]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/service.c
core: reference main/control pid of .service units via PidRef
[thirdparty/systemd.git] / src / core / service.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <math.h>
5 #include <sys/stat.h>
6 #include <sys/types.h>
7 #include <unistd.h>
8
9 #include "sd-messages.h"
10
11 #include "alloc-util.h"
12 #include "async.h"
13 #include "bus-error.h"
14 #include "bus-kernel.h"
15 #include "bus-util.h"
16 #include "chase.h"
17 #include "constants.h"
18 #include "dbus-service.h"
19 #include "dbus-unit.h"
20 #include "devnum-util.h"
21 #include "env-util.h"
22 #include "escape.h"
23 #include "exit-status.h"
24 #include "fd-util.h"
25 #include "fileio.h"
26 #include "format-util.h"
27 #include "load-dropin.h"
28 #include "load-fragment.h"
29 #include "log.h"
30 #include "manager.h"
31 #include "missing_audit.h"
32 #include "open-file.h"
33 #include "parse-util.h"
34 #include "path-util.h"
35 #include "process-util.h"
36 #include "random-util.h"
37 #include "serialize.h"
38 #include "service.h"
39 #include "signal-util.h"
40 #include "special.h"
41 #include "stdio-util.h"
42 #include "string-table.h"
43 #include "string-util.h"
44 #include "strv.h"
45 #include "unit-name.h"
46 #include "unit.h"
47 #include "utf8.h"
48
49 #define service_spawn(...) service_spawn_internal(__func__, __VA_ARGS__)
50
51 static const UnitActiveState state_translation_table[_SERVICE_STATE_MAX] = {
52 [SERVICE_DEAD] = UNIT_INACTIVE,
53 [SERVICE_CONDITION] = UNIT_ACTIVATING,
54 [SERVICE_START_PRE] = UNIT_ACTIVATING,
55 [SERVICE_START] = UNIT_ACTIVATING,
56 [SERVICE_START_POST] = UNIT_ACTIVATING,
57 [SERVICE_RUNNING] = UNIT_ACTIVE,
58 [SERVICE_EXITED] = UNIT_ACTIVE,
59 [SERVICE_RELOAD] = UNIT_RELOADING,
60 [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING,
61 [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING,
62 [SERVICE_STOP] = UNIT_DEACTIVATING,
63 [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING,
64 [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING,
65 [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING,
66 [SERVICE_STOP_POST] = UNIT_DEACTIVATING,
67 [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING,
68 [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING,
69 [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING,
70 [SERVICE_FAILED] = UNIT_FAILED,
71 [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE,
72 [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED,
73 [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE,
74 [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING,
75 [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING,
76 [SERVICE_CLEANING] = UNIT_MAINTENANCE,
77 };
78
79 /* For Type=idle we never want to delay any other jobs, hence we
80 * consider idle jobs active as soon as we start working on them */
81 static const UnitActiveState state_translation_table_idle[_SERVICE_STATE_MAX] = {
82 [SERVICE_DEAD] = UNIT_INACTIVE,
83 [SERVICE_CONDITION] = UNIT_ACTIVE,
84 [SERVICE_START_PRE] = UNIT_ACTIVE,
85 [SERVICE_START] = UNIT_ACTIVE,
86 [SERVICE_START_POST] = UNIT_ACTIVE,
87 [SERVICE_RUNNING] = UNIT_ACTIVE,
88 [SERVICE_EXITED] = UNIT_ACTIVE,
89 [SERVICE_RELOAD] = UNIT_RELOADING,
90 [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING,
91 [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING,
92 [SERVICE_STOP] = UNIT_DEACTIVATING,
93 [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING,
94 [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING,
95 [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING,
96 [SERVICE_STOP_POST] = UNIT_DEACTIVATING,
97 [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING,
98 [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING,
99 [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING,
100 [SERVICE_FAILED] = UNIT_FAILED,
101 [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE,
102 [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED,
103 [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE,
104 [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING,
105 [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING,
106 [SERVICE_CLEANING] = UNIT_MAINTENANCE,
107 };
108
109 static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata);
110 static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata);
111 static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata);
112 static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata);
113
114 static void service_enter_signal(Service *s, ServiceState state, ServiceResult f);
115 static void service_enter_reload_by_notify(Service *s);
116
117 static void service_init(Unit *u) {
118 Service *s = SERVICE(u);
119
120 assert(u);
121 assert(u->load_state == UNIT_STUB);
122
123 s->timeout_start_usec = u->manager->default_timeout_start_usec;
124 s->timeout_stop_usec = u->manager->default_timeout_stop_usec;
125 s->timeout_abort_usec = u->manager->default_timeout_abort_usec;
126 s->timeout_abort_set = u->manager->default_timeout_abort_set;
127 s->restart_usec = u->manager->default_restart_usec;
128 s->restart_max_delay_usec = USEC_INFINITY;
129 s->runtime_max_usec = USEC_INFINITY;
130 s->type = _SERVICE_TYPE_INVALID;
131 s->socket_fd = -EBADF;
132 s->stdin_fd = s->stdout_fd = s->stderr_fd = -EBADF;
133 s->guess_main_pid = true;
134 s->main_pid = PIDREF_NULL;
135 s->control_pid = PIDREF_NULL;
136 s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
137
138 s->exec_context.keyring_mode = MANAGER_IS_SYSTEM(u->manager) ?
139 EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT;
140
141 s->notify_access_override = _NOTIFY_ACCESS_INVALID;
142
143 s->watchdog_original_usec = USEC_INFINITY;
144
145 s->oom_policy = _OOM_POLICY_INVALID;
146 s->reload_begin_usec = USEC_INFINITY;
147 s->reload_signal = SIGHUP;
148
149 s->fd_store_preserve_mode = EXEC_PRESERVE_RESTART;
150 }
151
152 static void service_unwatch_control_pid(Service *s) {
153 assert(s);
154
155 if (!pidref_is_set(&s->control_pid))
156 return;
157
158 unit_unwatch_pid(UNIT(s), s->control_pid.pid);
159 pidref_done(&s->control_pid);
160 }
161
162 static void service_unwatch_main_pid(Service *s) {
163 assert(s);
164
165 if (!pidref_is_set(&s->main_pid))
166 return;
167
168 unit_unwatch_pid(UNIT(s), s->main_pid.pid);
169 pidref_done(&s->main_pid);
170 }
171
172 static void service_unwatch_pid_file(Service *s) {
173 if (!s->pid_file_pathspec)
174 return;
175
176 log_unit_debug(UNIT(s), "Stopping watch for PID file %s", s->pid_file_pathspec->path);
177 path_spec_unwatch(s->pid_file_pathspec);
178 path_spec_done(s->pid_file_pathspec);
179 s->pid_file_pathspec = mfree(s->pid_file_pathspec);
180 }
181
182 static int service_set_main_pid(Service *s, pid_t pid) {
183 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
184 int r;
185
186 assert(s);
187
188 if (pid <= 1)
189 return -EINVAL;
190
191 if (pid == getpid_cached())
192 return -EINVAL;
193
194 if (s->main_pid.pid == pid && s->main_pid_known)
195 return 0;
196
197 r = pidref_set_pid(&pidref, pid);
198 if (r < 0)
199 return r;
200
201 if (s->main_pid.pid != pid) {
202 service_unwatch_main_pid(s);
203 exec_status_start(&s->main_exec_status, pid);
204 }
205
206 s->main_pid = TAKE_PIDREF(pidref);
207 s->main_pid_known = true;
208 s->main_pid_alien = pid_is_my_child(pid) == 0;
209
210 if (s->main_pid_alien)
211 log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", pid);
212
213 return 0;
214 }
215
216 void service_release_socket_fd(Service *s) {
217 assert(s);
218
219 if (s->socket_fd < 0 && !UNIT_ISSET(s->accept_socket) && !s->socket_peer)
220 return;
221
222 log_unit_debug(UNIT(s), "Closing connection socket.");
223
224 /* Undo the effect of service_set_socket_fd(). */
225
226 s->socket_fd = asynchronous_close(s->socket_fd);
227
228 if (UNIT_ISSET(s->accept_socket)) {
229 socket_connection_unref(SOCKET(UNIT_DEREF(s->accept_socket)));
230 unit_ref_unset(&s->accept_socket);
231 }
232
233 s->socket_peer = socket_peer_unref(s->socket_peer);
234 }
235
236 static void service_override_notify_access(Service *s, NotifyAccess notify_access_override) {
237 assert(s);
238
239 s->notify_access_override = notify_access_override;
240
241 log_unit_debug(UNIT(s), "notify_access=%s", notify_access_to_string(s->notify_access));
242 log_unit_debug(UNIT(s), "notify_access_override=%s", notify_access_to_string(s->notify_access_override));
243 }
244
245 static void service_stop_watchdog(Service *s) {
246 assert(s);
247
248 s->watchdog_event_source = sd_event_source_disable_unref(s->watchdog_event_source);
249 s->watchdog_timestamp = DUAL_TIMESTAMP_NULL;
250 }
251
252 static void service_start_watchdog(Service *s) {
253 usec_t watchdog_usec;
254 int r;
255
256 assert(s);
