]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
core: add DelegateSubgroup= setting
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "argv-util.h"
43 #include "async.h"
44 #include "barrier.h"
45 #include "bpf-lsm.h"
46 #include "cap-list.h"
47 #include "capability-util.h"
48 #include "cgroup-setup.h"
49 #include "chase.h"
50 #include "chown-recursive.h"
51 #include "constants.h"
52 #include "cpu-set-util.h"
53 #include "creds-util.h"
54 #include "data-fd-util.h"
55 #include "env-file.h"
56 #include "env-util.h"
57 #include "errno-list.h"
58 #include "escape.h"
59 #include "execute.h"
60 #include "exit-status.h"
61 #include "fd-util.h"
62 #include "fileio.h"
63 #include "format-util.h"
64 #include "glob-util.h"
65 #include "hexdecoct.h"
66 #include "io-util.h"
67 #include "ioprio-util.h"
68 #include "label.h"
69 #include "log.h"
70 #include "macro.h"
71 #include "manager.h"
72 #include "manager-dump.h"
73 #include "memory-util.h"
74 #include "missing_fs.h"
75 #include "missing_ioprio.h"
76 #include "missing_prctl.h"
77 #include "mkdir-label.h"
78 #include "mount-util.h"
79 #include "mountpoint-util.h"
80 #include "namespace.h"
81 #include "parse-util.h"
82 #include "path-util.h"
83 #include "proc-cmdline.h"
84 #include "process-util.h"
85 #include "psi-util.h"
86 #include "random-util.h"
87 #include "recurse-dir.h"
88 #include "rlimit-util.h"
89 #include "rm-rf.h"
90 #if HAVE_SECCOMP
91 #include "seccomp-util.h"
92 #endif
93 #include "securebits-util.h"
94 #include "selinux-util.h"
95 #include "signal-util.h"
96 #include "smack-util.h"
97 #include "socket-util.h"
98 #include "sort-util.h"
99 #include "special.h"
100 #include "stat-util.h"
101 #include "string-table.h"
102 #include "string-util.h"
103 #include "strv.h"
104 #include "syslog-util.h"
105 #include "terminal-util.h"
106 #include "tmpfile-util.h"
107 #include "umask-util.h"
108 #include "unit-serialize.h"
109 #include "user-util.h"
110 #include "utmp-wtmp.h"
111
112 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
113 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
114
115 #define SNDBUF_SIZE (8*1024*1024)
116
117 static int shift_fds(int fds[], size_t n_fds) {
118 if (n_fds <= 0)
119 return 0;
120
121 /* Modifies the fds array! (sorts it) */
122
123 assert(fds);
124
125 for (int start = 0;;) {
126 int restart_from = -1;
127
128 for (int i = start; i < (int) n_fds; i++) {
129 int nfd;
130
131 /* Already at right index? */
132 if (fds[i] == i+3)
133 continue;
134
135 nfd = fcntl(fds[i], F_DUPFD, i + 3);
136 if (nfd < 0)
137 return -errno;
138
139 safe_close(fds[i]);
140 fds[i] = nfd;
141
142 /* Hmm, the fd we wanted isn't free? Then
143 * let's remember that and try again from here */
144 if (nfd != i+3 && restart_from < 0)
145 restart_from = i;
146 }
147
148 if (restart_from < 0)
149 break;
150
151 start = restart_from;
152 }
153
154 return 0;
155 }
156
157 static int flags_fds(
158 const int fds[],
159 size_t n_socket_fds,
160 size_t n_fds,
161 bool nonblock) {
162
163 int r;
164
165 if (n_fds <= 0)
166 return 0;
167
168 assert(fds);
169
170 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
171 * O_NONBLOCK only applies to socket activation though. */
172
173 for (size_t i = 0; i < n_fds; i++) {
174
175 if (i < n_socket_fds) {
176 r = fd_nonblock(fds[i], nonblock);
177 if (r < 0)
178 return r;
179 }
180
181 /* We unconditionally drop FD_CLOEXEC from the fds,
182 * since after all we want to pass these fds to our
183 * children */
184
185 r = fd_cloexec(fds[i], false);
186 if (r < 0)
187 return r;
188 }
189
190 return 0;
191 }
192
193 static const char *exec_context_tty_path(const ExecContext *context) {
194 assert(context);
195
196 if (context->stdio_as_fds)
197 return NULL;
198
199 if (context->tty_path)
200 return context->tty_path;
201
202 return "/dev/console";
203 }
204
205 static int exec_context_tty_size(const ExecContext *context, unsigned *ret_rows, unsigned *ret_cols) {
206 _cleanup_free_ char *rowskey = NULL, *rowsvalue = NULL, *colskey = NULL, *colsvalue = NULL;
207 unsigned rows, cols;
208 const char *tty;
209 int r;
210
211 assert(context);
212 assert(ret_rows);
213 assert(ret_cols);
214
215 rows = context->tty_rows;
216 cols = context->tty_cols;
217
218 tty = exec_context_tty_path(context);
219 if (!tty || (rows != UINT_MAX && cols != UINT_MAX)) {
220 *ret_rows = rows;
221 *ret_cols = cols;
222 return 0;
223 }
224
225 tty = skip_dev_prefix(tty);
226 if (!in_charset(tty, ALPHANUMERICAL)) {
227 log_debug("%s contains non-alphanumeric characters, ignoring", tty);
228 *ret_rows = rows;
229 *ret_cols = cols;
230 return 0;
231 }
232
233 rowskey = strjoin("systemd.tty.rows.", tty);
234 if (!rowskey)
235 return -ENOMEM;
236
237 colskey = strjoin("systemd.tty.columns.", tty);
238 if (!colskey)
239 return -ENOMEM;
240
241 r = proc_cmdline_get_key_many(/* flags = */ 0,
242 rowskey, &rowsvalue,
243 colskey, &colsvalue);
244 if (r < 0)
245 log_debug_errno(r, "Failed to read TTY size of %s from kernel cmdline, ignoring: %m", tty);
246
247 if (rows == UINT_MAX && rowsvalue) {
248 r = safe_atou(rowsvalue, &rows);
249 if (r < 0)
250 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", rowskey, rowsvalue);
251 }
252
253 if (cols == UINT_MAX && colsvalue) {
254 r = safe_atou(colsvalue, &cols);
255 if (r < 0)
256 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", colskey, colsvalue);
257 }
258
259 *ret_rows = rows;
260 *ret_cols = cols;
261
262 return 0;
263 }
264
265 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
266 const char *path;
267
268 assert(context);
269
270 path = exec_context_tty_path(context);
271
272 if (context->tty_vhangup) {
273 if (p && p->stdin_fd >= 0)
274 (void) terminal_vhangup_fd(p->stdin_fd);
275 else if (path)
276 (void) terminal_vhangup(path);
277 }
278
279 if (context->tty_reset) {
280 if (p && p->stdin_fd >= 0)
281 (void) reset_terminal_fd(p->stdin_fd, true);
282 else if (path)
283 (void) reset_terminal(path);
284 }
285
286 if (p && p->stdin_fd >= 0) {
287 unsigned rows = context->tty_rows, cols = context->tty_cols;
288
289 (void) exec_context_tty_size(context, &rows, &cols);
290 (void) terminal_set_size_fd(p->stdin_fd, path, rows, cols);
291 }
292
293 if (context->tty_vt_disallocate && path)
294 (void) vt_disallocate(path);
295 }
296
297 static bool is_terminal_input(ExecInput i) {
298 return IN_SET(i,
299 EXEC_INPUT_TTY,
300 EXEC_INPUT_TTY_FORCE,
301 EXEC_INPUT_TTY_FAIL);
302 }
303
304 static bool is_terminal_output(ExecOutput o) {
305 return IN_SET(o,
306 EXEC_OUTPUT_TTY,
307 EXEC_OUTPUT_KMSG_AND_CONSOLE,
308 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
309 }
310
311 static bool is_kmsg_output(ExecOutput o) {
312 return IN_SET(o,
313 EXEC_OUTPUT_KMSG,
314 EXEC_OUTPUT_KMSG_AND_CONSOLE);
315 }
316
317 static bool exec_context_needs_term(const ExecContext *c) {
318 assert(c);
319
320 /* Return true if the execution context suggests we should set $TERM to something useful. */
321
322 if (is_terminal_input(c->std_input))
323 return true;
324
325 if (is_terminal_output(c->std_output))
326 return true;
327
328 if (is_terminal_output(c->std_error))
329 return true;
330
331 return !!c->tty_path;
332 }
333
334 static int open_null_as(int flags, int nfd) {
335 int fd;
336
337 assert(nfd >= 0);
338
339 fd = open("/dev/null", flags|O_NOCTTY);
340 if (fd < 0)
341 return -errno;
342
343 return move_fd(fd, nfd, false);
344 }
345
346 static int connect_journal_socket(
347 int fd,
348 const char *log_namespace,
349 uid_t uid,
350 gid_t gid) {
351
352 uid_t olduid = UID_INVALID;
353 gid_t oldgid = GID_INVALID;
354 const char *j;
355 int r;
356
357 j = log_namespace ?
358 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
359 "/run/systemd/journal/stdout";
360
361 if (gid_is_valid(gid)) {
362 oldgid = getgid();
363
364 if (setegid(gid) < 0)
365 return -errno;
366 }
367
368 if (uid_is_valid(uid)) {
369 olduid = getuid();
370
371 if (seteuid(uid) < 0) {
372 r = -errno;
373 goto restore_gid;
374 }
375 }
376
377 r = connect_unix_path(fd, AT_FDCWD, j);
378
379 /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if
380 an LSM interferes. */
381
382 if (uid_is_valid(uid))
383 (void) seteuid(olduid);
384
385 restore_gid:
386 if (gid_is_valid(gid))
387 (void) setegid(oldgid);
388
389 return r;
390 }
391
392 static int connect_logger_as(
393 const Unit *unit,
394 const ExecContext *context,
395 const ExecParameters *params,
396 ExecOutput output,
397 const char *ident,
398 int nfd,
399 uid_t uid,
400 gid_t gid) {
401
402 _cleanup_close_ int fd = -EBADF;
403 int r;
404
405 assert(context);
406 assert(params);
407 assert(output < _EXEC_OUTPUT_MAX);
408 assert(ident);
409 assert(nfd >= 0);
410
411 fd = socket(AF_UNIX, SOCK_STREAM, 0);
412 if (fd < 0)
413 return -errno;
414
415 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
416 if (r < 0)
417 return r;
418
419 if (shutdown(fd, SHUT_RD) < 0)
420 return -errno;
421
422 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
423
424 if (dprintf(fd,
425 "%s\n"
426 "%s\n"
427 "%i\n"
428 "%i\n"
429 "%i\n"
430 "%i\n"
431 "%i\n",
432 context->syslog_identifier ?: ident,
433 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
434 context->syslog_priority,
435 !!context->syslog_level_prefix,
436 false,
437 is_kmsg_output(output),
438 is_terminal_output(output)) < 0)
439 return -errno;
440
441 return move_fd(TAKE_FD(fd), nfd, false);
442 }
443
444 static int open_terminal_as(const char *path, int flags, int nfd) {
445 int fd;
446
447 assert(path);
448 assert(nfd >= 0);
449
450 fd = open_terminal(path, flags | O_NOCTTY);
451 if (fd < 0)
452 return fd;
453
454 return move_fd(fd, nfd, false);
455 }
456
457 static int acquire_path(const char *path, int flags, mode_t mode) {
458 _cleanup_close_ int fd = -EBADF;
459 int r;
460
461 assert(path);
462
463 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
464 flags |= O_CREAT;
465
466 fd = open(path, flags|O_NOCTTY, mode);
467 if (fd >= 0)
468 return TAKE_FD(fd);
469
470 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
471 return -errno;
472
473 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
474
475 fd = socket(AF_UNIX, SOCK_STREAM, 0);
476 if (fd < 0)
477 return -errno;
478
479 r = connect_unix_path(fd, AT_FDCWD, path);
480 if (IN_SET(r, -ENOTSOCK, -EINVAL))
481 /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this
482 * wasn't an AF_UNIX socket after all */
483 return -ENXIO;
484 if (r < 0)
485 return r;
486
487 if ((flags & O_ACCMODE) == O_RDONLY)
488 r = shutdown(fd, SHUT_WR);
489 else if ((flags & O_ACCMODE) == O_WRONLY)
490 r = shutdown(fd, SHUT_RD);
491 else
492 r = 0;
493 if (r < 0)
494 return -errno;
495
496 return TAKE_FD(fd);
497 }
498
499 static int fixup_input(
500 const ExecContext *context,
501 int socket_fd,
502 bool apply_tty_stdin) {
503
504 ExecInput std_input;
505
506 assert(context);
507
508 std_input = context->std_input;
509
510 if (is_terminal_input(std_input) && !apply_tty_stdin)
511 return EXEC_INPUT_NULL;
512
513 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
514 return EXEC_INPUT_NULL;
515
516 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
517 return EXEC_INPUT_NULL;
518
519 return std_input;
520 }
521
522 static int fixup_output(ExecOutput output, int socket_fd) {
523
524 if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
525 return EXEC_OUTPUT_INHERIT;
526
527 return output;
528 }
529
530 static int setup_input(
531 const ExecContext *context,
532 const ExecParameters *params,
533 int socket_fd,
534 const int named_iofds[static 3]) {
535
536 ExecInput i;
537 int r;
538
539 assert(context);
540 assert(params);
541 assert(named_iofds);
542
543 if (params->stdin_fd >= 0) {
544 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
545 return -errno;
546
547 /* Try to make this the controlling tty, if it is a tty, and reset it */
548 if (isatty(STDIN_FILENO)) {
549 unsigned rows = context->tty_rows, cols = context->tty_cols;
550
551 (void) exec_context_tty_size(context, &rows, &cols);
552 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
553 (void) reset_terminal_fd(STDIN_FILENO, true);
554 (void) terminal_set_size_fd(STDIN_FILENO, NULL, rows, cols);
555 }
556
557 return STDIN_FILENO;
558 }
559
560 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
561
562 switch (i) {
563
564 case EXEC_INPUT_NULL:
565 return open_null_as(O_RDONLY, STDIN_FILENO);
566
567 case EXEC_INPUT_TTY:
568 case EXEC_INPUT_TTY_FORCE:
569 case EXEC_INPUT_TTY_FAIL: {
570 unsigned rows, cols;
571 int fd;
572
573 fd = acquire_terminal(exec_context_tty_path(context),
574 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
575 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
576 ACQUIRE_TERMINAL_WAIT,
577 USEC_INFINITY);
578 if (fd < 0)
579 return fd;
580
581 r = exec_context_tty_size(context, &rows, &cols);
582 if (r < 0)
583 return r;
584
585 r = terminal_set_size_fd(fd, exec_context_tty_path(context), rows, cols);
586 if (r < 0)
587 return r;
588
589 return move_fd(fd, STDIN_FILENO, false);
590 }
591
592 case EXEC_INPUT_SOCKET:
593 assert(socket_fd >= 0);
594
595 return RET_NERRNO(dup2(socket_fd, STDIN_FILENO));
596
597 case EXEC_INPUT_NAMED_FD:
598 assert(named_iofds[STDIN_FILENO] >= 0);
599
600 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
601 return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO));
602
603 case EXEC_INPUT_DATA: {
604 int fd;
605
606 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
607 if (fd < 0)
608 return fd;
609
610 return move_fd(fd, STDIN_FILENO, false);
611 }
612
613 case EXEC_INPUT_FILE: {
614 bool rw;
615 int fd;
616
617 assert(context->stdio_file[STDIN_FILENO]);
618
619 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
620 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
621
622 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
623 if (fd < 0)
624 return fd;
625
626 return move_fd(fd, STDIN_FILENO, false);
627 }
628
629 default:
630 assert_not_reached();
631 }
632 }
633
634 static bool can_inherit_stderr_from_stdout(
635 const ExecContext *context,
636 ExecOutput o,
637 ExecOutput e) {
638
639 assert(context);
640
641 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
642 * stderr fd */
643
644 if (e == EXEC_OUTPUT_INHERIT)
645 return true;
646 if (e != o)
647 return false;
648
649 if (e == EXEC_OUTPUT_NAMED_FD)
650 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
651
652 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
653 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
654
655 return true;
656 }
657
658 static int setup_output(
659 const Unit *unit,
660 const ExecContext *context,
661 const ExecParameters *params,
662 int fileno,
663 int socket_fd,
664 const int named_iofds[static 3],
665 const char *ident,
666 uid_t uid,
667 gid_t gid,
668 dev_t *journal_stream_dev,
669 ino_t *journal_stream_ino) {
670
671 ExecOutput o;
672 ExecInput i;
673 int r;
674
675 assert(unit);
676 assert(context);
677 assert(params);
678 assert(ident);
679 assert(journal_stream_dev);
680 assert(journal_stream_ino);
681
682 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
683
684 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
685 return -errno;
686
687 return STDOUT_FILENO;
688 }
689
690 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
691 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
692 return -errno;
693
694 return STDERR_FILENO;
695 }
696
697 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
698 o = fixup_output(context->std_output, socket_fd);
699
700 if (fileno == STDERR_FILENO) {
701 ExecOutput e;
702 e = fixup_output(context->std_error, socket_fd);
703
704 /* This expects the input and output are already set up */
705
706 /* Don't change the stderr file descriptor if we inherit all
707 * the way and are not on a tty */
708 if (e == EXEC_OUTPUT_INHERIT &&
709 o == EXEC_OUTPUT_INHERIT &&
710 i == EXEC_INPUT_NULL &&
711 !is_terminal_input(context->std_input) &&
712 getppid() != 1)
713 return fileno;
714
715 /* Duplicate from stdout if possible */
716 if (can_inherit_stderr_from_stdout(context, o, e))
717 return RET_NERRNO(dup2(STDOUT_FILENO, fileno));
718
719 o = e;
720
721 } else if (o == EXEC_OUTPUT_INHERIT) {
722 /* If input got downgraded, inherit the original value */
723 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
724 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
725
726 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
727 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
728 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
729
730 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
731 if (getppid() != 1)
732 return fileno;
733
734 /* We need to open /dev/null here anew, to get the right access mode. */
735 return open_null_as(O_WRONLY, fileno);
736 }
737
738 switch (o) {
739
740 case EXEC_OUTPUT_NULL:
741 return open_null_as(O_WRONLY, fileno);
742
743 case EXEC_OUTPUT_TTY:
744 if (is_terminal_input(i))
745 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
746
747 /* We don't reset the terminal if this is just about output */
748 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
749
750 case EXEC_OUTPUT_KMSG:
751 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
752 case EXEC_OUTPUT_JOURNAL:
753 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
754 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
755 if (r < 0) {
756 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m",
757 fileno == STDOUT_FILENO ? "stdout" : "stderr");
758 r = open_null_as(O_WRONLY, fileno);
759 } else {
760 struct stat st;
761
762 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
763 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
764 * services to detect whether they are connected to the journal or not.
765 *
766 * If both stdout and stderr are connected to a stream then let's make sure to store the data
767 * about STDERR as that's usually the best way to do logging. */
768
769 if (fstat(fileno, &st) >= 0 &&
770 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
771 *journal_stream_dev = st.st_dev;
772 *journal_stream_ino = st.st_ino;
773 }
774 }
775 return r;
776
777 case EXEC_OUTPUT_SOCKET:
778 assert(socket_fd >= 0);
779
780 return RET_NERRNO(dup2(socket_fd, fileno));
781
782 case EXEC_OUTPUT_NAMED_FD:
783 assert(named_iofds[fileno] >= 0);
784
785 (void) fd_nonblock(named_iofds[fileno], false);
786 return RET_NERRNO(dup2(named_iofds[fileno], fileno));
787
788 case EXEC_OUTPUT_FILE:
789 case EXEC_OUTPUT_FILE_APPEND:
790 case EXEC_OUTPUT_FILE_TRUNCATE: {
791 bool rw;
792 int fd, flags;
793
794 assert(context->stdio_file[fileno]);
795
796 rw = context->std_input == EXEC_INPUT_FILE &&
797 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
798
799 if (rw)
800 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
801
802 flags = O_WRONLY;
803 if (o == EXEC_OUTPUT_FILE_APPEND)
804 flags |= O_APPEND;
805 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
806 flags |= O_TRUNC;
807
808 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
809 if (fd < 0)
810 return fd;
811
812 return move_fd(fd, fileno, 0);
813 }
814
815 default:
816 assert_not_reached();
817 }
818 }
819
820 static int chown_terminal(int fd, uid_t uid) {
821 int r;
822
823 assert(fd >= 0);
824
825 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
826 if (isatty(fd) < 1) {
827 if (IN_SET(errno, EINVAL, ENOTTY))
828 return 0; /* not a tty */
829
830 return -errno;
831 }
832
833 /* This might fail. What matters are the results. */
834 r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID);
835 if (r < 0)
836 return r;
837
838 return 1;
839 }
840
841 static int setup_confirm_stdio(
842 const ExecContext *context,
843 const char *vc,
844 int *ret_saved_stdin,
845 int *ret_saved_stdout) {
846
847 _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF;
848 unsigned rows, cols;
849 int r;
850
851 assert(ret_saved_stdin);
852 assert(ret_saved_stdout);
853
854 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
855 if (saved_stdin < 0)
856 return -errno;
857
858 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
859 if (saved_stdout < 0)
860 return -errno;
861
862 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
863 if (fd < 0)
864 return fd;
865
866 r = chown_terminal(fd, getuid());
867 if (r < 0)
868 return r;
869
870 r = reset_terminal_fd(fd, true);
871 if (r < 0)
872 return r;
873
874 r = exec_context_tty_size(context, &rows, &cols);
875 if (r < 0)
876 return r;
877
878 r = terminal_set_size_fd(fd, vc, rows, cols);
879 if (r < 0)
880 return r;
881
882 r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */
883 TAKE_FD(fd);
884 if (r < 0)
885 return r;
886
887 *ret_saved_stdin = TAKE_FD(saved_stdin);
888 *ret_saved_stdout = TAKE_FD(saved_stdout);
889 return 0;
890 }
891
892 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
893 assert(err < 0);
894
895 if (err == -ETIMEDOUT)
896 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
897 else {
898 errno = -err;
899 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
900 }
901 }
902
903 static void write_confirm_error(int err, const char *vc, const Unit *u) {
904 _cleanup_close_ int fd = -EBADF;
905
906 assert(vc);
907
908 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
909 if (fd < 0)
910 return;
911
912 write_confirm_error_fd(err, fd, u);
913 }
914
915 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
916 int r = 0;
917
918 assert(saved_stdin);
919 assert(saved_stdout);
920
921 release_terminal();
922
923 if (*saved_stdin >= 0)
924 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
925 r = -errno;
926
927 if (*saved_stdout >= 0)
928 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
929 r = -errno;
930
931 *saved_stdin = safe_close(*saved_stdin);
932 *saved_stdout = safe_close(*saved_stdout);
933
934 return r;
935 }
936
937 enum {
938 CONFIRM_PRETEND_FAILURE = -1,
939 CONFIRM_PRETEND_SUCCESS = 0,
940 CONFIRM_EXECUTE = 1,
941 };
942
943 static int ask_for_confirmation(const ExecContext *context, const char *vc, Unit *u, const char *cmdline) {
944 int saved_stdout = -1, saved_stdin = -1, r;
945 _cleanup_free_ char *e = NULL;
946 char c;
947
948 /* For any internal errors, assume a positive response. */
949 r = setup_confirm_stdio(context, vc, &saved_stdin, &saved_stdout);
950 if (r < 0) {
951 write_confirm_error(r, vc, u);
952 return CONFIRM_EXECUTE;
953 }
954
955 /* confirm_spawn might have been disabled while we were sleeping. */
956 if (manager_is_confirm_spawn_disabled(u->manager)) {
957 r = 1;
958 goto restore_stdio;
959 }
960
961 e = ellipsize(cmdline, 60, 100);
962 if (!e) {
963 log_oom();
964 r = CONFIRM_EXECUTE;
965 goto restore_stdio;
966 }
967
968 for (;;) {
969 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
970 if (r < 0) {
971 write_confirm_error_fd(r, STDOUT_FILENO, u);
972 r = CONFIRM_EXECUTE;
973 goto restore_stdio;
974 }
975
976 switch (c) {
977 case 'c':
978 printf("Resuming normal execution.\n");
979 manager_disable_confirm_spawn();
980 r = 1;
981 break;
982 case 'D':
983 unit_dump(u, stdout, " ");
984 continue; /* ask again */
985 case 'f':
986 printf("Failing execution.\n");
987 r = CONFIRM_PRETEND_FAILURE;
988 break;
989 case 'h':
990 printf(" c - continue, proceed without asking anymore\n"
991 " D - dump, show the state of the unit\n"
992 " f - fail, don't execute the command and pretend it failed\n"
993 " h - help\n"
994 " i - info, show a short summary of the unit\n"
995 " j - jobs, show jobs that are in progress\n"
996 " s - skip, don't execute the command and pretend it succeeded\n"
997 " y - yes, execute the command\n");
998 continue; /* ask again */
999 case 'i':
1000 printf(" Description: %s\n"
1001 " Unit: %s\n"
1002 " Command: %s\n",
1003 u->id, u->description, cmdline);
1004 continue; /* ask again */
1005 case 'j':
1006 manager_dump_jobs(u->manager, stdout, /* patterns= */ NULL, " ");
1007 continue; /* ask again */
1008 case 'n':
1009 /* 'n' was removed in favor of 'f'. */
1010 printf("Didn't understand 'n', did you mean 'f'?\n");
1011 continue; /* ask again */
1012 case 's':
1013 printf("Skipping execution.\n");
1014 r = CONFIRM_PRETEND_SUCCESS;
1015 break;
1016 case 'y':
1017 r = CONFIRM_EXECUTE;
1018 break;
1019 default:
1020 assert_not_reached();
1021 }
1022 break;
1023 }
1024
1025 restore_stdio:
1026 restore_confirm_stdio(&saved_stdin, &saved_stdout);
1027 return r;
1028 }
1029
1030 static int get_fixed_user(const ExecContext *c, const char **user,
1031 uid_t *uid, gid_t *gid,
1032 const char **home, const char **shell) {
1033 int r;
1034 const char *name;
1035
1036 assert(c);
1037
1038 if (!c->user)
1039 return 0;
1040
1041 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
1042 * (i.e. are "/" or "/bin/nologin"). */
1043
1044 name = c->user;
1045 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
1046 if (r < 0)
1047 return r;
1048
1049 *user = name;
1050 return 0;
1051 }
1052
1053 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
1054 int r;
1055 const char *name;
1056
1057 assert(c);
1058
1059 if (!c->group)
1060 return 0;
1061
1062 name = c->group;
1063 r = get_group_creds(&name, gid, 0);
1064 if (r < 0)
1065 return r;
1066
1067 *group = name;
1068 return 0;
1069 }
1070
1071 static int get_supplementary_groups(const ExecContext *c, const char *user,
1072 const char *group, gid_t gid,
1073 gid_t **supplementary_gids, int *ngids) {
1074 int r, k = 0;
1075 int ngroups_max;
1076 bool keep_groups = false;
1077 gid_t *groups = NULL;
1078 _cleanup_free_ gid_t *l_gids = NULL;
1079
1080 assert(c);
1081
1082 /*
1083 * If user is given, then lookup GID and supplementary groups list.
1084 * We avoid NSS lookups for gid=0. Also we have to initialize groups
1085 * here and as early as possible so we keep the list of supplementary
1086 * groups of the caller.
1087 */
1088 if (user && gid_is_valid(gid) && gid != 0) {
1089 /* First step, initialize groups from /etc/groups */
1090 if (initgroups(user, gid) < 0)
1091 return -errno;
1092
1093 keep_groups = true;
1094 }
1095
1096 if (strv_isempty(c->supplementary_groups))
1097 return 0;
1098
1099 /*
1100 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1101 * be positive, otherwise fail.
