]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/job.c
Merge pull request #13225 from mrc0mmand/networkd-test-replace-adduser-with-useradd
[thirdparty/systemd.git] / src / core / job.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4
5 #include "sd-id128.h"
6 #include "sd-messages.h"
7
8 #include "alloc-util.h"
9 #include "async.h"
10 #include "cgroup.h"
11 #include "dbus-job.h"
12 #include "dbus.h"
13 #include "escape.h"
14 #include "fileio.h"
15 #include "job.h"
16 #include "log.h"
17 #include "macro.h"
18 #include "parse-util.h"
19 #include "serialize.h"
20 #include "set.h"
21 #include "sort-util.h"
22 #include "special.h"
23 #include "stdio-util.h"
24 #include "string-table.h"
25 #include "string-util.h"
26 #include "strv.h"
27 #include "terminal-util.h"
28 #include "unit.h"
29 #include "virt.h"
30
31 Job* job_new_raw(Unit *unit) {
32 Job *j;
33
34 /* used for deserialization */
35
36 assert(unit);
37
38 j = new(Job, 1);
39 if (!j)
40 return NULL;
41
42 *j = (Job) {
43 .manager = unit->manager,
44 .unit = unit,
45 .type = _JOB_TYPE_INVALID,
46 };
47
48 return j;
49 }
50
51 Job* job_new(Unit *unit, JobType type) {
52 Job *j;
53
54 assert(type < _JOB_TYPE_MAX);
55
56 j = job_new_raw(unit);
57 if (!j)
58 return NULL;
59
60 j->id = j->manager->current_job_id++;
61 j->type = type;
62
63 /* We don't link it here, that's what job_dependency() is for */
64
65 return j;
66 }
67
68 void job_unlink(Job *j) {
69 assert(j);
70 assert(!j->installed);
71 assert(!j->transaction_prev);
72 assert(!j->transaction_next);
73 assert(!j->subject_list);
74 assert(!j->object_list);
75
76 if (j->in_run_queue) {
77 prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
78 j->in_run_queue = false;
79 }
80
81 if (j->in_dbus_queue) {
82 LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j);
83 j->in_dbus_queue = false;
84 }
85
86 if (j->in_gc_queue) {
87 LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j);
88 j->in_gc_queue = false;
89 }
90
91 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
92 }
93
94 Job* job_free(Job *j) {
95 assert(j);
96 assert(!j->installed);
97 assert(!j->transaction_prev);
98 assert(!j->transaction_next);
99 assert(!j->subject_list);
100 assert(!j->object_list);
101
102 job_unlink(j);
103
104 sd_bus_track_unref(j->bus_track);
105 strv_free(j->deserialized_clients);
106
107 return mfree(j);
108 }
109
110 static void job_set_state(Job *j, JobState state) {
111 assert(j);
112 assert(state >= 0);
113 assert(state < _JOB_STATE_MAX);
114
115 if (j->state == state)
116 return;
117
118 j->state = state;
119
120 if (!j->installed)
121 return;
122
123 if (j->state == JOB_RUNNING)
124 j->unit->manager->n_running_jobs++;
125 else {
126 assert(j->state == JOB_WAITING);
127 assert(j->unit->manager->n_running_jobs > 0);
128
129 j->unit->manager->n_running_jobs--;
130
131 if (j->unit->manager->n_running_jobs <= 0)
132 j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source);
133 }
134 }
135
136 void job_uninstall(Job *j) {
137 Job **pj;
138
139 assert(j->installed);
140
141 job_set_state(j, JOB_WAITING);
142
143 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
144 assert(*pj == j);
145
146 /* Detach from next 'bigger' objects */
147
148 /* daemon-reload should be transparent to job observers */
149 if (!MANAGER_IS_RELOADING(j->manager))
150 bus_job_send_removed_signal(j);
151
152 *pj = NULL;
153
154 unit_add_to_gc_queue(j->unit);
155
156 unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
157
158 hashmap_remove_value(j->manager->jobs, UINT32_TO_PTR(j->id), j);
159 j->installed = false;
160 }
161
162 static bool job_type_allows_late_merge(JobType t) {
163 /* Tells whether it is OK to merge a job of type 't' with an already
164 * running job.
165 * Reloads cannot be merged this way. Think of the sequence:
166 * 1. Reload of a daemon is in progress; the daemon has already loaded
167 * its config file, but hasn't completed the reload operation yet.
168 * 2. Edit foo's config file.
169 * 3. Trigger another reload to have the daemon use the new config.
170 * Should the second reload job be merged into the first one, the daemon
171 * would not know about the new config.
172 * JOB_RESTART jobs on the other hand can be merged, because they get
173 * patched into JOB_START after stopping the unit. So if we see a
174 * JOB_RESTART running, it means the unit hasn't stopped yet and at
175 * this time the merge is still allowed. */
176 return t != JOB_RELOAD;
177 }
178
179 static void job_merge_into_installed(Job *j, Job *other) {
180 assert(j->installed);
181 assert(j->unit == other->unit);
182
183 if (j->type != JOB_NOP)
184 assert_se(job_type_merge_and_collapse(&j->type, other->type, j->unit) == 0);
185 else
186 assert(other->type == JOB_NOP);
187
188 j->irreversible = j->irreversible || other->irreversible;
189 j->ignore_order = j->ignore_order || other->ignore_order;
190 }
191
192 Job* job_install(Job *j) {
193 Job **pj;
194 Job *uj;
195
196 assert(!j->installed);
197 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
198 assert(j->state == JOB_WAITING);
199
200 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
201 uj = *pj;
202
203 if (uj) {
204 if (job_type_is_conflicting(uj->type, j->type))
205 job_finish_and_invalidate(uj, JOB_CANCELED, false, false);
206 else {
207 /* not conflicting, i.e. mergeable */
208
209 if (uj->state == JOB_WAITING ||
210 (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) {
211 job_merge_into_installed(uj, j);
212 log_unit_debug(uj->unit,
213 "Merged %s/%s into installed job %s/%s as %"PRIu32,
214 j->unit->id, job_type_to_string(j->type), uj->unit->id,
215 job_type_to_string(uj->type), uj->id);
216 return uj;
217 } else {
218 /* already running and not safe to merge into */
219 /* Patch uj to become a merged job and re-run it. */
220 /* XXX It should be safer to queue j to run after uj finishes, but it is
221 * not currently possible to have more than one installed job per unit. */
222 job_merge_into_installed(uj, j);
223 log_unit_debug(uj->unit,
224 "Merged into running job, re-running: %s/%s as %"PRIu32,
225 uj->unit->id, job_type_to_string(uj->type), uj->id);
226
227 job_set_state(uj, JOB_WAITING);
228 return uj;
229 }
230 }
231 }
232
233 /* Install the job */
234 *pj = j;
235 j->installed = true;
236
237 j->manager->n_installed_jobs++;
238 log_unit_debug(j->unit,
239 "Installed new job %s/%s as %u",
240 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
241
242 job_add_to_gc_queue(j);
243
244 job_add_to_dbus_queue(j); /* announce this job to clients */
245 unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
246
247 return j;
248 }
249
250 int job_install_deserialized(Job *j) {
251 Job **pj;
252 int r;
253
254 assert(!j->installed);
255
