]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
basic/path-util: let find_executable_full() optionally return an fd
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "async.h"
43 #include "barrier.h"
44 #include "cap-list.h"
45 #include "capability-util.h"
46 #include "cgroup-setup.h"
47 #include "chown-recursive.h"
48 #include "cpu-set-util.h"
49 #include "def.h"
50 #include "env-file.h"
51 #include "env-util.h"
52 #include "errno-list.h"
53 #include "execute.h"
54 #include "exit-status.h"
55 #include "fd-util.h"
56 #include "fileio.h"
57 #include "format-util.h"
58 #include "fs-util.h"
59 #include "glob-util.h"
60 #include "hexdecoct.h"
61 #include "io-util.h"
62 #include "ioprio.h"
63 #include "label.h"
64 #include "log.h"
65 #include "macro.h"
66 #include "manager.h"
67 #include "memory-util.h"
68 #include "missing_fs.h"
69 #include "mkdir.h"
70 #include "mount-util.h"
71 #include "mountpoint-util.h"
72 #include "namespace.h"
73 #include "parse-util.h"
74 #include "path-util.h"
75 #include "process-util.h"
76 #include "rlimit-util.h"
77 #include "rm-rf.h"
78 #if HAVE_SECCOMP
79 #include "seccomp-util.h"
80 #endif
81 #include "securebits-util.h"
82 #include "selinux-util.h"
83 #include "signal-util.h"
84 #include "smack-util.h"
85 #include "socket-util.h"
86 #include "special.h"
87 #include "stat-util.h"
88 #include "string-table.h"
89 #include "string-util.h"
90 #include "strv.h"
91 #include "syslog-util.h"
92 #include "terminal-util.h"
93 #include "tmpfile-util.h"
94 #include "umask-util.h"
95 #include "unit.h"
96 #include "user-util.h"
97 #include "utmp-wtmp.h"
98
99 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
100 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
101
102 #define SNDBUF_SIZE (8*1024*1024)
103
104 static int shift_fds(int fds[], size_t n_fds) {
105 if (n_fds <= 0)
106 return 0;
107
108 /* Modifies the fds array! (sorts it) */
109
110 assert(fds);
111
112 for (int start = 0;;) {
113 int restart_from = -1;
114
115 for (int i = start; i < (int) n_fds; i++) {
116 int nfd;
117
118 /* Already at right index? */
119 if (fds[i] == i+3)
120 continue;
121
122 nfd = fcntl(fds[i], F_DUPFD, i + 3);
123 if (nfd < 0)
124 return -errno;
125
126 safe_close(fds[i]);
127 fds[i] = nfd;
128
129 /* Hmm, the fd we wanted isn't free? Then
130 * let's remember that and try again from here */
131 if (nfd != i+3 && restart_from < 0)
132 restart_from = i;
133 }
134
135 if (restart_from < 0)
136 break;
137
138 start = restart_from;
139 }
140
141 return 0;
142 }
143
144 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
145 size_t n_fds;
146 int r;
147
148 n_fds = n_socket_fds + n_storage_fds;
149 if (n_fds <= 0)
150 return 0;
151
152 assert(fds);
153
154 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
155 * O_NONBLOCK only applies to socket activation though. */
156
157 for (size_t i = 0; i < n_fds; i++) {
158
159 if (i < n_socket_fds) {
160 r = fd_nonblock(fds[i], nonblock);
161 if (r < 0)
162 return r;
163 }
164
165 /* We unconditionally drop FD_CLOEXEC from the fds,
166 * since after all we want to pass these fds to our
167 * children */
168
169 r = fd_cloexec(fds[i], false);
170 if (r < 0)
171 return r;
172 }
173
174 return 0;
175 }
176
177 static const char *exec_context_tty_path(const ExecContext *context) {
178 assert(context);
179
180 if (context->stdio_as_fds)
181 return NULL;
182
183 if (context->tty_path)
184 return context->tty_path;
185
186 return "/dev/console";
187 }
188
189 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
190 const char *path;
191
192 assert(context);
193
194 path = exec_context_tty_path(context);
195
196 if (context->tty_vhangup) {
197 if (p && p->stdin_fd >= 0)
198 (void) terminal_vhangup_fd(p->stdin_fd);
199 else if (path)
200 (void) terminal_vhangup(path);
201 }
202
203 if (context->tty_reset) {
204 if (p && p->stdin_fd >= 0)
205 (void) reset_terminal_fd(p->stdin_fd, true);
206 else if (path)
207 (void) reset_terminal(path);
208 }
209
210 if (context->tty_vt_disallocate && path)
211 (void) vt_disallocate(path);
212 }
213
214 static bool is_terminal_input(ExecInput i) {
215 return IN_SET(i,
216 EXEC_INPUT_TTY,
217 EXEC_INPUT_TTY_FORCE,
218 EXEC_INPUT_TTY_FAIL);
219 }
220
221 static bool is_terminal_output(ExecOutput o) {
222 return IN_SET(o,
223 EXEC_OUTPUT_TTY,
224 EXEC_OUTPUT_KMSG_AND_CONSOLE,
225 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
226 }
227
228 static bool is_kmsg_output(ExecOutput o) {
229 return IN_SET(o,
230 EXEC_OUTPUT_KMSG,
231 EXEC_OUTPUT_KMSG_AND_CONSOLE);
232 }
233
234 static bool exec_context_needs_term(const ExecContext *c) {
235 assert(c);
236
237 /* Return true if the execution context suggests we should set $TERM to something useful. */
238
239 if (is_terminal_input(c->std_input))
240 return true;
241
242 if (is_terminal_output(c->std_output))
243 return true;
244
245 if (is_terminal_output(c->std_error))
246 return true;
247
248 return !!c->tty_path;
249 }
250
251 static int open_null_as(int flags, int nfd) {
252 int fd;
253
254 assert(nfd >= 0);
255
256 fd = open("/dev/null", flags|O_NOCTTY);
257 if (fd < 0)
258 return -errno;
259
260 return move_fd(fd, nfd, false);
261 }
262
263 static int connect_journal_socket(
264 int fd,
265 const char *log_namespace,
266 uid_t uid,
267 gid_t gid) {
268
269 union sockaddr_union sa;
270 socklen_t sa_len;
271 uid_t olduid = UID_INVALID;
272 gid_t oldgid = GID_INVALID;
273 const char *j;
274 int r;
275
276 j = log_namespace ?
277 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
278 "/run/systemd/journal/stdout";
279 r = sockaddr_un_set_path(&sa.un, j);
280 if (r < 0)
281 return r;
282 sa_len = r;
283
284 if (gid_is_valid(gid)) {
285 oldgid = getgid();
286
287 if (setegid(gid) < 0)
288 return -errno;
289 }
290
291 if (uid_is_valid(uid)) {
292 olduid = getuid();
293
294 if (seteuid(uid) < 0) {
295 r = -errno;
296 goto restore_gid;
297 }
298 }
299
300 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
301
302 /* If we fail to restore the uid or gid, things will likely
303 fail later on. This should only happen if an LSM interferes. */
304
305 if (uid_is_valid(uid))
306 (void) seteuid(olduid);
307
308 restore_gid:
309 if (gid_is_valid(gid))
310 (void) setegid(oldgid);
311
312 return r;
313 }
314
315 static int connect_logger_as(
316 const Unit *unit,
317 const ExecContext *context,
318 const ExecParameters *params,
319 ExecOutput output,
320 const char *ident,
321 int nfd,
322 uid_t uid,
323 gid_t gid) {
324
325 _cleanup_close_ int fd = -1;
326 int r;
327
328 assert(context);
329 assert(params);
330 assert(output < _EXEC_OUTPUT_MAX);
331 assert(ident);
332 assert(nfd >= 0);
333
334 fd = socket(AF_UNIX, SOCK_STREAM, 0);
335 if (fd < 0)
336 return -errno;
337
338 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
339 if (r < 0)
340 return r;
341
342 if (shutdown(fd, SHUT_RD) < 0)
343 return -errno;
344
345 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
346
347 if (dprintf(fd,
348 "%s\n"
349 "%s\n"
350 "%i\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n",
355 context->syslog_identifier ?: ident,
356 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
357 context->syslog_priority,
358 !!context->syslog_level_prefix,
359 false,
360 is_kmsg_output(output),
361 is_terminal_output(output)) < 0)
362 return -errno;
363
364 return move_fd(TAKE_FD(fd), nfd, false);
365 }
366
367 static int open_terminal_as(const char *path, int flags, int nfd) {
368 int fd;
369
370 assert(path);
371 assert(nfd >= 0);
372
373 fd = open_terminal(path, flags | O_NOCTTY);
374 if (fd < 0)
375 return fd;
376
377 return move_fd(fd, nfd, false);
378 }
379
380 static int acquire_path(const char *path, int flags, mode_t mode) {
381 union sockaddr_union sa;
382 socklen_t sa_len;
383 _cleanup_close_ int fd = -1;
384 int r;
385
386 assert(path);
387
388 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
389 flags |= O_CREAT;
390
391 fd = open(path, flags|O_NOCTTY, mode);
392 if (fd >= 0)
393 return TAKE_FD(fd);
394
395 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
396 return -errno;
397
398 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
399
400 r = sockaddr_un_set_path(&sa.un, path);
401 if (r < 0)
402 return r == -EINVAL ? -ENXIO : r;
403 sa_len = r;
404
405 fd = socket(AF_UNIX, SOCK_STREAM, 0);
406 if (fd < 0)
407 return -errno;
408
409 if (connect(fd, &sa.sa, sa_len) < 0)
410 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
411 * indication that this wasn't an AF_UNIX socket after all */
412
413 if ((flags & O_ACCMODE) == O_RDONLY)
414 r = shutdown(fd, SHUT_WR);
415 else if ((flags & O_ACCMODE) == O_WRONLY)
416 r = shutdown(fd, SHUT_RD);
417 else
418 r = 0;
419 if (r < 0)
420 return -errno;
421
422 return TAKE_FD(fd);
423 }
424
425 static int fixup_input(
426 const ExecContext *context,
427 int socket_fd,
428 bool apply_tty_stdin) {
429
430 ExecInput std_input;
431
432 assert(context);
433
434 std_input = context->std_input;
435
436 if (is_terminal_input(std_input) && !apply_tty_stdin)
437 return EXEC_INPUT_NULL;
438
439 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
440 return EXEC_INPUT_NULL;
441
442 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
443 return EXEC_INPUT_NULL;
444
445 return std_input;
446 }
447
448 static int fixup_output(ExecOutput std_output, int socket_fd) {
449
450 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
451 return EXEC_OUTPUT_INHERIT;
452
453 return std_output;
454 }
455
456 static int setup_input(
457 const ExecContext *context,
458 const ExecParameters *params,
459 int socket_fd,
460 const int named_iofds[static 3]) {
461
462 ExecInput i;
463
464 assert(context);
465 assert(params);
466 assert(named_iofds);
467
468 if (params->stdin_fd >= 0) {
469 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
470 return -errno;
471
472 /* Try to make this the controlling tty, if it is a tty, and reset it */
473 if (isatty(STDIN_FILENO)) {
474 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
475 (void) reset_terminal_fd(STDIN_FILENO, true);
476 }
477
478 return STDIN_FILENO;
479 }
480
481 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
482
483 switch (i) {
484
485 case EXEC_INPUT_NULL:
486 return open_null_as(O_RDONLY, STDIN_FILENO);
487
488 case EXEC_INPUT_TTY:
489 case EXEC_INPUT_TTY_FORCE:
490 case EXEC_INPUT_TTY_FAIL: {
491 int fd;
492
493 fd = acquire_terminal(exec_context_tty_path(context),
494 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
495 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
496 ACQUIRE_TERMINAL_WAIT,
497 USEC_INFINITY);
498 if (fd < 0)
499 return fd;
500
501 return move_fd(fd, STDIN_FILENO, false);
502 }
503
504 case EXEC_INPUT_SOCKET:
505 assert(socket_fd >= 0);
506
507 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
508
509 case EXEC_INPUT_NAMED_FD:
510 assert(named_iofds[STDIN_FILENO] >= 0);
511
512 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
513 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
514
515 case EXEC_INPUT_DATA: {
516 int fd;
517
518 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
519 if (fd < 0)
520 return fd;
521
522 return move_fd(fd, STDIN_FILENO, false);
523 }
524
525 case EXEC_INPUT_FILE: {
526 bool rw;
527 int fd;
528
529 assert(context->stdio_file[STDIN_FILENO]);
530
531 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
532 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
533
534 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
535 if (fd < 0)
536 return fd;
537
538 return move_fd(fd, STDIN_FILENO, false);
539 }
540
541 default:
542 assert_not_reached("Unknown input type");
543 }
544 }
545
546 static bool can_inherit_stderr_from_stdout(
547 const ExecContext *context,
548 ExecOutput o,
549 ExecOutput e) {
550
551 assert(context);
552
553 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
554 * stderr fd */
555
556 if (e == EXEC_OUTPUT_INHERIT)
557 return true;
558 if (e != o)
559 return false;
560
561 if (e == EXEC_OUTPUT_NAMED_FD)
562 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
563
564 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
565 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
566
567 return true;
568 }
569
570 static int setup_output(
571 const Unit *unit,
572 const ExecContext *context,
573 const ExecParameters *params,
574 int fileno,
575 int socket_fd,
576 const int named_iofds[static 3],
577 const char *ident,
578 uid_t uid,
579 gid_t gid,
580 dev_t *journal_stream_dev,
581 ino_t *journal_stream_ino) {
582
583 ExecOutput o;
584 ExecInput i;
585 int r;
586
587 assert(unit);
588 assert(context);
589 assert(params);
590 assert(ident);
591 assert(journal_stream_dev);
592 assert(journal_stream_ino);
593
594 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
595
596 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
597 return -errno;
598
599 return STDOUT_FILENO;
600 }
601
602 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
603 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
604 return -errno;
605
606 return STDERR_FILENO;
607 }
608
609 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
610 o = fixup_output(context->std_output, socket_fd);
611
612 if (fileno == STDERR_FILENO) {
613 ExecOutput e;
614 e = fixup_output(context->std_error, socket_fd);
615
616 /* This expects the input and output are already set up */
617
618 /* Don't change the stderr file descriptor if we inherit all
619 * the way and are not on a tty */
620 if (e == EXEC_OUTPUT_INHERIT &&
621 o == EXEC_OUTPUT_INHERIT &&
622 i == EXEC_INPUT_NULL &&
623 !is_terminal_input(context->std_input) &&
624 getppid () != 1)
625 return fileno;
626
627 /* Duplicate from stdout if possible */
628 if (can_inherit_stderr_from_stdout(context, o, e))
629 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
630
631 o = e;
632
633 } else if (o == EXEC_OUTPUT_INHERIT) {
634 /* If input got downgraded, inherit the original value */
635 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
636 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
637
638 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
639 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
640 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
641
642 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
643 if (getppid() != 1)
644 return fileno;
645
646 /* We need to open /dev/null here anew, to get the right access mode. */
647 return open_null_as(O_WRONLY, fileno);
648 }
649
650 switch (o) {
651
652 case EXEC_OUTPUT_NULL:
653 return open_null_as(O_WRONLY, fileno);
654
655 case EXEC_OUTPUT_TTY:
656 if (is_terminal_input(i))
657 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
658
659 /* We don't reset the terminal if this is just about output */
660 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
661
662 case EXEC_OUTPUT_KMSG:
663 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
664 case EXEC_OUTPUT_JOURNAL:
665 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
666 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
667 if (r < 0) {
668 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
669 r = open_null_as(O_WRONLY, fileno);
670 } else {
671 struct stat st;
672
673 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
674 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
675 * services to detect whether they are connected to the journal or not.
676 *
677 * If both stdout and stderr are connected to a stream then let's make sure to store the data
678 * about STDERR as that's usually the best way to do logging. */
679
680 if (fstat(fileno, &st) >= 0 &&
681 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
682 *journal_stream_dev = st.st_dev;
683 *journal_stream_ino = st.st_ino;
684 }
685 }
686 return r;
687
688 case EXEC_OUTPUT_SOCKET:
689 assert(socket_fd >= 0);
690
691 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
692
693 case EXEC_OUTPUT_NAMED_FD:
694 assert(named_iofds[fileno] >= 0);
695
696 (void) fd_nonblock(named_iofds[fileno], false);
697 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
698
699 case EXEC_OUTPUT_FILE:
700 case EXEC_OUTPUT_FILE_APPEND: {
701 bool rw;
702 int fd, flags;
703
704 assert(context->stdio_file[fileno]);
705
706 rw = context->std_input == EXEC_INPUT_FILE &&
707 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
708
709 if (rw)
710 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
711
712 flags = O_WRONLY;
713 if (o == EXEC_OUTPUT_FILE_APPEND)
714 flags |= O_APPEND;
715
716 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
717 if (fd < 0)
718 return fd;
719
720 return move_fd(fd, fileno, 0);
721 }
722
723 default:
724 assert_not_reached("Unknown error type");
725 }
726 }
727
728 static int chown_terminal(int fd, uid_t uid) {
729 int r;
730
731 assert(fd >= 0);
732
733 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
734 if (isatty(fd) < 1) {
735 if (IN_SET(errno, EINVAL, ENOTTY))
736 return 0; /* not a tty */
737
738 return -errno;
739 }
740
741 /* This might fail. What matters are the results. */
742 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
743 if (r < 0)
744 return r;
745
746 return 1;
747 }
748
749 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
750 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
751 int r;
752
753 assert(_saved_stdin);
754 assert(_saved_stdout);
755
756 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
757 if (saved_stdin < 0)
758 return -errno;
759
760 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
761 if (saved_stdout < 0)
762 return -errno;
763
764 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
765 if (fd < 0)
766 return fd;
767
768 r = chown_terminal(fd, getuid());
769 if (r < 0)
770 return r;
771
772 r = reset_terminal_fd(fd, true);
773 if (r < 0)
774 return r;
775
776 r = rearrange_stdio(fd, fd, STDERR_FILENO);
777 fd = -1;
778 if (r < 0)
779 return r;
780
781 *_saved_stdin = saved_stdin;
782 *_saved_stdout = saved_stdout;
783
784 saved_stdin = saved_stdout = -1;
785
786 return 0;
787 }
788
789 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
790 assert(err < 0);
791
792 if (err == -ETIMEDOUT)
793 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
794 else {
795 errno = -err;
796 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
797 }
798 }
799
800 static void write_confirm_error(int err, const char *vc, const Unit *u) {
801 _cleanup_close_ int fd = -1;
802
803 assert(vc);
804
805 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
806 if (fd < 0)
807 return;
808
809 write_confirm_error_fd(err, fd, u);
810 }
811
812 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
813 int r = 0;
814
815 assert(saved_stdin);
816 assert(saved_stdout);
817
818 release_terminal();
819
820 if (*saved_stdin >= 0)
821 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
822 r = -errno;
823
824 if (*saved_stdout >= 0)
825 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
826 r = -errno;
827
828 *saved_stdin = safe_close(*saved_stdin);
829 *saved_stdout = safe_close(*saved_stdout);
830
831 return r;
832 }
833
834 enum {
835 CONFIRM_PRETEND_FAILURE = -1,
836 CONFIRM_PRETEND_SUCCESS = 0,
837 CONFIRM_EXECUTE = 1,
838 };
839
840 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
841 int saved_stdout = -1, saved_stdin = -1, r;
842 _cleanup_free_ char *e = NULL;
843 char c;
844
845 /* For any internal errors, assume a positive response. */
846 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
847 if (r < 0) {
848 write_confirm_error(r, vc, u);
849 return CONFIRM_EXECUTE;
850 }
851
852 /* confirm_spawn might have been disabled while we were sleeping. */
853 if (manager_is_confirm_spawn_disabled(u->manager)) {
854 r = 1;
855 goto restore_stdio;
856 }
857
858 e = ellipsize(cmdline, 60, 100);
859 if (!e) {
860 log_oom();
861 r = CONFIRM_EXECUTE;
862 goto restore_stdio;
863 }
864
865 for (;;) {
866 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
867 if (r < 0) {
868 write_confirm_error_fd(r, STDOUT_FILENO, u);
869 r = CONFIRM_EXECUTE;
870 goto restore_stdio;
871 }
872
873 switch (c) {
874 case 'c':
875 printf("Resuming normal execution.\n");
876 manager_disable_confirm_spawn();
877 r = 1;
878 break;
879 case 'D':
880 unit_dump(u, stdout, " ");
881 continue; /* ask again */
882 case 'f':
883 printf("Failing execution.\n");
884 r = CONFIRM_PRETEND_FAILURE;
885 break;
886 case 'h':
887 printf(" c - continue, proceed without asking anymore\n"
888 " D - dump, show the state of the unit\n"
889 " f - fail, don't execute the command and pretend it failed\n"
890 " h - help\n"
891 " i - info, show a short summary of the unit\n"
892 " j - jobs, show jobs that are in progress\n"
893 " s - skip, don't execute the command and pretend it succeeded\n"
894 " y - yes, execute the command\n");
895 continue; /* ask again */
896 case 'i':
897 printf(" Description: %s\n"
898 " Unit: %s\n"
899 " Command: %s\n",
900 u->id, u->description, cmdline);
901 continue; /* ask again */
902 case 'j':
903 manager_dump_jobs(u->manager, stdout, " ");
904 continue; /* ask again */
905 case 'n':
906 /* 'n' was removed in favor of 'f'. */
907 printf("Didn't understand 'n', did you mean 'f'?\n");
908 continue; /* ask again */
909 case 's':
910 printf("Skipping execution.\n");
911 r = CONFIRM_PRETEND_SUCCESS;
912 break;
913 case 'y':
914 r = CONFIRM_EXECUTE;
915 break;
916 default:
917 assert_not_reached("Unhandled choice");
918 }
919 break;
920 }
921
922 restore_stdio:
923 restore_confirm_stdio(&saved_stdin, &saved_stdout);
924 return r;
925 }
926
927 static int get_fixed_user(const ExecContext *c, const char **user,
928 uid_t *uid, gid_t *gid,
929 const char **home, const char **shell) {
930 int r;
931 const char *name;
932
933 assert(c);
934
935 if (!c->user)
936 return 0;
937
938 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
939 * (i.e. are "/" or "/bin/nologin"). */
940
941 name = c->user;
942 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
943 if (r < 0)
944 return r;
945
946 *user = name;
947 return 0;
948 }
949
950 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
951 int r;
952 const char *name;
953
954 assert(c);
955
956 if (!c->group)
957 return 0;
958
959 name = c->group;
960 r = get_group_creds(&name, gid, 0);
961 if (r < 0)
962 return r;
963
964 *group = name;
965 return 0;
966 }
967
968 static int get_supplementary_groups(const ExecContext *c, const char *user,
969 const char *group, gid_t gid,
970 gid_t **supplementary_gids, int *ngids) {
971 char **i;
972 int r, k = 0;
973 int ngroups_max;
974 bool keep_groups = false;
975 gid_t *groups = NULL;
976 _cleanup_free_ gid_t *l_gids = NULL;
977
978 assert(c);
979
980 /*
981 * If user is given, then lookup GID and supplementary groups list.
