]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
Merge pull request #18395 from bluca/make_docs_img_clean
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "async.h"
43 #include "barrier.h"
44 #include "cap-list.h"
45 #include "capability-util.h"
46 #include "cgroup-setup.h"
47 #include "chown-recursive.h"
48 #include "cpu-set-util.h"
49 #include "def.h"
50 #include "env-file.h"
51 #include "env-util.h"
52 #include "errno-list.h"
53 #include "execute.h"
54 #include "exit-status.h"
55 #include "fd-util.h"
56 #include "fileio.h"
57 #include "format-util.h"
58 #include "fs-util.h"
59 #include "glob-util.h"
60 #include "hexdecoct.h"
61 #include "io-util.h"
62 #include "ioprio.h"
63 #include "label.h"
64 #include "log.h"
65 #include "macro.h"
66 #include "manager.h"
67 #include "memory-util.h"
68 #include "missing_fs.h"
69 #include "mkdir.h"
70 #include "mount-util.h"
71 #include "mountpoint-util.h"
72 #include "namespace.h"
73 #include "parse-util.h"
74 #include "path-util.h"
75 #include "process-util.h"
76 #include "random-util.h"
77 #include "rlimit-util.h"
78 #include "rm-rf.h"
79 #if HAVE_SECCOMP
80 #include "seccomp-util.h"
81 #endif
82 #include "securebits-util.h"
83 #include "selinux-util.h"
84 #include "signal-util.h"
85 #include "smack-util.h"
86 #include "socket-util.h"
87 #include "special.h"
88 #include "stat-util.h"
89 #include "string-table.h"
90 #include "string-util.h"
91 #include "strv.h"
92 #include "syslog-util.h"
93 #include "terminal-util.h"
94 #include "tmpfile-util.h"
95 #include "umask-util.h"
96 #include "unit.h"
97 #include "user-util.h"
98 #include "utmp-wtmp.h"
99
100 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
101 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
102
103 #define SNDBUF_SIZE (8*1024*1024)
104
105 static int shift_fds(int fds[], size_t n_fds) {
106 if (n_fds <= 0)
107 return 0;
108
109 /* Modifies the fds array! (sorts it) */
110
111 assert(fds);
112
113 for (int start = 0;;) {
114 int restart_from = -1;
115
116 for (int i = start; i < (int) n_fds; i++) {
117 int nfd;
118
119 /* Already at right index? */
120 if (fds[i] == i+3)
121 continue;
122
123 nfd = fcntl(fds[i], F_DUPFD, i + 3);
124 if (nfd < 0)
125 return -errno;
126
127 safe_close(fds[i]);
128 fds[i] = nfd;
129
130 /* Hmm, the fd we wanted isn't free? Then
131 * let's remember that and try again from here */
132 if (nfd != i+3 && restart_from < 0)
133 restart_from = i;
134 }
135
136 if (restart_from < 0)
137 break;
138
139 start = restart_from;
140 }
141
142 return 0;
143 }
144
145 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
146 size_t n_fds;
147 int r;
148
149 n_fds = n_socket_fds + n_storage_fds;
150 if (n_fds <= 0)
151 return 0;
152
153 assert(fds);
154
155 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
156 * O_NONBLOCK only applies to socket activation though. */
157
158 for (size_t i = 0; i < n_fds; i++) {
159
160 if (i < n_socket_fds) {
161 r = fd_nonblock(fds[i], nonblock);
162 if (r < 0)
163 return r;
164 }
165
166 /* We unconditionally drop FD_CLOEXEC from the fds,
167 * since after all we want to pass these fds to our
168 * children */
169
170 r = fd_cloexec(fds[i], false);
171 if (r < 0)
172 return r;
173 }
174
175 return 0;
176 }
177
178 static const char *exec_context_tty_path(const ExecContext *context) {
179 assert(context);
180
181 if (context->stdio_as_fds)
182 return NULL;
183
184 if (context->tty_path)
185 return context->tty_path;
186
187 return "/dev/console";
188 }
189
190 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
191 const char *path;
192
193 assert(context);
194
195 path = exec_context_tty_path(context);
196
197 if (context->tty_vhangup) {
198 if (p && p->stdin_fd >= 0)
199 (void) terminal_vhangup_fd(p->stdin_fd);
200 else if (path)
201 (void) terminal_vhangup(path);
202 }
203
204 if (context->tty_reset) {
205 if (p && p->stdin_fd >= 0)
206 (void) reset_terminal_fd(p->stdin_fd, true);
207 else if (path)
208 (void) reset_terminal(path);
209 }
210
211 if (context->tty_vt_disallocate && path)
212 (void) vt_disallocate(path);
213 }
214
215 static bool is_terminal_input(ExecInput i) {
216 return IN_SET(i,
217 EXEC_INPUT_TTY,
218 EXEC_INPUT_TTY_FORCE,
219 EXEC_INPUT_TTY_FAIL);
220 }
221
222 static bool is_terminal_output(ExecOutput o) {
223 return IN_SET(o,
224 EXEC_OUTPUT_TTY,
225 EXEC_OUTPUT_KMSG_AND_CONSOLE,
226 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
227 }
228
229 static bool is_kmsg_output(ExecOutput o) {
230 return IN_SET(o,
231 EXEC_OUTPUT_KMSG,
232 EXEC_OUTPUT_KMSG_AND_CONSOLE);
233 }
234
235 static bool exec_context_needs_term(const ExecContext *c) {
236 assert(c);
237
238 /* Return true if the execution context suggests we should set $TERM to something useful. */
239
240 if (is_terminal_input(c->std_input))
241 return true;
242
243 if (is_terminal_output(c->std_output))
244 return true;
245
246 if (is_terminal_output(c->std_error))
247 return true;
248
249 return !!c->tty_path;
250 }
251
252 static int open_null_as(int flags, int nfd) {
253 int fd;
254
255 assert(nfd >= 0);
256
257 fd = open("/dev/null", flags|O_NOCTTY);
258 if (fd < 0)
259 return -errno;
260
261 return move_fd(fd, nfd, false);
262 }
263
264 static int connect_journal_socket(
265 int fd,
266 const char *log_namespace,
267 uid_t uid,
268 gid_t gid) {
269
270 union sockaddr_union sa;
271 socklen_t sa_len;
272 uid_t olduid = UID_INVALID;
273 gid_t oldgid = GID_INVALID;
274 const char *j;
275 int r;
276
277 j = log_namespace ?
278 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
279 "/run/systemd/journal/stdout";
280 r = sockaddr_un_set_path(&sa.un, j);
281 if (r < 0)
282 return r;
283 sa_len = r;
284
285 if (gid_is_valid(gid)) {
286 oldgid = getgid();
287
288 if (setegid(gid) < 0)
289 return -errno;
290 }
291
292 if (uid_is_valid(uid)) {
293 olduid = getuid();
294
295 if (seteuid(uid) < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
302
303 /* If we fail to restore the uid or gid, things will likely
304 fail later on. This should only happen if an LSM interferes. */
305
306 if (uid_is_valid(uid))
307 (void) seteuid(olduid);
308
309 restore_gid:
310 if (gid_is_valid(gid))
311 (void) setegid(oldgid);
312
313 return r;
314 }
315
316 static int connect_logger_as(
317 const Unit *unit,
318 const ExecContext *context,
319 const ExecParameters *params,
320 ExecOutput output,
321 const char *ident,
322 int nfd,
323 uid_t uid,
324 gid_t gid) {
325
326 _cleanup_close_ int fd = -1;
327 int r;
328
329 assert(context);
330 assert(params);
331 assert(output < _EXEC_OUTPUT_MAX);
332 assert(ident);
333 assert(nfd >= 0);
334
335 fd = socket(AF_UNIX, SOCK_STREAM, 0);
336 if (fd < 0)
337 return -errno;
338
339 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
340 if (r < 0)
341 return r;
342
343 if (shutdown(fd, SHUT_RD) < 0)
344 return -errno;
345
346 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
347
348 if (dprintf(fd,
349 "%s\n"
350 "%s\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n",
356 context->syslog_identifier ?: ident,
357 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
358 context->syslog_priority,
359 !!context->syslog_level_prefix,
360 false,
361 is_kmsg_output(output),
362 is_terminal_output(output)) < 0)
363 return -errno;
364
365 return move_fd(TAKE_FD(fd), nfd, false);
366 }
367
368 static int open_terminal_as(const char *path, int flags, int nfd) {
369 int fd;
370
371 assert(path);
372 assert(nfd >= 0);
373
374 fd = open_terminal(path, flags | O_NOCTTY);
375 if (fd < 0)
376 return fd;
377
378 return move_fd(fd, nfd, false);
379 }
380
381 static int acquire_path(const char *path, int flags, mode_t mode) {
382 union sockaddr_union sa;
383 socklen_t sa_len;
384 _cleanup_close_ int fd = -1;
385 int r;
386
387 assert(path);
388
389 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
390 flags |= O_CREAT;
391
392 fd = open(path, flags|O_NOCTTY, mode);
393 if (fd >= 0)
394 return TAKE_FD(fd);
395
396 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
397 return -errno;
398
399 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
400
401 r = sockaddr_un_set_path(&sa.un, path);
402 if (r < 0)
403 return r == -EINVAL ? -ENXIO : r;
404 sa_len = r;
405
406 fd = socket(AF_UNIX, SOCK_STREAM, 0);
407 if (fd < 0)
408 return -errno;
409
410 if (connect(fd, &sa.sa, sa_len) < 0)
411 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
412 * indication that this wasn't an AF_UNIX socket after all */
413
414 if ((flags & O_ACCMODE) == O_RDONLY)
415 r = shutdown(fd, SHUT_WR);
416 else if ((flags & O_ACCMODE) == O_WRONLY)
417 r = shutdown(fd, SHUT_RD);
418 else
419 r = 0;
420 if (r < 0)
421 return -errno;
422
423 return TAKE_FD(fd);
424 }
425
426 static int fixup_input(
427 const ExecContext *context,
428 int socket_fd,
429 bool apply_tty_stdin) {
430
431 ExecInput std_input;
432
433 assert(context);
434
435 std_input = context->std_input;
436
437 if (is_terminal_input(std_input) && !apply_tty_stdin)
438 return EXEC_INPUT_NULL;
439
440 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
444 return EXEC_INPUT_NULL;
445
446 return std_input;
447 }
448
449 static int fixup_output(ExecOutput std_output, int socket_fd) {
450
451 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
452 return EXEC_OUTPUT_INHERIT;
453
454 return std_output;
455 }
456
457 static int setup_input(
458 const ExecContext *context,
459 const ExecParameters *params,
460 int socket_fd,
461 const int named_iofds[static 3]) {
462
463 ExecInput i;
464
465 assert(context);
466 assert(params);
467 assert(named_iofds);
468
469 if (params->stdin_fd >= 0) {
470 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
471 return -errno;
472
473 /* Try to make this the controlling tty, if it is a tty, and reset it */
474 if (isatty(STDIN_FILENO)) {
475 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
476 (void) reset_terminal_fd(STDIN_FILENO, true);
477 }
478
479 return STDIN_FILENO;
480 }
481
482 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
483
484 switch (i) {
485
486 case EXEC_INPUT_NULL:
487 return open_null_as(O_RDONLY, STDIN_FILENO);
488
489 case EXEC_INPUT_TTY:
490 case EXEC_INPUT_TTY_FORCE:
491 case EXEC_INPUT_TTY_FAIL: {
492 int fd;
493
494 fd = acquire_terminal(exec_context_tty_path(context),
495 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
496 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
497 ACQUIRE_TERMINAL_WAIT,
498 USEC_INFINITY);
499 if (fd < 0)
500 return fd;
501
502 return move_fd(fd, STDIN_FILENO, false);
503 }
504
505 case EXEC_INPUT_SOCKET:
506 assert(socket_fd >= 0);
507
508 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
509
510 case EXEC_INPUT_NAMED_FD:
511 assert(named_iofds[STDIN_FILENO] >= 0);
512
513 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
514 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
515
516 case EXEC_INPUT_DATA: {
517 int fd;
518
519 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
520 if (fd < 0)
521 return fd;
522
523 return move_fd(fd, STDIN_FILENO, false);
524 }
525
526 case EXEC_INPUT_FILE: {
527 bool rw;
528 int fd;
529
530 assert(context->stdio_file[STDIN_FILENO]);
531
532 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
533 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
534
535 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
536 if (fd < 0)
537 return fd;
538
539 return move_fd(fd, STDIN_FILENO, false);
540 }
541
542 default:
543 assert_not_reached("Unknown input type");
544 }
545 }
546
547 static bool can_inherit_stderr_from_stdout(
548 const ExecContext *context,
549 ExecOutput o,
550 ExecOutput e) {
551
552 assert(context);
553
554 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
555 * stderr fd */
556
557 if (e == EXEC_OUTPUT_INHERIT)
558 return true;
559 if (e != o)
560 return false;
561
562 if (e == EXEC_OUTPUT_NAMED_FD)
563 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
564
565 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
566 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
567
568 return true;
569 }
570
571 static int setup_output(
572 const Unit *unit,
573 const ExecContext *context,
574 const ExecParameters *params,
575 int fileno,
576 int socket_fd,
577 const int named_iofds[static 3],
578 const char *ident,
579 uid_t uid,
580 gid_t gid,
581 dev_t *journal_stream_dev,
582 ino_t *journal_stream_ino) {
583
584 ExecOutput o;
585 ExecInput i;
586 int r;
587
588 assert(unit);
589 assert(context);
590 assert(params);
591 assert(ident);
592 assert(journal_stream_dev);
593 assert(journal_stream_ino);
594
595 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
596
597 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
598 return -errno;
599
600 return STDOUT_FILENO;
601 }
602
603 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
604 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
605 return -errno;
606
607 return STDERR_FILENO;
608 }
609
610 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
611 o = fixup_output(context->std_output, socket_fd);
612
613 if (fileno == STDERR_FILENO) {
614 ExecOutput e;
615 e = fixup_output(context->std_error, socket_fd);
616
617 /* This expects the input and output are already set up */
618
619 /* Don't change the stderr file descriptor if we inherit all
620 * the way and are not on a tty */
621 if (e == EXEC_OUTPUT_INHERIT &&
622 o == EXEC_OUTPUT_INHERIT &&
623 i == EXEC_INPUT_NULL &&
624 !is_terminal_input(context->std_input) &&
625 getppid () != 1)
626 return fileno;
627
628 /* Duplicate from stdout if possible */
629 if (can_inherit_stderr_from_stdout(context, o, e))
630 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
631
632 o = e;
633
634 } else if (o == EXEC_OUTPUT_INHERIT) {
635 /* If input got downgraded, inherit the original value */
636 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
637 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
638
639 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
640 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
641 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
642
643 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
644 if (getppid() != 1)
645 return fileno;
646
647 /* We need to open /dev/null here anew, to get the right access mode. */
648 return open_null_as(O_WRONLY, fileno);
649 }
650
651 switch (o) {
652
653 case EXEC_OUTPUT_NULL:
654 return open_null_as(O_WRONLY, fileno);
655
656 case EXEC_OUTPUT_TTY:
657 if (is_terminal_input(i))
658 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
659
660 /* We don't reset the terminal if this is just about output */
661 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
662
663 case EXEC_OUTPUT_KMSG:
664 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
665 case EXEC_OUTPUT_JOURNAL:
666 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
667 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
668 if (r < 0) {
669 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
670 r = open_null_as(O_WRONLY, fileno);
671 } else {
672 struct stat st;
673
674 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
675 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
676 * services to detect whether they are connected to the journal or not.
677 *
678 * If both stdout and stderr are connected to a stream then let's make sure to store the data
679 * about STDERR as that's usually the best way to do logging. */
680
681 if (fstat(fileno, &st) >= 0 &&
682 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
683 *journal_stream_dev = st.st_dev;
684 *journal_stream_ino = st.st_ino;
685 }
686 }
687 return r;
688
689 case EXEC_OUTPUT_SOCKET:
690 assert(socket_fd >= 0);
691
692 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
693
694 case EXEC_OUTPUT_NAMED_FD:
695 assert(named_iofds[fileno] >= 0);
696
697 (void) fd_nonblock(named_iofds[fileno], false);
698 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
699
700 case EXEC_OUTPUT_FILE:
701 case EXEC_OUTPUT_FILE_APPEND:
702 case EXEC_OUTPUT_FILE_TRUNCATE: {
703 bool rw;
704 int fd, flags;
705
706 assert(context->stdio_file[fileno]);
707
708 rw = context->std_input == EXEC_INPUT_FILE &&
709 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
710
711 if (rw)
712 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
713
714 flags = O_WRONLY;
715 if (o == EXEC_OUTPUT_FILE_APPEND)
716 flags |= O_APPEND;
717 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
718 flags |= O_TRUNC;
719
720 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
721 if (fd < 0)
722 return fd;
723
724 return move_fd(fd, fileno, 0);
725 }
726
727 default:
728 assert_not_reached("Unknown error type");
729 }
730 }
731
732 static int chown_terminal(int fd, uid_t uid) {
733 int r;
734
735 assert(fd >= 0);
736
737 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
738 if (isatty(fd) < 1) {
739 if (IN_SET(errno, EINVAL, ENOTTY))
740 return 0; /* not a tty */
741
742 return -errno;
743 }
744
745 /* This might fail. What matters are the results. */
746 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
747 if (r < 0)
748 return r;
749
750 return 1;
751 }
752
753 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
754 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
755 int r;
756
757 assert(_saved_stdin);
758 assert(_saved_stdout);
759
760 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
761 if (saved_stdin < 0)
762 return -errno;
763
764 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
765 if (saved_stdout < 0)
766 return -errno;
767
768 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
769 if (fd < 0)
770 return fd;
771
772 r = chown_terminal(fd, getuid());
773 if (r < 0)
774 return r;
775
776 r = reset_terminal_fd(fd, true);
777 if (r < 0)
778 return r;
779
780 r = rearrange_stdio(fd, fd, STDERR_FILENO);
781 fd = -1;
782 if (r < 0)
783 return r;
784
785 *_saved_stdin = saved_stdin;
786 *_saved_stdout = saved_stdout;
787
788 saved_stdin = saved_stdout = -1;
789
790 return 0;
791 }
792
793 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
794 assert(err < 0);
795
796 if (err == -ETIMEDOUT)
797 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
798 else {
799 errno = -err;
800 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
801 }
802 }
803
804 static void write_confirm_error(int err, const char *vc, const Unit *u) {
805 _cleanup_close_ int fd = -1;
806
807 assert(vc);
808
809 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
810 if (fd < 0)
811 return;
812
813 write_confirm_error_fd(err, fd, u);
814 }
815
816 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
817 int r = 0;
818
819 assert(saved_stdin);
820 assert(saved_stdout);
821
822 release_terminal();
823
824 if (*saved_stdin >= 0)
825 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
826 r = -errno;
827
828 if (*saved_stdout >= 0)
829 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
830 r = -errno;
831
832 *saved_stdin = safe_close(*saved_stdin);
833 *saved_stdout = safe_close(*saved_stdout);
834
835 return r;
836 }
837
838 enum {
839 CONFIRM_PRETEND_FAILURE = -1,
840 CONFIRM_PRETEND_SUCCESS = 0,
841 CONFIRM_EXECUTE = 1,
842 };
843
844 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
845 int saved_stdout = -1, saved_stdin = -1, r;
846 _cleanup_free_ char *e = NULL;
847 char c;
848
849 /* For any internal errors, assume a positive response. */
850 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
851 if (r < 0) {
852 write_confirm_error(r, vc, u);
853 return CONFIRM_EXECUTE;
854 }
855
856 /* confirm_spawn might have been disabled while we were sleeping. */
857 if (manager_is_confirm_spawn_disabled(u->manager)) {
858 r = 1;
859 goto restore_stdio;
860 }
861
862 e = ellipsize(cmdline, 60, 100);
863 if (!e) {
864 log_oom();
865 r = CONFIRM_EXECUTE;
866 goto restore_stdio;
867 }
868
869 for (;;) {
870 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
871 if (r < 0) {
872 write_confirm_error_fd(r, STDOUT_FILENO, u);
873 r = CONFIRM_EXECUTE;
874 goto restore_stdio;
875 }
876
877 switch (c) {
878 case 'c':
879 printf("Resuming normal execution.\n");
880 manager_disable_confirm_spawn();
881 r = 1;
882 break;
883 case 'D':
884 unit_dump(u, stdout, " ");
885 continue; /* ask again */
886 case 'f':
887 printf("Failing execution.\n");
888 r = CONFIRM_PRETEND_FAILURE;
889 break;
890 case 'h':
891 printf(" c - continue, proceed without asking anymore\n"
892 " D - dump, show the state of the unit\n"
893 " f - fail, don't execute the command and pretend it failed\n"
894 " h - help\n"
895 " i - info, show a short summary of the unit\n"
896 " j - jobs, show jobs that are in progress\n"
897 " s - skip, don't execute the command and pretend it succeeded\n"
898 " y - yes, execute the command\n");
899 continue; /* ask again */
900 case 'i':
901 printf(" Description: %s\n"
902 " Unit: %s\n"
903 " Command: %s\n",
904 u->id, u->description, cmdline);
905 continue; /* ask again */
906 case 'j':
907 manager_dump_jobs(u->manager, stdout, " ");
908 continue; /* ask again */
909 case 'n':
910 /* 'n' was removed in favor of 'f'. */
911 printf("Didn't understand 'n', did you mean 'f'?\n");
912 continue; /* ask again */
913 case 's':
914 printf("Skipping execution.\n");
915 r = CONFIRM_PRETEND_SUCCESS;
916 break;
917 case 'y':
918 r = CONFIRM_EXECUTE;
919 break;
920 default:
921 assert_not_reached("Unhandled choice");
922 }
923 break;
924 }
925
926 restore_stdio:
927 restore_confirm_stdio(&saved_stdin, &saved_stdout);
928 return r;
929 }
930
931 static int get_fixed_user(const ExecContext *c, const char **user,
932 uid_t *uid, gid_t *gid,
933 const char **home, const char **shell) {
934 int r;
935 const char *name;
936
937 assert(c);
938
939 if (!c->user)
940 return 0;
941
942 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
943 * (i.e. are "/" or "/bin/nologin"). */
944
945 name = c->user;
946 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
947 if (r < 0)
948 return r;
949
950 *user = name;
951 return 0;
952 }
953
954 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
955 int r;
956 const char *name;
957
958 assert(c);
959
960 if (!c->group)
961 return 0;
962
963 name = c->group;
964 r = get_group_creds(&name, gid, 0);
965 if (r < 0)
966 return r;
967
968 *group = name;
969 return 0;
970 }
971
972 static int get_supplementary_groups(const ExecContext *c, const char *user,
973 const char *group, gid_t gid,
974 gid_t **supplementary_gids, int *ngids) {
975 char **i;
976 int r, k = 0;
977 int ngroups_max;
978 bool keep_groups = false;
979 gid_t *groups = NULL;
980 _cleanup_free_ gid_t *l_gids = NULL;
981
982 assert(c);
983
984 /*
985 * If user is given, then lookup GID and supplementary groups list.
