]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/job.c
Merge pull request #8623 from yuwata/resolvectl
[thirdparty/systemd.git] / src / core / job.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2 /***
3 This file is part of systemd.
4
5 Copyright 2010 Lennart Poettering
6 ***/
7
8 #include <errno.h>
9
10 #include "sd-id128.h"
11 #include "sd-messages.h"
12
13 #include "alloc-util.h"
14 #include "async.h"
15 #include "dbus-job.h"
16 #include "dbus.h"
17 #include "escape.h"
18 #include "job.h"
19 #include "log.h"
20 #include "macro.h"
21 #include "parse-util.h"
22 #include "set.h"
23 #include "special.h"
24 #include "stdio-util.h"
25 #include "string-table.h"
26 #include "string-util.h"
27 #include "strv.h"
28 #include "terminal-util.h"
29 #include "unit.h"
30 #include "virt.h"
31
32 Job* job_new_raw(Unit *unit) {
33 Job *j;
34
35 /* used for deserialization */
36
37 assert(unit);
38
39 j = new0(Job, 1);
40 if (!j)
41 return NULL;
42
43 j->manager = unit->manager;
44 j->unit = unit;
45 j->type = _JOB_TYPE_INVALID;
46
47 return j;
48 }
49
50 Job* job_new(Unit *unit, JobType type) {
51 Job *j;
52
53 assert(type < _JOB_TYPE_MAX);
54
55 j = job_new_raw(unit);
56 if (!j)
57 return NULL;
58
59 j->id = j->manager->current_job_id++;
60 j->type = type;
61
62 /* We don't link it here, that's what job_dependency() is for */
63
64 return j;
65 }
66
67 void job_free(Job *j) {
68 assert(j);
69 assert(!j->installed);
70 assert(!j->transaction_prev);
71 assert(!j->transaction_next);
72 assert(!j->subject_list);
73 assert(!j->object_list);
74
75 if (j->in_run_queue)
76 LIST_REMOVE(run_queue, j->manager->run_queue, j);
77
78 if (j->in_dbus_queue)
79 LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j);
80
81 if (j->in_gc_queue)
82 LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j);
83
84 sd_event_source_unref(j->timer_event_source);
85
86 sd_bus_track_unref(j->bus_track);
87 strv_free(j->deserialized_clients);
88
89 free(j);
90 }
91
92 static void job_set_state(Job *j, JobState state) {
93 assert(j);
94 assert(state >= 0);
95 assert(state < _JOB_STATE_MAX);
96
97 if (j->state == state)
98 return;
99
100 j->state = state;
101
102 if (!j->installed)
103 return;
104
105 if (j->state == JOB_RUNNING)
106 j->unit->manager->n_running_jobs++;
107 else {
108 assert(j->state == JOB_WAITING);
109 assert(j->unit->manager->n_running_jobs > 0);
110
111 j->unit->manager->n_running_jobs--;
112
113 if (j->unit->manager->n_running_jobs <= 0)
114 j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source);
115 }
116 }
117
118 void job_uninstall(Job *j) {
119 Job **pj;
120
121 assert(j->installed);
122
123 job_set_state(j, JOB_WAITING);
124
125 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
126 assert(*pj == j);
127
128 /* Detach from next 'bigger' objects */
129
130 /* daemon-reload should be transparent to job observers */
131 if (!MANAGER_IS_RELOADING(j->manager))
132 bus_job_send_removed_signal(j);
133
134 *pj = NULL;
135
136 unit_add_to_gc_queue(j->unit);
137
138 hashmap_remove(j->manager->jobs, UINT32_TO_PTR(j->id));
139 j->installed = false;
140 }
141
142 static bool job_type_allows_late_merge(JobType t) {
143 /* Tells whether it is OK to merge a job of type 't' with an already
144 * running job.
145 * Reloads cannot be merged this way. Think of the sequence:
146 * 1. Reload of a daemon is in progress; the daemon has already loaded
147 * its config file, but hasn't completed the reload operation yet.
148 * 2. Edit foo's config file.
149 * 3. Trigger another reload to have the daemon use the new config.
150 * Should the second reload job be merged into the first one, the daemon
151 * would not know about the new config.