256 if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION)
257 return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EINVAL),
258 "Invalid job type %s in deserialization.",
259 strna(job_type_to_string(j->type)));
260
261 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
262 if (*pj)
263 return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EEXIST),
264 "Unit already has a job installed. Not installing deserialized job.");
265
266 r = hashmap_put(j->manager->jobs, UINT32_TO_PTR(j->id), j);
267 if (r == -EEXIST)
268 return log_unit_debug_errno(j->unit, r, "Job ID %" PRIu32 " already used, cannot deserialize job.", j->id);
269 if (r < 0)
270 return log_unit_debug_errno(j->unit, r, "Failed to insert job into jobs hash table: %m");
271
272 *pj = j;
273 j->installed = true;
274
275 if (j->state == JOB_RUNNING)
276 j->unit->manager->n_running_jobs++;
277
278 log_unit_debug(j->unit,
279 "Reinstalled deserialized job %s/%s as %u",
280 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
281 return 0;
282 }
283
284 JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) {
285 JobDependency *l;
286
287 assert(object);
288
289 /* Adds a new job link, which encodes that the 'subject' job
290 * needs the 'object' job in some way. If 'subject' is NULL
291 * this means the 'anchor' job (i.e. the one the user
292 * explicitly asked for) is the requester. */
293
294 l = new0(JobDependency, 1);
295 if (!l)
296 return NULL;
297
298 l->subject = subject;
299 l->object = object;
300 l->matters = matters;
301 l->conflicts = conflicts;
302
303 if (subject)
304 LIST_PREPEND(subject, subject->subject_list, l);
305
306 LIST_PREPEND(object, object->object_list, l);
307
308 return l;
309 }
310
311 void job_dependency_free(JobDependency *l) {
312 assert(l);
313
314 if (l->subject)
315 LIST_REMOVE(subject, l->subject->subject_list, l);
316
317 LIST_REMOVE(object, l->object->object_list, l);
318
319 free(l);
320 }
321
322 void job_dump(Job *j, FILE *f, const char *prefix) {
323 assert(j);
324 assert(f);
325
326 prefix = strempty(prefix);
327
328 fprintf(f,
329 "%s-> Job %u:\n"
330 "%s\tAction: %s -> %s\n"
331 "%s\tState: %s\n"
332 "%s\tIrreversible: %s\n"
333 "%s\tMay GC: %s\n",
334 prefix, j->id,
335 prefix, j->unit->id, job_type_to_string(j->type),
336 prefix, job_state_to_string(j->state),
337 prefix, yes_no(j->irreversible),
338 prefix, yes_no(job_may_gc(j)));
339 }
340
341 /*
342 * Merging is commutative, so imagine the matrix as symmetric. We store only
343 * its lower triangle to avoid duplication. We don't store the main diagonal,
344 * because A merged with A is simply A.
345 *
346 * If the resulting type is collapsed immediately afterwards (to get rid of
347 * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain),
348 * the following properties hold:
349 *
350 * Merging is associative! A merged with B, and then merged with C is the same
351 * as A merged with the result of B merged with C.
352 *
353 * Mergeability is transitive! If A can be merged with B and B with C then
354 * A also with C.
355 *
356 * Also, if A merged with B cannot be merged with C, then either A or B cannot
357 * be merged with C either.
358 */
359 static const JobType job_merging_table[] = {
360 /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */
361 /*********************************************************************************/
362 /*JOB_START */
363 /*JOB_VERIFY_ACTIVE */ JOB_START,
364 /*JOB_STOP */ -1, -1,
365 /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1,
366 /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART,
367 };
368
369 JobType job_type_lookup_merge(JobType a, JobType b) {
370 assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2);
371 assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING);
372 assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING);
373
374 if (a == b)
375 return a;
376
377 if (a < b) {
378 JobType tmp = a;
379 a = b;
380 b = tmp;
381 }
382
383 return job_merging_table[(a - 1) * a / 2 + b];
384 }
385
386 bool job_type_is_redundant(JobType a, UnitActiveState b) {
387 switch (a) {
388
389 case JOB_START:
390 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
391
392 case JOB_STOP:
393 return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED);
394
395 case JOB_VERIFY_ACTIVE:
396 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
397
398 case JOB_RELOAD:
399 return
400 b == UNIT_RELOADING;
401
402 case JOB_RESTART:
403 return
404 b == UNIT_ACTIVATING;
405
406 case JOB_NOP:
407 return true;
408
409 default:
410 assert_not_reached("Invalid job type");
411 }
412 }
413
414 JobType job_type_collapse(JobType t, Unit *u) {
415 UnitActiveState s;
416
417 switch (t) {
418
419 case JOB_TRY_RESTART:
420 s = unit_active_state(u);
421 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
422 return JOB_NOP;
423
424 return JOB_RESTART;
425
426 case JOB_TRY_RELOAD:
427 s = unit_active_state(u);
428 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
429 return JOB_NOP;
430
431 return JOB_RELOAD;
432
433 case JOB_RELOAD_OR_START:
434 s = unit_active_state(u);
435 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
436 return JOB_START;
437
438 return JOB_RELOAD;
439
440 default:
441 return t;
442 }
443 }
444
445 int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) {
446 JobType t;
447
448 t = job_type_lookup_merge(*a, b);
449 if (t < 0)
450 return -EEXIST;
451
452 *a = job_type_collapse(t, u);
453 return 0;
454 }
455
456 static bool job_is_runnable(Job *j) {
457 Iterator i;
458 Unit *other;
459 void *v;
460
461 assert(j);
462 assert(j->installed);
463
464 /* Checks whether there is any job running for the units this
465 * job needs to be running after (in the case of a 'positive'
466 * job type) or before (in the case of a 'negative' job
467 * type. */
468
469 /* Note that unit types have a say in what is runnable,
470 * too. For example, if they return -EAGAIN from
471 * unit_start() they can indicate they are not
472 * runnable yet. */
473
474 /* First check if there is an override */
475 if (j->ignore_order)
476 return true;
477
478 if (j->type == JOB_NOP)
479 return true;
480
481 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i)
482 if (other->job && job_compare(j, other->job, UNIT_AFTER) > 0)
483 return false;
484
485 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i)
486 if (other->job && job_compare(j, other->job, UNIT_BEFORE) > 0)
487 return false;
488
489 return true;
490 }
491
492 static void job_change_type(Job *j, JobType newtype) {
493 assert(j);
494
495 log_unit_debug(j->unit,
496 "Converting job %s/%s -> %s/%s",
497 j->unit->id, job_type_to_string(j->type),
498 j->unit->id, job_type_to_string(newtype));
499
500 j->type = newtype;