986 * We avoid NSS lookups for gid=0. Also we have to initialize groups
987 * here and as early as possible so we keep the list of supplementary
988 * groups of the caller.
989 */
990 if (user && gid_is_valid(gid) && gid != 0) {
991 /* First step, initialize groups from /etc/groups */
992 if (initgroups(user, gid) < 0)
993 return -errno;
994
995 keep_groups = true;
996 }
997
998 if (strv_isempty(c->supplementary_groups))
999 return 0;
1000
1001 /*
1002 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1003 * be positive, otherwise fail.
1004 */
1005 errno = 0;
1006 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1007 if (ngroups_max <= 0)
1008 return errno_or_else(EOPNOTSUPP);
1009
1010 l_gids = new(gid_t, ngroups_max);
1011 if (!l_gids)
1012 return -ENOMEM;
1013
1014 if (keep_groups) {
1015 /*
1016 * Lookup the list of groups that the user belongs to, we
1017 * avoid NSS lookups here too for gid=0.
1018 */
1019 k = ngroups_max;
1020 if (getgrouplist(user, gid, l_gids, &k) < 0)
1021 return -EINVAL;
1022 } else
1023 k = 0;
1024
1025 STRV_FOREACH(i, c->supplementary_groups) {
1026 const char *g;
1027
1028 if (k >= ngroups_max)
1029 return -E2BIG;
1030
1031 g = *i;
1032 r = get_group_creds(&g, l_gids+k, 0);
1033 if (r < 0)
1034 return r;
1035
1036 k++;
1037 }
1038
1039 /*
1040 * Sets ngids to zero to drop all supplementary groups, happens
1041 * when we are under root and SupplementaryGroups= is empty.
1042 */
1043 if (k == 0) {
1044 *ngids = 0;
1045 return 0;
1046 }
1047
1048 /* Otherwise get the final list of supplementary groups */
1049 groups = memdup(l_gids, sizeof(gid_t) * k);
1050 if (!groups)
1051 return -ENOMEM;
1052
1053 *supplementary_gids = groups;
1054 *ngids = k;
1055
1056 groups = NULL;
1057
1058 return 0;
1059 }
1060
1061 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1062 int r;
1063
1064 /* Handle SupplementaryGroups= if it is not empty */
1065 if (ngids > 0) {
1066 r = maybe_setgroups(ngids, supplementary_gids);
1067 if (r < 0)
1068 return r;
1069 }
1070
1071 if (gid_is_valid(gid)) {
1072 /* Then set our gids */
1073 if (setresgid(gid, gid, gid) < 0)
1074 return -errno;
1075 }
1076
1077 return 0;
1078 }
1079
1080 static int set_securebits(int bits, int mask) {
1081 int current, applied;
1082 current = prctl(PR_GET_SECUREBITS);
1083 if (current < 0)
1084 return -errno;
1085 /* Clear all securebits defined in mask and set bits */
1086 applied = (current & ~mask) | bits;
1087 if (current == applied)
1088 return 0;
1089 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1090 return -errno;
1091 return 1;
1092 }
1093
1094 static int enforce_user(const ExecContext *context, uid_t uid) {
1095 assert(context);
1096 int r;
1097
1098 if (!uid_is_valid(uid))
1099 return 0;
1100
1101 /* Sets (but doesn't look up) the uid and make sure we keep the
1102 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1103 * required, so we also need keep-caps in this case.
1104 */
1105
1106 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1107
1108 /* First step: If we need to keep capabilities but
1109 * drop privileges we need to make sure we keep our
1110 * caps, while we drop privileges. */
1111 if (uid != 0) {
1112 /* Add KEEP_CAPS to the securebits */
1113 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1114 if (r < 0)
1115 return r;
1116 }
1117 }
1118
1119 /* Second step: actually set the uids */
1120 if (setresuid(uid, uid, uid) < 0)
1121 return -errno;
1122
1123 /* At this point we should have all necessary capabilities but
1124 are otherwise a normal user. However, the caps might got
1125 corrupted due to the setresuid() so we need clean them up
1126 later. This is done outside of this call. */
1127
1128 return 0;
1129 }
1130
1131 #if HAVE_PAM
1132
1133 static int null_conv(
1134 int num_msg,
1135 const struct pam_message **msg,
1136 struct pam_response **resp,
1137 void *appdata_ptr) {
1138
1139 /* We don't support conversations */
1140
1141 return PAM_CONV_ERR;
1142 }
1143
1144 #endif
1145
1146 static int setup_pam(
1147 const char *name,
1148 const char *user,
1149 uid_t uid,
1150 gid_t gid,
1151 const char *tty,
1152 char ***env,
1153 const int fds[], size_t n_fds) {
1154
1155 #if HAVE_PAM
1156
1157 static const struct pam_conv conv = {
1158 .conv = null_conv,
1159 .appdata_ptr = NULL
1160 };
1161
1162 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1163 pam_handle_t *handle = NULL;
1164 sigset_t old_ss;
1165 int pam_code = PAM_SUCCESS, r;
1166 char **nv, **e = NULL;
1167 bool close_session = false;
1168 pid_t pam_pid = 0, parent_pid;
1169 int flags = 0;
1170
1171 assert(name);
1172 assert(user);
1173 assert(env);
1174
1175 /* We set up PAM in the parent process, then fork. The child
1176 * will then stay around until killed via PR_GET_PDEATHSIG or
1177 * systemd via the cgroup logic. It will then remove the PAM
1178 * session again. The parent process will exec() the actual
1179 * daemon. We do things this way to ensure that the main PID
1180 * of the daemon is the one we initially fork()ed. */
1181
1182 r = barrier_create(&barrier);
1183 if (r < 0)
1184 goto fail;
1185
1186 if (log_get_max_level() < LOG_DEBUG)
1187 flags |= PAM_SILENT;
1188
1189 pam_code = pam_start(name, user, &conv, &handle);
1190 if (pam_code != PAM_SUCCESS) {
1191 handle = NULL;
1192 goto fail;
1193 }
1194
1195 if (!tty) {
1196 _cleanup_free_ char *q = NULL;
1197
1198 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1199 * out if that's the case, and read the TTY off it. */
1200
1201 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1202 tty = strjoina("/dev/", q);
1203 }
1204
1205 if (tty) {
1206 pam_code = pam_set_item(handle, PAM_TTY, tty);
1207 if (pam_code != PAM_SUCCESS)
1208 goto fail;
1209 }
1210
1211 STRV_FOREACH(nv, *env) {
1212 pam_code = pam_putenv(handle, *nv);
1213 if (pam_code != PAM_SUCCESS)
1214 goto fail;
1215 }
1216
1217 pam_code = pam_acct_mgmt(handle, flags);
1218 if (pam_code != PAM_SUCCESS)
1219 goto fail;
1220
1221 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1222 if (pam_code != PAM_SUCCESS)
1223 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1224
1225 pam_code = pam_open_session(handle, flags);
1226 if (pam_code != PAM_SUCCESS)
1227 goto fail;
1228
1229 close_session = true;
1230
1231 e = pam_getenvlist(handle);
1232 if (!e) {
1233 pam_code = PAM_BUF_ERR;
1234 goto fail;
1235 }
1236
1237 /* Block SIGTERM, so that we know that it won't get lost in
1238 * the child */
1239
1240 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1241
1242 parent_pid = getpid_cached();
1243
1244 r = safe_fork("(sd-pam)", 0, &pam_pid);
1245 if (r < 0)
1246 goto fail;
1247 if (r == 0) {
1248 int sig, ret = EXIT_PAM;
1249
1250 /* The child's job is to reset the PAM session on
1251 * termination */
1252 barrier_set_role(&barrier, BARRIER_CHILD);
1253
1254 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1255 * those fds are open here that have been opened by PAM. */
1256 (void) close_many(fds, n_fds);
1257
1258 /* Drop privileges - we don't need any to pam_close_session
1259 * and this will make PR_SET_PDEATHSIG work in most cases.
1260 * If this fails, ignore the error - but expect sd-pam threads
1261 * to fail to exit normally */
1262
1263 r = maybe_setgroups(0, NULL);
1264 if (r < 0)
1265 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1266 if (setresgid(gid, gid, gid) < 0)
1267 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1268 if (setresuid(uid, uid, uid) < 0)
1269 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1270
1271 (void) ignore_signals(SIGPIPE, -1);
1272
1273 /* Wait until our parent died. This will only work if
1274 * the above setresuid() succeeds, otherwise the kernel
1275 * will not allow unprivileged parents kill their privileged
1276 * children this way. We rely on the control groups kill logic
1277 * to do the rest for us. */
1278 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1279 goto child_finish;
1280
1281 /* Tell the parent that our setup is done. This is especially
1282 * important regarding dropping privileges. Otherwise, unit
1283 * setup might race against our setresuid(2) call.
1284 *
1285 * If the parent aborted, we'll detect this below, hence ignore
1286 * return failure here. */
1287 (void) barrier_place(&barrier);
1288
1289 /* Check if our parent process might already have died? */
1290 if (getppid() == parent_pid) {
1291 sigset_t ss;
1292
1293 assert_se(sigemptyset(&ss) >= 0);
1294 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1295
1296 for (;;) {
1297 if (sigwait(&ss, &sig) < 0) {
1298 if (errno == EINTR)
1299 continue;
1300
1301 goto child_finish;
1302 }
1303
1304 assert(sig == SIGTERM);
1305 break;
1306 }
1307 }
1308
1309 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1310 if (pam_code != PAM_SUCCESS)
1311 goto child_finish;
1312
1313 /* If our parent died we'll end the session */
1314 if (getppid() != parent_pid) {
1315 pam_code = pam_close_session(handle, flags);
1316 if (pam_code != PAM_SUCCESS)
1317 goto child_finish;
1318 }
1319
1320 ret = 0;
1321
1322 child_finish:
1323 pam_end(handle, pam_code | flags);
1324 _exit(ret);
1325 }
1326
1327 barrier_set_role(&barrier, BARRIER_PARENT);
1328
1329 /* If the child was forked off successfully it will do all the
1330 * cleanups, so forget about the handle here. */
1331 handle = NULL;
1332
1333 /* Unblock SIGTERM again in the parent */
1334 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1335
1336 /* We close the log explicitly here, since the PAM modules
1337 * might have opened it, but we don't want this fd around. */
1338 closelog();
1339
1340 /* Synchronously wait for the child to initialize. We don't care for
1341 * errors as we cannot recover. However, warn loudly if it happens. */
1342 if (!barrier_place_and_sync(&barrier))
1343 log_error("PAM initialization failed");
1344
1345 return strv_free_and_replace(*env, e);
1346
1347 fail:
1348 if (pam_code != PAM_SUCCESS) {
1349 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1350 r = -EPERM; /* PAM errors do not map to errno */
1351 } else
1352 log_error_errno(r, "PAM failed: %m");
1353
1354 if (handle) {
1355 if (close_session)
1356 pam_code = pam_close_session(handle, flags);
1357
1358 pam_end(handle, pam_code | flags);
1359 }
1360
1361 strv_free(e);
1362 closelog();
1363
1364 return r;
1365 #else
1366 return 0;
1367 #endif
1368 }
1369
1370 static void rename_process_from_path(const char *path) {
1371 char process_name[11];
1372 const char *p;
1373 size_t l;
1374
1375 /* This resulting string must fit in 10 chars (i.e. the length
1376 * of "/sbin/init") to look pretty in /bin/ps */
1377
1378 p = basename(path);
1379 if (isempty(p)) {
1380 rename_process("(...)");
1381 return;
1382 }
1383
1384 l = strlen(p);
1385 if (l > 8) {
1386 /* The end of the process name is usually more
1387 * interesting, since the first bit might just be
1388 * "systemd-" */
1389 p = p + l - 8;
1390 l = 8;
1391 }
1392
1393 process_name[0] = '(';
1394 memcpy(process_name+1, p, l);
1395 process_name[1+l] = ')';
1396 process_name[1+l+1] = 0;
1397
1398 rename_process(process_name);
1399 }
1400
1401 static bool context_has_address_families(const ExecContext *c) {
1402 assert(c);
1403
1404 return c->address_families_allow_list ||
1405 !set_isempty(c->address_families);
1406 }
1407
1408 static bool context_has_syscall_filters(const ExecContext *c) {
1409 assert(c);
1410
1411 return c->syscall_allow_list ||
1412 !hashmap_isempty(c->syscall_filter);
1413 }
1414
1415 static bool context_has_syscall_logs(const ExecContext *c) {
1416 assert(c);
1417
1418 return c->syscall_log_allow_list ||
1419 !hashmap_isempty(c->syscall_log);
1420 }
1421
1422 static bool context_has_no_new_privileges(const ExecContext *c) {
1423 assert(c);
1424
1425 if (c->no_new_privileges)
1426 return true;
1427
1428 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1429 return false;
1430
1431 /* We need NNP if we have any form of seccomp and are unprivileged */
1432 return context_has_address_families(c) ||
1433 c->memory_deny_write_execute ||
1434 c->restrict_realtime ||
1435 c->restrict_suid_sgid ||
1436 exec_context_restrict_namespaces_set(c) ||
1437 c->protect_clock ||
1438 c->protect_kernel_tunables ||
1439 c->protect_kernel_modules ||
1440 c->protect_kernel_logs ||
1441 c->private_devices ||
1442 context_has_syscall_filters(c) ||
1443 context_has_syscall_logs(c) ||
1444 !set_isempty(c->syscall_archs) ||
1445 c->lock_personality ||
1446 c->protect_hostname;
1447 }
1448
1449 static bool exec_context_has_credentials(const ExecContext *context) {
1450
1451 assert(context);
1452
1453 return !hashmap_isempty(context->set_credentials) ||
1454 context->load_credentials;
1455 }
1456
1457 #if HAVE_SECCOMP
1458
1459 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1460
1461 if (is_seccomp_available())
1462 return false;
1463
1464 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1465 return true;
1466 }
1467
1468 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1469 uint32_t negative_action, default_action, action;
1470 int r;
1471
1472 assert(u);
1473 assert(c);
1474
1475 if (!context_has_syscall_filters(c))
1476 return 0;
1477
1478 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1479 return 0;
1480
1481 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1482
1483 if (c->syscall_allow_list) {
1484 default_action = negative_action;
1485 action = SCMP_ACT_ALLOW;
1486 } else {
1487 default_action = SCMP_ACT_ALLOW;
1488 action = negative_action;
1489 }
1490
1491 if (needs_ambient_hack) {
1492 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1493 if (r < 0)
1494 return r;
1495 }
1496
1497 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1498 }
1499
1500 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1501 #ifdef SCMP_ACT_LOG
1502 uint32_t default_action, action;
1503 #endif
1504
1505 assert(u);
1506 assert(c);
1507
1508 if (!context_has_syscall_logs(c))
1509 return 0;
1510
1511 #ifdef SCMP_ACT_LOG
1512 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1513 return 0;
1514
1515 if (c->syscall_log_allow_list) {
1516 /* Log nothing but the ones listed */
1517 default_action = SCMP_ACT_ALLOW;
1518 action = SCMP_ACT_LOG;
1519 } else {
1520 /* Log everything but the ones listed */
1521 default_action = SCMP_ACT_LOG;
1522 action = SCMP_ACT_ALLOW;
1523 }
1524
1525 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1526 #else
1527 /* old libseccomp */
1528 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1529 return 0;
1530 #endif
1531 }
1532
1533 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1534 assert(u);
1535 assert(c);
1536
1537 if (set_isempty(c->syscall_archs))
1538 return 0;
1539
1540 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1541 return 0;
1542
1543 return seccomp_restrict_archs(c->syscall_archs);
1544 }
1545
1546 static int apply_address_families(const Unit* u, const ExecContext *c) {
1547 assert(u);
1548 assert(c);
1549
1550 if (!context_has_address_families(c))
1551 return 0;
1552
1553 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1554 return 0;
1555
1556 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1557 }
1558
1559 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1560 assert(u);
1561 assert(c);
1562
1563 if (!c->memory_deny_write_execute)
1564 return 0;
1565
1566 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1567 return 0;
1568
1569 return seccomp_memory_deny_write_execute();
1570 }
1571
1572 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1573 assert(u);
1574 assert(c);
1575
1576 if (!c->restrict_realtime)
1577 return 0;
1578
1579 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1580 return 0;
1581
1582 return seccomp_restrict_realtime();
1583 }
1584
1585 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1586 assert(u);
1587 assert(c);
1588
1589 if (!c->restrict_suid_sgid)
1590 return 0;
1591
1592 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1593 return 0;
1594
1595 return seccomp_restrict_suid_sgid();
1596 }
1597
1598 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1599 assert(u);
1600 assert(c);
1601
1602 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1603 * let's protect even those systems where this is left on in the kernel. */
1604
1605 if (!c->protect_kernel_tunables)
1606 return 0;
1607
1608 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1609 return 0;
1610
1611 return seccomp_protect_sysctl();
1612 }
1613
1614 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1615 assert(u);
1616 assert(c);
1617
1618 /* Turn off module syscalls on ProtectKernelModules=yes */
1619
1620 if (!c->protect_kernel_modules)
1621 return 0;
1622
1623 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1624 return 0;
1625
1626 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1627 }
1628
1629 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1630 assert(u);
1631 assert(c);
1632
1633 if (!c->protect_kernel_logs)
1634 return 0;
1635
1636 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1637 return 0;
1638
1639 return seccomp_protect_syslog();
1640 }
1641
1642 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1643 assert(u);
1644 assert(c);
1645
1646 if (!c->protect_clock)
1647 return 0;
1648
1649 if (skip_seccomp_unavailable(u, "ProtectClock="))
1650 return 0;
1651
1652 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1653 }
1654
1655 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1656 assert(u);
1657 assert(c);
1658
1659 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1660
1661 if (!c->private_devices)
1662 return 0;
1663
1664 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1665 return 0;
1666
1667 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1668 }
1669
1670 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1671 assert(u);
1672 assert(c);
1673
1674 if (!exec_context_restrict_namespaces_set(c))
1675 return 0;
1676
1677 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1678 return 0;
1679
1680 return seccomp_restrict_namespaces(c->restrict_namespaces);
1681 }
1682
1683 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1684 unsigned long personality;
1685 int r;
1686
1687 assert(u);
1688 assert(c);
1689
1690 if (!c->lock_personality)
1691 return 0;
1692
1693 if (skip_seccomp_unavailable(u, "LockPersonality="))
1694 return 0;
1695
1696 personality = c->personality;
1697
1698 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1699 if (personality == PERSONALITY_INVALID) {