1102 */
1103 errno = 0;
1104 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1105 if (ngroups_max <= 0)
1106 return errno_or_else(EOPNOTSUPP);
1107
1108 l_gids = new(gid_t, ngroups_max);
1109 if (!l_gids)
1110 return -ENOMEM;
1111
1112 if (keep_groups) {
1113 /*
1114 * Lookup the list of groups that the user belongs to, we
1115 * avoid NSS lookups here too for gid=0.
1116 */
1117 k = ngroups_max;
1118 if (getgrouplist(user, gid, l_gids, &k) < 0)
1119 return -EINVAL;
1120 } else
1121 k = 0;
1122
1123 STRV_FOREACH(i, c->supplementary_groups) {
1124 const char *g;
1125
1126 if (k >= ngroups_max)
1127 return -E2BIG;
1128
1129 g = *i;
1130 r = get_group_creds(&g, l_gids+k, 0);
1131 if (r < 0)
1132 return r;
1133
1134 k++;
1135 }
1136
1137 /*
1138 * Sets ngids to zero to drop all supplementary groups, happens
1139 * when we are under root and SupplementaryGroups= is empty.
1140 */
1141 if (k == 0) {
1142 *ngids = 0;
1143 return 0;
1144 }
1145
1146 /* Otherwise get the final list of supplementary groups */
1147 groups = memdup(l_gids, sizeof(gid_t) * k);
1148 if (!groups)
1149 return -ENOMEM;
1150
1151 *supplementary_gids = groups;
1152 *ngids = k;
1153
1154 groups = NULL;
1155
1156 return 0;
1157 }
1158
1159 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1160 int r;
1161
1162 /* Handle SupplementaryGroups= if it is not empty */
1163 if (ngids > 0) {
1164 r = maybe_setgroups(ngids, supplementary_gids);
1165 if (r < 0)
1166 return r;
1167 }
1168
1169 if (gid_is_valid(gid)) {
1170 /* Then set our gids */
1171 if (setresgid(gid, gid, gid) < 0)
1172 return -errno;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static int set_securebits(unsigned bits, unsigned mask) {
1179 unsigned applied;
1180 int current;
1181
1182 current = prctl(PR_GET_SECUREBITS);
1183 if (current < 0)
1184 return -errno;
1185
1186 /* Clear all securebits defined in mask and set bits */
1187 applied = ((unsigned) current & ~mask) | bits;
1188 if ((unsigned) current == applied)
1189 return 0;
1190
1191 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1192 return -errno;
1193
1194 return 1;
1195 }
1196
1197 static int enforce_user(
1198 const ExecContext *context,
1199 uid_t uid,
1200 uint64_t capability_ambient_set) {
1201 assert(context);
1202 int r;
1203
1204 if (!uid_is_valid(uid))
1205 return 0;
1206
1207 /* Sets (but doesn't look up) the UIS and makes sure we keep the capabilities while doing so. For
1208 * setting secure bits the capability CAP_SETPCAP is required, so we also need keep-caps in this
1209 * case. */
1210
1211 if ((capability_ambient_set != 0 || context->secure_bits != 0) && uid != 0) {
1212
1213 /* First step: If we need to keep capabilities but drop privileges we need to make sure we
1214 * keep our caps, while we drop privileges. Add KEEP_CAPS to the securebits */
1215 r = set_securebits(1U << SECURE_KEEP_CAPS, 0);
1216 if (r < 0)
1217 return r;
1218 }
1219
1220 /* Second step: actually set the uids */
1221 if (setresuid(uid, uid, uid) < 0)
1222 return -errno;
1223
1224 /* At this point we should have all necessary capabilities but are otherwise a normal user. However,
1225 * the caps might got corrupted due to the setresuid() so we need clean them up later. This is done
1226 * outside of this call. */
1227 return 0;
1228 }
1229
1230 #if HAVE_PAM
1231
1232 static int null_conv(
1233 int num_msg,
1234 const struct pam_message **msg,
1235 struct pam_response **resp,
1236 void *appdata_ptr) {
1237
1238 /* We don't support conversations */
1239
1240 return PAM_CONV_ERR;
1241 }
1242
1243 #endif
1244
1245 static int setup_pam(
1246 const char *name,
1247 const char *user,
1248 uid_t uid,
1249 gid_t gid,
1250 const char *tty,
1251 char ***env, /* updated on success */
1252 const int fds[], size_t n_fds) {
1253
1254 #if HAVE_PAM
1255
1256 static const struct pam_conv conv = {
1257 .conv = null_conv,
1258 .appdata_ptr = NULL
1259 };
1260
1261 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1262 _cleanup_strv_free_ char **e = NULL;
1263 pam_handle_t *handle = NULL;
1264 sigset_t old_ss;
1265 int pam_code = PAM_SUCCESS, r;
1266 bool close_session = false;
1267 pid_t pam_pid = 0, parent_pid;
1268 int flags = 0;
1269
1270 assert(name);
1271 assert(user);
1272 assert(env);
1273
1274 /* We set up PAM in the parent process, then fork. The child
1275 * will then stay around until killed via PR_GET_PDEATHSIG or
1276 * systemd via the cgroup logic. It will then remove the PAM
1277 * session again. The parent process will exec() the actual
1278 * daemon. We do things this way to ensure that the main PID
1279 * of the daemon is the one we initially fork()ed. */
1280
1281 r = barrier_create(&barrier);
1282 if (r < 0)
1283 goto fail;
1284
1285 if (log_get_max_level() < LOG_DEBUG)
1286 flags |= PAM_SILENT;
1287
1288 pam_code = pam_start(name, user, &conv, &handle);
1289 if (pam_code != PAM_SUCCESS) {
1290 handle = NULL;
1291 goto fail;
1292 }
1293
1294 if (!tty) {
1295 _cleanup_free_ char *q = NULL;
1296
1297 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1298 * out if that's the case, and read the TTY off it. */
1299
1300 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1301 tty = strjoina("/dev/", q);
1302 }
1303
1304 if (tty) {
1305 pam_code = pam_set_item(handle, PAM_TTY, tty);
1306 if (pam_code != PAM_SUCCESS)
1307 goto fail;
1308 }
1309
1310 STRV_FOREACH(nv, *env) {
1311 pam_code = pam_putenv(handle, *nv);
1312 if (pam_code != PAM_SUCCESS)
1313 goto fail;
1314 }
1315
1316 pam_code = pam_acct_mgmt(handle, flags);
1317 if (pam_code != PAM_SUCCESS)
1318 goto fail;
1319
1320 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1321 if (pam_code != PAM_SUCCESS)
1322 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1323
1324 pam_code = pam_open_session(handle, flags);
1325 if (pam_code != PAM_SUCCESS)
1326 goto fail;
1327
1328 close_session = true;
1329
1330 e = pam_getenvlist(handle);
1331 if (!e) {
1332 pam_code = PAM_BUF_ERR;
1333 goto fail;
1334 }
1335
1336 /* Block SIGTERM, so that we know that it won't get lost in the child */
1337
1338 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1339
1340 parent_pid = getpid_cached();
1341
1342 r = safe_fork("(sd-pam)", 0, &pam_pid);
1343 if (r < 0)
1344 goto fail;
1345 if (r == 0) {
1346 int sig, ret = EXIT_PAM;
1347
1348 /* The child's job is to reset the PAM session on termination */
1349 barrier_set_role(&barrier, BARRIER_CHILD);
1350
1351 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1352 * those fds are open here that have been opened by PAM. */
1353 (void) close_many(fds, n_fds);
1354
1355 /* Drop privileges - we don't need any to pam_close_session and this will make
1356 * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam
1357 * threads to fail to exit normally */
1358
1359 r = maybe_setgroups(0, NULL);
1360 if (r < 0)
1361 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1362 if (setresgid(gid, gid, gid) < 0)
1363 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1364 if (setresuid(uid, uid, uid) < 0)
1365 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1366
1367 (void) ignore_signals(SIGPIPE);
1368
1369 /* Wait until our parent died. This will only work if the above setresuid() succeeds,
1370 * otherwise the kernel will not allow unprivileged parents kill their privileged children
1371 * this way. We rely on the control groups kill logic to do the rest for us. */
1372 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1373 goto child_finish;
1374
1375 /* Tell the parent that our setup is done. This is especially important regarding dropping
1376 * privileges. Otherwise, unit setup might race against our setresuid(2) call.
1377 *
1378 * If the parent aborted, we'll detect this below, hence ignore return failure here. */
1379 (void) barrier_place(&barrier);
1380
1381 /* Check if our parent process might already have died? */
1382 if (getppid() == parent_pid) {
1383 sigset_t ss;
1384
1385 assert_se(sigemptyset(&ss) >= 0);
1386 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1387
1388 for (;;) {
1389 if (sigwait(&ss, &sig) < 0) {
1390 if (errno == EINTR)
1391 continue;
1392
1393 goto child_finish;
1394 }
1395
1396 assert(sig == SIGTERM);
1397 break;
1398 }
1399 }
1400
1401 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1402 if (pam_code != PAM_SUCCESS)
1403 goto child_finish;
1404
1405 /* If our parent died we'll end the session */
1406 if (getppid() != parent_pid) {
1407 pam_code = pam_close_session(handle, flags);
1408 if (pam_code != PAM_SUCCESS)
1409 goto child_finish;
1410 }
1411
1412 ret = 0;
1413
1414 child_finish:
1415 /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module
1416 * know about this. See pam_end(3) */
1417 (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT);
1418 _exit(ret);
1419 }
1420
1421 barrier_set_role(&barrier, BARRIER_PARENT);
1422
1423 /* If the child was forked off successfully it will do all the cleanups, so forget about the handle
1424 * here. */
1425 handle = NULL;
1426
1427 /* Unblock SIGTERM again in the parent */
1428 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1429
1430 /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want
1431 * this fd around. */
1432 closelog();
1433
1434 /* Synchronously wait for the child to initialize. We don't care for errors as we cannot
1435 * recover. However, warn loudly if it happens. */
1436 if (!barrier_place_and_sync(&barrier))
1437 log_error("PAM initialization failed");
1438
1439 return strv_free_and_replace(*env, e);
1440
1441 fail:
1442 if (pam_code != PAM_SUCCESS) {
1443 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1444 r = -EPERM; /* PAM errors do not map to errno */
1445 } else
1446 log_error_errno(r, "PAM failed: %m");
1447
1448 if (handle) {
1449 if (close_session)
1450 pam_code = pam_close_session(handle, flags);
1451
1452 (void) pam_end(handle, pam_code | flags);
1453 }
1454
1455 closelog();
1456 return r;
1457 #else
1458 return 0;
1459 #endif
1460 }
1461
1462 static void rename_process_from_path(const char *path) {
1463 _cleanup_free_ char *buf = NULL;
1464 const char *p;
1465
1466 assert(path);
1467
1468 /* This resulting string must fit in 10 chars (i.e. the length of "/sbin/init") to look pretty in
1469 * /bin/ps */
1470
1471 if (path_extract_filename(path, &buf) < 0) {
1472 rename_process("(...)");
1473 return;
1474 }
1475
1476 size_t l = strlen(buf);
1477 if (l > 8) {
1478 /* The end of the process name is usually more interesting, since the first bit might just be
1479 * "systemd-" */
1480 p = buf + l - 8;
1481 l = 8;
1482 } else
1483 p = buf;
1484
1485 char process_name[11];
1486 process_name[0] = '(';
1487 memcpy(process_name+1, p, l);
1488 process_name[1+l] = ')';
1489 process_name[1+l+1] = 0;
1490
1491 rename_process(process_name);
1492 }
1493
1494 static bool context_has_address_families(const ExecContext *c) {
1495 assert(c);
1496
1497 return c->address_families_allow_list ||
1498 !set_isempty(c->address_families);
1499 }
1500
1501 static bool context_has_syscall_filters(const ExecContext *c) {
1502 assert(c);
1503
1504 return c->syscall_allow_list ||
1505 !hashmap_isempty(c->syscall_filter);
1506 }
1507
1508 static bool context_has_syscall_logs(const ExecContext *c) {
1509 assert(c);
1510
1511 return c->syscall_log_allow_list ||
1512 !hashmap_isempty(c->syscall_log);
1513 }
1514
1515 static bool context_has_no_new_privileges(const ExecContext *c) {
1516 assert(c);
1517
1518 if (c->no_new_privileges)
1519 return true;
1520
1521 if (have_effective_cap(CAP_SYS_ADMIN) > 0) /* if we are privileged, we don't need NNP */
1522 return false;
1523
1524 /* We need NNP if we have any form of seccomp and are unprivileged */
1525 return c->lock_personality ||
1526 c->memory_deny_write_execute ||
1527 c->private_devices ||
1528 c->protect_clock ||
1529 c->protect_hostname ||
1530 c->protect_kernel_tunables ||
1531 c->protect_kernel_modules ||
1532 c->protect_kernel_logs ||
1533 context_has_address_families(c) ||
1534 exec_context_restrict_namespaces_set(c) ||
1535 c->restrict_realtime ||
1536 c->restrict_suid_sgid ||
1537 !set_isempty(c->syscall_archs) ||
1538 context_has_syscall_filters(c) ||
1539 context_has_syscall_logs(c);
1540 }
1541
1542 static bool exec_context_has_credentials(const ExecContext *context) {
1543
1544 assert(context);
1545
1546 return !hashmap_isempty(context->set_credentials) ||
1547 !hashmap_isempty(context->load_credentials);
1548 }
1549
1550 #if HAVE_SECCOMP
1551
1552 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1553
1554 if (is_seccomp_available())
1555 return false;
1556
1557 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1558 return true;
1559 }
1560
1561 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1562 uint32_t negative_action, default_action, action;
1563 int r;
1564
1565 assert(u);
1566 assert(c);
1567
1568 if (!context_has_syscall_filters(c))
1569 return 0;
1570
1571 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1572 return 0;
1573
1574 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1575
1576 if (c->syscall_allow_list) {
1577 default_action = negative_action;
1578 action = SCMP_ACT_ALLOW;
1579 } else {
1580 default_action = SCMP_ACT_ALLOW;
1581 action = negative_action;
1582 }
1583
1584 if (needs_ambient_hack) {
1585 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1586 if (r < 0)
1587 return r;
1588 }
1589
1590 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1591 }
1592
1593 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1594 #ifdef SCMP_ACT_LOG
1595 uint32_t default_action, action;
1596 #endif
1597
1598 assert(u);
1599 assert(c);
1600
1601 if (!context_has_syscall_logs(c))
1602 return 0;
1603
1604 #ifdef SCMP_ACT_LOG
1605 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1606 return 0;
1607
1608 if (c->syscall_log_allow_list) {
1609 /* Log nothing but the ones listed */
1610 default_action = SCMP_ACT_ALLOW;
1611 action = SCMP_ACT_LOG;
1612 } else {
1613 /* Log everything but the ones listed */
1614 default_action = SCMP_ACT_LOG;
1615 action = SCMP_ACT_ALLOW;
1616 }
1617
1618 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1619 #else
1620 /* old libseccomp */
1621 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1622 return 0;
1623 #endif
1624 }
1625
1626 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1627 assert(u);
1628 assert(c);
1629
1630 if (set_isempty(c->syscall_archs))
1631 return 0;
1632
1633 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1634 return 0;
1635
1636 return seccomp_restrict_archs(c->syscall_archs);
1637 }
1638
1639 static int apply_address_families(const Unit* u, const ExecContext *c) {
1640 assert(u);
1641 assert(c);
1642
1643 if (!context_has_address_families(c))
1644 return 0;
1645
1646 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1647 return 0;
1648
1649 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1650 }
1651
1652 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1653 int r;
1654
1655 assert(u);
1656 assert(c);
1657
1658 if (!c->memory_deny_write_execute)
1659 return 0;
1660
1661 /* use prctl() if kernel supports it (6.3) */
1662 r = prctl(PR_SET_MDWE, PR_MDWE_REFUSE_EXEC_GAIN, 0, 0, 0);
1663 if (r == 0) {
1664 log_unit_debug(u, "Enabled MemoryDenyWriteExecute= with PR_SET_MDWE");
1665 return 0;
1666 }
1667 if (r < 0 && errno != EINVAL)
1668 return log_unit_debug_errno(u, errno, "Failed to enable MemoryDenyWriteExecute= with PR_SET_MDWE: %m");
1669 /* else use seccomp */
1670 log_unit_debug(u, "Kernel doesn't support PR_SET_MDWE: falling back to seccomp");
1671
1672 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1673 return 0;
1674
1675 return seccomp_memory_deny_write_execute();
1676 }
1677
1678 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1679 assert(u);
1680 assert(c);
1681
1682 if (!c->restrict_realtime)
1683 return 0;
1684
1685 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1686 return 0;
1687
1688 return seccomp_restrict_realtime();
1689 }
1690
1691 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1692 assert(u);
1693 assert(c);
1694
1695 if (!c->restrict_suid_sgid)
1696 return 0;
1697
1698 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1699 return 0;
1700
1701 return seccomp_restrict_suid_sgid();
1702 }
1703
1704 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1705 assert(u);
1706 assert(c);
1707
1708 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1709 * let's protect even those systems where this is left on in the kernel. */
1710
1711 if (!c->protect_kernel_tunables)
1712 return 0;
1713
1714 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1715 return 0;
1716
1717 return seccomp_protect_sysctl();
1718 }
1719
1720 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1721 assert(u);
1722 assert(c);
1723
1724 /* Turn off module syscalls on ProtectKernelModules=yes */
1725
1726 if (!c->protect_kernel_modules)
1727 return 0;
1728
1729 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1730 return 0;
1731
1732 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1733 }
1734
1735 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1736 assert(u);
1737 assert(c);
1738
1739 if (!c->protect_kernel_logs)
1740 return 0;
1741
1742 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1743 return 0;
1744
1745 return seccomp_protect_syslog();
1746 }
1747
1748 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1749 assert(u);
1750 assert(c);
1751
1752 if (!c->protect_clock)
1753 return 0;
1754
1755 if (skip_seccomp_unavailable(u, "ProtectClock="))
1756 return 0;
1757
1758 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1759 }
1760
1761 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1762 assert(u);
1763 assert(c);
1764
1765 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1766
1767 if (!c->private_devices)
1768 return 0;
1769
1770 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1771 return 0;
1772
1773 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1774 }
1775
1776 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1777 assert(u);
1778 assert(c);
1779
1780 if (!exec_context_restrict_namespaces_set(c))
1781 return 0;
1782
1783 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1784 return 0;
1785
1786 return seccomp_restrict_namespaces(c->restrict_namespaces);
1787 }
1788
1789 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1790 unsigned long personality;
1791 int r;
1792
1793 assert(u);
1794 assert(c);
1795
1796 if (!c->lock_personality)
1797 return 0;
1798
1799 if (skip_seccomp_unavailable(u, "LockPersonality="))
1800 return 0;
1801
1802 personality = c->personality;
1803
1804 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1805 if (personality == PERSONALITY_INVALID) {
1806
1807 r = opinionated_personality(&personality);
1808 if (r < 0)
1809 return r;
1810 }
1811
1812 return seccomp_lock_personality(personality);
1813 }
1814
1815 #endif
1816
1817 #if HAVE_LIBBPF
1818 static int apply_restrict_filesystems(Unit *u, const ExecContext *c) {
1819 assert(u);
1820 assert(c);
1821
1822 if (!exec_context_restrict_filesystems_set(c))
1823 return 0;
1824
1825 if (!u->manager->restrict_fs) {
1826 /* LSM BPF is unsupported or lsm_bpf_setup failed */
1827 log_unit_debug(u, "LSM BPF not supported, skipping RestrictFileSystems=");
1828 return 0;
1829 }
1830
1831 return lsm_bpf_unit_restrict_filesystems(u, c->restrict_filesystems, c->restrict_filesystems_allow_list);
1832 }
1833 #endif
1834
1835 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1836 assert(u);
1837 assert(c);
1838
1839 if (!c->protect_hostname)
1840 return 0;
1841
1842 if (ns_type_supported(NAMESPACE_UTS)) {
1843 if (unshare(CLONE_NEWUTS) < 0) {
1844 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1845 *ret_exit_status = EXIT_NAMESPACE;
1846 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1847 }
1848
1849 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1850 }
1851 } else
1852 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1853
1854 #if HAVE_SECCOMP
1855 int r;
1856
1857 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1858 return 0;
1859
1860 r = seccomp_protect_hostname();
1861 if (r < 0) {
1862 *ret_exit_status = EXIT_SECCOMP;
1863 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1864 }
1865 #endif
1866
1867 return 0;
1868 }
1869
1870 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1871 assert(idle_pipe);
1872
1873 idle_pipe[1] = safe_close(idle_pipe[1]);
1874 idle_pipe[2] = safe_close(idle_pipe[2]);
1875
1876 if (idle_pipe[0] >= 0) {
1877 int r;
1878
1879 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1880
1881 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1882 ssize_t n;
1883
1884 /* Signal systemd that we are bored and want to continue. */
1885 n = write(idle_pipe[3], "x", 1);
1886 if (n > 0)
1887 /* Wait for systemd to react to the signal above. */
1888 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1889 }
1890
1891 idle_pipe[0] = safe_close(idle_pipe[0]);
1892
1893 }
1894
1895 idle_pipe[3] = safe_close(idle_pipe[3]);
1896 }
1897
1898 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1899
1900 static int build_environment(
1901 const Unit *u,
1902 const ExecContext *c,
1903 const ExecParameters *p,
1904 const CGroupContext *cgroup_context,
1905 size_t n_fds,
1906 char **fdnames,
1907 const char *home,
1908 const char *username,
1909 const char *shell,
1910 dev_t journal_stream_dev,
1911 ino_t journal_stream_ino,
1912 const char *memory_pressure_path,
1913 char ***ret) {
1914
1915 _cleanup_strv_free_ char **our_env = NULL;
1916 size_t n_env = 0;
1917 char *x;
1918 int r;
1919
1920 assert(u);
1921 assert(c);
1922 assert(p);
1923 assert(ret);
1924
1925 #define N_ENV_VARS 19
1926 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1927 if (!our_env)
1928 return -ENOMEM;
1929
1930 if (n_fds > 0) {
1931 _cleanup_free_ char *joined = NULL;
1932
1933 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1934 return -ENOMEM;
1935 our_env[n_env++] = x;
1936
1937 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1938 return -ENOMEM;
1939 our_env[n_env++] = x;
1940
1941 joined = strv_join(fdnames, ":");
1942 if (!joined)
1943 return -ENOMEM;
1944
1945 x = strjoin("LISTEN_FDNAMES=", joined);
1946 if (!x)
1947 return -ENOMEM;
1948 our_env[n_env++] = x;
1949 }
1950
1951 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1952 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1953 return -ENOMEM;
1954 our_env[n_env++] = x;
1955
1956 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1957 return -ENOMEM;
1958 our_env[n_env++] = x;
1959 }
1960
1961 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking
1962 * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and
1963 * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */
1964 if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) {
1965 x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1");
1966 if (!x)
1967 return -ENOMEM;
1968 our_env[n_env++] = x;
1969 }
1970
1971 if (home) {
1972 x = strjoin("HOME=", home);
1973 if (!x)
1974 return -ENOMEM;
1975
1976 path_simplify(x + 5);
1977 our_env[n_env++] = x;
1978 }
1979
1980 if (username) {
1981 x = strjoin("LOGNAME=", username);
1982 if (!x)
1983 return -ENOMEM;
1984 our_env[n_env++] = x;
1985
1986 x = strjoin("USER=", username);
1987 if (!x)
1988 return -ENOMEM;
1989 our_env[n_env++] = x;
1990 }
1991
1992 if (shell) {
1993 x = strjoin("SHELL=", shell);
1994 if (!x)
1995 return -ENOMEM;
1996
1997 path_simplify(x + 6);
1998 our_env[n_env++] = x;
1999 }
2000
2001 if (!sd_id128_is_null(u->invocation_id)) {
2002 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
2003 return -ENOMEM;
2004
2005 our_env[n_env++] = x;
2006 }
2007
2008 if (exec_context_needs_term(c)) {
2009 _cleanup_free_ char *cmdline = NULL;
2010 const char *tty_path, *term = NULL;
2011
2012 tty_path = exec_context_tty_path(c);
2013
2014 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
2015 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
2016 * container manager passes to PID 1 ends up all the way in the console login shown. */
2017
2018 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
2019 term = getenv("TERM");
2020 else if (tty_path && in_charset(skip_dev_prefix(tty_path), ALPHANUMERICAL)) {
2021 _cleanup_free_ char *key = NULL;
2022
2023 key = strjoin("systemd.tty.term.", skip_dev_prefix(tty_path));
2024 if (!key)
2025 return -ENOMEM;
2026
2027 r = proc_cmdline_get_key(key, 0, &cmdline);
2028 if (r < 0)
2029 log_debug_errno(r, "Failed to read %s from kernel cmdline, ignoring: %m", key);
2030 else if (r > 0)
2031 term = cmdline;
2032 }
2033
2034 if (!term)
2035 term = default_term_for_tty(tty_path);
2036
2037 x = strjoin("TERM=", term);
2038 if (!x)
2039 return -ENOMEM;
2040 our_env[n_env++] = x;
2041 }
2042
2043 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
2044 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
2045 return -ENOMEM;
2046
2047 our_env[n_env++] = x;
2048 }
2049
2050 if (c->log_namespace) {
2051 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
2052 if (!x)
2053 return -ENOMEM;
2054
2055 our_env[n_env++] = x;
2056 }
2057
2058 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2059 _cleanup_free_ char *joined = NULL;
2060 const char *n;
2061
2062 if (!p->prefix[t])
2063 continue;
2064
2065 if (c->directories[t].n_items == 0)
2066 continue;
2067
2068 n = exec_directory_env_name_to_string(t);
2069 if (!n)
2070 continue;
2071
2072 for (size_t i = 0; i < c->directories[t].n_items; i++) {
2073 _cleanup_free_ char *prefixed = NULL;
2074
2075 prefixed = path_join(p->prefix[t], c->directories[t].items[i].path);
2076 if (!prefixed)
2077 return -ENOMEM;
2078
2079 if (!strextend_with_separator(&joined, ":", prefixed))
2080 return -ENOMEM;
2081 }
2082
2083 x = strjoin(n, "=", joined);
2084 if (!x)
2085 return -ENOMEM;
2086
2087 our_env[n_env++] = x;
2088 }
2089
2090 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
2091 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
2092 if (!x)
2093 return -ENOMEM;
2094
2095 our_env[n_env++] = x;
2096 }
2097
2098 if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0)
2099 return -ENOMEM;
2100
2101 our_env[n_env++] = x;
2102
2103 if (memory_pressure_path) {
2104 x = strjoin("MEMORY_PRESSURE_WATCH=", memory_pressure_path);
2105 if (!x)
2106 return -ENOMEM;
2107
2108 our_env[n_env++] = x;
2109
2110 if (cgroup_context && !path_equal(memory_pressure_path, "/dev/null")) {
2111 _cleanup_free_ char *b = NULL, *e = NULL;
2112
2113 if (asprintf(&b, "%s " USEC_FMT " " USEC_FMT,
2114 MEMORY_PRESSURE_DEFAULT_TYPE,
2115 cgroup_context->memory_pressure_threshold_usec == USEC_INFINITY ? MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC :
2116 CLAMP(cgroup_context->memory_pressure_threshold_usec, 1U, MEMORY_PRESSURE_DEFAULT_WINDOW_USEC),
2117 MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0)
2118 return -ENOMEM;
2119
2120 if (base64mem(b, strlen(b) + 1, &e) < 0)
2121 return -ENOMEM;
2122
2123 x = strjoin("MEMORY_PRESSURE_WRITE=", e);
2124 if (!x)
2125 return -ENOMEM;
2126
2127 our_env[n_env++] = x;
2128 }
2129 }
2130
2131 assert(n_env < N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
2132 #undef N_ENV_VARS
2133
2134 *ret = TAKE_PTR(our_env);
2135
2136 return 0;
2137 }
2138
2139 static int build_pass_environment(const ExecContext *c, char ***ret) {
2140 _cleanup_strv_free_ char **pass_env = NULL;
2141 size_t n_env = 0;
2142
2143 STRV_FOREACH(i, c->pass_environment) {
2144 _cleanup_free_ char *x = NULL;
2145 char *v;
2146
2147 v = getenv(*i);
2148 if (!v)
2149 continue;
2150 x = strjoin(*i, "=", v);
2151 if (!x)
2152 return -ENOMEM;
2153
2154 if (!GREEDY_REALLOC(pass_env, n_env + 2))
2155 return -ENOMEM;
2156
2157 pass_env[n_env++] = TAKE_PTR(x);
2158 pass_env[n_env] = NULL;
2159 }
2160
2161 *ret = TAKE_PTR(pass_env);
2162
2163 return 0;
2164 }
2165
2166 bool exec_needs_network_namespace(const ExecContext *context) {
2167 assert(context);
2168
2169 return context->private_network || context->network_namespace_path;
2170 }
2171
2172 static bool exec_needs_ipc_namespace(const ExecContext *context) {
2173 assert(context);
2174
2175 return context->private_ipc || context->ipc_namespace_path;
2176 }
2177
2178 bool exec_needs_mount_namespace(
2179 const ExecContext *context,
2180 const ExecParameters *params,
2181 const ExecRuntime *runtime) {
2182
2183 assert(context);
2184
2185 if (context->root_image)
2186 return true;
2187
2188 if (!strv_isempty(context->read_write_paths) ||
2189 !strv_isempty(context->read_only_paths) ||
2190 !strv_isempty(context->inaccessible_paths) ||
2191 !strv_isempty(context->exec_paths) ||
2192 !strv_isempty(context->no_exec_paths))
2193 return true;
2194
2195 if (context->n_bind_mounts > 0)
2196 return true;
2197
2198 if (context->n_temporary_filesystems > 0)
2199 return true;
2200
2201 if (context->n_mount_images > 0)
2202 return true;
2203
2204 if (context->n_extension_images > 0)
2205 return true;
2206
2207 if (!strv_isempty(context->extension_directories))
2208 return true;
2209
2210 if (!IN_SET(context->mount_propagation_flag, 0, MS_SHARED))
2211 return true;
2212
2213 if (context->private_tmp && runtime && runtime->shared && (runtime->shared->tmp_dir || runtime->shared->var_tmp_dir))
2214 return true;
2215
2216 if (context->private_devices ||
2217 context->private_mounts > 0 ||
2218 (context->private_mounts < 0 && exec_needs_network_namespace(context)) ||
2219 context->protect_system != PROTECT_SYSTEM_NO ||
2220 context->protect_home != PROTECT_HOME_NO ||
2221 context->protect_kernel_tunables ||
2222 context->protect_kernel_modules ||
2223 context->protect_kernel_logs ||
2224 context->protect_control_groups ||
2225 context->protect_proc != PROTECT_PROC_DEFAULT ||
2226 context->proc_subset != PROC_SUBSET_ALL ||
2227 exec_needs_ipc_namespace(context))
2228 return true;
2229
2230 if (context->root_directory) {
2231 if (exec_context_get_effective_mount_apivfs(context))
2232 return true;
2233
2234 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2235 if (params && !params->prefix[t])
2236 continue;
2237
2238 if (context->directories[t].n_items > 0)
2239 return true;
2240 }
2241 }
2242
2243 if (context->dynamic_user &&
2244 (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
2245 context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
2246 context->directories[EXEC_DIRECTORY_LOGS].n_items > 0))
2247 return true;
2248
2249 if (context->log_namespace)
2250 return true;
2251
2252 return false;
2253 }
2254
2255 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2256 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2257 _cleanup_close_pair_ int errno_pipe[2] = PIPE_EBADF;
2258 _cleanup_close_ int unshare_ready_fd = -EBADF;
2259 _cleanup_(sigkill_waitp) pid_t pid = 0;
2260 uint64_t c = 1;
2261 ssize_t n;
2262 int r;
2263
2264 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2265 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2266 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2267 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2268 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2269 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2270 * continues execution normally.
