]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/job.c
48d60af82bbb05b88de6fdf7560d9fc02554045b
[thirdparty/systemd.git] / src / core / job.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4
5 #include "sd-id128.h"
6 #include "sd-messages.h"
7
8 #include "alloc-util.h"
9 #include "async.h"
10 #include "dbus-job.h"
11 #include "dbus.h"
12 #include "escape.h"
13 #include "fileio.h"
14 #include "job.h"
15 #include "log.h"
16 #include "macro.h"
17 #include "parse-util.h"
18 #include "serialize.h"
19 #include "set.h"
20 #include "special.h"
21 #include "stdio-util.h"
22 #include "string-table.h"
23 #include "string-util.h"
24 #include "strv.h"
25 #include "terminal-util.h"
26 #include "unit.h"
27 #include "virt.h"
28
29 Job* job_new_raw(Unit *unit) {
30 Job *j;
31
32 /* used for deserialization */
33
34 assert(unit);
35
36 j = new(Job, 1);
37 if (!j)
38 return NULL;
39
40 *j = (Job) {
41 .manager = unit->manager,
42 .unit = unit,
43 .type = _JOB_TYPE_INVALID,
44 };
45
46 return j;
47 }
48
49 Job* job_new(Unit *unit, JobType type) {
50 Job *j;
51
52 assert(type < _JOB_TYPE_MAX);
53
54 j = job_new_raw(unit);
55 if (!j)
56 return NULL;
57
58 j->id = j->manager->current_job_id++;
59 j->type = type;
60
61 /* We don't link it here, that's what job_dependency() is for */
62
63 return j;
64 }
65
66 void job_unlink(Job *j) {
67 assert(j);
68 assert(!j->installed);
69 assert(!j->transaction_prev);
70 assert(!j->transaction_next);
71 assert(!j->subject_list);
72 assert(!j->object_list);
73
74 if (j->in_run_queue) {
75 LIST_REMOVE(run_queue, j->manager->run_queue, j);
76 j->in_run_queue = false;
77 }
78
79 if (j->in_dbus_queue) {
80 LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j);
81 j->in_dbus_queue = false;
82 }
83
84 if (j->in_gc_queue) {
85 LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j);
86 j->in_gc_queue = false;
87 }
88
89 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
90 }
91
92 void job_free(Job *j) {
93 assert(j);
94 assert(!j->installed);
95 assert(!j->transaction_prev);
96 assert(!j->transaction_next);
97 assert(!j->subject_list);
98 assert(!j->object_list);
99
100 job_unlink(j);
101
102 sd_bus_track_unref(j->bus_track);
103 strv_free(j->deserialized_clients);
104
105 free(j);
106 }
107
108 static void job_set_state(Job *j, JobState state) {
109 assert(j);
110 assert(state >= 0);
111 assert(state < _JOB_STATE_MAX);
112
113 if (j->state == state)
114 return;
115
116 j->state = state;
117
118 if (!j->installed)
119 return;
120
121 if (j->state == JOB_RUNNING)
122 j->unit->manager->n_running_jobs++;
123 else {
124 assert(j->state == JOB_WAITING);
125 assert(j->unit->manager->n_running_jobs > 0);
126
127 j->unit->manager->n_running_jobs--;
128
129 if (j->unit->manager->n_running_jobs <= 0)
130 j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source);
131 }
132 }
133
134 void job_uninstall(Job *j) {
135 Job **pj;
136
137 assert(j->installed);
138
139 job_set_state(j, JOB_WAITING);
140
141 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
142 assert(*pj == j);
143
144 /* Detach from next 'bigger' objects */
145
146 /* daemon-reload should be transparent to job observers */
147 if (!MANAGER_IS_RELOADING(j->manager))
148 bus_job_send_removed_signal(j);
149
150 *pj = NULL;
151
152 unit_add_to_gc_queue(j->unit);
153
154 hashmap_remove(j->manager->jobs, UINT32_TO_PTR(j->id));
155 j->installed = false;
156 }
157
158 static bool job_type_allows_late_merge(JobType t) {
159 /* Tells whether it is OK to merge a job of type 't' with an already
160 * running job.
161 * Reloads cannot be merged this way. Think of the sequence:
162 * 1. Reload of a daemon is in progress; the daemon has already loaded
163 * its config file, but hasn't completed the reload operation yet.
164 * 2. Edit foo's config file.
165 * 3. Trigger another reload to have the daemon use the new config.
166 * Should the second reload job be merged into the first one, the daemon
167 * would not know about the new config.