1700
1701 r = opinionated_personality(&personality);
1702 if (r < 0)
1703 return r;
1704 }
1705
1706 return seccomp_lock_personality(personality);
1707 }
1708
1709 #endif
1710
1711 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1712 assert(u);
1713 assert(c);
1714
1715 if (!c->protect_hostname)
1716 return 0;
1717
1718 if (ns_type_supported(NAMESPACE_UTS)) {
1719 if (unshare(CLONE_NEWUTS) < 0) {
1720 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1721 *ret_exit_status = EXIT_NAMESPACE;
1722 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1723 }
1724
1725 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1726 }
1727 } else
1728 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1729
1730 #if HAVE_SECCOMP
1731 int r;
1732
1733 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1734 return 0;
1735
1736 r = seccomp_protect_hostname();
1737 if (r < 0) {
1738 *ret_exit_status = EXIT_SECCOMP;
1739 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1740 }
1741 #endif
1742
1743 return 0;
1744 }
1745
1746 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1747 assert(idle_pipe);
1748
1749 idle_pipe[1] = safe_close(idle_pipe[1]);
1750 idle_pipe[2] = safe_close(idle_pipe[2]);
1751
1752 if (idle_pipe[0] >= 0) {
1753 int r;
1754
1755 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1756
1757 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1758 ssize_t n;
1759
1760 /* Signal systemd that we are bored and want to continue. */
1761 n = write(idle_pipe[3], "x", 1);
1762 if (n > 0)
1763 /* Wait for systemd to react to the signal above. */
1764 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1765 }
1766
1767 idle_pipe[0] = safe_close(idle_pipe[0]);
1768
1769 }
1770
1771 idle_pipe[3] = safe_close(idle_pipe[3]);
1772 }
1773
1774 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1775
1776 static int build_environment(
1777 const Unit *u,
1778 const ExecContext *c,
1779 const ExecParameters *p,
1780 size_t n_fds,
1781 const char *home,
1782 const char *username,
1783 const char *shell,
1784 dev_t journal_stream_dev,
1785 ino_t journal_stream_ino,
1786 char ***ret) {
1787
1788 _cleanup_strv_free_ char **our_env = NULL;
1789 size_t n_env = 0;
1790 char *x;
1791
1792 assert(u);
1793 assert(c);
1794 assert(p);
1795 assert(ret);
1796
1797 #define N_ENV_VARS 16
1798 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1799 if (!our_env)
1800 return -ENOMEM;
1801
1802 if (n_fds > 0) {
1803 _cleanup_free_ char *joined = NULL;
1804
1805 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1806 return -ENOMEM;
1807 our_env[n_env++] = x;
1808
1809 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1810 return -ENOMEM;
1811 our_env[n_env++] = x;
1812
1813 joined = strv_join(p->fd_names, ":");
1814 if (!joined)
1815 return -ENOMEM;
1816
1817 x = strjoin("LISTEN_FDNAMES=", joined);
1818 if (!x)
1819 return -ENOMEM;
1820 our_env[n_env++] = x;
1821 }
1822
1823 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1824 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1825 return -ENOMEM;
1826 our_env[n_env++] = x;
1827
1828 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1829 return -ENOMEM;
1830 our_env[n_env++] = x;
1831 }
1832
1833 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1834 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1835 * check the database directly. */
1836 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1837 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1838 if (!x)
1839 return -ENOMEM;
1840 our_env[n_env++] = x;
1841 }
1842
1843 if (home) {
1844 x = strjoin("HOME=", home);
1845 if (!x)
1846 return -ENOMEM;
1847
1848 path_simplify(x + 5, true);
1849 our_env[n_env++] = x;
1850 }
1851
1852 if (username) {
1853 x = strjoin("LOGNAME=", username);
1854 if (!x)
1855 return -ENOMEM;
1856 our_env[n_env++] = x;
1857
1858 x = strjoin("USER=", username);
1859 if (!x)
1860 return -ENOMEM;
1861 our_env[n_env++] = x;
1862 }
1863
1864 if (shell) {
1865 x = strjoin("SHELL=", shell);
1866 if (!x)
1867 return -ENOMEM;
1868
1869 path_simplify(x + 6, true);
1870 our_env[n_env++] = x;
1871 }
1872
1873 if (!sd_id128_is_null(u->invocation_id)) {
1874 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1875 return -ENOMEM;
1876
1877 our_env[n_env++] = x;
1878 }
1879
1880 if (exec_context_needs_term(c)) {
1881 const char *tty_path, *term = NULL;
1882
1883 tty_path = exec_context_tty_path(c);
1884
1885 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1886 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1887 * container manager passes to PID 1 ends up all the way in the console login shown. */
1888
1889 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1890 term = getenv("TERM");
1891
1892 if (!term)
1893 term = default_term_for_tty(tty_path);
1894
1895 x = strjoin("TERM=", term);
1896 if (!x)
1897 return -ENOMEM;
1898 our_env[n_env++] = x;
1899 }
1900
1901 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1902 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1903 return -ENOMEM;
1904
1905 our_env[n_env++] = x;
1906 }
1907
1908 if (c->log_namespace) {
1909 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1910 if (!x)
1911 return -ENOMEM;
1912
1913 our_env[n_env++] = x;
1914 }
1915
1916 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1917 _cleanup_free_ char *pre = NULL, *joined = NULL;
1918 const char *n;
1919
1920 if (!p->prefix[t])
1921 continue;
1922
1923 if (strv_isempty(c->directories[t].paths))
1924 continue;
1925
1926 n = exec_directory_env_name_to_string(t);
1927 if (!n)
1928 continue;
1929
1930 pre = strjoin(p->prefix[t], "/");
1931 if (!pre)
1932 return -ENOMEM;
1933
1934 joined = strv_join_full(c->directories[t].paths, ":", pre, true);
1935 if (!joined)
1936 return -ENOMEM;
1937
1938 x = strjoin(n, "=", joined);
1939 if (!x)
1940 return -ENOMEM;
1941
1942 our_env[n_env++] = x;
1943 }
1944
1945 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1946 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1947 if (!x)
1948 return -ENOMEM;
1949
1950 our_env[n_env++] = x;
1951 }
1952
1953 our_env[n_env++] = NULL;
1954 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1955 #undef N_ENV_VARS
1956
1957 *ret = TAKE_PTR(our_env);
1958
1959 return 0;
1960 }
1961
1962 static int build_pass_environment(const ExecContext *c, char ***ret) {
1963 _cleanup_strv_free_ char **pass_env = NULL;
1964 size_t n_env = 0, n_bufsize = 0;
1965 char **i;
1966
1967 STRV_FOREACH(i, c->pass_environment) {
1968 _cleanup_free_ char *x = NULL;
1969 char *v;
1970
1971 v = getenv(*i);
1972 if (!v)
1973 continue;
1974 x = strjoin(*i, "=", v);
1975 if (!x)
1976 return -ENOMEM;
1977
1978 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1979 return -ENOMEM;
1980
1981 pass_env[n_env++] = TAKE_PTR(x);
1982 pass_env[n_env] = NULL;
1983 }
1984
1985 *ret = TAKE_PTR(pass_env);
1986
1987 return 0;
1988 }
1989
1990 bool exec_needs_mount_namespace(
1991 const ExecContext *context,
1992 const ExecParameters *params,
1993 const ExecRuntime *runtime) {
1994
1995 assert(context);
1996
1997 if (context->root_image)
1998 return true;
1999
2000 if (!strv_isempty(context->read_write_paths) ||
2001 !strv_isempty(context->read_only_paths) ||
2002 !strv_isempty(context->inaccessible_paths) ||
2003 !strv_isempty(context->exec_paths) ||
2004 !strv_isempty(context->no_exec_paths))
2005 return true;
2006
2007 if (context->n_bind_mounts > 0)
2008 return true;
2009
2010 if (context->n_temporary_filesystems > 0)
2011 return true;
2012
2013 if (context->n_mount_images > 0)
2014 return true;
2015
2016 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2017 return true;
2018
2019 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2020 return true;
2021
2022 if (context->private_devices ||
2023 context->private_mounts ||
2024 context->protect_system != PROTECT_SYSTEM_NO ||
2025 context->protect_home != PROTECT_HOME_NO ||
2026 context->protect_kernel_tunables ||
2027 context->protect_kernel_modules ||
2028 context->protect_kernel_logs ||
2029 context->protect_control_groups ||
2030 context->protect_proc != PROTECT_PROC_DEFAULT ||
2031 context->proc_subset != PROC_SUBSET_ALL)
2032 return true;
2033
2034 if (context->root_directory) {
2035 if (exec_context_get_effective_mount_apivfs(context))
2036 return true;
2037
2038 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2039 if (params && !params->prefix[t])
2040 continue;
2041
2042 if (!strv_isempty(context->directories[t].paths))
2043 return true;
2044 }
2045 }
2046
2047 if (context->dynamic_user &&
2048 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
2049 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
2050 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
2051 return true;
2052
2053 if (context->log_namespace)
2054 return true;
2055
2056 return false;
2057 }
2058
2059 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2060 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2061 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
2062 _cleanup_close_ int unshare_ready_fd = -1;
2063 _cleanup_(sigkill_waitp) pid_t pid = 0;
2064 uint64_t c = 1;
2065 ssize_t n;
2066 int r;
2067
2068 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2069 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2070 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2071 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2072 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2073 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2074 * continues execution normally.
2075 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2076 * does not need CAP_SETUID to write the single line mapping to itself. */
2077
2078 /* Can only set up multiple mappings with CAP_SETUID. */
2079 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2080 r = asprintf(&uid_map,
2081 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2082 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2083 ouid, ouid, uid, uid);
2084 else
2085 r = asprintf(&uid_map,
2086 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2087 ouid, ouid);
2088
2089 if (r < 0)
2090 return -ENOMEM;
2091
2092 /* Can only set up multiple mappings with CAP_SETGID. */
2093 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2094 r = asprintf(&gid_map,
2095 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2096 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2097 ogid, ogid, gid, gid);
2098 else
2099 r = asprintf(&gid_map,
2100 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2101 ogid, ogid);
2102
2103 if (r < 0)
2104 return -ENOMEM;
2105
2106 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2107 * namespace. */
2108 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2109 if (unshare_ready_fd < 0)
2110 return -errno;
2111
2112 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2113 * failed. */
2114 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2115 return -errno;
2116
2117 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2118 if (r < 0)
2119 return r;
2120 if (r == 0) {
2121 _cleanup_close_ int fd = -1;
2122 const char *a;
2123 pid_t ppid;
2124
2125 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2126 * here, after the parent opened its own user namespace. */
2127
2128 ppid = getppid();
2129 errno_pipe[0] = safe_close(errno_pipe[0]);
2130
2131 /* Wait until the parent unshared the user namespace */
2132 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2133 r = -errno;
2134 goto child_fail;
2135 }
2136
2137 /* Disable the setgroups() system call in the child user namespace, for good. */
2138 a = procfs_file_alloca(ppid, "setgroups");
2139 fd = open(a, O_WRONLY|O_CLOEXEC);
2140 if (fd < 0) {
2141 if (errno != ENOENT) {
2142 r = -errno;
2143 goto child_fail;
2144 }
2145
2146 /* If the file is missing the kernel is too old, let's continue anyway. */
2147 } else {
2148 if (write(fd, "deny\n", 5) < 0) {
2149 r = -errno;
2150 goto child_fail;
2151 }
2152
2153 fd = safe_close(fd);
2154 }
2155
2156 /* First write the GID map */
2157 a = procfs_file_alloca(ppid, "gid_map");
2158 fd = open(a, O_WRONLY|O_CLOEXEC);
2159 if (fd < 0) {
2160 r = -errno;
2161 goto child_fail;
2162 }
2163 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2164 r = -errno;
2165 goto child_fail;
2166 }
2167 fd = safe_close(fd);
2168
2169 /* The write the UID map */
2170 a = procfs_file_alloca(ppid, "uid_map");
2171 fd = open(a, O_WRONLY|O_CLOEXEC);
2172 if (fd < 0) {
2173 r = -errno;
2174 goto child_fail;
2175 }
2176 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2177 r = -errno;
2178 goto child_fail;
2179 }
2180
2181 _exit(EXIT_SUCCESS);
2182
2183 child_fail:
2184 (void) write(errno_pipe[1], &r, sizeof(r));
2185 _exit(EXIT_FAILURE);
2186 }
2187
2188 errno_pipe[1] = safe_close(errno_pipe[1]);
2189
2190 if (unshare(CLONE_NEWUSER) < 0)
2191 return -errno;
2192
2193 /* Let the child know that the namespace is ready now */
2194 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2195 return -errno;
2196
2197 /* Try to read an error code from the child */
2198 n = read(errno_pipe[0], &r, sizeof(r));
2199 if (n < 0)
2200 return -errno;
2201 if (n == sizeof(r)) { /* an error code was sent to us */
2202 if (r < 0)
2203 return r;
2204 return -EIO;
2205 }
2206 if (n != 0) /* on success we should have read 0 bytes */
2207 return -EIO;
2208
2209 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2210 pid = 0;
2211 if (r < 0)
2212 return r;
2213 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2214 return -EIO;
2215
2216 return 0;
2217 }
2218
2219 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2220 if (!context->dynamic_user)
2221 return false;
2222
2223 if (type == EXEC_DIRECTORY_CONFIGURATION)
2224 return false;
2225
2226 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2227 return false;
2228
2229 return true;
2230 }
2231
2232 static int setup_exec_directory(
2233 const ExecContext *context,
2234 const ExecParameters *params,
2235 uid_t uid,
2236 gid_t gid,
2237 ExecDirectoryType type,
2238 int *exit_status) {
2239
2240 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2241 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2242 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2243 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2244 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2245 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2246 };
2247 char **rt;
2248 int r;
2249
2250 assert(context);
2251 assert(params);
2252 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2253 assert(exit_status);
2254
2255 if (!params->prefix[type])
2256 return 0;
2257
2258 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2259 if (!uid_is_valid(uid))
2260 uid = 0;
2261 if (!gid_is_valid(gid))
2262 gid = 0;
2263 }
2264
2265 STRV_FOREACH(rt, context->directories[type].paths) {
2266 _cleanup_free_ char *p = NULL, *pp = NULL;
2267
2268 p = path_join(params->prefix[type], *rt);
2269 if (!p) {
2270 r = -ENOMEM;
2271 goto fail;
2272 }
2273
2274 r = mkdir_parents_label(p, 0755);
2275 if (r < 0)
2276 goto fail;
2277
2278 if (exec_directory_is_private(context, type)) {
2279 _cleanup_free_ char *private_root = NULL;
2280
2281 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2282 * case we want to avoid leaving a directory around fully accessible that is owned by
2283 * a dynamic user whose UID is later on reused. To lock this down we use the same
2284 * trick used by container managers to prohibit host users to get access to files of
2285 * the same UID in containers: we place everything inside a directory that has an
2286 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2287 * for unprivileged host code. We then use fs namespacing to make this directory
2288 * permeable for the service itself.
2289 *
2290 * Specifically: for a service which wants a special directory "foo/" we first create
2291 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2292 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2293 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2294 * unprivileged host users can't look into it. Inside of the namespace of the unit
2295 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2296 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2297 * for the service and making sure it only gets access to the dirs it needs but no
2298 * others. Tricky? Yes, absolutely, but it works!
2299 *
2300 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2301 * to be owned by the service itself.
2302 *
2303 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2304 * for sharing files or sockets with other services. */
2305
2306 private_root = path_join(params->prefix[type], "private");
2307 if (!private_root) {
2308 r = -ENOMEM;
2309 goto fail;
2310 }
2311
2312 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2313 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2314 if (r < 0)
2315 goto fail;
2316
2317 pp = path_join(private_root, *rt);
2318 if (!pp) {
2319 r = -ENOMEM;
2320 goto fail;
2321 }
2322
2323 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2324 r = mkdir_parents_label(pp, 0755);
2325 if (r < 0)
2326 goto fail;
2327
2328 if (is_dir(p, false) > 0 &&
2329 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2330
2331 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2332 * it over. Most likely the service has been upgraded from one that didn't use
2333 * DynamicUser=1, to one that does. */
2334
2335 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2336 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2337 exec_directory_type_to_string(type), p, pp);
2338
2339 if (rename(p, pp) < 0) {
2340 r = -errno;
2341 goto fail;
2342 }
2343 } else {
2344 /* Otherwise, create the actual directory for the service */
2345
2346 r = mkdir_label(pp, context->directories[type].mode);
2347 if (r < 0 && r != -EEXIST)
2348 goto fail;
2349 }
2350
2351 /* And link it up from the original place */
2352 r = symlink_idempotent(pp, p, true);
2353 if (r < 0)
2354 goto fail;
2355
2356 } else {
2357 _cleanup_free_ char *target = NULL;
2358
2359 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2360 readlink_and_make_absolute(p, &target) >= 0) {
2361 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2362
2363 /* This already exists and is a symlink? Interesting. Maybe it's one created
2364 * by DynamicUser=1 (see above)?
