3321 if (strv_length(c->inaccessible_paths) > 0) {
3322 fprintf(f, "%sInaccessiblePaths:", prefix);
3323 strv_fprintf(f, c->inaccessible_paths);
3324 fputs("\n", f);
3325 }
3326
3327 if (c->utmp_id)
3328 fprintf(f,
3329 "%sUtmpIdentifier: %s\n",
3330 prefix, c->utmp_id);
3331
3332 if (c->selinux_context)
3333 fprintf(f,
3334 "%sSELinuxContext: %s%s\n",
3335 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
3336
3337 if (c->personality != PERSONALITY_INVALID)
3338 fprintf(f,
3339 "%sPersonality: %s\n",
3340 prefix, strna(personality_to_string(c->personality)));
3341
3342 if (c->syscall_filter) {
3343 #ifdef HAVE_SECCOMP
3344 Iterator j;
3345 void *id;
3346 bool first = true;
3347 #endif
3348
3349 fprintf(f,
3350 "%sSystemCallFilter: ",
3351 prefix);
3352
3353 if (!c->syscall_whitelist)
3354 fputc('~', f);
3355
3356 #ifdef HAVE_SECCOMP
3357 SET_FOREACH(id, c->syscall_filter, j) {
3358 _cleanup_free_ char *name = NULL;
3359
3360 if (first)
3361 first = false;
3362 else
3363 fputc(' ', f);
3364
3365 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
3366 fputs(strna(name), f);
3367 }
3368 #endif
3369
3370 fputc('\n', f);
3371 }
3372
3373 if (c->syscall_archs) {
3374 #ifdef HAVE_SECCOMP
3375 Iterator j;
3376 void *id;
3377 #endif
3378
3379 fprintf(f,
3380 "%sSystemCallArchitectures:",
3381 prefix);
3382
3383 #ifdef HAVE_SECCOMP
3384 SET_FOREACH(id, c->syscall_archs, j)
3385 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
3386 #endif
3387 fputc('\n', f);
3388 }
3389
3390 if (c->syscall_errno > 0)
3391 fprintf(f,
3392 "%sSystemCallErrorNumber: %s\n",
3393 prefix, strna(errno_to_name(c->syscall_errno)));
3394
3395 if (c->apparmor_profile)
3396 fprintf(f,
3397 "%sAppArmorProfile: %s%s\n",
3398 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
3399 }
3400
3401 bool exec_context_maintains_privileges(ExecContext *c) {
3402 assert(c);
3403
3404 /* Returns true if the process forked off would run under
3405 * an unchanged UID or as root. */
3406
3407 if (!c->user)
3408 return true;
3409
3410 if (streq(c->user, "root") || streq(c->user, "0"))
3411 return true;
3412
3413 return false;
3414 }
3415
3416 void exec_status_start(ExecStatus *s, pid_t pid) {
3417 assert(s);
3418
3419 zero(*s);
3420 s->pid = pid;
3421 dual_timestamp_get(&s->start_timestamp);
3422 }
3423
3424 void exec_status_exit(ExecStatus *s, ExecContext *context, pid_t pid, int code, int status) {
3425 assert(s);
3426
3427 if (s->pid && s->pid != pid)
3428 zero(*s);
3429
3430 s->pid = pid;
3431 dual_timestamp_get(&s->exit_timestamp);
3432
3433 s->code = code;
3434 s->status = status;
3435
3436 if (context) {
3437 if (context->utmp_id)
3438 utmp_put_dead_process(context->utmp_id, pid, code, status);
3439
3440 exec_context_tty_reset(context, NULL);
3441 }
3442 }
3443
3444 void exec_status_dump(ExecStatus *s, FILE *f, const char *prefix) {
3445 char buf[FORMAT_TIMESTAMP_MAX];
3446
3447 assert(s);
3448 assert(f);
3449
3450 if (s->pid <= 0)
3451 return;
3452
3453 prefix = strempty(prefix);
3454
3455 fprintf(f,
3456 "%sPID: "PID_FMT"\n",
3457 prefix, s->pid);
3458
3459 if (dual_timestamp_is_set(&s->start_timestamp))
3460 fprintf(f,
3461 "%sStart Timestamp: %s\n",
3462 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
3463
3464 if (dual_timestamp_is_set(&s->exit_timestamp))
3465 fprintf(f,
3466 "%sExit Timestamp: %s\n"
3467 "%sExit Code: %s\n"
3468 "%sExit Status: %i\n",
3469 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
3470 prefix, sigchld_code_to_string(s->code),
3471 prefix, s->status);
3472 }
3473
3474 char *exec_command_line(char **argv) {
3475 size_t k;
3476 char *n, *p, **a;
3477 bool first = true;
3478
3479 assert(argv);
3480
3481 k = 1;
3482 STRV_FOREACH(a, argv)
3483 k += strlen(*a)+3;
3484
3485 if (!(n = new(char, k)))
3486 return NULL;
3487
3488 p = n;
3489 STRV_FOREACH(a, argv) {
3490
3491 if (!first)
3492 *(p++) = ' ';
3493 else
3494 first = false;
3495
3496 if (strpbrk(*a, WHITESPACE)) {
3497 *(p++) = '\'';
3498 p = stpcpy(p, *a);
3499 *(p++) = '\'';
3500 } else
3501 p = stpcpy(p, *a);
3502
3503 }
3504
3505 *p = 0;