257
258 watchdog_usec = service_get_watchdog_usec(s);
259 if (!timestamp_is_set(watchdog_usec)) {
260 service_stop_watchdog(s);
261 return;
262 }
263
264 if (s->watchdog_event_source) {
265 r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec));
266 if (r < 0) {
267 log_unit_warning_errno(UNIT(s), r, "Failed to reset watchdog timer: %m");
268 return;
269 }
270
271 r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ONESHOT);
272 } else {
273 r = sd_event_add_time(
274 UNIT(s)->manager->event,
275 &s->watchdog_event_source,
276 CLOCK_MONOTONIC,
277 usec_add(s->watchdog_timestamp.monotonic, watchdog_usec), 0,
278 service_dispatch_watchdog, s);
279 if (r < 0) {
280 log_unit_warning_errno(UNIT(s), r, "Failed to add watchdog timer: %m");
281 return;
282 }
283
284 (void) sd_event_source_set_description(s->watchdog_event_source, "service-watchdog");
285
286 /* Let's process everything else which might be a sign
287 * of living before we consider a service died. */
288 r = sd_event_source_set_priority(s->watchdog_event_source, SD_EVENT_PRIORITY_IDLE);
289 }
290 if (r < 0)
291 log_unit_warning_errno(UNIT(s), r, "Failed to install watchdog timer: %m");
292 }
293
294 usec_t service_restart_usec_next(Service *s) {
295 unsigned n_restarts_next;
296 usec_t value;
297
298 assert(s);
299
300 /* When the service state is in SERVICE_*_BEFORE_AUTO_RESTART or SERVICE_AUTO_RESTART, we still need
301 * to add 1 to s->n_restarts manually, because s->n_restarts is not updated until a restart job is
302 * enqueued, i.e. state has transitioned to SERVICE_AUTO_RESTART_QUEUED. */
303 n_restarts_next = s->n_restarts + (s->state == SERVICE_AUTO_RESTART_QUEUED ? 0 : 1);
304
305 if (n_restarts_next <= 1 ||
306 s->restart_steps == 0 ||
307 s->restart_usec == 0 ||
308 s->restart_max_delay_usec == USEC_INFINITY ||
309 s->restart_usec >= s->restart_max_delay_usec)
310 value = s->restart_usec;
311 else if (n_restarts_next > s->restart_steps)
312 value = s->restart_max_delay_usec;
313 else {
314 /* Enforced in service_verify() and above */
315 assert(s->restart_max_delay_usec > s->restart_usec);
316
317 /* r_i / r_0 = (r_n / r_0) ^ (i / n)
318 * where,
319 * r_0 : initial restart usec (s->restart_usec),
320 * r_i : i-th restart usec (value),
321 * r_n : maximum restart usec (s->restart_max_delay_usec),
322 * i : index of the next step (n_restarts_next - 1)
323 * n : num maximum steps (s->restart_steps) */
324 value = (usec_t) (s->restart_usec * powl((long double) s->restart_max_delay_usec / s->restart_usec,
325 (long double) (n_restarts_next - 1) / s->restart_steps));
326 }
327
328 log_unit_debug(UNIT(s), "Next restart interval calculated as: %s", FORMAT_TIMESPAN(value, 0));
329 return value;
330 }
331
332 static void service_extend_event_source_timeout(Service *s, sd_event_source *source, usec_t extended) {
333 usec_t current;
334 int r;
335
336 assert(s);
337
338 /* Extends the specified event source timer to at least the specified time, unless it is already later
339 * anyway. */
340
341 if (!source)
342 return;
343
344 r = sd_event_source_get_time(source, &current);
345 if (r < 0) {
346 const char *desc;
347 (void) sd_event_source_get_description(s->timer_event_source, &desc);
348 log_unit_warning_errno(UNIT(s), r, "Failed to retrieve timeout time for event source '%s', ignoring: %m", strna(desc));
349 return;
350 }
351
352 if (current >= extended) /* Current timeout is already longer, ignore this. */
353 return;
354
355 r = sd_event_source_set_time(source, extended);
356 if (r < 0) {
357 const char *desc;
358 (void) sd_event_source_get_description(s->timer_event_source, &desc);
359 log_unit_warning_errno(UNIT(s), r, "Failed to set timeout time for event source '%s', ignoring %m", strna(desc));
360 }
361 }
362
363 static void service_extend_timeout(Service *s, usec_t extend_timeout_usec) {
364 usec_t extended;
365
366 assert(s);
367
368 if (!timestamp_is_set(extend_timeout_usec))
369 return;
370
371 extended = usec_add(now(CLOCK_MONOTONIC), extend_timeout_usec);
372
373 service_extend_event_source_timeout(s, s->timer_event_source, extended);
374 service_extend_event_source_timeout(s, s->watchdog_event_source, extended);
375 }
376
377 static void service_reset_watchdog(Service *s) {
378 assert(s);
379
380 dual_timestamp_get(&s->watchdog_timestamp);
381 service_start_watchdog(s);
382 }
383
384 static void service_override_watchdog_timeout(Service *s, usec_t watchdog_override_usec) {
385 assert(s);
386
387 s->watchdog_override_enable = true;
388 s->watchdog_override_usec = watchdog_override_usec;
389 service_reset_watchdog(s);
390
391 log_unit_debug(UNIT(s), "watchdog_usec="USEC_FMT, s->watchdog_usec);
392 log_unit_debug(UNIT(s), "watchdog_override_usec="USEC_FMT, s->watchdog_override_usec);
393 }
394
395 static ServiceFDStore* service_fd_store_unlink(ServiceFDStore *fs) {
396 if (!fs)
397 return NULL;
398
399 if (fs->service) {
400 assert(fs->service->n_fd_store > 0);
401 LIST_REMOVE(fd_store, fs->service->fd_store, fs);
402 fs->service->n_fd_store--;
403 }
404
405 sd_event_source_disable_unref(fs->event_source);
406
407 free(fs->fdname);
408 asynchronous_close(fs->fd);
409 return mfree(fs);
410 }
411
412 DEFINE_TRIVIAL_CLEANUP_FUNC(ServiceFDStore*, service_fd_store_unlink);
413
414 static void service_release_fd_store(Service *s) {
415 assert(s);
416
417 if (!s->fd_store)
418 return;
419
420 log_unit_debug(UNIT(s), "Releasing all stored fds");
421
422 while (s->fd_store)
423 service_fd_store_unlink(s->fd_store);
424
425 assert(s->n_fd_store == 0);
426 }
427
428 static void service_release_stdio_fd(Service *s) {
429 assert(s);
430
431 if (s->stdin_fd < 0 && s->stdout_fd < 0 && s->stdout_fd < 0)
432 return;
433
434 log_unit_debug(UNIT(s), "Releasing stdin/stdout/stderr file descriptors.");
435
436 s->stdin_fd = asynchronous_close(s->stdin_fd);
437 s->stdout_fd = asynchronous_close(s->stdout_fd);
438 s->stderr_fd = asynchronous_close(s->stderr_fd);
439 }
440 static void service_done(Unit *u) {
441 Service *s = SERVICE(u);
442
443 assert(s);
444
445 open_file_free_many(&s->open_files);
446
447 s->pid_file = mfree(s->pid_file);
448 s->status_text = mfree(s->status_text);
449
450 s->exec_runtime = exec_runtime_free(s->exec_runtime);
451 exec_command_free_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX);
452 s->control_command = NULL;
453 s->main_command = NULL;
454
455 exit_status_set_free(&s->restart_prevent_status);
456 exit_status_set_free(&s->restart_force_status);
457 exit_status_set_free(&s->success_status);
458
459 /* This will leak a process, but at least no memory or any of our resources */
460 service_unwatch_main_pid(s);
461 service_unwatch_control_pid(s);
462 service_unwatch_pid_file(s);
463
464 if (s->bus_name) {
465 unit_unwatch_bus_name(u, s->bus_name);
466 s->bus_name = mfree(s->bus_name);
467 }
468
469 s->bus_name_owner = mfree(s->bus_name_owner);
470
471 s->usb_function_descriptors = mfree(s->usb_function_descriptors);
472 s->usb_function_strings = mfree(s->usb_function_strings);
473
474 service_stop_watchdog(s);
475
476 s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source);
477 s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
478
479 s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot);
480
481 service_release_socket_fd(s);
482 service_release_stdio_fd(s);
483 service_release_fd_store(s);
484 }
485
486 static int on_fd_store_io(sd_event_source *e, int fd, uint32_t revents, void *userdata) {
487 ServiceFDStore *fs = ASSERT_PTR(userdata);
488
489 assert(e);
490
491 /* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */
492 log_unit_debug(UNIT(fs->service),
493 "Received %s on stored fd %d (%s), closing.",
494 revents & EPOLLERR ? "EPOLLERR" : "EPOLLHUP",
495 fs->fd, strna(fs->fdname));
496 service_fd_store_unlink(fs);
497 return 0;
498 }
499
500 static int service_add_fd_store(Service *s, int fd_in, const char *name, bool do_poll) {
501 _cleanup_(service_fd_store_unlinkp) ServiceFDStore *fs = NULL;
502 _cleanup_(asynchronous_closep) int fd = ASSERT_FD(fd_in);
503 struct stat st;
504 int r;
505
506 /* fd is always consumed even if the function fails. */
507
508 assert(s);
509
510 if (fstat(fd, &st) < 0)
511 return -errno;
512
513 log_unit_debug(UNIT(s), "Trying to stash fd for dev=" DEVNUM_FORMAT_STR "/inode=%" PRIu64, DEVNUM_FORMAT_VAL(st.st_dev), (uint64_t) st.st_ino);
514
515 if (s->n_fd_store >= s->n_fd_store_max)
516 /* Our store is full. Use this errno rather than E[NM]FILE to distinguish from the case
517 * where systemd itself hits the file limit. */
518 return log_unit_debug_errno(UNIT(s), SYNTHETIC_ERRNO(EXFULL), "Hit fd store limit.");
519
520 LIST_FOREACH(fd_store, i, s->fd_store) {
521 r = same_fd(i->fd, fd);
522 if (r < 0)
523 return r;
524 if (r > 0) {