152 * JOB_RESTART jobs on the other hand can be merged, because they get
153 * patched into JOB_START after stopping the unit. So if we see a
154 * JOB_RESTART running, it means the unit hasn't stopped yet and at
155 * this time the merge is still allowed. */
156 return t != JOB_RELOAD;
157 }
158
159 static void job_merge_into_installed(Job *j, Job *other) {
160 assert(j->installed);
161 assert(j->unit == other->unit);
162
163 if (j->type != JOB_NOP)
164 job_type_merge_and_collapse(&j->type, other->type, j->unit);
165 else
166 assert(other->type == JOB_NOP);
167
168 j->irreversible = j->irreversible || other->irreversible;
169 j->ignore_order = j->ignore_order || other->ignore_order;
170 }
171
172 Job* job_install(Job *j) {
173 Job **pj;
174 Job *uj;
175
176 assert(!j->installed);
177 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
178 assert(j->state == JOB_WAITING);
179
180 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
181 uj = *pj;
182
183 if (uj) {
184 if (job_type_is_conflicting(uj->type, j->type))
185 job_finish_and_invalidate(uj, JOB_CANCELED, false, false);
186 else {
187 /* not conflicting, i.e. mergeable */
188
189 if (uj->state == JOB_WAITING ||
190 (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) {
191 job_merge_into_installed(uj, j);
192 log_unit_debug(uj->unit,
193 "Merged into installed job %s/%s as %u",
194 uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id);
195 return uj;
196 } else {
197 /* already running and not safe to merge into */
198 /* Patch uj to become a merged job and re-run it. */
199 /* XXX It should be safer to queue j to run after uj finishes, but it is
200 * not currently possible to have more than one installed job per unit. */
201 job_merge_into_installed(uj, j);
202 log_unit_debug(uj->unit,
203 "Merged into running job, re-running: %s/%s as %u",
204 uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id);
205
206 job_set_state(uj, JOB_WAITING);
207 return uj;
208 }
209 }
210 }
211
212 /* Install the job */
213 *pj = j;
214 j->installed = true;
215
216 j->manager->n_installed_jobs++;
217 log_unit_debug(j->unit,
218 "Installed new job %s/%s as %u",
219 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
220
221 job_add_to_gc_queue(j);
222
223 return j;
224 }
225
226 int job_install_deserialized(Job *j) {
227 Job **pj;
228
229 assert(!j->installed);
230
231 if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION) {
232 log_debug("Invalid job type %s in deserialization.", strna(job_type_to_string(j->type)));
233 return -EINVAL;
234 }
235
236 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
237 if (*pj) {
238 log_unit_debug(j->unit, "Unit already has a job installed. Not installing deserialized job.");
239 return -EEXIST;
240 }
241
242 *pj = j;
243 j->installed = true;
244
245 if (j->state == JOB_RUNNING)
246 j->unit->manager->n_running_jobs++;
247
248 log_unit_debug(j->unit,
249 "Reinstalled deserialized job %s/%s as %u",
250 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
251 return 0;
252 }
253
254 JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) {
255 JobDependency *l;
256
257 assert(object);
258
259 /* Adds a new job link, which encodes that the 'subject' job
260 * needs the 'object' job in some way. If 'subject' is NULL
261 * this means the 'anchor' job (i.e. the one the user
262 * explicitly asked for) is the requester. */
263
264 l = new0(JobDependency, 1);
265 if (!l)
266 return NULL;
267
268 l->subject = subject;
269 l->object = object;
270 l->matters = matters;
271 l->conflicts = conflicts;
272
273 if (subject)
274 LIST_PREPEND(subject, subject->subject_list, l);
275
276 LIST_PREPEND(object, object->object_list, l);
277
278 return l;
279 }
280
281 void job_dependency_free(JobDependency *l) {
282 assert(l);
283
284 if (l->subject)
285 LIST_REMOVE(subject, l->subject->subject_list, l);
286
287 LIST_REMOVE(object, l->object->object_list, l);
288
289 free(l);
290 }
291
292 void job_dump(Job *j, FILE*f, const char *prefix) {
293 assert(j);
294 assert(f);
295
296 prefix = strempty(prefix);
297
298 fprintf(f,
299 "%s-> Job %u:\n"
300 "%s\tAction: %s -> %s\n"
301 "%s\tState: %s\n"
302 "%s\tIrreversible: %s\n"
303 "%s\tMay GC: %s\n",
304 prefix, j->id,
305 prefix, j->unit->id, job_type_to_string(j->type),
306 prefix, job_state_to_string(j->state),
307 prefix, yes_no(j->irreversible),
308 prefix, yes_no(job_may_gc(j)));
309 }
310
311 /*
312 * Merging is commutative, so imagine the matrix as symmetric. We store only
313 * its lower triangle to avoid duplication. We don't store the main diagonal,
314 * because A merged with A is simply A.
315 *
316 * If the resulting type is collapsed immediately afterwards (to get rid of
317 * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain),
318 * the following properties hold:
319 *
320 * Merging is associative! A merged with B, and then merged with C is the same
321 * as A merged with the result of B merged with C.
322 *
323 * Mergeability is transitive! If A can be merged with B and B with C then
324 * A also with C.
325 *
326 * Also, if A merged with B cannot be merged with C, then either A or B cannot
327 * be merged with C either.
328 */
329 static const JobType job_merging_table[] = {
330 /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */
331 /*********************************************************************************/
332 /*JOB_START */
333 /*JOB_VERIFY_ACTIVE */ JOB_START,
334 /*JOB_STOP */ -1, -1,
335 /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1,
336 /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART,
337 };
338
339 JobType job_type_lookup_merge(JobType a, JobType b) {
340 assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2);
341 assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING);
342 assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING);
343
344 if (a == b)
345 return a;
346
347 if (a < b) {
348 JobType tmp = a;
349 a = b;
350 b = tmp;
351 }
352
353 return job_merging_table[(a - 1) * a / 2 + b];
354 }
355
356 bool job_type_is_redundant(JobType a, UnitActiveState b) {
357 switch (a) {
358
359 case JOB_START:
360 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
361
362 case JOB_STOP:
363 return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED);
364
365 case JOB_VERIFY_ACTIVE:
366 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
367
368 case JOB_RELOAD:
369 return
370 b == UNIT_RELOADING;
371
372 case JOB_RESTART:
373 return
374 b == UNIT_ACTIVATING;
375
376 case JOB_NOP:
377 return true;
378
379 default:
380 assert_not_reached("Invalid job type");
381 }
382 }
383
384 JobType job_type_collapse(JobType t, Unit *u) {
385 UnitActiveState s;
386
387 switch (t) {
388
389 case JOB_TRY_RESTART:
390 s = unit_active_state(u);