501 }
502
503 _pure_ static const char* job_get_begin_status_message_format(Unit *u, JobType t) {
504 const char *format;
505
506 assert(u);
507
508 if (t == JOB_RELOAD)
509 return "Reloading %s.";
510
511 assert(IN_SET(t, JOB_START, JOB_STOP));
512
513 format = UNIT_VTABLE(u)->status_message_formats.starting_stopping[t == JOB_STOP];
514 if (format)
515 return format;
516
517 /* Return generic strings */
518 if (t == JOB_START)
519 return "Starting %s.";
520 else {
521 assert(t == JOB_STOP);
522 return "Stopping %s.";
523 }
524 }
525
526 static void job_print_begin_status_message(Unit *u, JobType t) {
527 const char *format;
528
529 assert(u);
530
531 /* Reload status messages have traditionally not been printed to console. */
532 if (!IN_SET(t, JOB_START, JOB_STOP))
533 return;
534
535 format = job_get_begin_status_message_format(u, t);
536
537 DISABLE_WARNING_FORMAT_NONLITERAL;
538 unit_status_printf(u, "", format);
539 REENABLE_WARNING;
540 }
541
542 static void job_log_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
543 const char *format, *mid;
544 char buf[LINE_MAX];
545
546 assert(u);
547 assert(t >= 0);
548 assert(t < _JOB_TYPE_MAX);
549
550 if (!IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD))
551 return;
552
553 if (log_on_console()) /* Skip this if it would only go on the console anyway */
554 return;
555
556 /* We log status messages for all units and all operations. */
557
558 format = job_get_begin_status_message_format(u, t);
559
560 DISABLE_WARNING_FORMAT_NONLITERAL;
561 (void) snprintf(buf, sizeof buf, format, unit_status_string(u));
562 REENABLE_WARNING;
563
564 mid = t == JOB_START ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTING_STR :
565 t == JOB_STOP ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPING_STR :
566 "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADING_STR;
567
568 /* Note that we deliberately use LOG_MESSAGE() instead of
569 * LOG_UNIT_MESSAGE() here, since this is supposed to mimic
570 * closely what is written to screen using the status output,
571 * which is supposed the highest level, friendliest output
572 * possible, which means we should avoid the low-level unit
573 * name. */
574 log_struct(LOG_INFO,
575 LOG_MESSAGE("%s", buf),
576 "JOB_ID=%" PRIu32, job_id,
577 "JOB_TYPE=%s", job_type_to_string(t),
578 LOG_UNIT_ID(u),
579 LOG_UNIT_INVOCATION_ID(u),
580 mid);
581 }
582
583 static void job_emit_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
584 assert(u);
585 assert(t >= 0);
586 assert(t < _JOB_TYPE_MAX);
587
588 job_log_begin_status_message(u, job_id, t);
589 job_print_begin_status_message(u, t);
590 }
591
592 static int job_perform_on_unit(Job **j) {
593 uint32_t id;
594 Manager *m;
595 JobType t;
596 Unit *u;
597 int r;
598
599 /* While we execute this operation the job might go away (for
600 * example: because it finishes immediately or is replaced by
601 * a new, conflicting job.) To make sure we don't access a
602 * freed job later on we store the id here, so that we can
603 * verify the job is still valid. */
604
605 assert(j);
606 assert(*j);
607
608 m = (*j)->manager;
609 u = (*j)->unit;
610 t = (*j)->type;
611 id = (*j)->id;
612
613 switch (t) {
614 case JOB_START:
615 r = unit_start(u);
616 break;
617
618 case JOB_RESTART:
619 t = JOB_STOP;
620 _fallthrough_;
621 case JOB_STOP:
622 r = unit_stop(u);
623 break;
624
625 case JOB_RELOAD:
626 r = unit_reload(u);
627 break;
628
629 default:
630 assert_not_reached("Invalid job type");
631 }
632
633 /* Log if the job still exists and the start/stop/reload function actually did something. Note that this means
634 * for units for which there's no 'activating' phase (i.e. because we transition directly from 'inactive' to
635 * 'active') we'll possibly skip the "Starting..." message. */
636 *j = manager_get_job(m, id);
637 if (*j && r > 0)
638 job_emit_begin_status_message(u, id, t);
639
640 return r;
641 }
642
643 int job_run_and_invalidate(Job *j) {
644 int r;
645
646 assert(j);
647 assert(j->installed);
648 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
649 assert(j->in_run_queue);
650
651 prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
652 j->in_run_queue = false;
653
654 if (j->state != JOB_WAITING)
655 return 0;
656
657 if (!job_is_runnable(j))
658 return -EAGAIN;
659
660 job_start_timer(j, true);
661 job_set_state(j, JOB_RUNNING);
662 job_add_to_dbus_queue(j);
663
664 switch (j->type) {
665
666 case JOB_VERIFY_ACTIVE: {
667 UnitActiveState t;
668
669 t = unit_active_state(j->unit);
670 if (UNIT_IS_ACTIVE_OR_RELOADING(t))
671 r = -EALREADY;
672 else if (t == UNIT_ACTIVATING)
673 r = -EAGAIN;
674 else
675 r = -EBADR;
676 break;
677 }
678
679 case JOB_START:
680 case JOB_STOP:
681 case JOB_RESTART:
682 r = job_perform_on_unit(&j);
683
684 /* If the unit type does not support starting/stopping, then simply wait. */
685 if (r == -EBADR)
686 r = 0;
687 break;
688
689 case JOB_RELOAD:
690 r = job_perform_on_unit(&j);
691 break;
692
693 case JOB_NOP:
694 r = -EALREADY;
695 break;
696
697 default:
698 assert_not_reached("Unknown job type");
699 }
700
701 if (j) {
702 if (r == -EAGAIN)
703 job_set_state(j, JOB_WAITING); /* Hmm, not ready after all, let's return to JOB_WAITING state */
704 else if (r == -EALREADY) /* already being executed */
705 r = job_finish_and_invalidate(j, JOB_DONE, true, true);
706 else if (r == -ECOMM) /* condition failed, but all is good */
707 r = job_finish_and_invalidate(j, JOB_DONE, true, false);
708 else if (r == -EBADR)
709 r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false);
710 else if (r == -ENOEXEC)
711 r = job_finish_and_invalidate(j, JOB_INVALID, true, false);
712 else if (r == -EPROTO)
713 r = job_finish_and_invalidate(j, JOB_ASSERT, true, false);
714 else if (r == -EOPNOTSUPP)
715 r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false);
716 else if (r == -ENOLINK)
717 r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
718 else if (r == -ESTALE)
719 r = job_finish_and_invalidate(j, JOB_ONCE, true, false);
720 else if (r < 0)
721 r = job_finish_and_invalidate(j, JOB_FAILED, true, false);
722 }
723
724 return r;
725 }
726
727 _pure_ static const char *job_get_done_status_message_format(Unit *u, JobType t, JobResult result) {
728
729 static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = {
730 [JOB_DONE] = "Started %s.",
731 [JOB_TIMEOUT] = "Timed out starting %s.",
732 [JOB_FAILED] = "Failed to start %s.",
733 [JOB_DEPENDENCY] = "Dependency failed for %s.",
734 [JOB_ASSERT] = "Assertion failed for %s.",
735 [JOB_UNSUPPORTED] = "Starting of %s not supported.",
736 [JOB_COLLECTED] = "Unnecessary job for %s was removed.",
737 [JOB_ONCE] = "Unit %s has been started before and cannot be started again."