982 * We avoid NSS lookups for gid=0. Also we have to initialize groups
983 * here and as early as possible so we keep the list of supplementary
984 * groups of the caller.
985 */
986 if (user && gid_is_valid(gid) && gid != 0) {
987 /* First step, initialize groups from /etc/groups */
988 if (initgroups(user, gid) < 0)
989 return -errno;
990
991 keep_groups = true;
992 }
993
994 if (strv_isempty(c->supplementary_groups))
995 return 0;
996
997 /*
998 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
999 * be positive, otherwise fail.
1000 */
1001 errno = 0;
1002 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1003 if (ngroups_max <= 0)
1004 return errno_or_else(EOPNOTSUPP);
1005
1006 l_gids = new(gid_t, ngroups_max);
1007 if (!l_gids)
1008 return -ENOMEM;
1009
1010 if (keep_groups) {
1011 /*
1012 * Lookup the list of groups that the user belongs to, we
1013 * avoid NSS lookups here too for gid=0.
1014 */
1015 k = ngroups_max;
1016 if (getgrouplist(user, gid, l_gids, &k) < 0)
1017 return -EINVAL;
1018 } else
1019 k = 0;
1020
1021 STRV_FOREACH(i, c->supplementary_groups) {
1022 const char *g;
1023
1024 if (k >= ngroups_max)
1025 return -E2BIG;
1026
1027 g = *i;
1028 r = get_group_creds(&g, l_gids+k, 0);
1029 if (r < 0)
1030 return r;
1031
1032 k++;
1033 }
1034
1035 /*
1036 * Sets ngids to zero to drop all supplementary groups, happens
1037 * when we are under root and SupplementaryGroups= is empty.
1038 */
1039 if (k == 0) {
1040 *ngids = 0;
1041 return 0;
1042 }
1043
1044 /* Otherwise get the final list of supplementary groups */
1045 groups = memdup(l_gids, sizeof(gid_t) * k);
1046 if (!groups)
1047 return -ENOMEM;
1048
1049 *supplementary_gids = groups;
1050 *ngids = k;
1051
1052 groups = NULL;
1053
1054 return 0;
1055 }
1056
1057 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1058 int r;
1059
1060 /* Handle SupplementaryGroups= if it is not empty */
1061 if (ngids > 0) {
1062 r = maybe_setgroups(ngids, supplementary_gids);
1063 if (r < 0)
1064 return r;
1065 }
1066
1067 if (gid_is_valid(gid)) {
1068 /* Then set our gids */
1069 if (setresgid(gid, gid, gid) < 0)
1070 return -errno;
1071 }
1072
1073 return 0;
1074 }
1075
1076 static int set_securebits(int bits, int mask) {
1077 int current, applied;
1078 current = prctl(PR_GET_SECUREBITS);
1079 if (current < 0)
1080 return -errno;
1081 /* Clear all securebits defined in mask and set bits */
1082 applied = (current & ~mask) | bits;
1083 if (current == applied)
1084 return 0;
1085 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1086 return -errno;
1087 return 1;
1088 }
1089
1090 static int enforce_user(const ExecContext *context, uid_t uid) {
1091 assert(context);
1092 int r;
1093
1094 if (!uid_is_valid(uid))
1095 return 0;
1096
1097 /* Sets (but doesn't look up) the uid and make sure we keep the
1098 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1099 * required, so we also need keep-caps in this case.
1100 */
1101
1102 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1103
1104 /* First step: If we need to keep capabilities but
1105 * drop privileges we need to make sure we keep our
1106 * caps, while we drop privileges. */
1107 if (uid != 0) {
1108 /* Add KEEP_CAPS to the securebits */
1109 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1110 if (r < 0)
1111 return r;
1112 }
1113 }
1114
1115 /* Second step: actually set the uids */
1116 if (setresuid(uid, uid, uid) < 0)
1117 return -errno;
1118
1119 /* At this point we should have all necessary capabilities but
1120 are otherwise a normal user. However, the caps might got
1121 corrupted due to the setresuid() so we need clean them up
1122 later. This is done outside of this call. */
1123
1124 return 0;
1125 }
1126
1127 #if HAVE_PAM
1128
1129 static int null_conv(
1130 int num_msg,
1131 const struct pam_message **msg,
1132 struct pam_response **resp,
1133 void *appdata_ptr) {
1134
1135 /* We don't support conversations */
1136
1137 return PAM_CONV_ERR;
1138 }
1139
1140 #endif
1141
1142 static int setup_pam(
1143 const char *name,
1144 const char *user,
1145 uid_t uid,
1146 gid_t gid,
1147 const char *tty,
1148 char ***env,
1149 const int fds[], size_t n_fds) {
1150
1151 #if HAVE_PAM
1152
1153 static const struct pam_conv conv = {
1154 .conv = null_conv,
1155 .appdata_ptr = NULL
1156 };
1157
1158 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1159 pam_handle_t *handle = NULL;
1160 sigset_t old_ss;
1161 int pam_code = PAM_SUCCESS, r;
1162 char **nv, **e = NULL;
1163 bool close_session = false;
1164 pid_t pam_pid = 0, parent_pid;
1165 int flags = 0;
1166
1167 assert(name);
1168 assert(user);
1169 assert(env);
1170
1171 /* We set up PAM in the parent process, then fork. The child
1172 * will then stay around until killed via PR_GET_PDEATHSIG or
1173 * systemd via the cgroup logic. It will then remove the PAM
1174 * session again. The parent process will exec() the actual
1175 * daemon. We do things this way to ensure that the main PID
1176 * of the daemon is the one we initially fork()ed. */
1177
1178 r = barrier_create(&barrier);
1179 if (r < 0)
1180 goto fail;
1181
1182 if (log_get_max_level() < LOG_DEBUG)
1183 flags |= PAM_SILENT;
1184
1185 pam_code = pam_start(name, user, &conv, &handle);
1186 if (pam_code != PAM_SUCCESS) {
1187 handle = NULL;
1188 goto fail;
1189 }
1190
1191 if (!tty) {
1192 _cleanup_free_ char *q = NULL;
1193
1194 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1195 * out if that's the case, and read the TTY off it. */
1196
1197 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1198 tty = strjoina("/dev/", q);
1199 }
1200
1201 if (tty) {
1202 pam_code = pam_set_item(handle, PAM_TTY, tty);
1203 if (pam_code != PAM_SUCCESS)
1204 goto fail;
1205 }
1206
1207 STRV_FOREACH(nv, *env) {
1208 pam_code = pam_putenv(handle, *nv);
1209 if (pam_code != PAM_SUCCESS)
1210 goto fail;
1211 }
1212
1213 pam_code = pam_acct_mgmt(handle, flags);
1214 if (pam_code != PAM_SUCCESS)
1215 goto fail;
1216
1217 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1218 if (pam_code != PAM_SUCCESS)
1219 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1220
1221 pam_code = pam_open_session(handle, flags);
1222 if (pam_code != PAM_SUCCESS)
1223 goto fail;
1224
1225 close_session = true;
1226
1227 e = pam_getenvlist(handle);
1228 if (!e) {
1229 pam_code = PAM_BUF_ERR;
1230 goto fail;
1231 }
1232
1233 /* Block SIGTERM, so that we know that it won't get lost in
1234 * the child */
1235
1236 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1237
1238 parent_pid = getpid_cached();
1239
1240 r = safe_fork("(sd-pam)", 0, &pam_pid);
1241 if (r < 0)
1242 goto fail;
1243 if (r == 0) {
1244 int sig, ret = EXIT_PAM;
1245
1246 /* The child's job is to reset the PAM session on
1247 * termination */
1248 barrier_set_role(&barrier, BARRIER_CHILD);
1249
1250 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1251 * those fds are open here that have been opened by PAM. */
1252 (void) close_many(fds, n_fds);
1253
1254 /* Drop privileges - we don't need any to pam_close_session
1255 * and this will make PR_SET_PDEATHSIG work in most cases.
1256 * If this fails, ignore the error - but expect sd-pam threads
1257 * to fail to exit normally */
1258
1259 r = maybe_setgroups(0, NULL);
1260 if (r < 0)
1261 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1262 if (setresgid(gid, gid, gid) < 0)
1263 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1264 if (setresuid(uid, uid, uid) < 0)
1265 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1266
1267 (void) ignore_signals(SIGPIPE, -1);
1268
1269 /* Wait until our parent died. This will only work if
1270 * the above setresuid() succeeds, otherwise the kernel
1271 * will not allow unprivileged parents kill their privileged
1272 * children this way. We rely on the control groups kill logic
1273 * to do the rest for us. */
1274 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1275 goto child_finish;
1276
1277 /* Tell the parent that our setup is done. This is especially
1278 * important regarding dropping privileges. Otherwise, unit
1279 * setup might race against our setresuid(2) call.
1280 *
1281 * If the parent aborted, we'll detect this below, hence ignore
1282 * return failure here. */
1283 (void) barrier_place(&barrier);
1284
1285 /* Check if our parent process might already have died? */
1286 if (getppid() == parent_pid) {
1287 sigset_t ss;
1288
1289 assert_se(sigemptyset(&ss) >= 0);
1290 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1291
1292 for (;;) {
1293 if (sigwait(&ss, &sig) < 0) {
1294 if (errno == EINTR)
1295 continue;
1296
1297 goto child_finish;
1298 }
1299
1300 assert(sig == SIGTERM);
1301 break;
1302 }
1303 }
1304
1305 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1306 if (pam_code != PAM_SUCCESS)
1307 goto child_finish;
1308
1309 /* If our parent died we'll end the session */
1310 if (getppid() != parent_pid) {
1311 pam_code = pam_close_session(handle, flags);
1312 if (pam_code != PAM_SUCCESS)
1313 goto child_finish;
1314 }
1315
1316 ret = 0;
1317
1318 child_finish:
1319 pam_end(handle, pam_code | flags);
1320 _exit(ret);
1321 }
1322
1323 barrier_set_role(&barrier, BARRIER_PARENT);
1324
1325 /* If the child was forked off successfully it will do all the
1326 * cleanups, so forget about the handle here. */
1327 handle = NULL;
1328
1329 /* Unblock SIGTERM again in the parent */
1330 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1331
1332 /* We close the log explicitly here, since the PAM modules
1333 * might have opened it, but we don't want this fd around. */
1334 closelog();
1335
1336 /* Synchronously wait for the child to initialize. We don't care for
1337 * errors as we cannot recover. However, warn loudly if it happens. */
1338 if (!barrier_place_and_sync(&barrier))
1339 log_error("PAM initialization failed");
1340
1341 return strv_free_and_replace(*env, e);
1342
1343 fail:
1344 if (pam_code != PAM_SUCCESS) {
1345 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1346 r = -EPERM; /* PAM errors do not map to errno */
1347 } else
1348 log_error_errno(r, "PAM failed: %m");
1349
1350 if (handle) {
1351 if (close_session)
1352 pam_code = pam_close_session(handle, flags);
1353
1354 pam_end(handle, pam_code | flags);
1355 }
1356
1357 strv_free(e);
1358 closelog();
1359
1360 return r;
1361 #else
1362 return 0;
1363 #endif
1364 }
1365
1366 static void rename_process_from_path(const char *path) {
1367 char process_name[11];
1368 const char *p;
1369 size_t l;
1370
1371 /* This resulting string must fit in 10 chars (i.e. the length
1372 * of "/sbin/init") to look pretty in /bin/ps */
1373
1374 p = basename(path);
1375 if (isempty(p)) {
1376 rename_process("(...)");
1377 return;
1378 }
1379
1380 l = strlen(p);
1381 if (l > 8) {
1382 /* The end of the process name is usually more
1383 * interesting, since the first bit might just be
1384 * "systemd-" */
1385 p = p + l - 8;
1386 l = 8;
1387 }
1388
1389 process_name[0] = '(';
1390 memcpy(process_name+1, p, l);
1391 process_name[1+l] = ')';
1392 process_name[1+l+1] = 0;
1393
1394 rename_process(process_name);
1395 }
1396
1397 static bool context_has_address_families(const ExecContext *c) {
1398 assert(c);
1399
1400 return c->address_families_allow_list ||
1401 !set_isempty(c->address_families);
1402 }
1403
1404 static bool context_has_syscall_filters(const ExecContext *c) {
1405 assert(c);
1406
1407 return c->syscall_allow_list ||
1408 !hashmap_isempty(c->syscall_filter);
1409 }
1410
1411 static bool context_has_syscall_logs(const ExecContext *c) {
1412 assert(c);
1413
1414 return c->syscall_log_allow_list ||
1415 !hashmap_isempty(c->syscall_log);
1416 }
1417
1418 static bool context_has_no_new_privileges(const ExecContext *c) {
1419 assert(c);
1420
1421 if (c->no_new_privileges)
1422 return true;
1423
1424 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1425 return false;
1426
1427 /* We need NNP if we have any form of seccomp and are unprivileged */
1428 return context_has_address_families(c) ||
1429 c->memory_deny_write_execute ||
1430 c->restrict_realtime ||
1431 c->restrict_suid_sgid ||
1432 exec_context_restrict_namespaces_set(c) ||
1433 c->protect_clock ||
1434 c->protect_kernel_tunables ||
1435 c->protect_kernel_modules ||
1436 c->protect_kernel_logs ||
1437 c->private_devices ||
1438 context_has_syscall_filters(c) ||
1439 context_has_syscall_logs(c) ||
1440 !set_isempty(c->syscall_archs) ||
1441 c->lock_personality ||
1442 c->protect_hostname;
1443 }
1444
1445 static bool exec_context_has_credentials(const ExecContext *context) {
1446
1447 assert(context);
1448
1449 return !hashmap_isempty(context->set_credentials) ||
1450 context->load_credentials;
1451 }
1452
1453 #if HAVE_SECCOMP
1454
1455 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1456
1457 if (is_seccomp_available())
1458 return false;
1459
1460 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1461 return true;
1462 }
1463
1464 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1465 uint32_t negative_action, default_action, action;
1466 int r;
1467
1468 assert(u);
1469 assert(c);
1470
1471 if (!context_has_syscall_filters(c))
1472 return 0;
1473
1474 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1475 return 0;
1476
1477 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1478
1479 if (c->syscall_allow_list) {
1480 default_action = negative_action;
1481 action = SCMP_ACT_ALLOW;
1482 } else {
1483 default_action = SCMP_ACT_ALLOW;
1484 action = negative_action;
1485 }
1486
1487 if (needs_ambient_hack) {
1488 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1489 if (r < 0)
1490 return r;
1491 }
1492
1493 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1494 }
1495
1496 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1497 #ifdef SCMP_ACT_LOG
1498 uint32_t default_action, action;
1499 #endif
1500
1501 assert(u);
1502 assert(c);
1503
1504 if (!context_has_syscall_logs(c))
1505 return 0;
1506
1507 #ifdef SCMP_ACT_LOG
1508 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1509 return 0;
1510
1511 if (c->syscall_log_allow_list) {
1512 /* Log nothing but the ones listed */
1513 default_action = SCMP_ACT_ALLOW;
1514 action = SCMP_ACT_LOG;
1515 } else {
1516 /* Log everything but the ones listed */
1517 default_action = SCMP_ACT_LOG;
1518 action = SCMP_ACT_ALLOW;
1519 }
1520
1521 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1522 #else
1523 /* old libseccomp */
1524 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1525 return 0;
1526 #endif
1527 }
1528
1529 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1530 assert(u);
1531 assert(c);
1532
1533 if (set_isempty(c->syscall_archs))
1534 return 0;
1535
1536 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1537 return 0;
1538
1539 return seccomp_restrict_archs(c->syscall_archs);
1540 }
1541
1542 static int apply_address_families(const Unit* u, const ExecContext *c) {
1543 assert(u);
1544 assert(c);
1545
1546 if (!context_has_address_families(c))
1547 return 0;
1548
1549 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1550 return 0;
1551
1552 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1553 }
1554
1555 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1556 assert(u);
1557 assert(c);
1558
1559 if (!c->memory_deny_write_execute)
1560 return 0;
1561
1562 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1563 return 0;
1564
1565 return seccomp_memory_deny_write_execute();
1566 }
1567
1568 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1569 assert(u);
1570 assert(c);
1571
1572 if (!c->restrict_realtime)
1573 return 0;
1574
1575 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1576 return 0;
1577
1578 return seccomp_restrict_realtime();
1579 }
1580
1581 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1582 assert(u);
1583 assert(c);
1584
1585 if (!c->restrict_suid_sgid)
1586 return 0;
1587
1588 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1589 return 0;
1590
1591 return seccomp_restrict_suid_sgid();
1592 }
1593
1594 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1595 assert(u);
1596 assert(c);
1597
1598 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1599 * let's protect even those systems where this is left on in the kernel. */
1600
1601 if (!c->protect_kernel_tunables)
1602 return 0;
1603
1604 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1605 return 0;
1606
1607 return seccomp_protect_sysctl();
1608 }
1609
1610 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1611 assert(u);
1612 assert(c);
1613
1614 /* Turn off module syscalls on ProtectKernelModules=yes */
1615
1616 if (!c->protect_kernel_modules)
1617 return 0;
1618
1619 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1620 return 0;
1621
1622 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1623 }
1624
1625 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1626 assert(u);
1627 assert(c);
1628
1629 if (!c->protect_kernel_logs)
1630 return 0;
1631
1632 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1633 return 0;
1634
1635 return seccomp_protect_syslog();
1636 }
1637
1638 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1639 assert(u);
1640 assert(c);
1641
1642 if (!c->protect_clock)
1643 return 0;
1644
1645 if (skip_seccomp_unavailable(u, "ProtectClock="))
1646 return 0;
1647
1648 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1649 }
1650
1651 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1652 assert(u);
1653 assert(c);
1654
1655 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1656
1657 if (!c->private_devices)
1658 return 0;
1659
1660 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1661 return 0;
1662
1663 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1664 }
1665
1666 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1667 assert(u);
1668 assert(c);
1669
1670 if (!exec_context_restrict_namespaces_set(c))
1671 return 0;
1672
1673 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1674 return 0;
1675
1676 return seccomp_restrict_namespaces(c->restrict_namespaces);
1677 }
1678
1679 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1680 unsigned long personality;
1681 int r;
1682
1683 assert(u);
1684 assert(c);
1685
1686 if (!c->lock_personality)
1687 return 0;
1688
1689 if (skip_seccomp_unavailable(u, "LockPersonality="))
1690 return 0;
1691
1692 personality = c->personality;
1693