525 log_unit_debug(UNIT(s), "Suppressing duplicate fd %i in fd store.", fd);
526 return 0; /* fd already included */
527 }
528 }
529
530 fs = new(ServiceFDStore, 1);
531 if (!fs)
532 return -ENOMEM;
533
534 *fs = (ServiceFDStore) {
535 .fd = TAKE_FD(fd),
536 .do_poll = do_poll,
537 .fdname = strdup(name ?: "stored"),
538 };
539
540 if (!fs->fdname)
541 return -ENOMEM;
542
543 if (do_poll) {
544 r = sd_event_add_io(UNIT(s)->manager->event, &fs->event_source, fs->fd, 0, on_fd_store_io, fs);
545 if (r < 0 && r != -EPERM) /* EPERM indicates fds that aren't pollable, which is OK */
546 return r;
547 else if (r >= 0)
548 (void) sd_event_source_set_description(fs->event_source, "service-fd-store");
549 }
550
551 fs->service = s;
552 LIST_PREPEND(fd_store, s->fd_store, fs);
553 s->n_fd_store++;
554
555 log_unit_debug(UNIT(s), "Added fd %i (%s) to fd store.", fs->fd, fs->fdname);
556
557 TAKE_PTR(fs);
558 return 1; /* fd newly stored */
559 }
560
561 static int service_add_fd_store_set(Service *s, FDSet *fds, const char *name, bool do_poll) {
562 int r;
563
564 assert(s);
565
566 for (;;) {
567 int fd;
568
569 fd = fdset_steal_first(fds);
570 if (fd < 0)
571 break;
572
573 r = service_add_fd_store(s, fd, name, do_poll);
574 if (r == -EXFULL)
575 return log_unit_warning_errno(UNIT(s), r,
576 "Cannot store more fds than FileDescriptorStoreMax=%u, closing remaining.",
577 s->n_fd_store_max);
578 if (r < 0)
579 return log_unit_error_errno(UNIT(s), r, "Failed to add fd to store: %m");
580 }
581
582 return 0;
583 }
584
585 static void service_remove_fd_store(Service *s, const char *name) {
586 assert(s);
587 assert(name);
588
589 LIST_FOREACH(fd_store, fs, s->fd_store) {
590 if (!streq(fs->fdname, name))
591 continue;
592
593 log_unit_debug(UNIT(s), "Got explicit request to remove fd %i (%s), closing.", fs->fd, name);
594 service_fd_store_unlink(fs);
595 }
596 }
597
598 static usec_t service_running_timeout(Service *s) {
599 usec_t delta = 0;
600
601 assert(s);
602
603 if (s->runtime_rand_extra_usec != 0) {
604 delta = random_u64_range(s->runtime_rand_extra_usec);
605 log_unit_debug(UNIT(s), "Adding delta of %s sec to timeout", FORMAT_TIMESPAN(delta, USEC_PER_SEC));
606 }
607
608 return usec_add(usec_add(UNIT(s)->active_enter_timestamp.monotonic,
609 s->runtime_max_usec),
610 delta);
611 }
612
613 static int service_arm_timer(Service *s, bool relative, usec_t usec) {
614 int r;
615
616 assert(s);
617
618 if (s->timer_event_source) {
619 r = (relative ? sd_event_source_set_time_relative : sd_event_source_set_time)(s->timer_event_source, usec);
620 if (r < 0)
621 return r;
622
623 return sd_event_source_set_enabled(s->timer_event_source, SD_EVENT_ONESHOT);
624 }
625
626 if (usec == USEC_INFINITY)
627 return 0;
628
629 r = (relative ? sd_event_add_time_relative : sd_event_add_time)(
630 UNIT(s)->manager->event,
631 &s->timer_event_source,
632 CLOCK_MONOTONIC,
633 usec, 0,
634 service_dispatch_timer, s);
635 if (r < 0)
636 return r;
637
638 (void) sd_event_source_set_description(s->timer_event_source, "service-timer");
639
640 return 0;
641 }
642
643 static int service_verify(Service *s) {
644 assert(s);
645 assert(UNIT(s)->load_state == UNIT_LOADED);
646
647 for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++)
648 LIST_FOREACH(command, command, s->exec_command[c]) {
649 if (!path_is_absolute(command->path) && !filename_is_valid(command->path))
650 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC),
651 "Service %s= binary path \"%s\" is neither a valid executable name nor an absolute path. Refusing.",
652 command->path,
653 service_exec_command_to_string(c));
654 if (strv_isempty(command->argv))
655 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC),
656 "Service has an empty argv in %s=. Refusing.",
657 service_exec_command_to_string(c));
658 }
659
660 if (!s->exec_command[SERVICE_EXEC_START] && !s->exec_command[SERVICE_EXEC_STOP] &&
661 UNIT(s)->success_action == EMERGENCY_ACTION_NONE)
662 /* FailureAction= only makes sense if one of the start or stop commands is specified.
663 * SuccessAction= will be executed unconditionally if no commands are specified. Hence,
664 * either a command or SuccessAction= are required. */
665
666 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart=, ExecStop=, or SuccessAction=. Refusing.");
667
668 if (s->type != SERVICE_ONESHOT && !s->exec_command[SERVICE_EXEC_START])
669 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
670
671 if (!s->remain_after_exit && !s->exec_command[SERVICE_EXEC_START] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE)
672 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= and no SuccessAction= settings and does not have RemainAfterExit=yes set. Refusing.");
673
674 if (s->type != SERVICE_ONESHOT && s->exec_command[SERVICE_EXEC_START]->command_next)
675 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
676
677 if (s->type == SERVICE_ONESHOT &&
678 !IN_SET(s->restart, SERVICE_RESTART_NO, SERVICE_RESTART_ON_FAILURE, SERVICE_RESTART_ON_ABNORMAL, SERVICE_RESTART_ON_WATCHDOG, SERVICE_RESTART_ON_ABORT))
679 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has Restart= set to either always or on-success, which isn't allowed for Type=oneshot services. Refusing.");
680
681 if (s->type == SERVICE_ONESHOT && !exit_status_set_is_empty(&s->restart_force_status))
682 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has RestartForceExitStatus= set, which isn't allowed for Type=oneshot services. Refusing.");
683
684 if (s->type == SERVICE_ONESHOT && s->exit_type == SERVICE_EXIT_CGROUP)
685 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has ExitType=cgroup set, which isn't allowed for Type=oneshot services. Refusing.");
686
687 if (s->type == SERVICE_DBUS && !s->bus_name)
688 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing.");
689
690 if (s->exec_context.pam_name && !IN_SET(s->kill_context.kill_mode, KILL_CONTROL_GROUP, KILL_MIXED))
691 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has PAM enabled. Kill mode must be set to 'control-group' or 'mixed'. Refusing.");
692
693 if (s->usb_function_descriptors && !s->usb_function_strings)
694 log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring.");
695
696 if (!s->usb_function_descriptors && s->usb_function_strings)
697 log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring.");
698
699 if (s->runtime_max_usec != USEC_INFINITY && s->type == SERVICE_ONESHOT)
700 log_unit_warning(UNIT(s), "RuntimeMaxSec= has no effect in combination with Type=oneshot. Ignoring.");
701
702 if (s->runtime_max_usec == USEC_INFINITY && s->runtime_rand_extra_usec != 0)
703 log_unit_warning(UNIT(s), "Service has RuntimeRandomizedExtraSec= setting, but no RuntimeMaxSec=. Ignoring.");
704
705 if (s->exit_type == SERVICE_EXIT_CGROUP && cg_unified() < CGROUP_UNIFIED_SYSTEMD)
706 log_unit_warning(UNIT(s), "Service has ExitType=cgroup set, but we are running with legacy cgroups v1, which might not work correctly. Continuing.");
707
708 if (s->restart_max_delay_usec == USEC_INFINITY && s->restart_steps > 0)
709 log_unit_warning(UNIT(s), "Service has RestartSteps= but no RestartMaxDelaySec= setting. Ignoring.");
710
711 if (s->restart_max_delay_usec != USEC_INFINITY && s->restart_steps == 0)
712 log_unit_warning(UNIT(s), "Service has RestartMaxDelaySec= but no RestartSteps= setting. Ignoring.");
713
714 if (s->restart_max_delay_usec < s->restart_usec) {
715 log_unit_warning(UNIT(s), "RestartMaxDelaySec= has a value smaller than RestartSec=, resetting RestartSec= to RestartMaxDelaySec=.");
716 s->restart_usec = s->restart_max_delay_usec;
717 }
718
719 return 0;
720 }
721
722 static int service_add_default_dependencies(Service *s) {
723 int r;
724
725 assert(s);
726
727 if (!UNIT(s)->default_dependencies)
728 return 0;
729
730 /* Add a number of automatic dependencies useful for the
731 * majority of services. */
732
733 if (MANAGER_IS_SYSTEM(UNIT(s)->manager)) {
734 /* First, pull in the really early boot stuff, and
735 * require it, so that we fail if we can't acquire
736 * it. */
737
738 r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
739 if (r < 0)
740 return r;
741 } else {
742
743 /* In the --user instance there's no sysinit.target,
744 * in that case require basic.target instead. */
745
746 r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
747 if (r < 0)
748 return r;
749 }
750
751 /* Second, if the rest of the base system is in the same
752 * transaction, order us after it, but do not pull it in or
753 * even require it. */
754 r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
755 if (r < 0)
756 return r;
757
758 /* Third, add us in for normal shutdown. */
759 return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
760 }
761