168 * JOB_RESTART jobs on the other hand can be merged, because they get
169 * patched into JOB_START after stopping the unit. So if we see a
170 * JOB_RESTART running, it means the unit hasn't stopped yet and at
171 * this time the merge is still allowed. */
172 return t != JOB_RELOAD;
173 }
174
175 static void job_merge_into_installed(Job *j, Job *other) {
176 assert(j->installed);
177 assert(j->unit == other->unit);
178
179 if (j->type != JOB_NOP)
180 assert_se(job_type_merge_and_collapse(&j->type, other->type, j->unit) == 0);
181 else
182 assert(other->type == JOB_NOP);
183
184 j->irreversible = j->irreversible || other->irreversible;
185 j->ignore_order = j->ignore_order || other->ignore_order;
186 }
187
188 Job* job_install(Job *j) {
189 Job **pj;
190 Job *uj;
191
192 assert(!j->installed);
193 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
194 assert(j->state == JOB_WAITING);
195
196 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
197 uj = *pj;
198
199 if (uj) {
200 if (job_type_is_conflicting(uj->type, j->type))
201 job_finish_and_invalidate(uj, JOB_CANCELED, false, false);
202 else {
203 /* not conflicting, i.e. mergeable */
204
205 if (uj->state == JOB_WAITING ||
206 (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) {
207 job_merge_into_installed(uj, j);
208 log_unit_debug(uj->unit,
209 "Merged into installed job %s/%s as %u",
210 uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id);
211 return uj;
212 } else {
213 /* already running and not safe to merge into */
214 /* Patch uj to become a merged job and re-run it. */
215 /* XXX It should be safer to queue j to run after uj finishes, but it is
216 * not currently possible to have more than one installed job per unit. */
217 job_merge_into_installed(uj, j);
218 log_unit_debug(uj->unit,
219 "Merged into running job, re-running: %s/%s as %u",
220 uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id);
221
222 job_set_state(uj, JOB_WAITING);
223 return uj;
224 }
225 }
226 }
227
228 /* Install the job */
229 *pj = j;
230 j->installed = true;
231
232 j->manager->n_installed_jobs++;
233 log_unit_debug(j->unit,
234 "Installed new job %s/%s as %u",
235 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
236
237 job_add_to_gc_queue(j);
238
239 return j;
240 }
241
242 int job_install_deserialized(Job *j) {
243 Job **pj;
244
245 assert(!j->installed);
246
247 if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION) {
248 log_debug("Invalid job type %s in deserialization.", strna(job_type_to_string(j->type)));
249 return -EINVAL;
250 }
251
252 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
253 if (*pj) {
254 log_unit_debug(j->unit, "Unit already has a job installed. Not installing deserialized job.");
255 return -EEXIST;
256 }
257
258 *pj = j;
259 j->installed = true;
260 j->reloaded = true;
261
262 if (j->state == JOB_RUNNING)
263 j->unit->manager->n_running_jobs++;
264
265 log_unit_debug(j->unit,
266 "Reinstalled deserialized job %s/%s as %u",
267 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
268 return 0;
269 }
270
271 JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) {
272 JobDependency *l;
273
274 assert(object);
275
276 /* Adds a new job link, which encodes that the 'subject' job
277 * needs the 'object' job in some way. If 'subject' is NULL
278 * this means the 'anchor' job (i.e. the one the user
279 * explicitly asked for) is the requester. */
280
281 l = new0(JobDependency, 1);
282 if (!l)
283 return NULL;
284
285 l->subject = subject;
286 l->object = object;
287 l->matters = matters;
288 l->conflicts = conflicts;
289
290 if (subject)
291 LIST_PREPEND(subject, subject->subject_list, l);
292
293 LIST_PREPEND(object, object->object_list, l);
294
295 return l;
296 }
297
298 void job_dependency_free(JobDependency *l) {
299 assert(l);
300
301 if (l->subject)
302 LIST_REMOVE(subject, l->subject->subject_list, l);
303
304 LIST_REMOVE(object, l->object->object_list, l);
305
306 free(l);
307 }
308
309 void job_dump(Job *j, FILE*f, const char *prefix) {
310 assert(j);
311 assert(f);
312
313 prefix = strempty(prefix);
314
315 fprintf(f,
316 "%s-> Job %u:\n"
317 "%s\tAction: %s -> %s\n"
318 "%s\tState: %s\n"
319 "%s\tIrreversible: %s\n"
320 "%s\tMay GC: %s\n",
321 prefix, j->id,
322 prefix, j->unit->id, job_type_to_string(j->type),
323 prefix, job_state_to_string(j->state),
324 prefix, yes_no(j->irreversible),
325 prefix, yes_no(job_may_gc(j)));
326 }
327
328 /*
329 * Merging is commutative, so imagine the matrix as symmetric. We store only
330 * its lower triangle to avoid duplication. We don't store the main diagonal,
331 * because A merged with A is simply A.
332 *
333 * If the resulting type is collapsed immediately afterwards (to get rid of
334 * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain),
335 * the following properties hold:
336 *
337 * Merging is associative! A merged with B, and then merged with C is the same
338 * as A merged with the result of B merged with C.
339 *
340 * Mergeability is transitive! If A can be merged with B and B with C then
341 * A also with C.
342 *
343 * Also, if A merged with B cannot be merged with C, then either A or B cannot
344 * be merged with C either.
345 */
346 static const JobType job_merging_table[] = {
347 /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */
348 /*********************************************************************************/
349 /*JOB_START */
350 /*JOB_VERIFY_ACTIVE */ JOB_START,
351 /*JOB_STOP */ -1, -1,
352 /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1,
353 /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART,
354 };
355
356 JobType job_type_lookup_merge(JobType a, JobType b) {
357 assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2);
358 assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING);