2365 *
2366 * We do this for all directory types except for ConfigurationDirectory=,
2367 * since they all support the private/ symlink logic at least in some
2368 * configurations, see above. */
2369
2370 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2371 if (r < 0)
2372 goto fail;
2373
2374 q = path_join(params->prefix[type], "private", *rt);
2375 if (!q) {
2376 r = -ENOMEM;
2377 goto fail;
2378 }
2379
2380 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2381 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2382 if (r < 0)
2383 goto fail;
2384
2385 if (path_equal(q_resolved, target_resolved)) {
2386
2387 /* Hmm, apparently DynamicUser= was once turned on for this service,
2388 * but is no longer. Let's move the directory back up. */
2389
2390 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2391 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2392 exec_directory_type_to_string(type), q, p);
2393
2394 if (unlink(p) < 0) {
2395 r = -errno;
2396 goto fail;
2397 }
2398
2399 if (rename(q, p) < 0) {
2400 r = -errno;
2401 goto fail;
2402 }
2403 }
2404 }
2405
2406 r = mkdir_label(p, context->directories[type].mode);
2407 if (r < 0) {
2408 if (r != -EEXIST)
2409 goto fail;
2410
2411 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2412 struct stat st;
2413
2414 /* Don't change the owner/access mode of the configuration directory,
2415 * as in the common case it is not written to by a service, and shall
2416 * not be writable. */
2417
2418 if (stat(p, &st) < 0) {
2419 r = -errno;
2420 goto fail;
2421 }
2422
2423 /* Still complain if the access mode doesn't match */
2424 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2425 log_warning("%s \'%s\' already exists but the mode is different. "
2426 "(File system: %o %sMode: %o)",
2427 exec_directory_type_to_string(type), *rt,
2428 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2429
2430 continue;
2431 }
2432 }
2433 }
2434
2435 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2436 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2437 * current UID/GID ownership.) */
2438 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2439 if (r < 0)
2440 goto fail;
2441
2442 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2443 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2444 * assignments to exist.*/
2445 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2446 if (r < 0)
2447 goto fail;
2448 }
2449
2450 return 0;
2451
2452 fail:
2453 *exit_status = exit_status_table[type];
2454 return r;
2455 }
2456
2457 static int write_credential(
2458 int dfd,
2459 const char *id,
2460 const void *data,
2461 size_t size,
2462 uid_t uid,
2463 bool ownership_ok) {
2464
2465 _cleanup_(unlink_and_freep) char *tmp = NULL;
2466 _cleanup_close_ int fd = -1;
2467 int r;
2468
2469 r = tempfn_random_child("", "cred", &tmp);
2470 if (r < 0)
2471 return r;
2472
2473 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2474 if (fd < 0) {
2475 tmp = mfree(tmp);
2476 return -errno;
2477 }
2478
2479 r = loop_write(fd, data, size, /* do_pool = */ false);
2480 if (r < 0)
2481 return r;
2482
2483 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2484 return -errno;
2485
2486 if (uid_is_valid(uid) && uid != getuid()) {
2487 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2488 if (r < 0) {
2489 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2490 return r;
2491
2492 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2493 * to express: that the user gets read access and nothing
2494 * else. But if the backing fs can't support that (e.g. ramfs)
2495 * then we can use file ownership instead. But that's only safe if
2496 * we can then re-mount the whole thing read-only, so that the
2497 * user can no longer chmod() the file to gain write access. */
2498 return r;
2499
2500 if (fchown(fd, uid, (gid_t) -1) < 0)
2501 return -errno;
2502 }
2503 }
2504
2505 if (renameat(dfd, tmp, dfd, id) < 0)
2506 return -errno;
2507
2508 tmp = mfree(tmp);
2509 return 0;
2510 }
2511
2512 #define CREDENTIALS_BYTES_MAX (1024LU * 1024LU) /* Refuse to pass more than 1M, after all this is unswappable memory */
2513
2514 static int acquire_credentials(
2515 const ExecContext *context,
2516 const ExecParameters *params,
2517 const char *unit,
2518 const char *p,
2519 uid_t uid,
2520 bool ownership_ok) {
2521
2522 uint64_t left = CREDENTIALS_BYTES_MAX;
2523 _cleanup_close_ int dfd = -1;
2524 ExecSetCredential *sc;
2525 char **id, **fn;
2526 int r;
2527
2528 assert(context);
2529 assert(p);
2530
2531 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2532 if (dfd < 0)
2533 return -errno;
2534
2535 /* First we use the literally specified credentials. Note that they might be overridden again below,
2536 * and thus act as a "default" if the same credential is specified multiple times */
2537 HASHMAP_FOREACH(sc, context->set_credentials) {
2538 size_t add;
2539
2540 add = strlen(sc->id) + sc->size;
2541 if (add > left)
2542 return -E2BIG;
2543
2544 r = write_credential(dfd, sc->id, sc->data, sc->size, uid, ownership_ok);
2545 if (r < 0)
2546 return r;
2547
2548 left -= add;
2549 }
2550
2551 /* Then, load credential off disk (or acquire via AF_UNIX socket) */
2552 STRV_FOREACH_PAIR(id, fn, context->load_credentials) {
2553 ReadFullFileFlags flags = READ_FULL_FILE_SECURE;
2554 _cleanup_(erase_and_freep) char *data = NULL;
2555 _cleanup_free_ char *j = NULL, *bindname = NULL;
2556 const char *source;
2557 size_t size, add;
2558
2559 if (path_is_absolute(*fn)) {
2560 /* If this is an absolute path, read the data directly from it, and support AF_UNIX sockets */
2561 source = *fn;
2562 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2563
2564 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2565 * via the source socket address in case we read off an AF_UNIX socket. */
2566 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, *id) < 0)
2567 return -ENOMEM;
2568
2569 } else if (params->received_credentials) {
2570 /* If this is a relative path, take it relative to the credentials we received
2571 * ourselves. We don't support the AF_UNIX stuff in this mode, since we are operating
2572 * on a credential store, i.e. this is guaranteed to be regular files. */
2573 j = path_join(params->received_credentials, *fn);
2574 if (!j)
2575 return -ENOMEM;
2576
2577 source = j;
2578 } else
2579 source = NULL;
2580
2581
2582 if (source)
2583 r = read_full_file_full(AT_FDCWD, source, UINT64_MAX, SIZE_MAX, flags, bindname, &data, &size);
2584 else
2585 r = -ENOENT;
2586 if (r == -ENOENT &&
2587 faccessat(dfd, *id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) /* If the source file doesn't exist, but we already acquired the key otherwise, then don't fail */
2588 continue;
2589 if (r < 0)
2590 return r;
2591
2592 add = strlen(*id) + size;
2593 if (add > left)
2594 return -E2BIG;
2595
2596 r = write_credential(dfd, *id, data, size, uid, ownership_ok);
2597 if (r < 0)
2598 return r;
2599
2600 left -= add;
2601 }
2602
2603 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2604 return -errno;
2605
2606 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2607 * accessible */
2608
2609 if (uid_is_valid(uid) && uid != getuid()) {
2610 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2611 if (r < 0) {
2612 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2613 return r;
2614
2615 if (!ownership_ok)
2616 return r;
2617
2618 if (fchown(dfd, uid, (gid_t) -1) < 0)
2619 return -errno;
2620 }
2621 }
2622
2623 return 0;
2624 }
2625
2626 static int setup_credentials_internal(
2627 const ExecContext *context,
2628 const ExecParameters *params,
2629 const char *unit,
2630 const char *final, /* This is where the credential store shall eventually end up at */
2631 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2632 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2633 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2634 uid_t uid) {
2635
2636 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2637 * if we mounted something; false if we definitely can't mount anything */
2638 bool final_mounted;
2639 const char *where;
2640
2641 assert(context);
2642 assert(final);
2643 assert(workspace);
2644
2645 if (reuse_workspace) {
2646 r = path_is_mount_point(workspace, NULL, 0);
2647 if (r < 0)
2648 return r;
2649 if (r > 0)
2650 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
2651 else
2652 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
2653 } else
2654 workspace_mounted = -1; /* ditto */
2655
2656 r = path_is_mount_point(final, NULL, 0);
2657 if (r < 0)
2658 return r;
2659 if (r > 0) {
2660 /* If the final place already has something mounted, we use that. If the workspace also has
2661 * something mounted we assume it's actually the same mount (but with MS_RDONLY
2662 * different). */
2663 final_mounted = true;
2664
2665 if (workspace_mounted < 0) {
2666 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
2667 * the final version to the workspace, and make it writable, so that we can make
2668 * changes */
2669
2670 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2671 if (r < 0)
2672 return r;
2673
2674 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2675 if (r < 0)
2676 return r;
2677
2678 workspace_mounted = true;
2679 }
2680 } else
2681 final_mounted = false;
2682
2683 if (workspace_mounted < 0) {
2684 /* Nothing is mounted on the workspace yet, let's try to mount something now */
2685 for (int try = 0;; try++) {
2686
2687 if (try == 0) {
2688 /* Try "ramfs" first, since it's not swap backed */
2689 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
2690 if (r >= 0) {
2691 workspace_mounted = true;
2692 break;
2693 }
2694
2695 } else if (try == 1) {
2696 _cleanup_free_ char *opts = NULL;
2697
2698 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%lu", CREDENTIALS_BYTES_MAX) < 0)
2699 return -ENOMEM;
2700
2701 /* Fall back to "tmpfs" otherwise */
2702 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
2703 if (r >= 0) {
2704 workspace_mounted = true;
2705 break;
2706 }
2707
2708 } else {
2709 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
2710 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2711 if (r < 0) {
2712 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
2713 return r;
2714
2715 if (must_mount) /* If we it's not OK to use the plain directory
2716 * fallback, propagate all errors too */
2717 return r;
2718
2719 /* If we lack privileges to bind mount stuff, then let's gracefully
2720 * proceed for compat with container envs, and just use the final dir
2721 * as is. */
2722
2723 workspace_mounted = false;
2724 break;
2725 }
2726
2727 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
2728 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2729 if (r < 0)
2730 return r;
2731
2732 workspace_mounted = true;
2733 break;
2734 }
2735 }
2736 }
2737
2738 assert(!must_mount || workspace_mounted > 0);
2739 where = workspace_mounted ? workspace : final;
2740
2741 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
2742 if (r < 0)
2743 return r;
2744
2745 if (workspace_mounted) {
2746 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
2747 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2748 if (r < 0)
2749 return r;
2750
2751 /* And mount it to the final place, read-only */
2752 if (final_mounted)
2753 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
2754 else
2755 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
2756 if (r < 0)
2757 return r;
2758 } else {
2759 _cleanup_free_ char *parent = NULL;
2760
2761 /* If we do not have our own mount put used the plain directory fallback, then we need to
2762 * open access to the top-level credential directory and the per-service directory now */
2763
2764 parent = dirname_malloc(final);
2765 if (!parent)
2766 return -ENOMEM;
2767 if (chmod(parent, 0755) < 0)
2768 return -errno;
2769 }
2770
2771 return 0;
2772 }
2773
2774 static int setup_credentials(
2775 const ExecContext *context,
2776 const ExecParameters *params,
2777 const char *unit,
2778 uid_t uid) {
2779
2780 _cleanup_free_ char *p = NULL, *q = NULL;
2781 const char *i;
2782 int r;
2783
2784 assert(context);
2785 assert(params);
2786
2787 if (!exec_context_has_credentials(context))
2788 return 0;
2789
2790 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
2791 return -EINVAL;
2792
2793 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
2794 * and the subdir we mount over with a read-only file system readable by the service's user */
2795 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
2796 if (!q)
2797 return -ENOMEM;
2798
2799 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
2800 if (r < 0 && r != -EEXIST)
2801 return r;
2802
2803 p = path_join(q, unit);
2804 if (!p)
2805 return -ENOMEM;
2806
2807 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
2808 if (r < 0 && r != -EEXIST)
2809 return r;
2810
2811 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
2812 if (r < 0) {
2813 _cleanup_free_ char *t = NULL, *u = NULL;
2814
2815 /* If this is not a privilege or support issue then propagate the error */
2816 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2817 return r;
2818
2819 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
2820 * it into place, so that users can't access half-initialized credential stores. */
2821 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
2822 if (!t)
2823 return -ENOMEM;
2824
2825 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
2826 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
2827 * after it is fully set up */
2828 u = path_join(t, unit);
2829 if (!u)
2830 return -ENOMEM;
2831
2832 FOREACH_STRING(i, t, u) {
2833 r = mkdir_label(i, 0700);
2834 if (r < 0 && r != -EEXIST)
2835 return r;
2836 }
2837
2838 r = setup_credentials_internal(
2839 context,
2840 params,
2841 unit,
2842 p, /* final mount point */
2843 u, /* temporary workspace to overmount */
2844 true, /* reuse the workspace if it is already a mount */
2845 false, /* it's OK to fall back to a plain directory if we can't mount anything */
2846 uid);
2847
2848 (void) rmdir(u); /* remove the workspace again if we can. */
2849
2850 if (r < 0)
2851 return r;
2852
2853 } else if (r == 0) {
2854
2855 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
2856 * we can use the same directory for all cases, after turning off propagation. Question
2857 * though is: where do we turn off propagation exactly, and where do we place the workspace
2858 * directory? We need some place that is guaranteed to be a mount point in the host, and
2859 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
2860 * since we ultimately want to move the resulting file system there, i.e. we need propagation
2861 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
2862 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
2863 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
2864 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
2865 * propagation on the former, and then overmount the latter.
2866 *
2867 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
2868 * for this purpose, but there are few other candidates that work equally well for us, and
2869 * given that the we do this in a privately namespaced short-lived single-threaded process
2870 * that no one else sees this should be OK to do.*/
2871
2872 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
2873 if (r < 0)
2874 goto child_fail;
2875
2876 r = setup_credentials_internal(
2877 context,
2878 params,
2879 unit,
2880 p, /* final mount point */
2881 "/dev/shm", /* temporary workspace to overmount */
2882 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
2883 true, /* insist that something is mounted, do not allow fallback to plain directory */
2884 uid);
2885 if (r < 0)
2886 goto child_fail;
2887
2888 _exit(EXIT_SUCCESS);
2889
2890 child_fail:
2891 _exit(EXIT_FAILURE);
2892 }
2893
2894 return 0;
2895 }
2896
2897 #if ENABLE_SMACK
2898 static int setup_smack(
2899 const ExecContext *context,
2900 int executable_fd) {
2901 int r;
2902
2903 assert(context);
2904 assert(executable_fd >= 0);
2905
2906 if (context->smack_process_label) {
2907 r = mac_smack_apply_pid(0, context->smack_process_label);
2908 if (r < 0)
2909 return r;
2910 }
2911 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2912 else {
2913 _cleanup_free_ char *exec_label = NULL;
2914
2915 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
2916 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2917 return r;
2918
2919 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2920 if (r < 0)
2921 return r;
2922 }
2923 #endif
2924
2925 return 0;
2926 }
2927 #endif
2928
2929 static int compile_bind_mounts(
2930 const ExecContext *context,
2931 const ExecParameters *params,
2932 BindMount **ret_bind_mounts,
2933 size_t *ret_n_bind_mounts,
2934 char ***ret_empty_directories) {
2935
2936 _cleanup_strv_free_ char **empty_directories = NULL;
2937 BindMount *bind_mounts;
2938 size_t n, h = 0;
2939 int r;
2940
2941 assert(context);
2942 assert(params);
2943 assert(ret_bind_mounts);
2944 assert(ret_n_bind_mounts);
2945 assert(ret_empty_directories);
2946
2947 n = context->n_bind_mounts;
2948 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2949 if (!params->prefix[t])
2950 continue;
2951
2952 n += strv_length(context->directories[t].paths);
2953 }
2954
2955 if (n <= 0) {
2956 *ret_bind_mounts = NULL;
2957 *ret_n_bind_mounts = 0;
2958 *ret_empty_directories = NULL;
2959 return 0;
2960 }
2961
2962 bind_mounts = new(BindMount, n);
2963 if (!bind_mounts)
2964 return -ENOMEM;
2965
2966 for (size_t i = 0; i < context->n_bind_mounts; i++) {
2967 BindMount *item = context->bind_mounts + i;
2968 char *s, *d;
2969
2970 s = strdup(item->source);
2971 if (!s) {
2972 r = -ENOMEM;
2973 goto finish;
2974 }
2975
2976 d = strdup(item->destination);
2977 if (!d) {
2978 free(s);
2979 r = -ENOMEM;
2980 goto finish;
2981 }
2982
2983 bind_mounts[h++] = (BindMount) {
2984 .source = s,
2985 .destination = d,
2986 .read_only = item->read_only,
2987 .recursive = item->recursive,
2988 .ignore_enoent = item->ignore_enoent,
2989 };
2990 }
2991
2992 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2993 char **suffix;
2994
2995 if (!params->prefix[t])
2996 continue;
2997
2998 if (strv_isempty(context->directories[t].paths))
2999 continue;
3000
3001 if (exec_directory_is_private(context, t) &&
3002 !exec_context_with_rootfs(context)) {
3003 char *private_root;
3004
3005 /* So this is for a dynamic user, and we need to make sure the process can access its own
3006 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3007 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3008
3009 private_root = path_join(params->prefix[t], "private");
3010 if (!private_root) {
3011 r = -ENOMEM;
3012 goto finish;
3013 }
3014
3015 r = strv_consume(&empty_directories, private_root);
3016 if (r < 0)
3017 goto finish;
3018 }
3019
3020 STRV_FOREACH(suffix, context->directories[t].paths) {
3021 char *s, *d;
3022
3023 if (exec_directory_is_private(context, t))
3024 s = path_join(params->prefix[t], "private", *suffix);
3025 else
3026 s = path_join(params->prefix[t], *suffix);
3027 if (!s) {
3028 r = -ENOMEM;
3029 goto finish;
3030 }
3031
3032 if (exec_directory_is_private(context, t) &&
3033 exec_context_with_rootfs(context))
3034 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3035 * directory is not created on the root directory. So, let's bind-mount the directory
3036 * on the 'non-private' place. */
3037 d = path_join(params->prefix[t], *suffix);
3038 else
3039 d = strdup(s);
3040 if (!d) {
3041 free(s);
3042 r = -ENOMEM;
3043 goto finish;
3044 }
3045
3046 bind_mounts[h++] = (BindMount) {
3047 .source = s,
3048 .destination = d,
3049 .read_only = false,
3050 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3051 .recursive = true,
3052 .ignore_enoent = false,
3053 };
3054 }
3055 }
3056
3057 assert(h == n);
3058
3059 *ret_bind_mounts = bind_mounts;
3060 *ret_n_bind_mounts = n;
3061 *ret_empty_directories = TAKE_PTR(empty_directories);
3062
3063 return (int) n;
3064
3065 finish:
3066 bind_mount_free_many(bind_mounts, h);
3067 return r;
3068 }
3069
3070 static bool insist_on_sandboxing(
3071 const ExecContext *context,
3072 const char *root_dir,
3073 const char *root_image,
3074 const BindMount *bind_mounts,
3075 size_t n_bind_mounts) {
3076
3077 assert(context);
3078 assert(n_bind_mounts == 0 || bind_mounts);
3079
3080 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3081 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3082 * rearrange stuff in a way we cannot ignore gracefully. */
3083
3084 if (context->n_temporary_filesystems > 0)
3085 return true;
3086
3087 if (root_dir || root_image)
3088 return true;
3089
3090 if (context->n_mount_images > 0)
3091 return true;
3092
3093 if (context->dynamic_user)
3094 return true;
3095
3096 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3097 * essential. */
3098 for (size_t i = 0; i < n_bind_mounts; i++)
3099 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3100 return true;
3101
3102 if (context->log_namespace)
3103 return true;
3104
3105 return false;
3106 }
3107
3108 static int apply_mount_namespace(
3109 const Unit *u,
3110 ExecCommandFlags command_flags,
3111 const ExecContext *context,
3112 const ExecParameters *params,
3113 const ExecRuntime *runtime,
3114 char **error_path) {
3115
3116 _cleanup_strv_free_ char **empty_directories = NULL;
3117 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3118 const char *root_dir = NULL, *root_image = NULL;
3119 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL;
3120 NamespaceInfo ns_info;
3121 bool needs_sandboxing;
3122 BindMount *bind_mounts = NULL;
3123 size_t n_bind_mounts = 0;
3124 int r;
3125
3126 assert(context);
3127
3128 if (params->flags & EXEC_APPLY_CHROOT) {
3129 root_image = context->root_image;
3130
3131 if (!root_image)
3132 root_dir = context->root_directory;
3133 }
3134
3135 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3136 if (r < 0)
3137 return r;
3138
3139 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3140 if (needs_sandboxing) {
3141 /* The runtime struct only contains the parent of the private /tmp,
3142 * which is non-accessible to world users. Inside of it there's a /tmp
3143 * that is sticky, and that's the one we want to use here.
3144 * This does not apply when we are using /run/systemd/empty as fallback. */
3145
3146 if (context->private_tmp && runtime) {
3147 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3148 tmp_dir = runtime->tmp_dir;
3149 else if (runtime->tmp_dir)
3150 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3151
3152 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3153 var_tmp_dir = runtime->var_tmp_dir;
3154 else if (runtime->var_tmp_dir)
3155 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3156 }
3157
3158 ns_info = (NamespaceInfo) {
3159 .ignore_protect_paths = false,
3160 .private_dev = context->private_devices,
3161 .protect_control_groups = context->protect_control_groups,
3162 .protect_kernel_tunables = context->protect_kernel_tunables,
3163 .protect_kernel_modules = context->protect_kernel_modules,
3164 .protect_kernel_logs = context->protect_kernel_logs,
3165 .protect_hostname = context->protect_hostname,
3166 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3167 .private_mounts = context->private_mounts,
3168 .protect_home = context->protect_home,
3169 .protect_system = context->protect_system,
3170 .protect_proc = context->protect_proc,
3171 .proc_subset = context->proc_subset,
3172 };
3173 } else if (!context->dynamic_user && root_dir)
3174 /*
3175 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3176 * sandbox info, otherwise enforce it, don't ignore protected paths and
3177 * fail if we are enable to apply the sandbox inside the mount namespace.