738 };
739 static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = {
740 [JOB_DONE] = "Stopped %s.",
741 [JOB_FAILED] = "Stopped (with error) %s.",
742 [JOB_TIMEOUT] = "Timed out stopping %s.",
743 };
744 static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = {
745 [JOB_DONE] = "Reloaded %s.",
746 [JOB_FAILED] = "Reload failed for %s.",
747 [JOB_TIMEOUT] = "Timed out reloading %s.",
748 };
749 /* When verify-active detects the unit is inactive, report it.
750 * Most likely a DEPEND warning from a requisiting unit will
751 * occur next and it's nice to see what was requisited. */
752 static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = {
753 [JOB_SKIPPED] = "%s is not active.",
754 };
755
756 const char *format;
757
758 assert(u);
759 assert(t >= 0);
760 assert(t < _JOB_TYPE_MAX);
761
762 if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) {
763 format = t == JOB_START ?
764 UNIT_VTABLE(u)->status_message_formats.finished_start_job[result] :
765 UNIT_VTABLE(u)->status_message_formats.finished_stop_job[result];
766 if (format)
767 return format;
768 }
769
770 /* Return generic strings */
771 if (t == JOB_START)
772 return generic_finished_start_job[result];
773 else if (IN_SET(t, JOB_STOP, JOB_RESTART))
774 return generic_finished_stop_job[result];
775 else if (t == JOB_RELOAD)
776 return generic_finished_reload_job[result];
777 else if (t == JOB_VERIFY_ACTIVE)
778 return generic_finished_verify_active_job[result];
779
780 return NULL;
781 }
782
783 static const struct {
784 const char *color, *word;
785 } job_print_done_status_messages[_JOB_RESULT_MAX] = {
786 [JOB_DONE] = { ANSI_OK_COLOR, " OK " },
787 [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " },
788 [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" },
789 [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" },
790 [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " },
791 [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" },
792 [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" },
793 /* JOB_COLLECTED */
794 [JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " },
795 };
796
797 static void job_print_done_status_message(Unit *u, JobType t, JobResult result) {
798 const char *format;
799 const char *status;
800
801 assert(u);
802 assert(t >= 0);
803 assert(t < _JOB_TYPE_MAX);
804
805 /* Reload status messages have traditionally not been printed to console. */
806 if (t == JOB_RELOAD)
807 return;
808
809 /* No message if the job did not actually do anything due to failed condition. */
810 if (t == JOB_START && result == JOB_DONE && !u->condition_result)
811 return;
812
813 if (!job_print_done_status_messages[result].word)
814 return;
815
816 format = job_get_done_status_message_format(u, t, result);
817 if (!format)
818 return;
819
820 if (log_get_show_color())
821 status = strjoina(job_print_done_status_messages[result].color,
822 job_print_done_status_messages[result].word,
823 ANSI_NORMAL);
824 else
825 status = job_print_done_status_messages[result].word;
826
827 if (result != JOB_DONE)
828 manager_flip_auto_status(u->manager, true);
829
830 DISABLE_WARNING_FORMAT_NONLITERAL;
831 unit_status_printf(u, status, format);
832 REENABLE_WARNING;
833
834 if (t == JOB_START && result == JOB_FAILED) {
835 _cleanup_free_ char *quoted;
836
837 quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH);
838 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted));
839 }
840 }
841
842 static void job_log_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
843 const char *format, *mid;
844 char buf[LINE_MAX];
845 static const int job_result_log_level[_JOB_RESULT_MAX] = {
846 [JOB_DONE] = LOG_INFO,
847 [JOB_CANCELED] = LOG_INFO,
848 [JOB_TIMEOUT] = LOG_ERR,
849 [JOB_FAILED] = LOG_ERR,
850 [JOB_DEPENDENCY] = LOG_WARNING,
851 [JOB_SKIPPED] = LOG_NOTICE,
852 [JOB_INVALID] = LOG_INFO,
853 [JOB_ASSERT] = LOG_WARNING,
854 [JOB_UNSUPPORTED] = LOG_WARNING,
855 [JOB_COLLECTED] = LOG_INFO,
856 [JOB_ONCE] = LOG_ERR,
857 };
858
859 assert(u);
860 assert(t >= 0);
861 assert(t < _JOB_TYPE_MAX);
862
863 /* Skip printing if output goes to the console, and job_print_status_message()
864 will actually print something to the console. */
865 if (log_on_console() && job_print_done_status_messages[result].word)
866 return;
867
868 /* Show condition check message if the job did not actually do anything due to failed condition. */
869 if ((t == JOB_START && result == JOB_DONE && !u->condition_result) ||
870 (t == JOB_START && result == JOB_SKIPPED)) {
871 log_struct(LOG_INFO,
872 "MESSAGE=Condition check resulted in %s being skipped.", unit_status_string(u),
873 "JOB_ID=%" PRIu32, job_id,
874 "JOB_TYPE=%s", job_type_to_string(t),
875 "JOB_RESULT=%s", job_result_to_string(result),
876 LOG_UNIT_ID(u),
877 LOG_UNIT_INVOCATION_ID(u),