359 assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING);
360
361 if (a == b)
362 return a;
363
364 if (a < b) {
365 JobType tmp = a;
366 a = b;
367 b = tmp;
368 }
369
370 return job_merging_table[(a - 1) * a / 2 + b];
371 }
372
373 bool job_type_is_redundant(JobType a, UnitActiveState b) {
374 switch (a) {
375
376 case JOB_START:
377 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
378
379 case JOB_STOP:
380 return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED);
381
382 case JOB_VERIFY_ACTIVE:
383 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
384
385 case JOB_RELOAD:
386 return
387 b == UNIT_RELOADING;
388
389 case JOB_RESTART:
390 return
391 b == UNIT_ACTIVATING;
392
393 case JOB_NOP:
394 return true;
395
396 default:
397 assert_not_reached("Invalid job type");
398 }
399 }
400
401 JobType job_type_collapse(JobType t, Unit *u) {
402 UnitActiveState s;
403
404 switch (t) {
405
406 case JOB_TRY_RESTART:
407 s = unit_active_state(u);
408 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
409 return JOB_NOP;
410
411 return JOB_RESTART;
412
413 case JOB_TRY_RELOAD:
414 s = unit_active_state(u);
415 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
416 return JOB_NOP;
417
418 return JOB_RELOAD;
419
420 case JOB_RELOAD_OR_START:
421 s = unit_active_state(u);
422 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
423 return JOB_START;
424
425 return JOB_RELOAD;
426
427 default:
428 return t;
429 }
430 }
431
432 int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) {
433 JobType t;
434
435 t = job_type_lookup_merge(*a, b);
436 if (t < 0)
437 return -EEXIST;
438
439 *a = job_type_collapse(t, u);
440 return 0;
441 }
442
443 static bool job_is_runnable(Job *j) {
444 Iterator i;
445 Unit *other;
446 void *v;
447
448 assert(j);
449 assert(j->installed);
450
451 /* Checks whether there is any job running for the units this
452 * job needs to be running after (in the case of a 'positive'
453 * job type) or before (in the case of a 'negative' job
454 * type. */
455
456 /* Note that unit types have a say in what is runnable,
457 * too. For example, if they return -EAGAIN from
458 * unit_start() they can indicate they are not
459 * runnable yet. */
460
461 /* First check if there is an override */
462 if (j->ignore_order)
463 return true;
464
465 if (j->type == JOB_NOP)
466 return true;
467
468 if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) {
469 /* Immediate result is that the job is or might be
470 * started. In this case let's wait for the
471 * dependencies, regardless whether they are
472 * starting or stopping something. */
473
474 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i)
475 if (other->job)
476 return false;
477 }
478
479 /* Also, if something else is being stopped and we should
480 * change state after it, then let's wait. */
481
482 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i)
483 if (other->job &&
484 IN_SET(other->job->type, JOB_STOP, JOB_RESTART))
485 return false;
486
487 /* This means that for a service a and a service b where b
488 * shall be started after a:
489 *
490 * start a + start b → 1st step start a, 2nd step start b
491 * start a + stop b → 1st step stop b, 2nd step start a
492 * stop a + start b → 1st step stop a, 2nd step start b
493 * stop a + stop b → 1st step stop b, 2nd step stop a
494 *
495 * This has the side effect that restarts are properly
496 * synchronized too. */
497
498 return true;
499 }
500
501 static void job_change_type(Job *j, JobType newtype) {
502 assert(j);
503
504 log_unit_debug(j->unit,
505 "Converting job %s/%s -> %s/%s",
506 j->unit->id, job_type_to_string(j->type),
507 j->unit->id, job_type_to_string(newtype));
508
509 j->type = newtype;
510 }
511
512 _pure_ static const char* job_get_begin_status_message_format(Unit *u, JobType t) {
513 const UnitStatusMessageFormats *format_table;
514 const char *format;
515
516 assert(u);
517
518 if (t == JOB_RELOAD)
519 return "Reloading %s.";
520
521 assert(IN_SET(t, JOB_START, JOB_STOP));
522
523 format_table = &UNIT_VTABLE(u)->status_message_formats;
524 if (format_table) {
525 format = format_table->starting_stopping[t == JOB_STOP];
526 if (format)
527 return format;
528 }
529
530 /* Return generic strings */
531 if (t == JOB_START)
532 return "Starting %s.";
533 else {
534 assert(t == JOB_STOP);
535 return "Stopping %s.";
536 }
537 }
538
539 static void job_print_begin_status_message(Unit *u, JobType t) {
540 const char *format;
541
542 assert(u);
543
544 /* Reload status messages have traditionally not been printed to console. */
545 if (!IN_SET(t, JOB_START, JOB_STOP))
546 return;
547
548 format = job_get_begin_status_message_format(u, t);
549
550 DISABLE_WARNING_FORMAT_NONLITERAL;
551 unit_status_printf(u, "", format);
552 REENABLE_WARNING;
553 }
554
555 static void job_log_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
556 const char *format, *mid;
557 char buf[LINE_MAX];
558
559 assert(u);
560 assert(t >= 0);
561 assert(t < _JOB_TYPE_MAX);
562
563 if (!IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD))
564 return;
565
566 if (log_on_console()) /* Skip this if it would only go on the console anyway */
567 return;
568
569 /* We log status messages for all units and all operations. */
570
571 format = job_get_begin_status_message_format(u, t);
572
573 DISABLE_WARNING_FORMAT_NONLITERAL;
574 (void) snprintf(buf, sizeof buf, format, unit_description(u));
575 REENABLE_WARNING;
576
577 mid = t == JOB_START ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTING_STR :
578 t == JOB_STOP ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPING_STR :
579 "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADING_STR;
580
581 /* Note that we deliberately use LOG_MESSAGE() instead of
582 * LOG_UNIT_MESSAGE() here, since this is supposed to mimic