391 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
392 return JOB_NOP;
393
394 return JOB_RESTART;
395
396 case JOB_TRY_RELOAD:
397 s = unit_active_state(u);
398 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
399 return JOB_NOP;
400
401 return JOB_RELOAD;
402
403 case JOB_RELOAD_OR_START:
404 s = unit_active_state(u);
405 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s))
406 return JOB_START;
407
408 return JOB_RELOAD;
409
410 default:
411 return t;
412 }
413 }
414
415 int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) {
416 JobType t;
417
418 t = job_type_lookup_merge(*a, b);
419 if (t < 0)
420 return -EEXIST;
421
422 *a = job_type_collapse(t, u);
423 return 0;
424 }
425
426 static bool job_is_runnable(Job *j) {
427 Iterator i;
428 Unit *other;
429 void *v;
430
431 assert(j);
432 assert(j->installed);
433
434 /* Checks whether there is any job running for the units this
435 * job needs to be running after (in the case of a 'positive'
436 * job type) or before (in the case of a 'negative' job
437 * type. */
438
439 /* Note that unit types have a say in what is runnable,
440 * too. For example, if they return -EAGAIN from
441 * unit_start() they can indicate they are not
442 * runnable yet. */
443
444 /* First check if there is an override */
445 if (j->ignore_order)
446 return true;
447
448 if (j->type == JOB_NOP)
449 return true;
450
451 if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) {
452 /* Immediate result is that the job is or might be
453 * started. In this case let's wait for the
454 * dependencies, regardless whether they are
455 * starting or stopping something. */
456
457 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i)
458 if (other->job)
459 return false;
460 }
461
462 /* Also, if something else is being stopped and we should
463 * change state after it, then let's wait. */
464
465 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i)
466 if (other->job &&
467 IN_SET(other->job->type, JOB_STOP, JOB_RESTART))
468 return false;
469
470 /* This means that for a service a and a service b where b
471 * shall be started after a:
472 *
473 * start a + start b → 1st step start a, 2nd step start b
474 * start a + stop b → 1st step stop b, 2nd step start a
475 * stop a + start b → 1st step stop a, 2nd step start b
476 * stop a + stop b → 1st step stop b, 2nd step stop a
477 *
478 * This has the side effect that restarts are properly
479 * synchronized too. */
480
481 return true;
482 }
483
484 static void job_change_type(Job *j, JobType newtype) {
485 assert(j);
486
487 log_unit_debug(j->unit,
488 "Converting job %s/%s -> %s/%s",
489 j->unit->id, job_type_to_string(j->type),
490 j->unit->id, job_type_to_string(newtype));
491
492 j->type = newtype;
493 }
494
495 static int job_perform_on_unit(Job **j) {
496 uint32_t id;
497 Manager *m;
498 JobType t;
499 Unit *u;
500 int r;
501
502 /* While we execute this operation the job might go away (for
503 * example: because it finishes immediately or is replaced by
504 * a new, conflicting job.) To make sure we don't access a
505 * freed job later on we store the id here, so that we can
506 * verify the job is still valid. */
507
508 assert(j);
509 assert(*j);
510
511 m = (*j)->manager;
512 u = (*j)->unit;
513 t = (*j)->type;
514 id = (*j)->id;
515
516 switch (t) {
517 case JOB_START:
518 r = unit_start(u);
519 break;
520
521 case JOB_RESTART:
522 t = JOB_STOP;
523 _fallthrough_;
524 case JOB_STOP:
525 r = unit_stop(u);
526 break;
527
528 case JOB_RELOAD:
529 r = unit_reload(u);
530 break;
531
532 default:
533 assert_not_reached("Invalid job type");
534 }
535
536 /* Log if the job still exists and the start/stop/reload function
537 * actually did something. */
538 *j = manager_get_job(m, id);
539 if (*j && r > 0)
540 unit_status_emit_starting_stopping_reloading(u, t);
541
542 return r;
543 }
544
545 int job_run_and_invalidate(Job *j) {
546 int r;
547
548 assert(j);
549 assert(j->installed);
550 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
551 assert(j->in_run_queue);
552
553 LIST_REMOVE(run_queue, j->manager->run_queue, j);
554 j->in_run_queue = false;
555
556 if (j->state != JOB_WAITING)
557 return 0;
558
559 if (!job_is_runnable(j))
560 return -EAGAIN;
561
562 job_start_timer(j, true);
563 job_set_state(j, JOB_RUNNING);
564 job_add_to_dbus_queue(j);
565
566 switch (j->type) {
567
568 case JOB_VERIFY_ACTIVE: {
569 UnitActiveState t = unit_active_state(j->unit);
570 if (UNIT_IS_ACTIVE_OR_RELOADING(t))
571 r = -EALREADY;
572 else if (t == UNIT_ACTIVATING)
573 r = -EAGAIN;
574 else
575 r = -EBADR;
576 break;
577 }
578
579 case JOB_START:
580 case JOB_STOP:
581 case JOB_RESTART:
582 r = job_perform_on_unit(&j);
583
584 /* If the unit type does not support starting/stopping,
585 * then simply wait. */
586 if (r == -EBADR)
587 r = 0;
588 break;
589
590 case JOB_RELOAD:
591 r = job_perform_on_unit(&j);
592 break;
593
594 case JOB_NOP:
595 r = -EALREADY;
596 break;
597
598 default:
599 assert_not_reached("Unknown job type");
600 }
601
602 if (j) {
603 if (r == -EALREADY)
604 r = job_finish_and_invalidate(j, JOB_DONE, true, true);
605 else if (r == -EBADR)
606 r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false);
607 else if (r == -ENOEXEC)
608 r = job_finish_and_invalidate(j, JOB_INVALID, true, false);
609 else if (r == -EPROTO)
610 r = job_finish_and_invalidate(j, JOB_ASSERT, true, false);
611 else if (r == -EOPNOTSUPP)
612 r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false);
613 else if (r == -ENOLINK)
614 r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
615 else if (r == -EAGAIN)
616 job_set_state(j, JOB_WAITING);
617 else if (r < 0)
618 r = job_finish_and_invalidate(j, JOB_FAILED, true, false);
619 }
620
621 return r;
622 }
623
624 _pure_ static const char *job_get_status_message_format(Unit *u, JobType t, JobResult result) {
625
626 static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = {
627 [JOB_DONE] = "Started %s.",
628 [JOB_TIMEOUT] = "Timed out starting %s.",
629 [JOB_FAILED] = "Failed to start %s.",
630 [JOB_DEPENDENCY] = "Dependency failed for %s.",
631 [JOB_ASSERT] = "Assertion failed for %s.",
632 [JOB_UNSUPPORTED] = "Starting of %s not supported.",
633 [JOB_COLLECTED] = "Unnecessary job for %s was removed.",
634 };
635 static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = {
636 [JOB_DONE] = "Stopped %s.",
637 [JOB_FAILED] = "Stopped (with error) %s.",
638 [JOB_TIMEOUT] = "Timed out stopping %s.",
639 };
640 static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = {
641 [JOB_DONE] = "Reloaded %s.",
642 [JOB_FAILED] = "Reload failed for %s.",
643 [JOB_TIMEOUT] = "Timed out reloading %s.",
644 };
645 /* When verify-active detects the unit is inactive, report it.
