]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
Merge pull request #12106 from poettering/nosuidns
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <glob.h>
6 #include <grp.h>
7 #include <poll.h>
8 #include <signal.h>
9 #include <string.h>
10 #include <sys/capability.h>
11 #include <sys/eventfd.h>
12 #include <sys/mman.h>
13 #include <sys/personality.h>
14 #include <sys/prctl.h>
15 #include <sys/shm.h>
16 #include <sys/socket.h>
17 #include <sys/stat.h>
18 #include <sys/types.h>
19 #include <sys/un.h>
20 #include <unistd.h>
21 #include <utmpx.h>
22
23 #if HAVE_PAM
24 #include <security/pam_appl.h>
25 #endif
26
27 #if HAVE_SELINUX
28 #include <selinux/selinux.h>
29 #endif
30
31 #if HAVE_SECCOMP
32 #include <seccomp.h>
33 #endif
34
35 #if HAVE_APPARMOR
36 #include <sys/apparmor.h>
37 #endif
38
39 #include "sd-messages.h"
40
41 #include "af-list.h"
42 #include "alloc-util.h"
43 #if HAVE_APPARMOR
44 #include "apparmor-util.h"
45 #endif
46 #include "async.h"
47 #include "barrier.h"
48 #include "cap-list.h"
49 #include "capability-util.h"
50 #include "chown-recursive.h"
51 #include "cpu-set-util.h"
52 #include "def.h"
53 #include "env-file.h"
54 #include "env-util.h"
55 #include "errno-list.h"
56 #include "execute.h"
57 #include "exit-status.h"
58 #include "fd-util.h"
59 #include "format-util.h"
60 #include "fs-util.h"
61 #include "glob-util.h"
62 #include "io-util.h"
63 #include "ioprio.h"
64 #include "label.h"
65 #include "log.h"
66 #include "macro.h"
67 #include "manager.h"
68 #include "memory-util.h"
69 #include "missing.h"
70 #include "mkdir.h"
71 #include "namespace.h"
72 #include "parse-util.h"
73 #include "path-util.h"
74 #include "process-util.h"
75 #include "rlimit-util.h"
76 #include "rm-rf.h"
77 #if HAVE_SECCOMP
78 #include "seccomp-util.h"
79 #endif
80 #include "securebits-util.h"
81 #include "selinux-util.h"
82 #include "signal-util.h"
83 #include "smack-util.h"
84 #include "socket-util.h"
85 #include "special.h"
86 #include "stat-util.h"
87 #include "string-table.h"
88 #include "string-util.h"
89 #include "strv.h"
90 #include "syslog-util.h"
91 #include "terminal-util.h"
92 #include "umask-util.h"
93 #include "unit.h"
94 #include "user-util.h"
95 #include "utmp-wtmp.h"
96
97 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
98 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
99
100 /* This assumes there is a 'tty' group */
101 #define TTY_MODE 0620
102
103 #define SNDBUF_SIZE (8*1024*1024)
104
105 static int shift_fds(int fds[], size_t n_fds) {
106 int start, restart_from;
107
108 if (n_fds <= 0)
109 return 0;
110
111 /* Modifies the fds array! (sorts it) */
112
113 assert(fds);
114
115 start = 0;
116 for (;;) {
117 int i;
118
119 restart_from = -1;
120
121 for (i = start; i < (int) n_fds; i++) {
122 int nfd;
123
124 /* Already at right index? */
125 if (fds[i] == i+3)
126 continue;
127
128 nfd = fcntl(fds[i], F_DUPFD, i + 3);
129 if (nfd < 0)
130 return -errno;
131
132 safe_close(fds[i]);
133 fds[i] = nfd;
134
135 /* Hmm, the fd we wanted isn't free? Then
136 * let's remember that and try again from here */
137 if (nfd != i+3 && restart_from < 0)
138 restart_from = i;
139 }
140
141 if (restart_from < 0)
142 break;
143
144 start = restart_from;
145 }
146
147 return 0;
148 }
149
150 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
151 size_t i, n_fds;
152 int r;
153
154 n_fds = n_socket_fds + n_storage_fds;
155 if (n_fds <= 0)
156 return 0;
157
158 assert(fds);
159
160 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
161 * O_NONBLOCK only applies to socket activation though. */
162
163 for (i = 0; i < n_fds; i++) {
164
165 if (i < n_socket_fds) {
166 r = fd_nonblock(fds[i], nonblock);
167 if (r < 0)
168 return r;
169 }
170
171 /* We unconditionally drop FD_CLOEXEC from the fds,
172 * since after all we want to pass these fds to our
173 * children */
174
175 r = fd_cloexec(fds[i], false);
176 if (r < 0)
177 return r;
178 }
179
180 return 0;
181 }
182
183 static const char *exec_context_tty_path(const ExecContext *context) {
184 assert(context);
185
186 if (context->stdio_as_fds)
187 return NULL;
188
189 if (context->tty_path)
190 return context->tty_path;
191
192 return "/dev/console";
193 }
194
195 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
196 const char *path;
197
198 assert(context);
199
200 path = exec_context_tty_path(context);
201
202 if (context->tty_vhangup) {
203 if (p && p->stdin_fd >= 0)
204 (void) terminal_vhangup_fd(p->stdin_fd);
205 else if (path)
206 (void) terminal_vhangup(path);
207 }
208
209 if (context->tty_reset) {
210 if (p && p->stdin_fd >= 0)
211 (void) reset_terminal_fd(p->stdin_fd, true);
212 else if (path)
213 (void) reset_terminal(path);
214 }
215
216 if (context->tty_vt_disallocate && path)
217 (void) vt_disallocate(path);
218 }
219
220 static bool is_terminal_input(ExecInput i) {
221 return IN_SET(i,
222 EXEC_INPUT_TTY,
223 EXEC_INPUT_TTY_FORCE,
224 EXEC_INPUT_TTY_FAIL);
225 }
226
227 static bool is_terminal_output(ExecOutput o) {
228 return IN_SET(o,
229 EXEC_OUTPUT_TTY,
230 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
231 EXEC_OUTPUT_KMSG_AND_CONSOLE,
232 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
233 }
234
235 static bool is_syslog_output(ExecOutput o) {
236 return IN_SET(o,
237 EXEC_OUTPUT_SYSLOG,
238 EXEC_OUTPUT_SYSLOG_AND_CONSOLE);
239 }
240
241 static bool is_kmsg_output(ExecOutput o) {
242 return IN_SET(o,
243 EXEC_OUTPUT_KMSG,
244 EXEC_OUTPUT_KMSG_AND_CONSOLE);
245 }
246
247 static bool exec_context_needs_term(const ExecContext *c) {
248 assert(c);
249
250 /* Return true if the execution context suggests we should set $TERM to something useful. */
251
252 if (is_terminal_input(c->std_input))
253 return true;
254
255 if (is_terminal_output(c->std_output))
256 return true;
257
258 if (is_terminal_output(c->std_error))
259 return true;
260
261 return !!c->tty_path;
262 }
263
264 static int open_null_as(int flags, int nfd) {
265 int fd;
266
267 assert(nfd >= 0);
268
269 fd = open("/dev/null", flags|O_NOCTTY);
270 if (fd < 0)
271 return -errno;
272
273 return move_fd(fd, nfd, false);
274 }
275
276 static int connect_journal_socket(int fd, uid_t uid, gid_t gid) {
277 static const union sockaddr_union sa = {
278 .un.sun_family = AF_UNIX,
279 .un.sun_path = "/run/systemd/journal/stdout",
280 };
281 uid_t olduid = UID_INVALID;
282 gid_t oldgid = GID_INVALID;
283 int r;
284
285 if (gid_is_valid(gid)) {
286 oldgid = getgid();
287
288 if (setegid(gid) < 0)
289 return -errno;
290 }
291
292 if (uid_is_valid(uid)) {
293 olduid = getuid();
294
295 if (seteuid(uid) < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0 ? -errno : 0;
302
303 /* If we fail to restore the uid or gid, things will likely
304 fail later on. This should only happen if an LSM interferes. */
305
306 if (uid_is_valid(uid))
307 (void) seteuid(olduid);
308
309 restore_gid:
310 if (gid_is_valid(gid))
311 (void) setegid(oldgid);
312
313 return r;
314 }
315
316 static int connect_logger_as(
317 const Unit *unit,
318 const ExecContext *context,
319 const ExecParameters *params,
320 ExecOutput output,
321 const char *ident,
322 int nfd,
323 uid_t uid,
324 gid_t gid) {
325
326 _cleanup_close_ int fd = -1;
327 int r;
328
329 assert(context);
330 assert(params);
331 assert(output < _EXEC_OUTPUT_MAX);
332 assert(ident);
333 assert(nfd >= 0);
334
335 fd = socket(AF_UNIX, SOCK_STREAM, 0);
336 if (fd < 0)
337 return -errno;
338
339 r = connect_journal_socket(fd, uid, gid);
340 if (r < 0)
341 return r;
342
343 if (shutdown(fd, SHUT_RD) < 0)
344 return -errno;
345
346 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
347
348 if (dprintf(fd,
349 "%s\n"
350 "%s\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n",
356 context->syslog_identifier ?: ident,
357 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
358 context->syslog_priority,
359 !!context->syslog_level_prefix,
360 is_syslog_output(output),
361 is_kmsg_output(output),
362 is_terminal_output(output)) < 0)
363 return -errno;
364
365 return move_fd(TAKE_FD(fd), nfd, false);
366 }
367
368 static int open_terminal_as(const char *path, int flags, int nfd) {
369 int fd;
370
371 assert(path);
372 assert(nfd >= 0);
373
374 fd = open_terminal(path, flags | O_NOCTTY);
375 if (fd < 0)
376 return fd;
377
378 return move_fd(fd, nfd, false);
379 }
380
381 static int acquire_path(const char *path, int flags, mode_t mode) {
382 union sockaddr_union sa = {};
383 _cleanup_close_ int fd = -1;
384 int r, salen;
385
386 assert(path);
387
388 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
389 flags |= O_CREAT;
390
391 fd = open(path, flags|O_NOCTTY, mode);
392 if (fd >= 0)
393 return TAKE_FD(fd);
394
395 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
396 return -errno;
397 if (strlen(path) >= sizeof(sa.un.sun_path)) /* Too long, can't be a UNIX socket */
398 return -ENXIO;
399
400 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
401
402 fd = socket(AF_UNIX, SOCK_STREAM, 0);
403 if (fd < 0)
404 return -errno;
405
406 salen = sockaddr_un_set_path(&sa.un, path);
407 if (salen < 0)
408 return salen;
409
410 if (connect(fd, &sa.sa, salen) < 0)
411 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
412 * indication that his wasn't an AF_UNIX socket after all */
413
414 if ((flags & O_ACCMODE) == O_RDONLY)
415 r = shutdown(fd, SHUT_WR);
416 else if ((flags & O_ACCMODE) == O_WRONLY)
417 r = shutdown(fd, SHUT_RD);
418 else
419 return TAKE_FD(fd);
420 if (r < 0)
421 return -errno;
422
423 return TAKE_FD(fd);
424 }
425
426 static int fixup_input(
427 const ExecContext *context,
428 int socket_fd,
429 bool apply_tty_stdin) {
430
431 ExecInput std_input;
432
433 assert(context);
434
435 std_input = context->std_input;
436
437 if (is_terminal_input(std_input) && !apply_tty_stdin)
438 return EXEC_INPUT_NULL;
439
440 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
444 return EXEC_INPUT_NULL;
445
446 return std_input;
447 }
448
449 static int fixup_output(ExecOutput std_output, int socket_fd) {
450
451 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
452 return EXEC_OUTPUT_INHERIT;
453
454 return std_output;
455 }
456
457 static int setup_input(
458 const ExecContext *context,
459 const ExecParameters *params,
460 int socket_fd,
461 int named_iofds[3]) {
462
463 ExecInput i;
464
465 assert(context);
466 assert(params);
467
468 if (params->stdin_fd >= 0) {
469 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
470 return -errno;
471
472 /* Try to make this the controlling tty, if it is a tty, and reset it */
473 if (isatty(STDIN_FILENO)) {
474 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
475 (void) reset_terminal_fd(STDIN_FILENO, true);
476 }
477
478 return STDIN_FILENO;
479 }
480
481 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
482
483 switch (i) {
484
485 case EXEC_INPUT_NULL:
486 return open_null_as(O_RDONLY, STDIN_FILENO);
487
488 case EXEC_INPUT_TTY:
489 case EXEC_INPUT_TTY_FORCE:
490 case EXEC_INPUT_TTY_FAIL: {
491 int fd;
492
493 fd = acquire_terminal(exec_context_tty_path(context),
494 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
495 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
496 ACQUIRE_TERMINAL_WAIT,
497 USEC_INFINITY);
498 if (fd < 0)
499 return fd;
500
501 return move_fd(fd, STDIN_FILENO, false);
502 }
503
504 case EXEC_INPUT_SOCKET:
505 assert(socket_fd >= 0);
506
507 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
508
509 case EXEC_INPUT_NAMED_FD:
510 assert(named_iofds[STDIN_FILENO] >= 0);
511
512 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
513 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
514
515 case EXEC_INPUT_DATA: {
516 int fd;
517
518 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
519 if (fd < 0)
520 return fd;
521
522 return move_fd(fd, STDIN_FILENO, false);
523 }
524
525 case EXEC_INPUT_FILE: {
526 bool rw;
527 int fd;
528
529 assert(context->stdio_file[STDIN_FILENO]);
530
531 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
532 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
533
534 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
535 if (fd < 0)
536 return fd;
537
538 return move_fd(fd, STDIN_FILENO, false);
539 }
540
541 default:
542 assert_not_reached("Unknown input type");
543 }
544 }
545
546 static bool can_inherit_stderr_from_stdout(
547 const ExecContext *context,
548 ExecOutput o,
549 ExecOutput e) {
550
551 assert(context);
552
553 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
554 * stderr fd */
555
556 if (e == EXEC_OUTPUT_INHERIT)
557 return true;
558 if (e != o)
559 return false;
560
561 if (e == EXEC_OUTPUT_NAMED_FD)
562 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
563
564 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
565 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
566
567 return true;
568 }
569
570 static int setup_output(
571 const Unit *unit,
572 const ExecContext *context,
573 const ExecParameters *params,
574 int fileno,
575 int socket_fd,
576 int named_iofds[3],
577 const char *ident,
578 uid_t uid,
579 gid_t gid,
580 dev_t *journal_stream_dev,
581 ino_t *journal_stream_ino) {
582
583 ExecOutput o;
584 ExecInput i;
585 int r;
586
587 assert(unit);
588 assert(context);
589 assert(params);
590 assert(ident);
591 assert(journal_stream_dev);
592 assert(journal_stream_ino);
593
594 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
595
596 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
597 return -errno;
598
599 return STDOUT_FILENO;
600 }
601
602 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
603 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
604 return -errno;
605
606 return STDERR_FILENO;
607 }
608
609 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
610 o = fixup_output(context->std_output, socket_fd);
611
612 if (fileno == STDERR_FILENO) {
613 ExecOutput e;
614 e = fixup_output(context->std_error, socket_fd);
615
616 /* This expects the input and output are already set up */
617
618 /* Don't change the stderr file descriptor if we inherit all
619 * the way and are not on a tty */
620 if (e == EXEC_OUTPUT_INHERIT &&
621 o == EXEC_OUTPUT_INHERIT &&
622 i == EXEC_INPUT_NULL &&
623 !is_terminal_input(context->std_input) &&
624 getppid () != 1)
625 return fileno;
626
627 /* Duplicate from stdout if possible */
628 if (can_inherit_stderr_from_stdout(context, o, e))
629 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
630
631 o = e;
632
633 } else if (o == EXEC_OUTPUT_INHERIT) {
634 /* If input got downgraded, inherit the original value */
635 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
636 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
637
638 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
639 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
640 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
641
642 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
643 if (getppid() != 1)
644 return fileno;
645
646 /* We need to open /dev/null here anew, to get the right access mode. */
647 return open_null_as(O_WRONLY, fileno);
648 }
649
650 switch (o) {
651
652 case EXEC_OUTPUT_NULL:
653 return open_null_as(O_WRONLY, fileno);
654
655 case EXEC_OUTPUT_TTY:
656 if (is_terminal_input(i))
657 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
658
659 /* We don't reset the terminal if this is just about output */
660 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
661
662 case EXEC_OUTPUT_SYSLOG:
663 case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
664 case EXEC_OUTPUT_KMSG:
665 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
666 case EXEC_OUTPUT_JOURNAL:
667 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
668 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
669 if (r < 0) {
670 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
671 r = open_null_as(O_WRONLY, fileno);
672 } else {
673 struct stat st;
674
675 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
676 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
677 * services to detect whether they are connected to the journal or not.