1694 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1695 if (personality == PERSONALITY_INVALID) {
1696
1697 r = opinionated_personality(&personality);
1698 if (r < 0)
1699 return r;
1700 }
1701
1702 return seccomp_lock_personality(personality);
1703 }
1704
1705 #endif
1706
1707 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1708 assert(u);
1709 assert(c);
1710
1711 if (!c->protect_hostname)
1712 return 0;
1713
1714 if (ns_type_supported(NAMESPACE_UTS)) {
1715 if (unshare(CLONE_NEWUTS) < 0) {
1716 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1717 *ret_exit_status = EXIT_NAMESPACE;
1718 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1719 }
1720
1721 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1722 }
1723 } else
1724 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1725
1726 #if HAVE_SECCOMP
1727 int r;
1728
1729 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1730 return 0;
1731
1732 r = seccomp_protect_hostname();
1733 if (r < 0) {
1734 *ret_exit_status = EXIT_SECCOMP;
1735 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1736 }
1737 #endif
1738
1739 return 0;
1740 }
1741
1742 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1743 assert(idle_pipe);
1744
1745 idle_pipe[1] = safe_close(idle_pipe[1]);
1746 idle_pipe[2] = safe_close(idle_pipe[2]);
1747
1748 if (idle_pipe[0] >= 0) {
1749 int r;
1750
1751 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1752
1753 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1754 ssize_t n;
1755
1756 /* Signal systemd that we are bored and want to continue. */
1757 n = write(idle_pipe[3], "x", 1);
1758 if (n > 0)
1759 /* Wait for systemd to react to the signal above. */
1760 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1761 }
1762
1763 idle_pipe[0] = safe_close(idle_pipe[0]);
1764
1765 }
1766
1767 idle_pipe[3] = safe_close(idle_pipe[3]);
1768 }
1769
1770 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1771
1772 static int build_environment(
1773 const Unit *u,
1774 const ExecContext *c,
1775 const ExecParameters *p,
1776 size_t n_fds,
1777 const char *home,
1778 const char *username,
1779 const char *shell,
1780 dev_t journal_stream_dev,
1781 ino_t journal_stream_ino,
1782 char ***ret) {
1783
1784 _cleanup_strv_free_ char **our_env = NULL;
1785 size_t n_env = 0;
1786 char *x;
1787
1788 assert(u);
1789 assert(c);
1790 assert(p);
1791 assert(ret);
1792
1793 #define N_ENV_VARS 16
1794 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1795 if (!our_env)
1796 return -ENOMEM;
1797
1798 if (n_fds > 0) {
1799 _cleanup_free_ char *joined = NULL;
1800
1801 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1802 return -ENOMEM;
1803 our_env[n_env++] = x;
1804
1805 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1806 return -ENOMEM;
1807 our_env[n_env++] = x;
1808
1809 joined = strv_join(p->fd_names, ":");
1810 if (!joined)
1811 return -ENOMEM;
1812
1813 x = strjoin("LISTEN_FDNAMES=", joined);
1814 if (!x)
1815 return -ENOMEM;
1816 our_env[n_env++] = x;
1817 }
1818
1819 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1820 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1821 return -ENOMEM;
1822 our_env[n_env++] = x;
1823
1824 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1825 return -ENOMEM;
1826 our_env[n_env++] = x;
1827 }
1828
1829 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1830 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1831 * check the database directly. */
1832 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1833 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1834 if (!x)
1835 return -ENOMEM;
1836 our_env[n_env++] = x;
1837 }
1838
1839 if (home) {
1840 x = strjoin("HOME=", home);
1841 if (!x)
1842 return -ENOMEM;
1843
1844 path_simplify(x + 5, true);
1845 our_env[n_env++] = x;
1846 }
1847
1848 if (username) {
1849 x = strjoin("LOGNAME=", username);
1850 if (!x)
1851 return -ENOMEM;
1852 our_env[n_env++] = x;
1853
1854 x = strjoin("USER=", username);
1855 if (!x)
1856 return -ENOMEM;
1857 our_env[n_env++] = x;
1858 }
1859
1860 if (shell) {
1861 x = strjoin("SHELL=", shell);
1862 if (!x)
1863 return -ENOMEM;
1864
1865 path_simplify(x + 6, true);
1866 our_env[n_env++] = x;
1867 }
1868
1869 if (!sd_id128_is_null(u->invocation_id)) {
1870 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1871 return -ENOMEM;
1872
1873 our_env[n_env++] = x;
1874 }
1875
1876 if (exec_context_needs_term(c)) {
1877 const char *tty_path, *term = NULL;
1878
1879 tty_path = exec_context_tty_path(c);
1880
1881 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1882 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1883 * container manager passes to PID 1 ends up all the way in the console login shown. */
1884
1885 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1886 term = getenv("TERM");
1887
1888 if (!term)
1889 term = default_term_for_tty(tty_path);
1890
1891 x = strjoin("TERM=", term);
1892 if (!x)
1893 return -ENOMEM;
1894 our_env[n_env++] = x;
1895 }
1896
1897 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1898 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1899 return -ENOMEM;
1900
1901 our_env[n_env++] = x;
1902 }
1903
1904 if (c->log_namespace) {
1905 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1906 if (!x)
1907 return -ENOMEM;
1908
1909 our_env[n_env++] = x;
1910 }
1911
1912 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1913 _cleanup_free_ char *pre = NULL, *joined = NULL;
1914 const char *n;
1915
1916 if (!p->prefix[t])
1917 continue;
1918
1919 if (strv_isempty(c->directories[t].paths))
1920 continue;
1921
1922 n = exec_directory_env_name_to_string(t);
1923 if (!n)
1924 continue;
1925
1926 pre = strjoin(p->prefix[t], "/");
1927 if (!pre)
1928 return -ENOMEM;
1929
1930 joined = strv_join_full(c->directories[t].paths, ":", pre, true);
1931 if (!joined)
1932 return -ENOMEM;
1933
1934 x = strjoin(n, "=", joined);
1935 if (!x)
1936 return -ENOMEM;
1937
1938 our_env[n_env++] = x;
1939 }
1940
1941 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1942 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1943 if (!x)
1944 return -ENOMEM;
1945
1946 our_env[n_env++] = x;
1947 }
1948
1949 our_env[n_env++] = NULL;
1950 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1951 #undef N_ENV_VARS
1952
1953 *ret = TAKE_PTR(our_env);
1954
1955 return 0;
1956 }
1957
1958 static int build_pass_environment(const ExecContext *c, char ***ret) {
1959 _cleanup_strv_free_ char **pass_env = NULL;
1960 size_t n_env = 0, n_bufsize = 0;
1961 char **i;
1962
1963 STRV_FOREACH(i, c->pass_environment) {
1964 _cleanup_free_ char *x = NULL;
1965 char *v;
1966
1967 v = getenv(*i);
1968 if (!v)
1969 continue;
1970 x = strjoin(*i, "=", v);
1971 if (!x)
1972 return -ENOMEM;
1973
1974 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1975 return -ENOMEM;
1976
1977 pass_env[n_env++] = TAKE_PTR(x);
1978 pass_env[n_env] = NULL;
1979 }
1980
1981 *ret = TAKE_PTR(pass_env);
1982
1983 return 0;
1984 }
1985
1986 static bool exec_needs_mount_namespace(
1987 const ExecContext *context,
1988 const ExecParameters *params,
1989 const ExecRuntime *runtime) {
1990
1991 assert(context);
1992 assert(params);
1993
1994 if (context->root_image)
1995 return true;
1996
1997 if (!strv_isempty(context->read_write_paths) ||
1998 !strv_isempty(context->read_only_paths) ||
1999 !strv_isempty(context->inaccessible_paths))
2000 return true;
2001
2002 if (context->n_bind_mounts > 0)
2003 return true;
2004
2005 if (context->n_temporary_filesystems > 0)
2006 return true;
2007
2008 if (context->n_mount_images > 0)
2009 return true;
2010
2011 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2012 return true;
2013
2014 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2015 return true;
2016
2017 if (context->private_devices ||
2018 context->private_mounts ||
2019 context->protect_system != PROTECT_SYSTEM_NO ||
2020 context->protect_home != PROTECT_HOME_NO ||
2021 context->protect_kernel_tunables ||
2022 context->protect_kernel_modules ||
2023 context->protect_kernel_logs ||
2024 context->protect_control_groups ||
2025 context->protect_proc != PROTECT_PROC_DEFAULT ||
2026 context->proc_subset != PROC_SUBSET_ALL)
2027 return true;
2028
2029 if (context->root_directory) {
2030 if (exec_context_get_effective_mount_apivfs(context))
2031 return true;
2032
2033 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2034 if (!params->prefix[t])
2035 continue;
2036
2037 if (!strv_isempty(context->directories[t].paths))
2038 return true;
2039 }
2040 }
2041
2042 if (context->dynamic_user &&
2043 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
2044 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
2045 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
2046 return true;
2047
2048 if (context->log_namespace)
2049 return true;
2050
2051 return false;
2052 }
2053
2054 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2055 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2056 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
2057 _cleanup_close_ int unshare_ready_fd = -1;
2058 _cleanup_(sigkill_waitp) pid_t pid = 0;
2059 uint64_t c = 1;
2060 ssize_t n;
2061 int r;
2062
2063 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2064 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2065 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2066 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2067 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2068 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2069 * continues execution normally.
2070 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2071 * does not need CAP_SETUID to write the single line mapping to itself. */
2072
2073 /* Can only set up multiple mappings with CAP_SETUID. */
2074 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2075 r = asprintf(&uid_map,
2076 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2077 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2078 ouid, ouid, uid, uid);
2079 else
2080 r = asprintf(&uid_map,
2081 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2082 ouid, ouid);
2083
2084 if (r < 0)
2085 return -ENOMEM;
2086
2087 /* Can only set up multiple mappings with CAP_SETGID. */
2088 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2089 r = asprintf(&gid_map,
2090 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2091 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2092 ogid, ogid, gid, gid);
2093 else
2094 r = asprintf(&gid_map,
2095 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2096 ogid, ogid);
2097
2098 if (r < 0)
2099 return -ENOMEM;
2100
2101 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2102 * namespace. */
2103 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2104 if (unshare_ready_fd < 0)
2105 return -errno;
2106
2107 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2108 * failed. */
2109 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2110 return -errno;
2111
2112 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2113 if (r < 0)
2114 return r;
2115 if (r == 0) {
2116 _cleanup_close_ int fd = -1;
2117 const char *a;
2118 pid_t ppid;
2119
2120 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2121 * here, after the parent opened its own user namespace. */
2122
2123 ppid = getppid();
2124 errno_pipe[0] = safe_close(errno_pipe[0]);
2125
2126 /* Wait until the parent unshared the user namespace */
2127 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2128 r = -errno;
2129 goto child_fail;
2130 }
2131
2132 /* Disable the setgroups() system call in the child user namespace, for good. */
2133 a = procfs_file_alloca(ppid, "setgroups");
2134 fd = open(a, O_WRONLY|O_CLOEXEC);
2135 if (fd < 0) {
2136 if (errno != ENOENT) {
2137 r = -errno;
2138 goto child_fail;
2139 }
2140
2141 /* If the file is missing the kernel is too old, let's continue anyway. */
2142 } else {
2143 if (write(fd, "deny\n", 5) < 0) {
2144 r = -errno;
2145 goto child_fail;
2146 }
2147
2148 fd = safe_close(fd);
2149 }
2150
2151 /* First write the GID map */
2152 a = procfs_file_alloca(ppid, "gid_map");
2153 fd = open(a, O_WRONLY|O_CLOEXEC);
2154 if (fd < 0) {
2155 r = -errno;
2156 goto child_fail;
2157 }
2158 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2159 r = -errno;
2160 goto child_fail;
2161 }
2162 fd = safe_close(fd);
2163
2164 /* The write the UID map */
2165 a = procfs_file_alloca(ppid, "uid_map");
2166 fd = open(a, O_WRONLY|O_CLOEXEC);
2167 if (fd < 0) {
2168 r = -errno;
2169 goto child_fail;
2170 }
2171 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2172 r = -errno;
2173 goto child_fail;
2174 }
2175
2176 _exit(EXIT_SUCCESS);
2177
2178 child_fail:
2179 (void) write(errno_pipe[1], &r, sizeof(r));
2180 _exit(EXIT_FAILURE);
2181 }
2182
2183 errno_pipe[1] = safe_close(errno_pipe[1]);
2184
2185 if (unshare(CLONE_NEWUSER) < 0)
2186 return -errno;
2187
2188 /* Let the child know that the namespace is ready now */
2189 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2190 return -errno;
2191
2192 /* Try to read an error code from the child */
2193 n = read(errno_pipe[0], &r, sizeof(r));
2194 if (n < 0)
2195 return -errno;
2196 if (n == sizeof(r)) { /* an error code was sent to us */
2197 if (r < 0)
2198 return r;
2199 return -EIO;
2200 }
2201 if (n != 0) /* on success we should have read 0 bytes */
2202 return -EIO;
2203
2204 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2205 pid = 0;
2206 if (r < 0)
2207 return r;
2208 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2209 return -EIO;
2210
2211 return 0;
2212 }
2213
2214 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2215 if (!context->dynamic_user)
2216 return false;
2217
2218 if (type == EXEC_DIRECTORY_CONFIGURATION)
2219 return false;
2220
2221 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2222 return false;
2223
2224 return true;
2225 }
2226
2227 static int setup_exec_directory(
2228 const ExecContext *context,
2229 const ExecParameters *params,
2230 uid_t uid,
2231 gid_t gid,
2232 ExecDirectoryType type,
2233 int *exit_status) {
2234
2235 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2236 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2237 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2238 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2239 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2240 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2241 };
2242 char **rt;
2243 int r;
2244
2245 assert(context);
2246 assert(params);
2247 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2248 assert(exit_status);
2249
2250 if (!params->prefix[type])
2251 return 0;
2252
2253 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2254 if (!uid_is_valid(uid))
2255 uid = 0;
2256 if (!gid_is_valid(gid))
2257 gid = 0;
2258 }
2259
2260 STRV_FOREACH(rt, context->directories[type].paths) {
2261 _cleanup_free_ char *p = NULL, *pp = NULL;
2262
2263 p = path_join(params->prefix[type], *rt);
2264 if (!p) {
2265 r = -ENOMEM;
2266 goto fail;
2267 }
2268
2269 r = mkdir_parents_label(p, 0755);
2270 if (r < 0)
2271 goto fail;
2272
2273 if (exec_directory_is_private(context, type)) {
2274 _cleanup_free_ char *private_root = NULL;
2275
2276 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2277 * case we want to avoid leaving a directory around fully accessible that is owned by
2278 * a dynamic user whose UID is later on reused. To lock this down we use the same
2279 * trick used by container managers to prohibit host users to get access to files of
2280 * the same UID in containers: we place everything inside a directory that has an
2281 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2282 * for unprivileged host code. We then use fs namespacing to make this directory
2283 * permeable for the service itself.
2284 *
2285 * Specifically: for a service which wants a special directory "foo/" we first create
2286 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2287 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2288 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2289 * unprivileged host users can't look into it. Inside of the namespace of the unit
2290 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2291 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2292 * for the service and making sure it only gets access to the dirs it needs but no
2293 * others. Tricky? Yes, absolutely, but it works!
2294 *
2295 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2296 * to be owned by the service itself.
2297 *
2298 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2299 * for sharing files or sockets with other services. */
2300
2301 private_root = path_join(params->prefix[type], "private");
2302 if (!private_root) {
2303 r = -ENOMEM;
2304 goto fail;
2305 }
2306
2307 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2308 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2309 if (r < 0)
2310 goto fail;
2311
2312 pp = path_join(private_root, *rt);
2313 if (!pp) {
2314 r = -ENOMEM;
2315 goto fail;
2316 }
2317
2318 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2319 r = mkdir_parents_label(pp, 0755);
2320 if (r < 0)
2321 goto fail;
2322
2323 if (is_dir(p, false) > 0 &&
2324 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2325
2326 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2327 * it over. Most likely the service has been upgraded from one that didn't use
2328 * DynamicUser=1, to one that does. */
2329
2330 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2331 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2332 exec_directory_type_to_string(type), p, pp);
2333
2334 if (rename(p, pp) < 0) {
2335 r = -errno;
2336 goto fail;
2337 }
2338 } else {
2339 /* Otherwise, create the actual directory for the service */
2340
2341 r = mkdir_label(pp, context->directories[type].mode);
2342 if (r < 0 && r != -EEXIST)
2343 goto fail;
2344 }
2345
2346 /* And link it up from the original place */
2347 r = symlink_idempotent(pp, p, true);
2348 if (r < 0)
2349 goto fail;
2350
2351 } else {
2352 _cleanup_free_ char *target = NULL;
2353
2354 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2355 readlink_and_make_absolute(p, &target) >= 0) {
2356 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2357
2358 /* This already exists and is a symlink? Interesting. Maybe it's one created
2359 * by DynamicUser=1 (see above)?