762 static void service_fix_stdio(Service *s) {
763 assert(s);
764
765 /* Note that EXEC_INPUT_NULL and EXEC_OUTPUT_INHERIT play a special role here: they are both the
766 * default value that is subject to automatic overriding triggered by other settings and an explicit
767 * choice the user can make. We don't distinguish between these cases currently. */
768
769 if (s->exec_context.std_input == EXEC_INPUT_NULL &&
770 s->exec_context.stdin_data_size > 0)
771 s->exec_context.std_input = EXEC_INPUT_DATA;
772
773 if (IN_SET(s->exec_context.std_input,
774 EXEC_INPUT_TTY,
775 EXEC_INPUT_TTY_FORCE,
776 EXEC_INPUT_TTY_FAIL,
777 EXEC_INPUT_SOCKET,
778 EXEC_INPUT_NAMED_FD))
779 return;
780
781 /* We assume these listed inputs refer to bidirectional streams, and hence duplicating them from
782 * stdin to stdout/stderr makes sense and hence leaving EXEC_OUTPUT_INHERIT in place makes sense,
783 * too. Outputs such as regular files or sealed data memfds otoh don't really make sense to be
784 * duplicated for both input and output at the same time (since they then would cause a feedback
785 * loop), hence override EXEC_OUTPUT_INHERIT with the default stderr/stdout setting. */
786
787 if (s->exec_context.std_error == EXEC_OUTPUT_INHERIT &&
788 s->exec_context.std_output == EXEC_OUTPUT_INHERIT)
789 s->exec_context.std_error = UNIT(s)->manager->default_std_error;
790
791 if (s->exec_context.std_output == EXEC_OUTPUT_INHERIT)
792 s->exec_context.std_output = UNIT(s)->manager->default_std_output;
793 }
794
795 static int service_setup_bus_name(Service *s) {
796 int r;
797
798 assert(s);
799
800 /* If s->bus_name is not set, then the unit will be refused by service_verify() later. */
801 if (!s->bus_name)
802 return 0;
803
804 if (s->type == SERVICE_DBUS) {
805 r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE);
806 if (r < 0)
807 return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m");
808
809 /* We always want to be ordered against dbus.socket if both are in the transaction. */
810 r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE);
811 if (r < 0)
812 return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m");
813 }
814
815 r = unit_watch_bus_name(UNIT(s), s->bus_name);
816 if (r == -EEXIST)
817 return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name);
818 if (r < 0)
819 return log_unit_error_errno(UNIT(s), r, "Cannot watch bus name %s: %m", s->bus_name);
820
821 return 0;
822 }
823
824 static int service_add_extras(Service *s) {
825 int r;
826
827 assert(s);
828
829 if (s->type == _SERVICE_TYPE_INVALID) {
830 /* Figure out a type automatically */
831 if (s->bus_name)
832 s->type = SERVICE_DBUS;
833 else if (s->exec_command[SERVICE_EXEC_START])
834 s->type = SERVICE_SIMPLE;
835 else
836 s->type = SERVICE_ONESHOT;
837 }
838
839 /* Oneshot services have disabled start timeout by default */
840 if (s->type == SERVICE_ONESHOT && !s->start_timeout_defined)
841 s->timeout_start_usec = USEC_INFINITY;
842
843 service_fix_stdio(s);
844
845 r = unit_patch_contexts(UNIT(s));
846 if (r < 0)
847 return r;
848
849 r = unit_add_exec_dependencies(UNIT(s), &s->exec_context);
850 if (r < 0)
851 return r;
852
853 r = unit_set_default_slice(UNIT(s));
854 if (r < 0)
855 return r;
856
857 /* If the service needs the notify socket, let's enable it automatically. */
858 if (s->notify_access == NOTIFY_NONE &&
859 (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) || s->watchdog_usec > 0 || s->n_fd_store_max > 0))
860 s->notify_access = NOTIFY_MAIN;
861
862 /* If no OOM policy was explicitly set, then default to the configure default OOM policy. Except when
863 * delegation is on, in that case it we assume the payload knows better what to do and can process
864 * things in a more focused way. */
865 if (s->oom_policy < 0)
866 s->oom_policy = s->cgroup_context.delegate ? OOM_CONTINUE : UNIT(s)->manager->default_oom_policy;
867
868 /* Let the kernel do the killing if that's requested. */
869 s->cgroup_context.memory_oom_group = s->oom_policy == OOM_KILL;
870
871 r = service_add_default_dependencies(s);
872 if (r < 0)
873 return r;
874
875 r = service_setup_bus_name(s);
876 if (r < 0)
877 return r;
878
879 return 0;
880 }
881
882 static int service_load(Unit *u) {
883 Service *s = SERVICE(u);
884 int r;
885
886 r = unit_load_fragment_and_dropin(u, true);
887 if (r < 0)
888 return r;
889
890 if (u->load_state != UNIT_LOADED)
891 return 0;
892
893 /* This is a new unit? Then let's add in some extras */
894 r = service_add_extras(s);
895 if (r < 0)
896 return r;
897
898 return service_verify(s);
899 }
900
901 static void service_dump_fdstore(Service *s, FILE *f, const char *prefix) {
902 assert(s);
903 assert(f);
904 assert(prefix);
905
906 LIST_FOREACH(fd_store, i, s->fd_store) {
907 _cleanup_free_ char *path = NULL;
908 struct stat st;
909 int flags;
910
911 if (fstat(i->fd, &st) < 0) {
912 log_debug_errno(errno, "Failed to stat fdstore entry: %m");
913 continue;
914 }
915
916 flags = fcntl(i->fd, F_GETFL);
917 if (flags < 0) {
918 log_debug_errno(errno, "Failed to get fdstore entry flags: %m");
919 continue;
920 }
921
922 (void) fd_get_path(i->fd, &path);
923
924 fprintf(f,
925 "%s%s '%s' (type=%s; dev=" DEVNUM_FORMAT_STR "; inode=%" PRIu64 "; rdev=" DEVNUM_FORMAT_STR "; path=%s; access=%s)\n",
926 prefix, i == s->fd_store ? "File Descriptor Store Entry:" : " ",
927 i->fdname,
928 inode_type_to_string(st.st_mode),
929 DEVNUM_FORMAT_VAL(st.st_dev),
930 (uint64_t) st.st_ino,
931 DEVNUM_FORMAT_VAL(st.st_rdev),
932 strna(path),
933 accmode_to_string(flags));
934 }
935 }
936
937 static void service_dump(Unit *u, FILE *f, const char *prefix) {
938 Service *s = SERVICE(u);
939 const char *prefix2;
940
941 assert(s);
942
943 prefix = strempty(prefix);
944 prefix2 = strjoina(prefix, "\t");
945
946 fprintf(f,
947 "%sService State: %s\n"
948 "%sResult: %s\n"
949 "%sReload Result: %s\n"
950 "%sClean Result: %s\n"
951 "%sPermissionsStartOnly: %s\n"
952 "%sRootDirectoryStartOnly: %s\n"
953 "%sRemainAfterExit: %s\n"
954 "%sGuessMainPID: %s\n"
955 "%sType: %s\n"
956 "%sRestart: %s\n"
957 "%sNotifyAccess: %s\n"
958 "%sNotifyState: %s\n"
959 "%sOOMPolicy: %s\n"
960 "%sReloadSignal: %s\n",
961 prefix, service_state_to_string(s->state),
962 prefix, service_result_to_string(s->result),
963 prefix, service_result_to_string(s->reload_result),
964 prefix, service_result_to_string(s->clean_result),
965 prefix, yes_no(s->permissions_start_only),
966 prefix, yes_no(s->root_directory_start_only),
967 prefix, yes_no(s->remain_after_exit),
968 prefix, yes_no(s->guess_main_pid),
969 prefix, service_type_to_string(s->type),
970 prefix, service_restart_to_string(s->restart),
971 prefix, notify_access_to_string(service_get_notify_access(s)),
972 prefix, notify_state_to_string(s->notify_state),
973 prefix, oom_policy_to_string(s->oom_policy),
974 prefix, signal_to_string(s->reload_signal));
975
976 if (pidref_is_set(&s->control_pid))
977 fprintf(f,
978 "%sControl PID: "PID_FMT"\n",
979 prefix, s->control_pid.pid);
980
981 if (pidref_is_set(&s->main_pid))
982 fprintf(f,
983 "%sMain PID: "PID_FMT"\n"
984 "%sMain PID Known: %s\n"
985 "%sMain PID Alien: %s\n",
986 prefix, s->main_pid.pid,
987 prefix, yes_no(s->main_pid_known),
988 prefix, yes_no(s->main_pid_alien));
989
990 if (s->pid_file)
991 fprintf(f,
992 "%sPIDFile: %s\n",
993 prefix, s->pid_file);
994
995 if (s->bus_name)
996 fprintf(f,
997 "%sBusName: %s\n"
998 "%sBus Name Good: %s\n",
999 prefix, s->bus_name,
1000 prefix, yes_no(s->bus_name_good));
1001
1002 if (UNIT_ISSET(s->accept_socket))
1003 fprintf(f,
1004 "%sAccept Socket: %s\n",
1005 prefix, UNIT_DEREF(s->accept_socket)->id);
1006
1007 fprintf(f,
1008 "%sRestartSec: %s\n"
1009 "%sRestartSteps: %u\n"
1010 "%sRestartMaxDelaySec: %s\n"
1011 "%sTimeoutStartSec: %s\n"
1012 "%sTimeoutStopSec: %s\n"
1013 "%sTimeoutStartFailureMode: %s\n"
1014 "%sTimeoutStopFailureMode: %s\n",
1015 prefix, FORMAT_TIMESPAN(s->restart_usec, USEC_PER_SEC),
1016 prefix, s->restart_steps,
1017 prefix, FORMAT_TIMESPAN(s->restart_max_delay_usec, USEC_PER_SEC),
1018 prefix, FORMAT_TIMESPAN(s->timeout_start_usec, USEC_PER_SEC),
1019 prefix, FORMAT_TIMESPAN(s->timeout_stop_usec, USEC_PER_SEC),
1020 prefix, service_timeout_failure_mode_to_string(s->timeout_start_failure_mode),
1021 prefix, service_timeout_failure_mode_to_string(s->timeout_stop_failure_mode));
1022
1023 if (s->timeout_abort_set)
1024 fprintf(f,
1025 "%sTimeoutAbortSec: %s\n",
1026 prefix, FORMAT_TIMESPAN(s->timeout_abort_usec, USEC_PER_SEC));
1027
1028 fprintf(f,
1029 "%sRuntimeMaxSec: %s\n"
1030 "%sRuntimeRandomizedExtraSec: %s\n"
1031 "%sWatchdogSec: %s\n",
1032 prefix, FORMAT_TIMESPAN(s->runtime_max_usec, USEC_PER_SEC),
1033 prefix, FORMAT_TIMESPAN(s->runtime_rand_extra_usec, USEC_PER_SEC),