646 * Most likely a DEPEND warning from a requisiting unit will
647 * occur next and it's nice to see what was requisited. */
648 static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = {
649 [JOB_SKIPPED] = "%s is not active.",
650 };
651
652 const UnitStatusMessageFormats *format_table;
653 const char *format;
654
655 assert(u);
656 assert(t >= 0);
657 assert(t < _JOB_TYPE_MAX);
658
659 if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) {
660 format_table = &UNIT_VTABLE(u)->status_message_formats;
661 if (format_table) {
662 format = t == JOB_START ? format_table->finished_start_job[result] :
663 format_table->finished_stop_job[result];
664 if (format)
665 return format;
666 }
667 }
668
669 /* Return generic strings */
670 if (t == JOB_START)
671 return generic_finished_start_job[result];
672 else if (IN_SET(t, JOB_STOP, JOB_RESTART))
673 return generic_finished_stop_job[result];
674 else if (t == JOB_RELOAD)
675 return generic_finished_reload_job[result];
676 else if (t == JOB_VERIFY_ACTIVE)
677 return generic_finished_verify_active_job[result];
678
679 return NULL;
680 }
681
682 static const struct {
683 const char *color, *word;
684 } job_print_status_messages [_JOB_RESULT_MAX] = {
685 [JOB_DONE] = { ANSI_OK_COLOR, " OK " },
686 [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " },
687 [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" },
688 [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" },
689 [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " },
690 [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" },
691 [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" },
692 /* JOB_COLLECTED */
693 };
694
695 static void job_print_status_message(Unit *u, JobType t, JobResult result) {
696 const char *format;
697 const char *status;
698
699 assert(u);
700 assert(t >= 0);
701 assert(t < _JOB_TYPE_MAX);
702
703 /* Reload status messages have traditionally not been printed to console. */
704 if (t == JOB_RELOAD)
705 return;
706
707 if (!job_print_status_messages[result].word)
708 return;
709
710 format = job_get_status_message_format(u, t, result);
711 if (!format)
712 return;
713
714 if (log_get_show_color())
715 status = strjoina(job_print_status_messages[result].color,
716 job_print_status_messages[result].word,
717 ANSI_NORMAL);
718 else
719 status = job_print_status_messages[result].word;
720
721 if (result != JOB_DONE)
722 manager_flip_auto_status(u->manager, true);
723
724 DISABLE_WARNING_FORMAT_NONLITERAL;
725 unit_status_printf(u, status, format);
726 REENABLE_WARNING;
727
728 if (t == JOB_START && result == JOB_FAILED) {
729 _cleanup_free_ char *quoted;
730
731 quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH);
732 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted));
733 }
734 }
735
736 static void job_log_status_message(Unit *u, JobType t, JobResult result) {
737 const char *format, *mid;
738 char buf[LINE_MAX];
739 static const int job_result_log_level[_JOB_RESULT_MAX] = {
740 [JOB_DONE] = LOG_INFO,
741 [JOB_CANCELED] = LOG_INFO,
742 [JOB_TIMEOUT] = LOG_ERR,
743 [JOB_FAILED] = LOG_ERR,
744 [JOB_DEPENDENCY] = LOG_WARNING,
745 [JOB_SKIPPED] = LOG_NOTICE,
746 [JOB_INVALID] = LOG_INFO,
747 [JOB_ASSERT] = LOG_WARNING,
748 [JOB_UNSUPPORTED] = LOG_WARNING,
749 [JOB_COLLECTED] = LOG_INFO,
750 };
751
752 assert(u);
753 assert(t >= 0);
754 assert(t < _JOB_TYPE_MAX);
755
756 /* Skip printing if output goes to the console, and job_print_status_message()
757 will actually print something to the console. */
758 if (log_on_console() && job_print_status_messages[result].word)
759 return;
760
761 format = job_get_status_message_format(u, t, result);
762 if (!format)
763 return;
764
765 /* The description might be longer than the buffer, but that's OK,
766 * we'll just truncate it here. Note that we use snprintf() rather than
767 * xsprintf() on purpose here: we are fine with truncation and don't
768 * consider that an error. */
769 DISABLE_WARNING_FORMAT_NONLITERAL;
770 (void) snprintf(buf, sizeof(buf), format, unit_description(u));
771 REENABLE_WARNING;
772
773 switch (t) {
774
775 case JOB_START:
776 if (result == JOB_DONE)
777 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR;
778 else
779 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR;
780 break;
781
782 case JOB_RELOAD:
783 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR;
784 break;
785
786 case JOB_STOP:
787 case JOB_RESTART:
788 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR;
789 break;
790
791 default:
792 log_struct(job_result_log_level[result],
793 LOG_MESSAGE("%s", buf),
794 "JOB_TYPE=%s", job_type_to_string(t),
795 "JOB_RESULT=%s", job_result_to_string(result),
796 LOG_UNIT_ID(u),
797 LOG_UNIT_INVOCATION_ID(u),
798 NULL);
799 return;
800 }
801
802 log_struct(job_result_log_level[result],
803 LOG_MESSAGE("%s", buf),
804 "JOB_TYPE=%s", job_type_to_string(t),