878 "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR);
879
880 return;
881 }
882
883 format = job_get_done_status_message_format(u, t, result);
884 if (!format)
885 return;
886
887 /* The description might be longer than the buffer, but that's OK,
888 * we'll just truncate it here. Note that we use snprintf() rather than
889 * xsprintf() on purpose here: we are fine with truncation and don't
890 * consider that an error. */
891 DISABLE_WARNING_FORMAT_NONLITERAL;
892 (void) snprintf(buf, sizeof(buf), format, unit_status_string(u));
893 REENABLE_WARNING;
894
895 switch (t) {
896
897 case JOB_START:
898 if (result == JOB_DONE)
899 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR;
900 else
901 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR;
902 break;
903
904 case JOB_RELOAD:
905 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR;
906 break;
907
908 case JOB_STOP:
909 case JOB_RESTART:
910 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR;
911 break;
912
913 default:
914 log_struct(job_result_log_level[result],
915 LOG_MESSAGE("%s", buf),
916 "JOB_ID=%" PRIu32, job_id,
917 "JOB_TYPE=%s", job_type_to_string(t),
918 "JOB_RESULT=%s", job_result_to_string(result),
919 LOG_UNIT_ID(u),
920 LOG_UNIT_INVOCATION_ID(u));
921 return;
922 }
923
924 log_struct(job_result_log_level[result],
925 LOG_MESSAGE("%s", buf),
926 "JOB_ID=%" PRIu32, job_id,
927 "JOB_TYPE=%s", job_type_to_string(t),
928 "JOB_RESULT=%s", job_result_to_string(result),
929 LOG_UNIT_ID(u),
930 LOG_UNIT_INVOCATION_ID(u),
931 mid);
932 }
933
934 static void job_emit_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
935 assert(u);
936
937 job_log_done_status_message(u, job_id, t, result);
938 job_print_done_status_message(u, t, result);
939 }
940
941 static void job_fail_dependencies(Unit *u, UnitDependency d) {
942 Unit *other;
943 Iterator i;
944 void *v;
945
946 assert(u);
947
948 HASHMAP_FOREACH_KEY(v, other, u->dependencies[d], i) {
949 Job *j = other->job;
950
951 if (!j)
952 continue;
953 if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE))
954 continue;
955
956 job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
957 }
958 }
959
960 int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) {
961 Unit *u;
962 Unit *other;
963 JobType t;
964 Iterator i;
965 void *v;
966
967 assert(j);
968 assert(j->installed);
969 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
970
971 u = j->unit;
972 t = j->type;
973
974 j->result = result;
975
976 log_unit_debug(u, "Job %" PRIu32 " %s/%s finished, result=%s", j->id, u->id, job_type_to_string(t), job_result_to_string(result));
977
978 /* If this job did nothing to respective unit we don't log the status message */
979 if (!already)
980 job_emit_done_status_message(u, j->id, t, result);
981
982 /* Patch restart jobs so that they become normal start jobs */
983 if (result == JOB_DONE && t == JOB_RESTART) {
984
985 job_change_type(j, JOB_START);
986 job_set_state(j, JOB_WAITING);
987
988 job_add_to_dbus_queue(j);
989 job_add_to_run_queue(j);
990 job_add_to_gc_queue(j);
991
992 goto finish;
993 }
994
995 if (IN_SET(result, JOB_FAILED, JOB_INVALID))
996 j->manager->n_failed_jobs++;
997
998 job_uninstall(j);
999 job_free(j);
1000
1001 /* Fail depending jobs on failure */
1002 if (result != JOB_DONE && recursive) {
1003 if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) {
1004 job_fail_dependencies(u, UNIT_REQUIRED_BY);
1005 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1006 job_fail_dependencies(u, UNIT_BOUND_BY);
1007 } else if (t == JOB_STOP)
1008 job_fail_dependencies(u, UNIT_CONFLICTED_BY);
1009 }
1010
1011 /* A special check to make sure we take down anything RequisiteOf if we
1012 * aren't active. This is when the verify-active job merges with a
1013 * satisfying job type, and then loses it's invalidation effect, as the
1014 * result there is JOB_DONE for the start job we merged into, while we
1015 * should be failing the depending job if the said unit isn't infact
1016 * active. Oneshots are an example of this, where going directly from
1017 * activating to inactive is success.
1018 *
1019 * This happens when you use ConditionXYZ= in a unit too, since in that
1020 * case the job completes with the JOB_DONE result, but the unit never
1021 * really becomes active. Note that such a case still involves merging:
1022 *
1023 * A start job waits for something else, and a verify-active comes in
1024 * and merges in the installed job. Then, later, when it becomes
1025 * runnable, it finishes with JOB_DONE result as execution on conditions
1026 * not being met is skipped, breaking our dependency semantics.
1027 *
1028 * Also, depending on if start job waits or not, the merging may or may
1029 * not happen (the verify-active job may trigger after it finishes), so
1030 * you get undeterministic results without this check.