678 *
679 * If both stdout and stderr are connected to a stream then let's make sure to store the data
680 * about STDERR as that's usually the best way to do logging. */
681
682 if (fstat(fileno, &st) >= 0 &&
683 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
684 *journal_stream_dev = st.st_dev;
685 *journal_stream_ino = st.st_ino;
686 }
687 }
688 return r;
689
690 case EXEC_OUTPUT_SOCKET:
691 assert(socket_fd >= 0);
692
693 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
694
695 case EXEC_OUTPUT_NAMED_FD:
696 assert(named_iofds[fileno] >= 0);
697
698 (void) fd_nonblock(named_iofds[fileno], false);
699 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
700
701 case EXEC_OUTPUT_FILE:
702 case EXEC_OUTPUT_FILE_APPEND: {
703 bool rw;
704 int fd, flags;
705
706 assert(context->stdio_file[fileno]);
707
708 rw = context->std_input == EXEC_INPUT_FILE &&
709 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
710
711 if (rw)
712 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
713
714 flags = O_WRONLY;
715 if (o == EXEC_OUTPUT_FILE_APPEND)
716 flags |= O_APPEND;
717
718 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
719 if (fd < 0)
720 return fd;
721
722 return move_fd(fd, fileno, 0);
723 }
724
725 default:
726 assert_not_reached("Unknown error type");
727 }
728 }
729
730 static int chown_terminal(int fd, uid_t uid) {
731 struct stat st;
732
733 assert(fd >= 0);
734
735 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
736 if (isatty(fd) < 1)
737 return 0;
738
739 /* This might fail. What matters are the results. */
740 (void) fchown(fd, uid, -1);
741 (void) fchmod(fd, TTY_MODE);
742
743 if (fstat(fd, &st) < 0)
744 return -errno;
745
746 if (st.st_uid != uid || (st.st_mode & 0777) != TTY_MODE)
747 return -EPERM;
748
749 return 0;
750 }
751
752 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
753 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
754 int r;
755
756 assert(_saved_stdin);
757 assert(_saved_stdout);
758
759 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
760 if (saved_stdin < 0)
761 return -errno;
762
763 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
764 if (saved_stdout < 0)
765 return -errno;
766
767 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
768 if (fd < 0)
769 return fd;
770
771 r = chown_terminal(fd, getuid());
772 if (r < 0)
773 return r;
774
775 r = reset_terminal_fd(fd, true);
776 if (r < 0)
777 return r;
778
779 r = rearrange_stdio(fd, fd, STDERR_FILENO);
780 fd = -1;
781 if (r < 0)
782 return r;
783
784 *_saved_stdin = saved_stdin;
785 *_saved_stdout = saved_stdout;
786
787 saved_stdin = saved_stdout = -1;
788
789 return 0;
790 }
791
792 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
793 assert(err < 0);
794
795 if (err == -ETIMEDOUT)
796 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
797 else {
798 errno = -err;
799 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
800 }
801 }
802
803 static void write_confirm_error(int err, const char *vc, const Unit *u) {
804 _cleanup_close_ int fd = -1;
805
806 assert(vc);
807
808 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
809 if (fd < 0)
810 return;
811
812 write_confirm_error_fd(err, fd, u);
813 }
814
815 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
816 int r = 0;
817
818 assert(saved_stdin);
819 assert(saved_stdout);
820
821 release_terminal();
822
823 if (*saved_stdin >= 0)
824 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
825 r = -errno;
826
827 if (*saved_stdout >= 0)
828 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
829 r = -errno;
830
831 *saved_stdin = safe_close(*saved_stdin);
832 *saved_stdout = safe_close(*saved_stdout);
833
834 return r;
835 }
836
837 enum {
838 CONFIRM_PRETEND_FAILURE = -1,
839 CONFIRM_PRETEND_SUCCESS = 0,
840 CONFIRM_EXECUTE = 1,
841 };
842
843 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
844 int saved_stdout = -1, saved_stdin = -1, r;
845 _cleanup_free_ char *e = NULL;
846 char c;
847
848 /* For any internal errors, assume a positive response. */
849 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
850 if (r < 0) {
851 write_confirm_error(r, vc, u);
852 return CONFIRM_EXECUTE;
853 }
854
855 /* confirm_spawn might have been disabled while we were sleeping. */
856 if (manager_is_confirm_spawn_disabled(u->manager)) {
857 r = 1;
858 goto restore_stdio;
859 }
860
861 e = ellipsize(cmdline, 60, 100);
862 if (!e) {
863 log_oom();
864 r = CONFIRM_EXECUTE;
865 goto restore_stdio;
866 }
867
868 for (;;) {
869 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
870 if (r < 0) {
871 write_confirm_error_fd(r, STDOUT_FILENO, u);
872 r = CONFIRM_EXECUTE;
873 goto restore_stdio;
874 }
875
876 switch (c) {
877 case 'c':
878 printf("Resuming normal execution.\n");
879 manager_disable_confirm_spawn();
880 r = 1;
881 break;
882 case 'D':
883 unit_dump(u, stdout, " ");
884 continue; /* ask again */
885 case 'f':
886 printf("Failing execution.\n");
887 r = CONFIRM_PRETEND_FAILURE;
888 break;
889 case 'h':
890 printf(" c - continue, proceed without asking anymore\n"
891 " D - dump, show the state of the unit\n"
892 " f - fail, don't execute the command and pretend it failed\n"
893 " h - help\n"
894 " i - info, show a short summary of the unit\n"
895 " j - jobs, show jobs that are in progress\n"
896 " s - skip, don't execute the command and pretend it succeeded\n"
897 " y - yes, execute the command\n");
898 continue; /* ask again */
899 case 'i':
900 printf(" Description: %s\n"
901 " Unit: %s\n"
902 " Command: %s\n",
903 u->id, u->description, cmdline);
904 continue; /* ask again */
905 case 'j':
906 manager_dump_jobs(u->manager, stdout, " ");
907 continue; /* ask again */
908 case 'n':
909 /* 'n' was removed in favor of 'f'. */
910 printf("Didn't understand 'n', did you mean 'f'?\n");
911 continue; /* ask again */
912 case 's':
913 printf("Skipping execution.\n");
914 r = CONFIRM_PRETEND_SUCCESS;
915 break;
916 case 'y':
917 r = CONFIRM_EXECUTE;
918 break;
919 default:
920 assert_not_reached("Unhandled choice");
921 }
922 break;
923 }
924
925 restore_stdio:
926 restore_confirm_stdio(&saved_stdin, &saved_stdout);
927 return r;
928 }
929
930 static int get_fixed_user(const ExecContext *c, const char **user,
931 uid_t *uid, gid_t *gid,
932 const char **home, const char **shell) {
933 int r;
934 const char *name;
935
936 assert(c);
937
938 if (!c->user)
939 return 0;
940
941 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
942 * (i.e. are "/" or "/bin/nologin"). */
943
944 name = c->user;
945 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
946 if (r < 0)
947 return r;
948
949 *user = name;
950 return 0;
951 }
952
953 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
954 int r;
955 const char *name;
956
957 assert(c);
958
959 if (!c->group)
960 return 0;
961
962 name = c->group;
963 r = get_group_creds(&name, gid, 0);
964 if (r < 0)
965 return r;
966
967 *group = name;
968 return 0;
969 }
970
971 static int get_supplementary_groups(const ExecContext *c, const char *user,
972 const char *group, gid_t gid,
973 gid_t **supplementary_gids, int *ngids) {
974 char **i;
975 int r, k = 0;
976 int ngroups_max;
977 bool keep_groups = false;
978 gid_t *groups = NULL;
979 _cleanup_free_ gid_t *l_gids = NULL;
980
981 assert(c);
982
983 /*
984 * If user is given, then lookup GID and supplementary groups list.
985 * We avoid NSS lookups for gid=0. Also we have to initialize groups
986 * here and as early as possible so we keep the list of supplementary
987 * groups of the caller.
988 */
989 if (user && gid_is_valid(gid) && gid != 0) {
990 /* First step, initialize groups from /etc/groups */
991 if (initgroups(user, gid) < 0)
992 return -errno;
993
994 keep_groups = true;
995 }
996
997 if (strv_isempty(c->supplementary_groups))
998 return 0;
999
1000 /*
1001 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1002 * be positive, otherwise fail.
1003 */
1004 errno = 0;
1005 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1006 if (ngroups_max <= 0) {
1007 if (errno > 0)
1008 return -errno;
1009 else
1010 return -EOPNOTSUPP; /* For all other values */
1011 }
1012
1013 l_gids = new(gid_t, ngroups_max);
1014 if (!l_gids)
1015 return -ENOMEM;
1016
1017 if (keep_groups) {
1018 /*
1019 * Lookup the list of groups that the user belongs to, we
1020 * avoid NSS lookups here too for gid=0.
1021 */
1022 k = ngroups_max;
1023 if (getgrouplist(user, gid, l_gids, &k) < 0)
1024 return -EINVAL;
1025 } else
1026 k = 0;
1027
1028 STRV_FOREACH(i, c->supplementary_groups) {
1029 const char *g;
1030
1031 if (k >= ngroups_max)
1032 return -E2BIG;
1033
1034 g = *i;
1035 r = get_group_creds(&g, l_gids+k, 0);
1036 if (r < 0)
1037 return r;
1038
1039 k++;
1040 }
1041
1042 /*
1043 * Sets ngids to zero to drop all supplementary groups, happens
1044 * when we are under root and SupplementaryGroups= is empty.
1045 */
1046 if (k == 0) {
1047 *ngids = 0;
1048 return 0;
1049 }
1050
1051 /* Otherwise get the final list of supplementary groups */
1052 groups = memdup(l_gids, sizeof(gid_t) * k);
1053 if (!groups)
1054 return -ENOMEM;
1055
1056 *supplementary_gids = groups;
1057 *ngids = k;
1058
1059 groups = NULL;
1060
1061 return 0;
1062 }
1063
1064 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1065 int r;
1066
1067 /* Handle SupplementaryGroups= if it is not empty */
1068 if (ngids > 0) {
1069 r = maybe_setgroups(ngids, supplementary_gids);
1070 if (r < 0)
1071 return r;
1072 }
1073
1074 if (gid_is_valid(gid)) {
1075 /* Then set our gids */
1076 if (setresgid(gid, gid, gid) < 0)
1077 return -errno;
1078 }
1079
1080 return 0;
1081 }
1082
1083 static int enforce_user(const ExecContext *context, uid_t uid) {
1084 assert(context);
1085
1086 if (!uid_is_valid(uid))
1087 return 0;
1088
1089 /* Sets (but doesn't look up) the uid and make sure we keep the
1090 * capabilities while doing so. */
1091
1092 if (context->capability_ambient_set != 0) {
1093
1094 /* First step: If we need to keep capabilities but
1095 * drop privileges we need to make sure we keep our
1096 * caps, while we drop privileges. */
1097 if (uid != 0) {
1098 int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
1099
1100 if (prctl(PR_GET_SECUREBITS) != sb)
1101 if (prctl(PR_SET_SECUREBITS, sb) < 0)
1102 return -errno;
1103 }
1104 }
1105
1106 /* Second step: actually set the uids */
1107 if (setresuid(uid, uid, uid) < 0)
1108 return -errno;
1109
1110 /* At this point we should have all necessary capabilities but
1111 are otherwise a normal user. However, the caps might got
1112 corrupted due to the setresuid() so we need clean them up
1113 later. This is done outside of this call. */
1114
1115 return 0;
1116 }
1117
1118 #if HAVE_PAM
1119
1120 static int null_conv(
1121 int num_msg,
1122 const struct pam_message **msg,
1123 struct pam_response **resp,
1124 void *appdata_ptr) {
1125
1126 /* We don't support conversations */
1127
1128 return PAM_CONV_ERR;
1129 }
1130
1131 #endif
1132
1133 static int setup_pam(
1134 const char *name,
1135 const char *user,
1136 uid_t uid,
1137 gid_t gid,
1138 const char *tty,
1139 char ***env,
1140 int fds[], size_t n_fds) {
1141
1142 #if HAVE_PAM
1143
1144 static const struct pam_conv conv = {
1145 .conv = null_conv,
1146 .appdata_ptr = NULL
1147 };
1148
1149 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1150 pam_handle_t *handle = NULL;
1151 sigset_t old_ss;
1152 int pam_code = PAM_SUCCESS, r;
1153 char **nv, **e = NULL;
1154 bool close_session = false;
1155 pid_t pam_pid = 0, parent_pid;
1156 int flags = 0;
1157
1158 assert(name);
1159 assert(user);
1160 assert(env);
1161
1162 /* We set up PAM in the parent process, then fork. The child
1163 * will then stay around until killed via PR_GET_PDEATHSIG or
1164 * systemd via the cgroup logic. It will then remove the PAM
1165 * session again. The parent process will exec() the actual
1166 * daemon. We do things this way to ensure that the main PID
1167 * of the daemon is the one we initially fork()ed. */
1168
1169 r = barrier_create(&barrier);
1170 if (r < 0)
1171 goto fail;
1172
1173 if (log_get_max_level() < LOG_DEBUG)
1174 flags |= PAM_SILENT;
1175
1176 pam_code = pam_start(name, user, &conv, &handle);
1177 if (pam_code != PAM_SUCCESS) {
1178 handle = NULL;
1179 goto fail;
1180 }
1181
1182 if (!tty) {
1183 _cleanup_free_ char *q = NULL;
1184
1185 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1186 * out if that's the case, and read the TTY off it. */
1187
1188 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1189 tty = strjoina("/dev/", q);
1190 }
1191
1192 if (tty) {
1193 pam_code = pam_set_item(handle, PAM_TTY, tty);
1194 if (pam_code != PAM_SUCCESS)
1195 goto fail;
1196 }
1197
1198 STRV_FOREACH(nv, *env) {
1199 pam_code = pam_putenv(handle, *nv);
1200 if (pam_code != PAM_SUCCESS)
1201 goto fail;
1202 }
1203
1204 pam_code = pam_acct_mgmt(handle, flags);
1205 if (pam_code != PAM_SUCCESS)
1206 goto fail;
1207
1208 pam_code = pam_open_session(handle, flags);
1209 if (pam_code != PAM_SUCCESS)
1210 goto fail;
1211
1212 close_session = true;
1213
1214 e = pam_getenvlist(handle);
1215 if (!e) {
1216 pam_code = PAM_BUF_ERR;
1217 goto fail;
1218 }
1219
1220 /* Block SIGTERM, so that we know that it won't get lost in
1221 * the child */
1222
1223 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1224
1225 parent_pid = getpid_cached();
1226
1227 r = safe_fork("(sd-pam)", 0, &pam_pid);
1228 if (r < 0)
1229 goto fail;
1230 if (r == 0) {
1231 int sig, ret = EXIT_PAM;
1232
1233 /* The child's job is to reset the PAM session on
1234 * termination */
1235 barrier_set_role(&barrier, BARRIER_CHILD);
1236
1237 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1238 * are open here that have been opened by PAM. */
1239 (void) close_many(fds, n_fds);
1240
1241 /* Drop privileges - we don't need any to pam_close_session
1242 * and this will make PR_SET_PDEATHSIG work in most cases.
1243 * If this fails, ignore the error - but expect sd-pam threads
1244 * to fail to exit normally */
1245
1246 r = maybe_setgroups(0, NULL);
1247 if (r < 0)
1248 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1249 if (setresgid(gid, gid, gid) < 0)
1250 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1251 if (setresuid(uid, uid, uid) < 0)
1252 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1253
1254 (void) ignore_signals(SIGPIPE, -1);
1255
1256 /* Wait until our parent died. This will only work if
1257 * the above setresuid() succeeds, otherwise the kernel
1258 * will not allow unprivileged parents kill their privileged
1259 * children this way. We rely on the control groups kill logic
1260 * to do the rest for us. */
1261 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1262 goto child_finish;
1263
1264 /* Tell the parent that our setup is done. This is especially
1265 * important regarding dropping privileges. Otherwise, unit
1266 * setup might race against our setresuid(2) call.