583 * closely what is written to screen using the status output,
584 * which is supposed the highest level, friendliest output
585 * possible, which means we should avoid the low-level unit
586 * name. */
587 log_struct(LOG_INFO,
588 LOG_MESSAGE("%s", buf),
589 "JOB_ID=%" PRIu32, job_id,
590 "JOB_TYPE=%s", job_type_to_string(t),
591 LOG_UNIT_ID(u),
592 LOG_UNIT_INVOCATION_ID(u),
593 mid);
594 }
595
596 static void job_emit_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
597 assert(u);
598 assert(t >= 0);
599 assert(t < _JOB_TYPE_MAX);
600
601 job_log_begin_status_message(u, job_id, t);
602 job_print_begin_status_message(u, t);
603 }
604
605 static int job_perform_on_unit(Job **j) {
606 uint32_t id;
607 Manager *m;
608 JobType t;
609 Unit *u;
610 int r;
611
612 /* While we execute this operation the job might go away (for
613 * example: because it finishes immediately or is replaced by
614 * a new, conflicting job.) To make sure we don't access a
615 * freed job later on we store the id here, so that we can
616 * verify the job is still valid. */
617
618 assert(j);
619 assert(*j);
620
621 m = (*j)->manager;
622 u = (*j)->unit;
623 t = (*j)->type;
624 id = (*j)->id;
625
626 switch (t) {
627 case JOB_START:
628 r = unit_start(u);
629 break;
630
631 case JOB_RESTART:
632 t = JOB_STOP;
633 _fallthrough_;
634 case JOB_STOP:
635 r = unit_stop(u);
636 break;
637
638 case JOB_RELOAD:
639 r = unit_reload(u);
640 break;
641
642 default:
643 assert_not_reached("Invalid job type");
644 }
645
646 /* Log if the job still exists and the start/stop/reload function actually did something. Note that this means
647 * for units for which there's no 'activating' phase (i.e. because we transition directly from 'inactive' to
648 * 'active') we'll possibly skip the "Starting..." message. */
649 *j = manager_get_job(m, id);
650 if (*j && r > 0)
651 job_emit_begin_status_message(u, id, t);
652
653 return r;
654 }
655
656 int job_run_and_invalidate(Job *j) {
657 int r;
658
659 assert(j);
660 assert(j->installed);
661 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
662 assert(j->in_run_queue);
663
664 LIST_REMOVE(run_queue, j->manager->run_queue, j);
665 j->in_run_queue = false;
666
667 if (j->state != JOB_WAITING)
668 return 0;
669
670 if (!job_is_runnable(j))
671 return -EAGAIN;
672
673 job_start_timer(j, true);
674 job_set_state(j, JOB_RUNNING);
675 job_add_to_dbus_queue(j);
676
677 switch (j->type) {
678
679 case JOB_VERIFY_ACTIVE: {
680 UnitActiveState t;
681
682 t = unit_active_state(j->unit);
683 if (UNIT_IS_ACTIVE_OR_RELOADING(t))
684 r = -EALREADY;
685 else if (t == UNIT_ACTIVATING)
686 r = -EAGAIN;
687 else
688 r = -EBADR;
689 break;
690 }
691
692 case JOB_START:
693 case JOB_STOP:
694 case JOB_RESTART:
695 r = job_perform_on_unit(&j);
696
697 /* If the unit type does not support starting/stopping, then simply wait. */
698 if (r == -EBADR)
699 r = 0;
700 break;
701
702 case JOB_RELOAD:
703 r = job_perform_on_unit(&j);
704 break;
705
706 case JOB_NOP:
707 r = -EALREADY;
708 break;
709
710 default:
711 assert_not_reached("Unknown job type");
712 }
713
714 if (j) {
715 if (r == -EAGAIN)
716 job_set_state(j, JOB_WAITING); /* Hmm, not ready after all, let's return to JOB_WAITING state */
717 else if (r == -EALREADY)
718 r = job_finish_and_invalidate(j, JOB_DONE, true, true);
719 else if (r == -EBADR)
720 r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false);
721 else if (r == -ENOEXEC)
722 r = job_finish_and_invalidate(j, JOB_INVALID, true, false);
723 else if (r == -EPROTO)
724 r = job_finish_and_invalidate(j, JOB_ASSERT, true, false);
725 else if (r == -EOPNOTSUPP)
726 r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false);
727 else if (r == -ENOLINK)
728 r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
729 else if (r == -ESTALE)
730 r = job_finish_and_invalidate(j, JOB_ONCE, true, false);
731 else if (r < 0)
732 r = job_finish_and_invalidate(j, JOB_FAILED, true, false);
733 }
734
735 return r;
736 }
737
738 _pure_ static const char *job_get_done_status_message_format(Unit *u, JobType t, JobResult result) {
739
740 static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = {
741 [JOB_DONE] = "Started %s.",
742 [JOB_TIMEOUT] = "Timed out starting %s.",
743 [JOB_FAILED] = "Failed to start %s.",
744 [JOB_DEPENDENCY] = "Dependency failed for %s.",
745 [JOB_ASSERT] = "Assertion failed for %s.",
746 [JOB_UNSUPPORTED] = "Starting of %s not supported.",
747 [JOB_COLLECTED] = "Unnecessary job for %s was removed.",
748 [JOB_ONCE] = "Unit %s has been started before and cannot be started again."
749 };
750 static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = {
751 [JOB_DONE] = "Stopped %s.",
752 [JOB_FAILED] = "Stopped (with error) %s.",
753 [JOB_TIMEOUT] = "Timed out stopping %s.",
754 };
755 static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = {
756 [JOB_DONE] = "Reloaded %s.",
757 [JOB_FAILED] = "Reload failed for %s.",
758 [JOB_TIMEOUT] = "Timed out reloading %s.",
759 };
760 /* When verify-active detects the unit is inactive, report it.
761 * Most likely a DEPEND warning from a requisiting unit will
762 * occur next and it's nice to see what was requisited. */
763 static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = {
764 [JOB_SKIPPED] = "%s is not active.",
765 };
766
767 const UnitStatusMessageFormats *format_table;
768 const char *format;
769
770 assert(u);
771 assert(t >= 0);
772 assert(t < _JOB_TYPE_MAX);
773
774 if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) {
775 format_table = &UNIT_VTABLE(u)->status_message_formats;
776 if (format_table) {
777 format = t == JOB_START ? format_table->finished_start_job[result] :
778 format_table->finished_stop_job[result];
779 if (format)
780 return format;
781 }
782 }
783
784 /* Return generic strings */
785 if (t == JOB_START)