1031 */
1032 if (result == JOB_DONE && recursive && !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
1033 if (IN_SET(t, JOB_START, JOB_RELOAD))
1034 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1035 }
1036 /* Trigger OnFailure dependencies that are not generated by
1037 * the unit itself. We don't treat JOB_CANCELED as failure in
1038 * this context. And JOB_FAILURE is already handled by the
1039 * unit itself. */
1040 if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) {
1041 log_struct(LOG_NOTICE,
1042 "JOB_TYPE=%s", job_type_to_string(t),
1043 "JOB_RESULT=%s", job_result_to_string(result),
1044 LOG_UNIT_ID(u),
1045 LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.",
1046 u->id,
1047 job_type_to_string(t),
1048 job_result_to_string(result)));
1049
1050 unit_start_on_failure(u);
1051 }
1052
1053 unit_trigger_notify(u);
1054
1055 finish:
1056 /* Try to start the next jobs that can be started */
1057 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER], i)
1058 if (other->job) {
1059 job_add_to_run_queue(other->job);
1060 job_add_to_gc_queue(other->job);
1061 }
1062 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE], i)
1063 if (other->job) {
1064 job_add_to_run_queue(other->job);
1065 job_add_to_gc_queue(other->job);
1066 }
1067
1068 manager_check_finished(u->manager);
1069
1070 return 0;
1071 }
1072
1073 static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) {
1074 Job *j = userdata;
1075 Unit *u;
1076
1077 assert(j);
1078 assert(s == j->timer_event_source);
1079
1080 log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type));
1081
1082 u = j->unit;
1083 job_finish_and_invalidate(j, JOB_TIMEOUT, true, false);
1084
1085 emergency_action(u->manager, u->job_timeout_action,
1086 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1087 u->job_timeout_reboot_arg, -1, "job timed out");
1088
1089 return 0;
1090 }
1091
1092 int job_start_timer(Job *j, bool job_running) {
1093 int r;
1094 usec_t timeout_time, old_timeout_time;
1095
1096 if (job_running) {
1097 j->begin_running_usec = now(CLOCK_MONOTONIC);
1098
1099 if (j->unit->job_running_timeout == USEC_INFINITY)
1100 return 0;
1101
1102 timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout);
1103
1104 if (j->timer_event_source) {
1105 /* Update only if JobRunningTimeoutSec= results in earlier timeout */
1106 r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time);
1107 if (r < 0)
1108 return r;
1109
1110 if (old_timeout_time <= timeout_time)
1111 return 0;
1112
1113 return sd_event_source_set_time(j->timer_event_source, timeout_time);
1114 }
1115 } else {
1116 if (j->timer_event_source)
1117 return 0;
1118
1119 j->begin_usec = now(CLOCK_MONOTONIC);
1120
1121 if (j->unit->job_timeout == USEC_INFINITY)
1122 return 0;
1123
1124 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1125 }
1126
1127 r = sd_event_add_time(
1128 j->manager->event,
1129 &j->timer_event_source,
1130 CLOCK_MONOTONIC,
1131 timeout_time, 0,
1132 job_dispatch_timer, j);
1133 if (r < 0)
1134 return r;
1135
1136 (void) sd_event_source_set_description(j->timer_event_source, "job-start");
1137
1138 return 0;
1139 }
1140
1141 void job_add_to_run_queue(Job *j) {
1142 int r;
1143
1144 assert(j);
1145 assert(j->installed);
1146
1147 if (j->in_run_queue)
1148 return;
1149
1150 if (prioq_isempty(j->manager->run_queue)) {
1151 r = sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT);
1152 if (r < 0)
1153 log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
1154 }
1155
1156 r = prioq_put(j->manager->run_queue, j, &j->run_queue_idx);
1157 if (r < 0)
1158 log_warning_errno(r, "Failed put job in run queue, ignoring: %m");
1159 else
1160 j->in_run_queue = true;
1161 }
1162
1163 void job_add_to_dbus_queue(Job *j) {
1164 assert(j);
1165 assert(j->installed);
1166
1167 if (j->in_dbus_queue)
1168 return;
1169
1170 /* We don't check if anybody is subscribed here, since this
1171 * job might just have been created and not yet assigned to a
1172 * connection/client. */
1173
1174 LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j);
1175 j->in_dbus_queue = true;
1176 }
1177
1178 char *job_dbus_path(Job *j) {
1179 char *p;
1180
1181 assert(j);
1182
1183 if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0)
1184 return NULL;
1185
1186 return p;
1187 }
1188
1189 int job_serialize(Job *j, FILE *f) {
1190 assert(j);
1191 assert(f);
1192
1193 (void) serialize_item_format(f, "job-id", "%u", j->id);
1194 (void) serialize_item(f, "job-type", job_type_to_string(j->type));
1195 (void) serialize_item(f, "job-state", job_state_to_string(j->state));
1196 (void) serialize_bool(f, "job-irreversible", j->irreversible);
1197 (void) serialize_bool(f, "job-sent-dbus-new-signal", j->sent_dbus_new_signal);
1198 (void) serialize_bool(f, "job-ignore-order", j->ignore_order);
1199
1200 if (j->begin_usec > 0)
1201 (void) serialize_usec(f, "job-begin", j->begin_usec);
1202 if (j->begin_running_usec > 0)
1203 (void) serialize_usec(f, "job-begin-running", j->begin_running_usec);
1204
1205 bus_track_serialize(j->bus_track, f, "subscribed");
1206
1207 /* End marker */
1208 fputc('\n', f);
1209 return 0;
1210 }
1211
1212 int job_deserialize(Job *j, FILE *f) {
1213 int r;
1214
1215 assert(j);
1216 assert(f);
1217
1218 for (;;) {
1219 _cleanup_free_ char *line = NULL;
1220 char *l, *v;
1221 size_t k;
1222
1223 r = read_line(f, LONG_LINE_MAX, &line);
1224 if (r < 0)
1225 return log_error_errno(r, "Failed to read serialization line: %m");
1226 if (r == 0)
1227 return 0;
1228
1229 l = strstrip(line);
1230
1231 /* End marker */
1232 if (isempty(l))
1233 return 0;
1234
1235 k = strcspn(l, "=");
1236
1237 if (l[k] == '=') {
1238 l[k] = 0;
1239 v = l+k+1;
1240 } else
1241 v = l+k;
1242
1243 if (streq(l, "job-id")) {
1244
1245 if (safe_atou32(v, &j->id) < 0)
1246 log_debug("Failed to parse job id value: %s", v);
1247
1248 } else if (streq(l, "job-type")) {
1249 JobType t;
1250
1251 t = job_type_from_string(v);
1252 if (t < 0)
1253 log_debug("Failed to parse job type: %s", v);
1254 else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION)
1255 log_debug("Cannot deserialize job of type: %s", v);
1256 else
1257 j->type = t;
1258
1259 } else if (streq(l, "job-state")) {
1260 JobState s;
1261
1262 s = job_state_from_string(v);
1263 if (s < 0)
1264 log_debug("Failed to parse job state: %s", v);
1265 else
1266 job_set_state(j, s);
1267
1268 } else if (streq(l, "job-irreversible")) {
1269 int b;
1270
1271 b = parse_boolean(v);
1272 if (b < 0)
1273 log_debug("Failed to parse job irreversible flag: %s", v);
1274 else
1275 j->irreversible = j->irreversible || b;
1276
1277 } else if (streq(l, "job-sent-dbus-new-signal")) {
1278 int b;
1279
1280 b = parse_boolean(v);
1281 if (b < 0)
1282 log_debug("Failed to parse job sent_dbus_new_signal flag: %s", v);
1283 else
1284 j->sent_dbus_new_signal = j->sent_dbus_new_signal || b;
1285
1286 } else if (streq(l, "job-ignore-order")) {
1287 int b;
1288
1289 b = parse_boolean(v);
1290 if (b < 0)
1291 log_debug("Failed to parse job ignore_order flag: %s", v);
1292 else
1293 j->ignore_order = j->ignore_order || b;
1294
1295 } else if (streq(l, "job-begin"))
1296 (void) deserialize_usec(v, &j->begin_usec);
1297
1298 else if (streq(l, "job-begin-running"))
1299 (void) deserialize_usec(v, &j->begin_running_usec);
1300
1301 else if (streq(l, "subscribed")) {
1302 if (strv_extend(&j->deserialized_clients, v) < 0)
1303 return log_oom();
1304 } else
1305 log_debug("Unknown job serialization key: %s", l);
1306 }
1307 }
1308
1309 int job_coldplug(Job *j) {
1310 int r;
1311 usec_t timeout_time = USEC_INFINITY;
1312
1313 assert(j);
1314
1315 /* After deserialization is complete and the bus connection
1316 * set up again, let's start watching our subscribers again */
1317 (void) bus_job_coldplug_bus_track(j);
1318
1319 if (j->state == JOB_WAITING)
1320 job_add_to_run_queue(j);
1321
1322 /* Maybe due to new dependencies we don't actually need this job anymore? */
1323 job_add_to_gc_queue(j);
1324
1325 /* Create timer only when job began or began running and the respective timeout is finite.