1267 *
1268 * If the parent aborted, we'll detect this below, hence ignore
1269 * return failure here. */
1270 (void) barrier_place(&barrier);
1271
1272 /* Check if our parent process might already have died? */
1273 if (getppid() == parent_pid) {
1274 sigset_t ss;
1275
1276 assert_se(sigemptyset(&ss) >= 0);
1277 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1278
1279 for (;;) {
1280 if (sigwait(&ss, &sig) < 0) {
1281 if (errno == EINTR)
1282 continue;
1283
1284 goto child_finish;
1285 }
1286
1287 assert(sig == SIGTERM);
1288 break;
1289 }
1290 }
1291
1292 /* If our parent died we'll end the session */
1293 if (getppid() != parent_pid) {
1294 pam_code = pam_close_session(handle, flags);
1295 if (pam_code != PAM_SUCCESS)
1296 goto child_finish;
1297 }
1298
1299 ret = 0;
1300
1301 child_finish:
1302 pam_end(handle, pam_code | flags);
1303 _exit(ret);
1304 }
1305
1306 barrier_set_role(&barrier, BARRIER_PARENT);
1307
1308 /* If the child was forked off successfully it will do all the
1309 * cleanups, so forget about the handle here. */
1310 handle = NULL;
1311
1312 /* Unblock SIGTERM again in the parent */
1313 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1314
1315 /* We close the log explicitly here, since the PAM modules
1316 * might have opened it, but we don't want this fd around. */
1317 closelog();
1318
1319 /* Synchronously wait for the child to initialize. We don't care for
1320 * errors as we cannot recover. However, warn loudly if it happens. */
1321 if (!barrier_place_and_sync(&barrier))
1322 log_error("PAM initialization failed");
1323
1324 return strv_free_and_replace(*env, e);
1325
1326 fail:
1327 if (pam_code != PAM_SUCCESS) {
1328 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1329 r = -EPERM; /* PAM errors do not map to errno */
1330 } else
1331 log_error_errno(r, "PAM failed: %m");
1332
1333 if (handle) {
1334 if (close_session)
1335 pam_code = pam_close_session(handle, flags);
1336
1337 pam_end(handle, pam_code | flags);
1338 }
1339
1340 strv_free(e);
1341 closelog();
1342
1343 return r;
1344 #else
1345 return 0;
1346 #endif
1347 }
1348
1349 static void rename_process_from_path(const char *path) {
1350 char process_name[11];
1351 const char *p;
1352 size_t l;
1353
1354 /* This resulting string must fit in 10 chars (i.e. the length
1355 * of "/sbin/init") to look pretty in /bin/ps */
1356
1357 p = basename(path);
1358 if (isempty(p)) {
1359 rename_process("(...)");
1360 return;
1361 }
1362
1363 l = strlen(p);
1364 if (l > 8) {
1365 /* The end of the process name is usually more
1366 * interesting, since the first bit might just be
1367 * "systemd-" */
1368 p = p + l - 8;
1369 l = 8;
1370 }
1371
1372 process_name[0] = '(';
1373 memcpy(process_name+1, p, l);
1374 process_name[1+l] = ')';
1375 process_name[1+l+1] = 0;
1376
1377 rename_process(process_name);
1378 }
1379
1380 static bool context_has_address_families(const ExecContext *c) {
1381 assert(c);
1382
1383 return c->address_families_whitelist ||
1384 !set_isempty(c->address_families);
1385 }
1386
1387 static bool context_has_syscall_filters(const ExecContext *c) {
1388 assert(c);
1389
1390 return c->syscall_whitelist ||
1391 !hashmap_isempty(c->syscall_filter);
1392 }
1393
1394 static bool context_has_no_new_privileges(const ExecContext *c) {
1395 assert(c);
1396
1397 if (c->no_new_privileges)
1398 return true;
1399
1400 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1401 return false;
1402
1403 /* We need NNP if we have any form of seccomp and are unprivileged */
1404 return context_has_address_families(c) ||
1405 c->memory_deny_write_execute ||
1406 c->restrict_realtime ||
1407 exec_context_restrict_namespaces_set(c) ||
1408 c->protect_kernel_tunables ||
1409 c->protect_kernel_modules ||
1410 c->private_devices ||
1411 context_has_syscall_filters(c) ||
1412 !set_isempty(c->syscall_archs) ||
1413 c->lock_personality ||
1414 c->protect_hostname;
1415 }
1416
1417 #if HAVE_SECCOMP
1418
1419 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1420
1421 if (is_seccomp_available())
1422 return false;
1423
1424 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1425 return true;
1426 }
1427
1428 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1429 uint32_t negative_action, default_action, action;
1430 int r;
1431
1432 assert(u);
1433 assert(c);
1434
1435 if (!context_has_syscall_filters(c))
1436 return 0;
1437
1438 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1439 return 0;
1440
1441 negative_action = c->syscall_errno == 0 ? SCMP_ACT_KILL : SCMP_ACT_ERRNO(c->syscall_errno);
1442
1443 if (c->syscall_whitelist) {
1444 default_action = negative_action;
1445 action = SCMP_ACT_ALLOW;
1446 } else {
1447 default_action = SCMP_ACT_ALLOW;
1448 action = negative_action;
1449 }
1450
1451 if (needs_ambient_hack) {
1452 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_whitelist, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1453 if (r < 0)
1454 return r;
1455 }
1456
1457 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1458 }
1459
1460 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1461 assert(u);
1462 assert(c);
1463
1464 if (set_isempty(c->syscall_archs))
1465 return 0;
1466
1467 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1468 return 0;
1469
1470 return seccomp_restrict_archs(c->syscall_archs);
1471 }
1472
1473 static int apply_address_families(const Unit* u, const ExecContext *c) {
1474 assert(u);
1475 assert(c);
1476
1477 if (!context_has_address_families(c))
1478 return 0;
1479
1480 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1481 return 0;
1482
1483 return seccomp_restrict_address_families(c->address_families, c->address_families_whitelist);
1484 }
1485
1486 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1487 assert(u);
1488 assert(c);
1489
1490 if (!c->memory_deny_write_execute)
1491 return 0;
1492
1493 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1494 return 0;
1495
1496 return seccomp_memory_deny_write_execute();
1497 }
1498
1499 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1500 assert(u);
1501 assert(c);
1502
1503 if (!c->restrict_realtime)
1504 return 0;
1505
1506 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1507 return 0;
1508
1509 return seccomp_restrict_realtime();
1510 }
1511
1512 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1513 assert(u);
1514 assert(c);
1515
1516 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1517 * let's protect even those systems where this is left on in the kernel. */
1518
1519 if (!c->protect_kernel_tunables)
1520 return 0;
1521
1522 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1523 return 0;
1524
1525 return seccomp_protect_sysctl();
1526 }
1527
1528 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1529 assert(u);
1530 assert(c);
1531
1532 /* Turn off module syscalls on ProtectKernelModules=yes */
1533
1534 if (!c->protect_kernel_modules)
1535 return 0;
1536
1537 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1538 return 0;
1539
1540 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1541 }
1542
1543 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1544 assert(u);
1545 assert(c);
1546
1547 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1548
1549 if (!c->private_devices)
1550 return 0;
1551
1552 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1553 return 0;
1554
1555 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1556 }
1557
1558 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1559 assert(u);
1560 assert(c);
1561
1562 if (!exec_context_restrict_namespaces_set(c))
1563 return 0;
1564
1565 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1566 return 0;
1567
1568 return seccomp_restrict_namespaces(c->restrict_namespaces);
1569 }
1570
1571 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1572 unsigned long personality;
1573 int r;
1574
1575 assert(u);
1576 assert(c);
1577
1578 if (!c->lock_personality)
1579 return 0;
1580
1581 if (skip_seccomp_unavailable(u, "LockPersonality="))
1582 return 0;
1583
1584 personality = c->personality;
1585
1586 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1587 if (personality == PERSONALITY_INVALID) {
1588
1589 r = opinionated_personality(&personality);
1590 if (r < 0)
1591 return r;
1592 }
1593
1594 return seccomp_lock_personality(personality);
1595 }
1596
1597 #endif
1598
1599 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1600 assert(idle_pipe);
1601
1602 idle_pipe[1] = safe_close(idle_pipe[1]);
1603 idle_pipe[2] = safe_close(idle_pipe[2]);
1604
1605 if (idle_pipe[0] >= 0) {
1606 int r;
1607
1608 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1609
1610 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1611 ssize_t n;
1612
1613 /* Signal systemd that we are bored and want to continue. */
1614 n = write(idle_pipe[3], "x", 1);
1615 if (n > 0)
1616 /* Wait for systemd to react to the signal above. */
1617 fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1618 }
1619
1620 idle_pipe[0] = safe_close(idle_pipe[0]);
1621
1622 }
1623
1624 idle_pipe[3] = safe_close(idle_pipe[3]);
1625 }
1626
1627 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1628
1629 static int build_environment(
1630 const Unit *u,
1631 const ExecContext *c,
1632 const ExecParameters *p,
1633 size_t n_fds,
1634 const char *home,
1635 const char *username,
1636 const char *shell,
1637 dev_t journal_stream_dev,
1638 ino_t journal_stream_ino,
1639 char ***ret) {
1640
1641 _cleanup_strv_free_ char **our_env = NULL;
1642 ExecDirectoryType t;
1643 size_t n_env = 0;
1644 char *x;
1645
1646 assert(u);
1647 assert(c);
1648 assert(p);
1649 assert(ret);
1650
1651 our_env = new0(char*, 14 + _EXEC_DIRECTORY_TYPE_MAX);
1652 if (!our_env)
1653 return -ENOMEM;
1654
1655 if (n_fds > 0) {
1656 _cleanup_free_ char *joined = NULL;
1657
1658 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1659 return -ENOMEM;
1660 our_env[n_env++] = x;
1661
1662 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1663 return -ENOMEM;
1664 our_env[n_env++] = x;
1665
1666 joined = strv_join(p->fd_names, ":");
1667 if (!joined)
1668 return -ENOMEM;
1669
1670 x = strjoin("LISTEN_FDNAMES=", joined);
1671 if (!x)
1672 return -ENOMEM;
1673 our_env[n_env++] = x;
1674 }
1675
1676 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1677 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1678 return -ENOMEM;
1679 our_env[n_env++] = x;
1680
1681 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1682 return -ENOMEM;
1683 our_env[n_env++] = x;
1684 }
1685
1686 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1687 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1688 * check the database directly. */
1689 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1690 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1691 if (!x)
1692 return -ENOMEM;
1693 our_env[n_env++] = x;
1694 }
1695
1696 if (home) {
1697 x = strappend("HOME=", home);
1698 if (!x)
1699 return -ENOMEM;
1700
1701 path_simplify(x + 5, true);
1702 our_env[n_env++] = x;
1703 }
1704
1705 if (username) {
1706 x = strappend("LOGNAME=", username);
1707 if (!x)
1708 return -ENOMEM;
1709 our_env[n_env++] = x;
1710
1711 x = strappend("USER=", username);
1712 if (!x)
1713 return -ENOMEM;
1714 our_env[n_env++] = x;
1715 }
1716
1717 if (shell) {
1718 x = strappend("SHELL=", shell);
1719 if (!x)
1720 return -ENOMEM;
1721
1722 path_simplify(x + 6, true);
1723 our_env[n_env++] = x;
1724 }
1725
1726 if (!sd_id128_is_null(u->invocation_id)) {
1727 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1728 return -ENOMEM;
1729
1730 our_env[n_env++] = x;
1731 }
1732
1733 if (exec_context_needs_term(c)) {
1734 const char *tty_path, *term = NULL;
1735
1736 tty_path = exec_context_tty_path(c);
1737
1738 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try to inherit
1739 * the $TERM set for PID 1. This is useful for containers so that the $TERM the container manager
1740 * passes to PID 1 ends up all the way in the console login shown. */
1741
1742 if (path_equal(tty_path, "/dev/console") && getppid() == 1)
1743 term = getenv("TERM");
1744 if (!term)
1745 term = default_term_for_tty(tty_path);
1746
1747 x = strappend("TERM=", term);
1748 if (!x)
1749 return -ENOMEM;
1750 our_env[n_env++] = x;
1751 }
1752
1753 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1754 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1755 return -ENOMEM;
1756
1757 our_env[n_env++] = x;
1758 }
1759
1760 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1761 _cleanup_free_ char *pre = NULL, *joined = NULL;
1762 const char *n;
1763
1764 if (!p->prefix[t])
1765 continue;
1766
1767 if (strv_isempty(c->directories[t].paths))
1768 continue;
1769
1770 n = exec_directory_env_name_to_string(t);
1771 if (!n)
1772 continue;
1773
1774 pre = strjoin(p->prefix[t], "/");
1775 if (!pre)
1776 return -ENOMEM;
1777
1778 joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1779 if (!joined)
1780 return -ENOMEM;
1781
1782 x = strjoin(n, "=", joined);
1783 if (!x)
1784 return -ENOMEM;
1785
1786 our_env[n_env++] = x;
1787 }
1788
1789 our_env[n_env++] = NULL;
1790 assert(n_env <= 14 + _EXEC_DIRECTORY_TYPE_MAX);
1791
1792 *ret = TAKE_PTR(our_env);
1793
1794 return 0;
1795 }
1796
1797 static int build_pass_environment(const ExecContext *c, char ***ret) {
1798 _cleanup_strv_free_ char **pass_env = NULL;
1799 size_t n_env = 0, n_bufsize = 0;
1800 char **i;
1801
1802 STRV_FOREACH(i, c->pass_environment) {
1803 _cleanup_free_ char *x = NULL;
1804 char *v;
1805
1806 v = getenv(*i);
1807 if (!v)
1808 continue;
1809 x = strjoin(*i, "=", v);
1810 if (!x)
1811 return -ENOMEM;
1812
1813 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1814 return -ENOMEM;
1815
1816 pass_env[n_env++] = TAKE_PTR(x);
1817 pass_env[n_env] = NULL;
1818 }
1819
1820 *ret = TAKE_PTR(pass_env);
1821
1822 return 0;
1823 }
1824
1825 static bool exec_needs_mount_namespace(
1826 const ExecContext *context,
1827 const ExecParameters *params,
1828 const ExecRuntime *runtime) {
1829
1830 assert(context);
1831 assert(params);
1832
1833 if (context->root_image)
1834 return true;
1835
1836 if (!strv_isempty(context->read_write_paths) ||
1837 !strv_isempty(context->read_only_paths) ||
1838 !strv_isempty(context->inaccessible_paths))
1839 return true;
1840
1841 if (context->n_bind_mounts > 0)
1842 return true;
1843
1844 if (context->n_temporary_filesystems > 0)
1845 return true;
1846
1847 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
1848 return true;
1849
1850 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1851 return true;
1852
1853 if (context->private_devices ||
1854 context->private_mounts ||
1855 context->protect_system != PROTECT_SYSTEM_NO ||
1856 context->protect_home != PROTECT_HOME_NO ||
1857 context->protect_kernel_tunables ||
1858 context->protect_kernel_modules ||
1859 context->protect_control_groups)
1860 return true;
1861
1862 if (context->root_directory) {
1863 ExecDirectoryType t;
1864
1865 if (context->mount_apivfs)
1866 return true;
1867
1868 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1869 if (!params->prefix[t])
1870 continue;
1871
1872 if (!strv_isempty(context->directories[t].paths))
1873 return true;
1874 }
1875 }
1876
1877 if (context->dynamic_user &&
1878 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
1879 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
1880 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
1881 return true;
1882
1883 return false;
1884 }
1885
1886 static int setup_private_users(uid_t uid, gid_t gid) {
1887 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1888 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1889 _cleanup_close_ int unshare_ready_fd = -1;
1890 _cleanup_(sigkill_waitp) pid_t pid = 0;
1891 uint64_t c = 1;
1892 ssize_t n;
1893 int r;
1894
1895 /* Set up a user namespace and map root to root, the selected UID/GID to itself, and everything else to
1896 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1897 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1898 * which waits for the parent to create the new user namespace while staying in the original namespace. The
1899 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1900 * continues execution normally. */
1901
1902 if (uid != 0 && uid_is_valid(uid)) {
1903 r = asprintf(&uid_map,
1904 "0 0 1\n" /* Map root → root */
1905 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
1906 uid, uid);
1907 if (r < 0)
1908 return -ENOMEM;
1909 } else {
1910 uid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1911 if (!uid_map)
1912 return -ENOMEM;
1913 }
1914
1915 if (gid != 0 && gid_is_valid(gid)) {
1916 r = asprintf(&gid_map,
1917 "0 0 1\n" /* Map root → root */
1918 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
1919 gid, gid);
1920 if (r < 0)
1921 return -ENOMEM;
1922 } else {
1923 gid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1924 if (!gid_map)
1925 return -ENOMEM;
1926 }
1927
1928 /* Create a communication channel so that the parent can tell the child when it finished creating the user
1929 * namespace. */
1930 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
1931 if (unshare_ready_fd < 0)
1932 return -errno;
1933
1934 /* Create a communication channel so that the child can tell the parent a proper error code in case it
1935 * failed. */
1936 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
1937 return -errno;
1938
1939 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
1940 if (r < 0)
1941 return r;
1942 if (r == 0) {
1943 _cleanup_close_ int fd = -1;
1944 const char *a;
1945 pid_t ppid;
1946
1947 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
1948 * here, after the parent opened its own user namespace. */
1949
1950 ppid = getppid();
1951 errno_pipe[0] = safe_close(errno_pipe[0]);
1952
1953 /* Wait until the parent unshared the user namespace */
1954 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
1955 r = -errno;
1956 goto child_fail;
1957 }
1958
1959 /* Disable the setgroups() system call in the child user namespace, for good. */
1960 a = procfs_file_alloca(ppid, "setgroups");
1961 fd = open(a, O_WRONLY|O_CLOEXEC);
1962 if (fd < 0) {
1963 if (errno != ENOENT) {
1964 r = -errno;
1965 goto child_fail;
1966 }
1967
1968 /* If the file is missing the kernel is too old, let's continue anyway. */
1969 } else {
1970 if (write(fd, "deny\n", 5) < 0) {
1971 r = -errno;
1972 goto child_fail;
1973 }
1974
1975 fd = safe_close(fd);
1976 }
1977
1978 /* First write the GID map */
1979 a = procfs_file_alloca(ppid, "gid_map");
1980 fd = open(a, O_WRONLY|O_CLOEXEC);
1981 if (fd < 0) {
1982 r = -errno;
1983 goto child_fail;
1984 }
1985 if (write(fd, gid_map, strlen(gid_map)) < 0) {
1986 r = -errno;
1987 goto child_fail;
1988 }
1989 fd = safe_close(fd);
1990
1991 /* The write the UID map */
1992 a = procfs_file_alloca(ppid, "uid_map");
1993 fd = open(a, O_WRONLY|O_CLOEXEC);
1994 if (fd < 0) {
1995 r = -errno;
1996 goto child_fail;
1997 }
1998 if (write(fd, uid_map, strlen(uid_map)) < 0) {
1999 r = -errno;
2000 goto child_fail;
2001 }
2002
2003 _exit(EXIT_SUCCESS);
2004
2005 child_fail:
2006 (void) write(errno_pipe[1], &r, sizeof(r));
2007 _exit(EXIT_FAILURE);
2008 }
2009
2010 errno_pipe[1] = safe_close(errno_pipe[1]);
2011
2012 if (unshare(CLONE_NEWUSER) < 0)
2013 return -errno;
2014
2015 /* Let the child know that the namespace is ready now */
2016 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2017 return -errno;
2018
2019 /* Try to read an error code from the child */
2020 n = read(errno_pipe[0], &r, sizeof(r));
2021 if (n < 0)
2022 return -errno;
2023 if (n == sizeof(r)) { /* an error code was sent to us */
2024 if (r < 0)
2025 return r;
2026 return -EIO;
2027 }
2028 if (n != 0) /* on success we should have read 0 bytes */
2029 return -EIO;
2030
2031 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2032 pid = 0;
2033 if (r < 0)
2034 return r;
2035 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2036 return -EIO;
2037
2038 return 0;
2039 }
2040
2041 static int setup_exec_directory(
2042 const ExecContext *context,
2043 const ExecParameters *params,
2044 uid_t uid,
2045 gid_t gid,
2046 ExecDirectoryType type,
2047 int *exit_status) {
2048
2049 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2050 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2051 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2052 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2053 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2054 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2055 };
2056 char **rt;
2057 int r;
2058
2059 assert(context);
2060 assert(params);
2061 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2062 assert(exit_status);
2063
2064 if (!params->prefix[type])
2065 return 0;
2066
2067 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2068 if (!uid_is_valid(uid))
2069 uid = 0;
2070 if (!gid_is_valid(gid))
2071 gid = 0;
2072 }
2073
2074 STRV_FOREACH(rt, context->directories[type].paths) {
2075 _cleanup_free_ char *p = NULL, *pp = NULL;
2076
2077 p = path_join(params->prefix[type], *rt);
2078 if (!p) {
2079 r = -ENOMEM;
2080 goto fail;
2081 }
2082
2083 r = mkdir_parents_label(p, 0755);
2084 if (r < 0)
2085 goto fail;
2086
2087 if (context->dynamic_user &&
2088 (!IN_SET(type, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) ||
2089 (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode != EXEC_PRESERVE_NO))) {
2090 _cleanup_free_ char *private_root = NULL;
2091
2092 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that case we
2093 * want to avoid leaving a directory around fully accessible that is owned by a dynamic user
2094 * whose UID is later on reused. To lock this down we use the same trick used by container
2095 * managers to prohibit host users to get access to files of the same UID in containers: we
2096 * place everything inside a directory that has an access mode of 0700 and is owned root:root,
2097 * so that it acts as security boundary for unprivileged host code. We then use fs namespacing
2098 * to make this directory permeable for the service itself.