2360 *
2361 * We do this for all directory types except for ConfigurationDirectory=,
2362 * since they all support the private/ symlink logic at least in some
2363 * configurations, see above. */
2364
2365 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2366 if (r < 0)
2367 goto fail;
2368
2369 q = path_join(params->prefix[type], "private", *rt);
2370 if (!q) {
2371 r = -ENOMEM;
2372 goto fail;
2373 }
2374
2375 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2376 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2377 if (r < 0)
2378 goto fail;
2379
2380 if (path_equal(q_resolved, target_resolved)) {
2381
2382 /* Hmm, apparently DynamicUser= was once turned on for this service,
2383 * but is no longer. Let's move the directory back up. */
2384
2385 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2386 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2387 exec_directory_type_to_string(type), q, p);
2388
2389 if (unlink(p) < 0) {
2390 r = -errno;
2391 goto fail;
2392 }
2393
2394 if (rename(q, p) < 0) {
2395 r = -errno;
2396 goto fail;
2397 }
2398 }
2399 }
2400
2401 r = mkdir_label(p, context->directories[type].mode);
2402 if (r < 0) {
2403 if (r != -EEXIST)
2404 goto fail;
2405
2406 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2407 struct stat st;
2408
2409 /* Don't change the owner/access mode of the configuration directory,
2410 * as in the common case it is not written to by a service, and shall
2411 * not be writable. */
2412
2413 if (stat(p, &st) < 0) {
2414 r = -errno;
2415 goto fail;
2416 }
2417
2418 /* Still complain if the access mode doesn't match */
2419 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2420 log_warning("%s \'%s\' already exists but the mode is different. "
2421 "(File system: %o %sMode: %o)",
2422 exec_directory_type_to_string(type), *rt,
2423 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2424
2425 continue;
2426 }
2427 }
2428 }
2429
2430 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2431 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2432 * current UID/GID ownership.) */
2433 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2434 if (r < 0)
2435 goto fail;
2436
2437 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2438 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2439 * assignments to exist.*/
2440 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2441 if (r < 0)
2442 goto fail;
2443 }
2444
2445 return 0;
2446
2447 fail:
2448 *exit_status = exit_status_table[type];
2449 return r;
2450 }
2451
2452 static int write_credential(
2453 int dfd,
2454 const char *id,
2455 const void *data,
2456 size_t size,
2457 uid_t uid,
2458 bool ownership_ok) {
2459
2460 _cleanup_(unlink_and_freep) char *tmp = NULL;
2461 _cleanup_close_ int fd = -1;
2462 int r;
2463
2464 r = tempfn_random_child("", "cred", &tmp);
2465 if (r < 0)
2466 return r;
2467
2468 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2469 if (fd < 0) {
2470 tmp = mfree(tmp);
2471 return -errno;
2472 }
2473
2474 r = loop_write(fd, data, size, /* do_pool = */ false);
2475 if (r < 0)
2476 return r;
2477
2478 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2479 return -errno;
2480
2481 if (uid_is_valid(uid) && uid != getuid()) {
2482 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2483 if (r < 0) {
2484 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2485 return r;
2486
2487 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2488 * to express: that the user gets read access and nothing
2489 * else. But if the backing fs can't support that (e.g. ramfs)
2490 * then we can use file ownership instead. But that's only safe if
2491 * we can then re-mount the whole thing read-only, so that the
2492 * user can no longer chmod() the file to gain write access. */
2493 return r;
2494
2495 if (fchown(fd, uid, (gid_t) -1) < 0)
2496 return -errno;
2497 }
2498 }
2499
2500 if (renameat(dfd, tmp, dfd, id) < 0)
2501 return -errno;
2502
2503 tmp = mfree(tmp);
2504 return 0;
2505 }
2506
2507 #define CREDENTIALS_BYTES_MAX (1024LU * 1024LU) /* Refuse to pass more than 1M, after all this is unswappable memory */
2508
2509 static int acquire_credentials(
2510 const ExecContext *context,
2511 const ExecParameters *params,
2512 const char *p,
2513 uid_t uid,
2514 bool ownership_ok) {
2515
2516 uint64_t left = CREDENTIALS_BYTES_MAX;
2517 _cleanup_close_ int dfd = -1;
2518 ExecSetCredential *sc;
2519 char **id, **fn;
2520 int r;
2521
2522 assert(context);
2523 assert(p);
2524
2525 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2526 if (dfd < 0)
2527 return -errno;
2528
2529 /* First we use the literally specified credentials. Note that they might be overridden again below,
2530 * and thus act as a "default" if the same credential is specified multiple times */
2531 HASHMAP_FOREACH(sc, context->set_credentials) {
2532 size_t add;
2533
2534 add = strlen(sc->id) + sc->size;
2535 if (add > left)
2536 return -E2BIG;
2537
2538 r = write_credential(dfd, sc->id, sc->data, sc->size, uid, ownership_ok);
2539 if (r < 0)
2540 return r;
2541
2542 left -= add;
2543 }
2544
2545 /* Then, load credential off disk (or acquire via AF_UNIX socket) */
2546 STRV_FOREACH_PAIR(id, fn, context->load_credentials) {
2547 ReadFullFileFlags flags = READ_FULL_FILE_SECURE;
2548 _cleanup_(erase_and_freep) char *data = NULL;
2549 _cleanup_free_ char *j = NULL;
2550 const char *source;
2551 size_t size, add;
2552
2553 if (path_is_absolute(*fn)) {
2554 /* If this is an absolute path, read the data directly from it, and support AF_UNIX sockets */
2555 source = *fn;
2556 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2557 } else if (params->received_credentials) {
2558 /* If this is a relative path, take it relative to the credentials we received
2559 * ourselves. We don't support the AF_UNIX stuff in this mode, since we are operating
2560 * on a credential store, i.e. this is guaranteed to be regular files. */
2561 j = path_join(params->received_credentials, *fn);
2562 if (!j)
2563 return -ENOMEM;
2564
2565 source = j;
2566 } else
2567 source = NULL;
2568
2569 if (source)
2570 r = read_full_file_full(AT_FDCWD, source, flags, &data, &size);
2571 else
2572 r = -ENOENT;
2573 if (r == -ENOENT &&
2574 faccessat(dfd, *id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) /* If the source file doesn't exist, but we already acquired the key otherwise, then don't fail */
2575 continue;
2576 if (r < 0)
2577 return r;
2578
2579 add = strlen(*id) + size;
2580 if (add > left)
2581 return -E2BIG;
2582
2583 r = write_credential(dfd, *id, data, size, uid, ownership_ok);
2584 if (r < 0)
2585 return r;
2586
2587 left -= add;
2588 }
2589
2590 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2591 return -errno;
2592
2593 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2594 * accessible */
2595
2596 if (uid_is_valid(uid) && uid != getuid()) {
2597 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2598 if (r < 0) {
2599 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2600 return r;
2601
2602 if (!ownership_ok)
2603 return r;
2604
2605 if (fchown(dfd, uid, (gid_t) -1) < 0)
2606 return -errno;
2607 }
2608 }
2609
2610 return 0;
2611 }
2612
2613 static int setup_credentials_internal(
2614 const ExecContext *context,
2615 const ExecParameters *params,
2616 const char *final, /* This is where the credential store shall eventually end up at */
2617 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2618 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2619 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2620 uid_t uid) {
2621
2622 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2623 * if we mounted something; false if we definitely can't mount anything */
2624 bool final_mounted;
2625 const char *where;
2626
2627 assert(context);
2628 assert(final);
2629 assert(workspace);
2630
2631 if (reuse_workspace) {
2632 r = path_is_mount_point(workspace, NULL, 0);
2633 if (r < 0)
2634 return r;
2635 if (r > 0)
2636 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
2637 else
2638 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
2639 } else
2640 workspace_mounted = -1; /* ditto */
2641
2642 r = path_is_mount_point(final, NULL, 0);
2643 if (r < 0)
2644 return r;
2645 if (r > 0) {
2646 /* If the final place already has something mounted, we use that. If the workspace also has
2647 * something mounted we assume it's actually the same mount (but with MS_RDONLY
2648 * different). */
2649 final_mounted = true;
2650
2651 if (workspace_mounted < 0) {
2652 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
2653 * the final version to the workspace, and make it writable, so that we can make
2654 * changes */
2655
2656 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2657 if (r < 0)
2658 return r;
2659
2660 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2661 if (r < 0)
2662 return r;
2663
2664 workspace_mounted = true;
2665 }
2666 } else
2667 final_mounted = false;
2668
2669 if (workspace_mounted < 0) {
2670 /* Nothing is mounted on the workspace yet, let's try to mount something now */
2671 for (int try = 0;; try++) {
2672
2673 if (try == 0) {
2674 /* Try "ramfs" first, since it's not swap backed */
2675 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
2676 if (r >= 0) {
2677 workspace_mounted = true;
2678 break;
2679 }
2680
2681 } else if (try == 1) {
2682 _cleanup_free_ char *opts = NULL;
2683
2684 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%lu", CREDENTIALS_BYTES_MAX) < 0)
2685 return -ENOMEM;
2686
2687 /* Fall back to "tmpfs" otherwise */
2688 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
2689 if (r >= 0) {
2690 workspace_mounted = true;
2691 break;
2692 }
2693
2694 } else {
2695 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
2696 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2697 if (r < 0) {
2698 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
2699 return r;
2700
2701 if (must_mount) /* If we it's not OK to use the plain directory
2702 * fallback, propagate all errors too */
2703 return r;
2704
2705 /* If we lack privileges to bind mount stuff, then let's gracefully
2706 * proceed for compat with container envs, and just use the final dir
2707 * as is. */
2708
2709 workspace_mounted = false;
2710 break;
2711 }
2712
2713 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
2714 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2715 if (r < 0)
2716 return r;
2717
2718 workspace_mounted = true;
2719 break;
2720 }
2721 }
2722 }
2723
2724 assert(!must_mount || workspace_mounted > 0);
2725 where = workspace_mounted ? workspace : final;
2726
2727 r = acquire_credentials(context, params, where, uid, workspace_mounted);
2728 if (r < 0)
2729 return r;
2730
2731 if (workspace_mounted) {
2732 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
2733 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2734 if (r < 0)
2735 return r;
2736
2737 /* And mount it to the final place, read-only */
2738 if (final_mounted)
2739 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
2740 else
2741 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
2742 if (r < 0)
2743 return r;
2744 } else {
2745 _cleanup_free_ char *parent = NULL;
2746
2747 /* If we do not have our own mount put used the plain directory fallback, then we need to
2748 * open access to the top-level credential directory and the per-service directory now */
2749
2750 parent = dirname_malloc(final);
2751 if (!parent)
2752 return -ENOMEM;
2753 if (chmod(parent, 0755) < 0)
2754 return -errno;
2755 }
2756
2757 return 0;
2758 }
2759
2760 static int setup_credentials(
2761 const ExecContext *context,
2762 const ExecParameters *params,
2763 const char *unit,
2764 uid_t uid) {
2765
2766 _cleanup_free_ char *p = NULL, *q = NULL;
2767 const char *i;
2768 int r;
2769
2770 assert(context);
2771 assert(params);
2772
2773 if (!exec_context_has_credentials(context))
2774 return 0;
2775
2776 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
2777 return -EINVAL;
2778
2779 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
2780 * and the subdir we mount over with a read-only file system readable by the service's user */
2781 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
2782 if (!q)
2783 return -ENOMEM;
2784
2785 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
2786 if (r < 0 && r != -EEXIST)
2787 return r;
2788
2789 p = path_join(q, unit);
2790 if (!p)
2791 return -ENOMEM;
2792
2793 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
2794 if (r < 0 && r != -EEXIST)
2795 return r;
2796
2797 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
2798 if (r < 0) {
2799 _cleanup_free_ char *t = NULL, *u = NULL;
2800
2801 /* If this is not a privilege or support issue then propagate the error */
2802 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2803 return r;
2804
2805 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
2806 * it into place, so that users can't access half-initialized credential stores. */
2807 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
2808 if (!t)
2809 return -ENOMEM;
2810
2811 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
2812 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
2813 * after it is fully set up */
2814 u = path_join(t, unit);
2815 if (!u)
2816 return -ENOMEM;
2817
2818 FOREACH_STRING(i, t, u) {
2819 r = mkdir_label(i, 0700);
2820 if (r < 0 && r != -EEXIST)
2821 return r;
2822 }
2823
2824 r = setup_credentials_internal(
2825 context,
2826 params,
2827 p, /* final mount point */
2828 u, /* temporary workspace to overmount */
2829 true, /* reuse the workspace if it is already a mount */
2830 false, /* it's OK to fall back to a plain directory if we can't mount anything */
2831 uid);
2832
2833 (void) rmdir(u); /* remove the workspace again if we can. */
2834
2835 if (r < 0)
2836 return r;
2837
2838 } else if (r == 0) {
2839
2840 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
2841 * we can use the same directory for all cases, after turning off propagation. Question
2842 * though is: where do we turn off propagation exactly, and where do we place the workspace
2843 * directory? We need some place that is guaranteed to be a mount point in the host, and
2844 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
2845 * since we ultimately want to move the resulting file system there, i.e. we need propagation
2846 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
2847 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
2848 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
2849 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
2850 * propagation on the former, and then overmount the latter.
2851 *
2852 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
2853 * for this purpose, but there are few other candidates that work equally well for us, and
2854 * given that the we do this in a privately namespaced short-lived single-threaded process
2855 * that no one else sees this should be OK to do.*/
2856
2857 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
2858 if (r < 0)
2859 goto child_fail;
2860
2861 r = setup_credentials_internal(
2862 context,
2863 params,
2864 p, /* final mount point */
2865 "/dev/shm", /* temporary workspace to overmount */
2866 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
2867 true, /* insist that something is mounted, do not allow fallback to plain directory */
2868 uid);
2869 if (r < 0)
2870 goto child_fail;
2871
2872 _exit(EXIT_SUCCESS);
2873
2874 child_fail:
2875 _exit(EXIT_FAILURE);
2876 }
2877
2878 return 0;
2879 }
2880
2881 #if ENABLE_SMACK
2882 static int setup_smack(
2883 const ExecContext *context,
2884 const char *executable) {
2885 int r;
2886
2887 assert(context);
2888 assert(executable);
2889
2890 if (context->smack_process_label) {
2891 r = mac_smack_apply_pid(0, context->smack_process_label);
2892 if (r < 0)
2893 return r;
2894 }
2895 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2896 else {
2897 _cleanup_free_ char *exec_label = NULL;
2898
2899 r = mac_smack_read(executable, SMACK_ATTR_EXEC, &exec_label);
2900 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2901 return r;
2902
2903 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2904 if (r < 0)
2905 return r;
2906 }
2907 #endif
2908
2909 return 0;
2910 }
2911 #endif
2912
2913 static int compile_bind_mounts(
2914 const ExecContext *context,
2915 const ExecParameters *params,
2916 BindMount **ret_bind_mounts,
2917 size_t *ret_n_bind_mounts,
2918 char ***ret_empty_directories) {
2919
2920 _cleanup_strv_free_ char **empty_directories = NULL;
2921 BindMount *bind_mounts;
2922 size_t n, h = 0;
2923 int r;
2924
2925 assert(context);
2926 assert(params);
2927 assert(ret_bind_mounts);
2928 assert(ret_n_bind_mounts);
2929 assert(ret_empty_directories);
2930
2931 n = context->n_bind_mounts;
2932 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2933 if (!params->prefix[t])
2934 continue;
2935
2936 n += strv_length(context->directories[t].paths);
2937 }
2938
2939 if (n <= 0) {
2940 *ret_bind_mounts = NULL;
2941 *ret_n_bind_mounts = 0;
2942 *ret_empty_directories = NULL;
2943 return 0;
2944 }
2945
2946 bind_mounts = new(BindMount, n);
2947 if (!bind_mounts)
2948 return -ENOMEM;
2949
2950 for (size_t i = 0; i < context->n_bind_mounts; i++) {
2951 BindMount *item = context->bind_mounts + i;
2952 char *s, *d;
2953
2954 s = strdup(item->source);
2955 if (!s) {
2956 r = -ENOMEM;
2957 goto finish;
2958 }
2959
2960 d = strdup(item->destination);
2961 if (!d) {
2962 free(s);
2963 r = -ENOMEM;
2964 goto finish;
2965 }
2966
2967 bind_mounts[h++] = (BindMount) {
2968 .source = s,
2969 .destination = d,
2970 .read_only = item->read_only,
2971 .recursive = item->recursive,
2972 .ignore_enoent = item->ignore_enoent,
2973 };
2974 }
2975
2976 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2977 char **suffix;
2978
2979 if (!params->prefix[t])
2980 continue;
2981
2982 if (strv_isempty(context->directories[t].paths))
2983 continue;
2984
2985 if (exec_directory_is_private(context, t) &&
2986 !exec_context_with_rootfs(context)) {
2987 char *private_root;
2988
2989 /* So this is for a dynamic user, and we need to make sure the process can access its own
2990 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2991 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2992
2993 private_root = path_join(params->prefix[t], "private");
2994 if (!private_root) {
2995 r = -ENOMEM;
2996 goto finish;
2997 }
2998
2999 r = strv_consume(&empty_directories, private_root);
3000 if (r < 0)
3001 goto finish;
3002 }
3003
3004 STRV_FOREACH(suffix, context->directories[t].paths) {
3005 char *s, *d;
3006
3007 if (exec_directory_is_private(context, t))
3008 s = path_join(params->prefix[t], "private", *suffix);
3009 else
3010 s = path_join(params->prefix[t], *suffix);
3011 if (!s) {
3012 r = -ENOMEM;
3013 goto finish;
3014 }
3015
3016 if (exec_directory_is_private(context, t) &&
3017 exec_context_with_rootfs(context))
3018 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3019 * directory is not created on the root directory. So, let's bind-mount the directory
3020 * on the 'non-private' place. */
3021 d = path_join(params->prefix[t], *suffix);
3022 else
3023 d = strdup(s);
3024 if (!d) {
3025 free(s);
3026 r = -ENOMEM;
3027 goto finish;
3028 }
3029
3030 bind_mounts[h++] = (BindMount) {
3031 .source = s,
3032 .destination = d,
3033 .read_only = false,
3034 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3035 .recursive = true,
3036 .ignore_enoent = false,
3037 };
3038 }
3039 }
3040
3041 assert(h == n);
3042
3043 *ret_bind_mounts = bind_mounts;
3044 *ret_n_bind_mounts = n;
3045 *ret_empty_directories = TAKE_PTR(empty_directories);
3046
3047 return (int) n;
3048
3049 finish:
3050 bind_mount_free_many(bind_mounts, h);
3051 return r;
3052 }
3053
3054 static bool insist_on_sandboxing(
3055 const ExecContext *context,
3056 const char *root_dir,
3057 const char *root_image,
3058 const BindMount *bind_mounts,
3059 size_t n_bind_mounts) {
3060
3061 assert(context);
3062 assert(n_bind_mounts == 0 || bind_mounts);
3063
3064 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3065 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3066 * rearrange stuff in a way we cannot ignore gracefully. */
3067
3068 if (context->n_temporary_filesystems > 0)
3069 return true;
3070
3071 if (root_dir || root_image)
3072 return true;
3073
3074 if (context->n_mount_images > 0)
3075 return true;
3076
3077 if (context->dynamic_user)
3078 return true;
3079
3080 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3081 * essential. */
3082 for (size_t i = 0; i < n_bind_mounts; i++)
3083 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3084 return true;
3085
3086 if (context->log_namespace)
3087 return true;
3088
3089 return false;
3090 }
3091
3092 static int apply_mount_namespace(
3093 const Unit *u,
3094 ExecCommandFlags command_flags,
3095 const ExecContext *context,
3096 const ExecParameters *params,
3097 const ExecRuntime *runtime,
3098 char **error_path) {
3099
3100 _cleanup_strv_free_ char **empty_directories = NULL;
3101 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3102 const char *root_dir = NULL, *root_image = NULL;
3103 _cleanup_free_ char *creds_path = NULL;
3104 NamespaceInfo ns_info;
3105 bool needs_sandboxing;
3106 BindMount *bind_mounts = NULL;
3107 size_t n_bind_mounts = 0;
3108 int r;
3109
3110 assert(context);
3111
3112 if (params->flags & EXEC_APPLY_CHROOT) {
3113 root_image = context->root_image;
3114
3115 if (!root_image)
3116 root_dir = context->root_directory;
3117 }
3118
3119 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3120 if (r < 0)
3121 return r;
3122
3123 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3124 if (needs_sandboxing) {
3125 /* The runtime struct only contains the parent of the private /tmp,
3126 * which is non-accessible to world users. Inside of it there's a /tmp
3127 * that is sticky, and that's the one we want to use here.
3128 * This does not apply when we are using /run/systemd/empty as fallback. */
3129
3130 if (context->private_tmp && runtime) {
3131 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3132 tmp_dir = runtime->tmp_dir;
3133 else if (runtime->tmp_dir)
3134 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3135
3136 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3137 var_tmp_dir = runtime->var_tmp_dir;
3138 else if (runtime->var_tmp_dir)
3139 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3140 }
3141
3142 ns_info = (NamespaceInfo) {
3143 .ignore_protect_paths = false,
3144 .private_dev = context->private_devices,
3145 .protect_control_groups = context->protect_control_groups,
3146 .protect_kernel_tunables = context->protect_kernel_tunables,
3147 .protect_kernel_modules = context->protect_kernel_modules,
3148 .protect_kernel_logs = context->protect_kernel_logs,
3149 .protect_hostname = context->protect_hostname,
3150 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3151 .private_mounts = context->private_mounts,
3152 .protect_home = context->protect_home,
3153 .protect_system = context->protect_system,
3154 .protect_proc = context->protect_proc,
3155 .proc_subset = context->proc_subset,
3156 };
3157 } else if (!context->dynamic_user && root_dir)
3158 /*
3159 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3160 * sandbox info, otherwise enforce it, don't ignore protected paths and
3161 * fail if we are enable to apply the sandbox inside the mount namespace.