1326 * Follow logic of job_start_timer() if both timeouts are finite */
1327 if (j->begin_usec == 0)
1328 return 0;
1329
1330 if (j->unit->job_timeout != USEC_INFINITY)
1331 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1332
1333 if (timestamp_is_set(j->begin_running_usec))
1334 timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout));
1335
1336 if (timeout_time == USEC_INFINITY)
1337 return 0;
1338
1339 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
1340
1341 r = sd_event_add_time(
1342 j->manager->event,
1343 &j->timer_event_source,
1344 CLOCK_MONOTONIC,
1345 timeout_time, 0,
1346 job_dispatch_timer, j);
1347 if (r < 0)
1348 log_debug_errno(r, "Failed to restart timeout for job: %m");
1349
1350 (void) sd_event_source_set_description(j->timer_event_source, "job-timeout");
1351
1352 return r;
1353 }
1354
1355 void job_shutdown_magic(Job *j) {
1356 assert(j);
1357
1358 /* The shutdown target gets some special treatment here: we
1359 * tell the kernel to begin with flushing its disk caches, to
1360 * optimize shutdown time a bit. Ideally we wouldn't hardcode
1361 * this magic into PID 1. However all other processes aren't
1362 * options either since they'd exit much sooner than PID 1 and
1363 * asynchronous sync() would cause their exit to be
1364 * delayed. */
1365
1366 if (j->type != JOB_START)
1367 return;
1368
1369 if (!MANAGER_IS_SYSTEM(j->unit->manager))
1370 return;
1371
1372 if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET))
1373 return;
1374
1375 /* In case messages on console has been disabled on boot */
1376 j->unit->manager->no_console_output = false;
1377
1378 if (detect_container() > 0)
1379 return;
1380
1381 (void) asynchronous_sync(NULL);
1382 }
1383
1384 int job_get_timeout(Job *j, usec_t *timeout) {
1385 usec_t x = USEC_INFINITY, y = USEC_INFINITY;
1386 Unit *u = j->unit;
1387 int r;
1388
1389 assert(u);
1390
1391 if (j->timer_event_source) {
1392 r = sd_event_source_get_time(j->timer_event_source, &x);
1393 if (r < 0)
1394 return r;
1395 }
1396
1397 if (UNIT_VTABLE(u)->get_timeout) {
1398 r = UNIT_VTABLE(u)->get_timeout(u, &y);
1399 if (r < 0)
1400 return r;
1401 }
1402
1403 if (x == USEC_INFINITY && y == USEC_INFINITY)
1404 return 0;
1405
1406 *timeout = MIN(x, y);
1407 return 1;
1408 }
1409
1410 bool job_may_gc(Job *j) {
1411 Unit *other;
1412 Iterator i;
1413 void *v;
1414
1415 assert(j);
1416
1417 /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their
1418 * own and just track external state. For now the only unit type that qualifies for this are .device units.
1419 * Returns true if the job can be collected. */
1420
1421 if (!UNIT_VTABLE(j->unit)->gc_jobs)
1422 return false;
1423
1424 if (sd_bus_track_count(j->bus_track) > 0)
1425 return false;
1426
1427 /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections
1428 * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once
1429 * referenced by one, and reset this whenever we notice that no private bus connections are around. This means
1430 * the GC is a bit too conservative when it comes to jobs created by private bus connections. */
1431 if (j->ref_by_private_bus) {
1432 if (set_isempty(j->unit->manager->private_buses))
1433 j->ref_by_private_bus = false;
1434 else
1435 return false;
1436 }
1437
1438 if (j->type == JOB_NOP)
1439 return false;
1440
1441 /* The logic is inverse to job_is_runnable, we cannot GC as long as we block any job. */
1442 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i)
1443 if (other->job && job_compare(j, other->job, UNIT_BEFORE) < 0)
1444 return false;
1445
1446 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i)
1447 if (other->job && job_compare(j, other->job, UNIT_AFTER) < 0)
1448 return false;
1449
1450 return true;
1451 }
1452
1453 void job_add_to_gc_queue(Job *j) {
1454 assert(j);
1455
1456 if (j->in_gc_queue)
1457 return;
1458
1459 if (!job_may_gc(j))
1460 return;
1461
1462 LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j);
1463 j->in_gc_queue = true;
1464 }
1465
1466 static int job_compare_id(Job * const *a, Job * const *b) {
1467 return CMP((*a)->id, (*b)->id);
1468 }
1469
1470 static size_t sort_job_list(Job **list, size_t n) {
1471 Job *previous = NULL;
1472 size_t a, b;
1473
1474 /* Order by numeric IDs */
1475 typesafe_qsort(list, n, job_compare_id);
1476
1477 /* Filter out duplicates */
1478 for (a = 0, b = 0; a < n; a++) {
1479
1480 if (previous == list[a])
1481 continue;
1482
1483 previous = list[b++] = list[a];
1484 }
1485
1486 return b;
1487 }
1488
1489 int job_get_before(Job *j, Job*** ret) {
1490 _cleanup_free_ Job** list = NULL;
1491 size_t n = 0, n_allocated = 0;
1492 Unit *other = NULL;
1493 Iterator i;
1494 void *v;
1495
1496 /* Returns a list of all pending jobs that need to finish before this job may be started. */
1497
1498 assert(j);
1499 assert(ret);
1500
1501 if (j->ignore_order) {
1502 *ret = NULL;
1503 return 0;
1504 }
1505
1506 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1507 if (!other->job)
1508 continue;