805 "JOB_RESULT=%s", job_result_to_string(result),
806 LOG_UNIT_ID(u),
807 LOG_UNIT_INVOCATION_ID(u),
808 mid,
809 NULL);
810 }
811
812 static void job_emit_status_message(Unit *u, JobType t, JobResult result) {
813 assert(u);
814
815 /* No message if the job did not actually do anything due to failed condition. */
816 if (t == JOB_START && result == JOB_DONE && !u->condition_result)
817 return;
818
819 job_log_status_message(u, t, result);
820 job_print_status_message(u, t, result);
821 }
822
823 static void job_fail_dependencies(Unit *u, UnitDependency d) {
824 Unit *other;
825 Iterator i;
826 void *v;
827
828 assert(u);
829
830 HASHMAP_FOREACH_KEY(v, other, u->dependencies[d], i) {
831 Job *j = other->job;
832
833 if (!j)
834 continue;
835 if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE))
836 continue;
837
838 job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
839 }
840 }
841
842 int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) {
843 Unit *u;
844 Unit *other;
845 JobType t;
846 Iterator i;
847 void *v;
848
849 assert(j);
850 assert(j->installed);
851 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
852
853 u = j->unit;
854 t = j->type;
855
856 j->result = result;
857
858 log_unit_debug(u, "Job %s/%s finished, result=%s", u->id, job_type_to_string(t), job_result_to_string(result));
859
860 /* If this job did nothing to respective unit we don't log the status message */
861 if (!already)
862 job_emit_status_message(u, t, result);
863
864 /* Patch restart jobs so that they become normal start jobs */
865 if (result == JOB_DONE && t == JOB_RESTART) {
866
867 job_change_type(j, JOB_START);
868 job_set_state(j, JOB_WAITING);
869
870 job_add_to_dbus_queue(j);
871 job_add_to_run_queue(j);
872 job_add_to_gc_queue(j);
873
874 goto finish;
875 }
876
877 if (IN_SET(result, JOB_FAILED, JOB_INVALID))
878 j->manager->n_failed_jobs++;
879
880 job_uninstall(j);
881 job_free(j);
882
883 /* Fail depending jobs on failure */
884 if (result != JOB_DONE && recursive) {
885 if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) {
886 job_fail_dependencies(u, UNIT_REQUIRED_BY);
887 job_fail_dependencies(u, UNIT_REQUISITE_OF);
888 job_fail_dependencies(u, UNIT_BOUND_BY);
889 } else if (t == JOB_STOP)
890 job_fail_dependencies(u, UNIT_CONFLICTED_BY);
891 }
892
893 /* Trigger OnFailure dependencies that are not generated by
894 * the unit itself. We don't treat JOB_CANCELED as failure in
895 * this context. And JOB_FAILURE is already handled by the
896 * unit itself. */
897 if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) {
898 log_struct(LOG_NOTICE,
899 "JOB_TYPE=%s", job_type_to_string(t),
900 "JOB_RESULT=%s", job_result_to_string(result),
901 LOG_UNIT_ID(u),
902 LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.",
903 u->id,
904 job_type_to_string(t),
905 job_result_to_string(result)),
906 NULL);
907
908 unit_start_on_failure(u);
909 }
910
911 unit_trigger_notify(u);
912
913 finish:
914 /* Try to start the next jobs that can be started */
915 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER], i)
916 if (other->job) {
917 job_add_to_run_queue(other->job);
918 job_add_to_gc_queue(other->job);
919 }
920 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE], i)
921 if (other->job) {
922 job_add_to_run_queue(other->job);
923 job_add_to_gc_queue(other->job);
924 }
925
926 manager_check_finished(u->manager);
927
928 return 0;
929 }
930
931 static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) {
932 Job *j = userdata;
933 Unit *u;
934
935 assert(j);
936 assert(s == j->timer_event_source);
937
938 log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type));
939
940 u = j->unit;
941 job_finish_and_invalidate(j, JOB_TIMEOUT, true, false);
942
943 emergency_action(u->manager, u->job_timeout_action, u->job_timeout_reboot_arg, "job timed out");
944
945 return 0;
946 }
947
948 int job_start_timer(Job *j, bool job_running) {
949 int r;
950 usec_t timeout_time, old_timeout_time;
951
952 if (job_running) {
953 j->begin_running_usec = now(CLOCK_MONOTONIC);
954
955 if (j->unit->job_running_timeout == USEC_INFINITY)
956 return 0;
957
958 timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout);
959
960 if (j->timer_event_source) {
961 /* Update only if JobRunningTimeoutSec= results in earlier timeout */
962 r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time);
963 if (r < 0)
964 return r;
965
966 if (old_timeout_time <= timeout_time)
967 return 0;
968
969 return sd_event_source_set_time(j->timer_event_source, timeout_time);
970 }
971 } else {
972 if (j->timer_event_source)
973 return 0;
974
975 j->begin_usec = now(CLOCK_MONOTONIC);
976
977 if (j->unit->job_timeout == USEC_INFINITY)
978 return 0;
979
980 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
981 }
982
983 r = sd_event_add_time(
984 j->manager->event,
985 &j->timer_event_source,
986 CLOCK_MONOTONIC,
987 timeout_time, 0,
988 job_dispatch_timer, j);