2271 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2272 * does not need CAP_SETUID to write the single line mapping to itself. */
2273
2274 /* Can only set up multiple mappings with CAP_SETUID. */
2275 if (have_effective_cap(CAP_SETUID) > 0 && uid != ouid && uid_is_valid(uid))
2276 r = asprintf(&uid_map,
2277 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2278 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2279 ouid, ouid, uid, uid);
2280 else
2281 r = asprintf(&uid_map,
2282 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2283 ouid, ouid);
2284
2285 if (r < 0)
2286 return -ENOMEM;
2287
2288 /* Can only set up multiple mappings with CAP_SETGID. */
2289 if (have_effective_cap(CAP_SETGID) > 0 && gid != ogid && gid_is_valid(gid))
2290 r = asprintf(&gid_map,
2291 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2292 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2293 ogid, ogid, gid, gid);
2294 else
2295 r = asprintf(&gid_map,
2296 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2297 ogid, ogid);
2298
2299 if (r < 0)
2300 return -ENOMEM;
2301
2302 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2303 * namespace. */
2304 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2305 if (unshare_ready_fd < 0)
2306 return -errno;
2307
2308 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2309 * failed. */
2310 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2311 return -errno;
2312
2313 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2314 if (r < 0)
2315 return r;
2316 if (r == 0) {
2317 _cleanup_close_ int fd = -EBADF;
2318 const char *a;
2319 pid_t ppid;
2320
2321 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2322 * here, after the parent opened its own user namespace. */
2323
2324 ppid = getppid();
2325 errno_pipe[0] = safe_close(errno_pipe[0]);
2326
2327 /* Wait until the parent unshared the user namespace */
2328 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2329 r = -errno;
2330 goto child_fail;
2331 }
2332
2333 /* Disable the setgroups() system call in the child user namespace, for good. */
2334 a = procfs_file_alloca(ppid, "setgroups");
2335 fd = open(a, O_WRONLY|O_CLOEXEC);
2336 if (fd < 0) {
2337 if (errno != ENOENT) {
2338 r = -errno;
2339 goto child_fail;
2340 }
2341
2342 /* If the file is missing the kernel is too old, let's continue anyway. */
2343 } else {
2344 if (write(fd, "deny\n", 5) < 0) {
2345 r = -errno;
2346 goto child_fail;
2347 }
2348
2349 fd = safe_close(fd);
2350 }
2351
2352 /* First write the GID map */
2353 a = procfs_file_alloca(ppid, "gid_map");
2354 fd = open(a, O_WRONLY|O_CLOEXEC);
2355 if (fd < 0) {
2356 r = -errno;
2357 goto child_fail;
2358 }
2359 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2360 r = -errno;
2361 goto child_fail;
2362 }
2363 fd = safe_close(fd);
2364
2365 /* The write the UID map */
2366 a = procfs_file_alloca(ppid, "uid_map");
2367 fd = open(a, O_WRONLY|O_CLOEXEC);
2368 if (fd < 0) {
2369 r = -errno;
2370 goto child_fail;
2371 }
2372 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2373 r = -errno;
2374 goto child_fail;
2375 }
2376
2377 _exit(EXIT_SUCCESS);
2378
2379 child_fail:
2380 (void) write(errno_pipe[1], &r, sizeof(r));
2381 _exit(EXIT_FAILURE);
2382 }
2383
2384 errno_pipe[1] = safe_close(errno_pipe[1]);
2385
2386 if (unshare(CLONE_NEWUSER) < 0)
2387 return -errno;
2388
2389 /* Let the child know that the namespace is ready now */
2390 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2391 return -errno;
2392
2393 /* Try to read an error code from the child */
2394 n = read(errno_pipe[0], &r, sizeof(r));
2395 if (n < 0)
2396 return -errno;
2397 if (n == sizeof(r)) { /* an error code was sent to us */
2398 if (r < 0)
2399 return r;
2400 return -EIO;
2401 }
2402 if (n != 0) /* on success we should have read 0 bytes */
2403 return -EIO;
2404
2405 r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0);
2406 if (r < 0)
2407 return r;
2408 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2409 return -EIO;
2410
2411 return 0;
2412 }
2413
2414 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2415 assert(context);
2416
2417 if (!context->dynamic_user)
2418 return false;
2419
2420 if (type == EXEC_DIRECTORY_CONFIGURATION)
2421 return false;
2422
2423 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2424 return false;
2425
2426 return true;
2427 }
2428
2429 static int create_many_symlinks(const char *root, const char *source, char **symlinks) {
2430 _cleanup_free_ char *src_abs = NULL;
2431 int r;
2432
2433 assert(source);
2434
2435 src_abs = path_join(root, source);
2436 if (!src_abs)
2437 return -ENOMEM;
2438
2439 STRV_FOREACH(dst, symlinks) {
2440 _cleanup_free_ char *dst_abs = NULL;
2441
2442 dst_abs = path_join(root, *dst);
2443 if (!dst_abs)
2444 return -ENOMEM;
2445
2446 r = mkdir_parents_label(dst_abs, 0755);
2447 if (r < 0)
2448 return r;
2449
2450 r = symlink_idempotent(src_abs, dst_abs, true);
2451 if (r < 0)
2452 return r;
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int setup_exec_directory(
2459 const ExecContext *context,
2460 const ExecParameters *params,
2461 uid_t uid,
2462 gid_t gid,
2463 ExecDirectoryType type,
2464 bool needs_mount_namespace,
2465 int *exit_status) {
2466
2467 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2468 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2469 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2470 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2471 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2472 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2473 };
2474 int r;
2475
2476 assert(context);
2477 assert(params);
2478 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2479 assert(exit_status);
2480
2481 if (!params->prefix[type])
2482 return 0;
2483
2484 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2485 if (!uid_is_valid(uid))
2486 uid = 0;
2487 if (!gid_is_valid(gid))
2488 gid = 0;
2489 }
2490
2491 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2492 _cleanup_free_ char *p = NULL, *pp = NULL;
2493
2494 p = path_join(params->prefix[type], context->directories[type].items[i].path);
2495 if (!p) {
2496 r = -ENOMEM;
2497 goto fail;
2498 }
2499
2500 r = mkdir_parents_label(p, 0755);
2501 if (r < 0)
2502 goto fail;
2503
2504 if (exec_directory_is_private(context, type)) {
2505 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2506 * case we want to avoid leaving a directory around fully accessible that is owned by
2507 * a dynamic user whose UID is later on reused. To lock this down we use the same
2508 * trick used by container managers to prohibit host users to get access to files of
2509 * the same UID in containers: we place everything inside a directory that has an
2510 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2511 * for unprivileged host code. We then use fs namespacing to make this directory
2512 * permeable for the service itself.
2513 *
2514 * Specifically: for a service which wants a special directory "foo/" we first create
2515 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2516 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2517 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2518 * unprivileged host users can't look into it. Inside of the namespace of the unit
2519 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2520 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2521 * for the service and making sure it only gets access to the dirs it needs but no
2522 * others. Tricky? Yes, absolutely, but it works!
2523 *
2524 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2525 * to be owned by the service itself.
2526 *
2527 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2528 * for sharing files or sockets with other services. */
2529
2530 pp = path_join(params->prefix[type], "private");
2531 if (!pp) {
2532 r = -ENOMEM;
2533 goto fail;
2534 }
2535
2536 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2537 r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE);
2538 if (r < 0)
2539 goto fail;
2540
2541 if (!path_extend(&pp, context->directories[type].items[i].path)) {
2542 r = -ENOMEM;
2543 goto fail;
2544 }
2545
2546 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2547 r = mkdir_parents_label(pp, 0755);
2548 if (r < 0)
2549 goto fail;
2550
2551 if (is_dir(p, false) > 0 &&
2552 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2553
2554 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2555 * it over. Most likely the service has been upgraded from one that didn't use
2556 * DynamicUser=1, to one that does. */
2557
2558 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2559 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2560 exec_directory_type_to_string(type), p, pp);
2561
2562 if (rename(p, pp) < 0) {
2563 r = -errno;
2564 goto fail;
2565 }
2566 } else {
2567 /* Otherwise, create the actual directory for the service */
2568
2569 r = mkdir_label(pp, context->directories[type].mode);
2570 if (r < 0 && r != -EEXIST)
2571 goto fail;
2572 }
2573
2574 if (!context->directories[type].items[i].only_create) {
2575 /* And link it up from the original place.
2576 * Notes
2577 * 1) If a mount namespace is going to be used, then this symlink remains on
2578 * the host, and a new one for the child namespace will be created later.
2579 * 2) It is not necessary to create this symlink when one of its parent
2580 * directories is specified and already created. E.g.
2581 * StateDirectory=foo foo/bar
2582 * In that case, the inode points to pp and p for "foo/bar" are the same:
2583 * pp = "/var/lib/private/foo/bar"
2584 * p = "/var/lib/foo/bar"
2585 * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only
2586 * we do not need to create the symlink, but we cannot create the symlink.
2587 * See issue #24783. */
2588 r = symlink_idempotent(pp, p, true);
2589 if (r < 0)
2590 goto fail;
2591 }
2592
2593 } else {
2594 _cleanup_free_ char *target = NULL;
2595
2596 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2597 readlink_and_make_absolute(p, &target) >= 0) {
2598 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2599
2600 /* This already exists and is a symlink? Interesting. Maybe it's one created
2601 * by DynamicUser=1 (see above)?
2602 *
2603 * We do this for all directory types except for ConfigurationDirectory=,
2604 * since they all support the private/ symlink logic at least in some
2605 * configurations, see above. */
2606
2607 r = chase(target, NULL, 0, &target_resolved, NULL);
2608 if (r < 0)
2609 goto fail;
2610
2611 q = path_join(params->prefix[type], "private", context->directories[type].items[i].path);
2612 if (!q) {
2613 r = -ENOMEM;
2614 goto fail;
2615 }
2616
2617 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2618 r = chase(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2619 if (r < 0)
2620 goto fail;
2621
2622 if (path_equal(q_resolved, target_resolved)) {
2623
2624 /* Hmm, apparently DynamicUser= was once turned on for this service,
2625 * but is no longer. Let's move the directory back up. */
2626
2627 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2628 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2629 exec_directory_type_to_string(type), q, p);
2630
2631 if (unlink(p) < 0) {
2632 r = -errno;
2633 goto fail;
2634 }
2635
2636 if (rename(q, p) < 0) {
2637 r = -errno;
2638 goto fail;
2639 }
2640 }
2641 }
2642
2643 r = mkdir_label(p, context->directories[type].mode);
2644 if (r < 0) {
2645 if (r != -EEXIST)
2646 goto fail;
2647
2648 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2649 struct stat st;
2650
2651 /* Don't change the owner/access mode of the configuration directory,
2652 * as in the common case it is not written to by a service, and shall
2653 * not be writable. */
2654
2655 if (stat(p, &st) < 0) {
2656 r = -errno;
2657 goto fail;
2658 }
2659
2660 /* Still complain if the access mode doesn't match */
2661 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2662 log_warning("%s \'%s\' already exists but the mode is different. "
2663 "(File system: %o %sMode: %o)",
2664 exec_directory_type_to_string(type), context->directories[type].items[i].path,
2665 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2666
2667 continue;
2668 }
2669 }
2670 }
2671
2672 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2673 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2674 * current UID/GID ownership.) */
2675 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2676 if (r < 0)
2677 goto fail;
2678
2679 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2680 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2681 * assignments to exist. */
2682 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2683 if (r < 0)
2684 goto fail;
2685 }
2686
2687 /* If we are not going to run in a namespace, set up the symlinks - otherwise
2688 * they are set up later, to allow configuring empty var/run/etc. */
2689 if (!needs_mount_namespace)
2690 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2691 r = create_many_symlinks(params->prefix[type],
2692 context->directories[type].items[i].path,
2693 context->directories[type].items[i].symlinks);
2694 if (r < 0)
2695 goto fail;
2696 }
2697
2698 return 0;
2699
2700 fail:
2701 *exit_status = exit_status_table[type];
2702 return r;
2703 }
2704
2705 static int write_credential(
2706 int dfd,
2707 const char *id,
2708 const void *data,
2709 size_t size,
2710 uid_t uid,
2711 bool ownership_ok) {
2712
2713 _cleanup_(unlink_and_freep) char *tmp = NULL;
2714 _cleanup_close_ int fd = -EBADF;
2715 int r;
2716
2717 r = tempfn_random_child("", "cred", &tmp);
2718 if (r < 0)
2719 return r;
2720
2721 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2722 if (fd < 0) {
2723 tmp = mfree(tmp);
2724 return -errno;
2725 }
2726
2727 r = loop_write(fd, data, size, /* do_poll = */ false);
2728 if (r < 0)
2729 return r;
2730
2731 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2732 return -errno;
2733
2734 if (uid_is_valid(uid) && uid != getuid()) {
2735 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2736 if (r < 0) {
2737 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2738 return r;
2739
2740 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2741 * to express: that the user gets read access and nothing
2742 * else. But if the backing fs can't support that (e.g. ramfs)
2743 * then we can use file ownership instead. But that's only safe if
2744 * we can then re-mount the whole thing read-only, so that the
2745 * user can no longer chmod() the file to gain write access. */
2746 return r;
2747
2748 if (fchown(fd, uid, GID_INVALID) < 0)
2749 return -errno;
2750 }
2751 }
2752
2753 if (renameat(dfd, tmp, dfd, id) < 0)
2754 return -errno;
2755
2756 tmp = mfree(tmp);
2757 return 0;
2758 }
2759
2760 static char **credential_search_path(
2761 const ExecParameters *params,
2762 bool encrypted) {
2763
2764 _cleanup_strv_free_ char **l = NULL;
2765
2766 assert(params);
2767
2768 /* Assemble a search path to find credentials in. We'll look in /etc/credstore/ (and similar
2769 * directories in /usr/lib/ + /run/) for all types of credentials. If we are looking for encrypted
2770 * credentials, also look in /etc/credstore.encrypted/ (and similar dirs). */
2771
2772 if (encrypted) {
2773 if (strv_extend(&l, params->received_encrypted_credentials_directory) < 0)
2774 return NULL;
2775
2776 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore.encrypted"), /* filter_duplicates= */ true) < 0)
2777 return NULL;
2778 }
2779
2780 if (params->received_credentials_directory)
2781 if (strv_extend(&l, params->received_credentials_directory) < 0)
2782 return NULL;
2783
2784 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore"), /* filter_duplicates= */ true) < 0)
2785 return NULL;
2786
2787 if (DEBUG_LOGGING) {
2788 _cleanup_free_ char *t = strv_join(l, ":");
2789
2790 log_debug("Credential search path is: %s", t);
2791 }
2792
2793 return TAKE_PTR(l);
2794 }
2795
2796 static int load_credential(
2797 const ExecContext *context,
2798 const ExecParameters *params,
2799 const char *id,
2800 const char *path,
2801 bool encrypted,
2802 const char *unit,
2803 int read_dfd,
2804 int write_dfd,
2805 uid_t uid,
2806 bool ownership_ok,
2807 uint64_t *left) {
2808
2809 ReadFullFileFlags flags = READ_FULL_FILE_SECURE|READ_FULL_FILE_FAIL_WHEN_LARGER;
2810 _cleanup_strv_free_ char **search_path = NULL;
2811 _cleanup_(erase_and_freep) char *data = NULL;
2812 _cleanup_free_ char *bindname = NULL;
2813 const char *source = NULL;
2814 bool missing_ok = true;
2815 size_t size, add, maxsz;
2816 int r;
2817
2818 assert(context);
2819 assert(params);
2820 assert(id);
2821 assert(path);
2822 assert(unit);
2823 assert(read_dfd >= 0 || read_dfd == AT_FDCWD);
2824 assert(write_dfd >= 0);
2825 assert(left);
2826
2827 if (read_dfd >= 0) {
2828 /* If a directory fd is specified, then read the file directly from that dir. In this case we
2829 * won't do AF_UNIX stuff (we simply don't want to recursively iterate down a tree of AF_UNIX
2830 * IPC sockets). It's OK if a file vanishes here in the time we enumerate it and intend to
2831 * open it. */
2832
2833 if (!filename_is_valid(path)) /* safety check */
2834 return -EINVAL;
2835
2836 missing_ok = true;
2837 source = path;
2838
2839 } else if (path_is_absolute(path)) {
2840 /* If this is an absolute path, read the data directly from it, and support AF_UNIX
2841 * sockets */
2842
2843 if (!path_is_valid(path)) /* safety check */
2844 return -EINVAL;
2845
2846 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2847
2848 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2849 * via the source socket address in case we read off an AF_UNIX socket. */
2850 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, id) < 0)
2851 return -ENOMEM;
2852
2853 missing_ok = false;
2854 source = path;
2855
2856 } else if (credential_name_valid(path)) {
2857 /* If this is a relative path, take it as credential name relative to the credentials
2858 * directory we received ourselves. We don't support the AF_UNIX stuff in this mode, since we
2859 * are operating on a credential store, i.e. this is guaranteed to be regular files. */
2860
2861 search_path = credential_search_path(params, encrypted);
2862 if (!search_path)
2863 return -ENOMEM;
2864
2865 missing_ok = true;
2866 } else
2867 source = NULL;
2868
2869 if (encrypted)
2870 flags |= READ_FULL_FILE_UNBASE64;
2871
2872 maxsz = encrypted ? CREDENTIAL_ENCRYPTED_SIZE_MAX : CREDENTIAL_SIZE_MAX;
2873
2874 if (search_path) {
2875 STRV_FOREACH(d, search_path) {
2876 _cleanup_free_ char *j = NULL;
2877
2878 j = path_join(*d, path);
2879 if (!j)
2880 return -ENOMEM;
2881
2882 r = read_full_file_full(
2883 AT_FDCWD, j, /* path is absolute, hence pass AT_FDCWD as nop dir fd here */
2884 UINT64_MAX,
2885 maxsz,
2886 flags,
2887 NULL,
2888 &data, &size);
2889 if (r != -ENOENT)
2890 break;
2891 }
2892 } else if (source)
2893 r = read_full_file_full(
2894 read_dfd, source,
2895 UINT64_MAX,
2896 maxsz,
2897 flags,
2898 bindname,
2899 &data, &size);
2900 else
2901 r = -ENOENT;
2902
2903 if (r == -ENOENT && (missing_ok || hashmap_contains(context->set_credentials, id))) {
2904 /* Make a missing inherited credential non-fatal, let's just continue. After all apps
2905 * will get clear errors if we don't pass such a missing credential on as they
2906 * themselves will get ENOENT when trying to read them, which should not be much
2907 * worse than when we handle the error here and make it fatal.