786 return generic_finished_start_job[result];
787 else if (IN_SET(t, JOB_STOP, JOB_RESTART))
788 return generic_finished_stop_job[result];
789 else if (t == JOB_RELOAD)
790 return generic_finished_reload_job[result];
791 else if (t == JOB_VERIFY_ACTIVE)
792 return generic_finished_verify_active_job[result];
793
794 return NULL;
795 }
796
797 static const struct {
798 const char *color, *word;
799 } job_print_done_status_messages[_JOB_RESULT_MAX] = {
800 [JOB_DONE] = { ANSI_OK_COLOR, " OK " },
801 [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " },
802 [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" },
803 [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" },
804 [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " },
805 [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" },
806 [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" },
807 /* JOB_COLLECTED */
808 [JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " },
809 };
810
811 static void job_print_done_status_message(Unit *u, JobType t, JobResult result) {
812 const char *format;
813 const char *status;
814
815 assert(u);
816 assert(t >= 0);
817 assert(t < _JOB_TYPE_MAX);
818
819 /* Reload status messages have traditionally not been printed to console. */
820 if (t == JOB_RELOAD)
821 return;
822
823 if (!job_print_done_status_messages[result].word)
824 return;
825
826 format = job_get_done_status_message_format(u, t, result);
827 if (!format)
828 return;
829
830 if (log_get_show_color())
831 status = strjoina(job_print_done_status_messages[result].color,
832 job_print_done_status_messages[result].word,
833 ANSI_NORMAL);
834 else
835 status = job_print_done_status_messages[result].word;
836
837 if (result != JOB_DONE)
838 manager_flip_auto_status(u->manager, true);
839
840 DISABLE_WARNING_FORMAT_NONLITERAL;
841 unit_status_printf(u, status, format);
842 REENABLE_WARNING;
843
844 if (t == JOB_START && result == JOB_FAILED) {
845 _cleanup_free_ char *quoted;
846
847 quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH);
848 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted));
849 }
850 }
851
852 static void job_log_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
853 const char *format, *mid;
854 char buf[LINE_MAX];
855 static const int job_result_log_level[_JOB_RESULT_MAX] = {
856 [JOB_DONE] = LOG_INFO,
857 [JOB_CANCELED] = LOG_INFO,
858 [JOB_TIMEOUT] = LOG_ERR,
859 [JOB_FAILED] = LOG_ERR,
860 [JOB_DEPENDENCY] = LOG_WARNING,
861 [JOB_SKIPPED] = LOG_NOTICE,
862 [JOB_INVALID] = LOG_INFO,
863 [JOB_ASSERT] = LOG_WARNING,
864 [JOB_UNSUPPORTED] = LOG_WARNING,
865 [JOB_COLLECTED] = LOG_INFO,
866 [JOB_ONCE] = LOG_ERR,
867 };
868
869 assert(u);
870 assert(t >= 0);
871 assert(t < _JOB_TYPE_MAX);
872
873 /* Skip printing if output goes to the console, and job_print_status_message()
874 will actually print something to the console. */
875 if (log_on_console() && job_print_done_status_messages[result].word)
876 return;
877
878 format = job_get_done_status_message_format(u, t, result);
879 if (!format)
880 return;
881
882 /* The description might be longer than the buffer, but that's OK,
883 * we'll just truncate it here. Note that we use snprintf() rather than
884 * xsprintf() on purpose here: we are fine with truncation and don't
885 * consider that an error. */
886 DISABLE_WARNING_FORMAT_NONLITERAL;
887 (void) snprintf(buf, sizeof(buf), format, unit_description(u));
888 REENABLE_WARNING;
889
890 switch (t) {
891
892 case JOB_START:
893 if (result == JOB_DONE)
894 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR;
895 else
896 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR;
897 break;
898
899 case JOB_RELOAD:
900 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR;
901 break;
902
903 case JOB_STOP:
904 case JOB_RESTART:
905 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR;
906 break;
907
908 default:
909 log_struct(job_result_log_level[result],
910 LOG_MESSAGE("%s", buf),
911 "JOB_ID=%" PRIu32, job_id,
912 "JOB_TYPE=%s", job_type_to_string(t),
913 "JOB_RESULT=%s", job_result_to_string(result),
914 LOG_UNIT_ID(u),
915 LOG_UNIT_INVOCATION_ID(u));
916 return;
917 }
918
919 log_struct(job_result_log_level[result],
920 LOG_MESSAGE("%s", buf),
921 "JOB_ID=%" PRIu32, job_id,
922 "JOB_TYPE=%s", job_type_to_string(t),
923 "JOB_RESULT=%s", job_result_to_string(result),
924 LOG_UNIT_ID(u),
925 LOG_UNIT_INVOCATION_ID(u),
926 mid);
927 }
928
929 static void job_emit_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
930 assert(u);
931
932 /* No message if the job did not actually do anything due to failed condition. */
933 if (t == JOB_START && result == JOB_DONE && !u->condition_result)
934 return;
935
936 job_log_done_status_message(u, job_id, t, result);
937 job_print_done_status_message(u, t, result);
938 }
939
940 static void job_fail_dependencies(Unit *u, UnitDependency d) {
941 Unit *other;
942 Iterator i;
943 void *v;
944
945 assert(u);
946
947 HASHMAP_FOREACH_KEY(v, other, u->dependencies[d], i) {
948 Job *j = other->job;
949
950 if (!j)
951 continue;
952 if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE))
953 continue;
954
955 job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
956 }
957 }
958
959 static int job_save_pending_finished_job(Job *j) {
960 int r;
961
962 assert(j);
963
964 r = set_ensure_allocated(&j->manager->pending_finished_jobs, NULL);
965 if (r < 0)
966 return r;
967
968 job_unlink(j);
969 return set_put(j->manager->pending_finished_jobs, j);
970 }
971
972 int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) {
973 Unit *u;
974 Unit *other;
975 JobType t;
976 Iterator i;
977 void *v;
978
979 assert(j);
980 assert(j->installed);
981 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
982
983 u = j->unit;
984 t = j->type;
985
986 j->result = result;
987