989 if (r < 0)
990 return r;
991
992 (void) sd_event_source_set_description(j->timer_event_source, "job-start");
993
994 return 0;
995 }
996
997 void job_add_to_run_queue(Job *j) {
998 assert(j);
999 assert(j->installed);
1000
1001 if (j->in_run_queue)
1002 return;
1003
1004 if (!j->manager->run_queue)
1005 sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT);
1006
1007 LIST_PREPEND(run_queue, j->manager->run_queue, j);
1008 j->in_run_queue = true;
1009 }
1010
1011 void job_add_to_dbus_queue(Job *j) {
1012 assert(j);
1013 assert(j->installed);
1014
1015 if (j->in_dbus_queue)
1016 return;
1017
1018 /* We don't check if anybody is subscribed here, since this
1019 * job might just have been created and not yet assigned to a
1020 * connection/client. */
1021
1022 LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j);
1023 j->in_dbus_queue = true;
1024 }
1025
1026 char *job_dbus_path(Job *j) {
1027 char *p;
1028
1029 assert(j);
1030
1031 if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0)
1032 return NULL;
1033
1034 return p;
1035 }
1036
1037 int job_serialize(Job *j, FILE *f) {
1038 assert(j);
1039 assert(f);
1040
1041 fprintf(f, "job-id=%u\n", j->id);
1042 fprintf(f, "job-type=%s\n", job_type_to_string(j->type));
1043 fprintf(f, "job-state=%s\n", job_state_to_string(j->state));
1044 fprintf(f, "job-irreversible=%s\n", yes_no(j->irreversible));
1045 fprintf(f, "job-sent-dbus-new-signal=%s\n", yes_no(j->sent_dbus_new_signal));
1046 fprintf(f, "job-ignore-order=%s\n", yes_no(j->ignore_order));
1047
1048 if (j->begin_usec > 0)
1049 fprintf(f, "job-begin="USEC_FMT"\n", j->begin_usec);
1050 if (j->begin_running_usec > 0)
1051 fprintf(f, "job-begin-running="USEC_FMT"\n", j->begin_running_usec);
1052
1053 bus_track_serialize(j->bus_track, f, "subscribed");
1054
1055 /* End marker */
1056 fputc('\n', f);
1057 return 0;
1058 }
1059
1060 int job_deserialize(Job *j, FILE *f) {
1061 assert(j);
1062 assert(f);
1063
1064 for (;;) {
1065 char line[LINE_MAX], *l, *v;
1066 size_t k;
1067
1068 if (!fgets(line, sizeof(line), f)) {
1069 if (feof(f))
1070 return 0;
1071 return -errno;
1072 }
1073
1074 char_array_0(line);
1075 l = strstrip(line);
1076
1077 /* End marker */
1078 if (l[0] == 0)
1079 return 0;
1080
1081 k = strcspn(l, "=");
1082
1083 if (l[k] == '=') {
1084 l[k] = 0;
1085 v = l+k+1;
1086 } else
1087 v = l+k;
1088
1089 if (streq(l, "job-id")) {
1090
1091 if (safe_atou32(v, &j->id) < 0)
1092 log_debug("Failed to parse job id value %s", v);
1093
1094 } else if (streq(l, "job-type")) {
1095 JobType t;
1096
1097 t = job_type_from_string(v);
1098 if (t < 0)
1099 log_debug("Failed to parse job type %s", v);
1100 else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION)
1101 log_debug("Cannot deserialize job of type %s", v);
1102 else
1103 j->type = t;
1104
1105 } else if (streq(l, "job-state")) {
1106 JobState s;
1107
1108 s = job_state_from_string(v);
1109 if (s < 0)
1110 log_debug("Failed to parse job state %s", v);
1111 else
1112 job_set_state(j, s);
1113
1114 } else if (streq(l, "job-irreversible")) {
1115 int b;
1116
1117 b = parse_boolean(v);
1118 if (b < 0)
1119 log_debug("Failed to parse job irreversible flag %s", v);
1120 else
1121 j->irreversible = j->irreversible || b;
1122
1123 } else if (streq(l, "job-sent-dbus-new-signal")) {
1124 int b;
1125
1126 b = parse_boolean(v);
1127 if (b < 0)
1128 log_debug("Failed to parse job sent_dbus_new_signal flag %s", v);
1129 else
1130 j->sent_dbus_new_signal = j->sent_dbus_new_signal || b;
1131
1132 } else if (streq(l, "job-ignore-order")) {
1133 int b;
1134
1135 b = parse_boolean(v);
1136 if (b < 0)
1137 log_debug("Failed to parse job ignore_order flag %s", v);
1138 else
1139 j->ignore_order = j->ignore_order || b;
1140
1141 } else if (streq(l, "job-begin")) {
1142 unsigned long long ull;
1143
1144 if (sscanf(v, "%llu", &ull) != 1)
1145 log_debug("Failed to parse job-begin value %s", v);
1146 else
1147 j->begin_usec = ull;
1148
1149 } else if (streq(l, "job-begin-running")) {
1150 unsigned long long ull;
1151
1152 if (sscanf(v, "%llu", &ull) != 1)
1153 log_debug("Failed to parse job-begin-running value %s", v);
1154 else
1155 j->begin_running_usec = ull;
1156
1157 } else if (streq(l, "subscribed")) {
1158
1159 if (strv_extend(&j->deserialized_clients, v) < 0)
1160 log_oom();
1161 }
1162 }
1163 }
1164
1165 int job_coldplug(Job *j) {
1166 int r;
1167 usec_t timeout_time = USEC_INFINITY;
1168
1169 assert(j);
1170
1171 /* After deserialization is complete and the bus connection
1172 * set up again, let's start watching our subscribers again */
1173 (void) bus_job_coldplug_bus_track(j);
1174
1175 if (j->state == JOB_WAITING)
1176 job_add_to_run_queue(j);
1177
1178 /* Maybe due to new dependencies we don't actually need this job anymore? */
1179 job_add_to_gc_queue(j);
1180
1181 /* Create timer only when job began or began running and the respective timeout is finite.