2908 *
2909 * Also, if the source file doesn't exist, but a fallback is set via SetCredentials=
2910 * we are fine, too. */
2911 log_debug_errno(r, "Couldn't read inherited credential '%s', skipping: %m", path);
2912 return 0;
2913 }
2914 if (r < 0)
2915 return log_debug_errno(r, "Failed to read credential '%s': %m", path);
2916
2917 if (encrypted) {
2918 _cleanup_free_ void *plaintext = NULL;
2919 size_t plaintext_size = 0;
2920
2921 r = decrypt_credential_and_warn(id, now(CLOCK_REALTIME), NULL, NULL, data, size, &plaintext, &plaintext_size);
2922 if (r < 0)
2923 return r;
2924
2925 free_and_replace(data, plaintext);
2926 size = plaintext_size;
2927 }
2928
2929 add = strlen(id) + size;
2930 if (add > *left)
2931 return -E2BIG;
2932
2933 r = write_credential(write_dfd, id, data, size, uid, ownership_ok);
2934 if (r < 0)
2935 return log_debug_errno(r, "Failed to write credential '%s': %m", id);
2936
2937 *left -= add;
2938 return 0;
2939 }
2940
2941 struct load_cred_args {
2942 const ExecContext *context;
2943 const ExecParameters *params;
2944 bool encrypted;
2945 const char *unit;
2946 int dfd;
2947 uid_t uid;
2948 bool ownership_ok;
2949 uint64_t *left;
2950 };
2951
2952 static int load_cred_recurse_dir_cb(
2953 RecurseDirEvent event,
2954 const char *path,
2955 int dir_fd,
2956 int inode_fd,
2957 const struct dirent *de,
2958 const struct statx *sx,
2959 void *userdata) {
2960
2961 struct load_cred_args *args = ASSERT_PTR(userdata);
2962 _cleanup_free_ char *sub_id = NULL;
2963 int r;
2964
2965 if (event != RECURSE_DIR_ENTRY)
2966 return RECURSE_DIR_CONTINUE;
2967
2968 if (!IN_SET(de->d_type, DT_REG, DT_SOCK))
2969 return RECURSE_DIR_CONTINUE;
2970
2971 sub_id = strreplace(path, "/", "_");
2972 if (!sub_id)
2973 return -ENOMEM;
2974
2975 if (!credential_name_valid(sub_id))
2976 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Credential would get ID %s, which is not valid, refusing", sub_id);
2977
2978 if (faccessat(args->dfd, sub_id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) {
2979 log_debug("Skipping credential with duplicated ID %s at %s", sub_id, path);
2980 return RECURSE_DIR_CONTINUE;
2981 }
2982 if (errno != ENOENT)
2983 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sub_id);
2984
2985 r = load_credential(
2986 args->context,
2987 args->params,
2988 sub_id,
2989 de->d_name,
2990 args->encrypted,
2991 args->unit,
2992 dir_fd,
2993 args->dfd,
2994 args->uid,
2995 args->ownership_ok,
2996 args->left);
2997 if (r < 0)
2998 return r;
2999
3000 return RECURSE_DIR_CONTINUE;
3001 }
3002
3003 static int acquire_credentials(
3004 const ExecContext *context,
3005 const ExecParameters *params,
3006 const char *unit,
3007 const char *p,
3008 uid_t uid,
3009 bool ownership_ok) {
3010
3011 uint64_t left = CREDENTIALS_TOTAL_SIZE_MAX;
3012 _cleanup_close_ int dfd = -EBADF;
3013 ExecLoadCredential *lc;
3014 ExecSetCredential *sc;
3015 int r;
3016
3017 assert(context);
3018 assert(p);
3019
3020 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
3021 if (dfd < 0)
3022 return -errno;
3023
3024 /* First, load credentials off disk (or acquire via AF_UNIX socket) */
3025 HASHMAP_FOREACH(lc, context->load_credentials) {
3026 _cleanup_close_ int sub_fd = -EBADF;
3027
3028 /* If this is an absolute path, then try to open it as a directory. If that works, then we'll
3029 * recurse into it. If it is an absolute path but it isn't a directory, then we'll open it as
3030 * a regular file. Finally, if it's a relative path we will use it as a credential name to
3031 * propagate a credential passed to us from further up. */
3032
3033 if (path_is_absolute(lc->path)) {
3034 sub_fd = open(lc->path, O_DIRECTORY|O_CLOEXEC|O_RDONLY);
3035 if (sub_fd < 0 && !IN_SET(errno,
3036 ENOTDIR, /* Not a directory */
3037 ENOENT)) /* Doesn't exist? */
3038 return log_debug_errno(errno, "Failed to open '%s': %m", lc->path);
3039 }
3040
3041 if (sub_fd < 0)
3042 /* Regular file (incl. a credential passed in from higher up) */
3043 r = load_credential(
3044 context,
3045 params,
3046 lc->id,
3047 lc->path,
3048 lc->encrypted,
3049 unit,
3050 AT_FDCWD,
3051 dfd,
3052 uid,
3053 ownership_ok,
3054 &left);
3055 else
3056 /* Directory */
3057 r = recurse_dir(
3058 sub_fd,
3059 /* path= */ lc->id, /* recurse_dir() will suffix the subdir paths from here to the top-level id */
3060 /* statx_mask= */ 0,
3061 /* n_depth_max= */ UINT_MAX,
3062 RECURSE_DIR_SORT|RECURSE_DIR_IGNORE_DOT|RECURSE_DIR_ENSURE_TYPE,
3063 load_cred_recurse_dir_cb,
3064 &(struct load_cred_args) {
3065 .context = context,
3066 .params = params,
3067 .encrypted = lc->encrypted,
3068 .unit = unit,
3069 .dfd = dfd,
3070 .uid = uid,
3071 .ownership_ok = ownership_ok,
3072 .left = &left,
3073 });
3074 if (r < 0)
3075 return r;
3076 }
3077
3078 /* Second, we add in literally specified credentials. If the credentials already exist, we'll not add
3079 * them, so that they can act as a "default" if the same credential is specified multiple times. */
3080 HASHMAP_FOREACH(sc, context->set_credentials) {
3081 _cleanup_(erase_and_freep) void *plaintext = NULL;
3082 const char *data;
3083 size_t size, add;
3084
3085 /* Note that we check ahead of time here instead of relying on O_EXCL|O_CREAT later to return
3086 * EEXIST if the credential already exists. That's because the TPM2-based decryption is kinda
3087 * slow and involved, hence it's nice to be able to skip that if the credential already
3088 * exists anyway. */
3089 if (faccessat(dfd, sc->id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
3090 continue;
3091 if (errno != ENOENT)
3092 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sc->id);
3093
3094 if (sc->encrypted) {
3095 r = decrypt_credential_and_warn(sc->id, now(CLOCK_REALTIME), NULL, NULL, sc->data, sc->size, &plaintext, &size);
3096 if (r < 0)
3097 return r;
3098
3099 data = plaintext;
3100 } else {
3101 data = sc->data;
3102 size = sc->size;
3103 }
3104
3105 add = strlen(sc->id) + size;
3106 if (add > left)
3107 return -E2BIG;
3108
3109 r = write_credential(dfd, sc->id, data, size, uid, ownership_ok);
3110 if (r < 0)
3111 return r;
3112
3113 left -= add;
3114 }
3115
3116 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
3117 return -errno;
3118
3119 /* After we created all keys with the right perms, also make sure the credential store as a whole is
3120 * accessible */
3121
3122 if (uid_is_valid(uid) && uid != getuid()) {
3123 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
3124 if (r < 0) {
3125 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3126 return r;
3127
3128 if (!ownership_ok)
3129 return r;
3130
3131 if (fchown(dfd, uid, GID_INVALID) < 0)
3132 return -errno;
3133 }
3134 }
3135
3136 return 0;
3137 }
3138
3139 static int setup_credentials_internal(
3140 const ExecContext *context,
3141 const ExecParameters *params,
3142 const char *unit,
3143 const char *final, /* This is where the credential store shall eventually end up at */
3144 const char *workspace, /* This is where we can prepare it before moving it to the final place */
3145 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
3146 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
3147 uid_t uid) {
3148
3149 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
3150 * if we mounted something; false if we definitely can't mount anything */
3151 bool final_mounted;
3152 const char *where;
3153
3154 assert(context);
3155 assert(final);
3156 assert(workspace);
3157
3158 if (reuse_workspace) {
3159 r = path_is_mount_point(workspace, NULL, 0);
3160 if (r < 0)
3161 return r;
3162 if (r > 0)
3163 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
3164 else
3165 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
3166 } else
3167 workspace_mounted = -1; /* ditto */
3168
3169 r = path_is_mount_point(final, NULL, 0);
3170 if (r < 0)
3171 return r;
3172 if (r > 0) {
3173 /* If the final place already has something mounted, we use that. If the workspace also has
3174 * something mounted we assume it's actually the same mount (but with MS_RDONLY
3175 * different). */
3176 final_mounted = true;
3177
3178 if (workspace_mounted < 0) {
3179 /* If the final place is mounted, but the workspace isn't, then let's bind mount
3180 * the final version to the workspace, and make it writable, so that we can make
3181 * changes */
3182
3183 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3184 if (r < 0)
3185 return r;
3186
3187 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3188 if (r < 0)
3189 return r;
3190
3191 workspace_mounted = true;
3192 }
3193 } else
3194 final_mounted = false;
3195
3196 if (workspace_mounted < 0) {
3197 /* Nothing is mounted on the workspace yet, let's try to mount something now */
3198 for (int try = 0;; try++) {
3199
3200 if (try == 0) {
3201 /* Try "ramfs" first, since it's not swap backed */
3202 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
3203 if (r >= 0) {
3204 workspace_mounted = true;
3205 break;
3206 }
3207
3208 } else if (try == 1) {
3209 _cleanup_free_ char *opts = NULL;
3210
3211 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%zu", (size_t) CREDENTIALS_TOTAL_SIZE_MAX) < 0)
3212 return -ENOMEM;
3213
3214 /* Fall back to "tmpfs" otherwise */
3215 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
3216 if (r >= 0) {
3217 workspace_mounted = true;
3218 break;
3219 }
3220
3221 } else {
3222 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
3223 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3224 if (r < 0) {
3225 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
3226 return r;
3227
3228 if (must_mount) /* If we it's not OK to use the plain directory
3229 * fallback, propagate all errors too */
3230 return r;
3231
3232 /* If we lack privileges to bind mount stuff, then let's gracefully
3233 * proceed for compat with container envs, and just use the final dir
3234 * as is. */
3235
3236 workspace_mounted = false;
3237 break;
3238 }
3239
3240 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
3241 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3242 if (r < 0)
3243 return r;
3244
3245 workspace_mounted = true;
3246 break;
3247 }
3248 }
3249 }
3250
3251 assert(!must_mount || workspace_mounted > 0);
3252 where = workspace_mounted ? workspace : final;
3253
3254 (void) label_fix_full(AT_FDCWD, where, final, 0);
3255
3256 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
3257 if (r < 0)
3258 return r;
3259
3260 if (workspace_mounted) {
3261 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
3262 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3263 if (r < 0)
3264 return r;
3265
3266 /* And mount it to the final place, read-only */
3267 if (final_mounted)
3268 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
3269 else
3270 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
3271 if (r < 0)
3272 return r;
3273 } else {
3274 _cleanup_free_ char *parent = NULL;
3275
3276 /* If we do not have our own mount put used the plain directory fallback, then we need to
3277 * open access to the top-level credential directory and the per-service directory now */
3278
3279 r = path_extract_directory(final, &parent);
3280 if (r < 0)
3281 return r;
3282 if (chmod(parent, 0755) < 0)
3283 return -errno;
3284 }
3285
3286 return 0;
3287 }
3288
3289 static int setup_credentials(
3290 const ExecContext *context,
3291 const ExecParameters *params,
3292 const char *unit,
3293 uid_t uid) {
3294
3295 _cleanup_free_ char *p = NULL, *q = NULL;
3296 int r;
3297
3298 assert(context);
3299 assert(params);
3300
3301 if (!exec_context_has_credentials(context))
3302 return 0;
3303
3304 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
3305 return -EINVAL;
3306
3307 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
3308 * and the subdir we mount over with a read-only file system readable by the service's user */
3309 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
3310 if (!q)
3311 return -ENOMEM;
3312
3313 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
3314 if (r < 0 && r != -EEXIST)
3315 return r;
3316
3317 p = path_join(q, unit);
3318 if (!p)
3319 return -ENOMEM;
3320
3321 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
3322 if (r < 0 && r != -EEXIST)
3323 return r;
3324
3325 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
3326 if (r < 0) {
3327 _cleanup_free_ char *t = NULL, *u = NULL;
3328
3329 /* If this is not a privilege or support issue then propagate the error */
3330 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3331 return r;
3332
3333 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
3334 * it into place, so that users can't access half-initialized credential stores. */
3335 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
3336 if (!t)
3337 return -ENOMEM;
3338
3339 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
3340 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
3341 * after it is fully set up */
3342 u = path_join(t, unit);
3343 if (!u)
3344 return -ENOMEM;
3345
3346 FOREACH_STRING(i, t, u) {
3347 r = mkdir_label(i, 0700);
3348 if (r < 0 && r != -EEXIST)
3349 return r;
3350 }
3351
3352 r = setup_credentials_internal(
3353 context,
3354 params,
3355 unit,
3356 p, /* final mount point */
3357 u, /* temporary workspace to overmount */
3358 true, /* reuse the workspace if it is already a mount */
3359 false, /* it's OK to fall back to a plain directory if we can't mount anything */
3360 uid);
3361
3362 (void) rmdir(u); /* remove the workspace again if we can. */
3363
3364 if (r < 0)
3365 return r;
3366
3367 } else if (r == 0) {
3368
3369 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
3370 * we can use the same directory for all cases, after turning off propagation. Question
3371 * though is: where do we turn off propagation exactly, and where do we place the workspace
3372 * directory? We need some place that is guaranteed to be a mount point in the host, and
3373 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
3374 * since we ultimately want to move the resulting file system there, i.e. we need propagation
3375 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
3376 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
3377 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
3378 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
3379 * propagation on the former, and then overmount the latter.
3380 *
3381 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
3382 * for this purpose, but there are few other candidates that work equally well for us, and
3383 * given that the we do this in a privately namespaced short-lived single-threaded process
3384 * that no one else sees this should be OK to do. */
3385
3386 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
3387 if (r < 0)
3388 goto child_fail;
3389
3390 r = setup_credentials_internal(
3391 context,
3392 params,
3393 unit,
3394 p, /* final mount point */
3395 "/dev/shm", /* temporary workspace to overmount */
3396 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
3397 true, /* insist that something is mounted, do not allow fallback to plain directory */
3398 uid);
3399 if (r < 0)
3400 goto child_fail;
3401
3402 _exit(EXIT_SUCCESS);
3403
3404 child_fail:
3405 _exit(EXIT_FAILURE);
3406 }
3407
3408 return 0;
3409 }
3410
3411 #if ENABLE_SMACK
3412 static int setup_smack(
3413 const Manager *manager,
3414 const ExecContext *context,
3415 int executable_fd) {
3416 int r;
3417
3418 assert(context);
3419 assert(executable_fd >= 0);
3420
3421 if (context->smack_process_label) {
3422 r = mac_smack_apply_pid(0, context->smack_process_label);
3423 if (r < 0)
3424 return r;
3425 } else if (manager->default_smack_process_label) {
3426 _cleanup_free_ char *exec_label = NULL;
3427
3428 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
3429 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3430 return r;
3431
3432 r = mac_smack_apply_pid(0, exec_label ?: manager->default_smack_process_label);
3433 if (r < 0)
3434 return r;
3435 }
3436
3437 return 0;
3438 }
3439 #endif
3440
3441 static int compile_bind_mounts(
3442 const ExecContext *context,
3443 const ExecParameters *params,
3444 BindMount **ret_bind_mounts,
3445 size_t *ret_n_bind_mounts,
3446 char ***ret_empty_directories) {
3447
3448 _cleanup_strv_free_ char **empty_directories = NULL;
3449 BindMount *bind_mounts = NULL;
3450 size_t n, h = 0;
3451 int r;
3452
3453 assert(context);
3454 assert(params);
3455 assert(ret_bind_mounts);
3456 assert(ret_n_bind_mounts);
3457 assert(ret_empty_directories);
3458
3459 CLEANUP_ARRAY(bind_mounts, h, bind_mount_free_many);
3460
3461 n = context->n_bind_mounts;
3462 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3463 if (!params->prefix[t])
3464 continue;
3465
3466 for (size_t i = 0; i < context->directories[t].n_items; i++)
3467 n += !context->directories[t].items[i].only_create;
3468 }
3469
3470 if (n <= 0) {
3471 *ret_bind_mounts = NULL;
3472 *ret_n_bind_mounts = 0;
3473 *ret_empty_directories = NULL;
3474 return 0;
3475 }
3476
3477 bind_mounts = new(BindMount, n);
3478 if (!bind_mounts)
3479 return -ENOMEM;
3480
3481 for (size_t i = 0; i < context->n_bind_mounts; i++) {
3482 BindMount *item = context->bind_mounts + i;
3483 _cleanup_free_ char *s = NULL, *d = NULL;
3484
3485 s = strdup(item->source);
3486 if (!s)
3487 return -ENOMEM;
3488
3489 d = strdup(item->destination);
3490 if (!d)
3491 return -ENOMEM;
3492
3493 bind_mounts[h++] = (BindMount) {
3494 .source = TAKE_PTR(s),
3495 .destination = TAKE_PTR(d),
3496 .read_only = item->read_only,
3497 .recursive = item->recursive,
3498 .ignore_enoent = item->ignore_enoent,
3499 };
3500 }
3501
3502 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3503 if (!params->prefix[t])
3504 continue;
3505
3506 if (context->directories[t].n_items == 0)
3507 continue;
3508
3509 if (exec_directory_is_private(context, t) &&
3510 !exec_context_with_rootfs(context)) {
3511 char *private_root;
3512
3513 /* So this is for a dynamic user, and we need to make sure the process can access its own
3514 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3515 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3516
3517 private_root = path_join(params->prefix[t], "private");
3518 if (!private_root)
3519 return -ENOMEM;
3520
3521 r = strv_consume(&empty_directories, private_root);
3522 if (r < 0)
3523 return r;
3524 }
3525
3526 for (size_t i = 0; i < context->directories[t].n_items; i++) {
3527 _cleanup_free_ char *s = NULL, *d = NULL;
3528
3529 /* When one of the parent directories is in the list, we cannot create the symlink
3530 * for the child directory. See also the comments in setup_exec_directory(). */
3531 if (context->directories[t].items[i].only_create)
3532 continue;
3533
3534 if (exec_directory_is_private(context, t))
3535 s = path_join(params->prefix[t], "private", context->directories[t].items[i].path);
3536 else
3537 s = path_join(params->prefix[t], context->directories[t].items[i].path);
3538 if (!s)
3539 return -ENOMEM;
3540
3541 if (exec_directory_is_private(context, t) &&
3542 exec_context_with_rootfs(context))
3543 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3544 * directory is not created on the root directory. So, let's bind-mount the directory
3545 * on the 'non-private' place. */
3546 d = path_join(params->prefix[t], context->directories[t].items[i].path);
3547 else
3548 d = strdup(s);
3549 if (!d)
3550 return -ENOMEM;
3551
3552 bind_mounts[h++] = (BindMount) {
3553 .source = TAKE_PTR(s),
3554 .destination = TAKE_PTR(d),
3555 .read_only = false,
3556 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3557 .recursive = true,
3558 .ignore_enoent = false,
3559 };
3560 }
3561 }
3562
3563 assert(h == n);
3564
3565 *ret_bind_mounts = TAKE_PTR(bind_mounts);
3566 *ret_n_bind_mounts = n;
3567 *ret_empty_directories = TAKE_PTR(empty_directories);
3568
3569 return (int) n;
3570 }
3571
3572 /* ret_symlinks will contain a list of pairs src:dest that describes
3573 * the symlinks to create later on. For example, the symlinks needed
3574 * to safely give private directories to DynamicUser=1 users. */
3575 static int compile_symlinks(
3576 const ExecContext *context,
3577 const ExecParameters *params,
3578 char ***ret_symlinks) {
3579
3580 _cleanup_strv_free_ char **symlinks = NULL;
3581 int r;
3582
3583 assert(context);
3584 assert(params);
3585 assert(ret_symlinks);
3586
3587 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3588 for (size_t i = 0; i < context->directories[dt].n_items; i++) {
3589 _cleanup_free_ char *private_path = NULL, *path = NULL;
3590
3591 STRV_FOREACH(symlink, context->directories[dt].items[i].symlinks) {
3592 _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL;
3593
3594 src_abs = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3595 dst_abs = path_join(params->prefix[dt], *symlink);
3596 if (!src_abs || !dst_abs)
3597 return -ENOMEM;
3598
3599 r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs));
3600 if (r < 0)
3601 return r;
3602 }
3603
3604 if (!exec_directory_is_private(context, dt) ||
3605 exec_context_with_rootfs(context) ||
3606 context->directories[dt].items[i].only_create)
3607 continue;
3608
3609 private_path = path_join(params->prefix[dt], "private", context->directories[dt].items[i].path);
3610 if (!private_path)
3611 return -ENOMEM;
3612
3613 path = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3614 if (!path)
3615 return -ENOMEM;
3616
3617 r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path));
3618 if (r < 0)
3619 return r;
3620 }
3621 }
3622
3623 *ret_symlinks = TAKE_PTR(symlinks);
3624
3625 return 0;
3626 }
3627
3628 static bool insist_on_sandboxing(
3629 const ExecContext *context,
3630 const char *root_dir,
3631 const char *root_image,
3632 const BindMount *bind_mounts,
3633 size_t n_bind_mounts) {
3634
3635 assert(context);
3636 assert(n_bind_mounts == 0 || bind_mounts);
3637
3638 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3639 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3640 * rearrange stuff in a way we cannot ignore gracefully. */
3641
3642 if (context->n_temporary_filesystems > 0)
3643 return true;
3644
3645 if (root_dir || root_image)
3646 return true;
3647
3648 if (context->n_mount_images > 0)
3649 return true;
3650
3651 if (context->dynamic_user)
3652 return true;
3653
3654 if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories))
3655 return true;
3656
3657 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3658 * essential. */
3659 for (size_t i = 0; i < n_bind_mounts; i++)
3660 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3661 return true;
3662
3663 if (context->log_namespace)
3664 return true;
3665
3666 return false;
3667 }
3668
3669 static int apply_mount_namespace(
3670 const Unit *u,
3671 ExecCommandFlags command_flags,
3672 const ExecContext *context,
3673 const ExecParameters *params,
3674 const ExecRuntime *runtime,
3675 const char *memory_pressure_path,
3676 char **error_path) {
3677
3678 _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL,
3679 **read_write_paths_cleanup = NULL;
3680 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3681 const char *root_dir = NULL, *root_image = NULL;
3682 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL,
3683 *extension_dir = NULL;
3684 char **read_write_paths;
3685 NamespaceInfo ns_info;
3686 bool needs_sandboxing;
3687 BindMount *bind_mounts = NULL;
3688 size_t n_bind_mounts = 0;
3689 int r;
3690
3691 assert(context);
3692
3693 CLEANUP_ARRAY(bind_mounts, n_bind_mounts, bind_mount_free_many);
3694
3695 if (params->flags & EXEC_APPLY_CHROOT) {
3696 root_image = context->root_image;
3697
3698 if (!root_image)
3699 root_dir = context->root_directory;
3700 }
3701
3702 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3703 if (r < 0)
3704 return r;
3705
3706 /* Symlinks for exec dirs are set up after other mounts, before they are made read-only. */
3707 r = compile_symlinks(context, params, &symlinks);
3708 if (r < 0)
3709 return r;
3710
3711 /* We need to make the pressure path writable even if /sys/fs/cgroups is made read-only, as the
3712 * service will need to write to it in order to start the notifications. */
3713 if (context->protect_control_groups && memory_pressure_path && !streq(memory_pressure_path, "/dev/null")) {
3714 read_write_paths_cleanup = strv_copy(context->read_write_paths);
3715 if (!read_write_paths_cleanup)
3716 return -ENOMEM;
3717
3718 r = strv_extend(&read_write_paths_cleanup, memory_pressure_path);
3719 if (r < 0)
3720 return r;
3721
3722 read_write_paths = read_write_paths_cleanup;
3723 } else
3724 read_write_paths = context->read_write_paths;
3725
3726 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3727 if (needs_sandboxing) {
3728 /* The runtime struct only contains the parent of the private /tmp,
3729 * which is non-accessible to world users. Inside of it there's a /tmp
3730 * that is sticky, and that's the one we want to use here.
3731 * This does not apply when we are using /run/systemd/empty as fallback. */
3732
3733 if (context->private_tmp && runtime && runtime->shared) {
3734 if (streq_ptr(runtime->shared->tmp_dir, RUN_SYSTEMD_EMPTY))
3735 tmp_dir = runtime->shared->tmp_dir;
3736 else if (runtime->shared->tmp_dir)
3737 tmp_dir = strjoina(runtime->shared->tmp_dir, "/tmp");
3738
3739 if (streq_ptr(runtime->shared->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3740 var_tmp_dir = runtime->shared->var_tmp_dir;
3741 else if (runtime->shared->var_tmp_dir)
3742 var_tmp_dir = strjoina(runtime->shared->var_tmp_dir, "/tmp");
3743 }
3744
3745 ns_info = (NamespaceInfo) {
3746 .ignore_protect_paths = false,
3747 .private_dev = context->private_devices,
3748 .protect_control_groups = context->protect_control_groups,
3749 .protect_kernel_tunables = context->protect_kernel_tunables,
3750 .protect_kernel_modules = context->protect_kernel_modules,
3751 .protect_kernel_logs = context->protect_kernel_logs,
3752 .protect_hostname = context->protect_hostname,
3753 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3754 .protect_home = context->protect_home,
3755 .protect_system = context->protect_system,
3756 .protect_proc = context->protect_proc,
3757 .proc_subset = context->proc_subset,
3758 .private_network = exec_needs_network_namespace(context),
3759 .private_ipc = exec_needs_ipc_namespace(context),
3760 /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */
3761 .mount_nosuid = context->no_new_privileges && !mac_selinux_use(),
3762 };
3763 } else if (!context->dynamic_user && root_dir)
3764 /*
3765 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3766 * sandbox info, otherwise enforce it, don't ignore protected paths and
3767 * fail if we are enable to apply the sandbox inside the mount namespace.