988 log_unit_debug(u, "Job %" PRIu32 " %s/%s finished, result=%s", j->id, u->id, job_type_to_string(t), job_result_to_string(result));
989
990 /* If this job did nothing to respective unit we don't log the status message */
991 if (!already)
992 job_emit_done_status_message(u, j->id, t, result);
993
994 /* Patch restart jobs so that they become normal start jobs */
995 if (result == JOB_DONE && t == JOB_RESTART) {
996
997 job_change_type(j, JOB_START);
998 job_set_state(j, JOB_WAITING);
999
1000 job_add_to_dbus_queue(j);
1001 job_add_to_run_queue(j);
1002 job_add_to_gc_queue(j);
1003
1004 goto finish;
1005 }
1006
1007 if (IN_SET(result, JOB_FAILED, JOB_INVALID))
1008 j->manager->n_failed_jobs++;
1009
1010 job_uninstall(j);
1011 /* Keep jobs started before the reload to send singal later, free all others */
1012 if (!MANAGER_IS_RELOADING(j->manager) ||
1013 !j->reloaded ||
1014 job_save_pending_finished_job(j) < 0)
1015 job_free(j);
1016
1017 /* Fail depending jobs on failure */
1018 if (result != JOB_DONE && recursive) {
1019 if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) {
1020 job_fail_dependencies(u, UNIT_REQUIRED_BY);
1021 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1022 job_fail_dependencies(u, UNIT_BOUND_BY);
1023 } else if (t == JOB_STOP)
1024 job_fail_dependencies(u, UNIT_CONFLICTED_BY);
1025 }
1026
1027 /* Trigger OnFailure dependencies that are not generated by
1028 * the unit itself. We don't treat JOB_CANCELED as failure in
1029 * this context. And JOB_FAILURE is already handled by the
1030 * unit itself. */
1031 if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) {
1032 log_struct(LOG_NOTICE,
1033 "JOB_TYPE=%s", job_type_to_string(t),
1034 "JOB_RESULT=%s", job_result_to_string(result),
1035 LOG_UNIT_ID(u),
1036 LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.",
1037 u->id,
1038 job_type_to_string(t),
1039 job_result_to_string(result)));
1040
1041 unit_start_on_failure(u);
1042 }
1043
1044 unit_trigger_notify(u);
1045
1046 finish:
1047 /* Try to start the next jobs that can be started */
1048 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER], i)
1049 if (other->job) {
1050 job_add_to_run_queue(other->job);
1051 job_add_to_gc_queue(other->job);
1052 }
1053 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE], i)
1054 if (other->job) {
1055 job_add_to_run_queue(other->job);
1056 job_add_to_gc_queue(other->job);
1057 }
1058
1059 manager_check_finished(u->manager);
1060
1061 return 0;
1062 }
1063
1064 static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) {
1065 Job *j = userdata;
1066 Unit *u;
1067
1068 assert(j);
1069 assert(s == j->timer_event_source);
1070
1071 log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type));
1072
1073 u = j->unit;
1074 job_finish_and_invalidate(j, JOB_TIMEOUT, true, false);
1075
1076 emergency_action(u->manager, u->job_timeout_action,
1077 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1078 u->job_timeout_reboot_arg, "job timed out");
1079
1080 return 0;
1081 }
1082
1083 int job_start_timer(Job *j, bool job_running) {
1084 int r;
1085 usec_t timeout_time, old_timeout_time;
1086
1087 if (job_running) {
1088 j->begin_running_usec = now(CLOCK_MONOTONIC);
1089
1090 if (j->unit->job_running_timeout == USEC_INFINITY)
1091 return 0;
1092
1093 timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout);
1094
1095 if (j->timer_event_source) {
1096 /* Update only if JobRunningTimeoutSec= results in earlier timeout */
1097 r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time);
1098 if (r < 0)
1099 return r;
1100
1101 if (old_timeout_time <= timeout_time)
1102 return 0;
1103
1104 return sd_event_source_set_time(j->timer_event_source, timeout_time);
1105 }
1106 } else {
1107 if (j->timer_event_source)
1108 return 0;
1109
1110 j->begin_usec = now(CLOCK_MONOTONIC);
1111
1112 if (j->unit->job_timeout == USEC_INFINITY)
1113 return 0;
1114
1115 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1116 }
1117
1118 r = sd_event_add_time(
1119 j->manager->event,
1120 &j->timer_event_source,
1121 CLOCK_MONOTONIC,
1122 timeout_time, 0,
1123 job_dispatch_timer, j);
1124 if (r < 0)
1125 return r;
1126
1127 (void) sd_event_source_set_description(j->timer_event_source, "job-start");
1128
1129 return 0;
1130 }
1131
1132 void job_add_to_run_queue(Job *j) {
1133 int r;
1134
1135 assert(j);
1136 assert(j->installed);
1137
1138 if (j->in_run_queue)
1139 return;
1140
1141 if (!j->manager->run_queue) {
1142 r = sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT);
1143 if (r < 0)
1144 log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
1145 }
1146
1147 LIST_PREPEND(run_queue, j->manager->run_queue, j);
1148 j->in_run_queue = true;
1149 }
1150
1151 void job_add_to_dbus_queue(Job *j) {
1152 assert(j);
1153 assert(j->installed);
1154
1155 if (j->in_dbus_queue)
1156 return;
1157
1158 /* We don't check if anybody is subscribed here, since this
1159 * job might just have been created and not yet assigned to a
1160 * connection/client. */
1161
1162 LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j);
1163 j->in_dbus_queue = true;
1164 }
1165
1166 char *job_dbus_path(Job *j) {
1167 char *p;
1168
1169 assert(j);
1170
1171 if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0)
1172 return NULL;
1173
1174 return p;
1175 }
1176
1177 int job_serialize(Job *j, FILE *f) {
1178 assert(j);
1179 assert(f);
1180
1181 (void) serialize_item_format(f, "job-id", "%u", j->id);
1182 (void) serialize_item(f, "job-type", job_type_to_string(j->type));
1183 (void) serialize_item(f, "job-state", job_state_to_string(j->state));
1184 (void) serialize_bool(f, "job-irreversible", j->irreversible);
1185 (void) serialize_bool(f, "job-sent-dbus-new-signal", j->sent_dbus_new_signal);
1186 (void) serialize_bool(f, "job-ignore-order", j->ignore_order);
1187
1188 if (j->begin_usec > 0)