2099 *
2100 * Specifically: for a service which wants a special directory "foo/" we first create a
2101 * directory "private/" with access mode 0700 owned by root:root. Then we place "foo" inside of
2102 * that directory (i.e. "private/foo/"), and make "foo" a symlink to "private/foo". This way,
2103 * privileged host users can access "foo/" as usual, but unprivileged host users can't look
2104 * into it. Inside of the namespaceof the container "private/" is replaced by a more liberally
2105 * accessible tmpfs, into which the host's "private/foo/" is mounted under the same name, thus
2106 * disabling the access boundary for the service and making sure it only gets access to the
2107 * dirs it needs but no others. Tricky? Yes, absolutely, but it works!
2108 *
2109 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not to be
2110 * owned by the service itself.
2111 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used for sharing
2112 * files or sockets with other services. */
2113
2114 private_root = path_join(params->prefix[type], "private");
2115 if (!private_root) {
2116 r = -ENOMEM;
2117 goto fail;
2118 }
2119
2120 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2121 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2122 if (r < 0)
2123 goto fail;
2124
2125 pp = path_join(private_root, *rt);
2126 if (!pp) {
2127 r = -ENOMEM;
2128 goto fail;
2129 }
2130
2131 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2132 r = mkdir_parents_label(pp, 0755);
2133 if (r < 0)
2134 goto fail;
2135
2136 if (is_dir(p, false) > 0 &&
2137 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2138
2139 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2140 * it over. Most likely the service has been upgraded from one that didn't use
2141 * DynamicUser=1, to one that does. */
2142
2143 if (rename(p, pp) < 0) {
2144 r = -errno;
2145 goto fail;
2146 }
2147 } else {
2148 /* Otherwise, create the actual directory for the service */
2149
2150 r = mkdir_label(pp, context->directories[type].mode);
2151 if (r < 0 && r != -EEXIST)
2152 goto fail;
2153 }
2154
2155 /* And link it up from the original place */
2156 r = symlink_idempotent(pp, p, true);
2157 if (r < 0)
2158 goto fail;
2159
2160 } else {
2161 r = mkdir_label(p, context->directories[type].mode);
2162 if (r < 0) {
2163 if (r != -EEXIST)
2164 goto fail;
2165
2166 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2167 struct stat st;
2168
2169 /* Don't change the owner/access mode of the configuration directory,
2170 * as in the common case it is not written to by a service, and shall
2171 * not be writable. */
2172
2173 if (stat(p, &st) < 0) {
2174 r = -errno;
2175 goto fail;
2176 }
2177
2178 /* Still complain if the access mode doesn't match */
2179 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2180 log_warning("%s \'%s\' already exists but the mode is different. "
2181 "(File system: %o %sMode: %o)",
2182 exec_directory_type_to_string(type), *rt,
2183 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2184
2185 continue;
2186 }
2187 }
2188 }
2189
2190 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2191 * specifiy UID/GID here, so that path_chown_recursive() can optimize things depending on the
2192 * current UID/GID ownership.) */
2193 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2194 if (r < 0)
2195 goto fail;
2196
2197 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2198 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2199 * assignments to exist.*/
2200 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2201 if (r < 0)
2202 goto fail;
2203 }
2204
2205 return 0;
2206
2207 fail:
2208 *exit_status = exit_status_table[type];
2209 return r;
2210 }
2211
2212 #if ENABLE_SMACK
2213 static int setup_smack(
2214 const ExecContext *context,
2215 const ExecCommand *command) {
2216
2217 int r;
2218
2219 assert(context);
2220 assert(command);
2221
2222 if (context->smack_process_label) {
2223 r = mac_smack_apply_pid(0, context->smack_process_label);
2224 if (r < 0)
2225 return r;
2226 }
2227 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2228 else {
2229 _cleanup_free_ char *exec_label = NULL;
2230
2231 r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
2232 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2233 return r;
2234
2235 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2236 if (r < 0)
2237 return r;
2238 }
2239 #endif
2240
2241 return 0;
2242 }
2243 #endif
2244
2245 static int compile_bind_mounts(
2246 const ExecContext *context,
2247 const ExecParameters *params,
2248 BindMount **ret_bind_mounts,
2249 size_t *ret_n_bind_mounts,
2250 char ***ret_empty_directories) {
2251
2252 _cleanup_strv_free_ char **empty_directories = NULL;
2253 BindMount *bind_mounts;
2254 size_t n, h = 0, i;
2255 ExecDirectoryType t;
2256 int r;
2257
2258 assert(context);
2259 assert(params);
2260 assert(ret_bind_mounts);
2261 assert(ret_n_bind_mounts);
2262 assert(ret_empty_directories);
2263
2264 n = context->n_bind_mounts;
2265 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2266 if (!params->prefix[t])
2267 continue;
2268
2269 n += strv_length(context->directories[t].paths);
2270 }
2271
2272 if (n <= 0) {
2273 *ret_bind_mounts = NULL;
2274 *ret_n_bind_mounts = 0;
2275 *ret_empty_directories = NULL;
2276 return 0;
2277 }
2278
2279 bind_mounts = new(BindMount, n);
2280 if (!bind_mounts)
2281 return -ENOMEM;
2282
2283 for (i = 0; i < context->n_bind_mounts; i++) {
2284 BindMount *item = context->bind_mounts + i;
2285 char *s, *d;
2286
2287 s = strdup(item->source);
2288 if (!s) {
2289 r = -ENOMEM;
2290 goto finish;
2291 }
2292
2293 d = strdup(item->destination);
2294 if (!d) {
2295 free(s);
2296 r = -ENOMEM;
2297 goto finish;
2298 }
2299
2300 bind_mounts[h++] = (BindMount) {
2301 .source = s,
2302 .destination = d,
2303 .read_only = item->read_only,
2304 .recursive = item->recursive,
2305 .ignore_enoent = item->ignore_enoent,
2306 };
2307 }
2308
2309 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2310 char **suffix;
2311
2312 if (!params->prefix[t])
2313 continue;
2314
2315 if (strv_isempty(context->directories[t].paths))
2316 continue;
2317
2318 if (context->dynamic_user &&
2319 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2320 !(context->root_directory || context->root_image)) {
2321 char *private_root;
2322
2323 /* So this is for a dynamic user, and we need to make sure the process can access its own
2324 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2325 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2326
2327 private_root = strjoin(params->prefix[t], "/private");
2328 if (!private_root) {
2329 r = -ENOMEM;
2330 goto finish;
2331 }
2332
2333 r = strv_consume(&empty_directories, private_root);
2334 if (r < 0)
2335 goto finish;
2336 }
2337
2338 STRV_FOREACH(suffix, context->directories[t].paths) {
2339 char *s, *d;
2340
2341 if (context->dynamic_user &&
2342 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION))
2343 s = strjoin(params->prefix[t], "/private/", *suffix);
2344 else
2345 s = strjoin(params->prefix[t], "/", *suffix);
2346 if (!s) {
2347 r = -ENOMEM;
2348 goto finish;
2349 }
2350
2351 if (context->dynamic_user &&
2352 !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2353 (context->root_directory || context->root_image))
2354 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
2355 * directory is not created on the root directory. So, let's bind-mount the directory
2356 * on the 'non-private' place. */
2357 d = strjoin(params->prefix[t], "/", *suffix);
2358 else
2359 d = strdup(s);
2360 if (!d) {
2361 free(s);
2362 r = -ENOMEM;
2363 goto finish;
2364 }
2365
2366 bind_mounts[h++] = (BindMount) {
2367 .source = s,
2368 .destination = d,
2369 .read_only = false,
2370 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
2371 .recursive = true,
2372 .ignore_enoent = false,
2373 };
2374 }
2375 }
2376
2377 assert(h == n);
2378
2379 *ret_bind_mounts = bind_mounts;
2380 *ret_n_bind_mounts = n;
2381 *ret_empty_directories = TAKE_PTR(empty_directories);
2382
2383 return (int) n;
2384
2385 finish:
2386 bind_mount_free_many(bind_mounts, h);
2387 return r;
2388 }
2389
2390 static int apply_mount_namespace(
2391 const Unit *u,
2392 const ExecCommand *command,
2393 const ExecContext *context,
2394 const ExecParameters *params,
2395 const ExecRuntime *runtime) {
2396
2397 _cleanup_strv_free_ char **empty_directories = NULL;
2398 char *tmp = NULL, *var = NULL;
2399 const char *root_dir = NULL, *root_image = NULL;
2400 NamespaceInfo ns_info;
2401 bool needs_sandboxing;
2402 BindMount *bind_mounts = NULL;
2403 size_t n_bind_mounts = 0;
2404 int r;
2405
2406 assert(context);
2407
2408 /* The runtime struct only contains the parent of the private /tmp,
2409 * which is non-accessible to world users. Inside of it there's a /tmp
2410 * that is sticky, and that's the one we want to use here. */
2411
2412 if (context->private_tmp && runtime) {
2413 if (runtime->tmp_dir)
2414 tmp = strjoina(runtime->tmp_dir, "/tmp");
2415 if (runtime->var_tmp_dir)
2416 var = strjoina(runtime->var_tmp_dir, "/tmp");
2417 }
2418
2419 if (params->flags & EXEC_APPLY_CHROOT) {
2420 root_image = context->root_image;
2421
2422 if (!root_image)
2423 root_dir = context->root_directory;
2424 }
2425
2426 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
2427 if (r < 0)
2428 return r;
2429
2430 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
2431 if (needs_sandboxing)
2432 ns_info = (NamespaceInfo) {
2433 .ignore_protect_paths = false,
2434 .private_dev = context->private_devices,
2435 .protect_control_groups = context->protect_control_groups,
2436 .protect_kernel_tunables = context->protect_kernel_tunables,
2437 .protect_kernel_modules = context->protect_kernel_modules,
2438 .protect_hostname = context->protect_hostname,
2439 .mount_apivfs = context->mount_apivfs,
2440 .private_mounts = context->private_mounts,
2441 };
2442 else if (!context->dynamic_user && root_dir)
2443 /*
2444 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
2445 * sandbox info, otherwise enforce it, don't ignore protected paths and
2446 * fail if we are enable to apply the sandbox inside the mount namespace.
2447 */
2448 ns_info = (NamespaceInfo) {
2449 .ignore_protect_paths = true,
2450 };
2451 else
2452 ns_info = (NamespaceInfo) {};
2453
2454 if (context->mount_flags == MS_SHARED)
2455 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
2456
2457 r = setup_namespace(root_dir, root_image,
2458 &ns_info, context->read_write_paths,
2459 needs_sandboxing ? context->read_only_paths : NULL,
2460 needs_sandboxing ? context->inaccessible_paths : NULL,
2461 empty_directories,
2462 bind_mounts,
2463 n_bind_mounts,
2464 context->temporary_filesystems,
2465 context->n_temporary_filesystems,
2466 tmp,
2467 var,
2468 needs_sandboxing ? context->protect_home : PROTECT_HOME_NO,
2469 needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO,
2470 context->mount_flags,
2471 DISSECT_IMAGE_DISCARD_ON_LOOP);
2472
2473 bind_mount_free_many(bind_mounts, n_bind_mounts);
2474
2475 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
2476 * that with a special, recognizable error ENOANO. In this case, silently proceeed, but only if exclusively
2477 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
2478 * completely different execution environment. */
2479 if (r == -ENOANO) {
2480 if (n_bind_mounts == 0 &&
2481 context->n_temporary_filesystems == 0 &&
2482 !root_dir && !root_image &&
2483 !context->dynamic_user) {
2484 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
2485 return 0;
2486 }
2487
2488 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
2489 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
2490 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
2491
2492 return -EOPNOTSUPP;
2493 }
2494
2495 return r;
2496 }
2497
2498 static int apply_working_directory(
2499 const ExecContext *context,
2500 const ExecParameters *params,
2501 const char *home,
2502 const bool needs_mount_ns,
2503 int *exit_status) {
2504
2505 const char *d, *wd;
2506
2507 assert(context);
2508 assert(exit_status);
2509
2510 if (context->working_directory_home) {
2511
2512 if (!home) {
2513 *exit_status = EXIT_CHDIR;
2514 return -ENXIO;
2515 }
2516
2517 wd = home;
2518
2519 } else if (context->working_directory)
2520 wd = context->working_directory;
2521 else
2522 wd = "/";
2523
2524 if (params->flags & EXEC_APPLY_CHROOT) {
2525 if (!needs_mount_ns && context->root_directory)
2526 if (chroot(context->root_directory) < 0) {
2527 *exit_status = EXIT_CHROOT;
2528 return -errno;
2529 }
2530
2531 d = wd;
2532 } else
2533 d = prefix_roota(context->root_directory, wd);
2534
2535 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
2536 *exit_status = EXIT_CHDIR;
2537 return -errno;
2538 }
2539
2540 return 0;
2541 }
2542
2543 static int setup_keyring(
2544 const Unit *u,
2545 const ExecContext *context,
2546 const ExecParameters *p,
2547 uid_t uid, gid_t gid) {
2548
2549 key_serial_t keyring;
2550 int r = 0;
2551 uid_t saved_uid;
2552 gid_t saved_gid;
2553
2554 assert(u);
2555 assert(context);
2556 assert(p);
2557
2558 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
2559 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
2560 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
2561 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
2562 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
2563 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
2564
2565 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
2566 return 0;
2567
2568 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
2569 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
2570 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
2571 * & group is just as nasty as acquiring a reference to the user keyring. */
2572
2573 saved_uid = getuid();
2574 saved_gid = getgid();
2575
2576 if (gid_is_valid(gid) && gid != saved_gid) {
2577 if (setregid(gid, -1) < 0)
2578 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
2579 }
2580
2581 if (uid_is_valid(uid) && uid != saved_uid) {
2582 if (setreuid(uid, -1) < 0) {
2583 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
2584 goto out;
2585 }
2586 }
2587
2588 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
2589 if (keyring == -1) {
2590 if (errno == ENOSYS)
2591 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
2592 else if (IN_SET(errno, EACCES, EPERM))
2593 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
2594 else if (errno == EDQUOT)
2595 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
2596 else
2597 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
2598
2599 goto out;
2600 }
2601
2602 /* When requested link the user keyring into the session keyring. */
2603 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
2604
2605 if (keyctl(KEYCTL_LINK,
2606 KEY_SPEC_USER_KEYRING,
2607 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
2608 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
2609 goto out;
2610 }
2611 }
2612
2613 /* Restore uid/gid back */
2614 if (uid_is_valid(uid) && uid != saved_uid) {
2615 if (setreuid(saved_uid, -1) < 0) {
2616 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
2617 goto out;
2618 }
2619 }
2620
2621 if (gid_is_valid(gid) && gid != saved_gid) {
2622 if (setregid(saved_gid, -1) < 0)
2623 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
2624 }
2625
2626 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
2627 if (!sd_id128_is_null(u->invocation_id)) {
2628 key_serial_t key;
2629
2630 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
2631 if (key == -1)
2632 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
2633 else {
2634 if (keyctl(KEYCTL_SETPERM, key,
2635 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
2636 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
2637 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
2638 }
2639 }
2640
2641 out:
2642 /* Revert back uid & gid for the the last time, and exit */
2643 /* no extra logging, as only the first already reported error matters */
2644 if (getuid() != saved_uid)
2645 (void) setreuid(saved_uid, -1);
2646
2647 if (getgid() != saved_gid)
2648 (void) setregid(saved_gid, -1);
2649
2650 return r;
2651 }
2652
2653 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
2654 assert(array);
2655 assert(n);
2656
2657 if (!pair)
2658 return;
2659
2660 if (pair[0] >= 0)
2661 array[(*n)++] = pair[0];
2662 if (pair[1] >= 0)
2663 array[(*n)++] = pair[1];
2664 }
2665
2666 static int close_remaining_fds(
2667 const ExecParameters *params,
2668 const ExecRuntime *runtime,
2669 const DynamicCreds *dcreds,
2670 int user_lookup_fd,
2671 int socket_fd,
2672 int exec_fd,
2673 int *fds, size_t n_fds) {
2674
2675 size_t n_dont_close = 0;
2676 int dont_close[n_fds + 12];
2677
2678 assert(params);
2679
2680 if (params->stdin_fd >= 0)
2681 dont_close[n_dont_close++] = params->stdin_fd;
2682 if (params->stdout_fd >= 0)
2683 dont_close[n_dont_close++] = params->stdout_fd;
2684 if (params->stderr_fd >= 0)
2685 dont_close[n_dont_close++] = params->stderr_fd;
2686
2687 if (socket_fd >= 0)
2688 dont_close[n_dont_close++] = socket_fd;
2689 if (exec_fd >= 0)
2690 dont_close[n_dont_close++] = exec_fd;
2691 if (n_fds > 0) {
2692 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2693 n_dont_close += n_fds;
2694 }
2695
2696 if (runtime)
2697 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2698
2699 if (dcreds) {
2700 if (dcreds->user)
2701 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2702 if (dcreds->group)
2703 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2704 }
2705
2706 if (user_lookup_fd >= 0)
2707 dont_close[n_dont_close++] = user_lookup_fd;
2708
2709 return close_all_fds(dont_close, n_dont_close);
2710 }
2711
2712 static int send_user_lookup(
2713 Unit *unit,
2714 int user_lookup_fd,
2715 uid_t uid,
2716 gid_t gid) {
2717
2718 assert(unit);
2719
2720 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2721 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2722 * specified. */
2723
2724 if (user_lookup_fd < 0)
2725 return 0;
2726
2727 if (!uid_is_valid(uid) && !gid_is_valid(gid))
2728 return 0;
2729
2730 if (writev(user_lookup_fd,
2731 (struct iovec[]) {
2732 IOVEC_INIT(&uid, sizeof(uid)),
2733 IOVEC_INIT(&gid, sizeof(gid)),