3768 */
3769 ns_info = (NamespaceInfo) {
3770 .ignore_protect_paths = true,
3771 };
3772 else
3773 ns_info = (NamespaceInfo) {};
3774
3775 if (context->mount_propagation_flag == MS_SHARED)
3776 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3777
3778 if (exec_context_has_credentials(context) &&
3779 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3780 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3781 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3782 if (!creds_path)
3783 return -ENOMEM;
3784 }
3785
3786 if (MANAGER_IS_SYSTEM(u->manager)) {
3787 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3788 if (!propagate_dir)
3789 return -ENOMEM;
3790
3791 incoming_dir = strdup("/run/systemd/incoming");
3792 if (!incoming_dir)
3793 return -ENOMEM;
3794
3795 extension_dir = strdup("/run/systemd/unit-extensions");
3796 if (!extension_dir)
3797 return -ENOMEM;
3798 } else
3799 if (asprintf(&extension_dir, "/run/user/" UID_FMT "/systemd/unit-extensions", geteuid()) < 0)
3800 return -ENOMEM;
3801
3802 r = setup_namespace(
3803 root_dir,
3804 root_image,
3805 context->root_image_options,
3806 context->root_image_policy ?: &image_policy_service,
3807 &ns_info,
3808 read_write_paths,
3809 needs_sandboxing ? context->read_only_paths : NULL,
3810 needs_sandboxing ? context->inaccessible_paths : NULL,
3811 needs_sandboxing ? context->exec_paths : NULL,
3812 needs_sandboxing ? context->no_exec_paths : NULL,
3813 empty_directories,
3814 symlinks,
3815 bind_mounts,
3816 n_bind_mounts,
3817 context->temporary_filesystems,
3818 context->n_temporary_filesystems,
3819 context->mount_images,
3820 context->n_mount_images,
3821 context->mount_image_policy ?: &image_policy_service,
3822 tmp_dir,
3823 var_tmp_dir,
3824 creds_path,
3825 context->log_namespace,
3826 context->mount_propagation_flag,
3827 context->root_hash, context->root_hash_size, context->root_hash_path,
3828 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3829 context->root_verity,
3830 context->extension_images,
3831 context->n_extension_images,
3832 context->extension_image_policy ?: &image_policy_sysext,
3833 context->extension_directories,
3834 propagate_dir,
3835 incoming_dir,
3836 extension_dir,
3837 root_dir || root_image ? params->notify_socket : NULL,
3838 error_path);
3839
3840 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3841 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3842 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3843 * completely different execution environment. */
3844 if (r == -ENOANO) {
3845 if (insist_on_sandboxing(
3846 context,
3847 root_dir, root_image,
3848 bind_mounts,
3849 n_bind_mounts))
3850 return log_unit_debug_errno(u,
3851 SYNTHETIC_ERRNO(EOPNOTSUPP),
3852 "Failed to set up namespace, and refusing to continue since "
3853 "the selected namespacing options alter mount environment non-trivially.\n"
3854 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3855 n_bind_mounts,
3856 context->n_temporary_filesystems,
3857 yes_no(root_dir),
3858 yes_no(root_image),
3859 yes_no(context->dynamic_user));
3860
3861 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3862 return 0;
3863 }
3864
3865 return r;
3866 }
3867
3868 static int apply_working_directory(
3869 const ExecContext *context,
3870 const ExecParameters *params,
3871 const char *home,
3872 int *exit_status) {
3873
3874 const char *d, *wd;
3875
3876 assert(context);
3877 assert(exit_status);
3878
3879 if (context->working_directory_home) {
3880
3881 if (!home) {
3882 *exit_status = EXIT_CHDIR;
3883 return -ENXIO;
3884 }
3885
3886 wd = home;
3887
3888 } else
3889 wd = empty_to_root(context->working_directory);
3890
3891 if (params->flags & EXEC_APPLY_CHROOT)
3892 d = wd;
3893 else
3894 d = prefix_roota(context->root_directory, wd);
3895
3896 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3897 *exit_status = EXIT_CHDIR;
3898 return -errno;
3899 }
3900
3901 return 0;
3902 }
3903
3904 static int apply_root_directory(
3905 const ExecContext *context,
3906 const ExecParameters *params,
3907 const bool needs_mount_ns,
3908 int *exit_status) {
3909
3910 assert(context);
3911 assert(exit_status);
3912
3913 if (params->flags & EXEC_APPLY_CHROOT)
3914 if (!needs_mount_ns && context->root_directory)
3915 if (chroot(context->root_directory) < 0) {
3916 *exit_status = EXIT_CHROOT;
3917 return -errno;
3918 }
3919
3920 return 0;
3921 }
3922
3923 static int setup_keyring(
3924 const Unit *u,
3925 const ExecContext *context,
3926 const ExecParameters *p,
3927 uid_t uid, gid_t gid) {
3928
3929 key_serial_t keyring;
3930 int r = 0;
3931 uid_t saved_uid;
3932 gid_t saved_gid;
3933
3934 assert(u);
3935 assert(context);
3936 assert(p);
3937
3938 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3939 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3940 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3941 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3942 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3943 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3944
3945 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3946 return 0;
3947
3948 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3949 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3950 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3951 * & group is just as nasty as acquiring a reference to the user keyring. */
3952
3953 saved_uid = getuid();
3954 saved_gid = getgid();
3955
3956 if (gid_is_valid(gid) && gid != saved_gid) {
3957 if (setregid(gid, -1) < 0)
3958 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3959 }
3960
3961 if (uid_is_valid(uid) && uid != saved_uid) {
3962 if (setreuid(uid, -1) < 0) {
3963 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3964 goto out;
3965 }
3966 }
3967
3968 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3969 if (keyring == -1) {
3970 if (errno == ENOSYS)
3971 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3972 else if (ERRNO_IS_PRIVILEGE(errno))
3973 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3974 else if (errno == EDQUOT)
3975 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3976 else
3977 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3978
3979 goto out;
3980 }
3981
3982 /* When requested link the user keyring into the session keyring. */
3983 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3984
3985 if (keyctl(KEYCTL_LINK,
3986 KEY_SPEC_USER_KEYRING,
3987 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3988 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3989 goto out;
3990 }
3991 }
3992
3993 /* Restore uid/gid back */
3994 if (uid_is_valid(uid) && uid != saved_uid) {
3995 if (setreuid(saved_uid, -1) < 0) {
3996 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3997 goto out;
3998 }
3999 }
4000
4001 if (gid_is_valid(gid) && gid != saved_gid) {
4002 if (setregid(saved_gid, -1) < 0)
4003 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
4004 }
4005
4006 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
4007 if (!sd_id128_is_null(u->invocation_id)) {
4008 key_serial_t key;
4009
4010 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
4011 if (key == -1)
4012 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
4013 else {
4014 if (keyctl(KEYCTL_SETPERM, key,
4015 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
4016 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
4017 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
4018 }
4019 }
4020
4021 out:
4022 /* Revert back uid & gid for the last time, and exit */
4023 /* no extra logging, as only the first already reported error matters */
4024 if (getuid() != saved_uid)
4025 (void) setreuid(saved_uid, -1);
4026
4027 if (getgid() != saved_gid)
4028 (void) setregid(saved_gid, -1);
4029
4030 return r;
4031 }
4032
4033 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
4034 assert(array);
4035 assert(n);
4036 assert(pair);
4037
4038 if (pair[0] >= 0)
4039 array[(*n)++] = pair[0];
4040 if (pair[1] >= 0)
4041 array[(*n)++] = pair[1];
4042 }
4043
4044 static int close_remaining_fds(
4045 const ExecParameters *params,
4046 const ExecRuntime *runtime,
4047 int user_lookup_fd,
4048 int socket_fd,
4049 const int *fds, size_t n_fds) {
4050
4051 size_t n_dont_close = 0;
4052 int dont_close[n_fds + 12];
4053
4054 assert(params);
4055
4056 if (params->stdin_fd >= 0)
4057 dont_close[n_dont_close++] = params->stdin_fd;
4058 if (params->stdout_fd >= 0)
4059 dont_close[n_dont_close++] = params->stdout_fd;
4060 if (params->stderr_fd >= 0)
4061 dont_close[n_dont_close++] = params->stderr_fd;
4062
4063 if (socket_fd >= 0)
4064 dont_close[n_dont_close++] = socket_fd;
4065 if (n_fds > 0) {
4066 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
4067 n_dont_close += n_fds;
4068 }
4069
4070 if (runtime && runtime->shared) {
4071 append_socket_pair(dont_close, &n_dont_close, runtime->shared->netns_storage_socket);
4072 append_socket_pair(dont_close, &n_dont_close, runtime->shared->ipcns_storage_socket);
4073 }
4074
4075 if (runtime && runtime->dynamic_creds) {
4076 if (runtime->dynamic_creds->user)
4077 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->user->storage_socket);
4078 if (runtime->dynamic_creds->group)
4079 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->group->storage_socket);
4080 }
4081
4082 if (user_lookup_fd >= 0)
4083 dont_close[n_dont_close++] = user_lookup_fd;
4084
4085 return close_all_fds(dont_close, n_dont_close);
4086 }
4087
4088 static int send_user_lookup(
4089 Unit *unit,
4090 int user_lookup_fd,
4091 uid_t uid,
4092 gid_t gid) {
4093
4094 assert(unit);
4095
4096 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
4097 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
4098 * specified. */
4099
4100 if (user_lookup_fd < 0)
4101 return 0;
4102
4103 if (!uid_is_valid(uid) && !gid_is_valid(gid))
4104 return 0;
4105
4106 if (writev(user_lookup_fd,
4107 (struct iovec[]) {
4108 IOVEC_MAKE(&uid, sizeof(uid)),
4109 IOVEC_MAKE(&gid, sizeof(gid)),
4110 IOVEC_MAKE_STRING(unit->id) }, 3) < 0)
4111 return -errno;
4112
4113 return 0;
4114 }
4115
4116 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
4117 int r;
4118
4119 assert(c);
4120 assert(home);
4121 assert(buf);
4122
4123 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
4124
4125 if (*home)
4126 return 0;
4127
4128 if (!c->working_directory_home)
4129 return 0;
4130
4131 r = get_home_dir(buf);
4132 if (r < 0)
4133 return r;
4134
4135 *home = *buf;
4136 return 1;
4137 }
4138
4139 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
4140 _cleanup_strv_free_ char ** list = NULL;
4141 int r;
4142
4143 assert(c);
4144 assert(p);
4145 assert(ret);
4146
4147 assert(c->dynamic_user);
4148
4149 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
4150 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
4151 * directories. */
4152
4153 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
4154 if (t == EXEC_DIRECTORY_CONFIGURATION)
4155 continue;
4156
4157 if (!p->prefix[t])
4158 continue;
4159
4160 for (size_t i = 0; i < c->directories[t].n_items; i++) {
4161 char *e;
4162
4163 if (exec_directory_is_private(c, t))
4164 e = path_join(p->prefix[t], "private", c->directories[t].items[i].path);
4165 else
4166 e = path_join(p->prefix[t], c->directories[t].items[i].path);
4167 if (!e)
4168 return -ENOMEM;
4169
4170 r = strv_consume(&list, e);
4171 if (r < 0)
4172 return r;
4173 }
4174 }
4175
4176 *ret = TAKE_PTR(list);
4177
4178 return 0;
4179 }
4180
4181 static int exec_parameters_get_cgroup_path(
4182 const ExecParameters *params,
4183 const CGroupContext *c,
4184 char **ret) {
4185
4186 const char *subgroup = NULL;
4187 char *p;
4188
4189 assert(params);
4190 assert(ret);
4191
4192 if (!params->cgroup_path)
4193 return -EINVAL;
4194
4195 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
4196 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
4197 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
4198 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
4199 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
4200 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
4201 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
4202 * flag, which is only passed for the former statements, not for the latter. */
4203
4204 if (FLAGS_SET(params->flags, EXEC_CGROUP_DELEGATE) && (FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP) || c->delegate_subgroup)) {
4205 if (FLAGS_SET(params->flags, EXEC_IS_CONTROL))
4206 subgroup = ".control";
4207 else
4208 subgroup = c->delegate_subgroup;
4209 }
4210
4211 if (subgroup)
4212 p = path_join(params->cgroup_path, subgroup);
4213 else
4214 p = strdup(params->cgroup_path);
4215 if (!p)
4216 return -ENOMEM;
4217
4218 *ret = p;
4219 return !!subgroup;
4220 }
4221
4222 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
4223 _cleanup_(cpu_set_reset) CPUSet s = {};
4224 int r;
4225
4226 assert(c);
4227 assert(ret);
4228
4229 if (!c->numa_policy.nodes.set) {
4230 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
4231 return 0;
4232 }
4233
4234 r = numa_to_cpu_set(&c->numa_policy, &s);
4235 if (r < 0)
4236 return r;
4237
4238 cpu_set_reset(ret);
4239
4240 return cpu_set_add_all(ret, &s);
4241 }
4242
4243 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
4244 assert(c);
4245
4246 return c->cpu_affinity_from_numa;
4247 }
4248
4249 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
4250 int r;
4251
4252 assert(fds);
4253 assert(n_fds);
4254 assert(*n_fds < fds_size);
4255 assert(ret_fd);
4256
4257 if (fd < 0) {
4258 *ret_fd = -EBADF;
4259 return 0;
4260 }
4261
4262 if (fd < 3 + (int) *n_fds) {
4263 /* Let's move the fd up, so that it's outside of the fd range we will use to store
4264 * the fds we pass to the process (or which are closed only during execve). */
4265
4266 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
4267 if (r < 0)
4268 return -errno;
4269
4270 close_and_replace(fd, r);
4271 }
4272
4273 *ret_fd = fds[*n_fds] = fd;
4274 (*n_fds) ++;
4275 return 1;
4276 }
4277
4278 static int connect_unix_harder(Unit *u, const OpenFile *of, int ofd) {
4279 union sockaddr_union addr = {
4280 .un.sun_family = AF_UNIX,
4281 };
4282 socklen_t sa_len;
4283 static const int socket_types[] = { SOCK_DGRAM, SOCK_STREAM, SOCK_SEQPACKET };
4284 int r;
4285
4286 assert(u);
4287 assert(of);
4288 assert(ofd >= 0);
4289
4290 r = sockaddr_un_set_path(&addr.un, FORMAT_PROC_FD_PATH(ofd));
4291 if (r < 0)
4292 return log_unit_error_errno(u, r, "Failed to set sockaddr for %s: %m", of->path);
4293
4294 sa_len = r;
4295
4296 for (size_t i = 0; i < ELEMENTSOF(socket_types); i++) {
4297 _cleanup_close_ int fd = -EBADF;
4298
4299 fd = socket(AF_UNIX, socket_types[i] | SOCK_CLOEXEC, 0);
4300 if (fd < 0)
4301 return log_unit_error_errno(u, errno, "Failed to create socket for %s: %m", of->path);
4302
4303 r = RET_NERRNO(connect(fd, &addr.sa, sa_len));
4304 if (r == -EPROTOTYPE)
4305 continue;
4306 if (r < 0)
4307 return log_unit_error_errno(u, r, "Failed to connect socket for %s: %m", of->path);
4308
4309 return TAKE_FD(fd);
4310 }
4311
4312 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EPROTOTYPE), "Failed to connect socket for \"%s\".", of->path);
4313 }
4314
4315 static int get_open_file_fd(Unit *u, const OpenFile *of) {
4316 struct stat st;
4317 _cleanup_close_ int fd = -EBADF, ofd = -EBADF;
4318
4319 assert(u);
4320 assert(of);
4321
4322 ofd = open(of->path, O_PATH | O_CLOEXEC);
4323 if (ofd < 0)
4324 return log_unit_error_errno(u, errno, "Could not open \"%s\": %m", of->path);
4325
4326 if (fstat(ofd, &st) < 0)
4327 return log_unit_error_errno(u, errno, "Failed to stat %s: %m", of->path);
4328
4329 if (S_ISSOCK(st.st_mode)) {
4330 fd = connect_unix_harder(u, of, ofd);
4331 if (fd < 0)
4332 return fd;
4333
4334 if (FLAGS_SET(of->flags, OPENFILE_READ_ONLY) && shutdown(fd, SHUT_WR) < 0)
4335 return log_unit_error_errno(u, errno, "Failed to shutdown send for socket %s: %m",
4336 of->path);
4337
4338 log_unit_debug(u, "socket %s opened (fd=%d)", of->path, fd);
4339 } else {
4340 int flags = FLAGS_SET(of->flags, OPENFILE_READ_ONLY) ? O_RDONLY : O_RDWR;
4341 if (FLAGS_SET(of->flags, OPENFILE_APPEND))
4342 flags |= O_APPEND;
4343 else if (FLAGS_SET(of->flags, OPENFILE_TRUNCATE))
4344 flags |= O_TRUNC;
4345
4346 fd = fd_reopen(ofd, flags | O_CLOEXEC);
4347 if (fd < 0)
4348 return log_unit_error_errno(u, fd, "Failed to open file %s: %m", of->path);
4349
4350 log_unit_debug(u, "file %s opened (fd=%d)", of->path, fd);
4351 }
4352
4353 return TAKE_FD(fd);
4354 }
4355
4356 static int collect_open_file_fds(
4357 Unit *u,
4358 OpenFile* open_files,
4359 int **fds,
4360 char ***fdnames,
4361 size_t *n_fds) {
4362 int r;
4363
4364 assert(u);
4365 assert(fds);
4366 assert(fdnames);
4367 assert(n_fds);
4368
4369 LIST_FOREACH(open_files, of, open_files) {
4370 _cleanup_close_ int fd = -EBADF;
4371
4372 fd = get_open_file_fd(u, of);
4373 if (fd < 0) {
4374 if (FLAGS_SET(of->flags, OPENFILE_GRACEFUL)) {
4375 log_unit_debug_errno(u, fd, "Failed to get OpenFile= file descriptor for %s, ignoring: %m", of->path);
4376 continue;
4377 }
4378
4379 return fd;
4380 }
4381
4382 if (!GREEDY_REALLOC(*fds, *n_fds + 1))
4383 return -ENOMEM;
4384
4385 r = strv_extend(fdnames, of->fdname);
4386 if (r < 0)
4387 return r;
4388
4389 (*fds)[*n_fds] = TAKE_FD(fd);
4390
4391 (*n_fds)++;
4392 }
4393
4394 return 0;
4395 }
4396
4397 static void log_command_line(Unit *unit, const char *msg, const char *executable, char **argv) {
4398 assert(unit);
4399 assert(msg);
4400 assert(executable);
4401
4402 if (!DEBUG_LOGGING)
4403 return;
4404
4405 _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY);
4406
4407 log_unit_struct(unit, LOG_DEBUG,
4408 "EXECUTABLE=%s", executable,
4409 LOG_UNIT_MESSAGE(unit, "%s: %s", msg, strnull(cmdline)),
4410 LOG_UNIT_INVOCATION_ID(unit));
4411 }
4412
4413 static bool exec_context_need_unprivileged_private_users(const ExecContext *context, const Manager *manager) {
4414 assert(context);
4415 assert(manager);
4416
4417 /* These options require PrivateUsers= when used in user units, as we need to be in a user namespace
4418 * to have permission to enable them when not running as root. If we have effective CAP_SYS_ADMIN
4419 * (system manager) then we have privileges and don't need this. */
4420 if (MANAGER_IS_SYSTEM(manager))
4421 return false;
4422
4423 return context->private_users ||
4424 context->private_tmp ||
4425 context->private_devices ||
4426 context->private_network ||
4427 context->network_namespace_path ||
4428 context->private_ipc ||
4429 context->ipc_namespace_path ||
4430 context->private_mounts ||
4431 context->mount_apivfs ||
4432 context->n_bind_mounts > 0 ||
4433 context->n_temporary_filesystems > 0 ||
4434 context->root_directory ||
4435 !strv_isempty(context->extension_directories) ||
4436 context->protect_system != PROTECT_SYSTEM_NO ||
4437 context->protect_home != PROTECT_HOME_NO ||
4438 context->protect_kernel_tunables ||
4439 context->protect_kernel_modules ||
4440 context->protect_kernel_logs ||
4441 context->protect_control_groups ||
4442 context->protect_clock ||
4443 context->protect_hostname ||
4444 !strv_isempty(context->read_write_paths) ||
4445 !strv_isempty(context->read_only_paths) ||
4446 !strv_isempty(context->inaccessible_paths) ||
4447 !strv_isempty(context->exec_paths) ||
4448 !strv_isempty(context->no_exec_paths);
4449 }
4450
4451 static int exec_child(
4452 Unit *unit,
4453 const ExecCommand *command,
4454 const ExecContext *context,
4455 const ExecParameters *params,
4456 ExecRuntime *runtime,
4457 const CGroupContext *cgroup_context,
4458 int socket_fd,
4459 const int named_iofds[static 3],
4460 int *params_fds,
4461 size_t n_socket_fds,
4462 size_t n_storage_fds,
4463 char **files_env,
4464 int user_lookup_fd,
4465 int *exit_status) {
4466
4467 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL;
4468 int r, ngids = 0, exec_fd;
4469 _cleanup_free_ gid_t *supplementary_gids = NULL;
4470 const char *username = NULL, *groupname = NULL;
4471 _cleanup_free_ char *home_buffer = NULL, *memory_pressure_path = NULL;
4472 const char *home = NULL, *shell = NULL;
4473 char **final_argv = NULL;
4474 dev_t journal_stream_dev = 0;
4475 ino_t journal_stream_ino = 0;
4476 bool userns_set_up = false;
4477 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
4478 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
4479 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
4480 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
4481 #if HAVE_SELINUX
4482 _cleanup_free_ char *mac_selinux_context_net = NULL;
4483 bool use_selinux = false;
4484 #endif
4485 #if ENABLE_SMACK
4486 bool use_smack = false;
4487 #endif
4488 #if HAVE_APPARMOR
4489 bool use_apparmor = false;
4490 #endif
4491 uid_t saved_uid = getuid();
4492 gid_t saved_gid = getgid();
4493 uid_t uid = UID_INVALID;
4494 gid_t gid = GID_INVALID;
4495 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
4496 n_keep_fds; /* total number of fds not to close */
4497 int secure_bits;
4498 _cleanup_free_ gid_t *gids_after_pam = NULL;
4499 int ngids_after_pam = 0;
4500 _cleanup_free_ int *fds = NULL;
4501 _cleanup_strv_free_ char **fdnames = NULL;
4502
4503 assert(unit);
4504 assert(command);
4505 assert(context);
4506 assert(params);
4507 assert(exit_status);
4508
4509 /* Explicitly test for CVE-2021-4034 inspired invocations */
4510 assert(command->path);
4511 assert(!strv_isempty(command->argv));
4512
4513 rename_process_from_path(command->path);
4514
4515 /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main
4516 * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially,
4517 * both of which will be demoted to SIG_DFL. */
4518 (void) default_signals(SIGNALS_CRASH_HANDLER,
4519 SIGNALS_IGNORE);
4520
4521 if (context->ignore_sigpipe)
4522 (void) ignore_signals(SIGPIPE);
4523
4524 r = reset_signal_mask();
4525 if (r < 0) {
4526 *exit_status = EXIT_SIGNAL_MASK;
4527 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
4528 }
4529
4530 if (params->idle_pipe)
4531 do_idle_pipe_dance(params->idle_pipe);
4532
4533 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
4534 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
4535 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
4536 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
4537
4538 log_forget_fds();
4539 log_set_open_when_needed(true);
4540 log_settle_target();
4541
4542 /* In case anything used libc syslog(), close this here, too */
4543 closelog();
4544
4545 fds = newdup(int, params_fds, n_fds);
4546 if (!fds) {
4547 *exit_status = EXIT_MEMORY;
4548 return log_oom();
4549 }
4550
4551 fdnames = strv_copy((char**) params->fd_names);
4552 if (!fdnames) {
4553 *exit_status = EXIT_MEMORY;
4554 return log_oom();
4555 }
4556
4557 r = collect_open_file_fds(unit, params->open_files, &fds, &fdnames, &n_fds);
4558 if (r < 0) {
4559 *exit_status = EXIT_FDS;
4560 return log_unit_error_errno(unit, r, "Failed to get OpenFile= file descriptors: %m");
4561 }
4562
4563 int keep_fds[n_fds + 3];
4564 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
4565 n_keep_fds = n_fds;
4566
4567 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
4568 if (r < 0) {
4569 *exit_status = EXIT_FDS;
4570 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4571 }
4572
4573 #if HAVE_LIBBPF
4574 if (unit->manager->restrict_fs) {
4575 int bpf_map_fd = lsm_bpf_map_restrict_fs_fd(unit);
4576 if (bpf_map_fd < 0) {
4577 *exit_status = EXIT_FDS;
4578 return log_unit_error_errno(unit, bpf_map_fd, "Failed to get restrict filesystems BPF map fd: %m");
4579 }
4580
4581 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, bpf_map_fd, &bpf_map_fd);
4582 if (r < 0) {
4583 *exit_status = EXIT_FDS;
4584 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4585 }
4586 }
4587 #endif
4588
4589 r = close_remaining_fds(params, runtime, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
4590 if (r < 0) {
4591 *exit_status = EXIT_FDS;
4592 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
4593 }
4594
4595 if (!context->same_pgrp &&
4596 setsid() < 0) {
4597 *exit_status = EXIT_SETSID;
4598 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
4599 }
4600
4601 exec_context_tty_reset(context, params);
4602
4603 if (unit_shall_confirm_spawn(unit)) {
4604 _cleanup_free_ char *cmdline = NULL;
4605
4606 cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
4607 if (!cmdline) {
4608 *exit_status = EXIT_MEMORY;
4609 return log_oom();
4610 }
4611
4612 r = ask_for_confirmation(context, params->confirm_spawn, unit, cmdline);
4613 if (r != CONFIRM_EXECUTE) {
4614 if (r == CONFIRM_PRETEND_SUCCESS) {
4615 *exit_status = EXIT_SUCCESS;
4616 return 0;
4617 }
4618 *exit_status = EXIT_CONFIRM;
4619 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
4620 "Execution cancelled by the user");
4621 }
4622 }
4623
4624 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
4625 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
4626 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
4627 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
4628 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
4629 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
4630 setenv("SYSTEMD_ACTIVATION_SCOPE", runtime_scope_to_string(unit->manager->runtime_scope), true) != 0) {
4631 *exit_status = EXIT_MEMORY;
4632 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4633 }
4634
4635 if (context->dynamic_user && runtime && runtime->dynamic_creds) {
4636 _cleanup_strv_free_ char **suggested_paths = NULL;
4637
4638 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
4639 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */
4640 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
4641 *exit_status = EXIT_USER;
4642 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4643 }
4644
4645 r = compile_suggested_paths(context, params, &suggested_paths);
4646 if (r < 0) {
4647 *exit_status = EXIT_MEMORY;
4648 return log_oom();
4649 }
4650
4651 r = dynamic_creds_realize(runtime->dynamic_creds, suggested_paths, &uid, &gid);
4652 if (r < 0) {
4653 *exit_status = EXIT_USER;
4654 if (r == -EILSEQ)
4655 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4656 "Failed to update dynamic user credentials: User or group with specified name already exists.");
4657 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
4658 }
4659
4660 if (!uid_is_valid(uid)) {
4661 *exit_status = EXIT_USER;
4662 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
4663 }
4664
4665 if (!gid_is_valid(gid)) {
4666 *exit_status = EXIT_USER;
4667 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
4668 }
4669
4670 if (runtime->dynamic_creds->user)
4671 username = runtime->dynamic_creds->user->name;
4672
4673 } else {
4674 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
4675 if (r < 0) {
4676 *exit_status = EXIT_USER;
4677 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
4678 }
4679
4680 r = get_fixed_group(context, &groupname, &gid);
4681 if (r < 0) {
4682 *exit_status = EXIT_GROUP;
4683 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
4684 }
4685 }
4686
4687 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
4688 r = get_supplementary_groups(context, username, groupname, gid,
4689 &supplementary_gids, &ngids);
4690 if (r < 0) {
4691 *exit_status = EXIT_GROUP;
4692 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
4693 }
4694
4695 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
4696 if (r < 0) {
4697 *exit_status = EXIT_USER;
4698 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
4699 }
4700
4701 user_lookup_fd = safe_close(user_lookup_fd);
4702
4703 r = acquire_home(context, uid, &home, &home_buffer);
4704 if (r < 0) {
4705 *exit_status = EXIT_CHDIR;
4706 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
4707 }
4708
4709 /* If a socket is connected to STDIN/STDOUT/STDERR, we must drop O_NONBLOCK */
4710 if (socket_fd >= 0)
4711 (void) fd_nonblock(socket_fd, false);
4712
4713 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
4714 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
4715 if (params->cgroup_path) {
4716 _cleanup_free_ char *p = NULL;
4717
4718 r = exec_parameters_get_cgroup_path(params, cgroup_context, &p);
4719 if (r < 0) {
4720 *exit_status = EXIT_CGROUP;
4721 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4722 }
4723
4724 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
4725 if (r == -EUCLEAN) {
4726 *exit_status = EXIT_CGROUP;
4727 return log_unit_error_errno(unit, r, "Failed to attach process to cgroup %s "
4728 "because the cgroup or one of its parents or "
4729 "siblings is in the threaded mode: %m", p);
4730 }
4731 if (r < 0) {
4732 *exit_status = EXIT_CGROUP;
4733 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
4734 }
4735 }
4736
4737 if (context->network_namespace_path && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
4738 r = open_shareable_ns_path(runtime->shared->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET);
4739 if (r < 0) {
4740 *exit_status = EXIT_NETWORK;
4741 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
4742 }
4743 }
4744
4745 if (context->ipc_namespace_path && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
4746 r = open_shareable_ns_path(runtime->shared->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC);
4747 if (r < 0) {
4748 *exit_status = EXIT_NAMESPACE;
4749 return log_unit_error_errno(unit, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path);
4750 }
4751 }
4752
4753 r = setup_input(context, params, socket_fd, named_iofds);
4754 if (r < 0) {
4755 *exit_status = EXIT_STDIN;
4756 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
4757 }
4758
4759 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4760 if (r < 0) {
4761 *exit_status = EXIT_STDOUT;
4762 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
4763 }
4764
4765 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4766 if (r < 0) {
4767 *exit_status = EXIT_STDERR;
4768 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
4769 }
4770
4771 if (context->oom_score_adjust_set) {
4772 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
4773 * prohibit write access to this file, and we shouldn't trip up over that. */
4774 r = set_oom_score_adjust(context->oom_score_adjust);
4775 if (ERRNO_IS_PRIVILEGE(r))
4776 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
4777 else if (r < 0) {
4778 *exit_status = EXIT_OOM_ADJUST;
4779 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
4780 }
4781 }
4782
4783 if (context->coredump_filter_set) {
4784 r = set_coredump_filter(context->coredump_filter);
4785 if (ERRNO_IS_PRIVILEGE(r))
4786 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
4787 else if (r < 0)
4788 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
4789 }
4790
4791 if (context->nice_set) {
4792 r = setpriority_closest(context->nice);
4793 if (r < 0)
4794 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
4795 }
4796
4797 if (context->cpu_sched_set) {
4798 struct sched_param param = {
4799 .sched_priority = context->cpu_sched_priority,
4800 };
4801
4802 r = sched_setscheduler(0,
4803 context->cpu_sched_policy |
4804 (context->cpu_sched_reset_on_fork ?
4805 SCHED_RESET_ON_FORK : 0),
4806 &param);
4807 if (r < 0) {
4808 *exit_status = EXIT_SETSCHEDULER;
4809 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
4810 }
4811 }
4812
4813 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
4814 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
4815 const CPUSet *cpu_set;
4816
4817 if (context->cpu_affinity_from_numa) {
4818 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
4819 if (r < 0) {
4820 *exit_status = EXIT_CPUAFFINITY;
4821 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
4822 }
4823
4824 cpu_set = &converted_cpu_set;
4825 } else
4826 cpu_set = &context->cpu_set;
4827
4828 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
4829 *exit_status = EXIT_CPUAFFINITY;
4830 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
4831 }
4832 }
4833
4834 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
4835 r = apply_numa_policy(&context->numa_policy);
4836 if (r < 0) {
4837 if (ERRNO_IS_NOT_SUPPORTED(r))
4838 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
4839 else {
4840 *exit_status = EXIT_NUMA_POLICY;
4841 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4842 }
4843 }
4844 }
4845
4846 if (context->ioprio_set)
4847 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4848 *exit_status = EXIT_IOPRIO;
4849 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4850 }
4851
4852 if (context->timer_slack_nsec != NSEC_INFINITY)
4853 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4854 *exit_status = EXIT_TIMERSLACK;
4855 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4856 }
4857
4858 if (context->personality != PERSONALITY_INVALID) {
4859 r = safe_personality(context->personality);
4860 if (r < 0) {
4861 *exit_status = EXIT_PERSONALITY;
4862 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4863 }
4864 }
4865
4866 if (context->utmp_id) {
4867 const char *line = context->tty_path ?