1034 prefix, FORMAT_TIMESPAN(s->watchdog_usec, USEC_PER_SEC));
1035
1036 kill_context_dump(&s->kill_context, f, prefix);
1037 exec_context_dump(&s->exec_context, f, prefix);
1038
1039 for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) {
1040 if (!s->exec_command[c])
1041 continue;
1042
1043 fprintf(f, "%s-> %s:\n",
1044 prefix, service_exec_command_to_string(c));
1045
1046 exec_command_dump_list(s->exec_command[c], f, prefix2);
1047 }
1048
1049 if (s->status_text)
1050 fprintf(f, "%sStatus Text: %s\n",
1051 prefix, s->status_text);
1052
1053 if (s->n_fd_store_max > 0)
1054 fprintf(f,
1055 "%sFile Descriptor Store Max: %u\n"
1056 "%sFile Descriptor Store Pin: %s\n"
1057 "%sFile Descriptor Store Current: %zu\n",
1058 prefix, s->n_fd_store_max,
1059 prefix, exec_preserve_mode_to_string(s->fd_store_preserve_mode),
1060 prefix, s->n_fd_store);
1061
1062 service_dump_fdstore(s, f, prefix);
1063
1064 if (s->open_files)
1065 LIST_FOREACH(open_files, of, s->open_files) {
1066 _cleanup_free_ char *ofs = NULL;
1067 int r;
1068
1069 r = open_file_to_string(of, &ofs);
1070 if (r < 0) {
1071 log_debug_errno(r,
1072 "Failed to convert OpenFile= setting to string, ignoring: %m");
1073 continue;
1074 }
1075
1076 fprintf(f, "%sOpen File: %s\n", prefix, ofs);
1077 }
1078
1079 cgroup_context_dump(UNIT(s), f, prefix);
1080 }
1081
1082 static int service_is_suitable_main_pid(Service *s, pid_t pid, int prio) {
1083 Unit *owner;
1084
1085 assert(s);
1086 assert(pid_is_valid(pid));
1087
1088 /* Checks whether the specified PID is suitable as main PID for this service. returns negative if not, 0 if the
1089 * PID is questionnable but should be accepted if the source of configuration is trusted. > 0 if the PID is
1090 * good */
1091
1092 if (pid == getpid_cached() || pid == 1)
1093 return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the manager, refusing.", pid);
1094
1095 if (pid == s->control_pid.pid)
1096 return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the control process, refusing.", pid);
1097
1098 if (!pid_is_alive(pid))
1099 return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(ESRCH), "New main PID "PID_FMT" does not exist or is a zombie.", pid);
1100
1101 owner = manager_get_unit_by_pid(UNIT(s)->manager, pid);
1102 if (owner == UNIT(s)) {
1103 log_unit_debug(UNIT(s), "New main PID "PID_FMT" belongs to service, we are happy.", pid);
1104 return 1; /* Yay, it's definitely a good PID */
1105 }
1106
1107 return 0; /* Hmm it's a suspicious PID, let's accept it if configuration source is trusted */
1108 }
1109
1110 static int service_load_pid_file(Service *s, bool may_warn) {
1111 bool questionable_pid_file = false;
1112 _cleanup_free_ char *k = NULL;
1113 _cleanup_close_ int fd = -EBADF;
1114 int r, prio;
1115 pid_t pid;
1116
1117 assert(s);
1118
1119 if (!s->pid_file)
1120 return -ENOENT;
1121
1122 prio = may_warn ? LOG_INFO : LOG_DEBUG;
1123
1124 r = chase(s->pid_file, NULL, CHASE_SAFE, NULL, &fd);
1125 if (r == -ENOLINK) {
1126 log_unit_debug_errno(UNIT(s), r,
1127 "Potentially unsafe symlink chain, will now retry with relaxed checks: %s", s->pid_file);
1128
1129 questionable_pid_file = true;
1130
1131 r = chase(s->pid_file, NULL, 0, NULL, &fd);
1132 }
1133 if (r < 0)
1134 return log_unit_full_errno(UNIT(s), prio, r,
1135 "Can't open PID file %s (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state));
1136
1137 /* Let's read the PID file now that we chased it down. But we need to convert the O_PATH fd
1138 * chase() returned us into a proper fd first. */
1139 r = read_one_line_file(FORMAT_PROC_FD_PATH(fd), &k);
1140 if (r < 0)
1141 return log_unit_error_errno(UNIT(s), r,
1142 "Can't convert PID files %s O_PATH file descriptor to proper file descriptor: %m",
1143 s->pid_file);
1144
1145 r = parse_pid(k, &pid);
1146 if (r < 0)
1147 return log_unit_full_errno(UNIT(s), prio, r, "Failed to parse PID from file %s: %m", s->pid_file);
1148
1149 if (s->main_pid_known && pid == s->main_pid.pid)
1150 return 0;
1151
1152 r = service_is_suitable_main_pid(s, pid, prio);
1153 if (r < 0)
1154 return r;
1155 if (r == 0) {
1156 struct stat st;
1157
1158 if (questionable_pid_file)
1159 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM),
1160 "Refusing to accept PID outside of service control group, acquired through unsafe symlink chain: %s", s->pid_file);
1161
1162 /* Hmm, it's not clear if the new main PID is safe. Let's allow this if the PID file is owned by root */
1163
1164 if (fstat(fd, &st) < 0)
1165 return log_unit_error_errno(UNIT(s), errno, "Failed to fstat() PID file O_PATH fd: %m");
1166
1167 if (st.st_uid != 0)
1168 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM),
1169 "New main PID "PID_FMT" does not belong to service, and PID file is not owned by root. Refusing.", pid);
1170
1171 log_unit_debug(UNIT(s), "New main PID "PID_FMT" does not belong to service, but we'll accept it since PID file is owned by root.", pid);
1172 }
1173
1174 if (s->main_pid_known) {
1175 log_unit_debug(UNIT(s), "Main PID changing: "PID_FMT" -> "PID_FMT, s->main_pid.pid, pid);
1176
1177 service_unwatch_main_pid(s);
1178 s->main_pid_known = false;
1179 } else
1180 log_unit_debug(UNIT(s), "Main PID loaded: "PID_FMT, pid);
1181
1182 r = service_set_main_pid(s, pid);
1183 if (r < 0)
1184 return r;
1185
1186 r = unit_watch_pid(UNIT(s), pid, /* exclusive= */ false);
1187 if (r < 0) /* FIXME: we need to do something here */
1188 return log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" for service: %m", pid);
1189
1190 return 1;
1191 }
1192
1193 static void service_search_main_pid(Service *s) {
1194 pid_t pid = 0;
1195 int r;
1196
1197 assert(s);
1198
1199 /* If we know it anyway, don't ever fall back to unreliable heuristics */
1200 if (s->main_pid_known)
1201 return;
1202
1203 if (!s->guess_main_pid)
1204 return;
1205
1206 assert(!pidref_is_set(&s->main_pid));
1207
1208 if (unit_search_main_pid(UNIT(s), &pid) < 0)
1209 return;
1210
1211 log_unit_debug(UNIT(s), "Main PID guessed: "PID_FMT, pid);
1212 if (service_set_main_pid(s, pid) < 0)
1213 return;
1214
1215 r = unit_watch_pid(UNIT(s), pid, /* exclusive= */ false);
1216 if (r < 0)
1217 /* FIXME: we need to do something here */
1218 log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" from: %m", pid);
1219 }
1220
1221 static void service_set_state(Service *s, ServiceState state) {
1222 ServiceState old_state;
1223 const UnitActiveState *table;
1224
1225 assert(s);
1226
1227 if (s->state != state)
1228 bus_unit_send_pending_change_signal(UNIT(s), false);
1229
1230 table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table;
1231
1232 old_state = s->state;
1233 s->state = state;
1234
1235 service_unwatch_pid_file(s);
1236
1237 if (!IN_SET(state,
1238 SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
1239 SERVICE_RUNNING,
1240 SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
1241 SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
1242 SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
1243 SERVICE_AUTO_RESTART,
1244 SERVICE_CLEANING))
1245 s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source);
1246
1247 if (!IN_SET(state,
1248 SERVICE_START, SERVICE_START_POST,
1249 SERVICE_RUNNING,
1250 SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
1251 SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
1252 SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL)) {
1253 service_unwatch_main_pid(s);
1254 s->main_command = NULL;
1255 }
1256
1257 if (!IN_SET(state,
1258 SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
1259 SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
1260 SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
1261 SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
1262 SERVICE_CLEANING)) {
1263 service_unwatch_control_pid(s);
1264 s->control_command = NULL;
1265 s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
1266 }
1267
1268 if (IN_SET(state,
1269 SERVICE_DEAD, SERVICE_FAILED,
1270 SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED,
1271 SERVICE_DEAD_RESOURCES_PINNED)) {
1272 unit_unwatch_all_pids(UNIT(s));
1273 unit_dequeue_rewatch_pids(UNIT(s));
1274 }
1275
1276 if (state != SERVICE_START)
1277 s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
1278
1279 if (!IN_SET(state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY))
1280 service_stop_watchdog(s);
1281
1282 /* For the inactive states unit_notify() will trim the cgroup,
1283 * but for exit we have to do that ourselves... */
1284 if (state == SERVICE_EXITED && !MANAGER_IS_RELOADING(UNIT(s)->manager))
1285 unit_prune_cgroup(UNIT(s));
1286
1287 if (old_state != state)
1288 log_unit_debug(UNIT(s), "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state));
1289