1182 * Follow logic of job_start_timer() if both timeouts are finite */
1183 if (j->begin_usec == 0)
1184 return 0;
1185
1186 if (j->unit->job_timeout != USEC_INFINITY)
1187 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1188
1189 if (j->begin_running_usec > 0 && j->unit->job_running_timeout != USEC_INFINITY)
1190 timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout));
1191
1192 if (timeout_time == USEC_INFINITY)
1193 return 0;
1194
1195 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
1196
1197 r = sd_event_add_time(
1198 j->manager->event,
1199 &j->timer_event_source,
1200 CLOCK_MONOTONIC,
1201 timeout_time, 0,
1202 job_dispatch_timer, j);
1203 if (r < 0)
1204 log_debug_errno(r, "Failed to restart timeout for job: %m");
1205
1206 (void) sd_event_source_set_description(j->timer_event_source, "job-timeout");
1207
1208 return r;
1209 }
1210
1211 void job_shutdown_magic(Job *j) {
1212 assert(j);
1213
1214 /* The shutdown target gets some special treatment here: we
1215 * tell the kernel to begin with flushing its disk caches, to
1216 * optimize shutdown time a bit. Ideally we wouldn't hardcode
1217 * this magic into PID 1. However all other processes aren't
1218 * options either since they'd exit much sooner than PID 1 and
1219 * asynchronous sync() would cause their exit to be
1220 * delayed. */
1221
1222 if (j->type != JOB_START)
1223 return;
1224
1225 if (!MANAGER_IS_SYSTEM(j->unit->manager))
1226 return;
1227
1228 if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET))
1229 return;
1230
1231 /* In case messages on console has been disabled on boot */
1232 j->unit->manager->no_console_output = false;
1233
1234 if (detect_container() > 0)
1235 return;
1236
1237 (void) asynchronous_sync(NULL);
1238 }
1239
1240 int job_get_timeout(Job *j, usec_t *timeout) {
1241 usec_t x = USEC_INFINITY, y = USEC_INFINITY;
1242 Unit *u = j->unit;
1243 int r;
1244
1245 assert(u);
1246
1247 if (j->timer_event_source) {
1248 r = sd_event_source_get_time(j->timer_event_source, &x);
1249 if (r < 0)
1250 return r;
1251 }
1252
1253 if (UNIT_VTABLE(u)->get_timeout) {
1254 r = UNIT_VTABLE(u)->get_timeout(u, &y);
1255 if (r < 0)
1256 return r;
1257 }
1258
1259 if (x == USEC_INFINITY && y == USEC_INFINITY)
1260 return 0;
1261
1262 *timeout = MIN(x, y);
1263 return 1;
1264 }
1265
1266 bool job_may_gc(Job *j) {
1267 Unit *other;
1268 Iterator i;
1269 void *v;
1270
1271 assert(j);
1272
1273 /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their
1274 * own and just track external state. For now the only unit type that qualifies for this are .device units.
1275 * Returns true if the job can be collected. */
1276
1277 if (!UNIT_VTABLE(j->unit)->gc_jobs)
1278 return false;
1279
1280 if (sd_bus_track_count(j->bus_track) > 0)
1281 return false;
1282
1283 /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections
1284 * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once
1285 * referenced by one, and reset this whenever we notice that no private bus connections are around. This means
1286 * the GC is a bit too conservative when it comes to jobs created by private bus connections. */
1287 if (j->ref_by_private_bus) {
1288 if (set_isempty(j->unit->manager->private_buses))
1289 j->ref_by_private_bus = false;
1290 else
1291 return false;
1292 }
1293
1294 if (j->type == JOB_NOP)
1295 return false;
1296
1297 /* If a job is ordered after ours, and is to be started, then it needs to wait for us, regardless if we stop or
1298 * start, hence let's not GC in that case. */
1299 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1300 if (!other->job)
1301 continue;
1302
1303 if (other->job->ignore_order)
1304 continue;
1305
1306 if (IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD))
1307 return false;
1308 }
1309
1310 /* If we are going down, but something else is ordered After= us, then it needs to wait for us */
1311 if (IN_SET(j->type, JOB_STOP, JOB_RESTART))
1312 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1313 if (!other->job)
1314 continue;
1315
1316 if (other->job->ignore_order)
1317 continue;
1318
1319 return false;
1320 }
1321
1322 /* The logic above is kinda the inverse of the job_is_runnable() logic. Specifically, if the job "we" is
1323 * ordered before the job "other":
1324 *
1325 * we start + other start → stay
1326 * we start + other stop → gc
1327 * we stop + other start → stay
1328 * we stop + other stop → gc
1329 *
1330 * "we" are ordered after "other":
1331 *
1332 * we start + other start → gc
1333 * we start + other stop → gc
1334 * we stop + other start → stay
1335 * we stop + other stop → stay
1336 *
1337 */
1338
1339 return true;
1340 }
1341
1342 void job_add_to_gc_queue(Job *j) {
1343 assert(j);
1344
1345 if (j->in_gc_queue)
1346 return;
1347
1348 if (!job_may_gc(j))
1349 return;
1350