4868 (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) :
4869 NULL;
4870 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4871 line,
4872 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4873 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4874 USER_PROCESS,
4875 username);
4876 }
4877
4878 if (uid_is_valid(uid)) {
4879 r = chown_terminal(STDIN_FILENO, uid);
4880 if (r < 0) {
4881 *exit_status = EXIT_STDIN;
4882 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4883 }
4884 }
4885
4886 if (params->cgroup_path) {
4887 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4888 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4889 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4890 * touch a single hierarchy too. */
4891
4892 if (params->flags & EXEC_CGROUP_DELEGATE) {
4893 _cleanup_free_ char *p = NULL;
4894
4895 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4896 if (r < 0) {
4897 *exit_status = EXIT_CGROUP;
4898 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4899 }
4900
4901 r = exec_parameters_get_cgroup_path(params, cgroup_context, &p);
4902 if (r < 0) {
4903 *exit_status = EXIT_CGROUP;
4904 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4905 }
4906 if (r > 0) {
4907 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, p, uid, gid);
4908 if (r < 0) {
4909 *exit_status = EXIT_CGROUP;
4910 return log_unit_error_errno(unit, r, "Failed to adjust control subgroup access: %m");
4911 }
4912 }
4913 }
4914
4915 if (cgroup_context && cg_unified() > 0 && is_pressure_supported() > 0) {
4916 if (cgroup_context_want_memory_pressure(cgroup_context)) {
4917 r = cg_get_path("memory", params->cgroup_path, "memory.pressure", &memory_pressure_path);
4918 if (r < 0) {
4919 *exit_status = EXIT_MEMORY;
4920 return log_oom();
4921 }
4922
4923 r = chmod_and_chown(memory_pressure_path, 0644, uid, gid);
4924 if (r < 0) {
4925 log_unit_full_errno(unit, r == -ENOENT || ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r,
4926 "Failed to adjust ownership of '%s', ignoring: %m", memory_pressure_path);
4927 memory_pressure_path = mfree(memory_pressure_path);
4928 }
4929 } else if (cgroup_context->memory_pressure_watch == CGROUP_PRESSURE_WATCH_OFF) {
4930 memory_pressure_path = strdup("/dev/null"); /* /dev/null is explicit indicator for turning of memory pressure watch */
4931 if (!memory_pressure_path) {
4932 *exit_status = EXIT_MEMORY;
4933 return log_oom();
4934 }
4935 }
4936 }
4937 }
4938
4939 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4940
4941 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4942 r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status);
4943 if (r < 0)
4944 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4945 }
4946
4947 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4948 r = setup_credentials(context, params, unit->id, uid);
4949 if (r < 0) {
4950 *exit_status = EXIT_CREDENTIALS;
4951 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4952 }
4953 }
4954
4955 r = build_environment(
4956 unit,
4957 context,
4958 params,
4959 cgroup_context,
4960 n_fds,
4961 fdnames,
4962 home,
4963 username,
4964 shell,
4965 journal_stream_dev,
4966 journal_stream_ino,
4967 memory_pressure_path,
4968 &our_env);
4969 if (r < 0) {
4970 *exit_status = EXIT_MEMORY;
4971 return log_oom();
4972 }
4973
4974 r = build_pass_environment(context, &pass_env);
4975 if (r < 0) {
4976 *exit_status = EXIT_MEMORY;
4977 return log_oom();
4978 }
4979
4980 /* The $PATH variable is set to the default path in params->environment. However, this is overridden
4981 * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does
4982 * not specify PATH but the unit has ExecSearchPath. */
4983 if (!strv_isempty(context->exec_search_path)) {
4984 _cleanup_free_ char *joined = NULL;
4985
4986 joined = strv_join(context->exec_search_path, ":");
4987 if (!joined) {
4988 *exit_status = EXIT_MEMORY;
4989 return log_oom();
4990 }
4991
4992 r = strv_env_assign(&joined_exec_search_path, "PATH", joined);
4993 if (r < 0) {
4994 *exit_status = EXIT_MEMORY;
4995 return log_oom();
4996 }
4997 }
4998
4999 accum_env = strv_env_merge(params->environment,
5000 our_env,
5001 joined_exec_search_path,
5002 pass_env,
5003 context->environment,
5004 files_env);
5005 if (!accum_env) {
5006 *exit_status = EXIT_MEMORY;
5007 return log_oom();
5008 }
5009 accum_env = strv_env_clean(accum_env);
5010
5011 (void) umask(context->umask);
5012
5013 r = setup_keyring(unit, context, params, uid, gid);
5014 if (r < 0) {
5015 *exit_status = EXIT_KEYRING;
5016 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
5017 }
5018
5019 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted
5020 * from it. */
5021 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
5022
5023 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked
5024 * for it, and the kernel doesn't actually support ambient caps. */
5025 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
5026
5027 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly
5028 * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not
5029 * desired. */
5030 if (needs_ambient_hack)
5031 needs_setuid = false;
5032 else
5033 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
5034
5035 uint64_t capability_ambient_set = context->capability_ambient_set;
5036
5037 if (needs_sandboxing) {
5038 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on
5039 * /sys being present. The actual MAC context application will happen later, as late as
5040 * possible, to avoid impacting our own code paths. */
5041
5042 #if HAVE_SELINUX
5043 use_selinux = mac_selinux_use();
5044 #endif
5045 #if ENABLE_SMACK
5046 use_smack = mac_smack_use();
5047 #endif
5048 #if HAVE_APPARMOR
5049 use_apparmor = mac_apparmor_use();
5050 #endif
5051 }
5052
5053 if (needs_sandboxing) {
5054 int which_failed;
5055
5056 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
5057 * is set here. (See below.) */
5058
5059 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
5060 if (r < 0) {
5061 *exit_status = EXIT_LIMITS;
5062 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
5063 }
5064 }
5065
5066 if (needs_setuid && context->pam_name && username) {
5067 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
5068 * wins here. (See above.) */
5069
5070 /* All fds passed in the fds array will be closed in the pam child process. */
5071 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
5072 if (r < 0) {
5073 *exit_status = EXIT_PAM;
5074 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
5075 }
5076
5077 if (ambient_capabilities_supported()) {
5078 uint64_t ambient_after_pam;
5079
5080 /* PAM modules might have set some ambient caps. Query them here and merge them into
5081 * the caps we want to set in the end, so that we don't end up unsetting them. */
5082 r = capability_get_ambient(&ambient_after_pam);
5083 if (r < 0) {
5084 *exit_status = EXIT_CAPABILITIES;
5085 return log_unit_error_errno(unit, r, "Failed to query ambient caps: %m");
5086 }
5087
5088 capability_ambient_set |= ambient_after_pam;
5089 }
5090
5091 ngids_after_pam = getgroups_alloc(&gids_after_pam);
5092 if (ngids_after_pam < 0) {
5093 *exit_status = EXIT_MEMORY;
5094 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
5095 }
5096 }
5097
5098 if (needs_sandboxing && exec_context_need_unprivileged_private_users(context, unit->manager)) {
5099 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
5100 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
5101 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
5102
5103 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5104 /* If it was requested explicitly and we can't set it up, fail early. Otherwise, continue and let
5105 * the actual requested operations fail (or silently continue). */
5106 if (r < 0 && context->private_users) {
5107 *exit_status = EXIT_USER;
5108 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
5109 }
5110 if (r < 0)
5111 log_unit_info_errno(unit, r, "Failed to set up user namespacing for unprivileged user, ignoring: %m");
5112 else
5113 userns_set_up = true;
5114 }
5115
5116 if (exec_needs_network_namespace(context) && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
5117
5118 if (ns_type_supported(NAMESPACE_NET)) {
5119 r = setup_shareable_ns(runtime->shared->netns_storage_socket, CLONE_NEWNET);
5120 if (r < 0) {
5121 if (ERRNO_IS_PRIVILEGE(r))
5122 log_unit_warning_errno(unit, r,
5123 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
5124 else {
5125 *exit_status = EXIT_NETWORK;
5126 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
5127 }
5128 }
5129 } else if (context->network_namespace_path) {
5130 *exit_status = EXIT_NETWORK;
5131 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5132 "NetworkNamespacePath= is not supported, refusing.");
5133 } else
5134 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
5135 }
5136
5137 if (exec_needs_ipc_namespace(context) && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
5138
5139 if (ns_type_supported(NAMESPACE_IPC)) {
5140 r = setup_shareable_ns(runtime->shared->ipcns_storage_socket, CLONE_NEWIPC);
5141 if (r == -EPERM)
5142 log_unit_warning_errno(unit, r,
5143 "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m");
5144 else if (r < 0) {
5145 *exit_status = EXIT_NAMESPACE;
5146 return log_unit_error_errno(unit, r, "Failed to set up IPC namespacing: %m");
5147 }
5148 } else if (context->ipc_namespace_path) {
5149 *exit_status = EXIT_NAMESPACE;
5150 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5151 "IPCNamespacePath= is not supported, refusing.");
5152 } else
5153 log_unit_warning(unit, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring.");
5154 }
5155
5156 if (needs_mount_namespace) {
5157 _cleanup_free_ char *error_path = NULL;
5158
5159 r = apply_mount_namespace(unit, command->flags, context, params, runtime, memory_pressure_path, &error_path);
5160 if (r < 0) {
5161 *exit_status = EXIT_NAMESPACE;
5162 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
5163 error_path ? ": " : "", strempty(error_path));
5164 }
5165 }
5166
5167 if (needs_sandboxing) {
5168 r = apply_protect_hostname(unit, context, exit_status);
5169 if (r < 0)
5170 return r;
5171 }
5172
5173 /* Drop groups as early as possible.
5174 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
5175 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
5176 if (needs_setuid) {
5177 _cleanup_free_ gid_t *gids_to_enforce = NULL;
5178 int ngids_to_enforce = 0;
5179
5180 ngids_to_enforce = merge_gid_lists(supplementary_gids,
5181 ngids,
5182 gids_after_pam,
5183 ngids_after_pam,
5184 &gids_to_enforce);
5185 if (ngids_to_enforce < 0) {
5186 *exit_status = EXIT_MEMORY;
5187 return log_unit_error_errno(unit,
5188 ngids_to_enforce,
5189 "Failed to merge group lists. Group membership might be incorrect: %m");
5190 }
5191
5192 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
5193 if (r < 0) {
5194 *exit_status = EXIT_GROUP;
5195 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
5196 }
5197 }
5198
5199 /* If the user namespace was not set up above, try to do it now.
5200 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
5201 * restricted by rules pertaining to combining user namespaces with other namespaces (e.g. in the
5202 * case of mount namespaces being less privileged when the mount point list is copied from a
5203 * different user namespace). */
5204
5205 if (needs_sandboxing && context->private_users && !userns_set_up) {
5206 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5207 if (r < 0) {
5208 *exit_status = EXIT_USER;
5209 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
5210 }
5211 }
5212
5213 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
5214 * shall execute. */
5215
5216 _cleanup_free_ char *executable = NULL;
5217 _cleanup_close_ int executable_fd = -EBADF;
5218 r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd);
5219 if (r < 0) {
5220 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
5221 log_unit_struct_errno(unit, LOG_INFO, r,
5222 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5223 LOG_UNIT_INVOCATION_ID(unit),
5224 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
5225 command->path),
5226 "EXECUTABLE=%s", command->path);
5227 return 0;
5228 }
5229
5230 *exit_status = EXIT_EXEC;
5231
5232 return log_unit_struct_errno(unit, LOG_INFO, r,
5233 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5234 LOG_UNIT_INVOCATION_ID(unit),
5235 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
5236 command->path),
5237 "EXECUTABLE=%s", command->path);
5238 }
5239
5240 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
5241 if (r < 0) {
5242 *exit_status = EXIT_FDS;
5243 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
5244 }
5245
5246 #if HAVE_SELINUX
5247 if (needs_sandboxing && use_selinux && params->selinux_context_net) {
5248 int fd = -EBADF;
5249
5250 if (socket_fd >= 0)
5251 fd = socket_fd;
5252 else if (params->n_socket_fds == 1)
5253 /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we
5254 * use context from that fd to compute the label. */
5255 fd = params->fds[0];
5256
5257 if (fd >= 0) {
5258 r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net);
5259 if (r < 0) {
5260 if (!context->selinux_context_ignore) {
5261 *exit_status = EXIT_SELINUX_CONTEXT;
5262 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
5263 }
5264 log_unit_debug_errno(unit, r, "Failed to determine SELinux context, ignoring: %m");
5265 }
5266 }
5267 }
5268 #endif
5269
5270 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that
5271 * we are more aggressive this time, since we don't need socket_fd and the netns and ipcns fds any
5272 * more. We do keep exec_fd however, if we have it, since we need to keep it open until the final
5273 * execve(). */
5274
5275 r = close_all_fds(keep_fds, n_keep_fds);
5276 if (r >= 0)
5277 r = shift_fds(fds, n_fds);
5278 if (r >= 0)
5279 r = flags_fds(fds, n_socket_fds, n_fds, context->non_blocking);
5280 if (r < 0) {
5281 *exit_status = EXIT_FDS;
5282 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
5283 }
5284
5285 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
5286 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
5287 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
5288 * came this far. */
5289
5290 secure_bits = context->secure_bits;
5291
5292 if (needs_sandboxing) {
5293 uint64_t bset;
5294
5295 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested.
5296 * (Note this is placed after the general resource limit initialization, see above, in order
5297 * to take precedence.) */
5298 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
5299 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
5300 *exit_status = EXIT_LIMITS;
5301 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
5302 }
5303 }
5304
5305 #if ENABLE_SMACK
5306 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
5307 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
5308 if (use_smack) {
5309 r = setup_smack(unit->manager, context, executable_fd);
5310 if (r < 0 && !context->smack_process_label_ignore) {
5311 *exit_status = EXIT_SMACK_PROCESS_LABEL;
5312 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
5313 }
5314 }
5315 #endif
5316
5317 bset = context->capability_bounding_set;
5318 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
5319 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
5320 * instead of us doing that */
5321 if (needs_ambient_hack)
5322 bset |= (UINT64_C(1) << CAP_SETPCAP) |
5323 (UINT64_C(1) << CAP_SETUID) |
5324 (UINT64_C(1) << CAP_SETGID);
5325
5326 if (!cap_test_all(bset)) {
5327 r = capability_bounding_set_drop(bset, /* right_now= */ false);
5328 if (r < 0) {
5329 *exit_status = EXIT_CAPABILITIES;
5330 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
5331 }
5332 }
5333
5334 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
5335 * keep-caps set.
5336 *
5337 * To be able to raise the ambient capabilities after setresuid() they have to be added to
5338 * the inherited set and keep caps has to be set (done in enforce_user()). After setresuid()
5339 * the ambient capabilities can be raised as they are present in the permitted and
5340 * inhertiable set. However it is possible that someone wants to set ambient capabilities
5341 * without changing the user, so we also set the ambient capabilities here.
5342 *
5343 * The requested ambient capabilities are raised in the inheritable set if the second
5344 * argument is true. */
5345 if (!needs_ambient_hack) {
5346 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ true);
5347 if (r < 0) {
5348 *exit_status = EXIT_CAPABILITIES;
5349 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
5350 }
5351 }
5352 }
5353
5354 /* chroot to root directory first, before we lose the ability to chroot */
5355 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
5356 if (r < 0)
5357 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
5358
5359 if (needs_setuid) {
5360 if (uid_is_valid(uid)) {
5361 r = enforce_user(context, uid, capability_ambient_set);
5362 if (r < 0) {
5363 *exit_status = EXIT_USER;
5364 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
5365 }
5366
5367 if (!needs_ambient_hack && capability_ambient_set != 0) {
5368
5369 /* Raise the ambient capabilities after user change. */
5370 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ false);
5371 if (r < 0) {
5372 *exit_status = EXIT_CAPABILITIES;
5373 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
5374 }
5375 }
5376 }
5377 }
5378
5379 /* Apply working directory here, because the working directory might be on NFS and only the user running
5380 * this service might have the correct privilege to change to the working directory */
5381 r = apply_working_directory(context, params, home, exit_status);
5382 if (r < 0)
5383 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
5384
5385 if (needs_sandboxing) {
5386 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
5387 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
5388 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
5389 * are restricted. */
5390
5391 #if HAVE_SELINUX
5392 if (use_selinux) {
5393 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
5394
5395 if (exec_context) {
5396 r = setexeccon(exec_context);
5397 if (r < 0) {
5398 if (!context->selinux_context_ignore) {
5399 *exit_status = EXIT_SELINUX_CONTEXT;
5400 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
5401 }
5402 log_unit_debug_errno(unit, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context);
5403 }
5404 }
5405 }
5406 #endif
5407
5408 #if HAVE_APPARMOR
5409 if (use_apparmor && context->apparmor_profile) {
5410 r = aa_change_onexec(context->apparmor_profile);
5411 if (r < 0 && !context->apparmor_profile_ignore) {
5412 *exit_status = EXIT_APPARMOR_PROFILE;
5413 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
5414 }
5415 }
5416 #endif
5417
5418 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential
5419 * EPERMs we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits
5420 * requires CAP_SETPCAP. */
5421 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
5422 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
5423 * effective set here.
5424 *
5425 * The effective set is overwritten during execve() with the following values:
5426 *
5427 * - ambient set (for non-root processes)
5428 *
5429 * - (inheritable | bounding) set for root processes)
5430 *
5431 * Hence there is no security impact to raise it in the effective set before execve
5432 */
5433 r = capability_gain_cap_setpcap(/* return_caps= */ NULL);
5434 if (r < 0) {
5435 *exit_status = EXIT_CAPABILITIES;
5436 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
5437 }
5438 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
5439 *exit_status = EXIT_SECUREBITS;
5440 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
5441 }
5442 }
5443
5444 if (context_has_no_new_privileges(context))
5445 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
5446 *exit_status = EXIT_NO_NEW_PRIVILEGES;
5447 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
5448 }
5449
5450 #if HAVE_SECCOMP
5451 r = apply_address_families(unit, context);
5452 if (r < 0) {
5453 *exit_status = EXIT_ADDRESS_FAMILIES;
5454 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
5455 }
5456
5457 r = apply_memory_deny_write_execute(unit, context);
5458 if (r < 0) {
5459 *exit_status = EXIT_SECCOMP;
5460 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
5461 }
5462
5463 r = apply_restrict_realtime(unit, context);
5464 if (r < 0) {
5465 *exit_status = EXIT_SECCOMP;
5466 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
5467 }
5468
5469 r = apply_restrict_suid_sgid(unit, context);
5470 if (r < 0) {
5471 *exit_status = EXIT_SECCOMP;
5472 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
5473 }
5474
5475 r = apply_restrict_namespaces(unit, context);
5476 if (r < 0) {
5477 *exit_status = EXIT_SECCOMP;
5478 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
5479 }
5480
5481 r = apply_protect_sysctl(unit, context);
5482 if (r < 0) {
5483 *exit_status = EXIT_SECCOMP;
5484 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
5485 }
5486
5487 r = apply_protect_kernel_modules(unit, context);
5488 if (r < 0) {
5489 *exit_status = EXIT_SECCOMP;
5490 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
5491 }
5492
5493 r = apply_protect_kernel_logs(unit, context);
5494 if (r < 0) {
5495 *exit_status = EXIT_SECCOMP;
5496 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
5497 }
5498
5499 r = apply_protect_clock(unit, context);
5500 if (r < 0) {
5501 *exit_status = EXIT_SECCOMP;
5502 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
5503 }
5504
5505 r = apply_private_devices(unit, context);
5506 if (r < 0) {
5507 *exit_status = EXIT_SECCOMP;
5508 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
5509 }
5510
5511 r = apply_syscall_archs(unit, context);
5512 if (r < 0) {
5513 *exit_status = EXIT_SECCOMP;
5514 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
5515 }
5516
5517 r = apply_lock_personality(unit, context);
5518 if (r < 0) {
5519 *exit_status = EXIT_SECCOMP;
5520 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
5521 }
5522
5523 r = apply_syscall_log(unit, context);
5524 if (r < 0) {
5525 *exit_status = EXIT_SECCOMP;
5526 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
5527 }
5528
5529 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
5530 * by the filter as little as possible. */
5531 r = apply_syscall_filter(unit, context, needs_ambient_hack);
5532 if (r < 0) {
5533 *exit_status = EXIT_SECCOMP;
5534 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
5535 }
5536 #endif
5537
5538 #if HAVE_LIBBPF
5539 r = apply_restrict_filesystems(unit, context);
5540 if (r < 0) {
5541 *exit_status = EXIT_BPF;
5542 return log_unit_error_errno(unit, r, "Failed to restrict filesystems: %m");
5543 }
5544 #endif
5545
5546 }
5547
5548 if (!strv_isempty(context->unset_environment)) {
5549 char **ee = NULL;
5550
5551 ee = strv_env_delete(accum_env, 1, context->unset_environment);
5552 if (!ee) {
5553 *exit_status = EXIT_MEMORY;
5554 return log_oom();
5555 }
5556
5557 strv_free_and_replace(accum_env, ee);
5558 }
5559
5560 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
5561 replaced_argv = replace_env_argv(command->argv, accum_env);
5562 if (!replaced_argv) {
5563 *exit_status = EXIT_MEMORY;
5564 return log_oom();
5565 }
5566 final_argv = replaced_argv;
5567 } else
5568 final_argv = command->argv;
5569
5570 log_command_line(unit, "Executing", executable, final_argv);
5571
5572 if (exec_fd >= 0) {
5573 uint8_t hot = 1;
5574
5575 /* We have finished with all our initializations. Let's now let the manager know that. From this point
5576 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
5577
5578 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5579 *exit_status = EXIT_EXEC;
5580 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
5581 }
5582 }
5583
5584 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
5585
5586 if (exec_fd >= 0) {
5587 uint8_t hot = 0;
5588
5589 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
5590 * that POLLHUP on it no longer means execve() succeeded. */
5591
5592 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5593 *exit_status = EXIT_EXEC;
5594 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
5595 }
5596 }
5597
5598 *exit_status = EXIT_EXEC;
5599 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
5600 }
5601
5602 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
5603 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
5604
5605 int exec_spawn(Unit *unit,
5606 ExecCommand *command,
5607 const ExecContext *context,
5608 const ExecParameters *params,
5609 ExecRuntime *runtime,
5610 const CGroupContext *cgroup_context,
5611 pid_t *ret) {
5612
5613 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
5614 _cleanup_free_ char *subcgroup_path = NULL;
5615 _cleanup_strv_free_ char **files_env = NULL;
5616 size_t n_storage_fds = 0, n_socket_fds = 0;
5617 pid_t pid;
5618
5619 assert(unit);
5620 assert(command);
5621 assert(context);
5622 assert(ret);
5623 assert(params);
5624 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
5625
5626 LOG_CONTEXT_PUSH_UNIT(unit);
5627
5628 if (context->std_input == EXEC_INPUT_SOCKET ||
5629 context->std_output == EXEC_OUTPUT_SOCKET ||
5630 context->std_error == EXEC_OUTPUT_SOCKET) {
5631
5632 if (params->n_socket_fds > 1)
5633 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
5634
5635 if (params->n_socket_fds == 0)
5636 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
5637
5638 socket_fd = params->fds[0];
5639 } else {
5640 socket_fd = -EBADF;
5641 fds = params->fds;
5642 n_socket_fds = params->n_socket_fds;
5643 n_storage_fds = params->n_storage_fds;
5644 }
5645
5646 r = exec_context_named_iofds(context, params, named_iofds);
5647 if (r < 0)
5648 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
5649
5650 r = exec_context_load_environment(unit, context, &files_env);
5651 if (r < 0)
5652 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
5653
5654 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
5655 and, until the next SELinux policy changes, we save further reloads in future children. */
5656 mac_selinux_maybe_reload();
5657
5658 /* We won't know the real executable path until we create the mount namespace in the child, but we
5659 want to log from the parent, so we use the possibly inaccurate path here. */
5660 log_command_line(unit, "About to execute", command->path, command->argv);
5661
5662 if (params->cgroup_path) {
5663 r = exec_parameters_get_cgroup_path(params, cgroup_context, &subcgroup_path);
5664 if (r < 0)
5665 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
5666 if (r > 0) { /* We are using a child cgroup */
5667 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
5668 if (r < 0)
5669 return log_unit_error_errno(unit, r, "Failed to create subcgroup '%s': %m", subcgroup_path);
5670
5671 /* Normally we would not propagate the xattrs to children but since we created this
5672 * sub-cgroup internally we should do it. */
5673 cgroup_oomd_xattr_apply(unit, subcgroup_path);
5674 cgroup_log_xattr_apply(unit, subcgroup_path);
5675 }
5676 }
5677
5678 pid = fork();
5679 if (pid < 0)
5680 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
5681
5682 if (pid == 0) {
5683 int exit_status = EXIT_SUCCESS;
5684
5685 r = exec_child(unit,
5686 command,
5687 context,
5688 params,
5689 runtime,
5690 cgroup_context,
5691 socket_fd,
5692 named_iofds,
5693 fds,
5694 n_socket_fds,
5695 n_storage_fds,
5696 files_env,
5697 unit->manager->user_lookup_fds[1],
5698 &exit_status);
5699
5700 if (r < 0) {
5701 const char *status =
5702 exit_status_to_string(exit_status,
5703 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
5704
5705 log_unit_struct_errno(unit, LOG_ERR, r,
5706 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5707 LOG_UNIT_INVOCATION_ID(unit),
5708 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
5709 status, command->path),
5710 "EXECUTABLE=%s", command->path);
5711 }
5712
5713 _exit(exit_status);
5714 }
5715
5716 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
5717
5718 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
5719 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
5720 * process will be killed too). */
5721 if (subcgroup_path)
5722 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
5723
5724 exec_status_start(&command->exec_status, pid);
5725
5726 *ret = pid;
5727 return 0;
5728 }
5729
5730 void exec_context_init(ExecContext *c) {
5731 assert(c);
5732
5733 c->umask = 0022;
5734 c->ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO;
5735 c->cpu_sched_policy = SCHED_OTHER;
5736 c->syslog_priority = LOG_DAEMON|LOG_INFO;
5737 c->syslog_level_prefix = true;
5738 c->ignore_sigpipe = true;
5739 c->timer_slack_nsec = NSEC_INFINITY;
5740 c->personality = PERSONALITY_INVALID;
5741 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5742 c->directories[t].mode = 0755;