2734 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
2735 return -errno;
2736
2737 return 0;
2738 }
2739
2740 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
2741 int r;
2742
2743 assert(c);
2744 assert(home);
2745 assert(buf);
2746
2747 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
2748
2749 if (*home)
2750 return 0;
2751
2752 if (!c->working_directory_home)
2753 return 0;
2754
2755 r = get_home_dir(buf);
2756 if (r < 0)
2757 return r;
2758
2759 *home = *buf;
2760 return 1;
2761 }
2762
2763 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
2764 _cleanup_strv_free_ char ** list = NULL;
2765 ExecDirectoryType t;
2766 int r;
2767
2768 assert(c);
2769 assert(p);
2770 assert(ret);
2771
2772 assert(c->dynamic_user);
2773
2774 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
2775 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
2776 * directories. */
2777
2778 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2779 char **i;
2780
2781 if (t == EXEC_DIRECTORY_CONFIGURATION)
2782 continue;
2783
2784 if (!p->prefix[t])
2785 continue;
2786
2787 STRV_FOREACH(i, c->directories[t].paths) {
2788 char *e;
2789
2790 if (t == EXEC_DIRECTORY_RUNTIME)
2791 e = strjoin(p->prefix[t], "/", *i);
2792 else
2793 e = strjoin(p->prefix[t], "/private/", *i);
2794 if (!e)
2795 return -ENOMEM;
2796
2797 r = strv_consume(&list, e);
2798 if (r < 0)
2799 return r;
2800 }
2801 }
2802
2803 *ret = TAKE_PTR(list);
2804
2805 return 0;
2806 }
2807
2808 static char *exec_command_line(char **argv);
2809
2810 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
2811 bool using_subcgroup;
2812 char *p;
2813
2814 assert(params);
2815 assert(ret);
2816
2817 if (!params->cgroup_path)
2818 return -EINVAL;
2819
2820 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
2821 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
2822 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
2823 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
2824 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
2825 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
2826 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
2827 * flag, which is only passed for the former statements, not for the latter. */
2828
2829 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
2830 if (using_subcgroup)
2831 p = strjoin(params->cgroup_path, "/.control");
2832 else
2833 p = strdup(params->cgroup_path);
2834 if (!p)
2835 return -ENOMEM;
2836
2837 *ret = p;
2838 return using_subcgroup;
2839 }
2840
2841 static int exec_child(
2842 Unit *unit,
2843 const ExecCommand *command,
2844 const ExecContext *context,
2845 const ExecParameters *params,
2846 ExecRuntime *runtime,
2847 DynamicCreds *dcreds,
2848 int socket_fd,
2849 int named_iofds[3],
2850 int *fds,
2851 size_t n_socket_fds,
2852 size_t n_storage_fds,
2853 char **files_env,
2854 int user_lookup_fd,
2855 int *exit_status) {
2856
2857 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
2858 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
2859 _cleanup_free_ gid_t *supplementary_gids = NULL;
2860 const char *username = NULL, *groupname = NULL;
2861 _cleanup_free_ char *home_buffer = NULL;
2862 const char *home = NULL, *shell = NULL;
2863 char **final_argv = NULL;
2864 dev_t journal_stream_dev = 0;
2865 ino_t journal_stream_ino = 0;
2866 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
2867 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
2868 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
2869 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
2870 #if HAVE_SELINUX
2871 _cleanup_free_ char *mac_selinux_context_net = NULL;
2872 bool use_selinux = false;
2873 #endif
2874 #if ENABLE_SMACK
2875 bool use_smack = false;
2876 #endif
2877 #if HAVE_APPARMOR
2878 bool use_apparmor = false;
2879 #endif
2880 uid_t uid = UID_INVALID;
2881 gid_t gid = GID_INVALID;
2882 size_t n_fds;
2883 ExecDirectoryType dt;
2884 int secure_bits;
2885
2886 assert(unit);
2887 assert(command);
2888 assert(context);
2889 assert(params);
2890 assert(exit_status);
2891
2892 rename_process_from_path(command->path);
2893
2894 /* We reset exactly these signals, since they are the
2895 * only ones we set to SIG_IGN in the main daemon. All
2896 * others we leave untouched because we set them to
2897 * SIG_DFL or a valid handler initially, both of which
2898 * will be demoted to SIG_DFL. */
2899 (void) default_signals(SIGNALS_CRASH_HANDLER,
2900 SIGNALS_IGNORE, -1);
2901
2902 if (context->ignore_sigpipe)
2903 (void) ignore_signals(SIGPIPE, -1);
2904
2905 r = reset_signal_mask();
2906 if (r < 0) {
2907 *exit_status = EXIT_SIGNAL_MASK;
2908 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
2909 }
2910
2911 if (params->idle_pipe)
2912 do_idle_pipe_dance(params->idle_pipe);
2913
2914 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
2915 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
2916 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
2917 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
2918
2919 log_forget_fds();
2920 log_set_open_when_needed(true);
2921
2922 /* In case anything used libc syslog(), close this here, too */
2923 closelog();
2924
2925 n_fds = n_socket_fds + n_storage_fds;
2926 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
2927 if (r < 0) {
2928 *exit_status = EXIT_FDS;
2929 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
2930 }
2931
2932 if (!context->same_pgrp)
2933 if (setsid() < 0) {
2934 *exit_status = EXIT_SETSID;
2935 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
2936 }
2937
2938 exec_context_tty_reset(context, params);
2939
2940 if (unit_shall_confirm_spawn(unit)) {
2941 const char *vc = params->confirm_spawn;
2942 _cleanup_free_ char *cmdline = NULL;
2943
2944 cmdline = exec_command_line(command->argv);
2945 if (!cmdline) {
2946 *exit_status = EXIT_MEMORY;
2947 return log_oom();
2948 }
2949
2950 r = ask_for_confirmation(vc, unit, cmdline);
2951 if (r != CONFIRM_EXECUTE) {
2952 if (r == CONFIRM_PRETEND_SUCCESS) {
2953 *exit_status = EXIT_SUCCESS;
2954 return 0;
2955 }
2956 *exit_status = EXIT_CONFIRM;
2957 log_unit_error(unit, "Execution cancelled by the user");
2958 return -ECANCELED;
2959 }
2960 }
2961
2962 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
2963 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
2964 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
2965 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
2966 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
2967 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
2968 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
2969 *exit_status = EXIT_MEMORY;
2970 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
2971 }
2972
2973 if (context->dynamic_user && dcreds) {
2974 _cleanup_strv_free_ char **suggested_paths = NULL;
2975
2976 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
2977 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
2978 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
2979 *exit_status = EXIT_USER;
2980 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
2981 }
2982
2983 r = compile_suggested_paths(context, params, &suggested_paths);
2984 if (r < 0) {
2985 *exit_status = EXIT_MEMORY;
2986 return log_oom();
2987 }
2988
2989 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
2990 if (r < 0) {
2991 *exit_status = EXIT_USER;
2992 if (r == -EILSEQ) {
2993 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
2994 return -EOPNOTSUPP;
2995 }
2996 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
2997 }
2998
2999 if (!uid_is_valid(uid)) {
3000 *exit_status = EXIT_USER;
3001 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3002 return -ESRCH;
3003 }
3004
3005 if (!gid_is_valid(gid)) {
3006 *exit_status = EXIT_USER;
3007 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3008 return -ESRCH;
3009 }
3010
3011 if (dcreds->user)
3012 username = dcreds->user->name;
3013
3014 } else {
3015 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3016 if (r < 0) {
3017 *exit_status = EXIT_USER;
3018 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3019 }
3020
3021 r = get_fixed_group(context, &groupname, &gid);
3022 if (r < 0) {
3023 *exit_status = EXIT_GROUP;
3024 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3025 }
3026 }
3027
3028 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3029 r = get_supplementary_groups(context, username, groupname, gid,
3030 &supplementary_gids, &ngids);
3031 if (r < 0) {
3032 *exit_status = EXIT_GROUP;
3033 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3034 }
3035
3036 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3037 if (r < 0) {
3038 *exit_status = EXIT_USER;
3039 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3040 }
3041
3042 user_lookup_fd = safe_close(user_lookup_fd);
3043
3044 r = acquire_home(context, uid, &home, &home_buffer);
3045 if (r < 0) {
3046 *exit_status = EXIT_CHDIR;
3047 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3048 }
3049
3050 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3051 * must sure to drop O_NONBLOCK */
3052 if (socket_fd >= 0)
3053 (void) fd_nonblock(socket_fd, false);
3054
3055 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3056 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3057 if (params->cgroup_path) {
3058 _cleanup_free_ char *p = NULL;
3059
3060 r = exec_parameters_get_cgroup_path(params, &p);
3061 if (r < 0) {
3062 *exit_status = EXIT_CGROUP;
3063 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3064 }
3065
3066 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3067 if (r < 0) {
3068 *exit_status = EXIT_CGROUP;
3069 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3070 }
3071 }
3072
3073 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3074 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3075 if (r < 0) {
3076 *exit_status = EXIT_NETWORK;
3077 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3078 }
3079 }
3080
3081 r = setup_input(context, params, socket_fd, named_iofds);
3082 if (r < 0) {
3083 *exit_status = EXIT_STDIN;
3084 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3085 }
3086
3087 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3088 if (r < 0) {
3089 *exit_status = EXIT_STDOUT;
3090 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3091 }
3092
3093 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3094 if (r < 0) {
3095 *exit_status = EXIT_STDERR;
3096 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3097 }
3098
3099 if (context->oom_score_adjust_set) {
3100 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3101 * prohibit write access to this file, and we shouldn't trip up over that. */
3102 r = set_oom_score_adjust(context->oom_score_adjust);
3103 if (IN_SET(r, -EPERM, -EACCES))
3104 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3105 else if (r < 0) {
3106 *exit_status = EXIT_OOM_ADJUST;
3107 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3108 }
3109 }
3110
3111 if (context->nice_set)
3112 if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
3113 *exit_status = EXIT_NICE;
3114 return log_unit_error_errno(unit, errno, "Failed to set up process scheduling priority (nice level): %m");
3115 }
3116
3117 if (context->cpu_sched_set) {
3118 struct sched_param param = {
3119 .sched_priority = context->cpu_sched_priority,
3120 };
3121
3122 r = sched_setscheduler(0,
3123 context->cpu_sched_policy |
3124 (context->cpu_sched_reset_on_fork ?
3125 SCHED_RESET_ON_FORK : 0),
3126 &param);
3127 if (r < 0) {
3128 *exit_status = EXIT_SETSCHEDULER;
3129 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3130 }
3131 }
3132
3133 if (context->cpuset)
3134 if (sched_setaffinity(0, CPU_ALLOC_SIZE(context->cpuset_ncpus), context->cpuset) < 0) {
3135 *exit_status = EXIT_CPUAFFINITY;
3136 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3137 }
3138
3139 if (context->ioprio_set)
3140 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3141 *exit_status = EXIT_IOPRIO;
3142 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3143 }
3144
3145 if (context->timer_slack_nsec != NSEC_INFINITY)
3146 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3147 *exit_status = EXIT_TIMERSLACK;
3148 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3149 }
3150
3151 if (context->personality != PERSONALITY_INVALID) {
3152 r = safe_personality(context->personality);
3153 if (r < 0) {
3154 *exit_status = EXIT_PERSONALITY;
3155 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3156 }
3157 }
3158
3159 if (context->utmp_id)
3160 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3161 context->tty_path,
3162 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3163 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3164 USER_PROCESS,
3165 username);
3166
3167 if (uid_is_valid(uid)) {
3168 r = chown_terminal(STDIN_FILENO, uid);
3169 if (r < 0) {
3170 *exit_status = EXIT_STDIN;
3171 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3172 }
3173 }
3174
3175 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3176 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3177 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3178 * touch a single hierarchy too. */
3179 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3180 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3181 if (r < 0) {
3182 *exit_status = EXIT_CGROUP;
3183 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3184 }
3185 }
3186
3187 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3188 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3189 if (r < 0)
3190 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3191 }
3192
3193 r = build_environment(
3194 unit,
3195 context,
3196 params,
3197 n_fds,
3198 home,
3199 username,
3200 shell,
3201 journal_stream_dev,
3202 journal_stream_ino,
3203 &our_env);
3204 if (r < 0) {
3205 *exit_status = EXIT_MEMORY;
3206 return log_oom();
3207 }
3208
3209 r = build_pass_environment(context, &pass_env);
3210 if (r < 0) {
3211 *exit_status = EXIT_MEMORY;
3212 return log_oom();
3213 }
3214
3215 accum_env = strv_env_merge(5,
3216 params->environment,
3217 our_env,
3218 pass_env,
3219 context->environment,
3220 files_env,
3221 NULL);
3222 if (!accum_env) {
3223 *exit_status = EXIT_MEMORY;
3224 return log_oom();
3225 }
3226 accum_env = strv_env_clean(accum_env);
3227
3228 (void) umask(context->umask);
3229
3230 r = setup_keyring(unit, context, params, uid, gid);
3231 if (r < 0) {
3232 *exit_status = EXIT_KEYRING;
3233 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
3234 }
3235
3236 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
3237 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3238
3239 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
3240 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
3241
3242 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
3243 if (needs_ambient_hack)
3244 needs_setuid = false;
3245 else
3246 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
3247
3248 if (needs_sandboxing) {
3249 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
3250 * present. The actual MAC context application will happen later, as late as possible, to avoid
3251 * impacting our own code paths. */
3252
3253 #if HAVE_SELINUX
3254 use_selinux = mac_selinux_use();
3255 #endif
3256 #if ENABLE_SMACK
3257 use_smack = mac_smack_use();
3258 #endif
3259 #if HAVE_APPARMOR
3260 use_apparmor = mac_apparmor_use();
3261 #endif
3262 }
3263
3264 if (needs_sandboxing) {
3265 int which_failed;
3266
3267 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
3268 * is set here. (See below.) */
3269
3270 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
3271 if (r < 0) {
3272 *exit_status = EXIT_LIMITS;
3273 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
3274 }
3275 }
3276
3277 if (needs_setuid) {
3278
3279 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
3280 * wins here. (See above.) */
3281
3282 if (context->pam_name && username) {
3283 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
3284 if (r < 0) {
3285 *exit_status = EXIT_PAM;
3286 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
3287 }
3288 }
3289 }
3290
3291 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
3292
3293 if (ns_type_supported(NAMESPACE_NET)) {
3294 r = setup_netns(runtime->netns_storage_socket);
3295 if (r < 0) {
3296 *exit_status = EXIT_NETWORK;
3297 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
3298 }
3299 } else if (context->network_namespace_path) {
3300 *exit_status = EXIT_NETWORK;
3301 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP), "NetworkNamespacePath= is not supported, refusing.");
3302 } else
3303 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
3304 }
3305
3306 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
3307 if (needs_mount_namespace) {
3308 r = apply_mount_namespace(unit, command, context, params, runtime);
3309 if (r < 0) {
3310 *exit_status = EXIT_NAMESPACE;
3311 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing: %m");
3312 }
3313 }
3314
3315 if (context->protect_hostname) {
3316 if (ns_type_supported(NAMESPACE_UTS)) {
3317 if (unshare(CLONE_NEWUTS) < 0) {
3318 *exit_status = EXIT_NAMESPACE;
3319 return log_unit_error_errno(unit, errno, "Failed to set up UTS namespacing: %m");
3320 }
3321 } else
3322 log_unit_warning(unit, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
3323 #if HAVE_SECCOMP
3324 r = seccomp_protect_hostname();
3325 if (r < 0) {
3326 *exit_status = EXIT_SECCOMP;
3327 return log_unit_error_errno(unit, r, "Failed to apply hostname restrictions: %m");
3328 }
3329 #endif
3330 }
3331
3332 /* Drop groups as early as possbile */
3333 if (needs_setuid) {
3334 r = enforce_groups(gid, supplementary_gids, ngids);
3335 if (r < 0) {
3336 *exit_status = EXIT_GROUP;
3337 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
3338 }
3339 }
3340
3341 if (needs_sandboxing) {
3342 #if HAVE_SELINUX
3343 if (use_selinux && params->selinux_context_net && socket_fd >= 0) {
3344 r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
3345 if (r < 0) {
3346 *exit_status = EXIT_SELINUX_CONTEXT;
3347 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
3348 }
3349 }
3350 #endif
3351
3352 if (context->private_users) {
3353 r = setup_private_users(uid, gid);
3354 if (r < 0) {
3355 *exit_status = EXIT_USER;