3506
3507 /* FIXME: this doesn't really handle arguments that have
3508 * spaces and ticks in them */
3509
3510 return n;
3511 }
3512
3513 void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
3514 _cleanup_free_ char *cmd = NULL;
3515 const char *prefix2;
3516
3517 assert(c);
3518 assert(f);
3519
3520 prefix = strempty(prefix);
3521 prefix2 = strjoina(prefix, "\t");
3522
3523 cmd = exec_command_line(c->argv);
3524 fprintf(f,
3525 "%sCommand Line: %s\n",
3526 prefix, cmd ? cmd : strerror(ENOMEM));
3527
3528 exec_status_dump(&c->exec_status, f, prefix2);
3529 }
3530
3531 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
3532 assert(f);
3533
3534 prefix = strempty(prefix);
3535
3536 LIST_FOREACH(command, c, c)
3537 exec_command_dump(c, f, prefix);
3538 }
3539
3540 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
3541 ExecCommand *end;
3542
3543 assert(l);
3544 assert(e);
3545
3546 if (*l) {
3547 /* It's kind of important, that we keep the order here */
3548 LIST_FIND_TAIL(command, *l, end);
3549 LIST_INSERT_AFTER(command, *l, end, e);
3550 } else
3551 *l = e;
3552 }
3553
3554 int exec_command_set(ExecCommand *c, const char *path, ...) {
3555 va_list ap;
3556 char **l, *p;
3557
3558 assert(c);
3559 assert(path);
3560
3561 va_start(ap, path);
3562 l = strv_new_ap(path, ap);
3563 va_end(ap);
3564
3565 if (!l)
3566 return -ENOMEM;
3567
3568 p = strdup(path);
3569 if (!p) {
3570 strv_free(l);
3571 return -ENOMEM;
3572 }
3573
3574 free(c->path);
3575 c->path = p;
3576
3577 strv_free(c->argv);
3578 c->argv = l;
3579
3580 return 0;
3581 }
3582
3583 int exec_command_append(ExecCommand *c, const char *path, ...) {
3584 _cleanup_strv_free_ char **l = NULL;
3585 va_list ap;
3586 int r;
3587
3588 assert(c);
3589 assert(path);
3590
3591 va_start(ap, path);
3592 l = strv_new_ap(path, ap);
3593 va_end(ap);
3594
3595 if (!l)
3596 return -ENOMEM;
3597
3598 r = strv_extend_strv(&c->argv, l, false);
3599 if (r < 0)
3600 return r;
3601
3602 return 0;
3603 }
3604
3605
3606 static int exec_runtime_allocate(ExecRuntime **rt) {
3607
3608 if (*rt)
3609 return 0;
3610
3611 *rt = new0(ExecRuntime, 1);
3612 if (!*rt)
3613 return -ENOMEM;
3614
3615 (*rt)->n_ref = 1;
3616 (*rt)->netns_storage_socket[0] = (*rt)->netns_storage_socket[1] = -1;
3617
3618 return 0;
3619 }
3620
3621 int exec_runtime_make(ExecRuntime **rt, ExecContext *c, const char *id) {
3622 int r;
3623
3624 assert(rt);
3625 assert(c);
3626 assert(id);
3627
3628 if (*rt)
3629 return 1;
3630
3631 if (!c->private_network && !c->private_tmp)
3632 return 0;
3633
3634 r = exec_runtime_allocate(rt);
3635 if (r < 0)
3636 return r;
3637
3638 if (c->private_network && (*rt)->netns_storage_socket[0] < 0) {
3639 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, (*rt)->netns_storage_socket) < 0)
3640 return -errno;
3641 }
3642
3643 if (c->private_tmp && !(*rt)->tmp_dir) {
3644 r = setup_tmp_dirs(id, &(*rt)->tmp_dir, &(*rt)->var_tmp_dir);
3645 if (r < 0)
3646 return r;
3647 }
3648
3649 return 1;
3650 }
3651
3652 ExecRuntime *exec_runtime_ref(ExecRuntime *r) {
3653 assert(r);
3654 assert(r->n_ref > 0);
3655
3656 r->n_ref++;
3657 return r;
3658 }
3659
3660 ExecRuntime *exec_runtime_unref(ExecRuntime *r) {
3661
3662 if (!r)
3663 return NULL;
3664
3665 assert(r->n_ref > 0);
3666
3667 r->n_ref--;
3668 if (r->n_ref > 0)
3669 return NULL;
3670
3671 free(r->tmp_dir);
3672 free(r->var_tmp_dir);
3673 safe_close_pair(r->netns_storage_socket);
3674 free(r);
3675
3676 return NULL;
3677 }
3678
3679 int exec_runtime_serialize(Unit *u, ExecRuntime *rt, FILE *f, FDSet *fds) {
3680 assert(u);
3681 assert(f);
3682 assert(fds);
3683
3684 if (!rt)
3685 return 0;
3686
3687 if (rt->tmp_dir)
3688 unit_serialize_item(u, f, "tmp-dir", rt->tmp_dir);
3689
3690 if (rt->var_tmp_dir)
3691 unit_serialize_item(u, f, "var-tmp-dir", rt->var_tmp_dir);
3692
3693 if (rt->netns_storage_socket[0] >= 0) {
3694 int copy;
3695
3696 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
3697 if (copy < 0)
3698 return copy;
3699
3700 unit_serialize_item_format(u, f, "netns-socket-0", "%i", copy);
3701 }
3702