3162 */
3163 ns_info = (NamespaceInfo) {
3164 .ignore_protect_paths = true,
3165 };
3166 else
3167 ns_info = (NamespaceInfo) {};
3168
3169 if (context->mount_flags == MS_SHARED)
3170 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3171
3172 if (exec_context_has_credentials(context) && params->prefix[EXEC_DIRECTORY_RUNTIME]) {
3173 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3174 if (!creds_path) {
3175 r = -ENOMEM;
3176 goto finalize;
3177 }
3178 }
3179
3180 r = setup_namespace(root_dir, root_image, context->root_image_options,
3181 &ns_info, context->read_write_paths,
3182 needs_sandboxing ? context->read_only_paths : NULL,
3183 needs_sandboxing ? context->inaccessible_paths : NULL,
3184 empty_directories,
3185 bind_mounts,
3186 n_bind_mounts,
3187 context->temporary_filesystems,
3188 context->n_temporary_filesystems,
3189 context->mount_images,
3190 context->n_mount_images,
3191 tmp_dir,
3192 var_tmp_dir,
3193 creds_path,
3194 context->log_namespace,
3195 context->mount_flags,
3196 context->root_hash, context->root_hash_size, context->root_hash_path,
3197 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3198 context->root_verity,
3199 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
3200 error_path);
3201
3202 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3203 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3204 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3205 * completely different execution environment. */
3206 if (r == -ENOANO) {
3207 if (insist_on_sandboxing(
3208 context,
3209 root_dir, root_image,
3210 bind_mounts,
3211 n_bind_mounts)) {
3212 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3213 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3214 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3215
3216 r = -EOPNOTSUPP;
3217 } else {
3218 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3219 r = 0;
3220 }
3221 }
3222
3223 finalize:
3224 bind_mount_free_many(bind_mounts, n_bind_mounts);
3225 return r;
3226 }
3227
3228 static int apply_working_directory(
3229 const ExecContext *context,
3230 const ExecParameters *params,
3231 const char *home,
3232 int *exit_status) {
3233
3234 const char *d, *wd;
3235
3236 assert(context);
3237 assert(exit_status);
3238
3239 if (context->working_directory_home) {
3240
3241 if (!home) {
3242 *exit_status = EXIT_CHDIR;
3243 return -ENXIO;
3244 }
3245
3246 wd = home;
3247
3248 } else
3249 wd = empty_to_root(context->working_directory);
3250
3251 if (params->flags & EXEC_APPLY_CHROOT)
3252 d = wd;
3253 else
3254 d = prefix_roota(context->root_directory, wd);
3255
3256 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3257 *exit_status = EXIT_CHDIR;
3258 return -errno;
3259 }
3260
3261 return 0;
3262 }
3263
3264 static int apply_root_directory(
3265 const ExecContext *context,
3266 const ExecParameters *params,
3267 const bool needs_mount_ns,
3268 int *exit_status) {
3269
3270 assert(context);
3271 assert(exit_status);
3272
3273 if (params->flags & EXEC_APPLY_CHROOT)
3274 if (!needs_mount_ns && context->root_directory)
3275 if (chroot(context->root_directory) < 0) {
3276 *exit_status = EXIT_CHROOT;
3277 return -errno;
3278 }
3279
3280 return 0;
3281 }
3282
3283 static int setup_keyring(
3284 const Unit *u,
3285 const ExecContext *context,
3286 const ExecParameters *p,
3287 uid_t uid, gid_t gid) {
3288
3289 key_serial_t keyring;
3290 int r = 0;
3291 uid_t saved_uid;
3292 gid_t saved_gid;
3293
3294 assert(u);
3295 assert(context);
3296 assert(p);
3297
3298 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3299 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3300 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3301 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3302 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3303 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3304
3305 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3306 return 0;
3307
3308 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3309 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3310 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3311 * & group is just as nasty as acquiring a reference to the user keyring. */
3312
3313 saved_uid = getuid();
3314 saved_gid = getgid();
3315
3316 if (gid_is_valid(gid) && gid != saved_gid) {
3317 if (setregid(gid, -1) < 0)
3318 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3319 }
3320
3321 if (uid_is_valid(uid) && uid != saved_uid) {
3322 if (setreuid(uid, -1) < 0) {
3323 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3324 goto out;
3325 }
3326 }
3327
3328 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3329 if (keyring == -1) {
3330 if (errno == ENOSYS)
3331 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3332 else if (ERRNO_IS_PRIVILEGE(errno))
3333 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3334 else if (errno == EDQUOT)
3335 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3336 else
3337 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3338
3339 goto out;
3340 }
3341
3342 /* When requested link the user keyring into the session keyring. */
3343 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3344
3345 if (keyctl(KEYCTL_LINK,
3346 KEY_SPEC_USER_KEYRING,
3347 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3348 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3349 goto out;
3350 }
3351 }
3352
3353 /* Restore uid/gid back */
3354 if (uid_is_valid(uid) && uid != saved_uid) {
3355 if (setreuid(saved_uid, -1) < 0) {
3356 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3357 goto out;
3358 }
3359 }
3360
3361 if (gid_is_valid(gid) && gid != saved_gid) {
3362 if (setregid(saved_gid, -1) < 0)
3363 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3364 }
3365
3366 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3367 if (!sd_id128_is_null(u->invocation_id)) {
3368 key_serial_t key;
3369
3370 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3371 if (key == -1)
3372 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3373 else {
3374 if (keyctl(KEYCTL_SETPERM, key,
3375 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3376 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3377 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3378 }
3379 }
3380
3381 out:
3382 /* Revert back uid & gid for the last time, and exit */
3383 /* no extra logging, as only the first already reported error matters */
3384 if (getuid() != saved_uid)
3385 (void) setreuid(saved_uid, -1);
3386
3387 if (getgid() != saved_gid)
3388 (void) setregid(saved_gid, -1);
3389
3390 return r;
3391 }
3392
3393 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3394 assert(array);
3395 assert(n);
3396 assert(pair);
3397
3398 if (pair[0] >= 0)
3399 array[(*n)++] = pair[0];
3400 if (pair[1] >= 0)
3401 array[(*n)++] = pair[1];
3402 }
3403
3404 static int close_remaining_fds(
3405 const ExecParameters *params,
3406 const ExecRuntime *runtime,
3407 const DynamicCreds *dcreds,
3408 int user_lookup_fd,
3409 int socket_fd,
3410 const int *fds, size_t n_fds) {
3411
3412 size_t n_dont_close = 0;
3413 int dont_close[n_fds + 12];
3414
3415 assert(params);
3416
3417 if (params->stdin_fd >= 0)
3418 dont_close[n_dont_close++] = params->stdin_fd;
3419 if (params->stdout_fd >= 0)
3420 dont_close[n_dont_close++] = params->stdout_fd;
3421 if (params->stderr_fd >= 0)
3422 dont_close[n_dont_close++] = params->stderr_fd;
3423
3424 if (socket_fd >= 0)
3425 dont_close[n_dont_close++] = socket_fd;
3426 if (n_fds > 0) {
3427 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3428 n_dont_close += n_fds;
3429 }
3430
3431 if (runtime)
3432 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3433
3434 if (dcreds) {
3435 if (dcreds->user)
3436 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3437 if (dcreds->group)
3438 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3439 }
3440
3441 if (user_lookup_fd >= 0)
3442 dont_close[n_dont_close++] = user_lookup_fd;
3443
3444 return close_all_fds(dont_close, n_dont_close);
3445 }
3446
3447 static int send_user_lookup(
3448 Unit *unit,
3449 int user_lookup_fd,
3450 uid_t uid,
3451 gid_t gid) {
3452
3453 assert(unit);
3454
3455 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3456 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3457 * specified. */
3458
3459 if (user_lookup_fd < 0)
3460 return 0;
3461
3462 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3463 return 0;
3464
3465 if (writev(user_lookup_fd,
3466 (struct iovec[]) {
3467 IOVEC_INIT(&uid, sizeof(uid)),
3468 IOVEC_INIT(&gid, sizeof(gid)),
3469 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3470 return -errno;
3471
3472 return 0;
3473 }
3474
3475 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3476 int r;
3477
3478 assert(c);
3479 assert(home);
3480 assert(buf);
3481
3482 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3483
3484 if (*home)
3485 return 0;
3486
3487 if (!c->working_directory_home)
3488 return 0;
3489
3490 r = get_home_dir(buf);
3491 if (r < 0)
3492 return r;
3493
3494 *home = *buf;
3495 return 1;
3496 }
3497
3498 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3499 _cleanup_strv_free_ char ** list = NULL;
3500 int r;
3501
3502 assert(c);
3503 assert(p);
3504 assert(ret);
3505
3506 assert(c->dynamic_user);
3507
3508 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3509 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3510 * directories. */
3511
3512 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3513 char **i;
3514
3515 if (t == EXEC_DIRECTORY_CONFIGURATION)
3516 continue;
3517
3518 if (!p->prefix[t])
3519 continue;
3520
3521 STRV_FOREACH(i, c->directories[t].paths) {
3522 char *e;
3523
3524 if (exec_directory_is_private(c, t))
3525 e = path_join(p->prefix[t], "private", *i);
3526 else
3527 e = path_join(p->prefix[t], *i);
3528 if (!e)
3529 return -ENOMEM;
3530
3531 r = strv_consume(&list, e);
3532 if (r < 0)
3533 return r;
3534 }
3535 }
3536
3537 *ret = TAKE_PTR(list);
3538
3539 return 0;
3540 }
3541
3542 static char *exec_command_line(char **argv);
3543
3544 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3545 bool using_subcgroup;
3546 char *p;
3547
3548 assert(params);
3549 assert(ret);
3550
3551 if (!params->cgroup_path)
3552 return -EINVAL;
3553
3554 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3555 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3556 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3557 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3558 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3559 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3560 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3561 * flag, which is only passed for the former statements, not for the latter. */
3562
3563 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3564 if (using_subcgroup)
3565 p = path_join(params->cgroup_path, ".control");
3566 else
3567 p = strdup(params->cgroup_path);
3568 if (!p)
3569 return -ENOMEM;
3570
3571 *ret = p;
3572 return using_subcgroup;
3573 }
3574
3575 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3576 _cleanup_(cpu_set_reset) CPUSet s = {};
3577 int r;
3578
3579 assert(c);
3580 assert(ret);
3581
3582 if (!c->numa_policy.nodes.set) {
3583 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3584 return 0;
3585 }
3586
3587 r = numa_to_cpu_set(&c->numa_policy, &s);
3588 if (r < 0)
3589 return r;
3590
3591 cpu_set_reset(ret);
3592
3593 return cpu_set_add_all(ret, &s);
3594 }
3595
3596 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3597 assert(c);
3598
3599 return c->cpu_affinity_from_numa;
3600 }
3601
3602 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
3603 int r;
3604
3605 assert(fds);
3606 assert(n_fds);
3607 assert(*n_fds < fds_size);
3608 assert(ret_fd);
3609
3610 if (fd < 0) {
3611 *ret_fd = -1;
3612 return 0;
3613 }
3614
3615 if (fd < 3 + (int) *n_fds) {
3616 /* Let's move the fd up, so that it's outside of the fd range we will use to store
3617 * the fds we pass to the process (or which are closed only during execve). */
3618
3619 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
3620 if (r < 0)
3621 return -errno;
3622
3623 CLOSE_AND_REPLACE(fd, r);
3624 }
3625
3626 *ret_fd = fds[*n_fds] = fd;
3627 (*n_fds) ++;
3628 return 1;
3629 }
3630
3631 static int exec_child(
3632 Unit *unit,
3633 const ExecCommand *command,
3634 const ExecContext *context,
3635 const ExecParameters *params,
3636 ExecRuntime *runtime,
3637 DynamicCreds *dcreds,
3638 int socket_fd,
3639 const int named_iofds[static 3],
3640 int *fds,
3641 size_t n_socket_fds,
3642 size_t n_storage_fds,
3643 char **files_env,
3644 int user_lookup_fd,
3645 int *exit_status) {
3646
3647 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3648 int r, ngids = 0, exec_fd;
3649 _cleanup_free_ gid_t *supplementary_gids = NULL;
3650 const char *username = NULL, *groupname = NULL;
3651 _cleanup_free_ char *home_buffer = NULL;
3652 const char *home = NULL, *shell = NULL;
3653 char **final_argv = NULL;
3654 dev_t journal_stream_dev = 0;
3655 ino_t journal_stream_ino = 0;
3656 bool userns_set_up = false;
3657 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3658 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3659 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3660 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3661 #if HAVE_SELINUX
3662 _cleanup_free_ char *mac_selinux_context_net = NULL;
3663 bool use_selinux = false;
3664 #endif
3665 #if ENABLE_SMACK
3666 bool use_smack = false;
3667 #endif
3668 #if HAVE_APPARMOR
3669 bool use_apparmor = false;
3670 #endif
3671 uid_t saved_uid = getuid();
3672 gid_t saved_gid = getgid();
3673 uid_t uid = UID_INVALID;
3674 gid_t gid = GID_INVALID;
3675 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
3676 n_keep_fds; /* total number of fds not to close */
3677 int secure_bits;
3678 _cleanup_free_ gid_t *gids_after_pam = NULL;
3679 int ngids_after_pam = 0;
3680
3681 assert(unit);
3682 assert(command);
3683 assert(context);
3684 assert(params);
3685 assert(exit_status);
3686
3687 rename_process_from_path(command->path);
3688
3689 /* We reset exactly these signals, since they are the
3690 * only ones we set to SIG_IGN in the main daemon. All
3691 * others we leave untouched because we set them to
3692 * SIG_DFL or a valid handler initially, both of which
3693 * will be demoted to SIG_DFL. */
3694 (void) default_signals(SIGNALS_CRASH_HANDLER,
3695 SIGNALS_IGNORE, -1);
3696
3697 if (context->ignore_sigpipe)
3698 (void) ignore_signals(SIGPIPE, -1);
3699
3700 r = reset_signal_mask();
3701 if (r < 0) {
3702 *exit_status = EXIT_SIGNAL_MASK;
3703 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3704 }
3705
3706 if (params->idle_pipe)
3707 do_idle_pipe_dance(params->idle_pipe);
3708
3709 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3710 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3711 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3712 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3713
3714 log_forget_fds();
3715 log_set_open_when_needed(true);
3716
3717 /* In case anything used libc syslog(), close this here, too */
3718 closelog();
3719
3720 int keep_fds[n_fds + 1];
3721 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
3722 n_keep_fds = n_fds;
3723
3724 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
3725 if (r < 0) {
3726 *exit_status = EXIT_FDS;
3727 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
3728 }
3729
3730 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
3731 if (r < 0) {
3732 *exit_status = EXIT_FDS;
3733 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3734 }
3735
3736 if (!context->same_pgrp &&
3737 setsid() < 0) {
3738 *exit_status = EXIT_SETSID;
3739 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3740 }
3741
3742 exec_context_tty_reset(context, params);
3743
3744 if (unit_shall_confirm_spawn(unit)) {
3745 const char *vc = params->confirm_spawn;
3746 _cleanup_free_ char *cmdline = NULL;
3747
3748 cmdline = exec_command_line(command->argv);
3749 if (!cmdline) {
3750 *exit_status = EXIT_MEMORY;
3751 return log_oom();
3752 }
3753
3754 r = ask_for_confirmation(vc, unit, cmdline);
3755 if (r != CONFIRM_EXECUTE) {
3756 if (r == CONFIRM_PRETEND_SUCCESS) {
3757 *exit_status = EXIT_SUCCESS;
3758 return 0;
3759 }
3760 *exit_status = EXIT_CONFIRM;
3761 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
3762 "Execution cancelled by the user");
3763 }
3764 }
3765
3766 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3767 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3768 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3769 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3770 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3771 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3772 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3773 *exit_status = EXIT_MEMORY;
3774 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3775 }
3776
3777 if (context->dynamic_user && dcreds) {
3778 _cleanup_strv_free_ char **suggested_paths = NULL;
3779
3780 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3781 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3782 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3783 *exit_status = EXIT_USER;
3784 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3785 }
3786
3787 r = compile_suggested_paths(context, params, &suggested_paths);
3788 if (r < 0) {
3789 *exit_status = EXIT_MEMORY;
3790 return log_oom();
3791 }
3792
3793 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3794 if (r < 0) {
3795 *exit_status = EXIT_USER;
3796 if (r == -EILSEQ) {
3797 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3798 return -EOPNOTSUPP;
3799 }
3800 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3801 }
3802
3803 if (!uid_is_valid(uid)) {
3804 *exit_status = EXIT_USER;
3805 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3806 return -ESRCH;
3807 }
3808
3809 if (!gid_is_valid(gid)) {
3810 *exit_status = EXIT_USER;
3811 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3812 return -ESRCH;
3813 }
3814
3815 if (dcreds->user)
3816 username = dcreds->user->name;
3817
3818 } else {
3819 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3820 if (r < 0) {
3821 *exit_status = EXIT_USER;
3822 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3823 }
3824
3825 r = get_fixed_group(context, &groupname, &gid);
3826 if (r < 0) {
3827 *exit_status = EXIT_GROUP;
3828 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3829 }
3830 }
3831
3832 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3833 r = get_supplementary_groups(context, username, groupname, gid,
3834 &supplementary_gids, &ngids);
3835 if (r < 0) {
3836 *exit_status = EXIT_GROUP;
3837 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3838 }
3839
3840 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3841 if (r < 0) {
3842 *exit_status = EXIT_USER;
3843 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3844 }
3845
3846 user_lookup_fd = safe_close(user_lookup_fd);
3847
3848 r = acquire_home(context, uid, &home, &home_buffer);
3849 if (r < 0) {
3850 *exit_status = EXIT_CHDIR;
3851 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3852 }
3853
3854 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3855 * must sure to drop O_NONBLOCK */
3856 if (socket_fd >= 0)
3857 (void) fd_nonblock(socket_fd, false);
3858
3859 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3860 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3861 if (params->cgroup_path) {
3862 _cleanup_free_ char *p = NULL;
3863
3864 r = exec_parameters_get_cgroup_path(params, &p);
3865 if (r < 0) {
3866 *exit_status = EXIT_CGROUP;
3867 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3868 }
3869
3870 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3871 if (r < 0) {
3872 *exit_status = EXIT_CGROUP;
3873 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3874 }
3875 }
3876
3877 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3878 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3879 if (r < 0) {
3880 *exit_status = EXIT_NETWORK;
3881 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3882 }
3883 }
3884
3885 r = setup_input(context, params, socket_fd, named_iofds);
3886 if (r < 0) {
3887 *exit_status = EXIT_STDIN;
3888 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3889 }
3890
3891 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3892 if (r < 0) {
3893 *exit_status = EXIT_STDOUT;
3894 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3895 }
3896
3897 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3898 if (r < 0) {
3899 *exit_status = EXIT_STDERR;
3900 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3901 }
3902
3903 if (context->oom_score_adjust_set) {
3904 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3905 * prohibit write access to this file, and we shouldn't trip up over that. */
3906 r = set_oom_score_adjust(context->oom_score_adjust);
3907 if (ERRNO_IS_PRIVILEGE(r))
3908 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3909 else if (r < 0) {
3910 *exit_status = EXIT_OOM_ADJUST;
3911 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3912 }
3913 }
3914
3915 if (context->coredump_filter_set) {
3916 r = set_coredump_filter(context->coredump_filter);
3917 if (ERRNO_IS_PRIVILEGE(r))
3918 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3919 else if (r < 0)
3920 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3921 }
3922
3923 if (context->nice_set) {
3924 r = setpriority_closest(context->nice);
3925 if (r < 0)
3926 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3927 }
3928
3929 if (context->cpu_sched_set) {
3930 struct sched_param param = {
3931 .sched_priority = context->cpu_sched_priority,
3932 };
3933
3934 r = sched_setscheduler(0,
3935 context->cpu_sched_policy |
3936 (context->cpu_sched_reset_on_fork ?
3937 SCHED_RESET_ON_FORK : 0),
3938 &param);
3939 if (r < 0) {
3940 *exit_status = EXIT_SETSCHEDULER;
3941 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3942 }
3943 }
3944
3945 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3946 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3947 const CPUSet *cpu_set;
3948
3949 if (context->cpu_affinity_from_numa) {
3950 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3951 if (r < 0) {
3952 *exit_status = EXIT_CPUAFFINITY;
3953 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3954 }
3955
3956 cpu_set = &converted_cpu_set;
3957 } else
3958 cpu_set = &context->cpu_set;
3959
3960 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3961 *exit_status = EXIT_CPUAFFINITY;
3962 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3963 }
3964 }
3965
3966 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3967 r = apply_numa_policy(&context->numa_policy);
3968 if (r == -EOPNOTSUPP)
3969 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3970 else if (r < 0) {
3971 *exit_status = EXIT_NUMA_POLICY;
3972 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3973 }
3974 }
3975
3976 if (context->ioprio_set)
3977 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3978 *exit_status = EXIT_IOPRIO;
3979 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3980 }
3981
3982 if (context->timer_slack_nsec != NSEC_INFINITY)
3983 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3984 *exit_status = EXIT_TIMERSLACK;
3985 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3986 }
3987
3988 if (context->personality != PERSONALITY_INVALID) {
3989 r = safe_personality(context->personality);
3990 if (r < 0) {
3991 *exit_status = EXIT_PERSONALITY;
3992 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3993 }
3994 }
3995
3996 if (context->utmp_id)
3997 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3998 context->tty_path,
3999 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4000 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4001 USER_PROCESS,
4002 username);
4003
4004 if (uid_is_valid(uid)) {
4005 r = chown_terminal(STDIN_FILENO, uid);
4006 if (r < 0) {
4007 *exit_status = EXIT_STDIN;
4008 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4009 }
4010 }
4011
4012 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4013 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4014 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4015 * touch a single hierarchy too. */
4016 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
4017 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4018 if (r < 0) {
4019 *exit_status = EXIT_CGROUP;
4020 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4021 }
4022 }
4023
4024 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4025 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
4026 if (r < 0)
4027 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4028 }
4029
4030 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4031 r = setup_credentials(context, params, unit->id, uid);
4032 if (r < 0) {
4033 *exit_status = EXIT_CREDENTIALS;
4034 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4035 }
4036 }
4037
4038 r = build_environment(
4039 unit,
4040 context,
4041 params,
4042 n_fds,
4043 home,
4044 username,
4045 shell,
4046 journal_stream_dev,
4047 journal_stream_ino,
4048 &our_env);
4049 if (r < 0) {
4050 *exit_status = EXIT_MEMORY;
4051 return log_oom();
4052 }
4053
4054 r = build_pass_environment(context, &pass_env);
4055 if (r < 0) {
4056 *exit_status = EXIT_MEMORY;
4057 return log_oom();
4058 }
4059
4060 accum_env = strv_env_merge(5,
4061 params->environment,
4062 our_env,
4063 pass_env,
4064 context->environment,
4065 files_env);
4066 if (!accum_env) {
4067 *exit_status = EXIT_MEMORY;
4068 return log_oom();
4069 }
4070 accum_env = strv_env_clean(accum_env);
4071
4072 (void) umask(context->umask);
4073
4074 r = setup_keyring(unit, context, params, uid, gid);
4075 if (r < 0) {
4076 *exit_status = EXIT_KEYRING;
4077 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4078 }
4079
4080 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
4081 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4082
4083 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
4084 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4085
4086 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
4087 if (needs_ambient_hack)
4088 needs_setuid = false;
4089 else
4090 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4091
4092 if (needs_sandboxing) {
4093 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
4094 * present. The actual MAC context application will happen later, as late as possible, to avoid
4095 * impacting our own code paths. */
4096
4097 #if HAVE_SELINUX
4098 use_selinux = mac_selinux_use();
4099 #endif
4100 #if ENABLE_SMACK
4101 use_smack = mac_smack_use();
4102 #endif
4103 #if HAVE_APPARMOR
4104 use_apparmor = mac_apparmor_use();
4105 #endif
4106 }
4107
4108 if (needs_sandboxing) {
4109 int which_failed;
4110
4111 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4112 * is set here. (See below.) */
4113
4114 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4115 if (r < 0) {
4116 *exit_status = EXIT_LIMITS;
4117 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4118 }
4119 }
4120
4121 if (needs_setuid && context->pam_name && username) {
4122 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4123 * wins here. (See above.) */
4124
4125 /* All fds passed in the fds array will be closed in the pam child process. */
4126 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4127 if (r < 0) {
4128 *exit_status = EXIT_PAM;
4129 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4130 }
4131
4132 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4133 if (ngids_after_pam < 0) {
4134 *exit_status = EXIT_MEMORY;
4135 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4136 }
4137 }
4138
4139 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4140 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4141 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4142 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4143
4144 userns_set_up = true;
4145 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4146 if (r < 0) {
4147 *exit_status = EXIT_USER;
4148 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4149 }
4150 }
4151
4152 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4153
4154 if (ns_type_supported(NAMESPACE_NET)) {
4155 r = setup_netns(runtime->netns_storage_socket);
4156 if (r == -EPERM)
4157 log_unit_warning_errno(unit, r,
4158 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4159 else if (r < 0) {
4160 *exit_status = EXIT_NETWORK;
4161 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4162 }
4163 } else if (context->network_namespace_path) {
4164 *exit_status = EXIT_NETWORK;
4165 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4166 "NetworkNamespacePath= is not supported, refusing.");
4167 } else
4168 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4169 }
4170
4171 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4172 if (needs_mount_namespace) {
4173 _cleanup_free_ char *error_path = NULL;
4174
4175 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4176 if (r < 0) {
4177 *exit_status = EXIT_NAMESPACE;
4178 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4179 error_path ? ": " : "", strempty(error_path));
4180 }
4181 }
4182
4183 if (needs_sandboxing) {
4184 r = apply_protect_hostname(unit, context, exit_status);
4185 if (r < 0)
4186 return r;
4187 }
4188
4189 /* Drop groups as early as possible.