3178 */
3179 ns_info = (NamespaceInfo) {
3180 .ignore_protect_paths = true,
3181 };
3182 else
3183 ns_info = (NamespaceInfo) {};
3184
3185 if (context->mount_flags == MS_SHARED)
3186 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3187
3188 if (exec_context_has_credentials(context) &&
3189 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3190 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3191 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3192 if (!creds_path) {
3193 r = -ENOMEM;
3194 goto finalize;
3195 }
3196 }
3197
3198 if (MANAGER_IS_SYSTEM(u->manager)) {
3199 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3200 if (!propagate_dir)
3201 return -ENOMEM;
3202 incoming_dir = strdup("/run/systemd/incoming");
3203 if (!incoming_dir)
3204 return -ENOMEM;
3205 }
3206
3207 r = setup_namespace(root_dir, root_image, context->root_image_options,
3208 &ns_info, context->read_write_paths,
3209 needs_sandboxing ? context->read_only_paths : NULL,
3210 needs_sandboxing ? context->inaccessible_paths : NULL,
3211 needs_sandboxing ? context->exec_paths : NULL,
3212 needs_sandboxing ? context->no_exec_paths : NULL,
3213 empty_directories,
3214 bind_mounts,
3215 n_bind_mounts,
3216 context->temporary_filesystems,
3217 context->n_temporary_filesystems,
3218 context->mount_images,
3219 context->n_mount_images,
3220 tmp_dir,
3221 var_tmp_dir,
3222 creds_path,
3223 context->log_namespace,
3224 context->mount_flags,
3225 context->root_hash, context->root_hash_size, context->root_hash_path,
3226 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3227 context->root_verity,
3228 propagate_dir,
3229 incoming_dir,
3230 root_dir || root_image ? params->notify_socket : NULL,
3231 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
3232 error_path);
3233
3234 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3235 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3236 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3237 * completely different execution environment. */
3238 if (r == -ENOANO) {
3239 if (insist_on_sandboxing(
3240 context,
3241 root_dir, root_image,
3242 bind_mounts,
3243 n_bind_mounts)) {
3244 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3245 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3246 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3247
3248 r = -EOPNOTSUPP;
3249 } else {
3250 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3251 r = 0;
3252 }
3253 }
3254
3255 finalize:
3256 bind_mount_free_many(bind_mounts, n_bind_mounts);
3257 return r;
3258 }
3259
3260 static int apply_working_directory(
3261 const ExecContext *context,
3262 const ExecParameters *params,
3263 const char *home,
3264 int *exit_status) {
3265
3266 const char *d, *wd;
3267
3268 assert(context);
3269 assert(exit_status);
3270
3271 if (context->working_directory_home) {
3272
3273 if (!home) {
3274 *exit_status = EXIT_CHDIR;
3275 return -ENXIO;
3276 }
3277
3278 wd = home;
3279
3280 } else
3281 wd = empty_to_root(context->working_directory);
3282
3283 if (params->flags & EXEC_APPLY_CHROOT)
3284 d = wd;
3285 else
3286 d = prefix_roota(context->root_directory, wd);
3287
3288 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3289 *exit_status = EXIT_CHDIR;
3290 return -errno;
3291 }
3292
3293 return 0;
3294 }
3295
3296 static int apply_root_directory(
3297 const ExecContext *context,
3298 const ExecParameters *params,
3299 const bool needs_mount_ns,
3300 int *exit_status) {
3301
3302 assert(context);
3303 assert(exit_status);
3304
3305 if (params->flags & EXEC_APPLY_CHROOT)
3306 if (!needs_mount_ns && context->root_directory)
3307 if (chroot(context->root_directory) < 0) {
3308 *exit_status = EXIT_CHROOT;
3309 return -errno;
3310 }
3311
3312 return 0;
3313 }
3314
3315 static int setup_keyring(
3316 const Unit *u,
3317 const ExecContext *context,
3318 const ExecParameters *p,
3319 uid_t uid, gid_t gid) {
3320
3321 key_serial_t keyring;
3322 int r = 0;
3323 uid_t saved_uid;
3324 gid_t saved_gid;
3325
3326 assert(u);
3327 assert(context);
3328 assert(p);
3329
3330 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3331 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3332 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3333 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3334 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3335 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3336
3337 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3338 return 0;
3339
3340 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3341 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3342 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3343 * & group is just as nasty as acquiring a reference to the user keyring. */
3344
3345 saved_uid = getuid();
3346 saved_gid = getgid();
3347
3348 if (gid_is_valid(gid) && gid != saved_gid) {
3349 if (setregid(gid, -1) < 0)
3350 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3351 }
3352
3353 if (uid_is_valid(uid) && uid != saved_uid) {
3354 if (setreuid(uid, -1) < 0) {
3355 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3356 goto out;
3357 }
3358 }
3359
3360 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3361 if (keyring == -1) {
3362 if (errno == ENOSYS)
3363 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3364 else if (ERRNO_IS_PRIVILEGE(errno))
3365 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3366 else if (errno == EDQUOT)
3367 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3368 else
3369 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3370
3371 goto out;
3372 }
3373
3374 /* When requested link the user keyring into the session keyring. */
3375 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3376
3377 if (keyctl(KEYCTL_LINK,
3378 KEY_SPEC_USER_KEYRING,
3379 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3380 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3381 goto out;
3382 }
3383 }
3384
3385 /* Restore uid/gid back */
3386 if (uid_is_valid(uid) && uid != saved_uid) {
3387 if (setreuid(saved_uid, -1) < 0) {
3388 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3389 goto out;
3390 }
3391 }
3392
3393 if (gid_is_valid(gid) && gid != saved_gid) {
3394 if (setregid(saved_gid, -1) < 0)
3395 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3396 }
3397
3398 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3399 if (!sd_id128_is_null(u->invocation_id)) {
3400 key_serial_t key;
3401
3402 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3403 if (key == -1)
3404 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3405 else {
3406 if (keyctl(KEYCTL_SETPERM, key,
3407 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3408 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3409 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3410 }
3411 }
3412
3413 out:
3414 /* Revert back uid & gid for the last time, and exit */
3415 /* no extra logging, as only the first already reported error matters */
3416 if (getuid() != saved_uid)
3417 (void) setreuid(saved_uid, -1);
3418
3419 if (getgid() != saved_gid)
3420 (void) setregid(saved_gid, -1);
3421
3422 return r;
3423 }
3424
3425 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3426 assert(array);
3427 assert(n);
3428 assert(pair);
3429
3430 if (pair[0] >= 0)
3431 array[(*n)++] = pair[0];
3432 if (pair[1] >= 0)
3433 array[(*n)++] = pair[1];
3434 }
3435
3436 static int close_remaining_fds(
3437 const ExecParameters *params,
3438 const ExecRuntime *runtime,
3439 const DynamicCreds *dcreds,
3440 int user_lookup_fd,
3441 int socket_fd,
3442 const int *fds, size_t n_fds) {
3443
3444 size_t n_dont_close = 0;
3445 int dont_close[n_fds + 12];
3446
3447 assert(params);
3448
3449 if (params->stdin_fd >= 0)
3450 dont_close[n_dont_close++] = params->stdin_fd;
3451 if (params->stdout_fd >= 0)
3452 dont_close[n_dont_close++] = params->stdout_fd;
3453 if (params->stderr_fd >= 0)
3454 dont_close[n_dont_close++] = params->stderr_fd;
3455
3456 if (socket_fd >= 0)
3457 dont_close[n_dont_close++] = socket_fd;
3458 if (n_fds > 0) {
3459 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3460 n_dont_close += n_fds;
3461 }
3462
3463 if (runtime)
3464 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3465
3466 if (dcreds) {
3467 if (dcreds->user)
3468 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3469 if (dcreds->group)
3470 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3471 }
3472
3473 if (user_lookup_fd >= 0)
3474 dont_close[n_dont_close++] = user_lookup_fd;
3475
3476 return close_all_fds(dont_close, n_dont_close);
3477 }
3478
3479 static int send_user_lookup(
3480 Unit *unit,
3481 int user_lookup_fd,
3482 uid_t uid,
3483 gid_t gid) {
3484
3485 assert(unit);
3486
3487 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3488 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3489 * specified. */
3490
3491 if (user_lookup_fd < 0)
3492 return 0;
3493
3494 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3495 return 0;
3496
3497 if (writev(user_lookup_fd,
3498 (struct iovec[]) {
3499 IOVEC_INIT(&uid, sizeof(uid)),
3500 IOVEC_INIT(&gid, sizeof(gid)),
3501 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3502 return -errno;
3503
3504 return 0;
3505 }
3506
3507 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3508 int r;
3509
3510 assert(c);
3511 assert(home);
3512 assert(buf);
3513
3514 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3515
3516 if (*home)
3517 return 0;
3518
3519 if (!c->working_directory_home)
3520 return 0;
3521
3522 r = get_home_dir(buf);
3523 if (r < 0)
3524 return r;
3525
3526 *home = *buf;
3527 return 1;
3528 }
3529
3530 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3531 _cleanup_strv_free_ char ** list = NULL;
3532 int r;
3533
3534 assert(c);
3535 assert(p);
3536 assert(ret);
3537
3538 assert(c->dynamic_user);
3539
3540 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3541 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3542 * directories. */
3543
3544 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3545 char **i;
3546
3547 if (t == EXEC_DIRECTORY_CONFIGURATION)
3548 continue;
3549
3550 if (!p->prefix[t])
3551 continue;
3552
3553 STRV_FOREACH(i, c->directories[t].paths) {
3554 char *e;
3555
3556 if (exec_directory_is_private(c, t))
3557 e = path_join(p->prefix[t], "private", *i);
3558 else
3559 e = path_join(p->prefix[t], *i);
3560 if (!e)
3561 return -ENOMEM;
3562
3563 r = strv_consume(&list, e);
3564 if (r < 0)
3565 return r;
3566 }
3567 }
3568
3569 *ret = TAKE_PTR(list);
3570
3571 return 0;
3572 }
3573
3574 static char *exec_command_line(char **argv);
3575
3576 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3577 bool using_subcgroup;
3578 char *p;
3579
3580 assert(params);
3581 assert(ret);
3582
3583 if (!params->cgroup_path)
3584 return -EINVAL;
3585
3586 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3587 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3588 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3589 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3590 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3591 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3592 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3593 * flag, which is only passed for the former statements, not for the latter. */
3594
3595 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3596 if (using_subcgroup)
3597 p = path_join(params->cgroup_path, ".control");
3598 else
3599 p = strdup(params->cgroup_path);
3600 if (!p)
3601 return -ENOMEM;
3602
3603 *ret = p;
3604 return using_subcgroup;
3605 }
3606
3607 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3608 _cleanup_(cpu_set_reset) CPUSet s = {};
3609 int r;
3610
3611 assert(c);
3612 assert(ret);
3613
3614 if (!c->numa_policy.nodes.set) {
3615 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3616 return 0;
3617 }
3618
3619 r = numa_to_cpu_set(&c->numa_policy, &s);
3620 if (r < 0)
3621 return r;
3622
3623 cpu_set_reset(ret);
3624
3625 return cpu_set_add_all(ret, &s);
3626 }
3627
3628 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3629 assert(c);
3630
3631 return c->cpu_affinity_from_numa;
3632 }
3633
3634 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
3635 int r;
3636
3637 assert(fds);
3638 assert(n_fds);
3639 assert(*n_fds < fds_size);
3640 assert(ret_fd);
3641
3642 if (fd < 0) {
3643 *ret_fd = -1;
3644 return 0;
3645 }
3646
3647 if (fd < 3 + (int) *n_fds) {
3648 /* Let's move the fd up, so that it's outside of the fd range we will use to store
3649 * the fds we pass to the process (or which are closed only during execve). */
3650
3651 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
3652 if (r < 0)
3653 return -errno;
3654
3655 CLOSE_AND_REPLACE(fd, r);
3656 }
3657
3658 *ret_fd = fds[*n_fds] = fd;
3659 (*n_fds) ++;
3660 return 1;
3661 }
3662
3663 static int exec_child(
3664 Unit *unit,
3665 const ExecCommand *command,
3666 const ExecContext *context,
3667 const ExecParameters *params,
3668 ExecRuntime *runtime,
3669 DynamicCreds *dcreds,
3670 int socket_fd,
3671 const int named_iofds[static 3],
3672 int *fds,
3673 size_t n_socket_fds,
3674 size_t n_storage_fds,
3675 char **files_env,
3676 int user_lookup_fd,
3677 int *exit_status) {
3678
3679 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3680 int r, ngids = 0, exec_fd;
3681 _cleanup_free_ gid_t *supplementary_gids = NULL;
3682 const char *username = NULL, *groupname = NULL;
3683 _cleanup_free_ char *home_buffer = NULL;
3684 const char *home = NULL, *shell = NULL;
3685 char **final_argv = NULL;
3686 dev_t journal_stream_dev = 0;
3687 ino_t journal_stream_ino = 0;
3688 bool userns_set_up = false;
3689 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3690 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3691 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3692 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3693 #if HAVE_SELINUX
3694 _cleanup_free_ char *mac_selinux_context_net = NULL;
3695 bool use_selinux = false;
3696 #endif
3697 #if ENABLE_SMACK
3698 bool use_smack = false;
3699 #endif
3700 #if HAVE_APPARMOR
3701 bool use_apparmor = false;
3702 #endif
3703 uid_t saved_uid = getuid();
3704 gid_t saved_gid = getgid();
3705 uid_t uid = UID_INVALID;
3706 gid_t gid = GID_INVALID;
3707 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
3708 n_keep_fds; /* total number of fds not to close */
3709 int secure_bits;
3710 _cleanup_free_ gid_t *gids_after_pam = NULL;
3711 int ngids_after_pam = 0;
3712
3713 assert(unit);
3714 assert(command);
3715 assert(context);
3716 assert(params);
3717 assert(exit_status);
3718
3719 rename_process_from_path(command->path);
3720
3721 /* We reset exactly these signals, since they are the
3722 * only ones we set to SIG_IGN in the main daemon. All
3723 * others we leave untouched because we set them to
3724 * SIG_DFL or a valid handler initially, both of which
3725 * will be demoted to SIG_DFL. */
3726 (void) default_signals(SIGNALS_CRASH_HANDLER,
3727 SIGNALS_IGNORE, -1);
3728
3729 if (context->ignore_sigpipe)
3730 (void) ignore_signals(SIGPIPE, -1);
3731
3732 r = reset_signal_mask();
3733 if (r < 0) {
3734 *exit_status = EXIT_SIGNAL_MASK;
3735 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3736 }
3737
3738 if (params->idle_pipe)
3739 do_idle_pipe_dance(params->idle_pipe);
3740
3741 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3742 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3743 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3744 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3745
3746 log_forget_fds();
3747 log_set_open_when_needed(true);
3748
3749 /* In case anything used libc syslog(), close this here, too */
3750 closelog();
3751
3752 int keep_fds[n_fds + 2];
3753 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
3754 n_keep_fds = n_fds;
3755
3756 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
3757 if (r < 0) {
3758 *exit_status = EXIT_FDS;
3759 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
3760 }
3761
3762 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
3763 if (r < 0) {
3764 *exit_status = EXIT_FDS;
3765 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3766 }
3767
3768 if (!context->same_pgrp &&
3769 setsid() < 0) {
3770 *exit_status = EXIT_SETSID;
3771 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3772 }
3773
3774 exec_context_tty_reset(context, params);
3775
3776 if (unit_shall_confirm_spawn(unit)) {
3777 const char *vc = params->confirm_spawn;
3778 _cleanup_free_ char *cmdline = NULL;
3779
3780 cmdline = exec_command_line(command->argv);
3781 if (!cmdline) {
3782 *exit_status = EXIT_MEMORY;
3783 return log_oom();
3784 }
3785
3786 r = ask_for_confirmation(vc, unit, cmdline);
3787 if (r != CONFIRM_EXECUTE) {
3788 if (r == CONFIRM_PRETEND_SUCCESS) {
3789 *exit_status = EXIT_SUCCESS;
3790 return 0;
3791 }
3792 *exit_status = EXIT_CONFIRM;
3793 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
3794 "Execution cancelled by the user");
3795 }
3796 }
3797
3798 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3799 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3800 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3801 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3802 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3803 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3804 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3805 *exit_status = EXIT_MEMORY;
3806 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3807 }
3808
3809 if (context->dynamic_user && dcreds) {
3810 _cleanup_strv_free_ char **suggested_paths = NULL;
3811
3812 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3813 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3814 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3815 *exit_status = EXIT_USER;
3816 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3817 }
3818
3819 r = compile_suggested_paths(context, params, &suggested_paths);
3820 if (r < 0) {
3821 *exit_status = EXIT_MEMORY;
3822 return log_oom();
3823 }
3824
3825 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3826 if (r < 0) {
3827 *exit_status = EXIT_USER;
3828 if (r == -EILSEQ)
3829 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
3830 "Failed to update dynamic user credentials: User or group with specified name already exists.");
3831 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3832 }
3833
3834 if (!uid_is_valid(uid)) {
3835 *exit_status = EXIT_USER;
3836 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
3837 }
3838
3839 if (!gid_is_valid(gid)) {
3840 *exit_status = EXIT_USER;
3841 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
3842 }
3843
3844 if (dcreds->user)
3845 username = dcreds->user->name;
3846
3847 } else {
3848 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3849 if (r < 0) {
3850 *exit_status = EXIT_USER;
3851 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3852 }
3853
3854 r = get_fixed_group(context, &groupname, &gid);
3855 if (r < 0) {
3856 *exit_status = EXIT_GROUP;
3857 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3858 }
3859 }
3860
3861 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3862 r = get_supplementary_groups(context, username, groupname, gid,
3863 &supplementary_gids, &ngids);
3864 if (r < 0) {
3865 *exit_status = EXIT_GROUP;
3866 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3867 }
3868
3869 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3870 if (r < 0) {
3871 *exit_status = EXIT_USER;
3872 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3873 }
3874
3875 user_lookup_fd = safe_close(user_lookup_fd);
3876
3877 r = acquire_home(context, uid, &home, &home_buffer);
3878 if (r < 0) {
3879 *exit_status = EXIT_CHDIR;
3880 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3881 }
3882
3883 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3884 * must sure to drop O_NONBLOCK */
3885 if (socket_fd >= 0)
3886 (void) fd_nonblock(socket_fd, false);
3887
3888 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3889 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3890 if (params->cgroup_path) {
3891 _cleanup_free_ char *p = NULL;
3892
3893 r = exec_parameters_get_cgroup_path(params, &p);
3894 if (r < 0) {
3895 *exit_status = EXIT_CGROUP;
3896 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3897 }
3898
3899 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3900 if (r < 0) {
3901 *exit_status = EXIT_CGROUP;
3902 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3903 }
3904 }
3905
3906 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3907 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3908 if (r < 0) {
3909 *exit_status = EXIT_NETWORK;
3910 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3911 }
3912 }
3913
3914 r = setup_input(context, params, socket_fd, named_iofds);
3915 if (r < 0) {
3916 *exit_status = EXIT_STDIN;
3917 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3918 }
3919
3920 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3921 if (r < 0) {
3922 *exit_status = EXIT_STDOUT;
3923 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3924 }
3925
3926 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3927 if (r < 0) {
3928 *exit_status = EXIT_STDERR;
3929 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3930 }
3931
3932 if (context->oom_score_adjust_set) {
3933 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3934 * prohibit write access to this file, and we shouldn't trip up over that. */
3935 r = set_oom_score_adjust(context->oom_score_adjust);
3936 if (ERRNO_IS_PRIVILEGE(r))
3937 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3938 else if (r < 0) {
3939 *exit_status = EXIT_OOM_ADJUST;
3940 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3941 }
3942 }
3943
3944 if (context->coredump_filter_set) {
3945 r = set_coredump_filter(context->coredump_filter);
3946 if (ERRNO_IS_PRIVILEGE(r))
3947 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3948 else if (r < 0)
3949 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3950 }
3951
3952 if (context->nice_set) {
3953 r = setpriority_closest(context->nice);
3954 if (r < 0)
3955 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3956 }
3957
3958 if (context->cpu_sched_set) {
3959 struct sched_param param = {
3960 .sched_priority = context->cpu_sched_priority,
3961 };
3962
3963 r = sched_setscheduler(0,
3964 context->cpu_sched_policy |
3965 (context->cpu_sched_reset_on_fork ?
3966 SCHED_RESET_ON_FORK : 0),
3967 &param);
3968 if (r < 0) {
3969 *exit_status = EXIT_SETSCHEDULER;
3970 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3971 }
3972 }
3973
3974 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3975 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3976 const CPUSet *cpu_set;
3977
3978 if (context->cpu_affinity_from_numa) {
3979 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3980 if (r < 0) {
3981 *exit_status = EXIT_CPUAFFINITY;
3982 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3983 }
3984
3985 cpu_set = &converted_cpu_set;
3986 } else
3987 cpu_set = &context->cpu_set;
3988
3989 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3990 *exit_status = EXIT_CPUAFFINITY;
3991 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3992 }
3993 }
3994
3995 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3996 r = apply_numa_policy(&context->numa_policy);
3997 if (r == -EOPNOTSUPP)
3998 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3999 else if (r < 0) {
4000 *exit_status = EXIT_NUMA_POLICY;
4001 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4002 }
4003 }
4004
4005 if (context->ioprio_set)
4006 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4007 *exit_status = EXIT_IOPRIO;
4008 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4009 }
4010
4011 if (context->timer_slack_nsec != NSEC_INFINITY)
4012 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4013 *exit_status = EXIT_TIMERSLACK;
4014 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4015 }
4016
4017 if (context->personality != PERSONALITY_INVALID) {
4018 r = safe_personality(context->personality);
4019 if (r < 0) {
4020 *exit_status = EXIT_PERSONALITY;
4021 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4022 }
4023 }
4024
4025 if (context->utmp_id)
4026 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4027 context->tty_path,
4028 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4029 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4030 USER_PROCESS,
4031 username);
4032
4033 if (uid_is_valid(uid)) {
4034 r = chown_terminal(STDIN_FILENO, uid);
4035 if (r < 0) {
4036 *exit_status = EXIT_STDIN;
4037 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4038 }
4039 }
4040
4041 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4042 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4043 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4044 * touch a single hierarchy too. */
4045 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
4046 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4047 if (r < 0) {
4048 *exit_status = EXIT_CGROUP;
4049 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4050 }
4051 }
4052
4053 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4054 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
4055 if (r < 0)
4056 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4057 }
4058
4059 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4060 r = setup_credentials(context, params, unit->id, uid);
4061 if (r < 0) {
4062 *exit_status = EXIT_CREDENTIALS;
4063 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4064 }
4065 }
4066
4067 r = build_environment(
4068 unit,
4069 context,
4070 params,
4071 n_fds,
4072 home,
4073 username,
4074 shell,
4075 journal_stream_dev,
4076 journal_stream_ino,
4077 &our_env);
4078 if (r < 0) {
4079 *exit_status = EXIT_MEMORY;
4080 return log_oom();
4081 }
4082
4083 r = build_pass_environment(context, &pass_env);
4084 if (r < 0) {
4085 *exit_status = EXIT_MEMORY;
4086 return log_oom();
4087 }
4088
4089 accum_env = strv_env_merge(5,
4090 params->environment,
4091 our_env,
4092 pass_env,
4093 context->environment,
4094 files_env);
4095 if (!accum_env) {
4096 *exit_status = EXIT_MEMORY;
4097 return log_oom();
4098 }
4099 accum_env = strv_env_clean(accum_env);
4100
4101 (void) umask(context->umask);
4102
4103 r = setup_keyring(unit, context, params, uid, gid);
4104 if (r < 0) {
4105 *exit_status = EXIT_KEYRING;
4106 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4107 }
4108
4109 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
4110 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4111
4112 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
4113 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4114
4115 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
4116 if (needs_ambient_hack)
4117 needs_setuid = false;
4118 else
4119 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4120
4121 if (needs_sandboxing) {
4122 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
4123 * present. The actual MAC context application will happen later, as late as possible, to avoid
4124 * impacting our own code paths. */
4125
4126 #if HAVE_SELINUX
4127 use_selinux = mac_selinux_use();
4128 #endif
4129 #if ENABLE_SMACK
4130 use_smack = mac_smack_use();
4131 #endif
4132 #if HAVE_APPARMOR
4133 use_apparmor = mac_apparmor_use();
4134 #endif
4135 }
4136
4137 if (needs_sandboxing) {
4138 int which_failed;
4139
4140 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4141 * is set here. (See below.) */
4142
4143 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4144 if (r < 0) {
4145 *exit_status = EXIT_LIMITS;
4146 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4147 }
4148 }
4149
4150 if (needs_setuid && context->pam_name && username) {
4151 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4152 * wins here. (See above.) */
4153
4154 /* All fds passed in the fds array will be closed in the pam child process. */
4155 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4156 if (r < 0) {
4157 *exit_status = EXIT_PAM;
4158 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4159 }
4160
4161 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4162 if (ngids_after_pam < 0) {
4163 *exit_status = EXIT_MEMORY;
4164 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4165 }
4166 }
4167
4168 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4169 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4170 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4171 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4172
4173 userns_set_up = true;
4174 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4175 if (r < 0) {
4176 *exit_status = EXIT_USER;
4177 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4178 }
4179 }
4180
4181 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4182
4183 if (ns_type_supported(NAMESPACE_NET)) {
4184 r = setup_netns(runtime->netns_storage_socket);
4185 if (r == -EPERM)
4186 log_unit_warning_errno(unit, r,
4187 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4188 else if (r < 0) {
4189 *exit_status = EXIT_NETWORK;
4190 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4191 }
4192 } else if (context->network_namespace_path) {
4193 *exit_status = EXIT_NETWORK;
4194 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4195 "NetworkNamespacePath= is not supported, refusing.");
4196 } else
4197 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4198 }
4199
4200 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4201 if (needs_mount_namespace) {
4202 _cleanup_free_ char *error_path = NULL;
4203
4204 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4205 if (r < 0) {
4206 *exit_status = EXIT_NAMESPACE;
4207 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4208 error_path ? ": " : "", strempty(error_path));
4209 }
4210 }
4211
4212 if (needs_sandboxing) {
4213 r = apply_protect_hostname(unit, context, exit_status);
4214 if (r < 0)
4215 return r;
4216 }
4217
4218 /* Drop groups as early as possible.