1290 unit_notify(UNIT(s), table[old_state], table[state], s->reload_result == SERVICE_SUCCESS);
1291 }
1292
1293 static usec_t service_coldplug_timeout(Service *s) {
1294 assert(s);
1295
1296 switch (s->deserialized_state) {
1297
1298 case SERVICE_CONDITION:
1299 case SERVICE_START_PRE:
1300 case SERVICE_START:
1301 case SERVICE_START_POST:
1302 case SERVICE_RELOAD:
1303 case SERVICE_RELOAD_SIGNAL:
1304 case SERVICE_RELOAD_NOTIFY:
1305 return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_start_usec);
1306
1307 case SERVICE_RUNNING:
1308 return service_running_timeout(s);
1309
1310 case SERVICE_STOP:
1311 case SERVICE_STOP_SIGTERM:
1312 case SERVICE_STOP_SIGKILL:
1313 case SERVICE_STOP_POST:
1314 case SERVICE_FINAL_SIGTERM:
1315 case SERVICE_FINAL_SIGKILL:
1316 return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_stop_usec);
1317
1318 case SERVICE_STOP_WATCHDOG:
1319 case SERVICE_FINAL_WATCHDOG:
1320 return usec_add(UNIT(s)->state_change_timestamp.monotonic, service_timeout_abort_usec(s));
1321
1322 case SERVICE_AUTO_RESTART:
1323 return usec_add(UNIT(s)->inactive_enter_timestamp.monotonic, service_restart_usec_next(s));
1324
1325 case SERVICE_CLEANING:
1326 return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->exec_context.timeout_clean_usec);
1327
1328 default:
1329 return USEC_INFINITY;
1330 }
1331 }
1332
1333 static int service_coldplug(Unit *u) {
1334 Service *s = SERVICE(u);
1335 int r;
1336
1337 assert(s);
1338 assert(s->state == SERVICE_DEAD);
1339
1340 if (s->deserialized_state == s->state)
1341 return 0;
1342
1343 r = service_arm_timer(s, /* relative= */ false, service_coldplug_timeout(s));
1344 if (r < 0)
1345 return r;
1346
1347 if (pidref_is_set(&s->main_pid) &&
1348 pid_is_unwaited(s->main_pid.pid) &&
1349 (IN_SET(s->deserialized_state,
1350 SERVICE_START, SERVICE_START_POST,
1351 SERVICE_RUNNING,
1352 SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
1353 SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
1354 SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL))) {
1355 r = unit_watch_pid(UNIT(s), s->main_pid.pid, /* exclusive= */ false);
1356 if (r < 0)
1357 return r;
1358 }
1359
1360 if (pidref_is_set(&s->control_pid) &&
1361 pid_is_unwaited(s->control_pid.pid) &&
1362 IN_SET(s->deserialized_state,
1363 SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
1364 SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY,
1365 SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
1366 SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
1367 SERVICE_CLEANING)) {
1368 r = unit_watch_pid(UNIT(s), s->control_pid.pid, /* exclusive= */ false);
1369 if (r < 0)
1370 return r;
1371 }
1372
1373 if (!IN_SET(s->deserialized_state,
1374 SERVICE_DEAD, SERVICE_FAILED,
1375 SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED,
1376 SERVICE_CLEANING,
1377 SERVICE_DEAD_RESOURCES_PINNED)) {
1378 (void) unit_enqueue_rewatch_pids(u);
1379 (void) unit_setup_exec_runtime(u);
1380 }
1381
1382 if (IN_SET(s->deserialized_state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY))
1383 service_start_watchdog(s);
1384
1385 if (UNIT_ISSET(s->accept_socket)) {
1386 Socket* socket = SOCKET(UNIT_DEREF(s->accept_socket));
1387
1388 if (socket->max_connections_per_source > 0) {
1389 SocketPeer *peer;
1390
1391 /* Make a best-effort attempt at bumping the connection count */
1392 if (socket_acquire_peer(socket, s->socket_fd, &peer) > 0) {
1393 socket_peer_unref(s->socket_peer);
1394 s->socket_peer = peer;
1395 }
1396 }
1397 }
1398
1399 service_set_state(s, s->deserialized_state);
1400 return 0;
1401 }
1402
1403 static int service_collect_fds(
1404 Service *s,
1405 int **fds,
1406 char ***fd_names,
1407 size_t *n_socket_fds,
1408 size_t *n_storage_fds) {
1409
1410 _cleanup_strv_free_ char **rfd_names = NULL;
1411 _cleanup_free_ int *rfds = NULL;
1412 size_t rn_socket_fds = 0, rn_storage_fds = 0;
1413 int r;
1414
1415 assert(s);
1416 assert(fds);
1417 assert(fd_names);
1418 assert(n_socket_fds);
1419 assert(n_storage_fds);
1420
1421 if (s->socket_fd >= 0) {
1422
1423 /* Pass the per-connection socket */
1424
1425 rfds = newdup(int, &s->socket_fd, 1);
1426 if (!rfds)
1427 return -ENOMEM;
1428
1429 rfd_names = strv_new("connection");
1430 if (!rfd_names)
1431 return -ENOMEM;
1432
1433 rn_socket_fds = 1;
1434 } else {
1435 Unit *u;
1436
1437 /* Pass all our configured sockets for singleton services */
1438
1439 UNIT_FOREACH_DEPENDENCY(u, UNIT(s), UNIT_ATOM_TRIGGERED_BY) {
1440 _cleanup_free_ int *cfds = NULL;
1441 Socket *sock;
1442 int cn_fds;
1443
1444 if (u->type != UNIT_SOCKET)
1445 continue;
1446
1447 sock = SOCKET(u);
1448
1449 cn_fds = socket_collect_fds(sock, &cfds);
1450 if (cn_fds < 0)
1451 return cn_fds;
1452
1453 if (cn_fds <= 0)
1454 continue;
1455
1456 if (!rfds) {
1457 rfds = TAKE_PTR(cfds);
1458 rn_socket_fds = cn_fds;
1459 } else {
1460 int *t;
1461
1462 t = reallocarray(rfds, rn_socket_fds + cn_fds, sizeof(int));
1463 if (!t)
1464 return -ENOMEM;
1465
1466 memcpy(t + rn_socket_fds, cfds, cn_fds * sizeof(int));
1467
1468 rfds = t;
1469 rn_socket_fds += cn_fds;
1470 }
1471
1472 r = strv_extend_n(&rfd_names, socket_fdname(sock), cn_fds);
1473 if (r < 0)
1474 return r;
1475 }
1476 }
1477
1478 if (s->n_fd_store > 0) {
1479 size_t n_fds;
1480 char **nl;
1481 int *t;
1482
1483 t = reallocarray(rfds, rn_socket_fds + s->n_fd_store, sizeof(int));
1484 if (!t)
1485 return -ENOMEM;
1486
1487 rfds = t;
1488
1489 nl = reallocarray(rfd_names, rn_socket_fds + s->n_fd_store + 1, sizeof(char *));
1490 if (!nl)
1491 return -ENOMEM;
1492
1493 rfd_names = nl;
1494 n_fds = rn_socket_fds;
1495
1496 LIST_FOREACH(fd_store, fs, s->fd_store) {
1497 rfds[n_fds] = fs->fd;
1498 rfd_names[n_fds] = strdup(strempty(fs->fdname));
1499 if (!rfd_names[n_fds])
1500 return -ENOMEM;
1501
1502 rn_storage_fds++;
1503 n_fds++;
1504 }
1505
1506 rfd_names[n_fds] = NULL;
1507 }
1508
1509 *fds = TAKE_PTR(rfds);
1510 *fd_names = TAKE_PTR(rfd_names);
1511 *n_socket_fds = rn_socket_fds;
1512 *n_storage_fds = rn_storage_fds;
1513
1514 return 0;
1515 }
1516
1517 static int service_allocate_exec_fd_event_source(
1518 Service *s,
1519 int fd,
1520 sd_event_source **ret_event_source) {
1521
1522 _cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL;
1523 int r;
1524
1525 assert(s);
1526 assert(fd >= 0);
1527 assert(ret_event_source);
1528
1529 r = sd_event_add_io(UNIT(s)->manager->event, &source, fd, 0, service_dispatch_exec_io, s);
1530 if (r < 0)
1531 return log_unit_error_errno(UNIT(s), r, "Failed to allocate exec_fd event source: %m");
1532
1533 /* This is a bit lower priority than SIGCHLD, as that carries a lot more interesting failure information */
1534
1535 r = sd_event_source_set_priority(source, SD_EVENT_PRIORITY_NORMAL-3);
1536 if (r < 0)
1537 return log_unit_error_errno(UNIT(s), r, "Failed to adjust priority of exec_fd event source: %m");
1538
1539 (void) sd_event_source_set_description(source, "service exec_fd");
1540
1541 r = sd_event_source_set_io_fd_own(source, true);
1542 if (r < 0)
1543 return log_unit_error_errno(UNIT(s), r, "Failed to pass ownership of fd to event source: %m");
1544
1545 *ret_event_source = TAKE_PTR(source);
1546 return 0;
1547 }
1548
1549 static int service_allocate_exec_fd(
1550 Service *s,
1551 sd_event_source **ret_event_source,
1552 int *ret_exec_fd) {
1553
1554 _cleanup_close_pair_ int p[] = PIPE_EBADF;
1555 int r;
1556
1557 assert(s);
1558 assert(ret_event_source);
1559 assert(ret_exec_fd);
1560
1561 if (pipe2(p, O_CLOEXEC|O_NONBLOCK) < 0)
1562 return log_unit_error_errno(UNIT(s), errno, "Failed to allocate exec_fd pipe: %m");
1563
1564 r = service_allocate_exec_fd_event_source(s, p[0], ret_event_source);
1565 if (r < 0)
1566 return r;
1567
1568 TAKE_FD(p[0]);
1569 *ret_exec_fd = TAKE_FD(p[1]);
1570
1571 return 0;
1572 }
1573
1574 static bool service_exec_needs_notify_socket(Service *s, ExecFlags flags) {
1575 assert(s);
1576
1577 /* Notifications are accepted depending on the process and
1578 * the access setting of the service:
1579 * process: \ access: NONE MAIN EXEC ALL
1580 * main no yes yes yes
1581 * control no no yes yes
1582 * other (forked) no no no yes */
1583
1584 if (flags & EXEC_IS_CONTROL)
1585 /* A control process */
1586 return IN_SET(service_get_notify_access(s), NOTIFY_EXEC, NOTIFY_ALL);
1587
1588 /* We only spawn main processes and control processes, so any
1589 * process that is not a control process is a main process */
1590 return service_get_notify_access(s) != NOTIFY_NONE;
1591 }
1592
1593 static Service *service_get_triggering_service(Service *s) {
1594 Unit *candidate = NULL, *other;
1595
1596 assert(s);
1597
1598 /* Return the service which triggered service 's', this means dependency
1599 * types which include the UNIT_ATOM_ON_{FAILURE,SUCCESS}_OF atoms.