1189 (void) serialize_usec(f, "job-begin", j->begin_usec);
1190 if (j->begin_running_usec > 0)
1191 (void) serialize_usec(f, "job-begin-running", j->begin_running_usec);
1192
1193 bus_track_serialize(j->bus_track, f, "subscribed");
1194
1195 /* End marker */
1196 fputc('\n', f);
1197 return 0;
1198 }
1199
1200 int job_deserialize(Job *j, FILE *f) {
1201 int r;
1202
1203 assert(j);
1204 assert(f);
1205
1206 for (;;) {
1207 _cleanup_free_ char *line = NULL;
1208 char *l, *v;
1209 size_t k;
1210
1211 r = read_line(f, LONG_LINE_MAX, &line);
1212 if (r < 0)
1213 return log_error_errno(r, "Failed to read serialization line: %m");
1214 if (r == 0)
1215 return 0;
1216
1217 l = strstrip(line);
1218
1219 /* End marker */
1220 if (isempty(l))
1221 return 0;
1222
1223 k = strcspn(l, "=");
1224
1225 if (l[k] == '=') {
1226 l[k] = 0;
1227 v = l+k+1;
1228 } else
1229 v = l+k;
1230
1231 if (streq(l, "job-id")) {
1232
1233 if (safe_atou32(v, &j->id) < 0)
1234 log_debug("Failed to parse job id value: %s", v);
1235
1236 } else if (streq(l, "job-type")) {
1237 JobType t;
1238
1239 t = job_type_from_string(v);
1240 if (t < 0)
1241 log_debug("Failed to parse job type: %s", v);
1242 else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION)
1243 log_debug("Cannot deserialize job of type: %s", v);
1244 else
1245 j->type = t;
1246
1247 } else if (streq(l, "job-state")) {
1248 JobState s;
1249
1250 s = job_state_from_string(v);
1251 if (s < 0)
1252 log_debug("Failed to parse job state: %s", v);
1253 else
1254 job_set_state(j, s);
1255
1256 } else if (streq(l, "job-irreversible")) {
1257 int b;
1258
1259 b = parse_boolean(v);
1260 if (b < 0)
1261 log_debug("Failed to parse job irreversible flag: %s", v);
1262 else
1263 j->irreversible = j->irreversible || b;
1264
1265 } else if (streq(l, "job-sent-dbus-new-signal")) {
1266 int b;
1267
1268 b = parse_boolean(v);
1269 if (b < 0)
1270 log_debug("Failed to parse job sent_dbus_new_signal flag: %s", v);
1271 else
1272 j->sent_dbus_new_signal = j->sent_dbus_new_signal || b;
1273
1274 } else if (streq(l, "job-ignore-order")) {
1275 int b;
1276
1277 b = parse_boolean(v);
1278 if (b < 0)
1279 log_debug("Failed to parse job ignore_order flag: %s", v);
1280 else
1281 j->ignore_order = j->ignore_order || b;
1282
1283 } else if (streq(l, "job-begin"))
1284 (void) deserialize_usec(v, &j->begin_usec);
1285
1286 else if (streq(l, "job-begin-running"))
1287 (void) deserialize_usec(v, &j->begin_running_usec);
1288
1289 else if (streq(l, "subscribed")) {
1290 if (strv_extend(&j->deserialized_clients, v) < 0)
1291 return log_oom();
1292 } else
1293 log_debug("Unknown job serialization key: %s", l);
1294 }
1295 }
1296
1297 int job_coldplug(Job *j) {
1298 int r;
1299 usec_t timeout_time = USEC_INFINITY;
1300
1301 assert(j);
1302
1303 /* After deserialization is complete and the bus connection
1304 * set up again, let's start watching our subscribers again */
1305 (void) bus_job_coldplug_bus_track(j);
1306
1307 if (j->state == JOB_WAITING)
1308 job_add_to_run_queue(j);
1309
1310 /* Maybe due to new dependencies we don't actually need this job anymore? */
1311 job_add_to_gc_queue(j);
1312
1313 /* Create timer only when job began or began running and the respective timeout is finite.
1314 * Follow logic of job_start_timer() if both timeouts are finite */
1315 if (j->begin_usec == 0)
1316 return 0;
1317
1318 if (j->unit->job_timeout != USEC_INFINITY)
1319 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1320
1321 if (j->begin_running_usec > 0 && j->unit->job_running_timeout != USEC_INFINITY)
1322 timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout));
1323
1324 if (timeout_time == USEC_INFINITY)
1325 return 0;
1326
1327 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
1328
1329 r = sd_event_add_time(
1330 j->manager->event,
1331 &j->timer_event_source,
1332 CLOCK_MONOTONIC,
1333 timeout_time, 0,
1334 job_dispatch_timer, j);
1335 if (r < 0)
1336 log_debug_errno(r, "Failed to restart timeout for job: %m");
1337
1338 (void) sd_event_source_set_description(j->timer_event_source, "job-timeout");
1339
1340 return r;
1341 }
1342
1343 void job_shutdown_magic(Job *j) {
1344 assert(j);
1345
1346 /* The shutdown target gets some special treatment here: we
1347 * tell the kernel to begin with flushing its disk caches, to
1348 * optimize shutdown time a bit. Ideally we wouldn't hardcode
1349 * this magic into PID 1. However all other processes aren't
1350 * options either since they'd exit much sooner than PID 1 and
1351 * asynchronous sync() would cause their exit to be
1352 * delayed. */
1353
1354 if (j->type != JOB_START)
1355 return;
1356
1357 if (!MANAGER_IS_SYSTEM(j->unit->manager))
1358 return;
1359
1360 if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET))
1361 return;
1362
1363 /* In case messages on console has been disabled on boot */
1364 j->unit->manager->no_console_output = false;
1365
1366 if (detect_container() > 0)
1367 return;
1368
1369 (void) asynchronous_sync(NULL);
1370 }
1371
1372 int job_get_timeout(Job *j, usec_t *timeout) {
1373 usec_t x = USEC_INFINITY, y = USEC_INFINITY;
1374 Unit *u = j->unit;
1375 int r;
1376
1377 assert(u);
1378
1379 if (j->timer_event_source) {
1380 r = sd_event_source_get_time(j->timer_event_source, &x);
1381 if (r < 0)
1382 return r;
1383 }
1384
1385 if (UNIT_VTABLE(u)->get_timeout) {
1386 r = UNIT_VTABLE(u)->get_timeout(u, &y);
1387 if (r < 0)
1388 return r;
1389 }
1390
1391 if (x == USEC_INFINITY && y == USEC_INFINITY)
1392 return 0;
1393
1394 *timeout = MIN(x, y);
1395 return 1;
1396 }
1397
1398 bool job_may_gc(Job *j) {
1399 Unit *other;
1400 Iterator i;
1401 void *v;
1402
1403 assert(j);
1404
1405 /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their
1406 * own and just track external state. For now the only unit type that qualifies for this are .device units.