4219 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4220 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4221 if (needs_setuid) {
4222 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4223 int ngids_to_enforce = 0;
4224
4225 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4226 ngids,
4227 gids_after_pam,
4228 ngids_after_pam,
4229 &gids_to_enforce);
4230 if (ngids_to_enforce < 0) {
4231 *exit_status = EXIT_MEMORY;
4232 return log_unit_error_errno(unit,
4233 ngids_to_enforce,
4234 "Failed to merge group lists. Group membership might be incorrect: %m");
4235 }
4236
4237 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4238 if (r < 0) {
4239 *exit_status = EXIT_GROUP;
4240 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4241 }
4242 }
4243
4244 /* If the user namespace was not set up above, try to do it now.
4245 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4246 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4247 * case of mount namespaces being less privileged when the mount point list is copied from a
4248 * different user namespace). */
4249
4250 if (needs_sandboxing && context->private_users && !userns_set_up) {
4251 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4252 if (r < 0) {
4253 *exit_status = EXIT_USER;
4254 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4255 }
4256 }
4257
4258 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4259 * shall execute. */
4260
4261 _cleanup_free_ char *executable = NULL;
4262 _cleanup_close_ int executable_fd = -1;
4263 r = find_executable_full(command->path, false, &executable, &executable_fd);
4264 if (r < 0) {
4265 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4266 log_struct_errno(LOG_INFO, r,
4267 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4268 LOG_UNIT_ID(unit),
4269 LOG_UNIT_INVOCATION_ID(unit),
4270 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4271 command->path),
4272 "EXECUTABLE=%s", command->path);
4273 return 0;
4274 }
4275
4276 *exit_status = EXIT_EXEC;
4277 return log_struct_errno(LOG_INFO, r,
4278 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4279 LOG_UNIT_ID(unit),
4280 LOG_UNIT_INVOCATION_ID(unit),
4281 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4282 command->path),
4283 "EXECUTABLE=%s", command->path);
4284 }
4285
4286 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
4287 if (r < 0) {
4288 *exit_status = EXIT_FDS;
4289 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4290 }
4291
4292 #if HAVE_SELINUX
4293 if (needs_sandboxing && use_selinux && params->selinux_context_net && socket_fd >= 0) {
4294 r = mac_selinux_get_child_mls_label(socket_fd, executable, context->selinux_context, &mac_selinux_context_net);
4295 if (r < 0) {
4296 *exit_status = EXIT_SELINUX_CONTEXT;
4297 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4298 }
4299 }
4300 #endif
4301
4302 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4303 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
4304 * however if we have it as we want to keep it open until the final execve(). */
4305
4306 r = close_all_fds(keep_fds, n_keep_fds);
4307 if (r >= 0)
4308 r = shift_fds(fds, n_fds);
4309 if (r >= 0)
4310 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4311 if (r < 0) {
4312 *exit_status = EXIT_FDS;
4313 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4314 }
4315
4316 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4317 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4318 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4319 * came this far. */
4320
4321 secure_bits = context->secure_bits;
4322
4323 if (needs_sandboxing) {
4324 uint64_t bset;
4325
4326 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4327 * requested. (Note this is placed after the general resource limit initialization, see
4328 * above, in order to take precedence.) */
4329 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4330 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4331 *exit_status = EXIT_LIMITS;
4332 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4333 }
4334 }
4335
4336 #if ENABLE_SMACK
4337 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4338 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4339 if (use_smack) {
4340 r = setup_smack(context, executable_fd);
4341 if (r < 0) {
4342 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4343 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4344 }
4345 }
4346 #endif
4347
4348 bset = context->capability_bounding_set;
4349 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4350 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4351 * instead of us doing that */
4352 if (needs_ambient_hack)
4353 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4354 (UINT64_C(1) << CAP_SETUID) |
4355 (UINT64_C(1) << CAP_SETGID);
4356
4357 if (!cap_test_all(bset)) {
4358 r = capability_bounding_set_drop(bset, false);
4359 if (r < 0) {
4360 *exit_status = EXIT_CAPABILITIES;
4361 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4362 }
4363 }
4364
4365 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4366 * keep-caps set.
4367 * To be able to raise the ambient capabilities after setresuid() they have to be
4368 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4369 * After setresuid() the ambient capabilities can be raised as they are present in
4370 * the permitted and inhertiable set. However it is possible that someone wants to
4371 * set ambient capabilities without changing the user, so we also set the ambient
4372 * capabilities here.
4373 * The requested ambient capabilities are raised in the inheritable set if the
4374 * second argument is true. */
4375 if (!needs_ambient_hack) {
4376 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4377 if (r < 0) {
4378 *exit_status = EXIT_CAPABILITIES;
4379 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4380 }
4381 }
4382 }
4383
4384 /* chroot to root directory first, before we lose the ability to chroot */
4385 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4386 if (r < 0)
4387 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4388
4389 if (needs_setuid) {
4390 if (uid_is_valid(uid)) {
4391 r = enforce_user(context, uid);
4392 if (r < 0) {
4393 *exit_status = EXIT_USER;
4394 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4395 }
4396
4397 if (!needs_ambient_hack &&
4398 context->capability_ambient_set != 0) {
4399
4400 /* Raise the ambient capabilities after user change. */
4401 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4402 if (r < 0) {
4403 *exit_status = EXIT_CAPABILITIES;
4404 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4405 }
4406 }
4407 }
4408 }
4409
4410 /* Apply working directory here, because the working directory might be on NFS and only the user running
4411 * this service might have the correct privilege to change to the working directory */
4412 r = apply_working_directory(context, params, home, exit_status);
4413 if (r < 0)
4414 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4415
4416 if (needs_sandboxing) {
4417 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4418 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4419 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4420 * are restricted. */
4421
4422 #if HAVE_SELINUX
4423 if (use_selinux) {
4424 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4425
4426 if (exec_context) {
4427 r = setexeccon(exec_context);
4428 if (r < 0) {
4429 *exit_status = EXIT_SELINUX_CONTEXT;
4430 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4431 }
4432 }
4433 }
4434 #endif
4435
4436 #if HAVE_APPARMOR
4437 if (use_apparmor && context->apparmor_profile) {
4438 r = aa_change_onexec(context->apparmor_profile);
4439 if (r < 0 && !context->apparmor_profile_ignore) {
4440 *exit_status = EXIT_APPARMOR_PROFILE;
4441 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4442 }
4443 }
4444 #endif
4445
4446 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4447 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4448 * CAP_SETPCAP. */
4449 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4450 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4451 * effective set here.
4452 * The effective set is overwritten during execve with the following values:
4453 * - ambient set (for non-root processes)
4454 * - (inheritable | bounding) set for root processes)
4455 *
4456 * Hence there is no security impact to raise it in the effective set before execve
4457 */
4458 r = capability_gain_cap_setpcap(NULL);
4459 if (r < 0) {
4460 *exit_status = EXIT_CAPABILITIES;
4461 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
4462 }
4463 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
4464 *exit_status = EXIT_SECUREBITS;
4465 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
4466 }
4467 }
4468
4469 if (context_has_no_new_privileges(context))
4470 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
4471 *exit_status = EXIT_NO_NEW_PRIVILEGES;
4472 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
4473 }
4474
4475 #if HAVE_SECCOMP
4476 r = apply_address_families(unit, context);
4477 if (r < 0) {
4478 *exit_status = EXIT_ADDRESS_FAMILIES;
4479 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
4480 }
4481
4482 r = apply_memory_deny_write_execute(unit, context);
4483 if (r < 0) {
4484 *exit_status = EXIT_SECCOMP;
4485 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
4486 }
4487
4488 r = apply_restrict_realtime(unit, context);
4489 if (r < 0) {
4490 *exit_status = EXIT_SECCOMP;
4491 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
4492 }
4493
4494 r = apply_restrict_suid_sgid(unit, context);
4495 if (r < 0) {
4496 *exit_status = EXIT_SECCOMP;
4497 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
4498 }
4499
4500 r = apply_restrict_namespaces(unit, context);
4501 if (r < 0) {
4502 *exit_status = EXIT_SECCOMP;
4503 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
4504 }
4505
4506 r = apply_protect_sysctl(unit, context);
4507 if (r < 0) {
4508 *exit_status = EXIT_SECCOMP;
4509 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
4510 }
4511
4512 r = apply_protect_kernel_modules(unit, context);
4513 if (r < 0) {
4514 *exit_status = EXIT_SECCOMP;
4515 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
4516 }
4517
4518 r = apply_protect_kernel_logs(unit, context);
4519 if (r < 0) {
4520 *exit_status = EXIT_SECCOMP;
4521 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
4522 }
4523
4524 r = apply_protect_clock(unit, context);
4525 if (r < 0) {
4526 *exit_status = EXIT_SECCOMP;
4527 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
4528 }
4529
4530 r = apply_private_devices(unit, context);
4531 if (r < 0) {
4532 *exit_status = EXIT_SECCOMP;
4533 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
4534 }
4535
4536 r = apply_syscall_archs(unit, context);
4537 if (r < 0) {
4538 *exit_status = EXIT_SECCOMP;
4539 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
4540 }
4541
4542 r = apply_lock_personality(unit, context);
4543 if (r < 0) {
4544 *exit_status = EXIT_SECCOMP;
4545 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
4546 }
4547
4548 r = apply_syscall_log(unit, context);
4549 if (r < 0) {
4550 *exit_status = EXIT_SECCOMP;
4551 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
4552 }
4553
4554 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
4555 * by the filter as little as possible. */
4556 r = apply_syscall_filter(unit, context, needs_ambient_hack);
4557 if (r < 0) {
4558 *exit_status = EXIT_SECCOMP;
4559 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
4560 }
4561 #endif
4562 }
4563
4564 if (!strv_isempty(context->unset_environment)) {
4565 char **ee = NULL;
4566
4567 ee = strv_env_delete(accum_env, 1, context->unset_environment);
4568 if (!ee) {
4569 *exit_status = EXIT_MEMORY;
4570 return log_oom();
4571 }
4572
4573 strv_free_and_replace(accum_env, ee);
4574 }
4575
4576 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
4577 replaced_argv = replace_env_argv(command->argv, accum_env);
4578 if (!replaced_argv) {
4579 *exit_status = EXIT_MEMORY;
4580 return log_oom();
4581 }
4582 final_argv = replaced_argv;
4583 } else
4584 final_argv = command->argv;
4585
4586 if (DEBUG_LOGGING) {
4587 _cleanup_free_ char *line;
4588
4589 line = exec_command_line(final_argv);
4590 if (line)
4591 log_struct(LOG_DEBUG,
4592 "EXECUTABLE=%s", executable,
4593 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
4594 LOG_UNIT_ID(unit),
4595 LOG_UNIT_INVOCATION_ID(unit));
4596 }
4597
4598 if (exec_fd >= 0) {
4599 uint8_t hot = 1;
4600
4601 /* We have finished with all our initializations. Let's now let the manager know that. From this point
4602 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
4603
4604 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4605 *exit_status = EXIT_EXEC;
4606 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
4607 }
4608 }
4609
4610 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
4611
4612 if (exec_fd >= 0) {
4613 uint8_t hot = 0;
4614
4615 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4616 * that POLLHUP on it no longer means execve() succeeded. */
4617
4618 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4619 *exit_status = EXIT_EXEC;
4620 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4621 }
4622 }
4623
4624 *exit_status = EXIT_EXEC;
4625 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
4626 }
4627
4628 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4629 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4630
4631 int exec_spawn(Unit *unit,
4632 ExecCommand *command,
4633 const ExecContext *context,
4634 const ExecParameters *params,
4635 ExecRuntime *runtime,
4636 DynamicCreds *dcreds,
4637 pid_t *ret) {
4638
4639 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4640 _cleanup_free_ char *subcgroup_path = NULL;
4641 _cleanup_strv_free_ char **files_env = NULL;
4642 size_t n_storage_fds = 0, n_socket_fds = 0;
4643 _cleanup_free_ char *line = NULL;
4644 pid_t pid;
4645
4646 assert(unit);
4647 assert(command);
4648 assert(context);
4649 assert(ret);
4650 assert(params);
4651 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4652
4653 if (context->std_input == EXEC_INPUT_SOCKET ||
4654 context->std_output == EXEC_OUTPUT_SOCKET ||
4655 context->std_error == EXEC_OUTPUT_SOCKET) {
4656
4657 if (params->n_socket_fds > 1)
4658 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
4659
4660 if (params->n_socket_fds == 0)
4661 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
4662
4663 socket_fd = params->fds[0];
4664 } else {
4665 socket_fd = -1;
4666 fds = params->fds;
4667 n_socket_fds = params->n_socket_fds;
4668 n_storage_fds = params->n_storage_fds;
4669 }
4670
4671 r = exec_context_named_iofds(context, params, named_iofds);
4672 if (r < 0)
4673 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4674
4675 r = exec_context_load_environment(unit, context, &files_env);
4676 if (r < 0)
4677 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4678
4679 line = exec_command_line(command->argv);
4680 if (!line)
4681 return log_oom();
4682
4683 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
4684 and, until the next SELinux policy changes, we save further reloads in future children. */
4685 mac_selinux_maybe_reload();
4686
4687 log_struct(LOG_DEBUG,
4688 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
4689 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
4690 the mount namespace in the child, but we want to log
4691 from the parent, so we need to use the (possibly
4692 inaccurate) path here. */
4693 LOG_UNIT_ID(unit),
4694 LOG_UNIT_INVOCATION_ID(unit));
4695
4696 if (params->cgroup_path) {
4697 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4698 if (r < 0)
4699 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4700 if (r > 0) { /* We are using a child cgroup */
4701 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4702 if (r < 0)
4703 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4704 }
4705 }
4706
4707 pid = fork();
4708 if (pid < 0)
4709 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4710
4711 if (pid == 0) {
4712 int exit_status = EXIT_SUCCESS;
4713
4714 r = exec_child(unit,
4715 command,
4716 context,
4717 params,
4718 runtime,
4719 dcreds,
4720 socket_fd,
4721 named_iofds,
4722 fds,
4723 n_socket_fds,
4724 n_storage_fds,
4725 files_env,
4726 unit->manager->user_lookup_fds[1],
4727 &exit_status);
4728
4729 if (r < 0) {
4730 const char *status =
4731 exit_status_to_string(exit_status,
4732 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4733
4734 log_struct_errno(LOG_ERR, r,
4735 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4736 LOG_UNIT_ID(unit),
4737 LOG_UNIT_INVOCATION_ID(unit),
4738 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4739 status, command->path),
4740 "EXECUTABLE=%s", command->path);
4741 }
4742
4743 _exit(exit_status);
4744 }
4745
4746 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4747
4748 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4749 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4750 * process will be killed too). */
4751 if (subcgroup_path)
4752 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4753
4754 exec_status_start(&command->exec_status, pid);
4755
4756 *ret = pid;
4757 return 0;
4758 }
4759
4760 void exec_context_init(ExecContext *c) {
4761 assert(c);
4762
4763 c->umask = 0022;
4764 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4765 c->cpu_sched_policy = SCHED_OTHER;
4766 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4767 c->syslog_level_prefix = true;
4768 c->ignore_sigpipe = true;
4769 c->timer_slack_nsec = NSEC_INFINITY;
4770 c->personality = PERSONALITY_INVALID;
4771 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4772 c->directories[t].mode = 0755;
4773 c->timeout_clean_usec = USEC_INFINITY;
4774 c->capability_bounding_set = CAP_ALL;
4775 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4776 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4777 c->log_level_max = -1;
4778 #if HAVE_SECCOMP
4779 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
4780 #endif
4781 numa_policy_reset(&c->numa_policy);
4782 }
4783
4784 void exec_context_done(ExecContext *c) {
4785 assert(c);
4786
4787 c->environment = strv_free(c->environment);
4788 c->environment_files = strv_free(c->environment_files);
4789 c->pass_environment = strv_free(c->pass_environment);
4790 c->unset_environment = strv_free(c->unset_environment);
4791
4792 rlimit_free_all(c->rlimit);
4793
4794 for (size_t l = 0; l < 3; l++) {
4795 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4796 c->stdio_file[l] = mfree(c->stdio_file[l]);
4797 }
4798
4799 c->working_directory = mfree(c->working_directory);
4800 c->root_directory = mfree(c->root_directory);
4801 c->root_image = mfree(c->root_image);
4802 c->root_image_options = mount_options_free_all(c->root_image_options);
4803 c->root_hash = mfree(c->root_hash);
4804 c->root_hash_size = 0;
4805 c->root_hash_path = mfree(c->root_hash_path);
4806 c->root_hash_sig = mfree(c->root_hash_sig);
4807 c->root_hash_sig_size = 0;
4808 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
4809 c->root_verity = mfree(c->root_verity);
4810 c->tty_path = mfree(c->tty_path);
4811 c->syslog_identifier = mfree(c->syslog_identifier);
4812 c->user = mfree(c->user);
4813 c->group = mfree(c->group);
4814
4815 c->supplementary_groups = strv_free(c->supplementary_groups);
4816
4817 c->pam_name = mfree(c->pam_name);
4818
4819 c->read_only_paths = strv_free(c->read_only_paths);
4820 c->read_write_paths = strv_free(c->read_write_paths);
4821 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4822 c->exec_paths = strv_free(c->exec_paths);
4823 c->no_exec_paths = strv_free(c->no_exec_paths);
4824
4825 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4826 c->bind_mounts = NULL;
4827 c->n_bind_mounts = 0;
4828 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4829 c->temporary_filesystems = NULL;
4830 c->n_temporary_filesystems = 0;
4831 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
4832
4833 cpu_set_reset(&c->cpu_set);
4834 numa_policy_reset(&c->numa_policy);
4835
4836 c->utmp_id = mfree(c->utmp_id);
4837 c->selinux_context = mfree(c->selinux_context);
4838 c->apparmor_profile = mfree(c->apparmor_profile);
4839 c->smack_process_label = mfree(c->smack_process_label);
4840
4841 c->syscall_filter = hashmap_free(c->syscall_filter);
4842 c->syscall_archs = set_free(c->syscall_archs);
4843 c->address_families = set_free(c->address_families);
4844
4845 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4846 c->directories[t].paths = strv_free(c->directories[t].paths);
4847
4848 c->log_level_max = -1;
4849
4850 exec_context_free_log_extra_fields(c);
4851
4852 c->log_ratelimit_interval_usec = 0;
4853 c->log_ratelimit_burst = 0;
4854
4855 c->stdin_data = mfree(c->stdin_data);
4856 c->stdin_data_size = 0;
4857
4858 c->network_namespace_path = mfree(c->network_namespace_path);
4859
4860 c->log_namespace = mfree(c->log_namespace);
4861
4862 c->load_credentials = strv_free(c->load_credentials);
4863 c->set_credentials = hashmap_free(c->set_credentials);
4864 }
4865
4866 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4867 char **i;
4868
4869 assert(c);
4870
4871 if (!runtime_prefix)
4872 return 0;
4873
4874 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4875 _cleanup_free_ char *p;
4876
4877 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4878 p = path_join(runtime_prefix, "private", *i);
4879 else
4880 p = path_join(runtime_prefix, *i);
4881 if (!p)
4882 return -ENOMEM;
4883
4884 /* We execute this synchronously, since we need to be sure this is gone when we start the