4190 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4191 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4192 if (needs_setuid) {
4193 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4194 int ngids_to_enforce = 0;
4195
4196 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4197 ngids,
4198 gids_after_pam,
4199 ngids_after_pam,
4200 &gids_to_enforce);
4201 if (ngids_to_enforce < 0) {
4202 *exit_status = EXIT_MEMORY;
4203 return log_unit_error_errno(unit,
4204 ngids_to_enforce,
4205 "Failed to merge group lists. Group membership might be incorrect: %m");
4206 }
4207
4208 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4209 if (r < 0) {
4210 *exit_status = EXIT_GROUP;
4211 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4212 }
4213 }
4214
4215 /* If the user namespace was not set up above, try to do it now.
4216 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4217 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4218 * case of mount namespaces being less privileged when the mount point list is copied from a
4219 * different user namespace). */
4220
4221 if (needs_sandboxing && context->private_users && !userns_set_up) {
4222 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4223 if (r < 0) {
4224 *exit_status = EXIT_USER;
4225 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4226 }
4227 }
4228
4229 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4230 * shall execute. */
4231
4232 _cleanup_free_ char *executable = NULL;
4233 r = find_executable_full(command->path, false, &executable, NULL);
4234 if (r < 0) {
4235 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4236 log_struct_errno(LOG_INFO, r,
4237 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4238 LOG_UNIT_ID(unit),
4239 LOG_UNIT_INVOCATION_ID(unit),
4240 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4241 command->path),
4242 "EXECUTABLE=%s", command->path);
4243 return 0;
4244 }
4245
4246 *exit_status = EXIT_EXEC;
4247 return log_struct_errno(LOG_INFO, r,
4248 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4249 LOG_UNIT_ID(unit),
4250 LOG_UNIT_INVOCATION_ID(unit),
4251 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4252 command->path),
4253 "EXECUTABLE=%s", command->path);
4254 }
4255
4256 #if HAVE_SELINUX
4257 if (needs_sandboxing && use_selinux && params->selinux_context_net && socket_fd >= 0) {
4258 r = mac_selinux_get_child_mls_label(socket_fd, executable, context->selinux_context, &mac_selinux_context_net);
4259 if (r < 0) {
4260 *exit_status = EXIT_SELINUX_CONTEXT;
4261 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4262 }
4263 }
4264 #endif
4265
4266 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4267 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
4268 * however if we have it as we want to keep it open until the final execve(). */
4269
4270 r = close_all_fds(keep_fds, n_keep_fds);
4271 if (r >= 0)
4272 r = shift_fds(fds, n_fds);
4273 if (r >= 0)
4274 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4275 if (r < 0) {
4276 *exit_status = EXIT_FDS;
4277 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4278 }
4279
4280 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4281 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4282 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4283 * came this far. */
4284
4285 secure_bits = context->secure_bits;
4286
4287 if (needs_sandboxing) {
4288 uint64_t bset;
4289
4290 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4291 * requested. (Note this is placed after the general resource limit initialization, see
4292 * above, in order to take precedence.) */
4293 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4294 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4295 *exit_status = EXIT_LIMITS;
4296 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4297 }
4298 }
4299
4300 #if ENABLE_SMACK
4301 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4302 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4303 if (use_smack) {
4304 r = setup_smack(context, executable);
4305 if (r < 0) {
4306 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4307 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4308 }
4309 }
4310 #endif
4311
4312 bset = context->capability_bounding_set;
4313 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4314 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4315 * instead of us doing that */
4316 if (needs_ambient_hack)
4317 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4318 (UINT64_C(1) << CAP_SETUID) |
4319 (UINT64_C(1) << CAP_SETGID);
4320
4321 if (!cap_test_all(bset)) {
4322 r = capability_bounding_set_drop(bset, false);
4323 if (r < 0) {
4324 *exit_status = EXIT_CAPABILITIES;
4325 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4326 }
4327 }
4328
4329 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4330 * keep-caps set.
4331 * To be able to raise the ambient capabilities after setresuid() they have to be
4332 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4333 * After setresuid() the ambient capabilities can be raised as they are present in
4334 * the permitted and inhertiable set. However it is possible that someone wants to
4335 * set ambient capabilities without changing the user, so we also set the ambient
4336 * capabilities here.
4337 * The requested ambient capabilities are raised in the inheritable set if the
4338 * second argument is true. */
4339 if (!needs_ambient_hack) {
4340 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4341 if (r < 0) {
4342 *exit_status = EXIT_CAPABILITIES;
4343 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4344 }
4345 }
4346 }
4347
4348 /* chroot to root directory first, before we lose the ability to chroot */
4349 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4350 if (r < 0)
4351 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4352
4353 if (needs_setuid) {
4354 if (uid_is_valid(uid)) {
4355 r = enforce_user(context, uid);
4356 if (r < 0) {
4357 *exit_status = EXIT_USER;
4358 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4359 }
4360
4361 if (!needs_ambient_hack &&
4362 context->capability_ambient_set != 0) {
4363
4364 /* Raise the ambient capabilities after user change. */
4365 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4366 if (r < 0) {
4367 *exit_status = EXIT_CAPABILITIES;
4368 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4369 }
4370 }
4371 }
4372 }
4373
4374 /* Apply working directory here, because the working directory might be on NFS and only the user running
4375 * this service might have the correct privilege to change to the working directory */
4376 r = apply_working_directory(context, params, home, exit_status);
4377 if (r < 0)
4378 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4379
4380 if (needs_sandboxing) {
4381 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4382 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4383 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4384 * are restricted. */
4385
4386 #if HAVE_SELINUX
4387 if (use_selinux) {
4388 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4389
4390 if (exec_context) {
4391 r = setexeccon(exec_context);
4392 if (r < 0) {
4393 *exit_status = EXIT_SELINUX_CONTEXT;
4394 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4395 }
4396 }
4397 }
4398 #endif
4399
4400 #if HAVE_APPARMOR
4401 if (use_apparmor && context->apparmor_profile) {
4402 r = aa_change_onexec(context->apparmor_profile);
4403 if (r < 0 && !context->apparmor_profile_ignore) {
4404 *exit_status = EXIT_APPARMOR_PROFILE;
4405 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4406 }
4407 }
4408 #endif
4409
4410 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4411 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4412 * CAP_SETPCAP. */
4413 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4414 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4415 * effective set here.
4416 * The effective set is overwritten during execve with the following values:
4417 * - ambient set (for non-root processes)
4418 * - (inheritable | bounding) set for root processes)
4419 *
4420 * Hence there is no security impact to raise it in the effective set before execve
4421 */
4422 r = capability_gain_cap_setpcap(NULL);
4423 if (r < 0) {
4424 *exit_status = EXIT_CAPABILITIES;
4425 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
4426 }
4427 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
4428 *exit_status = EXIT_SECUREBITS;
4429 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
4430 }
4431 }
4432
4433 if (context_has_no_new_privileges(context))
4434 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
4435 *exit_status = EXIT_NO_NEW_PRIVILEGES;
4436 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
4437 }
4438
4439 #if HAVE_SECCOMP
4440 r = apply_address_families(unit, context);
4441 if (r < 0) {
4442 *exit_status = EXIT_ADDRESS_FAMILIES;
4443 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
4444 }
4445
4446 r = apply_memory_deny_write_execute(unit, context);
4447 if (r < 0) {
4448 *exit_status = EXIT_SECCOMP;
4449 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
4450 }
4451
4452 r = apply_restrict_realtime(unit, context);
4453 if (r < 0) {
4454 *exit_status = EXIT_SECCOMP;
4455 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
4456 }
4457
4458 r = apply_restrict_suid_sgid(unit, context);
4459 if (r < 0) {
4460 *exit_status = EXIT_SECCOMP;
4461 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
4462 }
4463
4464 r = apply_restrict_namespaces(unit, context);
4465 if (r < 0) {
4466 *exit_status = EXIT_SECCOMP;
4467 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
4468 }
4469
4470 r = apply_protect_sysctl(unit, context);
4471 if (r < 0) {
4472 *exit_status = EXIT_SECCOMP;
4473 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
4474 }
4475
4476 r = apply_protect_kernel_modules(unit, context);
4477 if (r < 0) {
4478 *exit_status = EXIT_SECCOMP;
4479 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
4480 }
4481
4482 r = apply_protect_kernel_logs(unit, context);
4483 if (r < 0) {
4484 *exit_status = EXIT_SECCOMP;
4485 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
4486 }
4487
4488 r = apply_protect_clock(unit, context);
4489 if (r < 0) {
4490 *exit_status = EXIT_SECCOMP;
4491 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
4492 }
4493
4494 r = apply_private_devices(unit, context);
4495 if (r < 0) {
4496 *exit_status = EXIT_SECCOMP;
4497 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
4498 }
4499
4500 r = apply_syscall_archs(unit, context);
4501 if (r < 0) {
4502 *exit_status = EXIT_SECCOMP;
4503 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
4504 }
4505
4506 r = apply_lock_personality(unit, context);
4507 if (r < 0) {
4508 *exit_status = EXIT_SECCOMP;
4509 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
4510 }
4511
4512 r = apply_syscall_log(unit, context);
4513 if (r < 0) {
4514 *exit_status = EXIT_SECCOMP;
4515 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
4516 }
4517
4518 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
4519 * by the filter as little as possible. */
4520 r = apply_syscall_filter(unit, context, needs_ambient_hack);
4521 if (r < 0) {
4522 *exit_status = EXIT_SECCOMP;
4523 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
4524 }
4525 #endif
4526 }
4527
4528 if (!strv_isempty(context->unset_environment)) {
4529 char **ee = NULL;
4530
4531 ee = strv_env_delete(accum_env, 1, context->unset_environment);
4532 if (!ee) {
4533 *exit_status = EXIT_MEMORY;
4534 return log_oom();
4535 }
4536
4537 strv_free_and_replace(accum_env, ee);
4538 }
4539
4540 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
4541 replaced_argv = replace_env_argv(command->argv, accum_env);
4542 if (!replaced_argv) {
4543 *exit_status = EXIT_MEMORY;
4544 return log_oom();
4545 }
4546 final_argv = replaced_argv;
4547 } else
4548 final_argv = command->argv;
4549
4550 if (DEBUG_LOGGING) {
4551 _cleanup_free_ char *line;
4552
4553 line = exec_command_line(final_argv);
4554 if (line)
4555 log_struct(LOG_DEBUG,
4556 "EXECUTABLE=%s", executable,
4557 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
4558 LOG_UNIT_ID(unit),
4559 LOG_UNIT_INVOCATION_ID(unit));
4560 }
4561
4562 if (exec_fd >= 0) {
4563 uint8_t hot = 1;
4564
4565 /* We have finished with all our initializations. Let's now let the manager know that. From this point
4566 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
4567
4568 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4569 *exit_status = EXIT_EXEC;
4570 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
4571 }
4572 }
4573
4574 execve(executable, final_argv, accum_env);
4575 r = -errno;
4576
4577 if (exec_fd >= 0) {
4578 uint8_t hot = 0;
4579
4580 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4581 * that POLLHUP on it no longer means execve() succeeded. */
4582
4583 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4584 *exit_status = EXIT_EXEC;
4585 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4586 }
4587 }
4588
4589 *exit_status = EXIT_EXEC;
4590 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
4591 }
4592
4593 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4594 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4595
4596 int exec_spawn(Unit *unit,
4597 ExecCommand *command,
4598 const ExecContext *context,
4599 const ExecParameters *params,
4600 ExecRuntime *runtime,
4601 DynamicCreds *dcreds,
4602 pid_t *ret) {
4603
4604 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4605 _cleanup_free_ char *subcgroup_path = NULL;
4606 _cleanup_strv_free_ char **files_env = NULL;
4607 size_t n_storage_fds = 0, n_socket_fds = 0;
4608 _cleanup_free_ char *line = NULL;
4609 pid_t pid;
4610
4611 assert(unit);
4612 assert(command);
4613 assert(context);
4614 assert(ret);
4615 assert(params);
4616 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4617
4618 if (context->std_input == EXEC_INPUT_SOCKET ||
4619 context->std_output == EXEC_OUTPUT_SOCKET ||
4620 context->std_error == EXEC_OUTPUT_SOCKET) {
4621
4622 if (params->n_socket_fds > 1) {
4623 log_unit_error(unit, "Got more than one socket.");
4624 return -EINVAL;
4625 }
4626
4627 if (params->n_socket_fds == 0) {
4628 log_unit_error(unit, "Got no socket.");
4629 return -EINVAL;
4630 }
4631
4632 socket_fd = params->fds[0];
4633 } else {
4634 socket_fd = -1;
4635 fds = params->fds;
4636 n_socket_fds = params->n_socket_fds;
4637 n_storage_fds = params->n_storage_fds;
4638 }
4639
4640 r = exec_context_named_iofds(context, params, named_iofds);
4641 if (r < 0)
4642 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4643
4644 r = exec_context_load_environment(unit, context, &files_env);
4645 if (r < 0)
4646 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4647
4648 line = exec_command_line(command->argv);
4649 if (!line)
4650 return log_oom();
4651
4652 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
4653 and, until the next SELinux policy changes, we save further reloads in future children. */
4654 mac_selinux_maybe_reload();
4655
4656 log_struct(LOG_DEBUG,
4657 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
4658 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
4659 the mount namespace in the child, but we want to log
4660 from the parent, so we need to use the (possibly
4661 inaccurate) path here. */
4662 LOG_UNIT_ID(unit),
4663 LOG_UNIT_INVOCATION_ID(unit));
4664
4665 if (params->cgroup_path) {
4666 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4667 if (r < 0)
4668 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4669 if (r > 0) { /* We are using a child cgroup */
4670 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4671 if (r < 0)
4672 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4673 }
4674 }
4675
4676 pid = fork();
4677 if (pid < 0)
4678 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4679
4680 if (pid == 0) {
4681 int exit_status = EXIT_SUCCESS;
4682
4683 r = exec_child(unit,
4684 command,
4685 context,
4686 params,
4687 runtime,
4688 dcreds,
4689 socket_fd,
4690 named_iofds,
4691 fds,
4692 n_socket_fds,
4693 n_storage_fds,
4694 files_env,
4695 unit->manager->user_lookup_fds[1],
4696 &exit_status);
4697
4698 if (r < 0) {
4699 const char *status =
4700 exit_status_to_string(exit_status,
4701 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4702
4703 log_struct_errno(LOG_ERR, r,
4704 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4705 LOG_UNIT_ID(unit),
4706 LOG_UNIT_INVOCATION_ID(unit),
4707 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4708 status, command->path),
4709 "EXECUTABLE=%s", command->path);
4710 }
4711
4712 _exit(exit_status);
4713 }
4714
4715 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4716
4717 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4718 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4719 * process will be killed too). */
4720 if (subcgroup_path)
4721 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4722
4723 exec_status_start(&command->exec_status, pid);
4724
4725 *ret = pid;
4726 return 0;
4727 }
4728
4729 void exec_context_init(ExecContext *c) {
4730 assert(c);
4731
4732 c->umask = 0022;
4733 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4734 c->cpu_sched_policy = SCHED_OTHER;
4735 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4736 c->syslog_level_prefix = true;
4737 c->ignore_sigpipe = true;
4738 c->timer_slack_nsec = NSEC_INFINITY;
4739 c->personality = PERSONALITY_INVALID;
4740 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4741 c->directories[t].mode = 0755;
4742 c->timeout_clean_usec = USEC_INFINITY;
4743 c->capability_bounding_set = CAP_ALL;
4744 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4745 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4746 c->log_level_max = -1;
4747 #if HAVE_SECCOMP
4748 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
4749 #endif
4750 numa_policy_reset(&c->numa_policy);
4751 }
4752
4753 void exec_context_done(ExecContext *c) {
4754 assert(c);
4755
4756 c->environment = strv_free(c->environment);
4757 c->environment_files = strv_free(c->environment_files);
4758 c->pass_environment = strv_free(c->pass_environment);
4759 c->unset_environment = strv_free(c->unset_environment);
4760
4761 rlimit_free_all(c->rlimit);
4762
4763 for (size_t l = 0; l < 3; l++) {
4764 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4765 c->stdio_file[l] = mfree(c->stdio_file[l]);
4766 }
4767
4768 c->working_directory = mfree(c->working_directory);
4769 c->root_directory = mfree(c->root_directory);
4770 c->root_image = mfree(c->root_image);
4771 c->root_image_options = mount_options_free_all(c->root_image_options);
4772 c->root_hash = mfree(c->root_hash);
4773 c->root_hash_size = 0;
4774 c->root_hash_path = mfree(c->root_hash_path);
4775 c->root_hash_sig = mfree(c->root_hash_sig);
4776 c->root_hash_sig_size = 0;
4777 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
4778 c->root_verity = mfree(c->root_verity);
4779 c->tty_path = mfree(c->tty_path);
4780 c->syslog_identifier = mfree(c->syslog_identifier);
4781 c->user = mfree(c->user);
4782 c->group = mfree(c->group);
4783
4784 c->supplementary_groups = strv_free(c->supplementary_groups);
4785
4786 c->pam_name = mfree(c->pam_name);
4787
4788 c->read_only_paths = strv_free(c->read_only_paths);
4789 c->read_write_paths = strv_free(c->read_write_paths);
4790 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4791
4792 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4793 c->bind_mounts = NULL;
4794 c->n_bind_mounts = 0;
4795 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4796 c->temporary_filesystems = NULL;
4797 c->n_temporary_filesystems = 0;
4798 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
4799
4800 cpu_set_reset(&c->cpu_set);
4801 numa_policy_reset(&c->numa_policy);
4802
4803 c->utmp_id = mfree(c->utmp_id);
4804 c->selinux_context = mfree(c->selinux_context);
4805 c->apparmor_profile = mfree(c->apparmor_profile);
4806 c->smack_process_label = mfree(c->smack_process_label);
4807
4808 c->syscall_filter = hashmap_free(c->syscall_filter);
4809 c->syscall_archs = set_free(c->syscall_archs);
4810 c->address_families = set_free(c->address_families);
4811
4812 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4813 c->directories[t].paths = strv_free(c->directories[t].paths);
4814
4815 c->log_level_max = -1;
4816
4817 exec_context_free_log_extra_fields(c);
4818
4819 c->log_ratelimit_interval_usec = 0;
4820 c->log_ratelimit_burst = 0;
4821
4822 c->stdin_data = mfree(c->stdin_data);
4823 c->stdin_data_size = 0;
4824
4825 c->network_namespace_path = mfree(c->network_namespace_path);
4826
4827 c->log_namespace = mfree(c->log_namespace);
4828
4829 c->load_credentials = strv_free(c->load_credentials);
4830 c->set_credentials = hashmap_free(c->set_credentials);
4831 }
4832
4833 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4834 char **i;
4835
4836 assert(c);
4837
4838 if (!runtime_prefix)
4839 return 0;
4840
4841 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4842 _cleanup_free_ char *p;
4843
4844 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4845 p = path_join(runtime_prefix, "private", *i);
4846 else
4847 p = path_join(runtime_prefix, *i);
4848 if (!p)
4849 return -ENOMEM;
4850
4851 /* We execute this synchronously, since we need to be sure this is gone when we start the
4852 * service next. */
4853 (void) rm_rf(p, REMOVE_ROOT);
4854 }
4855
4856 return 0;