1407 * Returns true if the job can be collected. */
1408
1409 if (!UNIT_VTABLE(j->unit)->gc_jobs)
1410 return false;
1411
1412 if (sd_bus_track_count(j->bus_track) > 0)
1413 return false;
1414
1415 /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections
1416 * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once
1417 * referenced by one, and reset this whenever we notice that no private bus connections are around. This means
1418 * the GC is a bit too conservative when it comes to jobs created by private bus connections. */
1419 if (j->ref_by_private_bus) {
1420 if (set_isempty(j->unit->manager->private_buses))
1421 j->ref_by_private_bus = false;
1422 else
1423 return false;
1424 }
1425
1426 if (j->type == JOB_NOP)
1427 return false;
1428
1429 /* If a job is ordered after ours, and is to be started, then it needs to wait for us, regardless if we stop or
1430 * start, hence let's not GC in that case. */
1431 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1432 if (!other->job)
1433 continue;
1434
1435 if (other->job->ignore_order)
1436 continue;
1437
1438 if (IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD))
1439 return false;
1440 }
1441
1442 /* If we are going down, but something else is ordered After= us, then it needs to wait for us */
1443 if (IN_SET(j->type, JOB_STOP, JOB_RESTART))
1444 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1445 if (!other->job)
1446 continue;
1447
1448 if (other->job->ignore_order)
1449 continue;
1450
1451 return false;
1452 }
1453
1454 /* The logic above is kinda the inverse of the job_is_runnable() logic. Specifically, if the job "we" is
1455 * ordered before the job "other":
1456 *
1457 * we start + other start → stay
1458 * we start + other stop → gc
1459 * we stop + other start → stay
1460 * we stop + other stop → gc
1461 *
1462 * "we" are ordered after "other":
1463 *
1464 * we start + other start → gc
1465 * we start + other stop → gc
1466 * we stop + other start → stay
1467 * we stop + other stop → stay
1468 */
1469
1470 return true;
1471 }
1472
1473 void job_add_to_gc_queue(Job *j) {
1474 assert(j);
1475
1476 if (j->in_gc_queue)
1477 return;
1478
1479 if (!job_may_gc(j))
1480 return;
1481
1482 LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j);
1483 j->in_gc_queue = true;
1484 }
1485
1486 static int job_compare(Job * const *a, Job * const *b) {
1487 return CMP((*a)->id, (*b)->id);
1488 }
1489
1490 static size_t sort_job_list(Job **list, size_t n) {
1491 Job *previous = NULL;
1492 size_t a, b;
1493
1494 /* Order by numeric IDs */
1495 typesafe_qsort(list, n, job_compare);
1496
1497 /* Filter out duplicates */
1498 for (a = 0, b = 0; a < n; a++) {
1499
1500 if (previous == list[a])
1501 continue;
1502
1503 previous = list[b++] = list[a];
1504 }
1505
1506 return b;
1507 }
1508
1509 int job_get_before(Job *j, Job*** ret) {
1510 _cleanup_free_ Job** list = NULL;
1511 size_t n = 0, n_allocated = 0;
1512 Unit *other = NULL;
1513 Iterator i;
1514 void *v;
1515
1516 /* Returns a list of all pending jobs that need to finish before this job may be started. */
1517
1518 assert(j);
1519 assert(ret);
1520
1521 if (j->ignore_order) {
1522 *ret = NULL;
1523 return 0;
1524 }
1525
1526 if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) {
1527
1528 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1529 if (!other->job)
1530 continue;
1531
1532 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1533 return -ENOMEM;
1534 list[n++] = other->job;
1535 }
1536 }
1537
1538 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1539 if (!other->job)
1540 continue;
1541
1542 if (!IN_SET(other->job->type, JOB_STOP, JOB_RESTART))
1543 continue;
1544
1545 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1546 return -ENOMEM;
1547 list[n++] = other->job;
1548 }
1549
1550 n = sort_job_list(list, n);
1551
1552 *ret = TAKE_PTR(list);
1553
1554 return (int) n;
1555 }
1556
1557 int job_get_after(Job *j, Job*** ret) {
1558 _cleanup_free_ Job** list = NULL;
1559 size_t n = 0, n_allocated = 0;
1560 Unit *other = NULL;
1561 void *v;
1562 Iterator i;
1563
1564 assert(j);
1565 assert(ret);
1566
1567 /* Returns a list of all pending jobs that are waiting for this job to finish. */
1568
1569 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1570 if (!other->job)
1571 continue;
1572
1573 if (other->job->ignore_order)
1574 continue;
1575
1576 if (!IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD))
1577 continue;
1578
1579 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1580 return -ENOMEM;
1581 list[n++] = other->job;
1582 }
1583
1584 if (IN_SET(j->type, JOB_STOP, JOB_RESTART)) {
1585
1586 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1587 if (!other->job)
1588 continue;
1589
1590 if (other->job->ignore_order)
1591 continue;
1592
1593 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1594 return -ENOMEM;
1595 list[n++] = other->job;
1596 }
1597 }
1598
1599 n = sort_job_list(list, n);
1600
1601 *ret = TAKE_PTR(list);
1602
1603 return (int) n;
1604 }
1605
1606 static const char* const job_state_table[_JOB_STATE_MAX] = {
1607 [JOB_WAITING] = "waiting",
1608 [JOB_RUNNING] = "running",
1609 };
1610
1611 DEFINE_STRING_TABLE_LOOKUP(job_state, JobState);
1612
1613 static const char* const job_type_table[_JOB_TYPE_MAX] = {
1614 [JOB_START] = "start",
1615 [JOB_VERIFY_ACTIVE] = "verify-active",
1616 [JOB_STOP] = "stop",
1617 [JOB_RELOAD] = "reload",
1618 [JOB_RELOAD_OR_START] = "reload-or-start",
1619 [JOB_RESTART] = "restart",
1620 [JOB_TRY_RESTART] = "try-restart",
1621 [JOB_TRY_RELOAD] = "try-reload",
1622 [JOB_NOP] = "nop",
1623 };
1624
1625 DEFINE_STRING_TABLE_LOOKUP(job_type, JobType);
1626
1627 static const char* const job_mode_table[_JOB_MODE_MAX] = {
1628 [JOB_FAIL] = "fail",
1629 [JOB_REPLACE] = "replace",
1630 [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly",
1631 [JOB_ISOLATE] = "isolate",
1632 [JOB_FLUSH] = "flush",
1633 [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies",
1634 [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements",
1635 };
1636
1637 DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode);
1638
1639 static const char* const job_result_table[_JOB_RESULT_MAX] = {
1640 [JOB_DONE] = "done",
1641 [JOB_CANCELED] = "canceled",
1642 [JOB_TIMEOUT] = "timeout",
1643 [JOB_FAILED] = "failed",
1644 [JOB_DEPENDENCY] = "dependency",
1645 [JOB_SKIPPED] = "skipped",
1646 [JOB_INVALID] = "invalid",
1647 [JOB_ASSERT] = "assert",
1648 [JOB_UNSUPPORTED] = "unsupported",
1649 [JOB_COLLECTED] = "collected",
1650 [JOB_ONCE] = "once",
1651 };
1652
1653 DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);
1654
1655 const char* job_type_to_access_method(JobType t) {
1656 assert(t >= 0);
1657 assert(t < _JOB_TYPE_MAX);
1658
1659 if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART))
1660 return "start";
1661 else if (t == JOB_STOP)
1662 return "stop";
1663 else
1664 return "reload";
1665 }