3703 if (rt->netns_storage_socket[1] >= 0) {
3704 int copy;
3705
3706 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
3707 if (copy < 0)
3708 return copy;
3709
3710 unit_serialize_item_format(u, f, "netns-socket-1", "%i", copy);
3711 }
3712
3713 return 0;
3714 }
3715
3716 int exec_runtime_deserialize_item(Unit *u, ExecRuntime **rt, const char *key, const char *value, FDSet *fds) {
3717 int r;
3718
3719 assert(rt);
3720 assert(key);
3721 assert(value);
3722
3723 if (streq(key, "tmp-dir")) {
3724 char *copy;
3725
3726 r = exec_runtime_allocate(rt);
3727 if (r < 0)
3728 return log_oom();
3729
3730 copy = strdup(value);
3731 if (!copy)
3732 return log_oom();
3733
3734 free((*rt)->tmp_dir);
3735 (*rt)->tmp_dir = copy;
3736
3737 } else if (streq(key, "var-tmp-dir")) {
3738 char *copy;
3739
3740 r = exec_runtime_allocate(rt);
3741 if (r < 0)
3742 return log_oom();
3743
3744 copy = strdup(value);
3745 if (!copy)
3746 return log_oom();
3747
3748 free((*rt)->var_tmp_dir);
3749 (*rt)->var_tmp_dir = copy;
3750
3751 } else if (streq(key, "netns-socket-0")) {
3752 int fd;
3753
3754 r = exec_runtime_allocate(rt);
3755 if (r < 0)
3756 return log_oom();
3757
3758 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd))
3759 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
3760 else {
3761 safe_close((*rt)->netns_storage_socket[0]);
3762 (*rt)->netns_storage_socket[0] = fdset_remove(fds, fd);
3763 }
3764 } else if (streq(key, "netns-socket-1")) {
3765 int fd;
3766
3767 r = exec_runtime_allocate(rt);
3768 if (r < 0)
3769 return log_oom();
3770
3771 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd))
3772 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
3773 else {
3774 safe_close((*rt)->netns_storage_socket[1]);
3775 (*rt)->netns_storage_socket[1] = fdset_remove(fds, fd);
3776 }
3777 } else
3778 return 0;
3779
3780 return 1;
3781 }
3782
3783 static void *remove_tmpdir_thread(void *p) {
3784 _cleanup_free_ char *path = p;
3785
3786 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
3787 return NULL;
3788 }
3789
3790 void exec_runtime_destroy(ExecRuntime *rt) {
3791 int r;
3792
3793 if (!rt)
3794 return;
3795
3796 /* If there are multiple users of this, let's leave the stuff around */
3797 if (rt->n_ref > 1)
3798 return;
3799
3800 if (rt->tmp_dir) {
3801 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
3802
3803 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
3804 if (r < 0) {
3805 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
3806 free(rt->tmp_dir);
3807 }
3808
3809 rt->tmp_dir = NULL;
3810 }
3811
3812 if (rt->var_tmp_dir) {
3813 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
3814
3815 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
3816 if (r < 0) {
3817 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
3818 free(rt->var_tmp_dir);
3819 }
3820
3821 rt->var_tmp_dir = NULL;
3822 }
3823
3824 safe_close_pair(rt->netns_storage_socket);
3825 }
3826
3827 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
3828 [EXEC_INPUT_NULL] = "null",
3829 [EXEC_INPUT_TTY] = "tty",
3830 [EXEC_INPUT_TTY_FORCE] = "tty-force",
3831 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
3832 [EXEC_INPUT_SOCKET] = "socket"
3833 };
3834
3835 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
3836
3837 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
3838 [EXEC_OUTPUT_INHERIT] = "inherit",
3839 [EXEC_OUTPUT_NULL] = "null",
3840 [EXEC_OUTPUT_TTY] = "tty",
3841 [EXEC_OUTPUT_SYSLOG] = "syslog",
3842 [EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
3843 [EXEC_OUTPUT_KMSG] = "kmsg",
3844 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
3845 [EXEC_OUTPUT_JOURNAL] = "journal",
3846 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
3847 [EXEC_OUTPUT_SOCKET] = "socket"
3848 };
3849
3850 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
3851
3852 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
3853 [EXEC_UTMP_INIT] = "init",
3854 [EXEC_UTMP_LOGIN] = "login",
3855 [EXEC_UTMP_USER] = "user",
3856 };
3857
3858 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);