1351 LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j);
1352 j->in_gc_queue = true;
1353 }
1354
1355 static int job_compare(const void *a, const void *b) {
1356 Job *x = *(Job**) a, *y = *(Job**) b;
1357
1358 if (x->id < y->id)
1359 return -1;
1360 if (x->id > y->id)
1361 return 1;
1362
1363 return 0;
1364 }
1365
1366 static size_t sort_job_list(Job **list, size_t n) {
1367 Job *previous = NULL;
1368 size_t a, b;
1369
1370 /* Order by numeric IDs */
1371 qsort_safe(list, n, sizeof(Job*), job_compare);
1372
1373 /* Filter out duplicates */
1374 for (a = 0, b = 0; a < n; a++) {
1375
1376 if (previous == list[a])
1377 continue;
1378
1379 previous = list[b++] = list[a];
1380 }
1381
1382 return b;
1383 }
1384
1385 int job_get_before(Job *j, Job*** ret) {
1386 _cleanup_free_ Job** list = NULL;
1387 size_t n = 0, n_allocated = 0;
1388 Unit *other = NULL;
1389 Iterator i;
1390 void *v;
1391
1392 /* Returns a list of all pending jobs that need to finish before this job may be started. */
1393
1394 assert(j);
1395 assert(ret);
1396
1397 if (j->ignore_order) {
1398 *ret = NULL;
1399 return 0;
1400 }
1401
1402 if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) {
1403
1404 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1405 if (!other->job)
1406 continue;
1407
1408 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1409 return -ENOMEM;
1410 list[n++] = other->job;
1411 }
1412 }
1413
1414 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1415 if (!other->job)
1416 continue;
1417
1418 if (!IN_SET(other->job->type, JOB_STOP, JOB_RESTART))
1419 continue;
1420
1421 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1422 return -ENOMEM;
1423 list[n++] = other->job;
1424 }
1425
1426 n = sort_job_list(list, n);
1427
1428 *ret = TAKE_PTR(list);
1429
1430 return (int) n;
1431 }
1432
1433 int job_get_after(Job *j, Job*** ret) {
1434 _cleanup_free_ Job** list = NULL;
1435 size_t n = 0, n_allocated = 0;
1436 Unit *other = NULL;
1437 void *v;
1438 Iterator i;
1439
1440 assert(j);
1441 assert(ret);
1442
1443 /* Returns a list of all pending jobs that are waiting for this job to finish. */
1444
1445 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) {
1446 if (!other->job)
1447 continue;
1448
1449 if (other->job->ignore_order)
1450 continue;
1451
1452 if (!IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD))
1453 continue;
1454
1455 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1456 return -ENOMEM;
1457 list[n++] = other->job;
1458 }
1459
1460 if (IN_SET(j->type, JOB_STOP, JOB_RESTART)) {
1461
1462 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) {
1463 if (!other->job)
1464 continue;
1465
1466 if (other->job->ignore_order)
1467 continue;
1468
1469 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1470 return -ENOMEM;
1471 list[n++] = other->job;
1472 }
1473 }
1474
1475 n = sort_job_list(list, n);
1476
1477 *ret = TAKE_PTR(list);
1478
1479 return (int) n;
1480 }
1481
1482 static const char* const job_state_table[_JOB_STATE_MAX] = {
1483 [JOB_WAITING] = "waiting",
1484 [JOB_RUNNING] = "running",
1485 };
1486
1487 DEFINE_STRING_TABLE_LOOKUP(job_state, JobState);
1488
1489 static const char* const job_type_table[_JOB_TYPE_MAX] = {
1490 [JOB_START] = "start",
1491 [JOB_VERIFY_ACTIVE] = "verify-active",
1492 [JOB_STOP] = "stop",
1493 [JOB_RELOAD] = "reload",
1494 [JOB_RELOAD_OR_START] = "reload-or-start",
1495 [JOB_RESTART] = "restart",
1496 [JOB_TRY_RESTART] = "try-restart",
1497 [JOB_TRY_RELOAD] = "try-reload",
1498 [JOB_NOP] = "nop",
1499 };
1500
1501 DEFINE_STRING_TABLE_LOOKUP(job_type, JobType);
1502
1503 static const char* const job_mode_table[_JOB_MODE_MAX] = {
1504 [JOB_FAIL] = "fail",
1505 [JOB_REPLACE] = "replace",
1506 [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly",
1507 [JOB_ISOLATE] = "isolate",
1508 [JOB_FLUSH] = "flush",
1509 [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies",
1510 [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements",
1511 };
1512
1513 DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode);
1514
1515 static const char* const job_result_table[_JOB_RESULT_MAX] = {
1516 [JOB_DONE] = "done",
1517 [JOB_CANCELED] = "canceled",
1518 [JOB_TIMEOUT] = "timeout",
1519 [JOB_FAILED] = "failed",
1520 [JOB_DEPENDENCY] = "dependency",
1521 [JOB_SKIPPED] = "skipped",
1522 [JOB_INVALID] = "invalid",
1523 [JOB_ASSERT] = "assert",
1524 [JOB_UNSUPPORTED] = "unsupported",
1525 [JOB_COLLECTED] = "collected",
1526 };
1527
1528 DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);
1529
1530 const char* job_type_to_access_method(JobType t) {
1531 assert(t >= 0);
1532 assert(t < _JOB_TYPE_MAX);
1533
1534 if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART))
1535 return "start";
1536 else if (t == JOB_STOP)
1537 return "stop";
1538 else
1539 return "reload";
1540 }