4885 * service next. */
4886 (void) rm_rf(p, REMOVE_ROOT);
4887 }
4888
4889 return 0;
4890 }
4891
4892 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
4893 _cleanup_free_ char *p = NULL;
4894
4895 assert(c);
4896
4897 if (!runtime_prefix || !unit)
4898 return 0;
4899
4900 p = path_join(runtime_prefix, "credentials", unit);
4901 if (!p)
4902 return -ENOMEM;
4903
4904 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
4905 * unmount it, and afterwards remove the mount point */
4906 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
4907 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
4908
4909 return 0;
4910 }
4911
4912 static void exec_command_done(ExecCommand *c) {
4913 assert(c);
4914
4915 c->path = mfree(c->path);
4916 c->argv = strv_free(c->argv);
4917 }
4918
4919 void exec_command_done_array(ExecCommand *c, size_t n) {
4920 for (size_t i = 0; i < n; i++)
4921 exec_command_done(c+i);
4922 }
4923
4924 ExecCommand* exec_command_free_list(ExecCommand *c) {
4925 ExecCommand *i;
4926
4927 while ((i = c)) {
4928 LIST_REMOVE(command, c, i);
4929 exec_command_done(i);
4930 free(i);
4931 }
4932
4933 return NULL;
4934 }
4935
4936 void exec_command_free_array(ExecCommand **c, size_t n) {
4937 for (size_t i = 0; i < n; i++)
4938 c[i] = exec_command_free_list(c[i]);
4939 }
4940
4941 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4942 for (size_t i = 0; i < n; i++)
4943 exec_status_reset(&c[i].exec_status);
4944 }
4945
4946 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4947 for (size_t i = 0; i < n; i++) {
4948 ExecCommand *z;
4949
4950 LIST_FOREACH(command, z, c[i])
4951 exec_status_reset(&z->exec_status);
4952 }
4953 }
4954
4955 typedef struct InvalidEnvInfo {
4956 const Unit *unit;
4957 const char *path;
4958 } InvalidEnvInfo;
4959
4960 static void invalid_env(const char *p, void *userdata) {
4961 InvalidEnvInfo *info = userdata;
4962
4963 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4964 }
4965
4966 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4967 assert(c);
4968
4969 switch (fd_index) {
4970
4971 case STDIN_FILENO:
4972 if (c->std_input != EXEC_INPUT_NAMED_FD)
4973 return NULL;
4974
4975 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4976
4977 case STDOUT_FILENO:
4978 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4979 return NULL;
4980
4981 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4982
4983 case STDERR_FILENO:
4984 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4985 return NULL;
4986
4987 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4988
4989 default:
4990 return NULL;
4991 }
4992 }
4993
4994 static int exec_context_named_iofds(
4995 const ExecContext *c,
4996 const ExecParameters *p,
4997 int named_iofds[static 3]) {
4998
4999 size_t targets;
5000 const char* stdio_fdname[3];
5001 size_t n_fds;
5002
5003 assert(c);
5004 assert(p);
5005 assert(named_iofds);
5006
5007 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
5008 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
5009 (c->std_error == EXEC_OUTPUT_NAMED_FD);
5010
5011 for (size_t i = 0; i < 3; i++)
5012 stdio_fdname[i] = exec_context_fdname(c, i);
5013
5014 n_fds = p->n_storage_fds + p->n_socket_fds;
5015
5016 for (size_t i = 0; i < n_fds && targets > 0; i++)
5017 if (named_iofds[STDIN_FILENO] < 0 &&
5018 c->std_input == EXEC_INPUT_NAMED_FD &&
5019 stdio_fdname[STDIN_FILENO] &&
5020 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
5021
5022 named_iofds[STDIN_FILENO] = p->fds[i];
5023 targets--;
5024
5025 } else if (named_iofds[STDOUT_FILENO] < 0 &&
5026 c->std_output == EXEC_OUTPUT_NAMED_FD &&
5027 stdio_fdname[STDOUT_FILENO] &&
5028 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5029
5030 named_iofds[STDOUT_FILENO] = p->fds[i];
5031 targets--;
5032
5033 } else if (named_iofds[STDERR_FILENO] < 0 &&
5034 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5035 stdio_fdname[STDERR_FILENO] &&
5036 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5037
5038 named_iofds[STDERR_FILENO] = p->fds[i];
5039 targets--;
5040 }
5041
5042 return targets == 0 ? 0 : -ENOENT;
5043 }
5044
5045 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
5046 char **i, **r = NULL;
5047
5048 assert(c);
5049 assert(l);
5050
5051 STRV_FOREACH(i, c->environment_files) {
5052 char *fn;
5053 int k;
5054 bool ignore = false;
5055 char **p;
5056 _cleanup_globfree_ glob_t pglob = {};
5057
5058 fn = *i;
5059
5060 if (fn[0] == '-') {
5061 ignore = true;
5062 fn++;
5063 }
5064
5065 if (!path_is_absolute(fn)) {
5066 if (ignore)
5067 continue;
5068
5069 strv_free(r);
5070 return -EINVAL;
5071 }
5072
5073 /* Filename supports globbing, take all matching files */
5074 k = safe_glob(fn, 0, &pglob);
5075 if (k < 0) {
5076 if (ignore)
5077 continue;
5078
5079 strv_free(r);
5080 return k;
5081 }
5082
5083 /* When we don't match anything, -ENOENT should be returned */
5084 assert(pglob.gl_pathc > 0);
5085
5086 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5087 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
5088 if (k < 0) {
5089 if (ignore)
5090 continue;
5091
5092 strv_free(r);
5093 return k;
5094 }
5095 /* Log invalid environment variables with filename */
5096 if (p) {
5097 InvalidEnvInfo info = {
5098 .unit = unit,
5099 .path = pglob.gl_pathv[n]
5100 };
5101
5102 p = strv_env_clean_with_callback(p, invalid_env, &info);
5103 }
5104
5105 if (!r)
5106 r = p;
5107 else {
5108 char **m;
5109
5110 m = strv_env_merge(2, r, p);
5111 strv_free(r);
5112 strv_free(p);
5113 if (!m)
5114 return -ENOMEM;
5115
5116 r = m;
5117 }
5118 }
5119 }
5120
5121 *l = r;
5122
5123 return 0;
5124 }
5125
5126 static bool tty_may_match_dev_console(const char *tty) {
5127 _cleanup_free_ char *resolved = NULL;
5128
5129 if (!tty)
5130 return true;
5131
5132 tty = skip_dev_prefix(tty);
5133
5134 /* trivial identity? */
5135 if (streq(tty, "console"))
5136 return true;
5137
5138 if (resolve_dev_console(&resolved) < 0)
5139 return true; /* if we could not resolve, assume it may */
5140
5141 /* "tty0" means the active VC, so it may be the same sometimes */
5142 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5143 }
5144
5145 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5146 assert(ec);
5147
5148 return ec->tty_reset ||
5149 ec->tty_vhangup ||
5150 ec->tty_vt_disallocate ||
5151 is_terminal_input(ec->std_input) ||
5152 is_terminal_output(ec->std_output) ||
5153 is_terminal_output(ec->std_error);
5154 }
5155
5156 bool exec_context_may_touch_console(const ExecContext *ec) {
5157
5158 return exec_context_may_touch_tty(ec) &&
5159 tty_may_match_dev_console(exec_context_tty_path(ec));
5160 }
5161
5162 static void strv_fprintf(FILE *f, char **l) {
5163 char **g;
5164
5165 assert(f);
5166
5167 STRV_FOREACH(g, l)
5168 fprintf(f, " %s", *g);
5169 }
5170
5171 static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
5172 assert(f);
5173 assert(prefix);
5174 assert(name);
5175
5176 if (!strv_isempty(strv)) {
5177 fprintf(f, "%s%s:", name, prefix);
5178 strv_fprintf(f, strv);
5179 fputs("\n", f);
5180 }
5181 }
5182
5183 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5184 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
5185 int r;
5186
5187 assert(c);
5188 assert(f);
5189
5190 prefix = strempty(prefix);
5191
5192 fprintf(f,
5193 "%sUMask: %04o\n"
5194 "%sWorkingDirectory: %s\n"
5195 "%sRootDirectory: %s\n"
5196 "%sNonBlocking: %s\n"
5197 "%sPrivateTmp: %s\n"
5198 "%sPrivateDevices: %s\n"
5199 "%sProtectKernelTunables: %s\n"
5200 "%sProtectKernelModules: %s\n"
5201 "%sProtectKernelLogs: %s\n"
5202 "%sProtectClock: %s\n"
5203 "%sProtectControlGroups: %s\n"
5204 "%sPrivateNetwork: %s\n"
5205 "%sPrivateUsers: %s\n"
5206 "%sProtectHome: %s\n"
5207 "%sProtectSystem: %s\n"
5208 "%sMountAPIVFS: %s\n"
5209 "%sIgnoreSIGPIPE: %s\n"
5210 "%sMemoryDenyWriteExecute: %s\n"
5211 "%sRestrictRealtime: %s\n"
5212 "%sRestrictSUIDSGID: %s\n"
5213 "%sKeyringMode: %s\n"
5214 "%sProtectHostname: %s\n"
5215 "%sProtectProc: %s\n"
5216 "%sProcSubset: %s\n",
5217 prefix, c->umask,
5218 prefix, empty_to_root(c->working_directory),
5219 prefix, empty_to_root(c->root_directory),
5220 prefix, yes_no(c->non_blocking),
5221 prefix, yes_no(c->private_tmp),
5222 prefix, yes_no(c->private_devices),
5223 prefix, yes_no(c->protect_kernel_tunables),
5224 prefix, yes_no(c->protect_kernel_modules),
5225 prefix, yes_no(c->protect_kernel_logs),
5226 prefix, yes_no(c->protect_clock),
5227 prefix, yes_no(c->protect_control_groups),
5228 prefix, yes_no(c->private_network),
5229 prefix, yes_no(c->private_users),
5230 prefix, protect_home_to_string(c->protect_home),
5231 prefix, protect_system_to_string(c->protect_system),
5232 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5233 prefix, yes_no(c->ignore_sigpipe),
5234 prefix, yes_no(c->memory_deny_write_execute),
5235 prefix, yes_no(c->restrict_realtime),
5236 prefix, yes_no(c->restrict_suid_sgid),
5237 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5238 prefix, yes_no(c->protect_hostname),
5239 prefix, protect_proc_to_string(c->protect_proc),
5240 prefix, proc_subset_to_string(c->proc_subset));
5241
5242 if (c->root_image)
5243 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5244
5245 if (c->root_image_options) {
5246 MountOptions *o;
5247
5248 fprintf(f, "%sRootImageOptions:", prefix);
5249 LIST_FOREACH(mount_options, o, c->root_image_options)
5250 if (!isempty(o->options))
5251 fprintf(f, " %s:%s",
5252 partition_designator_to_string(o->partition_designator),
5253 o->options);
5254 fprintf(f, "\n");
5255 }
5256
5257 if (c->root_hash) {
5258 _cleanup_free_ char *encoded = NULL;
5259 encoded = hexmem(c->root_hash, c->root_hash_size);
5260 if (encoded)
5261 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5262 }
5263
5264 if (c->root_hash_path)
5265 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5266
5267 if (c->root_hash_sig) {
5268 _cleanup_free_ char *encoded = NULL;
5269 ssize_t len;
5270 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5271 if (len)
5272 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5273 }
5274
5275 if (c->root_hash_sig_path)
5276 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5277
5278 if (c->root_verity)
5279 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5280
5281 STRV_FOREACH(e, c->environment)
5282 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5283
5284 STRV_FOREACH(e, c->environment_files)
5285 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5286
5287 STRV_FOREACH(e, c->pass_environment)
5288 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5289
5290 STRV_FOREACH(e, c->unset_environment)
5291 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5292
5293 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5294
5295 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5296 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5297
5298 STRV_FOREACH(d, c->directories[dt].paths)
5299 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
5300 }
5301
5302 fprintf(f,
5303 "%sTimeoutCleanSec: %s\n",
5304 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
5305
5306 if (c->nice_set)
5307 fprintf(f,
5308 "%sNice: %i\n",
5309 prefix, c->nice);
5310
5311 if (c->oom_score_adjust_set)
5312 fprintf(f,
5313 "%sOOMScoreAdjust: %i\n",
5314 prefix, c->oom_score_adjust);
5315
5316 if (c->coredump_filter_set)
5317 fprintf(f,
5318 "%sCoredumpFilter: 0x%"PRIx64"\n",
5319 prefix, c->coredump_filter);
5320
5321 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5322 if (c->rlimit[i]) {
5323 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5324 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5325 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5326 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5327 }
5328
5329 if (c->ioprio_set) {
5330 _cleanup_free_ char *class_str = NULL;
5331
5332 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
5333 if (r >= 0)
5334 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5335
5336 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
5337 }
5338
5339 if (c->cpu_sched_set) {
5340 _cleanup_free_ char *policy_str = NULL;
5341
5342 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5343 if (r >= 0)
5344 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5345
5346 fprintf(f,
5347 "%sCPUSchedulingPriority: %i\n"
5348 "%sCPUSchedulingResetOnFork: %s\n",
5349 prefix, c->cpu_sched_priority,
5350 prefix, yes_no(c->cpu_sched_reset_on_fork));
5351 }
5352
5353 if (c->cpu_set.set) {
5354 _cleanup_free_ char *affinity = NULL;
5355
5356 affinity = cpu_set_to_range_string(&c->cpu_set);
5357 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5358 }
5359
5360 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5361 _cleanup_free_ char *nodes = NULL;
5362
5363 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5364 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5365 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5366 }
5367
5368 if (c->timer_slack_nsec != NSEC_INFINITY)
5369 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5370
5371 fprintf(f,
5372 "%sStandardInput: %s\n"
5373 "%sStandardOutput: %s\n"
5374 "%sStandardError: %s\n",
5375 prefix, exec_input_to_string(c->std_input),
5376 prefix, exec_output_to_string(c->std_output),
5377 prefix, exec_output_to_string(c->std_error));
5378
5379 if (c->std_input == EXEC_INPUT_NAMED_FD)
5380 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5381 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5382 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5383 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5384 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5385
5386 if (c->std_input == EXEC_INPUT_FILE)
5387 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5388 if (c->std_output == EXEC_OUTPUT_FILE)
5389 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5390 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5391 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5392 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
5393 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5394 if (c->std_error == EXEC_OUTPUT_FILE)
5395 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5396 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5397 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5398 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
5399 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5400
5401 if (c->tty_path)
5402 fprintf(f,
5403 "%sTTYPath: %s\n"
5404 "%sTTYReset: %s\n"
5405 "%sTTYVHangup: %s\n"
5406 "%sTTYVTDisallocate: %s\n",
5407 prefix, c->tty_path,
5408 prefix, yes_no(c->tty_reset),
5409 prefix, yes_no(c->tty_vhangup),
5410 prefix, yes_no(c->tty_vt_disallocate));
5411
5412 if (IN_SET(c->std_output,
5413 EXEC_OUTPUT_KMSG,
5414 EXEC_OUTPUT_JOURNAL,
5415 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5416 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5417 IN_SET(c->std_error,
5418 EXEC_OUTPUT_KMSG,
5419 EXEC_OUTPUT_JOURNAL,
5420 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5421 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5422
5423 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5424
5425 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5426 if (r >= 0)
5427 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5428
5429 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5430 if (r >= 0)
5431 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5432 }
5433
5434 if (c->log_level_max >= 0) {
5435 _cleanup_free_ char *t = NULL;
5436
5437 (void) log_level_to_string_alloc(c->log_level_max, &t);
5438
5439 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5440 }
5441
5442 if (c->log_ratelimit_interval_usec > 0) {
5443 char buf_timespan[FORMAT_TIMESPAN_MAX];
5444
5445 fprintf(f,
5446 "%sLogRateLimitIntervalSec: %s\n",
5447 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
5448 }
5449
5450 if (c->log_ratelimit_burst > 0)
5451 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
5452
5453 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
5454 fprintf(f, "%sLogExtraFields: ", prefix);
5455 fwrite(c->log_extra_fields[j].iov_base,
5456 1, c->log_extra_fields[j].iov_len,
5457 f);
5458 fputc('\n', f);
5459 }
5460
5461 if (c->log_namespace)
5462 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
5463
5464 if (c->secure_bits) {
5465 _cleanup_free_ char *str = NULL;
5466
5467 r = secure_bits_to_string_alloc(c->secure_bits, &str);
5468 if (r >= 0)
5469 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
5470 }
5471
5472 if (c->capability_bounding_set != CAP_ALL) {
5473 _cleanup_free_ char *str = NULL;
5474
5475 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
5476 if (r >= 0)
5477 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
5478 }
5479
5480 if (c->capability_ambient_set != 0) {
5481 _cleanup_free_ char *str = NULL;
5482
5483 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
5484 if (r >= 0)
5485 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
5486 }
5487
5488 if (c->user)
5489 fprintf(f, "%sUser: %s\n", prefix, c->user);
5490 if (c->group)
5491 fprintf(f, "%sGroup: %s\n", prefix, c->group);
5492
5493 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
5494
5495 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
5496
5497 if (c->pam_name)
5498 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
5499
5500 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
5501 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
5502 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
5503 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
5504 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
5505
5506 for (size_t i = 0; i < c->n_bind_mounts; i++)
5507 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
5508 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
5509 c->bind_mounts[i].ignore_enoent ? "-": "",
5510 c->bind_mounts[i].source,
5511 c->bind_mounts[i].destination,
5512 c->bind_mounts[i].recursive ? "rbind" : "norbind");
5513
5514 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
5515 const TemporaryFileSystem *t = c->temporary_filesystems + i;
5516
5517 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
5518 t->path,
5519 isempty(t->options) ? "" : ":",
5520 strempty(t->options));
5521 }
5522
5523 if (c->utmp_id)
5524 fprintf(f,
5525 "%sUtmpIdentifier: %s\n",
5526 prefix, c->utmp_id);
5527
5528 if (c->selinux_context)
5529 fprintf(f,
5530 "%sSELinuxContext: %s%s\n",
5531 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
5532
5533 if (c->apparmor_profile)
5534 fprintf(f,
5535 "%sAppArmorProfile: %s%s\n",
5536 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
5537
5538 if (c->smack_process_label)
5539 fprintf(f,
5540 "%sSmackProcessLabel: %s%s\n",
5541 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
5542
5543 if (c->personality != PERSONALITY_INVALID)
5544 fprintf(f,
5545 "%sPersonality: %s\n",
5546 prefix, strna(personality_to_string(c->personality)));
5547
5548 fprintf(f,
5549 "%sLockPersonality: %s\n",
5550 prefix, yes_no(c->lock_personality));
5551
5552 if (c->syscall_filter) {
5553 #if HAVE_SECCOMP
5554 void *id, *val;
5555 bool first = true;
5556 #endif
5557
5558 fprintf(f,
5559 "%sSystemCallFilter: ",
5560 prefix);
5561
5562 if (!c->syscall_allow_list)
5563 fputc('~', f);
5564
5565 #if HAVE_SECCOMP
5566 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
5567 _cleanup_free_ char *name = NULL;
5568 const char *errno_name = NULL;
5569 int num = PTR_TO_INT(val);
5570
5571 if (first)
5572 first = false;
5573 else
5574 fputc(' ', f);
5575
5576 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
5577 fputs(strna(name), f);
5578
5579 if (num >= 0) {
5580 errno_name = seccomp_errno_or_action_to_string(num);
5581 if (errno_name)
5582 fprintf(f, ":%s", errno_name);
5583 else
5584 fprintf(f, ":%d", num);
5585 }
5586 }
5587 #endif
5588
5589 fputc('\n', f);
5590 }
5591
5592 if (c->syscall_archs) {
5593 #if HAVE_SECCOMP
5594 void *id;
5595 #endif
5596
5597 fprintf(f,
5598 "%sSystemCallArchitectures:",
5599 prefix);
5600
5601 #if HAVE_SECCOMP
5602 SET_FOREACH(id, c->syscall_archs)
5603 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
5604 #endif
5605 fputc('\n', f);
5606 }
5607
5608 if (exec_context_restrict_namespaces_set(c)) {
5609 _cleanup_free_ char *s = NULL;
5610
5611 r = namespace_flags_to_string(c->restrict_namespaces, &s);
5612 if (r >= 0)
5613 fprintf(f, "%sRestrictNamespaces: %s\n",
5614 prefix, strna(s));
5615 }
5616
5617 if (c->network_namespace_path)
5618 fprintf(f,
5619 "%sNetworkNamespacePath: %s\n",
5620 prefix, c->network_namespace_path);
5621
5622 if (c->syscall_errno > 0) {
5623 #if HAVE_SECCOMP
5624 const char *errno_name;
5625 #endif
5626
5627 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
5628
5629 #if HAVE_SECCOMP
5630 errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
5631 if (errno_name)
5632 fputs(errno_name, f);
5633 else
5634 fprintf(f, "%d", c->syscall_errno);
5635 #endif
5636 fputc('\n', f);
5637 }
5638
5639 for (size_t i = 0; i < c->n_mount_images; i++) {
5640 MountOptions *o;
5641
5642 fprintf(f, "%sMountImages: %s%s:%s%s", prefix,
5643 c->mount_images[i].ignore_enoent ? "-": "",
5644 c->mount_images[i].source,
5645 c->mount_images[i].destination,
5646 LIST_IS_EMPTY(c->mount_images[i].mount_options) ? "": ":");
5647 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
5648 fprintf(f, "%s:%s",
5649 partition_designator_to_string(o->partition_designator),
5650 o->options);
5651 fprintf(f, "\n");
5652 }
5653 }
5654
5655 bool exec_context_maintains_privileges(const ExecContext *c) {
5656 assert(c);
5657
5658 /* Returns true if the process forked off would run under
5659 * an unchanged UID or as root. */