4857 }
4858
4859 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
4860 _cleanup_free_ char *p = NULL;
4861
4862 assert(c);
4863
4864 if (!runtime_prefix || !unit)
4865 return 0;
4866
4867 p = path_join(runtime_prefix, "credentials", unit);
4868 if (!p)
4869 return -ENOMEM;
4870
4871 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
4872 * unmount it, and afterwards remove the mount point */
4873 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
4874 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
4875
4876 return 0;
4877 }
4878
4879 static void exec_command_done(ExecCommand *c) {
4880 assert(c);
4881
4882 c->path = mfree(c->path);
4883 c->argv = strv_free(c->argv);
4884 }
4885
4886 void exec_command_done_array(ExecCommand *c, size_t n) {
4887 size_t i;
4888
4889 for (i = 0; i < n; i++)
4890 exec_command_done(c+i);
4891 }
4892
4893 ExecCommand* exec_command_free_list(ExecCommand *c) {
4894 ExecCommand *i;
4895
4896 while ((i = c)) {
4897 LIST_REMOVE(command, c, i);
4898 exec_command_done(i);
4899 free(i);
4900 }
4901
4902 return NULL;
4903 }
4904
4905 void exec_command_free_array(ExecCommand **c, size_t n) {
4906 for (size_t i = 0; i < n; i++)
4907 c[i] = exec_command_free_list(c[i]);
4908 }
4909
4910 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4911 for (size_t i = 0; i < n; i++)
4912 exec_status_reset(&c[i].exec_status);
4913 }
4914
4915 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4916 for (size_t i = 0; i < n; i++) {
4917 ExecCommand *z;
4918
4919 LIST_FOREACH(command, z, c[i])
4920 exec_status_reset(&z->exec_status);
4921 }
4922 }
4923
4924 typedef struct InvalidEnvInfo {
4925 const Unit *unit;
4926 const char *path;
4927 } InvalidEnvInfo;
4928
4929 static void invalid_env(const char *p, void *userdata) {
4930 InvalidEnvInfo *info = userdata;
4931
4932 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4933 }
4934
4935 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4936 assert(c);
4937
4938 switch (fd_index) {
4939
4940 case STDIN_FILENO:
4941 if (c->std_input != EXEC_INPUT_NAMED_FD)
4942 return NULL;
4943
4944 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4945
4946 case STDOUT_FILENO:
4947 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4948 return NULL;
4949
4950 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4951
4952 case STDERR_FILENO:
4953 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4954 return NULL;
4955
4956 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4957
4958 default:
4959 return NULL;
4960 }
4961 }
4962
4963 static int exec_context_named_iofds(
4964 const ExecContext *c,
4965 const ExecParameters *p,
4966 int named_iofds[static 3]) {
4967
4968 size_t targets;
4969 const char* stdio_fdname[3];
4970 size_t n_fds;
4971
4972 assert(c);
4973 assert(p);
4974 assert(named_iofds);
4975
4976 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4977 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4978 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4979
4980 for (size_t i = 0; i < 3; i++)
4981 stdio_fdname[i] = exec_context_fdname(c, i);
4982
4983 n_fds = p->n_storage_fds + p->n_socket_fds;
4984
4985 for (size_t i = 0; i < n_fds && targets > 0; i++)
4986 if (named_iofds[STDIN_FILENO] < 0 &&
4987 c->std_input == EXEC_INPUT_NAMED_FD &&
4988 stdio_fdname[STDIN_FILENO] &&
4989 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4990
4991 named_iofds[STDIN_FILENO] = p->fds[i];
4992 targets--;
4993
4994 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4995 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4996 stdio_fdname[STDOUT_FILENO] &&
4997 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4998
4999 named_iofds[STDOUT_FILENO] = p->fds[i];
5000 targets--;
5001
5002 } else if (named_iofds[STDERR_FILENO] < 0 &&
5003 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5004 stdio_fdname[STDERR_FILENO] &&
5005 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5006
5007 named_iofds[STDERR_FILENO] = p->fds[i];
5008 targets--;
5009 }
5010
5011 return targets == 0 ? 0 : -ENOENT;
5012 }
5013
5014 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
5015 char **i, **r = NULL;
5016
5017 assert(c);
5018 assert(l);
5019
5020 STRV_FOREACH(i, c->environment_files) {
5021 char *fn;
5022 int k;
5023 bool ignore = false;
5024 char **p;
5025 _cleanup_globfree_ glob_t pglob = {};
5026
5027 fn = *i;
5028
5029 if (fn[0] == '-') {
5030 ignore = true;
5031 fn++;
5032 }
5033
5034 if (!path_is_absolute(fn)) {
5035 if (ignore)
5036 continue;
5037
5038 strv_free(r);
5039 return -EINVAL;
5040 }
5041
5042 /* Filename supports globbing, take all matching files */
5043 k = safe_glob(fn, 0, &pglob);
5044 if (k < 0) {
5045 if (ignore)
5046 continue;
5047
5048 strv_free(r);
5049 return k;
5050 }
5051
5052 /* When we don't match anything, -ENOENT should be returned */
5053 assert(pglob.gl_pathc > 0);
5054
5055 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5056 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
5057 if (k < 0) {
5058 if (ignore)
5059 continue;
5060
5061 strv_free(r);
5062 return k;
5063 }
5064 /* Log invalid environment variables with filename */
5065 if (p) {
5066 InvalidEnvInfo info = {
5067 .unit = unit,
5068 .path = pglob.gl_pathv[n]
5069 };
5070
5071 p = strv_env_clean_with_callback(p, invalid_env, &info);
5072 }
5073
5074 if (!r)
5075 r = p;
5076 else {
5077 char **m;
5078
5079 m = strv_env_merge(2, r, p);
5080 strv_free(r);
5081 strv_free(p);
5082 if (!m)
5083 return -ENOMEM;
5084
5085 r = m;
5086 }
5087 }
5088 }
5089
5090 *l = r;
5091
5092 return 0;
5093 }
5094
5095 static bool tty_may_match_dev_console(const char *tty) {
5096 _cleanup_free_ char *resolved = NULL;
5097
5098 if (!tty)
5099 return true;
5100
5101 tty = skip_dev_prefix(tty);
5102
5103 /* trivial identity? */
5104 if (streq(tty, "console"))
5105 return true;
5106
5107 if (resolve_dev_console(&resolved) < 0)
5108 return true; /* if we could not resolve, assume it may */
5109
5110 /* "tty0" means the active VC, so it may be the same sometimes */
5111 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5112 }
5113
5114 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5115 assert(ec);
5116
5117 return ec->tty_reset ||
5118 ec->tty_vhangup ||
5119 ec->tty_vt_disallocate ||
5120 is_terminal_input(ec->std_input) ||
5121 is_terminal_output(ec->std_output) ||
5122 is_terminal_output(ec->std_error);
5123 }
5124
5125 bool exec_context_may_touch_console(const ExecContext *ec) {
5126
5127 return exec_context_may_touch_tty(ec) &&
5128 tty_may_match_dev_console(exec_context_tty_path(ec));
5129 }
5130
5131 static void strv_fprintf(FILE *f, char **l) {
5132 char **g;
5133
5134 assert(f);
5135
5136 STRV_FOREACH(g, l)
5137 fprintf(f, " %s", *g);
5138 }
5139
5140 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5141 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
5142 int r;
5143
5144 assert(c);
5145 assert(f);
5146
5147 prefix = strempty(prefix);
5148
5149 fprintf(f,
5150 "%sUMask: %04o\n"
5151 "%sWorkingDirectory: %s\n"
5152 "%sRootDirectory: %s\n"
5153 "%sNonBlocking: %s\n"
5154 "%sPrivateTmp: %s\n"
5155 "%sPrivateDevices: %s\n"
5156 "%sProtectKernelTunables: %s\n"
5157 "%sProtectKernelModules: %s\n"
5158 "%sProtectKernelLogs: %s\n"
5159 "%sProtectClock: %s\n"
5160 "%sProtectControlGroups: %s\n"
5161 "%sPrivateNetwork: %s\n"
5162 "%sPrivateUsers: %s\n"
5163 "%sProtectHome: %s\n"
5164 "%sProtectSystem: %s\n"
5165 "%sMountAPIVFS: %s\n"
5166 "%sIgnoreSIGPIPE: %s\n"
5167 "%sMemoryDenyWriteExecute: %s\n"
5168 "%sRestrictRealtime: %s\n"
5169 "%sRestrictSUIDSGID: %s\n"
5170 "%sKeyringMode: %s\n"
5171 "%sProtectHostname: %s\n"
5172 "%sProtectProc: %s\n"
5173 "%sProcSubset: %s\n",
5174 prefix, c->umask,
5175 prefix, empty_to_root(c->working_directory),
5176 prefix, empty_to_root(c->root_directory),
5177 prefix, yes_no(c->non_blocking),
5178 prefix, yes_no(c->private_tmp),
5179 prefix, yes_no(c->private_devices),
5180 prefix, yes_no(c->protect_kernel_tunables),
5181 prefix, yes_no(c->protect_kernel_modules),
5182 prefix, yes_no(c->protect_kernel_logs),
5183 prefix, yes_no(c->protect_clock),
5184 prefix, yes_no(c->protect_control_groups),
5185 prefix, yes_no(c->private_network),
5186 prefix, yes_no(c->private_users),
5187 prefix, protect_home_to_string(c->protect_home),
5188 prefix, protect_system_to_string(c->protect_system),
5189 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5190 prefix, yes_no(c->ignore_sigpipe),
5191 prefix, yes_no(c->memory_deny_write_execute),
5192 prefix, yes_no(c->restrict_realtime),
5193 prefix, yes_no(c->restrict_suid_sgid),
5194 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5195 prefix, yes_no(c->protect_hostname),
5196 prefix, protect_proc_to_string(c->protect_proc),
5197 prefix, proc_subset_to_string(c->proc_subset));
5198
5199 if (c->root_image)
5200 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5201
5202 if (c->root_image_options) {
5203 MountOptions *o;
5204
5205 fprintf(f, "%sRootImageOptions:", prefix);
5206 LIST_FOREACH(mount_options, o, c->root_image_options)
5207 if (!isempty(o->options))
5208 fprintf(f, " %s:%s",
5209 partition_designator_to_string(o->partition_designator),
5210 o->options);
5211 fprintf(f, "\n");
5212 }
5213
5214 if (c->root_hash) {
5215 _cleanup_free_ char *encoded = NULL;
5216 encoded = hexmem(c->root_hash, c->root_hash_size);
5217 if (encoded)
5218 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5219 }
5220
5221 if (c->root_hash_path)
5222 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5223
5224 if (c->root_hash_sig) {
5225 _cleanup_free_ char *encoded = NULL;
5226 ssize_t len;
5227 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5228 if (len)
5229 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5230 }
5231
5232 if (c->root_hash_sig_path)
5233 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5234
5235 if (c->root_verity)
5236 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5237
5238 STRV_FOREACH(e, c->environment)
5239 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5240
5241 STRV_FOREACH(e, c->environment_files)
5242 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5243
5244 STRV_FOREACH(e, c->pass_environment)
5245 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5246
5247 STRV_FOREACH(e, c->unset_environment)
5248 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5249
5250 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5251
5252 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5253 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5254
5255 STRV_FOREACH(d, c->directories[dt].paths)
5256 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
5257 }
5258
5259 fprintf(f,
5260 "%sTimeoutCleanSec: %s\n",
5261 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
5262
5263 if (c->nice_set)
5264 fprintf(f,
5265 "%sNice: %i\n",
5266 prefix, c->nice);
5267
5268 if (c->oom_score_adjust_set)
5269 fprintf(f,
5270 "%sOOMScoreAdjust: %i\n",
5271 prefix, c->oom_score_adjust);
5272
5273 if (c->coredump_filter_set)
5274 fprintf(f,
5275 "%sCoredumpFilter: 0x%"PRIx64"\n",
5276 prefix, c->coredump_filter);
5277
5278 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5279 if (c->rlimit[i]) {
5280 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5281 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5282 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5283 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5284 }
5285
5286 if (c->ioprio_set) {
5287 _cleanup_free_ char *class_str = NULL;
5288
5289 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
5290 if (r >= 0)
5291 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5292
5293 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
5294 }
5295
5296 if (c->cpu_sched_set) {
5297 _cleanup_free_ char *policy_str = NULL;
5298
5299 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5300 if (r >= 0)
5301 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5302
5303 fprintf(f,
5304 "%sCPUSchedulingPriority: %i\n"
5305 "%sCPUSchedulingResetOnFork: %s\n",
5306 prefix, c->cpu_sched_priority,
5307 prefix, yes_no(c->cpu_sched_reset_on_fork));
5308 }
5309
5310 if (c->cpu_set.set) {
5311 _cleanup_free_ char *affinity = NULL;
5312
5313 affinity = cpu_set_to_range_string(&c->cpu_set);
5314 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5315 }
5316
5317 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5318 _cleanup_free_ char *nodes = NULL;
5319
5320 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5321 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5322 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5323 }
5324
5325 if (c->timer_slack_nsec != NSEC_INFINITY)
5326 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5327
5328 fprintf(f,
5329 "%sStandardInput: %s\n"
5330 "%sStandardOutput: %s\n"
5331 "%sStandardError: %s\n",
5332 prefix, exec_input_to_string(c->std_input),
5333 prefix, exec_output_to_string(c->std_output),
5334 prefix, exec_output_to_string(c->std_error));
5335
5336 if (c->std_input == EXEC_INPUT_NAMED_FD)
5337 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5338 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5339 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5340 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5341 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5342
5343 if (c->std_input == EXEC_INPUT_FILE)
5344 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5345 if (c->std_output == EXEC_OUTPUT_FILE)
5346 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5347 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5348 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5349 if (c->std_error == EXEC_OUTPUT_FILE)
5350 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5351 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5352 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5353
5354 if (c->tty_path)
5355 fprintf(f,
5356 "%sTTYPath: %s\n"
5357 "%sTTYReset: %s\n"
5358 "%sTTYVHangup: %s\n"
5359 "%sTTYVTDisallocate: %s\n",
5360 prefix, c->tty_path,
5361 prefix, yes_no(c->tty_reset),
5362 prefix, yes_no(c->tty_vhangup),
5363 prefix, yes_no(c->tty_vt_disallocate));
5364
5365 if (IN_SET(c->std_output,
5366 EXEC_OUTPUT_KMSG,
5367 EXEC_OUTPUT_JOURNAL,
5368 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5369 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5370 IN_SET(c->std_error,
5371 EXEC_OUTPUT_KMSG,
5372 EXEC_OUTPUT_JOURNAL,
5373 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5374 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5375
5376 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5377
5378 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5379 if (r >= 0)
5380 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5381
5382 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5383 if (r >= 0)
5384 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5385 }
5386
5387 if (c->log_level_max >= 0) {
5388 _cleanup_free_ char *t = NULL;
5389
5390 (void) log_level_to_string_alloc(c->log_level_max, &t);
5391
5392 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5393 }
5394
5395 if (c->log_ratelimit_interval_usec > 0) {
5396 char buf_timespan[FORMAT_TIMESPAN_MAX];
5397
5398 fprintf(f,
5399 "%sLogRateLimitIntervalSec: %s\n",
5400 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
5401 }
5402
5403 if (c->log_ratelimit_burst > 0)
5404 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
5405
5406 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
5407 fprintf(f, "%sLogExtraFields: ", prefix);
5408 fwrite(c->log_extra_fields[j].iov_base,
5409 1, c->log_extra_fields[j].iov_len,
5410 f);
5411 fputc('\n', f);
5412 }
5413
5414 if (c->log_namespace)
5415 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
5416
5417 if (c->secure_bits) {
5418 _cleanup_free_ char *str = NULL;
5419
5420 r = secure_bits_to_string_alloc(c->secure_bits, &str);
5421 if (r >= 0)
5422 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
5423 }
5424
5425 if (c->capability_bounding_set != CAP_ALL) {
5426 _cleanup_free_ char *str = NULL;
5427
5428 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
5429 if (r >= 0)
5430 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
5431 }
5432
5433 if (c->capability_ambient_set != 0) {
5434 _cleanup_free_ char *str = NULL;
5435
5436 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
5437 if (r >= 0)
5438 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
5439 }
5440
5441 if (c->user)
5442 fprintf(f, "%sUser: %s\n", prefix, c->user);
5443 if (c->group)
5444 fprintf(f, "%sGroup: %s\n", prefix, c->group);
5445
5446 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
5447
5448 if (!strv_isempty(c->supplementary_groups)) {
5449 fprintf(f, "%sSupplementaryGroups:", prefix);
5450 strv_fprintf(f, c->supplementary_groups);
5451 fputs("\n", f);
5452 }
5453
5454 if (c->pam_name)
5455 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
5456
5457 if (!strv_isempty(c->read_write_paths)) {
5458 fprintf(f, "%sReadWritePaths:", prefix);
5459 strv_fprintf(f, c->read_write_paths);
5460 fputs("\n", f);
5461 }
5462
5463 if (!strv_isempty(c->read_only_paths)) {
5464 fprintf(f, "%sReadOnlyPaths:", prefix);
5465 strv_fprintf(f, c->read_only_paths);
5466 fputs("\n", f);
5467 }
5468
5469 if (!strv_isempty(c->inaccessible_paths)) {
5470 fprintf(f, "%sInaccessiblePaths:", prefix);
5471 strv_fprintf(f, c->inaccessible_paths);
5472 fputs("\n", f);
5473 }
5474
5475 for (size_t i = 0; i < c->n_bind_mounts; i++)
5476 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
5477 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
5478 c->bind_mounts[i].ignore_enoent ? "-": "",
5479 c->bind_mounts[i].source,
5480 c->bind_mounts[i].destination,
5481 c->bind_mounts[i].recursive ? "rbind" : "norbind");
5482
5483 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
5484 const TemporaryFileSystem *t = c->temporary_filesystems + i;
5485
5486 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
5487 t->path,
5488 isempty(t->options) ? "" : ":",
5489 strempty(t->options));
5490 }
5491
5492 if (c->utmp_id)
5493 fprintf(f,
5494 "%sUtmpIdentifier: %s\n",
5495 prefix, c->utmp_id);
5496
5497 if (c->selinux_context)
5498 fprintf(f,
5499 "%sSELinuxContext: %s%s\n",
5500 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
5501
5502 if (c->apparmor_profile)
5503 fprintf(f,
5504 "%sAppArmorProfile: %s%s\n",
5505 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
5506
5507 if (c->smack_process_label)
5508 fprintf(f,
5509 "%sSmackProcessLabel: %s%s\n",
5510 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
5511
5512 if (c->personality != PERSONALITY_INVALID)
5513 fprintf(f,
5514 "%sPersonality: %s\n",
5515 prefix, strna(personality_to_string(c->personality)));
5516
5517 fprintf(f,
5518 "%sLockPersonality: %s\n",
5519 prefix, yes_no(c->lock_personality));
5520
5521 if (c->syscall_filter) {
5522 #if HAVE_SECCOMP
5523 void *id, *val;
5524 bool first = true;
5525 #endif
5526
5527 fprintf(f,
5528 "%sSystemCallFilter: ",
5529 prefix);
5530
5531 if (!c->syscall_allow_list)
5532 fputc('~', f);
5533
5534 #if HAVE_SECCOMP
5535 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
5536 _cleanup_free_ char *name = NULL;
5537 const char *errno_name = NULL;
5538 int num = PTR_TO_INT(val);
5539
5540 if (first)
5541 first = false;
5542 else
5543 fputc(' ', f);
5544
5545 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
5546 fputs(strna(name), f);
5547
5548 if (num >= 0) {
5549 errno_name = seccomp_errno_or_action_to_string(num);
5550 if (errno_name)
5551 fprintf(f, ":%s", errno_name);
5552 else
5553 fprintf(f, ":%d", num);
5554 }
5555 }
5556 #endif
5557
5558 fputc('\n', f);
5559 }
5560
5561 if (c->syscall_archs) {
5562 #if HAVE_SECCOMP
5563 void *id;
5564 #endif
5565
5566 fprintf(f,
5567 "%sSystemCallArchitectures:",
5568 prefix);
5569
5570 #if HAVE_SECCOMP
5571 SET_FOREACH(id, c->syscall_archs)
5572 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
5573 #endif
5574 fputc('\n', f);
5575 }
5576
5577 if (exec_context_restrict_namespaces_set(c)) {
5578 _cleanup_free_ char *s = NULL;
5579
5580 r = namespace_flags_to_string(c->restrict_namespaces, &s);
5581 if (r >= 0)
5582 fprintf(f, "%sRestrictNamespaces: %s\n",
5583 prefix, strna(s));
5584 }
5585
5586 if (c->network_namespace_path)
5587 fprintf(f,
5588 "%sNetworkNamespacePath: %s\n",
5589 prefix, c->network_namespace_path);
5590
5591 if (c->syscall_errno > 0) {
5592 #if HAVE_SECCOMP
5593 const char *errno_name;
5594 #endif
5595
5596 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
5597
5598 #if HAVE_SECCOMP
5599 errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
5600 if (errno_name)
5601 fputs(errno_name, f);
5602 else
5603 fprintf(f, "%d", c->syscall_errno);
5604 #endif
5605 fputc('\n', f);
5606 }
5607
5608 for (size_t i = 0; i < c->n_mount_images; i++) {
5609 MountOptions *o;
5610
5611 fprintf(f, "%sMountImages: %s%s:%s%s", prefix,
5612 c->mount_images[i].ignore_enoent ? "-": "",
5613 c->mount_images[i].source,
5614 c->mount_images[i].destination,
5615 LIST_IS_EMPTY(c->mount_images[i].mount_options) ? "": ":");
5616 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
5617 fprintf(f, "%s:%s",
5618 partition_designator_to_string(o->partition_designator),
5619 o->options);
5620 fprintf(f, "\n");
5621 }
5622 }
5623
5624 bool exec_context_maintains_privileges(const ExecContext *c) {
5625 assert(c);
5626
5627 /* Returns true if the process forked off would run under
5628 * an unchanged UID or as root. */