5743 c->timeout_clean_usec = USEC_INFINITY;
5744 c->capability_bounding_set = CAP_MASK_UNSET;
5745 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
5746 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
5747 c->log_level_max = -1;
5748 #if HAVE_SECCOMP
5749 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
5750 #endif
5751 c->tty_rows = UINT_MAX;
5752 c->tty_cols = UINT_MAX;
5753 numa_policy_reset(&c->numa_policy);
5754 c->private_mounts = -1;
5755 }
5756
5757 void exec_context_done(ExecContext *c) {
5758 assert(c);
5759
5760 c->environment = strv_free(c->environment);
5761 c->environment_files = strv_free(c->environment_files);
5762 c->pass_environment = strv_free(c->pass_environment);
5763 c->unset_environment = strv_free(c->unset_environment);
5764
5765 rlimit_free_all(c->rlimit);
5766
5767 for (size_t l = 0; l < 3; l++) {
5768 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
5769 c->stdio_file[l] = mfree(c->stdio_file[l]);
5770 }
5771
5772 c->working_directory = mfree(c->working_directory);
5773 c->root_directory = mfree(c->root_directory);
5774 c->root_image = mfree(c->root_image);
5775 c->root_image_options = mount_options_free_all(c->root_image_options);
5776 c->root_hash = mfree(c->root_hash);
5777 c->root_hash_size = 0;
5778 c->root_hash_path = mfree(c->root_hash_path);
5779 c->root_hash_sig = mfree(c->root_hash_sig);
5780 c->root_hash_sig_size = 0;
5781 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
5782 c->root_verity = mfree(c->root_verity);
5783 c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images);
5784 c->extension_directories = strv_free(c->extension_directories);
5785 c->tty_path = mfree(c->tty_path);
5786 c->syslog_identifier = mfree(c->syslog_identifier);
5787 c->user = mfree(c->user);
5788 c->group = mfree(c->group);
5789
5790 c->supplementary_groups = strv_free(c->supplementary_groups);
5791
5792 c->pam_name = mfree(c->pam_name);
5793
5794 c->read_only_paths = strv_free(c->read_only_paths);
5795 c->read_write_paths = strv_free(c->read_write_paths);
5796 c->inaccessible_paths = strv_free(c->inaccessible_paths);
5797 c->exec_paths = strv_free(c->exec_paths);
5798 c->no_exec_paths = strv_free(c->no_exec_paths);
5799 c->exec_search_path = strv_free(c->exec_search_path);
5800
5801 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
5802 c->bind_mounts = NULL;
5803 c->n_bind_mounts = 0;
5804 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
5805 c->temporary_filesystems = NULL;
5806 c->n_temporary_filesystems = 0;
5807 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
5808
5809 cpu_set_reset(&c->cpu_set);
5810 numa_policy_reset(&c->numa_policy);
5811
5812 c->utmp_id = mfree(c->utmp_id);
5813 c->selinux_context = mfree(c->selinux_context);
5814 c->apparmor_profile = mfree(c->apparmor_profile);
5815 c->smack_process_label = mfree(c->smack_process_label);
5816
5817 c->restrict_filesystems = set_free(c->restrict_filesystems);
5818
5819 c->syscall_filter = hashmap_free(c->syscall_filter);
5820 c->syscall_archs = set_free(c->syscall_archs);
5821 c->address_families = set_free(c->address_families);
5822
5823 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5824 exec_directory_done(&c->directories[t]);
5825
5826 c->log_level_max = -1;
5827
5828 exec_context_free_log_extra_fields(c);
5829 c->log_filter_allowed_patterns = set_free(c->log_filter_allowed_patterns);
5830 c->log_filter_denied_patterns = set_free(c->log_filter_denied_patterns);
5831
5832 c->log_ratelimit_interval_usec = 0;
5833 c->log_ratelimit_burst = 0;
5834
5835 c->stdin_data = mfree(c->stdin_data);
5836 c->stdin_data_size = 0;
5837
5838 c->network_namespace_path = mfree(c->network_namespace_path);
5839 c->ipc_namespace_path = mfree(c->ipc_namespace_path);
5840
5841 c->log_namespace = mfree(c->log_namespace);
5842
5843 c->load_credentials = hashmap_free(c->load_credentials);
5844 c->set_credentials = hashmap_free(c->set_credentials);
5845
5846 c->root_image_policy = image_policy_free(c->root_image_policy);
5847 c->mount_image_policy = image_policy_free(c->mount_image_policy);
5848 c->extension_image_policy = image_policy_free(c->extension_image_policy);
5849 }
5850
5851 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
5852 assert(c);
5853
5854 if (!runtime_prefix)
5855 return 0;
5856
5857 for (size_t i = 0; i < c->directories[EXEC_DIRECTORY_RUNTIME].n_items; i++) {
5858 _cleanup_free_ char *p = NULL;
5859
5860 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5861 p = path_join(runtime_prefix, "private", c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5862 else
5863 p = path_join(runtime_prefix, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5864 if (!p)
5865 return -ENOMEM;
5866
5867 /* We execute this synchronously, since we need to be sure this is gone when we start the
5868 * service next. */
5869 (void) rm_rf(p, REMOVE_ROOT);
5870
5871 STRV_FOREACH(symlink, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].symlinks) {
5872 _cleanup_free_ char *symlink_abs = NULL;
5873
5874 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5875 symlink_abs = path_join(runtime_prefix, "private", *symlink);
5876 else
5877 symlink_abs = path_join(runtime_prefix, *symlink);
5878 if (!symlink_abs)
5879 return -ENOMEM;
5880
5881 (void) unlink(symlink_abs);
5882 }
5883 }
5884
5885 return 0;
5886 }
5887
5888 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
5889 _cleanup_free_ char *p = NULL;
5890
5891 assert(c);
5892
5893 if (!runtime_prefix || !unit)
5894 return 0;
5895
5896 p = path_join(runtime_prefix, "credentials", unit);
5897 if (!p)
5898 return -ENOMEM;
5899
5900 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
5901 * unmount it, and afterwards remove the mount point */
5902 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
5903 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
5904
5905 return 0;
5906 }
5907
5908 int exec_context_destroy_mount_ns_dir(Unit *u) {
5909 _cleanup_free_ char *p = NULL;
5910
5911 if (!u || !MANAGER_IS_SYSTEM(u->manager))
5912 return 0;
5913
5914 p = path_join("/run/systemd/propagate/", u->id);
5915 if (!p)
5916 return -ENOMEM;
5917
5918 /* This is only filled transiently (see mount_in_namespace()), should be empty or even non-existent*/
5919 if (rmdir(p) < 0 && errno != ENOENT)
5920 log_unit_debug_errno(u, errno, "Unable to remove propagation dir '%s', ignoring: %m", p);
5921
5922 return 0;
5923 }
5924
5925 static void exec_command_done(ExecCommand *c) {
5926 assert(c);
5927
5928 c->path = mfree(c->path);
5929 c->argv = strv_free(c->argv);
5930 }
5931
5932 void exec_command_done_array(ExecCommand *c, size_t n) {
5933 for (size_t i = 0; i < n; i++)
5934 exec_command_done(c+i);
5935 }
5936
5937 ExecCommand* exec_command_free_list(ExecCommand *c) {
5938 ExecCommand *i;
5939
5940 while ((i = c)) {
5941 LIST_REMOVE(command, c, i);
5942 exec_command_done(i);
5943 free(i);
5944 }
5945
5946 return NULL;
5947 }
5948
5949 void exec_command_free_array(ExecCommand **c, size_t n) {
5950 for (size_t i = 0; i < n; i++)
5951 c[i] = exec_command_free_list(c[i]);
5952 }
5953
5954 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
5955 for (size_t i = 0; i < n; i++)
5956 exec_status_reset(&c[i].exec_status);
5957 }
5958
5959 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
5960 for (size_t i = 0; i < n; i++)
5961 LIST_FOREACH(command, z, c[i])
5962 exec_status_reset(&z->exec_status);
5963 }
5964
5965 typedef struct InvalidEnvInfo {
5966 const Unit *unit;
5967 const char *path;
5968 } InvalidEnvInfo;
5969
5970 static void invalid_env(const char *p, void *userdata) {
5971 InvalidEnvInfo *info = userdata;
5972
5973 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
5974 }
5975
5976 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
5977 assert(c);
5978
5979 switch (fd_index) {
5980
5981 case STDIN_FILENO:
5982 if (c->std_input != EXEC_INPUT_NAMED_FD)
5983 return NULL;
5984
5985 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
5986
5987 case STDOUT_FILENO:
5988 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
5989 return NULL;
5990
5991 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
5992
5993 case STDERR_FILENO:
5994 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
5995 return NULL;
5996
5997 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
5998
5999 default:
6000 return NULL;
6001 }
6002 }
6003
6004 static int exec_context_named_iofds(
6005 const ExecContext *c,
6006 const ExecParameters *p,
6007 int named_iofds[static 3]) {
6008
6009 size_t targets;
6010 const char* stdio_fdname[3];
6011 size_t n_fds;
6012
6013 assert(c);
6014 assert(p);
6015 assert(named_iofds);
6016
6017 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
6018 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
6019 (c->std_error == EXEC_OUTPUT_NAMED_FD);
6020
6021 for (size_t i = 0; i < 3; i++)
6022 stdio_fdname[i] = exec_context_fdname(c, i);
6023
6024 n_fds = p->n_storage_fds + p->n_socket_fds;
6025
6026 for (size_t i = 0; i < n_fds && targets > 0; i++)
6027 if (named_iofds[STDIN_FILENO] < 0 &&
6028 c->std_input == EXEC_INPUT_NAMED_FD &&
6029 stdio_fdname[STDIN_FILENO] &&
6030 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
6031
6032 named_iofds[STDIN_FILENO] = p->fds[i];
6033 targets--;
6034
6035 } else if (named_iofds[STDOUT_FILENO] < 0 &&
6036 c->std_output == EXEC_OUTPUT_NAMED_FD &&
6037 stdio_fdname[STDOUT_FILENO] &&
6038 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
6039
6040 named_iofds[STDOUT_FILENO] = p->fds[i];
6041 targets--;
6042
6043 } else if (named_iofds[STDERR_FILENO] < 0 &&
6044 c->std_error == EXEC_OUTPUT_NAMED_FD &&
6045 stdio_fdname[STDERR_FILENO] &&
6046 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
6047
6048 named_iofds[STDERR_FILENO] = p->fds[i];
6049 targets--;
6050 }
6051
6052 return targets == 0 ? 0 : -ENOENT;
6053 }
6054
6055 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) {
6056 _cleanup_strv_free_ char **v = NULL;
6057 int r;
6058
6059 assert(c);
6060 assert(ret);
6061
6062 STRV_FOREACH(i, c->environment_files) {
6063 _cleanup_globfree_ glob_t pglob = {};
6064 bool ignore = false;
6065 char *fn = *i;
6066
6067 if (fn[0] == '-') {
6068 ignore = true;
6069 fn++;
6070 }
6071
6072 if (!path_is_absolute(fn)) {
6073 if (ignore)
6074 continue;
6075 return -EINVAL;
6076 }
6077
6078 /* Filename supports globbing, take all matching files */
6079 r = safe_glob(fn, 0, &pglob);
6080 if (r < 0) {
6081 if (ignore)
6082 continue;
6083 return r;
6084 }
6085
6086 /* When we don't match anything, -ENOENT should be returned */
6087 assert(pglob.gl_pathc > 0);
6088
6089 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
6090 _cleanup_strv_free_ char **p = NULL;
6091
6092 r = load_env_file(NULL, pglob.gl_pathv[n], &p);
6093 if (r < 0) {
6094 if (ignore)
6095 continue;
6096 return r;
6097 }
6098
6099 /* Log invalid environment variables with filename */
6100 if (p) {
6101 InvalidEnvInfo info = {
6102 .unit = unit,
6103 .path = pglob.gl_pathv[n]
6104 };
6105
6106 p = strv_env_clean_with_callback(p, invalid_env, &info);
6107 }
6108
6109 if (!v)
6110 v = TAKE_PTR(p);
6111 else {
6112 char **m = strv_env_merge(v, p);
6113 if (!m)
6114 return -ENOMEM;
6115
6116 strv_free_and_replace(v, m);
6117 }
6118 }
6119 }
6120
6121 *ret = TAKE_PTR(v);
6122
6123 return 0;
6124 }
6125
6126 static bool tty_may_match_dev_console(const char *tty) {
6127 _cleanup_free_ char *resolved = NULL;
6128
6129 if (!tty)
6130 return true;
6131
6132 tty = skip_dev_prefix(tty);
6133
6134 /* trivial identity? */
6135 if (streq(tty, "console"))
6136 return true;
6137
6138 if (resolve_dev_console(&resolved) < 0)
6139 return true; /* if we could not resolve, assume it may */
6140
6141 /* "tty0" means the active VC, so it may be the same sometimes */
6142 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
6143 }
6144
6145 static bool exec_context_may_touch_tty(const ExecContext *ec) {
6146 assert(ec);
6147
6148 return ec->tty_reset ||
6149 ec->tty_vhangup ||
6150 ec->tty_vt_disallocate ||
6151 is_terminal_input(ec->std_input) ||
6152 is_terminal_output(ec->std_output) ||
6153 is_terminal_output(ec->std_error);
6154 }
6155
6156 bool exec_context_may_touch_console(const ExecContext *ec) {
6157
6158 return exec_context_may_touch_tty(ec) &&
6159 tty_may_match_dev_console(exec_context_tty_path(ec));
6160 }
6161
6162 static void strv_fprintf(FILE *f, char **l) {
6163 assert(f);
6164
6165 STRV_FOREACH(g, l)
6166 fprintf(f, " %s", *g);
6167 }
6168
6169 static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
6170 assert(f);
6171 assert(prefix);
6172 assert(name);
6173
6174 if (!strv_isempty(strv)) {
6175 fprintf(f, "%s%s:", prefix, name);
6176 strv_fprintf(f, strv);
6177 fputs("\n", f);
6178 }
6179 }
6180
6181 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
6182 int r;
6183
6184 assert(c);
6185 assert(f);
6186
6187 prefix = strempty(prefix);
6188
6189 fprintf(f,
6190 "%sUMask: %04o\n"
6191 "%sWorkingDirectory: %s\n"
6192 "%sRootDirectory: %s\n"
6193 "%sNonBlocking: %s\n"
6194 "%sPrivateTmp: %s\n"
6195 "%sPrivateDevices: %s\n"
6196 "%sProtectKernelTunables: %s\n"
6197 "%sProtectKernelModules: %s\n"
6198 "%sProtectKernelLogs: %s\n"
6199 "%sProtectClock: %s\n"
6200 "%sProtectControlGroups: %s\n"
6201 "%sPrivateNetwork: %s\n"
6202 "%sPrivateUsers: %s\n"
6203 "%sProtectHome: %s\n"
6204 "%sProtectSystem: %s\n"
6205 "%sMountAPIVFS: %s\n"
6206 "%sIgnoreSIGPIPE: %s\n"
6207 "%sMemoryDenyWriteExecute: %s\n"
6208 "%sRestrictRealtime: %s\n"
6209 "%sRestrictSUIDSGID: %s\n"
6210 "%sKeyringMode: %s\n"
6211 "%sProtectHostname: %s\n"
6212 "%sProtectProc: %s\n"
6213 "%sProcSubset: %s\n",
6214 prefix, c->umask,
6215 prefix, empty_to_root(c->working_directory),
6216 prefix, empty_to_root(c->root_directory),
6217 prefix, yes_no(c->non_blocking),
6218 prefix, yes_no(c->private_tmp),
6219 prefix, yes_no(c->private_devices),
6220 prefix, yes_no(c->protect_kernel_tunables),
6221 prefix, yes_no(c->protect_kernel_modules),
6222 prefix, yes_no(c->protect_kernel_logs),
6223 prefix, yes_no(c->protect_clock),
6224 prefix, yes_no(c->protect_control_groups),
6225 prefix, yes_no(c->private_network),
6226 prefix, yes_no(c->private_users),
6227 prefix, protect_home_to_string(c->protect_home),
6228 prefix, protect_system_to_string(c->protect_system),
6229 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
6230 prefix, yes_no(c->ignore_sigpipe),
6231 prefix, yes_no(c->memory_deny_write_execute),
6232 prefix, yes_no(c->restrict_realtime),
6233 prefix, yes_no(c->restrict_suid_sgid),
6234 prefix, exec_keyring_mode_to_string(c->keyring_mode),
6235 prefix, yes_no(c->protect_hostname),
6236 prefix, protect_proc_to_string(c->protect_proc),
6237 prefix, proc_subset_to_string(c->proc_subset));
6238
6239 if (c->root_image)
6240 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
6241
6242 if (c->root_image_options) {
6243 fprintf(f, "%sRootImageOptions:", prefix);
6244 LIST_FOREACH(mount_options, o, c->root_image_options)
6245 if (!isempty(o->options))
6246 fprintf(f, " %s:%s",
6247 partition_designator_to_string(o->partition_designator),
6248 o->options);
6249 fprintf(f, "\n");
6250 }
6251
6252 if (c->root_hash) {
6253 _cleanup_free_ char *encoded = NULL;
6254 encoded = hexmem(c->root_hash, c->root_hash_size);
6255 if (encoded)
6256 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
6257 }
6258
6259 if (c->root_hash_path)
6260 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
6261
6262 if (c->root_hash_sig) {
6263 _cleanup_free_ char *encoded = NULL;
6264 ssize_t len;
6265 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
6266 if (len)
6267 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
6268 }
6269
6270 if (c->root_hash_sig_path)
6271 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
6272
6273 if (c->root_verity)
6274 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
6275
6276 STRV_FOREACH(e, c->environment)
6277 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
6278
6279 STRV_FOREACH(e, c->environment_files)
6280 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
6281
6282 STRV_FOREACH(e, c->pass_environment)
6283 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
6284
6285 STRV_FOREACH(e, c->unset_environment)
6286 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
6287
6288 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
6289
6290 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
6291 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
6292
6293 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
6294 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path);
6295
6296 STRV_FOREACH(d, c->directories[dt].items[i].symlinks)
6297 fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d);
6298 }
6299 }
6300
6301 fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC));
6302
6303 if (c->nice_set)
6304 fprintf(f, "%sNice: %i\n", prefix, c->nice);
6305
6306 if (c->oom_score_adjust_set)
6307 fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust);
6308
6309 if (c->coredump_filter_set)
6310 fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter);
6311
6312 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
6313 if (c->rlimit[i]) {
6314 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
6315 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
6316 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
6317 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
6318 }
6319
6320 if (c->ioprio_set) {
6321 _cleanup_free_ char *class_str = NULL;
6322
6323 r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str);
6324 if (r >= 0)
6325 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
6326
6327 fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio));
6328 }
6329
6330 if (c->cpu_sched_set) {
6331 _cleanup_free_ char *policy_str = NULL;
6332
6333 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
6334 if (r >= 0)
6335 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
6336
6337 fprintf(f,
6338 "%sCPUSchedulingPriority: %i\n"
6339 "%sCPUSchedulingResetOnFork: %s\n",
6340 prefix, c->cpu_sched_priority,
6341 prefix, yes_no(c->cpu_sched_reset_on_fork));
6342 }
6343
6344 if (c->cpu_set.set) {
6345 _cleanup_free_ char *affinity = NULL;
6346
6347 affinity = cpu_set_to_range_string(&c->cpu_set);
6348 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
6349 }
6350
6351 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
6352 _cleanup_free_ char *nodes = NULL;
6353
6354 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
6355 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
6356 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
6357 }
6358
6359 if (c->timer_slack_nsec != NSEC_INFINITY)
6360 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
6361
6362 fprintf(f,
6363 "%sStandardInput: %s\n"
6364 "%sStandardOutput: %s\n"
6365 "%sStandardError: %s\n",
6366 prefix, exec_input_to_string(c->std_input),
6367 prefix, exec_output_to_string(c->std_output),
6368 prefix, exec_output_to_string(c->std_error));
6369
6370 if (c->std_input == EXEC_INPUT_NAMED_FD)
6371 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
6372 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
6373 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
6374 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
6375 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
6376
6377 if (c->std_input == EXEC_INPUT_FILE)
6378 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
6379 if (c->std_output == EXEC_OUTPUT_FILE)
6380 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6381 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
6382 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6383 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
6384 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6385 if (c->std_error == EXEC_OUTPUT_FILE)
6386 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6387 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
6388 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6389 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
6390 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6391
6392 if (c->tty_path)
6393 fprintf(f,
6394 "%sTTYPath: %s\n"
6395 "%sTTYReset: %s\n"
6396 "%sTTYVHangup: %s\n"
6397 "%sTTYVTDisallocate: %s\n"
6398 "%sTTYRows: %u\n"
6399 "%sTTYColumns: %u\n",
6400 prefix, c->tty_path,
6401 prefix, yes_no(c->tty_reset),
6402 prefix, yes_no(c->tty_vhangup),
6403 prefix, yes_no(c->tty_vt_disallocate),
6404 prefix, c->tty_rows,
6405 prefix, c->tty_cols);
6406
6407 if (IN_SET(c->std_output,
6408 EXEC_OUTPUT_KMSG,
6409 EXEC_OUTPUT_JOURNAL,
6410 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6411 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
6412 IN_SET(c->std_error,
6413 EXEC_OUTPUT_KMSG,
6414 EXEC_OUTPUT_JOURNAL,
6415 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6416 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
6417
6418 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
6419
6420 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
6421 if (r >= 0)
6422 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
6423
6424 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
6425 if (r >= 0)
6426 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
6427 }
6428
6429 if (c->log_level_max >= 0) {
6430 _cleanup_free_ char *t = NULL;
6431
6432 (void) log_level_to_string_alloc(c->log_level_max, &t);
6433
6434 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
6435 }
6436
6437 if (c->log_ratelimit_interval_usec > 0)
6438 fprintf(f,
6439 "%sLogRateLimitIntervalSec: %s\n",
6440 prefix, FORMAT_TIMESPAN(c->log_ratelimit_interval_usec, USEC_PER_SEC));
6441
6442 if (c->log_ratelimit_burst > 0)
6443 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
6444
6445 if (!set_isempty(c->log_filter_allowed_patterns) || !set_isempty(c->log_filter_denied_patterns)) {
6446 fprintf(f, "%sLogFilterPatterns:", prefix);
6447
6448 char *pattern;
6449 SET_FOREACH(pattern, c->log_filter_allowed_patterns)
6450 fprintf(f, " %s", pattern);
6451 SET_FOREACH(pattern, c->log_filter_denied_patterns)
6452 fprintf(f, " ~%s", pattern);
6453 fputc('\n', f);
6454 }
6455
6456 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
6457 fprintf(f, "%sLogExtraFields: ", prefix);
6458 fwrite(c->log_extra_fields[j].iov_base,
6459 1, c->log_extra_fields[j].iov_len,
6460 f);
6461 fputc('\n', f);
6462 }
6463
6464 if (c->log_namespace)
6465 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
6466
6467 if (c->secure_bits) {
6468 _cleanup_free_ char *str = NULL;
6469
6470 r = secure_bits_to_string_alloc(c->secure_bits, &str);
6471 if (r >= 0)
6472 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
6473 }
6474
6475 if (c->capability_bounding_set != CAP_MASK_UNSET) {
6476 _cleanup_free_ char *str = NULL;
6477
6478 r = capability_set_to_string(c->capability_bounding_set, &str);
6479 if (r >= 0)
6480 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
6481 }
6482
6483 if (c->capability_ambient_set != 0) {
6484 _cleanup_free_ char *str = NULL;
6485
6486 r = capability_set_to_string(c->capability_ambient_set, &str);
6487 if (r >= 0)
6488 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
6489 }
6490
6491 if (c->user)
6492 fprintf(f, "%sUser: %s\n", prefix, c->user);
6493 if (c->group)
6494 fprintf(f, "%sGroup: %s\n", prefix, c->group);
6495
6496 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
6497
6498 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
6499
6500 if (c->pam_name)
6501 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
6502
6503 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
6504 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
6505 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
6506 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
6507 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
6508 strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path);
6509
6510 for (size_t i = 0; i < c->n_bind_mounts; i++)
6511 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
6512 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
6513 c->bind_mounts[i].ignore_enoent ? "-": "",
6514 c->bind_mounts[i].source,
6515 c->bind_mounts[i].destination,
6516 c->bind_mounts[i].recursive ? "rbind" : "norbind");
6517
6518 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
6519 const TemporaryFileSystem *t = c->temporary_filesystems + i;
6520
6521 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
6522 t->path,
6523 isempty(t->options) ? "" : ":",
6524 strempty(t->options));
6525 }
6526
6527 if (c->utmp_id)
6528 fprintf(f,
6529 "%sUtmpIdentifier: %s\n",
6530 prefix, c->utmp_id);
6531
6532 if (c->selinux_context)
6533 fprintf(f,
6534 "%sSELinuxContext: %s%s\n",
6535 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
6536
6537 if (c->apparmor_profile)
6538 fprintf(f,
6539 "%sAppArmorProfile: %s%s\n",
6540 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
6541
6542 if (c->smack_process_label)
6543 fprintf(f,
6544 "%sSmackProcessLabel: %s%s\n",
6545 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
6546
6547 if (c->personality != PERSONALITY_INVALID)
6548 fprintf(f,
6549 "%sPersonality: %s\n",
6550 prefix, strna(personality_to_string(c->personality)));
6551
6552 fprintf(f,
6553 "%sLockPersonality: %s\n",
6554 prefix, yes_no(c->lock_personality));
6555
6556 if (c->syscall_filter) {
6557 fprintf(f,
6558 "%sSystemCallFilter: ",
6559 prefix);
6560
6561 if (!c->syscall_allow_list)
6562 fputc('~', f);
6563
6564 #if HAVE_SECCOMP
6565 void *id, *val;
6566 bool first = true;
6567 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
6568 _cleanup_free_ char *name = NULL;
6569 const char *errno_name = NULL;
6570 int num = PTR_TO_INT(val);
6571
6572 if (first)
6573 first = false;
6574 else
6575 fputc(' ', f);
6576
6577 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
6578 fputs(strna(name), f);
6579
6580 if (num >= 0) {
6581 errno_name = seccomp_errno_or_action_to_string(num);
6582 if (errno_name)
6583 fprintf(f, ":%s", errno_name);
6584 else
6585 fprintf(f, ":%d", num);
6586 }
6587 }
6588 #endif
6589
6590 fputc('\n', f);
6591 }
6592
6593 if (c->syscall_archs) {
6594 fprintf(f,
6595 "%sSystemCallArchitectures:",
6596 prefix);
6597
6598 #if HAVE_SECCOMP
6599 void *id;
6600 SET_FOREACH(id, c->syscall_archs)
6601 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
6602 #endif
6603 fputc('\n', f);
6604 }
6605
6606 if (exec_context_restrict_namespaces_set(c)) {
6607 _cleanup_free_ char *s = NULL;
6608
6609 r = namespace_flags_to_string(c->restrict_namespaces, &s);
6610 if (r >= 0)
6611 fprintf(f, "%sRestrictNamespaces: %s\n",
6612 prefix, strna(s));
6613 }
6614
6615 #if HAVE_LIBBPF
6616 if (exec_context_restrict_filesystems_set(c)) {
6617 char *fs;
6618 SET_FOREACH(fs, c->restrict_filesystems)
6619 fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs);
6620 }
6621 #endif
6622
6623 if (c->network_namespace_path)
6624 fprintf(f,
6625 "%sNetworkNamespacePath: %s\n",
6626 prefix, c->network_namespace_path);
6627
6628 if (c->syscall_errno > 0) {
6629 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
6630
6631 #if HAVE_SECCOMP
6632 const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
6633 if (errno_name)
6634 fputs(errno_name, f);
6635 else
6636 fprintf(f, "%d", c->syscall_errno);
6637 #endif
6638 fputc('\n', f);
6639 }
6640
6641 for (size_t i = 0; i < c->n_mount_images; i++) {
6642 fprintf(f, "%sMountImages: %s%s:%s", prefix,
6643 c->mount_images[i].ignore_enoent ? "-": "",
6644 c->mount_images[i].source,
6645 c->mount_images[i].destination);
6646 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
6647 fprintf(f, ":%s:%s",
6648 partition_designator_to_string(o->partition_designator),
6649 strempty(o->options));
6650 fprintf(f, "\n");
6651 }
6652
6653 for (size_t i = 0; i < c->n_extension_images; i++) {
6654 fprintf(f, "%sExtensionImages: %s%s", prefix,
6655 c->extension_images[i].ignore_enoent ? "-": "",
6656 c->extension_images[i].source);
6657 LIST_FOREACH(mount_options, o, c->extension_images[i].mount_options)
6658 fprintf(f, ":%s:%s",
6659 partition_designator_to_string(o->partition_designator),
6660 strempty(o->options));
6661 fprintf(f, "\n");
6662 }
6663
6664 strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories);
6665 }
6666
6667 bool exec_context_maintains_privileges(const ExecContext *c) {
6668 assert(c);
6669
6670 /* Returns true if the process forked off would run under
6671 * an unchanged UID or as root. */
6672
6673 if (!c->user)
6674 return true;
6675
6676 if (streq(c->user, "root") || streq(c->user, "0"))
6677 return true;
6678
6679 return false;
6680 }
6681
6682 int exec_context_get_effective_ioprio(const ExecContext *c) {
6683 int p;
6684
6685 assert(c);
6686
6687 if (c->ioprio_set)
6688 return c->ioprio;
6689
6690 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
6691 if (p < 0)
6692 return IOPRIO_DEFAULT_CLASS_AND_PRIO;
6693
6694 return ioprio_normalize(p);
6695 }
6696
6697 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
6698 assert(c);
6699
6700 /* Explicit setting wins */