1600 *
1601 * N.B. if there are multiple services which could trigger 's' via OnFailure=
1602 * or OnSuccess= then we return NULL. This is since we don't know from which
1603 * one to propagate the exit status. */
1604
1605 UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_FAILURE_OF) {
1606 if (candidate)
1607 goto have_other;
1608 candidate = other;
1609 }
1610
1611 UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_SUCCESS_OF) {
1612 if (candidate)
1613 goto have_other;
1614 candidate = other;
1615 }
1616
1617 return SERVICE(candidate);
1618
1619 have_other:
1620 log_unit_warning(UNIT(s), "multiple trigger source candidates for exit status propagation (%s, %s), skipping.",
1621 candidate->id, other->id);
1622 return NULL;
1623 }
1624
1625 static int service_spawn_internal(
1626 const char *caller,
1627 Service *s,
1628 ExecCommand *c,
1629 usec_t timeout,
1630 ExecFlags flags,
1631 PidRef *ret_pid) {
1632
1633 _cleanup_(exec_params_clear) ExecParameters exec_params = {
1634 .flags = flags,
1635 .stdin_fd = -EBADF,
1636 .stdout_fd = -EBADF,
1637 .stderr_fd = -EBADF,
1638 .exec_fd = -EBADF,
1639 };
1640 _cleanup_(sd_event_source_unrefp) sd_event_source *exec_fd_source = NULL;
1641 _cleanup_strv_free_ char **final_env = NULL, **our_env = NULL;
1642 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
1643 size_t n_env = 0;
1644 pid_t pid;
1645 int r;
1646
1647 assert(caller);
1648 assert(s);
1649 assert(c);
1650 assert(ret_pid);
1651
1652 log_unit_debug(UNIT(s), "Will spawn child (%s): %s", caller, c->path);
1653
1654 r = unit_prepare_exec(UNIT(s)); /* This realizes the cgroup, among other things */
1655 if (r < 0)
1656 return r;
1657
1658 assert(!s->exec_fd_event_source);
1659
1660 if (flags & EXEC_IS_CONTROL) {
1661 /* If this is a control process, mask the permissions/chroot application if this is requested. */
1662 if (s->permissions_start_only)
1663 exec_params.flags &= ~EXEC_APPLY_SANDBOXING;
1664 if (s->root_directory_start_only)
1665 exec_params.flags &= ~EXEC_APPLY_CHROOT;
1666 }
1667
1668 if ((flags & EXEC_PASS_FDS) ||
1669 s->exec_context.std_input == EXEC_INPUT_SOCKET ||
1670 s->exec_context.std_output == EXEC_OUTPUT_SOCKET ||
1671 s->exec_context.std_error == EXEC_OUTPUT_SOCKET) {
1672
1673 r = service_collect_fds(s,
1674 &exec_params.fds,
1675 &exec_params.fd_names,
1676 &exec_params.n_socket_fds,
1677 &exec_params.n_storage_fds);
1678 if (r < 0)
1679 return r;
1680
1681 exec_params.open_files = s->open_files;
1682
1683 log_unit_debug(UNIT(s), "Passing %zu fds to service", exec_params.n_socket_fds + exec_params.n_storage_fds);
1684 }
1685
1686 if (!FLAGS_SET(flags, EXEC_IS_CONTROL) && s->type == SERVICE_EXEC) {
1687 r = service_allocate_exec_fd(s, &exec_fd_source, &exec_params.exec_fd);
1688 if (r < 0)
1689 return r;
1690 }
1691
1692 r = service_arm_timer(s, /* relative= */ true, timeout);
1693 if (r < 0)
1694 return r;
1695
1696 our_env = new0(char*, 13);
1697 if (!our_env)
1698 return -ENOMEM;
1699
1700 if (service_exec_needs_notify_socket(s, flags)) {
1701 if (asprintf(our_env + n_env++, "NOTIFY_SOCKET=%s", UNIT(s)->manager->notify_socket) < 0)
1702 return -ENOMEM;
1703
1704 exec_params.notify_socket = UNIT(s)->manager->notify_socket;
1705
1706 if (s->n_fd_store_max > 0)
1707 if (asprintf(our_env + n_env++, "FDSTORE=%u", s->n_fd_store_max) < 0)
1708 return -ENOMEM;
1709 }
1710
1711 if (pidref_is_set(&s->main_pid))
1712 if (asprintf(our_env + n_env++, "MAINPID="PID_FMT, s->main_pid.pid) < 0)
1713 return -ENOMEM;
1714
1715 if (MANAGER_IS_USER(UNIT(s)->manager))
1716 if (asprintf(our_env + n_env++, "MANAGERPID="PID_FMT, getpid_cached()) < 0)
1717 return -ENOMEM;
1718
1719 if (s->pid_file)
1720 if (asprintf(our_env + n_env++, "PIDFILE=%s", s->pid_file) < 0)
1721 return -ENOMEM;
1722
1723 if (s->socket_fd >= 0) {
1724 union sockaddr_union sa;
1725 socklen_t salen = sizeof(sa);
1726
1727 /* If this is a per-connection service instance, let's set $REMOTE_ADDR and $REMOTE_PORT to something
1728 * useful. Note that we do this only when we are still connected at this point in time, which we might
1729 * very well not be. Hence we ignore all errors when retrieving peer information (as that might result
1730 * in ENOTCONN), and just use whate we can use. */
1731
1732 if (getpeername(s->socket_fd, &sa.sa, &salen) >= 0 &&
1733 IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK)) {
1734 _cleanup_free_ char *addr = NULL;
1735 char *t;
1736 unsigned port;
1737
1738 r = sockaddr_pretty(&sa.sa, salen, true, false, &addr);
1739 if (r < 0)
1740 return r;
1741
1742 t = strjoin("REMOTE_ADDR=", addr);
1743 if (!t)
1744 return -ENOMEM;
1745 our_env[n_env++] = t;
1746
1747 r = sockaddr_port(&sa.sa, &port);
1748 if (r < 0)
1749 return r;
1750
1751 if (asprintf(&t, "REMOTE_PORT=%u", port) < 0)
1752 return -ENOMEM;
1753 our_env[n_env++] = t;
1754 }
1755 }
1756
1757 Service *env_source = NULL;
1758 const char *monitor_prefix;
1759 if (flags & EXEC_SETENV_RESULT) {
1760 env_source = s;
1761 monitor_prefix = "";
1762 } else if (flags & EXEC_SETENV_MONITOR_RESULT) {
1763 env_source = service_get_triggering_service(s);
1764 monitor_prefix = "MONITOR_";
1765 }
1766
1767 if (env_source) {
1768 if (asprintf(our_env + n_env++, "%sSERVICE_RESULT=%s", monitor_prefix, service_result_to_string(env_source->result)) < 0)
1769 return -ENOMEM;
1770
1771 if (env_source->main_exec_status.pid > 0 &&
1772 dual_timestamp_is_set(&env_source->main_exec_status.exit_timestamp)) {
1773 if (asprintf(our_env + n_env++, "%sEXIT_CODE=%s", monitor_prefix, sigchld_code_to_string(env_source->main_exec_status.code)) < 0)
1774 return -ENOMEM;
1775
1776 if (env_source->main_exec_status.code == CLD_EXITED)
1777 r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%i", monitor_prefix, env_source->main_exec_status.status);
1778 else
1779 r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%s", monitor_prefix, signal_to_string(env_source->main_exec_status.status));
1780
1781 if (r < 0)
1782 return -ENOMEM;
1783 }
1784
1785 if (env_source != s) {
1786 if (!sd_id128_is_null(UNIT(env_source)->invocation_id)) {
1787 r = asprintf(our_env + n_env++, "%sINVOCATION_ID=" SD_ID128_FORMAT_STR,
1788 monitor_prefix, SD_ID128_FORMAT_VAL(UNIT(env_source)->invocation_id));
1789 if (r < 0)
1790 return -ENOMEM;
1791 }
1792
1793 if (asprintf(our_env + n_env++, "%sUNIT=%s", monitor_prefix, UNIT(env_source)->id) < 0)
1794 return -ENOMEM;
1795 }
1796 }
1797
1798 if (UNIT(s)->activation_details) {
1799 r = activation_details_append_env(UNIT(s)->activation_details, &our_env);
1800 if (r < 0)
1801 return r;
1802 /* The number of env vars added here can vary, rather than keeping the allocation block in
1803 * sync manually, these functions simply use the strv methods to append to it, so we need
1804 * to update n_env when we are done in case of future usage. */
1805 n_env += r;
1806 }
1807
1808 r = unit_set_exec_params(UNIT(s), &exec_params);
1809 if (r < 0)
1810 return r;
1811
1812 final_env = strv_env_merge(exec_params.environment, our_env);
1813 if (!final_env)
1814 return -ENOMEM;
1815
1816 /* System D-Bus needs nss-systemd disabled, so that we don't deadlock */
1817 SET_FLAG(exec_params.flags, EXEC_NSS_DYNAMIC_BYPASS,
1818 MANAGER_IS_SYSTEM(UNIT(s)->manager) && unit_has_name(UNIT(s), SPECIAL_DBUS_SERVICE));
1819
1820 strv_free_and_replace(exec_params.environment, final_env);
1821 exec_params.watchdog_usec = service_get_watchdog_usec(s);
1822 exec_params.selinux_context_net = s->socket_fd_selinux_context_net;
1823 if (s->type == SERVICE_IDLE)
1824 exec_params.idle_pipe = UNIT(s)->manager->idle_pipe;
1825 exec_params.stdin_fd = s->stdin_fd;
1826 exec_params.stdout_fd = s->stdout_fd;
1827 exec_params.stderr_fd = s->stderr_fd;
1828
1829 r = exec_spawn(UNIT(s),
1830 c,
1831 &s->exec_context,
1832 &exec_params,
1833 s->exec_runtime,
1834 &s->cgroup_context,
1835 &pid);
1836 if (r < 0)
1837 return r;
1838
1839 s->exec_fd_event_source = TAKE_PTR(exec_fd_source);
1840 s->exec_fd_hot = false;
1841
1842 r = pidref_set_pid(&pidref, pid);
1843 if (r < 0)
1844 return r;
1845
1846 r = unit_watch_pid(UNIT(s), pidref.pid, /* exclusive= */ true);
1847 if (r < 0)
1848 return r;
1849
1850 *ret_pid = TAKE_PIDREF(pidref);
1851 return 0;
1852 }
1853
1854 static int main_pid_good(Service *s) {
1855 assert(s);
1856
1857 /* Returns 0 if the pid is dead, > 0 if it is good, < 0 if we don't know */
1858
1859 /* If we know the pid file, then let's just check if it is still valid */
1860 if (s->main_pid_known) {
1861
1862 /* If it's an alien child let's check if it is still alive ... */
1863 if (s->main_pid_alien && pidref_is_set(&s->main_pid))
1864 return pid_is_alive(s->main_pid.pid);