5660
5661 if (!c->user)
5662 return true;
5663
5664 if (streq(c->user, "root") || streq(c->user, "0"))
5665 return true;
5666
5667 return false;
5668 }
5669
5670 int exec_context_get_effective_ioprio(const ExecContext *c) {
5671 int p;
5672
5673 assert(c);
5674
5675 if (c->ioprio_set)
5676 return c->ioprio;
5677
5678 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5679 if (p < 0)
5680 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5681
5682 return p;
5683 }
5684
5685 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
5686 assert(c);
5687
5688 /* Explicit setting wins */
5689 if (c->mount_apivfs_set)
5690 return c->mount_apivfs;
5691
5692 /* Default to "yes" if root directory or image are specified */
5693 if (exec_context_with_rootfs(c))
5694 return true;
5695
5696 return false;
5697 }
5698
5699 void exec_context_free_log_extra_fields(ExecContext *c) {
5700 assert(c);
5701
5702 for (size_t l = 0; l < c->n_log_extra_fields; l++)
5703 free(c->log_extra_fields[l].iov_base);
5704 c->log_extra_fields = mfree(c->log_extra_fields);
5705 c->n_log_extra_fields = 0;
5706 }
5707
5708 void exec_context_revert_tty(ExecContext *c) {
5709 int r;
5710
5711 assert(c);
5712
5713 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5714 exec_context_tty_reset(c, NULL);
5715
5716 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5717 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5718 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5719
5720 if (exec_context_may_touch_tty(c)) {
5721 const char *path;
5722
5723 path = exec_context_tty_path(c);
5724 if (path) {
5725 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5726 if (r < 0 && r != -ENOENT)
5727 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5728 }
5729 }
5730 }
5731
5732 int exec_context_get_clean_directories(
5733 ExecContext *c,
5734 char **prefix,
5735 ExecCleanMask mask,
5736 char ***ret) {
5737
5738 _cleanup_strv_free_ char **l = NULL;
5739 int r;
5740
5741 assert(c);
5742 assert(prefix);
5743 assert(ret);
5744
5745 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5746 char **i;
5747
5748 if (!FLAGS_SET(mask, 1U << t))
5749 continue;
5750
5751 if (!prefix[t])
5752 continue;
5753
5754 STRV_FOREACH(i, c->directories[t].paths) {
5755 char *j;
5756
5757 j = path_join(prefix[t], *i);
5758 if (!j)
5759 return -ENOMEM;
5760
5761 r = strv_consume(&l, j);
5762 if (r < 0)
5763 return r;
5764
5765 /* Also remove private directories unconditionally. */
5766 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5767 j = path_join(prefix[t], "private", *i);
5768 if (!j)
5769 return -ENOMEM;
5770
5771 r = strv_consume(&l, j);
5772 if (r < 0)
5773 return r;
5774 }
5775 }
5776 }
5777
5778 *ret = TAKE_PTR(l);
5779 return 0;
5780 }
5781
5782 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5783 ExecCleanMask mask = 0;
5784
5785 assert(c);
5786 assert(ret);
5787
5788 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5789 if (!strv_isempty(c->directories[t].paths))
5790 mask |= 1U << t;
5791
5792 *ret = mask;
5793 return 0;
5794 }
5795
5796 void exec_status_start(ExecStatus *s, pid_t pid) {
5797 assert(s);
5798
5799 *s = (ExecStatus) {
5800 .pid = pid,
5801 };
5802
5803 dual_timestamp_get(&s->start_timestamp);
5804 }
5805
5806 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5807 assert(s);
5808
5809 if (s->pid != pid)
5810 *s = (ExecStatus) {
5811 .pid = pid,
5812 };
5813
5814 dual_timestamp_get(&s->exit_timestamp);
5815
5816 s->code = code;
5817 s->status = status;
5818
5819 if (context && context->utmp_id)
5820 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5821 }
5822
5823 void exec_status_reset(ExecStatus *s) {
5824 assert(s);
5825
5826 *s = (ExecStatus) {};
5827 }
5828
5829 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5830 char buf[FORMAT_TIMESTAMP_MAX];
5831
5832 assert(s);
5833 assert(f);
5834
5835 if (s->pid <= 0)
5836 return;
5837
5838 prefix = strempty(prefix);
5839
5840 fprintf(f,
5841 "%sPID: "PID_FMT"\n",
5842 prefix, s->pid);
5843
5844 if (dual_timestamp_is_set(&s->start_timestamp))
5845 fprintf(f,
5846 "%sStart Timestamp: %s\n",
5847 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5848
5849 if (dual_timestamp_is_set(&s->exit_timestamp))
5850 fprintf(f,
5851 "%sExit Timestamp: %s\n"
5852 "%sExit Code: %s\n"
5853 "%sExit Status: %i\n",
5854 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5855 prefix, sigchld_code_to_string(s->code),
5856 prefix, s->status);
5857 }
5858
5859 static char *exec_command_line(char **argv) {
5860 size_t k;
5861 char *n, *p, **a;
5862 bool first = true;
5863
5864 assert(argv);
5865
5866 k = 1;
5867 STRV_FOREACH(a, argv)
5868 k += strlen(*a)+3;
5869
5870 n = new(char, k);
5871 if (!n)
5872 return NULL;
5873
5874 p = n;
5875 STRV_FOREACH(a, argv) {
5876
5877 if (!first)
5878 *(p++) = ' ';
5879 else
5880 first = false;
5881
5882 if (strpbrk(*a, WHITESPACE)) {
5883 *(p++) = '\'';
5884 p = stpcpy(p, *a);
5885 *(p++) = '\'';
5886 } else
5887 p = stpcpy(p, *a);
5888
5889 }
5890
5891 *p = 0;
5892
5893 /* FIXME: this doesn't really handle arguments that have
5894 * spaces and ticks in them */
5895
5896 return n;
5897 }
5898
5899 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5900 _cleanup_free_ char *cmd = NULL;
5901 const char *prefix2;
5902
5903 assert(c);
5904 assert(f);
5905
5906 prefix = strempty(prefix);
5907 prefix2 = strjoina(prefix, "\t");
5908
5909 cmd = exec_command_line(c->argv);
5910 fprintf(f,
5911 "%sCommand Line: %s\n",
5912 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5913
5914 exec_status_dump(&c->exec_status, f, prefix2);
5915 }
5916
5917 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5918 assert(f);
5919
5920 prefix = strempty(prefix);
5921
5922 LIST_FOREACH(command, c, c)
5923 exec_command_dump(c, f, prefix);
5924 }
5925
5926 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5927 ExecCommand *end;
5928
5929 assert(l);
5930 assert(e);
5931
5932 if (*l) {
5933 /* It's kind of important, that we keep the order here */
5934 LIST_FIND_TAIL(command, *l, end);
5935 LIST_INSERT_AFTER(command, *l, end, e);
5936 } else
5937 *l = e;
5938 }
5939
5940 int exec_command_set(ExecCommand *c, const char *path, ...) {
5941 va_list ap;
5942 char **l, *p;
5943
5944 assert(c);
5945 assert(path);
5946
5947 va_start(ap, path);
5948 l = strv_new_ap(path, ap);
5949 va_end(ap);
5950
5951 if (!l)
5952 return -ENOMEM;
5953
5954 p = strdup(path);
5955 if (!p) {
5956 strv_free(l);
5957 return -ENOMEM;
5958 }
5959
5960 free_and_replace(c->path, p);
5961
5962 return strv_free_and_replace(c->argv, l);
5963 }
5964
5965 int exec_command_append(ExecCommand *c, const char *path, ...) {
5966 _cleanup_strv_free_ char **l = NULL;
5967 va_list ap;
5968 int r;
5969
5970 assert(c);
5971 assert(path);
5972
5973 va_start(ap, path);
5974 l = strv_new_ap(path, ap);
5975 va_end(ap);
5976
5977 if (!l)
5978 return -ENOMEM;
5979
5980 r = strv_extend_strv(&c->argv, l, false);
5981 if (r < 0)
5982 return r;
5983
5984 return 0;
5985 }
5986
5987 static void *remove_tmpdir_thread(void *p) {
5988 _cleanup_free_ char *path = p;
5989
5990 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5991 return NULL;
5992 }
5993
5994 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5995 int r;
5996
5997 if (!rt)
5998 return NULL;
5999
6000 if (rt->manager)
6001 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
6002
6003 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
6004
6005 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
6006 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
6007
6008 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
6009 if (r < 0)
6010 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
6011 else
6012 rt->tmp_dir = NULL;
6013 }
6014
6015 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
6016 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
6017
6018 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
6019 if (r < 0)
6020 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
6021 else
6022 rt->var_tmp_dir = NULL;
6023 }
6024
6025 rt->id = mfree(rt->id);
6026 rt->tmp_dir = mfree(rt->tmp_dir);
6027 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
6028 safe_close_pair(rt->netns_storage_socket);
6029 return mfree(rt);
6030 }
6031
6032 static void exec_runtime_freep(ExecRuntime **rt) {
6033 (void) exec_runtime_free(*rt, false);
6034 }
6035
6036 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6037 _cleanup_free_ char *id_copy = NULL;
6038 ExecRuntime *n;
6039
6040 assert(ret);
6041
6042 id_copy = strdup(id);
6043 if (!id_copy)
6044 return -ENOMEM;
6045
6046 n = new(ExecRuntime, 1);
6047 if (!n)
6048 return -ENOMEM;
6049
6050 *n = (ExecRuntime) {
6051 .id = TAKE_PTR(id_copy),
6052 .netns_storage_socket = { -1, -1 },
6053 };
6054
6055 *ret = n;
6056 return 0;
6057 }
6058
6059 static int exec_runtime_add(
6060 Manager *m,
6061 const char *id,
6062 char **tmp_dir,
6063 char **var_tmp_dir,
6064 int netns_storage_socket[2],
6065 ExecRuntime **ret) {
6066
6067 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6068 int r;
6069
6070 assert(m);
6071 assert(id);
6072
6073 /* tmp_dir, var_tmp_dir, netns_storage_socket fds are donated on success */
6074
6075 r = exec_runtime_allocate(&rt, id);
6076 if (r < 0)
6077 return r;
6078
6079 r = hashmap_ensure_put(&m->exec_runtime_by_id, &string_hash_ops, rt->id, rt);
6080 if (r < 0)
6081 return r;
6082
6083 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6084 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6085 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6086
6087 if (netns_storage_socket) {
6088 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6089 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6090 }
6091
6092 rt->manager = m;
6093
6094 if (ret)
6095 *ret = rt;
6096 /* do not remove created ExecRuntime object when the operation succeeds. */
6097 TAKE_PTR(rt);
6098 return 0;
6099 }
6100
6101 static int exec_runtime_make(
6102 Manager *m,
6103 const ExecContext *c,
6104 const char *id,
6105 ExecRuntime **ret) {
6106
6107 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6108 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
6109 int r;
6110
6111 assert(m);
6112 assert(c);
6113 assert(id);
6114
6115 /* It is not necessary to create ExecRuntime object. */
6116 if (!c->private_network && !c->private_tmp && !c->network_namespace_path) {
6117 *ret = NULL;
6118 return 0;
6119 }
6120
6121 if (c->private_tmp &&
6122 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6123 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6124 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6125 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6126 if (r < 0)
6127 return r;
6128 }
6129
6130 if (c->private_network || c->network_namespace_path) {
6131 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6132 return -errno;
6133 }
6134
6135 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ret);
6136 if (r < 0)
6137 return r;
6138
6139 return 1;
6140 }
6141
6142 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6143 ExecRuntime *rt;
6144 int r;
6145
6146 assert(m);
6147 assert(id);
6148 assert(ret);
6149
6150 rt = hashmap_get(m->exec_runtime_by_id, id);
6151 if (rt)
6152 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
6153 goto ref;
6154
6155 if (!create) {
6156 *ret = NULL;
6157 return 0;
6158 }
6159
6160 /* If not found, then create a new object. */
6161 r = exec_runtime_make(m, c, id, &rt);
6162 if (r < 0)
6163 return r;
6164 if (r == 0) {
6165 /* When r == 0, it is not necessary to create ExecRuntime object. */
6166 *ret = NULL;
6167 return 0;
6168 }
6169
6170 ref:
6171 /* increment reference counter. */
6172 rt->n_ref++;
6173 *ret = rt;
6174 return 1;
6175 }
6176
6177 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6178 if (!rt)
6179 return NULL;
6180
6181 assert(rt->n_ref > 0);
6182
6183 rt->n_ref--;
6184 if (rt->n_ref > 0)
6185 return NULL;
6186
6187 return exec_runtime_free(rt, destroy);
6188 }
6189
6190 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6191 ExecRuntime *rt;
6192
6193 assert(m);
6194 assert(f);
6195 assert(fds);
6196
6197 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6198 fprintf(f, "exec-runtime=%s", rt->id);
6199
6200 if (rt->tmp_dir)
6201 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6202
6203 if (rt->var_tmp_dir)
6204 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6205
6206 if (rt->netns_storage_socket[0] >= 0) {
6207 int copy;
6208
6209 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6210 if (copy < 0)
6211 return copy;
6212
6213 fprintf(f, " netns-socket-0=%i", copy);
6214 }
6215
6216 if (rt->netns_storage_socket[1] >= 0) {
6217 int copy;
6218
6219 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6220 if (copy < 0)
6221 return copy;
6222
6223 fprintf(f, " netns-socket-1=%i", copy);
6224 }
6225
6226 fputc('\n', f);
6227 }
6228
6229 return 0;
6230 }
6231
6232 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6233 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6234 ExecRuntime *rt;
6235 int r;
6236
6237 /* This is for the migration from old (v237 or earlier) deserialization text.
6238 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6239 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6240 * so or not from the serialized text, then we always creates a new object owned by this. */
6241
6242 assert(u);
6243 assert(key);
6244 assert(value);
6245
6246 /* Manager manages ExecRuntime objects by the unit id.
6247 * So, we omit the serialized text when the unit does not have id (yet?)... */
6248 if (isempty(u->id)) {
6249 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6250 return 0;
6251 }
6252
6253 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
6254 if (r < 0) {
6255 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
6256 return 0;
6257 }
6258
6259 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6260 if (!rt) {
6261 r = exec_runtime_allocate(&rt_create, u->id);
6262 if (r < 0)
6263 return log_oom();
6264
6265 rt = rt_create;
6266 }
6267
6268 if (streq(key, "tmp-dir")) {
6269 char *copy;
6270
6271 copy = strdup(value);
6272 if (!copy)
6273 return log_oom();
6274
6275 free_and_replace(rt->tmp_dir, copy);
6276
6277 } else if (streq(key, "var-tmp-dir")) {
6278 char *copy;
6279
6280 copy = strdup(value);
6281 if (!copy)
6282 return log_oom();
6283
6284 free_and_replace(rt->var_tmp_dir, copy);
6285
6286 } else if (streq(key, "netns-socket-0")) {
6287 int fd;
6288
6289 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6290 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6291 return 0;
6292 }
6293
6294 safe_close(rt->netns_storage_socket[0]);
6295 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6296
6297 } else if (streq(key, "netns-socket-1")) {
6298 int fd;
6299
6300 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6301 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6302 return 0;
6303 }
6304
6305 safe_close(rt->netns_storage_socket[1]);
6306 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6307 } else
6308 return 0;
6309
6310 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6311 if (rt_create) {
6312 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6313 if (r < 0) {
6314 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6315 return 0;
6316 }
6317
6318 rt_create->manager = u->manager;
6319
6320 /* Avoid cleanup */
6321 TAKE_PTR(rt_create);
6322 }
6323
6324 return 1;
6325 }
6326
6327 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6328 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6329 char *id = NULL;
6330 int r, fdpair[] = {-1, -1};
6331 const char *p, *v = value;
6332 size_t n;
6333
6334 assert(m);
6335 assert(value);
6336 assert(fds);
6337
6338 n = strcspn(v, " ");
6339 id = strndupa(v, n);
6340 if (v[n] != ' ')
6341 goto finalize;
6342 p = v + n + 1;
6343
6344 v = startswith(p, "tmp-dir=");
6345 if (v) {
6346 n = strcspn(v, " ");
6347 tmp_dir = strndup(v, n);
6348 if (!tmp_dir)
6349 return log_oom();
6350 if (v[n] != ' ')
6351 goto finalize;
6352 p = v + n + 1;
6353 }
6354
6355 v = startswith(p, "var-tmp-dir=");
6356 if (v) {
6357 n = strcspn(v, " ");
6358 var_tmp_dir = strndup(v, n);
6359 if (!var_tmp_dir)
6360 return log_oom();
6361 if (v[n] != ' ')
6362 goto finalize;
6363 p = v + n + 1;
6364 }
6365
6366 v = startswith(p, "netns-socket-0=");
6367 if (v) {
6368 char *buf;
6369
6370 n = strcspn(v, " ");
6371 buf = strndupa(v, n);
6372
6373 r = safe_atoi(buf, &fdpair[0]);
6374 if (r < 0)
6375 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6376 if (!fdset_contains(fds, fdpair[0]))
6377 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6378 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", fdpair[0]);
6379 fdpair[0] = fdset_remove(fds, fdpair[0]);
6380 if (v[n] != ' ')
6381 goto finalize;
6382 p = v + n + 1;
6383 }
6384
6385 v = startswith(p, "netns-socket-1=");
6386 if (v) {
6387 char *buf;
6388
6389 n = strcspn(v, " ");
6390 buf = strndupa(v, n);
6391 r = safe_atoi(buf, &fdpair[1]);
6392 if (r < 0)
6393 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6394 if (!fdset_contains(fds, fdpair[1]))
6395 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6396 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", fdpair[1]);
6397 fdpair[1] = fdset_remove(fds, fdpair[1]);
6398 }
6399
6400 finalize:
6401 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, fdpair, NULL);
6402 if (r < 0)
6403 return log_debug_errno(r, "Failed to add exec-runtime: %m");
6404 return 0;
6405 }
6406
6407 void exec_runtime_vacuum(Manager *m) {
6408 ExecRuntime *rt;
6409
6410 assert(m);
6411
6412 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
6413
6414 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6415 if (rt->n_ref > 0)
6416 continue;
6417
6418 (void) exec_runtime_free(rt, false);
6419 }
6420 }
6421
6422 void exec_params_clear(ExecParameters *p) {
6423 if (!p)
6424 return;
6425
6426 p->environment = strv_free(p->environment);
6427 p->fd_names = strv_free(p->fd_names);
6428 p->fds = mfree(p->fds);
6429 p->exec_fd = safe_close(p->exec_fd);
6430 }
6431
6432 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
6433 if (!sc)
6434 return NULL;
6435
6436 free(sc->id);
6437 free(sc->data);
6438 return mfree(sc);
6439 }
6440
6441 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
6442
6443 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
6444 [EXEC_INPUT_NULL] = "null",
6445 [EXEC_INPUT_TTY] = "tty",
6446 [EXEC_INPUT_TTY_FORCE] = "tty-force",
6447 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
6448 [EXEC_INPUT_SOCKET] = "socket",
6449 [EXEC_INPUT_NAMED_FD] = "fd",
6450 [EXEC_INPUT_DATA] = "data",
6451 [EXEC_INPUT_FILE] = "file",
6452 };
6453
6454 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
6455
6456 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
6457 [EXEC_OUTPUT_INHERIT] = "inherit",
6458 [EXEC_OUTPUT_NULL] = "null",
6459 [EXEC_OUTPUT_TTY] = "tty",
6460 [EXEC_OUTPUT_KMSG] = "kmsg",
6461 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
6462 [EXEC_OUTPUT_JOURNAL] = "journal",
6463 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
6464 [EXEC_OUTPUT_SOCKET] = "socket",
6465 [EXEC_OUTPUT_NAMED_FD] = "fd",
6466 [EXEC_OUTPUT_FILE] = "file",
6467 [EXEC_OUTPUT_FILE_APPEND] = "append",
6468 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
6469 };
6470
6471 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
6472
6473 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
6474 [EXEC_UTMP_INIT] = "init",
6475 [EXEC_UTMP_LOGIN] = "login",
6476 [EXEC_UTMP_USER] = "user",
6477 };
6478
6479 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
6480
6481 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
6482 [EXEC_PRESERVE_NO] = "no",
6483 [EXEC_PRESERVE_YES] = "yes",
6484 [EXEC_PRESERVE_RESTART] = "restart",
6485 };
6486
6487 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
6488
6489 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
6490 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6491 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
6492 [EXEC_DIRECTORY_STATE] = "StateDirectory",
6493 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
6494 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
6495 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
6496 };
6497
6498 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
6499
6500 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
6501 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
6502 * directories, specifically .timer units with their timestamp touch file. */
6503 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6504 [EXEC_DIRECTORY_RUNTIME] = "runtime",
6505 [EXEC_DIRECTORY_STATE] = "state",
6506 [EXEC_DIRECTORY_CACHE] = "cache",
6507 [EXEC_DIRECTORY_LOGS] = "logs",
6508 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
6509 };
6510
6511 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
6512
6513 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
6514 * the service payload in. */
6515 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6516 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
6517 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
6518 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
6519 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
6520 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
6521 };
6522
6523 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
6524
6525 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
6526 [EXEC_KEYRING_INHERIT] = "inherit",
6527 [EXEC_KEYRING_PRIVATE] = "private",
6528 [EXEC_KEYRING_SHARED] = "shared",
6529 };
6530
6531 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);