6701 if (c->mount_apivfs_set)
6702 return c->mount_apivfs;
6703
6704 /* Default to "yes" if root directory or image are specified */
6705 if (exec_context_with_rootfs(c))
6706 return true;
6707
6708 return false;
6709 }
6710
6711 void exec_context_free_log_extra_fields(ExecContext *c) {
6712 assert(c);
6713
6714 for (size_t l = 0; l < c->n_log_extra_fields; l++)
6715 free(c->log_extra_fields[l].iov_base);
6716 c->log_extra_fields = mfree(c->log_extra_fields);
6717 c->n_log_extra_fields = 0;
6718 }
6719
6720 void exec_context_revert_tty(ExecContext *c) {
6721 _cleanup_close_ int fd = -EBADF;
6722 const char *path;
6723 struct stat st;
6724 int r;
6725
6726 assert(c);
6727
6728 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
6729 exec_context_tty_reset(c, NULL);
6730
6731 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
6732 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
6733 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
6734 if (!exec_context_may_touch_tty(c))
6735 return;
6736
6737 path = exec_context_tty_path(c);
6738 if (!path)
6739 return;
6740
6741 fd = open(path, O_PATH|O_CLOEXEC);
6742 if (fd < 0)
6743 return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno,
6744 "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m",
6745 path);
6746
6747 if (fstat(fd, &st) < 0)
6748 return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path);
6749
6750 /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check
6751 * if things are a character device, since a proper check either means we'd have to open the TTY and
6752 * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects
6753 * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother
6754 * with this at all? → https://github.com/systemd/systemd/issues/19213 */
6755 if (!S_ISCHR(st.st_mode))
6756 return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path);
6757
6758 r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID);
6759 if (r < 0)
6760 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
6761 }
6762
6763 int exec_context_get_clean_directories(
6764 ExecContext *c,
6765 char **prefix,
6766 ExecCleanMask mask,
6767 char ***ret) {
6768
6769 _cleanup_strv_free_ char **l = NULL;
6770 int r;
6771
6772 assert(c);
6773 assert(prefix);
6774 assert(ret);
6775
6776 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
6777 if (!FLAGS_SET(mask, 1U << t))
6778 continue;
6779
6780 if (!prefix[t])
6781 continue;
6782
6783 for (size_t i = 0; i < c->directories[t].n_items; i++) {
6784 char *j;
6785
6786 j = path_join(prefix[t], c->directories[t].items[i].path);
6787 if (!j)
6788 return -ENOMEM;
6789
6790 r = strv_consume(&l, j);
6791 if (r < 0)
6792 return r;
6793
6794 /* Also remove private directories unconditionally. */
6795 if (t != EXEC_DIRECTORY_CONFIGURATION) {
6796 j = path_join(prefix[t], "private", c->directories[t].items[i].path);
6797 if (!j)
6798 return -ENOMEM;
6799
6800 r = strv_consume(&l, j);
6801 if (r < 0)
6802 return r;
6803 }
6804
6805 STRV_FOREACH(symlink, c->directories[t].items[i].symlinks) {
6806 j = path_join(prefix[t], *symlink);
6807 if (!j)
6808 return -ENOMEM;
6809
6810 r = strv_consume(&l, j);
6811 if (r < 0)
6812 return r;
6813 }
6814 }
6815 }
6816
6817 *ret = TAKE_PTR(l);
6818 return 0;
6819 }
6820
6821 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
6822 ExecCleanMask mask = 0;
6823
6824 assert(c);
6825 assert(ret);
6826
6827 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
6828 if (c->directories[t].n_items > 0)
6829 mask |= 1U << t;
6830
6831 *ret = mask;
6832 return 0;
6833 }
6834
6835 bool exec_context_has_encrypted_credentials(ExecContext *c) {
6836 ExecLoadCredential *load_cred;
6837 ExecSetCredential *set_cred;
6838
6839 assert(c);
6840
6841 HASHMAP_FOREACH(load_cred, c->load_credentials)
6842 if (load_cred->encrypted)
6843 return true;
6844
6845 HASHMAP_FOREACH(set_cred, c->set_credentials)
6846 if (set_cred->encrypted)
6847 return true;
6848
6849 return false;
6850 }
6851
6852 void exec_status_start(ExecStatus *s, pid_t pid) {
6853 assert(s);
6854
6855 *s = (ExecStatus) {
6856 .pid = pid,
6857 };
6858
6859 dual_timestamp_get(&s->start_timestamp);
6860 }
6861
6862 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
6863 assert(s);
6864
6865 if (s->pid != pid)
6866 *s = (ExecStatus) {
6867 .pid = pid,
6868 };
6869
6870 dual_timestamp_get(&s->exit_timestamp);
6871
6872 s->code = code;
6873 s->status = status;
6874
6875 if (context && context->utmp_id)
6876 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
6877 }
6878
6879 void exec_status_reset(ExecStatus *s) {
6880 assert(s);
6881
6882 *s = (ExecStatus) {};
6883 }
6884
6885 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
6886 assert(s);
6887 assert(f);
6888
6889 if (s->pid <= 0)
6890 return;
6891
6892 prefix = strempty(prefix);
6893
6894 fprintf(f,
6895 "%sPID: "PID_FMT"\n",
6896 prefix, s->pid);
6897
6898 if (dual_timestamp_is_set(&s->start_timestamp))
6899 fprintf(f,
6900 "%sStart Timestamp: %s\n",
6901 prefix, FORMAT_TIMESTAMP(s->start_timestamp.realtime));
6902
6903 if (dual_timestamp_is_set(&s->exit_timestamp))
6904 fprintf(f,
6905 "%sExit Timestamp: %s\n"
6906 "%sExit Code: %s\n"
6907 "%sExit Status: %i\n",
6908 prefix, FORMAT_TIMESTAMP(s->exit_timestamp.realtime),
6909 prefix, sigchld_code_to_string(s->code),
6910 prefix, s->status);
6911 }
6912
6913 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
6914 _cleanup_free_ char *cmd = NULL;
6915 const char *prefix2;
6916
6917 assert(c);
6918 assert(f);
6919
6920 prefix = strempty(prefix);
6921 prefix2 = strjoina(prefix, "\t");
6922
6923 cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY);
6924
6925 fprintf(f,
6926 "%sCommand Line: %s\n",
6927 prefix, strnull(cmd));
6928
6929 exec_status_dump(&c->exec_status, f, prefix2);
6930 }
6931
6932 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
6933 assert(f);
6934
6935 prefix = strempty(prefix);
6936
6937 LIST_FOREACH(command, i, c)
6938 exec_command_dump(i, f, prefix);
6939 }
6940
6941 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
6942 ExecCommand *end;
6943
6944 assert(l);
6945 assert(e);
6946
6947 if (*l) {
6948 /* It's kind of important, that we keep the order here */
6949 end = LIST_FIND_TAIL(command, *l);
6950 LIST_INSERT_AFTER(command, *l, end, e);
6951 } else
6952 *l = e;
6953 }
6954
6955 int exec_command_set(ExecCommand *c, const char *path, ...) {
6956 va_list ap;
6957 char **l, *p;
6958
6959 assert(c);
6960 assert(path);
6961
6962 va_start(ap, path);
6963 l = strv_new_ap(path, ap);
6964 va_end(ap);
6965
6966 if (!l)
6967 return -ENOMEM;
6968
6969 p = strdup(path);
6970 if (!p) {
6971 strv_free(l);
6972 return -ENOMEM;
6973 }
6974
6975 free_and_replace(c->path, p);
6976
6977 return strv_free_and_replace(c->argv, l);
6978 }
6979
6980 int exec_command_append(ExecCommand *c, const char *path, ...) {
6981 _cleanup_strv_free_ char **l = NULL;
6982 va_list ap;
6983 int r;
6984
6985 assert(c);
6986 assert(path);
6987
6988 va_start(ap, path);
6989 l = strv_new_ap(path, ap);
6990 va_end(ap);
6991
6992 if (!l)
6993 return -ENOMEM;
6994
6995 r = strv_extend_strv(&c->argv, l, false);
6996 if (r < 0)
6997 return r;
6998
6999 return 0;
7000 }
7001
7002 static void *remove_tmpdir_thread(void *p) {
7003 _cleanup_free_ char *path = p;
7004
7005 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
7006 return NULL;
7007 }
7008
7009 static ExecSharedRuntime* exec_shared_runtime_free(ExecSharedRuntime *rt) {
7010 if (!rt)
7011 return NULL;
7012
7013 if (rt->manager)
7014 (void) hashmap_remove(rt->manager->exec_shared_runtime_by_id, rt->id);
7015
7016 rt->id = mfree(rt->id);
7017 rt->tmp_dir = mfree(rt->tmp_dir);
7018 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
7019 safe_close_pair(rt->netns_storage_socket);
7020 safe_close_pair(rt->ipcns_storage_socket);
7021 return mfree(rt);
7022 }
7023
7024 DEFINE_TRIVIAL_UNREF_FUNC(ExecSharedRuntime, exec_shared_runtime, exec_shared_runtime_free);
7025 DEFINE_TRIVIAL_CLEANUP_FUNC(ExecSharedRuntime*, exec_shared_runtime_free);
7026
7027 ExecSharedRuntime* exec_shared_runtime_destroy(ExecSharedRuntime *rt) {
7028 int r;
7029
7030 if (!rt)
7031 return NULL;
7032
7033 assert(rt->n_ref > 0);
7034 rt->n_ref--;
7035
7036 if (rt->n_ref > 0)
7037 return NULL;
7038
7039 if (rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
7040 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
7041
7042 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
7043 if (r < 0)
7044 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
7045 else
7046 rt->tmp_dir = NULL;
7047 }
7048
7049 if (rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
7050 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
7051
7052 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
7053 if (r < 0)
7054 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
7055 else
7056 rt->var_tmp_dir = NULL;
7057 }
7058
7059 return exec_shared_runtime_free(rt);
7060 }
7061
7062 static int exec_shared_runtime_allocate(ExecSharedRuntime **ret, const char *id) {
7063 _cleanup_free_ char *id_copy = NULL;
7064 ExecSharedRuntime *n;
7065
7066 assert(ret);
7067
7068 id_copy = strdup(id);
7069 if (!id_copy)
7070 return -ENOMEM;
7071
7072 n = new(ExecSharedRuntime, 1);
7073 if (!n)
7074 return -ENOMEM;
7075
7076 *n = (ExecSharedRuntime) {
7077 .id = TAKE_PTR(id_copy),
7078 .netns_storage_socket = PIPE_EBADF,
7079 .ipcns_storage_socket = PIPE_EBADF,
7080 };
7081
7082 *ret = n;
7083 return 0;
7084 }
7085
7086 static int exec_shared_runtime_add(
7087 Manager *m,
7088 const char *id,
7089 char **tmp_dir,
7090 char **var_tmp_dir,
7091 int netns_storage_socket[2],
7092 int ipcns_storage_socket[2],
7093 ExecSharedRuntime **ret) {
7094
7095 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt = NULL;
7096 int r;
7097
7098 assert(m);
7099 assert(id);
7100
7101 /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */
7102
7103 r = exec_shared_runtime_allocate(&rt, id);
7104 if (r < 0)
7105 return r;
7106
7107 r = hashmap_ensure_put(&m->exec_shared_runtime_by_id, &string_hash_ops, rt->id, rt);
7108 if (r < 0)
7109 return r;
7110
7111 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
7112 rt->tmp_dir = TAKE_PTR(*tmp_dir);
7113 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
7114
7115 if (netns_storage_socket) {
7116 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
7117 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
7118 }
7119
7120 if (ipcns_storage_socket) {
7121 rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]);
7122 rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]);
7123 }
7124
7125 rt->manager = m;
7126
7127 if (ret)
7128 *ret = rt;
7129 /* do not remove created ExecSharedRuntime object when the operation succeeds. */
7130 TAKE_PTR(rt);
7131 return 0;
7132 }
7133
7134 static int exec_shared_runtime_make(
7135 Manager *m,
7136 const ExecContext *c,
7137 const char *id,
7138 ExecSharedRuntime **ret) {
7139
7140 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
7141 _cleanup_close_pair_ int netns_storage_socket[2] = PIPE_EBADF, ipcns_storage_socket[2] = PIPE_EBADF;
7142 int r;
7143
7144 assert(m);
7145 assert(c);
7146 assert(id);
7147
7148 /* It is not necessary to create ExecSharedRuntime object. */
7149 if (!exec_needs_network_namespace(c) && !exec_needs_ipc_namespace(c) && !c->private_tmp) {
7150 *ret = NULL;
7151 return 0;
7152 }
7153
7154 if (c->private_tmp &&
7155 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
7156 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
7157 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
7158 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
7159 if (r < 0)
7160 return r;
7161 }
7162
7163 if (exec_needs_network_namespace(c)) {
7164 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
7165 return -errno;
7166 }
7167
7168 if (exec_needs_ipc_namespace(c)) {
7169 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0)
7170 return -errno;
7171 }
7172
7173 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret);
7174 if (r < 0)
7175 return r;
7176
7177 return 1;
7178 }
7179
7180 int exec_shared_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecSharedRuntime **ret) {
7181 ExecSharedRuntime *rt;
7182 int r;
7183
7184 assert(m);
7185 assert(id);
7186 assert(ret);
7187
7188 rt = hashmap_get(m->exec_shared_runtime_by_id, id);
7189 if (rt)
7190 /* We already have an ExecSharedRuntime object, let's increase the ref count and reuse it */
7191 goto ref;
7192
7193 if (!create) {
7194 *ret = NULL;
7195 return 0;
7196 }
7197
7198 /* If not found, then create a new object. */
7199 r = exec_shared_runtime_make(m, c, id, &rt);
7200 if (r < 0)
7201 return r;
7202 if (r == 0) {
7203 /* When r == 0, it is not necessary to create ExecSharedRuntime object. */
7204 *ret = NULL;
7205 return 0;
7206 }
7207
7208 ref:
7209 /* increment reference counter. */
7210 rt->n_ref++;
7211 *ret = rt;
7212 return 1;
7213 }
7214
7215 int exec_shared_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
7216 ExecSharedRuntime *rt;
7217
7218 assert(m);
7219 assert(f);
7220 assert(fds);
7221
7222 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7223 fprintf(f, "exec-runtime=%s", rt->id);
7224
7225 if (rt->tmp_dir)
7226 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
7227
7228 if (rt->var_tmp_dir)
7229 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
7230
7231 if (rt->netns_storage_socket[0] >= 0) {
7232 int copy;
7233
7234 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
7235 if (copy < 0)
7236 return copy;
7237
7238 fprintf(f, " netns-socket-0=%i", copy);
7239 }
7240
7241 if (rt->netns_storage_socket[1] >= 0) {
7242 int copy;
7243
7244 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
7245 if (copy < 0)
7246 return copy;
7247
7248 fprintf(f, " netns-socket-1=%i", copy);
7249 }
7250
7251 if (rt->ipcns_storage_socket[0] >= 0) {
7252 int copy;
7253
7254 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]);
7255 if (copy < 0)
7256 return copy;
7257
7258 fprintf(f, " ipcns-socket-0=%i", copy);
7259 }
7260
7261 if (rt->ipcns_storage_socket[1] >= 0) {
7262 int copy;
7263
7264 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]);
7265 if (copy < 0)
7266 return copy;
7267
7268 fprintf(f, " ipcns-socket-1=%i", copy);
7269 }
7270
7271 fputc('\n', f);
7272 }
7273
7274 return 0;
7275 }
7276
7277 int exec_shared_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
7278 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt_create = NULL;
7279 ExecSharedRuntime *rt;
7280 int r;
7281
7282 /* This is for the migration from old (v237 or earlier) deserialization text.
7283 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
7284 * Even if the ExecSharedRuntime object originally created by the other unit, we cannot judge
7285 * so or not from the serialized text, then we always creates a new object owned by this. */
7286
7287 assert(u);
7288 assert(key);
7289 assert(value);
7290
7291 /* Manager manages ExecSharedRuntime objects by the unit id.
7292 * So, we omit the serialized text when the unit does not have id (yet?)... */
7293 if (isempty(u->id)) {
7294 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
7295 return 0;
7296 }
7297
7298 if (hashmap_ensure_allocated(&u->manager->exec_shared_runtime_by_id, &string_hash_ops) < 0)
7299 return log_oom();
7300
7301 rt = hashmap_get(u->manager->exec_shared_runtime_by_id, u->id);
7302 if (!rt) {
7303 if (exec_shared_runtime_allocate(&rt_create, u->id) < 0)
7304 return log_oom();
7305
7306 rt = rt_create;
7307 }
7308
7309 if (streq(key, "tmp-dir")) {
7310 if (free_and_strdup_warn(&rt->tmp_dir, value) < 0)
7311 return -ENOMEM;
7312
7313 } else if (streq(key, "var-tmp-dir")) {
7314 if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0)
7315 return -ENOMEM;
7316
7317 } else if (streq(key, "netns-socket-0")) {
7318 int fd;
7319
7320 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
7321 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7322 return 0;
7323 }
7324
7325 safe_close(rt->netns_storage_socket[0]);
7326 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
7327
7328 } else if (streq(key, "netns-socket-1")) {
7329 int fd;
7330
7331 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
7332 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7333 return 0;
7334 }
7335
7336 safe_close(rt->netns_storage_socket[1]);
7337 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
7338
7339 } else
7340 return 0;
7341
7342 /* If the object is newly created, then put it to the hashmap which manages ExecSharedRuntime objects. */
7343 if (rt_create) {
7344 r = hashmap_put(u->manager->exec_shared_runtime_by_id, rt_create->id, rt_create);
7345 if (r < 0) {
7346 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
7347 return 0;
7348 }
7349
7350 rt_create->manager = u->manager;
7351
7352 /* Avoid cleanup */
7353 TAKE_PTR(rt_create);
7354 }
7355
7356 return 1;
7357 }
7358
7359 int exec_shared_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
7360 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
7361 char *id = NULL;
7362 int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1};
7363 const char *p, *v = ASSERT_PTR(value);
7364 size_t n;
7365
7366 assert(m);
7367 assert(fds);
7368
7369 n = strcspn(v, " ");
7370 id = strndupa_safe(v, n);
7371 if (v[n] != ' ')
7372 goto finalize;
7373 p = v + n + 1;
7374
7375 v = startswith(p, "tmp-dir=");
7376 if (v) {
7377 n = strcspn(v, " ");
7378 tmp_dir = strndup(v, n);
7379 if (!tmp_dir)
7380 return log_oom();
7381 if (v[n] != ' ')
7382 goto finalize;
7383 p = v + n + 1;
7384 }
7385
7386 v = startswith(p, "var-tmp-dir=");
7387 if (v) {
7388 n = strcspn(v, " ");
7389 var_tmp_dir = strndup(v, n);
7390 if (!var_tmp_dir)
7391 return log_oom();
7392 if (v[n] != ' ')
7393 goto finalize;
7394 p = v + n + 1;
7395 }
7396
7397 v = startswith(p, "netns-socket-0=");
7398 if (v) {
7399 char *buf;
7400
7401 n = strcspn(v, " ");
7402 buf = strndupa_safe(v, n);
7403
7404 r = safe_atoi(buf, &netns_fdpair[0]);
7405 if (r < 0)
7406 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
7407 if (!fdset_contains(fds, netns_fdpair[0]))
7408 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7409 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", netns_fdpair[0]);
7410 netns_fdpair[0] = fdset_remove(fds, netns_fdpair[0]);
7411 if (v[n] != ' ')
7412 goto finalize;
7413 p = v + n + 1;
7414 }
7415
7416 v = startswith(p, "netns-socket-1=");
7417 if (v) {
7418 char *buf;
7419
7420 n = strcspn(v, " ");
7421 buf = strndupa_safe(v, n);
7422
7423 r = safe_atoi(buf, &netns_fdpair[1]);
7424 if (r < 0)
7425 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
7426 if (!fdset_contains(fds, netns_fdpair[1]))
7427 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7428 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", netns_fdpair[1]);
7429 netns_fdpair[1] = fdset_remove(fds, netns_fdpair[1]);
7430 if (v[n] != ' ')
7431 goto finalize;
7432 p = v + n + 1;
7433 }
7434
7435 v = startswith(p, "ipcns-socket-0=");
7436 if (v) {
7437 char *buf;
7438
7439 n = strcspn(v, " ");
7440 buf = strndupa_safe(v, n);
7441
7442 r = safe_atoi(buf, &ipcns_fdpair[0]);
7443 if (r < 0)
7444 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-0=%s: %m", buf);
7445 if (!fdset_contains(fds, ipcns_fdpair[0]))
7446 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7447 "exec-runtime specification ipcns-socket-0= refers to unknown fd %d: %m", ipcns_fdpair[0]);
7448 ipcns_fdpair[0] = fdset_remove(fds, ipcns_fdpair[0]);
7449 if (v[n] != ' ')
7450 goto finalize;
7451 p = v + n + 1;
7452 }
7453
7454 v = startswith(p, "ipcns-socket-1=");
7455 if (v) {
7456 char *buf;
7457
7458 n = strcspn(v, " ");
7459 buf = strndupa_safe(v, n);
7460
7461 r = safe_atoi(buf, &ipcns_fdpair[1]);
7462 if (r < 0)
7463 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-1=%s: %m", buf);
7464 if (!fdset_contains(fds, ipcns_fdpair[1]))
7465 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7466 "exec-runtime specification ipcns-socket-1= refers to unknown fd %d: %m", ipcns_fdpair[1]);
7467 ipcns_fdpair[1] = fdset_remove(fds, ipcns_fdpair[1]);
7468 }
7469
7470 finalize:
7471 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL);
7472 if (r < 0)
7473 return log_debug_errno(r, "Failed to add exec-runtime: %m");
7474 return 0;
7475 }
7476
7477 void exec_shared_runtime_vacuum(Manager *m) {
7478 ExecSharedRuntime *rt;
7479
7480 assert(m);
7481
7482 /* Free unreferenced ExecSharedRuntime objects. This is used after manager deserialization process. */
7483
7484 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7485 if (rt->n_ref > 0)
7486 continue;
7487
7488 (void) exec_shared_runtime_free(rt);
7489 }
7490 }
7491
7492 int exec_runtime_make(ExecSharedRuntime *shared, DynamicCreds *creds, ExecRuntime **ret) {
7493 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
7494
7495 assert(ret);
7496
7497 if (!shared && !creds) {
7498 *ret = NULL;
7499 return 0;
7500 }
7501
7502 rt = new(ExecRuntime, 1);
7503 if (!rt)
7504 return -ENOMEM;
7505
7506 *rt = (ExecRuntime) {
7507 .shared = shared,
7508 .dynamic_creds = creds,
7509 };
7510
7511 *ret = TAKE_PTR(rt);
7512 return 1;
7513 }
7514
7515 ExecRuntime* exec_runtime_free(ExecRuntime *rt) {
7516 if (!rt)
7517 return NULL;
7518
7519 exec_shared_runtime_unref(rt->shared);
7520 dynamic_creds_unref(rt->dynamic_creds);
7521 return mfree(rt);
7522 }
7523
7524 ExecRuntime* exec_runtime_destroy(ExecRuntime *rt) {
7525 if (!rt)
7526 return NULL;
7527
7528 rt->shared = exec_shared_runtime_destroy(rt->shared);
7529 rt->dynamic_creds = dynamic_creds_destroy(rt->dynamic_creds);
7530 return exec_runtime_free(rt);
7531 }
7532
7533 void exec_params_clear(ExecParameters *p) {
7534 if (!p)
7535 return;
7536
7537 p->environment = strv_free(p->environment);
7538 p->fd_names = strv_free(p->fd_names);
7539 p->fds = mfree(p->fds);
7540 p->exec_fd = safe_close(p->exec_fd);
7541 }
7542
7543 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
7544 if (!sc)
7545 return NULL;
7546
7547 free(sc->id);
7548 free(sc->data);
7549 return mfree(sc);
7550 }
7551
7552 ExecLoadCredential *exec_load_credential_free(ExecLoadCredential *lc) {
7553 if (!lc)
7554 return NULL;
7555
7556 free(lc->id);
7557 free(lc->path);
7558 return mfree(lc);
7559 }
7560
7561 void exec_directory_done(ExecDirectory *d) {
7562 if (!d)
7563 return;
7564
7565 for (size_t i = 0; i < d->n_items; i++) {
7566 free(d->items[i].path);
7567 strv_free(d->items[i].symlinks);
7568 }
7569
7570 d->items = mfree(d->items);
7571 d->n_items = 0;
7572 d->mode = 0755;
7573 }
7574
7575 static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) {
7576 assert(d);
7577 assert(path);
7578
7579 for (size_t i = 0; i < d->n_items; i++)
7580 if (path_equal(d->items[i].path, path))
7581 return &d->items[i];
7582
7583 return NULL;
7584 }
7585
7586 int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) {
7587 _cleanup_strv_free_ char **s = NULL;
7588 _cleanup_free_ char *p = NULL;
7589 ExecDirectoryItem *existing;
7590 int r;
7591
7592 assert(d);
7593 assert(path);
7594
7595 existing = exec_directory_find(d, path);
7596 if (existing) {
7597 r = strv_extend(&existing->symlinks, symlink);
7598 if (r < 0)
7599 return r;
7600
7601 return 0; /* existing item is updated */
7602 }
7603
7604 p = strdup(path);
7605 if (!p)
7606 return -ENOMEM;
7607
7608 if (symlink) {
7609 s = strv_new(symlink);
7610 if (!s)
7611 return -ENOMEM;
7612 }
7613
7614 if (!GREEDY_REALLOC(d->items, d->n_items + 1))
7615 return -ENOMEM;
7616
7617 d->items[d->n_items++] = (ExecDirectoryItem) {
7618 .path = TAKE_PTR(p),
7619 .symlinks = TAKE_PTR(s),
7620 };
7621
7622 return 1; /* new item is added */
7623 }
7624
7625 static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) {
7626 assert(a);
7627 assert(b);
7628
7629 return path_compare(a->path, b->path);
7630 }
7631
7632 void exec_directory_sort(ExecDirectory *d) {
7633 assert(d);
7634
7635 /* Sort the exec directories to make always parent directories processed at first in
7636 * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first,
7637 * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the
7638 * list. See also comments in setup_exec_directory() and issue #24783. */
7639
7640 if (d->n_items <= 1)
7641 return;
7642
7643 typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func);
7644
7645 for (size_t i = 1; i < d->n_items; i++)
7646 for (size_t j = 0; j < i; j++)
7647 if (path_startswith(d->items[i].path, d->items[j].path)) {
7648 d->items[i].only_create = true;
7649 break;
7650 }
7651 }
7652
7653 ExecCleanMask exec_clean_mask_from_string(const char *s) {
7654 ExecDirectoryType t;
7655
7656 assert(s);
7657
7658 if (streq(s, "all"))
7659 return EXEC_CLEAN_ALL;
7660 if (streq(s, "fdstore"))
7661 return EXEC_CLEAN_FDSTORE;
7662
7663 t = exec_resource_type_from_string(s);
7664 if (t < 0)
7665 return (ExecCleanMask) t;
7666
7667 return 1U << t;
7668 }
7669
7670 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
7671 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_load_credential_hash_ops, char, string_hash_func, string_compare_func, ExecLoadCredential, exec_load_credential_free);
7672
7673 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
7674 [EXEC_INPUT_NULL] = "null",
7675 [EXEC_INPUT_TTY] = "tty",
7676 [EXEC_INPUT_TTY_FORCE] = "tty-force",
7677 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
7678 [EXEC_INPUT_SOCKET] = "socket",
7679 [EXEC_INPUT_NAMED_FD] = "fd",
7680 [EXEC_INPUT_DATA] = "data",
7681 [EXEC_INPUT_FILE] = "file",
7682 };
7683
7684 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
7685
7686 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
7687 [EXEC_OUTPUT_INHERIT] = "inherit",
7688 [EXEC_OUTPUT_NULL] = "null",
7689 [EXEC_OUTPUT_TTY] = "tty",
7690 [EXEC_OUTPUT_KMSG] = "kmsg",
7691 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
7692 [EXEC_OUTPUT_JOURNAL] = "journal",
7693 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
7694 [EXEC_OUTPUT_SOCKET] = "socket",
7695 [EXEC_OUTPUT_NAMED_FD] = "fd",
7696 [EXEC_OUTPUT_FILE] = "file",
7697 [EXEC_OUTPUT_FILE_APPEND] = "append",
7698 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
7699 };
7700
7701 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
7702
7703 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
7704 [EXEC_UTMP_INIT] = "init",
7705 [EXEC_UTMP_LOGIN] = "login",
7706 [EXEC_UTMP_USER] = "user",
7707 };
7708
7709 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
7710
7711 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
7712 [EXEC_PRESERVE_NO] = "no",
7713 [EXEC_PRESERVE_YES] = "yes",
7714 [EXEC_PRESERVE_RESTART] = "restart",
7715 };
7716
7717 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
7718
7719 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
7720 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7721 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
7722 [EXEC_DIRECTORY_STATE] = "StateDirectory",
7723 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
7724 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
7725 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
7726 };
7727
7728 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
7729
7730 /* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */
7731 static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7732 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink",
7733 [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink",
7734 [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink",
7735 [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink",
7736 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink",
7737 };
7738
7739 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType);
7740
7741 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
7742 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
7743 * directories, specifically .timer units with their timestamp touch file. */
7744 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7745 [EXEC_DIRECTORY_RUNTIME] = "runtime",
7746 [EXEC_DIRECTORY_STATE] = "state",
7747 [EXEC_DIRECTORY_CACHE] = "cache",
7748 [EXEC_DIRECTORY_LOGS] = "logs",
7749 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
7750 };
7751
7752 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
7753
7754 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
7755 * the service payload in. */
7756 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7757 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
7758 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
7759 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
7760 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
7761 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
7762 };
7763
7764 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
7765
7766 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
7767 [EXEC_KEYRING_INHERIT] = "inherit",
7768 [EXEC_KEYRING_PRIVATE] = "private",
7769 [EXEC_KEYRING_SHARED] = "shared",
7770 };
7771
7772 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);