3356 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
3357 }
3358 }
3359 }
3360
3361 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
3362 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
3363 * however if we have it as we want to keep it open until the final execve(). */
3364
3365 if (params->exec_fd >= 0) {
3366 exec_fd = params->exec_fd;
3367
3368 if (exec_fd < 3 + (int) n_fds) {
3369 int moved_fd;
3370
3371 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
3372 * process we are about to execute. */
3373
3374 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
3375 if (moved_fd < 0) {
3376 *exit_status = EXIT_FDS;
3377 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
3378 }
3379
3380 safe_close(exec_fd);
3381 exec_fd = moved_fd;
3382 } else {
3383 /* This fd should be FD_CLOEXEC already, but let's make sure. */
3384 r = fd_cloexec(exec_fd, true);
3385 if (r < 0) {
3386 *exit_status = EXIT_FDS;
3387 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
3388 }
3389 }
3390
3391 fds_with_exec_fd = newa(int, n_fds + 1);
3392 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
3393 fds_with_exec_fd[n_fds] = exec_fd;
3394 n_fds_with_exec_fd = n_fds + 1;
3395 } else {
3396 fds_with_exec_fd = fds;
3397 n_fds_with_exec_fd = n_fds;
3398 }
3399
3400 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
3401 if (r >= 0)
3402 r = shift_fds(fds, n_fds);
3403 if (r >= 0)
3404 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
3405 if (r < 0) {
3406 *exit_status = EXIT_FDS;
3407 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
3408 }
3409
3410 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
3411 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
3412 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
3413 * came this far. */
3414
3415 secure_bits = context->secure_bits;
3416
3417 if (needs_sandboxing) {
3418 uint64_t bset;
3419
3420 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
3421 * requested. (Note this is placed after the general resource limit initialization, see
3422 * above, in order to take precedence.) */
3423 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
3424 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
3425 *exit_status = EXIT_LIMITS;
3426 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
3427 }
3428 }
3429
3430 #if ENABLE_SMACK
3431 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
3432 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
3433 if (use_smack) {
3434 r = setup_smack(context, command);
3435 if (r < 0) {
3436 *exit_status = EXIT_SMACK_PROCESS_LABEL;
3437 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
3438 }
3439 }
3440 #endif
3441
3442 bset = context->capability_bounding_set;
3443 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
3444 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
3445 * instead of us doing that */
3446 if (needs_ambient_hack)
3447 bset |= (UINT64_C(1) << CAP_SETPCAP) |
3448 (UINT64_C(1) << CAP_SETUID) |
3449 (UINT64_C(1) << CAP_SETGID);
3450
3451 if (!cap_test_all(bset)) {
3452 r = capability_bounding_set_drop(bset, false);
3453 if (r < 0) {
3454 *exit_status = EXIT_CAPABILITIES;
3455 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
3456 }
3457 }
3458
3459 /* This is done before enforce_user, but ambient set
3460 * does not survive over setresuid() if keep_caps is not set. */
3461 if (!needs_ambient_hack &&
3462 context->capability_ambient_set != 0) {
3463 r = capability_ambient_set_apply(context->capability_ambient_set, true);
3464 if (r < 0) {
3465 *exit_status = EXIT_CAPABILITIES;
3466 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
3467 }
3468 }
3469 }
3470
3471 if (needs_setuid) {
3472 if (uid_is_valid(uid)) {
3473 r = enforce_user(context, uid);
3474 if (r < 0) {
3475 *exit_status = EXIT_USER;
3476 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
3477 }
3478
3479 if (!needs_ambient_hack &&
3480 context->capability_ambient_set != 0) {
3481
3482 /* Fix the ambient capabilities after user change. */
3483 r = capability_ambient_set_apply(context->capability_ambient_set, false);
3484 if (r < 0) {
3485 *exit_status = EXIT_CAPABILITIES;
3486 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
3487 }
3488
3489 /* If we were asked to change user and ambient capabilities
3490 * were requested, we had to add keep-caps to the securebits
3491 * so that we would maintain the inherited capability set
3492 * through the setresuid(). Make sure that the bit is added
3493 * also to the context secure_bits so that we don't try to
3494 * drop the bit away next. */
3495
3496 secure_bits |= 1<<SECURE_KEEP_CAPS;
3497 }
3498 }
3499 }
3500
3501 /* Apply working directory here, because the working directory might be on NFS and only the user running
3502 * this service might have the correct privilege to change to the working directory */
3503 r = apply_working_directory(context, params, home, needs_mount_namespace, exit_status);
3504 if (r < 0)
3505 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
3506
3507 if (needs_sandboxing) {
3508 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
3509 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
3510 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
3511 * are restricted. */
3512
3513 #if HAVE_SELINUX
3514 if (use_selinux) {
3515 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
3516
3517 if (exec_context) {
3518 r = setexeccon(exec_context);
3519 if (r < 0) {
3520 *exit_status = EXIT_SELINUX_CONTEXT;
3521 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
3522 }
3523 }
3524 }
3525 #endif
3526
3527 #if HAVE_APPARMOR
3528 if (use_apparmor && context->apparmor_profile) {
3529 r = aa_change_onexec(context->apparmor_profile);
3530 if (r < 0 && !context->apparmor_profile_ignore) {
3531 *exit_status = EXIT_APPARMOR_PROFILE;
3532 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
3533 }
3534 }
3535 #endif
3536
3537 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
3538 * we'll try not to call PR_SET_SECUREBITS unless necessary. */
3539 if (prctl(PR_GET_SECUREBITS) != secure_bits)
3540 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
3541 *exit_status = EXIT_SECUREBITS;
3542 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
3543 }
3544
3545 if (context_has_no_new_privileges(context))
3546 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
3547 *exit_status = EXIT_NO_NEW_PRIVILEGES;
3548 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
3549 }
3550
3551 #if HAVE_SECCOMP
3552 r = apply_address_families(unit, context);
3553 if (r < 0) {
3554 *exit_status = EXIT_ADDRESS_FAMILIES;
3555 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
3556 }
3557
3558 r = apply_memory_deny_write_execute(unit, context);
3559 if (r < 0) {
3560 *exit_status = EXIT_SECCOMP;
3561 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
3562 }
3563
3564 r = apply_restrict_realtime(unit, context);
3565 if (r < 0) {
3566 *exit_status = EXIT_SECCOMP;
3567 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
3568 }
3569
3570 r = apply_restrict_namespaces(unit, context);
3571 if (r < 0) {
3572 *exit_status = EXIT_SECCOMP;
3573 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
3574 }
3575
3576 r = apply_protect_sysctl(unit, context);
3577 if (r < 0) {
3578 *exit_status = EXIT_SECCOMP;
3579 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
3580 }
3581
3582 r = apply_protect_kernel_modules(unit, context);
3583 if (r < 0) {
3584 *exit_status = EXIT_SECCOMP;
3585 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
3586 }
3587
3588 r = apply_private_devices(unit, context);
3589 if (r < 0) {
3590 *exit_status = EXIT_SECCOMP;
3591 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
3592 }
3593
3594 r = apply_syscall_archs(unit, context);
3595 if (r < 0) {
3596 *exit_status = EXIT_SECCOMP;
3597 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
3598 }
3599
3600 r = apply_lock_personality(unit, context);
3601 if (r < 0) {
3602 *exit_status = EXIT_SECCOMP;
3603 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
3604 }
3605
3606 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
3607 * by the filter as little as possible. */
3608 r = apply_syscall_filter(unit, context, needs_ambient_hack);
3609 if (r < 0) {
3610 *exit_status = EXIT_SECCOMP;
3611 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
3612 }
3613 #endif
3614 }
3615
3616 if (!strv_isempty(context->unset_environment)) {
3617 char **ee = NULL;
3618
3619 ee = strv_env_delete(accum_env, 1, context->unset_environment);
3620 if (!ee) {
3621 *exit_status = EXIT_MEMORY;
3622 return log_oom();
3623 }
3624
3625 strv_free_and_replace(accum_env, ee);
3626 }
3627
3628 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
3629 replaced_argv = replace_env_argv(command->argv, accum_env);
3630 if (!replaced_argv) {
3631 *exit_status = EXIT_MEMORY;
3632 return log_oom();
3633 }
3634 final_argv = replaced_argv;
3635 } else
3636 final_argv = command->argv;
3637
3638 if (DEBUG_LOGGING) {
3639 _cleanup_free_ char *line;
3640
3641 line = exec_command_line(final_argv);
3642 if (line)
3643 log_struct(LOG_DEBUG,
3644 "EXECUTABLE=%s", command->path,
3645 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
3646 LOG_UNIT_ID(unit),
3647 LOG_UNIT_INVOCATION_ID(unit));
3648 }
3649
3650 if (exec_fd >= 0) {
3651 uint8_t hot = 1;
3652
3653 /* We have finished with all our initializations. Let's now let the manager know that. From this point
3654 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
3655
3656 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3657 *exit_status = EXIT_EXEC;
3658 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
3659 }
3660 }
3661
3662 execve(command->path, final_argv, accum_env);
3663 r = -errno;
3664
3665 if (exec_fd >= 0) {
3666 uint8_t hot = 0;
3667
3668 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
3669 * that POLLHUP on it no longer means execve() succeeded. */
3670
3671 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3672 *exit_status = EXIT_EXEC;
3673 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
3674 }
3675 }
3676
3677 if (r == -ENOENT && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
3678 log_struct_errno(LOG_INFO, r,
3679 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3680 LOG_UNIT_ID(unit),
3681 LOG_UNIT_INVOCATION_ID(unit),
3682 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
3683 command->path),
3684 "EXECUTABLE=%s", command->path);
3685 return 0;
3686 }
3687
3688 *exit_status = EXIT_EXEC;
3689 return log_unit_error_errno(unit, r, "Failed to execute command: %m");
3690 }
3691
3692 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
3693 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[3]);
3694
3695 int exec_spawn(Unit *unit,
3696 ExecCommand *command,
3697 const ExecContext *context,
3698 const ExecParameters *params,
3699 ExecRuntime *runtime,
3700 DynamicCreds *dcreds,
3701 pid_t *ret) {
3702
3703 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
3704 _cleanup_free_ char *subcgroup_path = NULL;
3705 _cleanup_strv_free_ char **files_env = NULL;
3706 size_t n_storage_fds = 0, n_socket_fds = 0;
3707 _cleanup_free_ char *line = NULL;
3708 pid_t pid;
3709
3710 assert(unit);
3711 assert(command);
3712 assert(context);
3713 assert(ret);
3714 assert(params);
3715 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
3716
3717 if (context->std_input == EXEC_INPUT_SOCKET ||
3718 context->std_output == EXEC_OUTPUT_SOCKET ||
3719 context->std_error == EXEC_OUTPUT_SOCKET) {
3720
3721 if (params->n_socket_fds > 1) {
3722 log_unit_error(unit, "Got more than one socket.");
3723 return -EINVAL;
3724 }
3725
3726 if (params->n_socket_fds == 0) {
3727 log_unit_error(unit, "Got no socket.");
3728 return -EINVAL;
3729 }
3730
3731 socket_fd = params->fds[0];
3732 } else {
3733 socket_fd = -1;
3734 fds = params->fds;
3735 n_socket_fds = params->n_socket_fds;
3736 n_storage_fds = params->n_storage_fds;
3737 }
3738
3739 r = exec_context_named_iofds(context, params, named_iofds);
3740 if (r < 0)
3741 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
3742
3743 r = exec_context_load_environment(unit, context, &files_env);
3744 if (r < 0)
3745 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
3746
3747 line = exec_command_line(command->argv);
3748 if (!line)
3749 return log_oom();
3750
3751 log_struct(LOG_DEBUG,
3752 LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
3753 "EXECUTABLE=%s", command->path,
3754 LOG_UNIT_ID(unit),
3755 LOG_UNIT_INVOCATION_ID(unit));
3756
3757 if (params->cgroup_path) {
3758 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
3759 if (r < 0)
3760 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
3761 if (r > 0) { /* We are using a child cgroup */
3762 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
3763 if (r < 0)
3764 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
3765 }
3766 }
3767
3768 pid = fork();
3769 if (pid < 0)
3770 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
3771
3772 if (pid == 0) {
3773 int exit_status = EXIT_SUCCESS;
3774
3775 r = exec_child(unit,
3776 command,
3777 context,
3778 params,
3779 runtime,
3780 dcreds,
3781 socket_fd,
3782 named_iofds,
3783 fds,
3784 n_socket_fds,
3785 n_storage_fds,
3786 files_env,
3787 unit->manager->user_lookup_fds[1],
3788 &exit_status);
3789
3790 if (r < 0)
3791 log_struct_errno(LOG_ERR, r,
3792 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3793 LOG_UNIT_ID(unit),
3794 LOG_UNIT_INVOCATION_ID(unit),
3795 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
3796 exit_status_to_string(exit_status, EXIT_STATUS_SYSTEMD),
3797 command->path),
3798 "EXECUTABLE=%s", command->path);
3799
3800 _exit(exit_status);
3801 }
3802
3803 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
3804
3805 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
3806 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
3807 * process will be killed too). */
3808 if (subcgroup_path)
3809 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
3810
3811 exec_status_start(&command->exec_status, pid);
3812
3813 *ret = pid;
3814 return 0;
3815 }
3816
3817 void exec_context_init(ExecContext *c) {
3818 ExecDirectoryType i;
3819
3820 assert(c);
3821
3822 c->umask = 0022;
3823 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
3824 c->cpu_sched_policy = SCHED_OTHER;
3825 c->syslog_priority = LOG_DAEMON|LOG_INFO;
3826 c->syslog_level_prefix = true;
3827 c->ignore_sigpipe = true;
3828 c->timer_slack_nsec = NSEC_INFINITY;
3829 c->personality = PERSONALITY_INVALID;
3830 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3831 c->directories[i].mode = 0755;
3832 c->capability_bounding_set = CAP_ALL;
3833 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
3834 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
3835 c->log_level_max = -1;
3836 }
3837
3838 void exec_context_done(ExecContext *c) {
3839 ExecDirectoryType i;
3840 size_t l;
3841
3842 assert(c);
3843
3844 c->environment = strv_free(c->environment);
3845 c->environment_files = strv_free(c->environment_files);
3846 c->pass_environment = strv_free(c->pass_environment);
3847 c->unset_environment = strv_free(c->unset_environment);
3848
3849 rlimit_free_all(c->rlimit);
3850
3851 for (l = 0; l < 3; l++) {
3852 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
3853 c->stdio_file[l] = mfree(c->stdio_file[l]);
3854 }
3855
3856 c->working_directory = mfree(c->working_directory);
3857 c->root_directory = mfree(c->root_directory);
3858 c->root_image = mfree(c->root_image);
3859 c->tty_path = mfree(c->tty_path);
3860 c->syslog_identifier = mfree(c->syslog_identifier);
3861 c->user = mfree(c->user);
3862 c->group = mfree(c->group);
3863
3864 c->supplementary_groups = strv_free(c->supplementary_groups);
3865
3866 c->pam_name = mfree(c->pam_name);
3867
3868 c->read_only_paths = strv_free(c->read_only_paths);
3869 c->read_write_paths = strv_free(c->read_write_paths);
3870 c->inaccessible_paths = strv_free(c->inaccessible_paths);
3871
3872 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
3873 c->bind_mounts = NULL;
3874 c->n_bind_mounts = 0;
3875 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
3876 c->temporary_filesystems = NULL;
3877 c->n_temporary_filesystems = 0;
3878
3879 c->cpuset = cpu_set_mfree(c->cpuset);
3880
3881 c->utmp_id = mfree(c->utmp_id);
3882 c->selinux_context = mfree(c->selinux_context);
3883 c->apparmor_profile = mfree(c->apparmor_profile);
3884 c->smack_process_label = mfree(c->smack_process_label);
3885
3886 c->syscall_filter = hashmap_free(c->syscall_filter);
3887 c->syscall_archs = set_free(c->syscall_archs);
3888 c->address_families = set_free(c->address_families);
3889
3890 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3891 c->directories[i].paths = strv_free(c->directories[i].paths);
3892
3893 c->log_level_max = -1;
3894
3895 exec_context_free_log_extra_fields(c);
3896
3897 c->log_rate_limit_interval_usec = 0;
3898 c->log_rate_limit_burst = 0;
3899
3900 c->stdin_data = mfree(c->stdin_data);
3901 c->stdin_data_size = 0;
3902
3903 c->network_namespace_path = mfree(c->network_namespace_path);
3904 }
3905
3906 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
3907 char **i;
3908
3909 assert(c);
3910
3911 if (!runtime_prefix)
3912 return 0;
3913
3914 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
3915 _cleanup_free_ char *p;
3916
3917 p = path_join(runtime_prefix, *i);
3918 if (!p)
3919 return -ENOMEM;
3920
3921 /* We execute this synchronously, since we need to be sure this is gone when we start the
3922 * service next. */
3923 (void) rm_rf(p, REMOVE_ROOT);
3924 }
3925
3926 return 0;
3927 }
3928
3929 static void exec_command_done(ExecCommand *c) {
3930 assert(c);
3931
3932 c->path = mfree(c->path);
3933 c->argv = strv_free(c->argv);
3934 }
3935
3936 void exec_command_done_array(ExecCommand *c, size_t n) {
3937 size_t i;
3938
3939 for (i = 0; i < n; i++)
3940 exec_command_done(c+i);
3941 }
3942
3943 ExecCommand* exec_command_free_list(ExecCommand *c) {
3944 ExecCommand *i;
3945
3946 while ((i = c)) {
3947 LIST_REMOVE(command, c, i);
3948 exec_command_done(i);
3949 free(i);
3950 }
3951
3952 return NULL;
3953 }
3954
3955 void exec_command_free_array(ExecCommand **c, size_t n) {
3956 size_t i;
3957
3958 for (i = 0; i < n; i++)
3959 c[i] = exec_command_free_list(c[i]);