1509 if (job_compare(j, other->job, UNIT_AFTER) <= 0)
1510 continue;
1511
1512 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1513 return -ENOMEM;
1514 list[n++] = other->job;
1515 }
1516
1517 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1518 if (!other->job)
1519 continue;
1520 if (job_compare(j, other->job, UNIT_BEFORE) <= 0)
1521 continue;
1522
1523 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1524 return -ENOMEM;
1525 list[n++] = other->job;
1526 }
1527
1528 n = sort_job_list(list, n);
1529
1530 *ret = TAKE_PTR(list);
1531
1532 return (int) n;
1533 }
1534
1535 int job_get_after(Job *j, Job*** ret) {
1536 _cleanup_free_ Job** list = NULL;
1537 size_t n = 0, n_allocated = 0;
1538 Unit *other = NULL;
1539 void *v;
1540 Iterator i;
1541
1542 assert(j);
1543 assert(ret);
1544
1545 /* Returns a list of all pending jobs that are waiting for this job to finish. */
1546
1547 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1548 if (!other->job)
1549 continue;
1550
1551 if (other->job->ignore_order)
1552 continue;
1553
1554 if (job_compare(j, other->job, UNIT_BEFORE) >= 0)
1555 continue;
1556
1557 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1558 return -ENOMEM;
1559 list[n++] = other->job;
1560 }
1561
1562 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1563 if (!other->job)
1564 continue;
1565
1566 if (other->job->ignore_order)
1567 continue;
1568
1569 if (job_compare(j, other->job, UNIT_AFTER) >= 0)
1570 continue;
1571
1572 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1573 return -ENOMEM;
1574 list[n++] = other->job;
1575 }
1576
1577 n = sort_job_list(list, n);
1578
1579 *ret = TAKE_PTR(list);
1580
1581 return (int) n;
1582 }
1583
1584 static const char* const job_state_table[_JOB_STATE_MAX] = {
1585 [JOB_WAITING] = "waiting",
1586 [JOB_RUNNING] = "running",
1587 };
1588
1589 DEFINE_STRING_TABLE_LOOKUP(job_state, JobState);
1590
1591 static const char* const job_type_table[_JOB_TYPE_MAX] = {
1592 [JOB_START] = "start",
1593 [JOB_VERIFY_ACTIVE] = "verify-active",
1594 [JOB_STOP] = "stop",
1595 [JOB_RELOAD] = "reload",
1596 [JOB_RELOAD_OR_START] = "reload-or-start",
1597 [JOB_RESTART] = "restart",
1598 [JOB_TRY_RESTART] = "try-restart",
1599 [JOB_TRY_RELOAD] = "try-reload",
1600 [JOB_NOP] = "nop",
1601 };
1602
1603 DEFINE_STRING_TABLE_LOOKUP(job_type, JobType);
1604
1605 static const char* const job_mode_table[_JOB_MODE_MAX] = {
1606 [JOB_FAIL] = "fail",
1607 [JOB_REPLACE] = "replace",
1608 [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly",
1609 [JOB_ISOLATE] = "isolate",
1610 [JOB_FLUSH] = "flush",
1611 [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies",
1612 [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements",
1613 };
1614
1615 DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode);
1616
1617 static const char* const job_result_table[_JOB_RESULT_MAX] = {
1618 [JOB_DONE] = "done",
1619 [JOB_CANCELED] = "canceled",
1620 [JOB_TIMEOUT] = "timeout",
1621 [JOB_FAILED] = "failed",
1622 [JOB_DEPENDENCY] = "dependency",
1623 [JOB_SKIPPED] = "skipped",
1624 [JOB_INVALID] = "invalid",
1625 [JOB_ASSERT] = "assert",
1626 [JOB_UNSUPPORTED] = "unsupported",
1627 [JOB_COLLECTED] = "collected",
1628 [JOB_ONCE] = "once",
1629 };
1630
1631 DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);
1632
1633 const char* job_type_to_access_method(JobType t) {
1634 assert(t >= 0);
1635 assert(t < _JOB_TYPE_MAX);
1636
1637 if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART))
1638 return "start";
1639 else if (t == JOB_STOP)
1640 return "stop";
1641 else
1642 return "reload";
1643 }
1644
1645 /*
1646 * assume_dep assumed dependency between units (a is before/after b)
1647 *
1648 * Returns
1649 * 0 jobs are independent,
1650 * >0 a should run after b,
1651 * <0 a should run before b,
1652 *
1653 * The logic means that for a service a and a service b where b.After=a:
1654 *
1655 * start a + start b → 1st step start a, 2nd step start b
1656 * start a + stop b → 1st step stop b, 2nd step start a
1657 * stop a + start b → 1st step stop a, 2nd step start b
1658 * stop a + stop b → 1st step stop b, 2nd step stop a
1659 *
1660 * This has the side effect that restarts are properly
1661 * synchronized too.
1662 */
1663 int job_compare(Job *a, Job *b, UnitDependency assume_dep) {
1664 assert(a->type < _JOB_TYPE_MAX_IN_TRANSACTION);
1665 assert(b->type < _JOB_TYPE_MAX_IN_TRANSACTION);
1666 assert(IN_SET(assume_dep, UNIT_AFTER, UNIT_BEFORE));
1667
1668 /* Trivial cases first */
1669 if (a->type == JOB_NOP || b->type == JOB_NOP)
1670 return 0;
1671
1672 if (a->ignore_order || b->ignore_order)
1673 return 0;
1674
1675 if (assume_dep == UNIT_AFTER)
1676 return -job_compare(b, a, UNIT_BEFORE);
1677
1678 /* Let's make it simple, JOB_STOP goes always first (in case both ua and ub stop,
1679 * then ub's stop goes first anyway).
1680 * JOB_RESTART is JOB_STOP in disguise (before it is patched to JOB_START). */
1681 if (IN_SET(b->type, JOB_STOP, JOB_RESTART))
1682 return 1;
1683 else
1684 return -1;
1685 }