5629
5630 if (!c->user)
5631 return true;
5632
5633 if (streq(c->user, "root") || streq(c->user, "0"))
5634 return true;
5635
5636 return false;
5637 }
5638
5639 int exec_context_get_effective_ioprio(const ExecContext *c) {
5640 int p;
5641
5642 assert(c);
5643
5644 if (c->ioprio_set)
5645 return c->ioprio;
5646
5647 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5648 if (p < 0)
5649 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5650
5651 return p;
5652 }
5653
5654 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
5655 assert(c);
5656
5657 /* Explicit setting wins */
5658 if (c->mount_apivfs_set)
5659 return c->mount_apivfs;
5660
5661 /* Default to "yes" if root directory or image are specified */
5662 if (exec_context_with_rootfs(c))
5663 return true;
5664
5665 return false;
5666 }
5667
5668 void exec_context_free_log_extra_fields(ExecContext *c) {
5669 assert(c);
5670
5671 for (size_t l = 0; l < c->n_log_extra_fields; l++)
5672 free(c->log_extra_fields[l].iov_base);
5673 c->log_extra_fields = mfree(c->log_extra_fields);
5674 c->n_log_extra_fields = 0;
5675 }
5676
5677 void exec_context_revert_tty(ExecContext *c) {
5678 int r;
5679
5680 assert(c);
5681
5682 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5683 exec_context_tty_reset(c, NULL);
5684
5685 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5686 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5687 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5688
5689 if (exec_context_may_touch_tty(c)) {
5690 const char *path;
5691
5692 path = exec_context_tty_path(c);
5693 if (path) {
5694 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5695 if (r < 0 && r != -ENOENT)
5696 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5697 }
5698 }
5699 }
5700
5701 int exec_context_get_clean_directories(
5702 ExecContext *c,
5703 char **prefix,
5704 ExecCleanMask mask,
5705 char ***ret) {
5706
5707 _cleanup_strv_free_ char **l = NULL;
5708 int r;
5709
5710 assert(c);
5711 assert(prefix);
5712 assert(ret);
5713
5714 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5715 char **i;
5716
5717 if (!FLAGS_SET(mask, 1U << t))
5718 continue;
5719
5720 if (!prefix[t])
5721 continue;
5722
5723 STRV_FOREACH(i, c->directories[t].paths) {
5724 char *j;
5725
5726 j = path_join(prefix[t], *i);
5727 if (!j)
5728 return -ENOMEM;
5729
5730 r = strv_consume(&l, j);
5731 if (r < 0)
5732 return r;
5733
5734 /* Also remove private directories unconditionally. */
5735 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5736 j = path_join(prefix[t], "private", *i);
5737 if (!j)
5738 return -ENOMEM;
5739
5740 r = strv_consume(&l, j);
5741 if (r < 0)
5742 return r;
5743 }
5744 }
5745 }
5746
5747 *ret = TAKE_PTR(l);
5748 return 0;
5749 }
5750
5751 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5752 ExecCleanMask mask = 0;
5753
5754 assert(c);
5755 assert(ret);
5756
5757 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5758 if (!strv_isempty(c->directories[t].paths))
5759 mask |= 1U << t;
5760
5761 *ret = mask;
5762 return 0;
5763 }
5764
5765 void exec_status_start(ExecStatus *s, pid_t pid) {
5766 assert(s);
5767
5768 *s = (ExecStatus) {
5769 .pid = pid,
5770 };
5771
5772 dual_timestamp_get(&s->start_timestamp);
5773 }
5774
5775 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5776 assert(s);
5777
5778 if (s->pid != pid)
5779 *s = (ExecStatus) {
5780 .pid = pid,
5781 };
5782
5783 dual_timestamp_get(&s->exit_timestamp);
5784
5785 s->code = code;
5786 s->status = status;
5787
5788 if (context && context->utmp_id)
5789 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5790 }
5791
5792 void exec_status_reset(ExecStatus *s) {
5793 assert(s);
5794
5795 *s = (ExecStatus) {};
5796 }
5797
5798 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5799 char buf[FORMAT_TIMESTAMP_MAX];
5800
5801 assert(s);
5802 assert(f);
5803
5804 if (s->pid <= 0)
5805 return;
5806
5807 prefix = strempty(prefix);
5808
5809 fprintf(f,
5810 "%sPID: "PID_FMT"\n",
5811 prefix, s->pid);
5812
5813 if (dual_timestamp_is_set(&s->start_timestamp))
5814 fprintf(f,
5815 "%sStart Timestamp: %s\n",
5816 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5817
5818 if (dual_timestamp_is_set(&s->exit_timestamp))
5819 fprintf(f,
5820 "%sExit Timestamp: %s\n"
5821 "%sExit Code: %s\n"
5822 "%sExit Status: %i\n",
5823 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5824 prefix, sigchld_code_to_string(s->code),
5825 prefix, s->status);
5826 }
5827
5828 static char *exec_command_line(char **argv) {
5829 size_t k;
5830 char *n, *p, **a;
5831 bool first = true;
5832
5833 assert(argv);
5834
5835 k = 1;
5836 STRV_FOREACH(a, argv)
5837 k += strlen(*a)+3;
5838
5839 n = new(char, k);
5840 if (!n)
5841 return NULL;
5842
5843 p = n;
5844 STRV_FOREACH(a, argv) {
5845
5846 if (!first)
5847 *(p++) = ' ';
5848 else
5849 first = false;
5850
5851 if (strpbrk(*a, WHITESPACE)) {
5852 *(p++) = '\'';
5853 p = stpcpy(p, *a);
5854 *(p++) = '\'';
5855 } else
5856 p = stpcpy(p, *a);
5857
5858 }
5859
5860 *p = 0;
5861
5862 /* FIXME: this doesn't really handle arguments that have
5863 * spaces and ticks in them */
5864
5865 return n;
5866 }
5867
5868 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5869 _cleanup_free_ char *cmd = NULL;
5870 const char *prefix2;
5871
5872 assert(c);
5873 assert(f);
5874
5875 prefix = strempty(prefix);
5876 prefix2 = strjoina(prefix, "\t");
5877
5878 cmd = exec_command_line(c->argv);
5879 fprintf(f,
5880 "%sCommand Line: %s\n",
5881 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5882
5883 exec_status_dump(&c->exec_status, f, prefix2);
5884 }
5885
5886 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5887 assert(f);
5888
5889 prefix = strempty(prefix);
5890
5891 LIST_FOREACH(command, c, c)
5892 exec_command_dump(c, f, prefix);
5893 }
5894
5895 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5896 ExecCommand *end;
5897
5898 assert(l);
5899 assert(e);
5900
5901 if (*l) {
5902 /* It's kind of important, that we keep the order here */
5903 LIST_FIND_TAIL(command, *l, end);
5904 LIST_INSERT_AFTER(command, *l, end, e);
5905 } else
5906 *l = e;
5907 }
5908
5909 int exec_command_set(ExecCommand *c, const char *path, ...) {
5910 va_list ap;
5911 char **l, *p;
5912
5913 assert(c);
5914 assert(path);
5915
5916 va_start(ap, path);
5917 l = strv_new_ap(path, ap);
5918 va_end(ap);
5919
5920 if (!l)
5921 return -ENOMEM;
5922
5923 p = strdup(path);
5924 if (!p) {
5925 strv_free(l);
5926 return -ENOMEM;
5927 }
5928
5929 free_and_replace(c->path, p);
5930
5931 return strv_free_and_replace(c->argv, l);
5932 }
5933
5934 int exec_command_append(ExecCommand *c, const char *path, ...) {
5935 _cleanup_strv_free_ char **l = NULL;
5936 va_list ap;
5937 int r;
5938
5939 assert(c);
5940 assert(path);
5941
5942 va_start(ap, path);
5943 l = strv_new_ap(path, ap);
5944 va_end(ap);
5945
5946 if (!l)
5947 return -ENOMEM;
5948
5949 r = strv_extend_strv(&c->argv, l, false);
5950 if (r < 0)
5951 return r;
5952
5953 return 0;
5954 }
5955
5956 static void *remove_tmpdir_thread(void *p) {
5957 _cleanup_free_ char *path = p;
5958
5959 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5960 return NULL;
5961 }
5962
5963 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5964 int r;
5965
5966 if (!rt)
5967 return NULL;
5968
5969 if (rt->manager)
5970 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5971
5972 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5973
5974 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
5975 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5976
5977 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5978 if (r < 0)
5979 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5980 else
5981 rt->tmp_dir = NULL;
5982 }
5983
5984 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
5985 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5986
5987 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5988 if (r < 0)
5989 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5990 else
5991 rt->var_tmp_dir = NULL;
5992 }
5993
5994 rt->id = mfree(rt->id);
5995 rt->tmp_dir = mfree(rt->tmp_dir);
5996 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
5997 safe_close_pair(rt->netns_storage_socket);
5998 return mfree(rt);
5999 }
6000
6001 static void exec_runtime_freep(ExecRuntime **rt) {
6002 (void) exec_runtime_free(*rt, false);
6003 }
6004
6005 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6006 _cleanup_free_ char *id_copy = NULL;
6007 ExecRuntime *n;
6008
6009 assert(ret);
6010
6011 id_copy = strdup(id);
6012 if (!id_copy)
6013 return -ENOMEM;
6014
6015 n = new(ExecRuntime, 1);
6016 if (!n)
6017 return -ENOMEM;
6018
6019 *n = (ExecRuntime) {
6020 .id = TAKE_PTR(id_copy),
6021 .netns_storage_socket = { -1, -1 },
6022 };
6023
6024 *ret = n;
6025 return 0;
6026 }
6027
6028 static int exec_runtime_add(
6029 Manager *m,
6030 const char *id,
6031 char **tmp_dir,
6032 char **var_tmp_dir,
6033 int netns_storage_socket[2],
6034 ExecRuntime **ret) {
6035
6036 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6037 int r;
6038
6039 assert(m);
6040 assert(id);
6041
6042 /* tmp_dir, var_tmp_dir, netns_storage_socket fds are donated on success */
6043
6044 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
6045 if (r < 0)
6046 return r;
6047
6048 r = exec_runtime_allocate(&rt, id);
6049 if (r < 0)
6050 return r;
6051
6052 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
6053 if (r < 0)
6054 return r;
6055
6056 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6057 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6058 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6059
6060 if (netns_storage_socket) {
6061 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6062 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6063 }
6064
6065 rt->manager = m;
6066
6067 if (ret)
6068 *ret = rt;
6069 /* do not remove created ExecRuntime object when the operation succeeds. */
6070 TAKE_PTR(rt);
6071 return 0;
6072 }
6073
6074 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
6075 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6076 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
6077 int r;
6078
6079 assert(m);
6080 assert(c);
6081 assert(id);
6082
6083 /* It is not necessary to create ExecRuntime object. */
6084 if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
6085 return 0;
6086
6087 if (c->private_tmp &&
6088 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6089 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6090 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6091 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6092 if (r < 0)
6093 return r;
6094 }
6095
6096 if (c->private_network || c->network_namespace_path) {
6097 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6098 return -errno;
6099 }
6100
6101 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ret);
6102 if (r < 0)
6103 return r;
6104
6105 return 1;
6106 }
6107
6108 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6109 ExecRuntime *rt;
6110 int r;
6111
6112 assert(m);
6113 assert(id);
6114 assert(ret);
6115
6116 rt = hashmap_get(m->exec_runtime_by_id, id);
6117 if (rt)
6118 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
6119 goto ref;
6120
6121 if (!create)
6122 return 0;
6123
6124 /* If not found, then create a new object. */
6125 r = exec_runtime_make(m, c, id, &rt);
6126 if (r <= 0)
6127 /* When r == 0, it is not necessary to create ExecRuntime object. */
6128 return r;
6129
6130 ref:
6131 /* increment reference counter. */
6132 rt->n_ref++;
6133 *ret = rt;
6134 return 1;
6135 }
6136
6137 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6138 if (!rt)
6139 return NULL;
6140
6141 assert(rt->n_ref > 0);
6142
6143 rt->n_ref--;
6144 if (rt->n_ref > 0)
6145 return NULL;
6146
6147 return exec_runtime_free(rt, destroy);
6148 }
6149
6150 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6151 ExecRuntime *rt;
6152
6153 assert(m);
6154 assert(f);
6155 assert(fds);
6156
6157 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6158 fprintf(f, "exec-runtime=%s", rt->id);
6159
6160 if (rt->tmp_dir)
6161 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6162
6163 if (rt->var_tmp_dir)
6164 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6165
6166 if (rt->netns_storage_socket[0] >= 0) {
6167 int copy;
6168
6169 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6170 if (copy < 0)
6171 return copy;
6172
6173 fprintf(f, " netns-socket-0=%i", copy);
6174 }
6175
6176 if (rt->netns_storage_socket[1] >= 0) {
6177 int copy;
6178
6179 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6180 if (copy < 0)
6181 return copy;
6182
6183 fprintf(f, " netns-socket-1=%i", copy);
6184 }
6185
6186 fputc('\n', f);
6187 }
6188
6189 return 0;
6190 }
6191
6192 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6193 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6194 ExecRuntime *rt;
6195 int r;
6196
6197 /* This is for the migration from old (v237 or earlier) deserialization text.
6198 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6199 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6200 * so or not from the serialized text, then we always creates a new object owned by this. */
6201
6202 assert(u);
6203 assert(key);
6204 assert(value);
6205
6206 /* Manager manages ExecRuntime objects by the unit id.
6207 * So, we omit the serialized text when the unit does not have id (yet?)... */
6208 if (isempty(u->id)) {
6209 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6210 return 0;
6211 }
6212
6213 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
6214 if (r < 0) {
6215 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
6216 return 0;
6217 }
6218
6219 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6220 if (!rt) {
6221 r = exec_runtime_allocate(&rt_create, u->id);
6222 if (r < 0)
6223 return log_oom();
6224
6225 rt = rt_create;
6226 }
6227
6228 if (streq(key, "tmp-dir")) {
6229 char *copy;
6230
6231 copy = strdup(value);
6232 if (!copy)
6233 return log_oom();
6234
6235 free_and_replace(rt->tmp_dir, copy);
6236
6237 } else if (streq(key, "var-tmp-dir")) {
6238 char *copy;
6239
6240 copy = strdup(value);
6241 if (!copy)
6242 return log_oom();
6243
6244 free_and_replace(rt->var_tmp_dir, copy);
6245
6246 } else if (streq(key, "netns-socket-0")) {
6247 int fd;
6248
6249 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6250 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6251 return 0;
6252 }
6253
6254 safe_close(rt->netns_storage_socket[0]);
6255 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6256
6257 } else if (streq(key, "netns-socket-1")) {
6258 int fd;
6259
6260 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6261 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6262 return 0;
6263 }
6264
6265 safe_close(rt->netns_storage_socket[1]);
6266 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6267 } else
6268 return 0;
6269
6270 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6271 if (rt_create) {
6272 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6273 if (r < 0) {
6274 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6275 return 0;
6276 }
6277
6278 rt_create->manager = u->manager;
6279
6280 /* Avoid cleanup */
6281 TAKE_PTR(rt_create);
6282 }
6283
6284 return 1;
6285 }
6286
6287 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6288 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6289 char *id = NULL;
6290 int r, fdpair[] = {-1, -1};
6291 const char *p, *v = value;
6292 size_t n;
6293
6294 assert(m);
6295 assert(value);
6296 assert(fds);
6297
6298 n = strcspn(v, " ");
6299 id = strndupa(v, n);
6300 if (v[n] != ' ')
6301 goto finalize;
6302 p = v + n + 1;
6303
6304 v = startswith(p, "tmp-dir=");
6305 if (v) {
6306 n = strcspn(v, " ");
6307 tmp_dir = strndup(v, n);
6308 if (!tmp_dir)
6309 return log_oom();
6310 if (v[n] != ' ')
6311 goto finalize;
6312 p = v + n + 1;
6313 }
6314
6315 v = startswith(p, "var-tmp-dir=");
6316 if (v) {
6317 n = strcspn(v, " ");
6318 var_tmp_dir = strndup(v, n);
6319 if (!var_tmp_dir)
6320 return log_oom();
6321 if (v[n] != ' ')
6322 goto finalize;
6323 p = v + n + 1;
6324 }
6325
6326 v = startswith(p, "netns-socket-0=");
6327 if (v) {
6328 char *buf;
6329
6330 n = strcspn(v, " ");
6331 buf = strndupa(v, n);
6332
6333 r = safe_atoi(buf, &fdpair[0]);
6334 if (r < 0)
6335 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6336 if (!fdset_contains(fds, fdpair[0]))
6337 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6338 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", fdpair[0]);
6339 fdpair[0] = fdset_remove(fds, fdpair[0]);
6340 if (v[n] != ' ')
6341 goto finalize;
6342 p = v + n + 1;
6343 }
6344
6345 v = startswith(p, "netns-socket-1=");
6346 if (v) {
6347 char *buf;
6348
6349 n = strcspn(v, " ");
6350 buf = strndupa(v, n);
6351 r = safe_atoi(buf, &fdpair[1]);
6352 if (r < 0)
6353 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6354 if (!fdset_contains(fds, fdpair[0]))
6355 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6356 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", fdpair[1]);
6357 fdpair[1] = fdset_remove(fds, fdpair[1]);
6358 }
6359
6360 finalize:
6361 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, fdpair, NULL);
6362 if (r < 0)
6363 return log_debug_errno(r, "Failed to add exec-runtime: %m");
6364 return 0;
6365 }
6366
6367 void exec_runtime_vacuum(Manager *m) {
6368 ExecRuntime *rt;
6369
6370 assert(m);
6371
6372 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
6373
6374 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6375 if (rt->n_ref > 0)
6376 continue;
6377
6378 (void) exec_runtime_free(rt, false);
6379 }
6380 }
6381
6382 void exec_params_clear(ExecParameters *p) {
6383 if (!p)
6384 return;
6385
6386 p->environment = strv_free(p->environment);
6387 p->fd_names = strv_free(p->fd_names);
6388 p->fds = mfree(p->fds);
6389 p->exec_fd = safe_close(p->exec_fd);
6390 }
6391
6392 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
6393 if (!sc)
6394 return NULL;
6395
6396 free(sc->id);
6397 free(sc->data);
6398 return mfree(sc);
6399 }
6400
6401 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
6402
6403 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
6404 [EXEC_INPUT_NULL] = "null",
6405 [EXEC_INPUT_TTY] = "tty",
6406 [EXEC_INPUT_TTY_FORCE] = "tty-force",
6407 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
6408 [EXEC_INPUT_SOCKET] = "socket",
6409 [EXEC_INPUT_NAMED_FD] = "fd",
6410 [EXEC_INPUT_DATA] = "data",
6411 [EXEC_INPUT_FILE] = "file",
6412 };
6413
6414 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
6415
6416 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
6417 [EXEC_OUTPUT_INHERIT] = "inherit",
6418 [EXEC_OUTPUT_NULL] = "null",
6419 [EXEC_OUTPUT_TTY] = "tty",
6420 [EXEC_OUTPUT_KMSG] = "kmsg",
6421 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
6422 [EXEC_OUTPUT_JOURNAL] = "journal",
6423 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
6424 [EXEC_OUTPUT_SOCKET] = "socket",
6425 [EXEC_OUTPUT_NAMED_FD] = "fd",
6426 [EXEC_OUTPUT_FILE] = "file",
6427 [EXEC_OUTPUT_FILE_APPEND] = "append",
6428 };
6429
6430 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
6431
6432 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
6433 [EXEC_UTMP_INIT] = "init",
6434 [EXEC_UTMP_LOGIN] = "login",
6435 [EXEC_UTMP_USER] = "user",
6436 };
6437
6438 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
6439
6440 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
6441 [EXEC_PRESERVE_NO] = "no",
6442 [EXEC_PRESERVE_YES] = "yes",
6443 [EXEC_PRESERVE_RESTART] = "restart",
6444 };
6445
6446 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
6447
6448 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
6449 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6450 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
6451 [EXEC_DIRECTORY_STATE] = "StateDirectory",
6452 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
6453 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
6454 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
6455 };
6456
6457 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
6458
6459 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
6460 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
6461 * directories, specifically .timer units with their timestamp touch file. */
6462 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6463 [EXEC_DIRECTORY_RUNTIME] = "runtime",
6464 [EXEC_DIRECTORY_STATE] = "state",
6465 [EXEC_DIRECTORY_CACHE] = "cache",
6466 [EXEC_DIRECTORY_LOGS] = "logs",
6467 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
6468 };
6469
6470 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
6471
6472 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
6473 * the service payload in. */
6474 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6475 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
6476 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
6477 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
6478 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
6479 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
6480 };
6481
6482 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
6483
6484 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
6485 [EXEC_KEYRING_INHERIT] = "inherit",
6486 [EXEC_KEYRING_PRIVATE] = "private",
6487 [EXEC_KEYRING_SHARED] = "shared",
6488 };
6489
6490 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);