3960 }
3961
3962 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
3963 size_t i;
3964
3965 for (i = 0; i < n; i++)
3966 exec_status_reset(&c[i].exec_status);
3967 }
3968
3969 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
3970 size_t i;
3971
3972 for (i = 0; i < n; i++) {
3973 ExecCommand *z;
3974
3975 LIST_FOREACH(command, z, c[i])
3976 exec_status_reset(&z->exec_status);
3977 }
3978 }
3979
3980 typedef struct InvalidEnvInfo {
3981 const Unit *unit;
3982 const char *path;
3983 } InvalidEnvInfo;
3984
3985 static void invalid_env(const char *p, void *userdata) {
3986 InvalidEnvInfo *info = userdata;
3987
3988 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
3989 }
3990
3991 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
3992 assert(c);
3993
3994 switch (fd_index) {
3995
3996 case STDIN_FILENO:
3997 if (c->std_input != EXEC_INPUT_NAMED_FD)
3998 return NULL;
3999
4000 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4001
4002 case STDOUT_FILENO:
4003 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4004 return NULL;
4005
4006 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4007
4008 case STDERR_FILENO:
4009 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4010 return NULL;
4011
4012 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4013
4014 default:
4015 return NULL;
4016 }
4017 }
4018
4019 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]) {
4020 size_t i, targets;
4021 const char* stdio_fdname[3];
4022 size_t n_fds;
4023
4024 assert(c);
4025 assert(p);
4026
4027 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4028 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4029 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4030
4031 for (i = 0; i < 3; i++)
4032 stdio_fdname[i] = exec_context_fdname(c, i);
4033
4034 n_fds = p->n_storage_fds + p->n_socket_fds;
4035
4036 for (i = 0; i < n_fds && targets > 0; i++)
4037 if (named_iofds[STDIN_FILENO] < 0 &&
4038 c->std_input == EXEC_INPUT_NAMED_FD &&
4039 stdio_fdname[STDIN_FILENO] &&
4040 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4041
4042 named_iofds[STDIN_FILENO] = p->fds[i];
4043 targets--;
4044
4045 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4046 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4047 stdio_fdname[STDOUT_FILENO] &&
4048 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4049
4050 named_iofds[STDOUT_FILENO] = p->fds[i];
4051 targets--;
4052
4053 } else if (named_iofds[STDERR_FILENO] < 0 &&
4054 c->std_error == EXEC_OUTPUT_NAMED_FD &&
4055 stdio_fdname[STDERR_FILENO] &&
4056 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
4057
4058 named_iofds[STDERR_FILENO] = p->fds[i];
4059 targets--;
4060 }
4061
4062 return targets == 0 ? 0 : -ENOENT;
4063 }
4064
4065 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
4066 char **i, **r = NULL;
4067
4068 assert(c);
4069 assert(l);
4070
4071 STRV_FOREACH(i, c->environment_files) {
4072 char *fn;
4073 int k;
4074 unsigned n;
4075 bool ignore = false;
4076 char **p;
4077 _cleanup_globfree_ glob_t pglob = {};
4078
4079 fn = *i;
4080
4081 if (fn[0] == '-') {
4082 ignore = true;
4083 fn++;
4084 }
4085
4086 if (!path_is_absolute(fn)) {
4087 if (ignore)
4088 continue;
4089
4090 strv_free(r);
4091 return -EINVAL;
4092 }
4093
4094 /* Filename supports globbing, take all matching files */
4095 k = safe_glob(fn, 0, &pglob);
4096 if (k < 0) {
4097 if (ignore)
4098 continue;
4099
4100 strv_free(r);
4101 return k;
4102 }
4103
4104 /* When we don't match anything, -ENOENT should be returned */
4105 assert(pglob.gl_pathc > 0);
4106
4107 for (n = 0; n < pglob.gl_pathc; n++) {
4108 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
4109 if (k < 0) {
4110 if (ignore)
4111 continue;
4112
4113 strv_free(r);
4114 return k;
4115 }
4116 /* Log invalid environment variables with filename */
4117 if (p) {
4118 InvalidEnvInfo info = {
4119 .unit = unit,
4120 .path = pglob.gl_pathv[n]
4121 };
4122
4123 p = strv_env_clean_with_callback(p, invalid_env, &info);
4124 }
4125
4126 if (!r)
4127 r = p;
4128 else {
4129 char **m;
4130
4131 m = strv_env_merge(2, r, p);
4132 strv_free(r);
4133 strv_free(p);
4134 if (!m)
4135 return -ENOMEM;
4136
4137 r = m;
4138 }
4139 }
4140 }
4141
4142 *l = r;
4143
4144 return 0;
4145 }
4146
4147 static bool tty_may_match_dev_console(const char *tty) {
4148 _cleanup_free_ char *resolved = NULL;
4149
4150 if (!tty)
4151 return true;
4152
4153 tty = skip_dev_prefix(tty);
4154
4155 /* trivial identity? */
4156 if (streq(tty, "console"))
4157 return true;
4158
4159 if (resolve_dev_console(&resolved) < 0)
4160 return true; /* if we could not resolve, assume it may */
4161
4162 /* "tty0" means the active VC, so it may be the same sometimes */
4163 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
4164 }
4165
4166 static bool exec_context_may_touch_tty(const ExecContext *ec) {
4167 assert(ec);
4168
4169 return ec->tty_reset ||
4170 ec->tty_vhangup ||
4171 ec->tty_vt_disallocate ||
4172 is_terminal_input(ec->std_input) ||
4173 is_terminal_output(ec->std_output) ||
4174 is_terminal_output(ec->std_error);
4175 }
4176
4177 bool exec_context_may_touch_console(const ExecContext *ec) {
4178
4179 return exec_context_may_touch_tty(ec) &&
4180 tty_may_match_dev_console(exec_context_tty_path(ec));
4181 }
4182
4183 static void strv_fprintf(FILE *f, char **l) {
4184 char **g;
4185
4186 assert(f);
4187
4188 STRV_FOREACH(g, l)
4189 fprintf(f, " %s", *g);
4190 }
4191
4192 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
4193 ExecDirectoryType dt;
4194 char **e, **d;
4195 unsigned i;
4196 int r;
4197
4198 assert(c);
4199 assert(f);
4200
4201 prefix = strempty(prefix);
4202
4203 fprintf(f,
4204 "%sUMask: %04o\n"
4205 "%sWorkingDirectory: %s\n"
4206 "%sRootDirectory: %s\n"
4207 "%sNonBlocking: %s\n"
4208 "%sPrivateTmp: %s\n"
4209 "%sPrivateDevices: %s\n"
4210 "%sProtectKernelTunables: %s\n"
4211 "%sProtectKernelModules: %s\n"
4212 "%sProtectControlGroups: %s\n"
4213 "%sPrivateNetwork: %s\n"
4214 "%sPrivateUsers: %s\n"
4215 "%sProtectHome: %s\n"
4216 "%sProtectSystem: %s\n"
4217 "%sMountAPIVFS: %s\n"
4218 "%sIgnoreSIGPIPE: %s\n"
4219 "%sMemoryDenyWriteExecute: %s\n"
4220 "%sRestrictRealtime: %s\n"
4221 "%sKeyringMode: %s\n"
4222 "%sProtectHostname: %s\n",
4223 prefix, c->umask,
4224 prefix, c->working_directory ? c->working_directory : "/",
4225 prefix, c->root_directory ? c->root_directory : "/",
4226 prefix, yes_no(c->non_blocking),
4227 prefix, yes_no(c->private_tmp),
4228 prefix, yes_no(c->private_devices),
4229 prefix, yes_no(c->protect_kernel_tunables),
4230 prefix, yes_no(c->protect_kernel_modules),
4231 prefix, yes_no(c->protect_control_groups),
4232 prefix, yes_no(c->private_network),
4233 prefix, yes_no(c->private_users),
4234 prefix, protect_home_to_string(c->protect_home),
4235 prefix, protect_system_to_string(c->protect_system),
4236 prefix, yes_no(c->mount_apivfs),
4237 prefix, yes_no(c->ignore_sigpipe),
4238 prefix, yes_no(c->memory_deny_write_execute),
4239 prefix, yes_no(c->restrict_realtime),
4240 prefix, exec_keyring_mode_to_string(c->keyring_mode),
4241 prefix, yes_no(c->protect_hostname));
4242
4243 if (c->root_image)
4244 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
4245
4246 STRV_FOREACH(e, c->environment)
4247 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
4248
4249 STRV_FOREACH(e, c->environment_files)
4250 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
4251
4252 STRV_FOREACH(e, c->pass_environment)
4253 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
4254
4255 STRV_FOREACH(e, c->unset_environment)
4256 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
4257
4258 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
4259
4260 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4261 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
4262
4263 STRV_FOREACH(d, c->directories[dt].paths)
4264 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
4265 }
4266
4267 if (c->nice_set)
4268 fprintf(f,
4269 "%sNice: %i\n",
4270 prefix, c->nice);
4271
4272 if (c->oom_score_adjust_set)
4273 fprintf(f,
4274 "%sOOMScoreAdjust: %i\n",
4275 prefix, c->oom_score_adjust);
4276
4277 for (i = 0; i < RLIM_NLIMITS; i++)
4278 if (c->rlimit[i]) {
4279 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
4280 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
4281 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
4282 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
4283 }
4284
4285 if (c->ioprio_set) {
4286 _cleanup_free_ char *class_str = NULL;
4287
4288 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
4289 if (r >= 0)
4290 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
4291
4292 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
4293 }
4294
4295 if (c->cpu_sched_set) {
4296 _cleanup_free_ char *policy_str = NULL;
4297
4298 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
4299 if (r >= 0)
4300 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
4301
4302 fprintf(f,
4303 "%sCPUSchedulingPriority: %i\n"
4304 "%sCPUSchedulingResetOnFork: %s\n",
4305 prefix, c->cpu_sched_priority,
4306 prefix, yes_no(c->cpu_sched_reset_on_fork));
4307 }
4308
4309 if (c->cpuset) {
4310 fprintf(f, "%sCPUAffinity:", prefix);
4311 for (i = 0; i < c->cpuset_ncpus; i++)
4312 if (CPU_ISSET_S(i, CPU_ALLOC_SIZE(c->cpuset_ncpus), c->cpuset))
4313 fprintf(f, " %u", i);
4314 fputs("\n", f);
4315 }
4316
4317 if (c->timer_slack_nsec != NSEC_INFINITY)
4318 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
4319
4320 fprintf(f,
4321 "%sStandardInput: %s\n"
4322 "%sStandardOutput: %s\n"
4323 "%sStandardError: %s\n",
4324 prefix, exec_input_to_string(c->std_input),
4325 prefix, exec_output_to_string(c->std_output),
4326 prefix, exec_output_to_string(c->std_error));
4327
4328 if (c->std_input == EXEC_INPUT_NAMED_FD)
4329 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
4330 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
4331 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
4332 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
4333 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
4334
4335 if (c->std_input == EXEC_INPUT_FILE)
4336 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
4337 if (c->std_output == EXEC_OUTPUT_FILE)
4338 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4339 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
4340 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4341 if (c->std_error == EXEC_OUTPUT_FILE)
4342 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4343 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
4344 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4345
4346 if (c->tty_path)
4347 fprintf(f,
4348 "%sTTYPath: %s\n"
4349 "%sTTYReset: %s\n"
4350 "%sTTYVHangup: %s\n"
4351 "%sTTYVTDisallocate: %s\n",
4352 prefix, c->tty_path,
4353 prefix, yes_no(c->tty_reset),
4354 prefix, yes_no(c->tty_vhangup),
4355 prefix, yes_no(c->tty_vt_disallocate));
4356
4357 if (IN_SET(c->std_output,
4358 EXEC_OUTPUT_SYSLOG,
4359 EXEC_OUTPUT_KMSG,
4360 EXEC_OUTPUT_JOURNAL,
4361 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4362 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4363 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
4364 IN_SET(c->std_error,
4365 EXEC_OUTPUT_SYSLOG,
4366 EXEC_OUTPUT_KMSG,
4367 EXEC_OUTPUT_JOURNAL,
4368 EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4369 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4370 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
4371
4372 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
4373
4374 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
4375 if (r >= 0)
4376 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
4377
4378 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
4379 if (r >= 0)
4380 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
4381 }
4382
4383 if (c->log_level_max >= 0) {
4384 _cleanup_free_ char *t = NULL;
4385
4386 (void) log_level_to_string_alloc(c->log_level_max, &t);
4387
4388 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
4389 }
4390
4391 if (c->log_rate_limit_interval_usec > 0) {
4392 char buf_timespan[FORMAT_TIMESPAN_MAX];
4393
4394 fprintf(f,
4395 "%sLogRateLimitIntervalSec: %s\n",
4396 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_rate_limit_interval_usec, USEC_PER_SEC));
4397 }
4398
4399 if (c->log_rate_limit_burst > 0)
4400 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_rate_limit_burst);
4401
4402 if (c->n_log_extra_fields > 0) {
4403 size_t j;
4404
4405 for (j = 0; j < c->n_log_extra_fields; j++) {
4406 fprintf(f, "%sLogExtraFields: ", prefix);
4407 fwrite(c->log_extra_fields[j].iov_base,
4408 1, c->log_extra_fields[j].iov_len,
4409 f);
4410 fputc('\n', f);
4411 }
4412 }
4413
4414 if (c->secure_bits) {
4415 _cleanup_free_ char *str = NULL;
4416
4417 r = secure_bits_to_string_alloc(c->secure_bits, &str);
4418 if (r >= 0)
4419 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
4420 }
4421
4422 if (c->capability_bounding_set != CAP_ALL) {
4423 _cleanup_free_ char *str = NULL;
4424
4425 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
4426 if (r >= 0)
4427 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
4428 }
4429
4430 if (c->capability_ambient_set != 0) {
4431 _cleanup_free_ char *str = NULL;
4432
4433 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
4434 if (r >= 0)
4435 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
4436 }
4437
4438 if (c->user)
4439 fprintf(f, "%sUser: %s\n", prefix, c->user);
4440 if (c->group)
4441 fprintf(f, "%sGroup: %s\n", prefix, c->group);
4442
4443 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
4444
4445 if (!strv_isempty(c->supplementary_groups)) {
4446 fprintf(f, "%sSupplementaryGroups:", prefix);
4447 strv_fprintf(f, c->supplementary_groups);
4448 fputs("\n", f);
4449 }
4450
4451 if (c->pam_name)
4452 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
4453
4454 if (!strv_isempty(c->read_write_paths)) {
4455 fprintf(f, "%sReadWritePaths:", prefix);
4456 strv_fprintf(f, c->read_write_paths);
4457 fputs("\n", f);
4458 }
4459
4460 if (!strv_isempty(c->read_only_paths)) {
4461 fprintf(f, "%sReadOnlyPaths:", prefix);
4462 strv_fprintf(f, c->read_only_paths);
4463 fputs("\n", f);
4464 }
4465
4466 if (!strv_isempty(c->inaccessible_paths)) {
4467 fprintf(f, "%sInaccessiblePaths:", prefix);
4468 strv_fprintf(f, c->inaccessible_paths);
4469 fputs("\n", f);
4470 }
4471
4472 if (c->n_bind_mounts > 0)
4473 for (i = 0; i < c->n_bind_mounts; i++)
4474 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
4475 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
4476 c->bind_mounts[i].ignore_enoent ? "-": "",
4477 c->bind_mounts[i].source,
4478 c->bind_mounts[i].destination,
4479 c->bind_mounts[i].recursive ? "rbind" : "norbind");
4480
4481 if (c->n_temporary_filesystems > 0)
4482 for (i = 0; i < c->n_temporary_filesystems; i++) {
4483 TemporaryFileSystem *t = c->temporary_filesystems + i;
4484
4485 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
4486 t->path,
4487 isempty(t->options) ? "" : ":",
4488 strempty(t->options));
4489 }
4490
4491 if (c->utmp_id)
4492 fprintf(f,
4493 "%sUtmpIdentifier: %s\n",
4494 prefix, c->utmp_id);
4495
4496 if (c->selinux_context)
4497 fprintf(f,
4498 "%sSELinuxContext: %s%s\n",
4499 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
4500
4501 if (c->apparmor_profile)
4502 fprintf(f,
4503 "%sAppArmorProfile: %s%s\n",
4504 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4505
4506 if (c->smack_process_label)
4507 fprintf(f,
4508 "%sSmackProcessLabel: %s%s\n",
4509 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
4510
4511 if (c->personality != PERSONALITY_INVALID)
4512 fprintf(f,
4513 "%sPersonality: %s\n",
4514 prefix, strna(personality_to_string(c->personality)));
4515
4516 fprintf(f,
4517 "%sLockPersonality: %s\n",
4518 prefix, yes_no(c->lock_personality));
4519
4520 if (c->syscall_filter) {
4521 #if HAVE_SECCOMP
4522 Iterator j;
4523 void *id, *val;
4524 bool first = true;
4525 #endif
4526
4527 fprintf(f,
4528 "%sSystemCallFilter: ",
4529 prefix);
4530
4531 if (!c->syscall_whitelist)
4532 fputc('~', f);
4533
4534 #if HAVE_SECCOMP
4535 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter, j) {
4536 _cleanup_free_ char *name = NULL;
4537 const char *errno_name = NULL;
4538 int num = PTR_TO_INT(val);
4539
4540 if (first)
4541 first = false;
4542 else
4543 fputc(' ', f);
4544
4545 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
4546 fputs(strna(name), f);
4547
4548 if (num >= 0) {
4549 errno_name = errno_to_name(num);
4550 if (errno_name)
4551 fprintf(f, ":%s", errno_name);
4552 else
4553 fprintf(f, ":%d", num);
4554 }
4555 }
4556 #endif
4557
4558 fputc('\n', f);
4559 }
4560
4561 if (c->syscall_archs) {
4562 #if HAVE_SECCOMP
4563 Iterator j;
4564 void *id;
4565 #endif
4566
4567 fprintf(f,
4568 "%sSystemCallArchitectures:",
4569 prefix);
4570
4571 #if HAVE_SECCOMP
4572 SET_FOREACH(id, c->syscall_archs, j)
4573 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
4574 #endif
4575 fputc('\n', f);
4576 }
4577
4578 if (exec_context_restrict_namespaces_set(c)) {
4579 _cleanup_free_ char *s = NULL;
4580
4581 r = namespace_flags_to_string(c->restrict_namespaces, &s);
4582 if (r >= 0)
4583 fprintf(f, "%sRestrictNamespaces: %s\n",
4584 prefix, s);
4585 }
4586
4587 if (c->network_namespace_path)
4588 fprintf(f,
4589 "%sNetworkNamespacePath: %s\n",
4590 prefix, c->network_namespace_path);
4591
4592 if (c->syscall_errno > 0) {
4593 const char *errno_name;
4594
4595 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
4596
4597 errno_name = errno_to_name(c->syscall_errno);
4598 if (errno_name)
4599 fprintf(f, "%s\n", errno_name);
4600 else
4601 fprintf(f, "%d\n", c->syscall_errno);
4602 }
4603 }
4604
4605 bool exec_context_maintains_privileges(const ExecContext *c) {
4606 assert(c);
4607
4608 /* Returns true if the process forked off would run under
4609 * an unchanged UID or as root. */
4610
4611 if (!c->user)
4612 return true;
4613
4614 if (streq(c->user, "root") || streq(c->user, "0"))
4615 return true;
4616
4617 return false;
4618 }
4619
4620 int exec_context_get_effective_ioprio(const ExecContext *c) {
4621 int p;
4622
4623 assert(c);
4624
4625 if (c->ioprio_set)
4626 return c->ioprio;
4627
4628 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
4629 if (p < 0)
4630 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
4631
4632 return p;
4633 }
4634
4635 void exec_context_free_log_extra_fields(ExecContext *c) {
4636 size_t l;
4637
4638 assert(c);
4639
4640 for (l = 0; l < c->n_log_extra_fields; l++)
4641 free(c->log_extra_fields[l].iov_base);
4642 c->log_extra_fields = mfree(c->log_extra_fields);
4643 c->n_log_extra_fields = 0;
4644 }
4645
4646 void exec_context_revert_tty(ExecContext *c) {
4647 int r;
4648
4649 assert(c);
4650
4651 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
4652 exec_context_tty_reset(c, NULL);
4653
4654 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
4655 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
4656 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
4657
4658 if (exec_context_may_touch_tty(c)) {
4659 const char *path;
4660
4661 path = exec_context_tty_path(c);
4662 if (path) {
4663 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
4664 if (r < 0 && r != -ENOENT)
4665 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
4666 }
4667 }
4668 }
4669
4670 void exec_status_start(ExecStatus *s, pid_t pid) {
4671 assert(s);
4672
4673 *s = (ExecStatus) {
4674 .pid = pid,
4675 };
4676
4677 dual_timestamp_get(&s->start_timestamp);
4678 }
4679
4680 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
4681 assert(s);
4682
4683 if (s->pid != pid) {
4684 *s = (ExecStatus) {
4685 .pid = pid,
4686 };
4687 }
4688
4689 dual_timestamp_get(&s->exit_timestamp);
4690
4691 s->code = code;
4692 s->status = status;
4693
4694 if (context && context->utmp_id)
4695 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
4696 }
4697
4698 void exec_status_reset(ExecStatus *s) {
4699 assert(s);
4700
4701 *s = (ExecStatus) {};
4702 }
4703
4704 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
4705 char buf[FORMAT_TIMESTAMP_MAX];
4706
4707 assert(s);
4708 assert(f);
4709
4710 if (s->pid <= 0)
4711 return;
4712
4713 prefix = strempty(prefix);
4714
4715 fprintf(f,
4716 "%sPID: "PID_FMT"\n",
4717 prefix, s->pid);
4718
4719 if (dual_timestamp_is_set(&s->start_timestamp))
4720 fprintf(f,
4721 "%sStart Timestamp: %s\n",
4722 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
4723
4724 if (dual_timestamp_is_set(&s->exit_timestamp))
4725 fprintf(f,
4726 "%sExit Timestamp: %s\n"
4727 "%sExit Code: %s\n"
4728 "%sExit Status: %i\n",
4729 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
4730 prefix, sigchld_code_to_string(s->code),
4731 prefix, s->status);
4732 }
4733
4734 static char *exec_command_line(char **argv) {
4735 size_t k;
4736 char *n, *p, **a;
4737 bool first = true;
4738
4739 assert(argv);
4740
4741 k = 1;
4742 STRV_FOREACH(a, argv)
4743 k += strlen(*a)+3;
4744
4745 n = new(char, k);
4746 if (!n)
4747 return NULL;
4748
4749 p = n;
4750 STRV_FOREACH(a, argv) {
4751
4752 if (!first)
4753 *(p++) = ' ';
4754 else
4755 first = false;
4756
4757 if (strpbrk(*a, WHITESPACE)) {
4758 *(p++) = '\'';
4759 p = stpcpy(p, *a);
4760 *(p++) = '\'';
4761 } else
4762 p = stpcpy(p, *a);
4763
4764 }
4765
4766 *p = 0;
4767
4768 /* FIXME: this doesn't really handle arguments that have
4769 * spaces and ticks in them */
4770
4771 return n;
4772 }
4773
4774 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
4775 _cleanup_free_ char *cmd = NULL;
4776 const char *prefix2;
4777
4778 assert(c);
4779 assert(f);
4780
4781 prefix = strempty(prefix);
4782 prefix2 = strjoina(prefix, "\t");
4783
4784 cmd = exec_command_line(c->argv);
4785 fprintf(f,
4786 "%sCommand Line: %s\n",
4787 prefix, cmd ? cmd : strerror(ENOMEM));
4788
4789 exec_status_dump(&c->exec_status, f, prefix2);
4790 }
4791
4792 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
4793 assert(f);
4794
4795 prefix = strempty(prefix);
4796
4797 LIST_FOREACH(command, c, c)
4798 exec_command_dump(c, f, prefix);
4799 }
4800
4801 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
4802 ExecCommand *end;
4803
4804 assert(l);
4805 assert(e);
4806
4807 if (*l) {
4808 /* It's kind of important, that we keep the order here */
4809 LIST_FIND_TAIL(command, *l, end);
4810 LIST_INSERT_AFTER(command, *l, end, e);
4811 } else
4812 *l = e;
4813 }
4814
4815 int exec_command_set(ExecCommand *c, const char *path, ...) {
4816 va_list ap;
4817 char **l, *p;
4818
4819 assert(c);
4820 assert(path);
4821
4822 va_start(ap, path);
4823 l = strv_new_ap(path, ap);
4824 va_end(ap);
4825
4826 if (!l)
4827 return -ENOMEM;
4828
4829 p = strdup(path);
4830 if (!p) {
4831 strv_free(l);
4832 return -ENOMEM;
4833 }
4834
4835 free_and_replace(c->path, p);
4836
4837 return strv_free_and_replace(c->argv, l);
4838 }
4839
4840 int exec_command_append(ExecCommand *c, const char *path, ...) {
4841 _cleanup_strv_free_ char **l = NULL;
4842 va_list ap;
4843 int r;
4844
4845 assert(c);
4846 assert(path);
4847
4848 va_start(ap, path);
4849 l = strv_new_ap(path, ap);
4850 va_end(ap);
4851
4852 if (!l)
4853 return -ENOMEM;
4854
4855 r = strv_extend_strv(&c->argv, l, false);
4856 if (r < 0)
4857 return r;
4858
4859 return 0;
4860 }
4861
4862 static void *remove_tmpdir_thread(void *p) {
4863 _cleanup_free_ char *path = p;
4864
4865 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
4866 return NULL;
4867 }
4868
4869 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
4870 int r;
4871
4872 if (!rt)
4873 return NULL;
4874
4875 if (rt->manager)
4876 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
4877
4878 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
4879 if (destroy && rt->tmp_dir) {
4880 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
4881
4882 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
4883 if (r < 0) {
4884 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
4885 free(rt->tmp_dir);
4886 }
4887
4888 rt->tmp_dir = NULL;
4889 }
4890
4891 if (destroy && rt->var_tmp_dir) {
4892 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
4893
4894 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
4895 if (r < 0) {
4896 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
4897 free(rt->var_tmp_dir);
4898 }
4899
4900 rt->var_tmp_dir = NULL;
4901 }
4902
4903 rt->id = mfree(rt->id);
4904 rt->tmp_dir = mfree(rt->tmp_dir);
4905 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
4906 safe_close_pair(rt->netns_storage_socket);
4907 return mfree(rt);
4908 }
4909
4910 static void exec_runtime_freep(ExecRuntime **rt) {
4911 (void) exec_runtime_free(*rt, false);
4912 }
4913
4914 static int exec_runtime_allocate(ExecRuntime **ret) {
4915 ExecRuntime *n;
4916
4917 assert(ret);
4918
4919 n = new(ExecRuntime, 1);
4920 if (!n)
4921 return -ENOMEM;
4922
4923 *n = (ExecRuntime) {
4924 .netns_storage_socket = { -1, -1 },
4925 };
4926
4927 *ret = n;
4928 return 0;
4929 }
4930
4931 static int exec_runtime_add(
4932 Manager *m,
4933 const char *id,
4934 const char *tmp_dir,
4935 const char *var_tmp_dir,
4936 const int netns_storage_socket[2],
4937 ExecRuntime **ret) {
4938
4939 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
4940 int r;
4941
4942 assert(m);
4943 assert(id);
4944
4945 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
4946 if (r < 0)
4947 return r;
4948
4949 r = exec_runtime_allocate(&rt);
4950 if (r < 0)
4951 return r;
4952
4953 rt->id = strdup(id);
4954 if (!rt->id)
4955 return -ENOMEM;
4956
4957 if (tmp_dir) {
4958 rt->tmp_dir = strdup(tmp_dir);
4959 if (!rt->tmp_dir)
4960 return -ENOMEM;
4961
4962 /* When tmp_dir is set, then we require var_tmp_dir is also set. */
4963 assert(var_tmp_dir);
4964 rt->var_tmp_dir = strdup(var_tmp_dir);
4965 if (!rt->var_tmp_dir)
4966 return -ENOMEM;
4967 }
4968
4969 if (netns_storage_socket) {
4970 rt->netns_storage_socket[0] = netns_storage_socket[0];
4971 rt->netns_storage_socket[1] = netns_storage_socket[1];
4972 }
4973
4974 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
4975 if (r < 0)
4976 return r;
4977
4978 rt->manager = m;
4979
4980 if (ret)
4981 *ret = rt;
4982
4983 /* do not remove created ExecRuntime object when the operation succeeds. */
4984 rt = NULL;
4985 return 0;
4986 }
4987
4988 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
4989 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
4990 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
4991 int r;
4992
4993 assert(m);
4994 assert(c);
4995 assert(id);
4996
4997 /* It is not necessary to create ExecRuntime object. */
4998 if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
4999 return 0;
5000
5001 if (c->private_tmp) {
5002 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
5003 if (r < 0)
5004 return r;
5005 }
5006
5007 if (c->private_network || c->network_namespace_path) {
5008 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
5009 return -errno;
5010 }
5011
5012 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, netns_storage_socket, ret);
5013 if (r < 0)
5014 return r;
5015
5016 /* Avoid cleanup */
5017 netns_storage_socket[0] = netns_storage_socket[1] = -1;
5018 return 1;
5019 }
5020
5021 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
5022 ExecRuntime *rt;
5023 int r;
5024
5025 assert(m);
5026 assert(id);
5027 assert(ret);
5028
5029 rt = hashmap_get(m->exec_runtime_by_id, id);
5030 if (rt)
5031 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
5032 goto ref;
5033
5034 if (!create)
5035 return 0;
5036
5037 /* If not found, then create a new object. */
5038 r = exec_runtime_make(m, c, id, &rt);
5039 if (r <= 0)
5040 /* When r == 0, it is not necessary to create ExecRuntime object. */
5041 return r;
5042
5043 ref:
5044 /* increment reference counter. */
5045 rt->n_ref++;
5046 *ret = rt;
5047 return 1;
5048 }
5049
5050 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
5051 if (!rt)
5052 return NULL;
5053
5054 assert(rt->n_ref > 0);
5055
5056 rt->n_ref--;
5057 if (rt->n_ref > 0)
5058 return NULL;
5059
5060 return exec_runtime_free(rt, destroy);
5061 }
5062
5063 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
5064 ExecRuntime *rt;
5065 Iterator i;
5066
5067 assert(m);
5068 assert(f);
5069 assert(fds);
5070
5071 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5072 fprintf(f, "exec-runtime=%s", rt->id);
5073
5074 if (rt->tmp_dir)
5075 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
5076
5077 if (rt->var_tmp_dir)
5078 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
5079
5080 if (rt->netns_storage_socket[0] >= 0) {
5081 int copy;
5082
5083 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
5084 if (copy < 0)
5085 return copy;
5086
5087 fprintf(f, " netns-socket-0=%i", copy);
5088 }
5089
5090 if (rt->netns_storage_socket[1] >= 0) {
5091 int copy;
5092
5093 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
5094 if (copy < 0)
5095 return copy;
5096
5097 fprintf(f, " netns-socket-1=%i", copy);
5098 }
5099
5100 fputc('\n', f);
5101 }
5102
5103 return 0;
5104 }
5105
5106 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
5107 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
5108 ExecRuntime *rt;
5109 int r;
5110
5111 /* This is for the migration from old (v237 or earlier) deserialization text.
5112 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
5113 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
5114 * so or not from the serialized text, then we always creates a new object owned by this. */
5115
5116 assert(u);
5117 assert(key);
5118 assert(value);
5119
5120 /* Manager manages ExecRuntime objects by the unit id.
5121 * So, we omit the serialized text when the unit does not have id (yet?)... */
5122 if (isempty(u->id)) {
5123 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
5124 return 0;
5125 }
5126
5127 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
5128 if (r < 0) {
5129 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
5130 return 0;
5131 }
5132
5133 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
5134 if (!rt) {
5135 r = exec_runtime_allocate(&rt_create);
5136 if (r < 0)
5137 return log_oom();
5138
5139 rt_create->id = strdup(u->id);
5140 if (!rt_create->id)
5141 return log_oom();
5142
5143 rt = rt_create;
5144 }
5145
5146 if (streq(key, "tmp-dir")) {
5147 char *copy;
5148
5149 copy = strdup(value);
5150 if (!copy)
5151 return log_oom();
5152
5153 free_and_replace(rt->tmp_dir, copy);
5154
5155 } else if (streq(key, "var-tmp-dir")) {
5156 char *copy;
5157
5158 copy = strdup(value);
5159 if (!copy)
5160 return log_oom();
5161
5162 free_and_replace(rt->var_tmp_dir, copy);
5163
5164 } else if (streq(key, "netns-socket-0")) {
5165 int fd;
5166
5167 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5168 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5169 return 0;
5170 }
5171
5172 safe_close(rt->netns_storage_socket[0]);
5173 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
5174
5175 } else if (streq(key, "netns-socket-1")) {
5176 int fd;
5177
5178 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5179 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5180 return 0;
5181 }
5182
5183 safe_close(rt->netns_storage_socket[1]);
5184 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
5185 } else
5186 return 0;
5187
5188 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
5189 if (rt_create) {
5190 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
5191 if (r < 0) {
5192 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
5193 return 0;
5194 }
5195
5196 rt_create->manager = u->manager;
5197
5198 /* Avoid cleanup */
5199 rt_create = NULL;
5200 }
5201
5202 return 1;
5203 }
5204
5205 void exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
5206 char *id = NULL, *tmp_dir = NULL, *var_tmp_dir = NULL;
5207 int r, fd0 = -1, fd1 = -1;
5208 const char *p, *v = value;
5209 size_t n;
5210
5211 assert(m);
5212 assert(value);
5213 assert(fds);
5214
5215 n = strcspn(v, " ");
5216 id = strndupa(v, n);
5217 if (v[n] != ' ')
5218 goto finalize;
5219 p = v + n + 1;
5220
5221 v = startswith(p, "tmp-dir=");
5222 if (v) {
5223 n = strcspn(v, " ");
5224 tmp_dir = strndupa(v, n);
5225 if (v[n] != ' ')
5226 goto finalize;
5227 p = v + n + 1;
5228 }
5229
5230 v = startswith(p, "var-tmp-dir=");
5231 if (v) {
5232 n = strcspn(v, " ");
5233 var_tmp_dir = strndupa(v, n);
5234 if (v[n] != ' ')
5235 goto finalize;
5236 p = v + n + 1;
5237 }
5238
5239 v = startswith(p, "netns-socket-0=");
5240 if (v) {
5241 char *buf;
5242
5243 n = strcspn(v, " ");
5244 buf = strndupa(v, n);
5245 if (safe_atoi(buf, &fd0) < 0 || !fdset_contains(fds, fd0)) {
5246 log_debug("Unable to process exec-runtime netns fd specification.");
5247 return;
5248 }
5249 fd0 = fdset_remove(fds, fd0);
5250 if (v[n] != ' ')
5251 goto finalize;
5252 p = v + n + 1;
5253 }
5254
5255 v = startswith(p, "netns-socket-1=");
5256 if (v) {
5257 char *buf;
5258
5259 n = strcspn(v, " ");
5260 buf = strndupa(v, n);
5261 if (safe_atoi(buf, &fd1) < 0 || !fdset_contains(fds, fd1)) {
5262 log_debug("Unable to process exec-runtime netns fd specification.");
5263 return;
5264 }
5265 fd1 = fdset_remove(fds, fd1);
5266 }
5267
5268 finalize:
5269
5270 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, (int[]) { fd0, fd1 }, NULL);
5271 if (r < 0)
5272 log_debug_errno(r, "Failed to add exec-runtime: %m");
5273 }
5274
5275 void exec_runtime_vacuum(Manager *m) {
5276 ExecRuntime *rt;
5277 Iterator i;
5278
5279 assert(m);
5280
5281 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
5282
5283 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5284 if (rt->n_ref > 0)
5285 continue;
5286
5287 (void) exec_runtime_free(rt, false);
5288 }
5289 }
5290
5291 void exec_params_clear(ExecParameters *p) {
5292 if (!p)
5293 return;
5294
5295 strv_free(p->environment);
5296 }
5297
5298 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
5299 [EXEC_INPUT_NULL] = "null",
5300 [EXEC_INPUT_TTY] = "tty",
5301 [EXEC_INPUT_TTY_FORCE] = "tty-force",
5302 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
5303 [EXEC_INPUT_SOCKET] = "socket",
5304 [EXEC_INPUT_NAMED_FD] = "fd",
5305 [EXEC_INPUT_DATA] = "data",
5306 [EXEC_INPUT_FILE] = "file",
5307 };
5308
5309 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
5310
5311 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
5312 [EXEC_OUTPUT_INHERIT] = "inherit",
5313 [EXEC_OUTPUT_NULL] = "null",
5314 [EXEC_OUTPUT_TTY] = "tty",
5315 [EXEC_OUTPUT_SYSLOG] = "syslog",
5316 [EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
5317 [EXEC_OUTPUT_KMSG] = "kmsg",
5318 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
5319 [EXEC_OUTPUT_JOURNAL] = "journal",
5320 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
5321 [EXEC_OUTPUT_SOCKET] = "socket",
5322 [EXEC_OUTPUT_NAMED_FD] = "fd",
5323 [EXEC_OUTPUT_FILE] = "file",
5324 [EXEC_OUTPUT_FILE_APPEND] = "append",
5325 };
5326
5327 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
5328
5329 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
5330 [EXEC_UTMP_INIT] = "init",
5331 [EXEC_UTMP_LOGIN] = "login",
5332 [EXEC_UTMP_USER] = "user",
5333 };
5334
5335 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
5336
5337 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
5338 [EXEC_PRESERVE_NO] = "no",
5339 [EXEC_PRESERVE_YES] = "yes",
5340 [EXEC_PRESERVE_RESTART] = "restart",
5341 };
5342
5343 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
5344
5345 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5346 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
5347 [EXEC_DIRECTORY_STATE] = "StateDirectory",
5348 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
5349 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
5350 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
5351 };
5352
5353 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
5354
5355 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5356 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
5357 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
5358 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
5359 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
5360 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
5361 };
5362
5363 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
5364
5365 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
5366 [EXEC_KEYRING_INHERIT] = "inherit",
5367 [EXEC_KEYRING_PRIVATE] = "private",
5368 [EXEC_KEYRING_SHARED] = "shared",
5369 };
5370
5371 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);