1865
1866 /* .. otherwise assume we'll get a SIGCHLD for it, which we really should wait for to collect
1867 * exit status and code */
1868 return pidref_is_set(&s->main_pid);
1869 }
1870
1871 /* We don't know the pid */
1872 return -EAGAIN;
1873 }
1874
1875 static int control_pid_good(Service *s) {
1876 assert(s);
1877
1878 /* Returns 0 if the control PID is dead, > 0 if it is good. We never actually return < 0 here, but in order to
1879 * make this function as similar as possible to main_pid_good() and cgroup_good(), we pretend that < 0 also
1880 * means: we can't figure it out. */
1881
1882 return pidref_is_set(&s->control_pid);
1883 }
1884
1885 static int cgroup_good(Service *s) {
1886 int r;
1887
1888 assert(s);
1889
1890 /* Returns 0 if the cgroup is empty or doesn't exist, > 0 if it is exists and is populated, < 0 if we can't
1891 * figure it out */
1892
1893 if (!UNIT(s)->cgroup_path)
1894 return 0;
1895
1896 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, UNIT(s)->cgroup_path);
1897 if (r < 0)
1898 return r;
1899
1900 return r == 0;
1901 }
1902
1903 static bool service_shall_restart(Service *s, const char **reason) {
1904 assert(s);
1905
1906 /* Don't restart after manual stops */
1907 if (s->forbid_restart) {
1908 *reason = "manual stop";
1909 return false;
1910 }
1911
1912 /* Never restart if this is configured as special exception */
1913 if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status)) {
1914 *reason = "prevented by exit status";
1915 return false;
1916 }
1917
1918 /* Restart if the exit code/status are configured as restart triggers */
1919 if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status)) {
1920 *reason = "forced by exit status";
1921 return true;
1922 }
1923
1924 *reason = "restart setting";
1925 switch (s->restart) {
1926
1927 case SERVICE_RESTART_NO:
1928 return false;
1929
1930 case SERVICE_RESTART_ALWAYS:
1931 return s->result != SERVICE_SKIP_CONDITION;
1932
1933 case SERVICE_RESTART_ON_SUCCESS:
1934 return s->result == SERVICE_SUCCESS;
1935
1936 case SERVICE_RESTART_ON_FAILURE:
1937 return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_SKIP_CONDITION);
1938
1939 case SERVICE_RESTART_ON_ABNORMAL:
1940 return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_FAILURE_EXIT_CODE, SERVICE_SKIP_CONDITION);
1941
1942 case SERVICE_RESTART_ON_WATCHDOG:
1943 return s->result == SERVICE_FAILURE_WATCHDOG;
1944
1945 case SERVICE_RESTART_ON_ABORT:
1946 return IN_SET(s->result, SERVICE_FAILURE_SIGNAL, SERVICE_FAILURE_CORE_DUMP);
1947
1948 default:
1949 assert_not_reached();
1950 }
1951 }
1952
1953 static bool service_will_restart(Unit *u) {
1954 Service *s = SERVICE(u);
1955
1956 assert(s);
1957
1958 if (IN_SET(s->state, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED))
1959 return true;
1960
1961 return unit_will_restart_default(u);
1962 }
1963
1964 static ServiceState service_determine_dead_state(Service *s) {
1965 assert(s);
1966
1967 return s->fd_store && s->fd_store_preserve_mode == EXEC_PRESERVE_YES ? SERVICE_DEAD_RESOURCES_PINNED : SERVICE_DEAD;
1968 }
1969
1970 static void service_enter_dead(Service *s, ServiceResult f, bool allow_restart) {
1971 ServiceState end_state, restart_state;
1972 int r;
1973
1974 assert(s);
1975
1976 /* If there's a stop job queued before we enter the DEAD state, we shouldn't act on Restart=, in order to not
1977 * undo what has already been enqueued. */
1978 if (unit_stop_pending(UNIT(s)))
1979 allow_restart = false;
1980
1981 if (s->result == SERVICE_SUCCESS)
1982 s->result = f;
1983
1984 if (s->result == SERVICE_SUCCESS) {
1985 unit_log_success(UNIT(s));
1986 end_state = service_determine_dead_state(s);
1987 restart_state = SERVICE_DEAD_BEFORE_AUTO_RESTART;
1988 } else if (s->result == SERVICE_SKIP_CONDITION) {
1989 unit_log_skip(UNIT(s), service_result_to_string(s->result));
1990 end_state = service_determine_dead_state(s);
1991 restart_state = SERVICE_DEAD_BEFORE_AUTO_RESTART;
1992 } else {
1993 unit_log_failure(UNIT(s), service_result_to_string(s->result));
1994 end_state = SERVICE_FAILED;
1995 restart_state = SERVICE_FAILED_BEFORE_AUTO_RESTART;
1996 }
1997 unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_stop);
1998
1999 if (!allow_restart)
2000 log_unit_debug(UNIT(s), "Service restart not allowed.");
2001 else {
2002 const char *reason;
2003
2004 allow_restart = service_shall_restart(s, &reason);
2005 log_unit_debug(UNIT(s), "Service will %srestart (%s)",
2006 allow_restart ? "" : "not ",
2007 reason);
2008 }
2009
2010 if (allow_restart) {
2011 /* We make two state changes here: one that maps to the high-level UNIT_INACTIVE/UNIT_FAILED
2012 * state (i.e. a state indicating deactivation), and then one that that maps to the
2013 * high-level UNIT_STARTING state (i.e. a state indicating activation). We do this so that
2014 * external software can watch the state changes and see all service failures, even if they
2015 * are only transitionary and followed by an automatic restart. We have fine-grained
2016 * low-level states for this though so that software can distinguish the permanent UNIT_INACTIVE
2017 * state from this transitionary UNIT_INACTIVE state by looking at the low-level states. */
2018 if (s->restart_mode != SERVICE_RESTART_MODE_DIRECT)
2019 service_set_state(s, restart_state);
2020
2021 r = service_arm_timer(s, /* relative= */ true, service_restart_usec_next(s));
2022 if (r < 0)
2023 goto fail;
2024
2025 service_set_state(s, SERVICE_AUTO_RESTART);
2026 } else {
2027 service_set_state(s, end_state);
2028
2029 /* If we shan't restart, then flush out the restart counter. But don't do that immediately, so that the
2030 * user can still introspect the counter. Do so on the next start. */
2031 s->flush_n_restarts = true;
2032 }
2033
2034 /* The new state is in effect, let's decrease the fd store ref counter again. Let's also re-add us to the GC
2035 * queue, so that the fd store is possibly gc'ed again */
2036 unit_add_to_gc_queue(UNIT(s));
2037
2038 /* The next restart might not be a manual stop, hence reset the flag indicating manual stops */
2039 s->forbid_restart = false;
2040
2041 /* Reset NotifyAccess override */
2042 s->notify_access_override = _NOTIFY_ACCESS_INVALID;
2043
2044 /* We want fresh tmpdirs and ephemeral snapshots in case the service is started again immediately. */
2045 s->exec_runtime = exec_runtime_destroy(s->exec_runtime);
2046
2047 /* Also, remove the runtime directory */
2048 unit_destroy_runtime_data(UNIT(s), &s->exec_context);
2049
2050 /* Also get rid of the fd store, if that's configured. */
2051 if (s->fd_store_preserve_mode == EXEC_PRESERVE_NO)
2052 service_release_fd_store(s);
2053
2054 /* Get rid of the IPC bits of the user */
2055 unit_unref_uid_gid(UNIT(s), true);
2056
2057 /* Try to delete the pid file. At this point it will be
2058 * out-of-date, and some software might be confused by it, so
2059 * let's remove it. */
2060 if (s->pid_file)
2061 (void) unlink(s->pid_file);
2062
2063 /* Reset TTY ownership if necessary */
2064 exec_context_revert_tty(&s->exec_context);
2065
2066 return;
2067
2068 fail:
2069 log_unit_warning_errno(UNIT(s), r, "Failed to run install restart timer: %m");
2070 service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false);
2071 }
2072
2073 static void service_enter_stop_post(Service *s, ServiceResult f) {
2074 int r;
2075 assert(s);
2076
2077 if (s->result == SERVICE_SUCCESS)
2078 s->result = f;
2079
2080 service_unwatch_control_pid(s);
2081 (void) unit_enqueue_rewatch_pids(UNIT(s));
2082
2083 s->control_command = s->exec_command[SERVICE_EXEC_STOP_POST];
2084 if (s->control_command) {
2085 s->control_command_id = SERVICE_EXEC_STOP_POST;
2086 pidref_done(&s->control_pid);
2087
2088 r = service_spawn(s,
2089 s->control_command,
2090 s->timeout_stop_usec,
2091 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP,
2092 &s->control_pid);
2093 if (r < 0)
2094 goto fail;
2095
2096 service_set_state(s, SERVICE_STOP_POST);
2097 } else
2098 service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_SUCCESS);
2099
2100 return;
2101
2102 fail:
2103 log_unit_warning_errno(UNIT(s), r, "Failed to run 'stop-post' task: %m");
2104 service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_RESOURCES);
2105 }
2106
2107 static int state_to_kill_operation(Service *s, ServiceState state) {
2108 switch (state) {
2109
2110 case SERVICE_STOP_WATCHDOG:
2111 case SERVICE_FINAL_WATCHDOG:
2112 return KILL_WATCHDOG;
2113
2114 case SERVICE_STOP_SIGTERM:
2115 if (unit_has_job_type(UNIT(s), JOB_RESTART))
2116 return KILL_RESTART;
2117 _fallthrough_;
2118
2119 case SERVICE_FINAL_SIGTERM:
2120 return KILL_TERMINATE;
2121
2122 case SERVICE_STOP_SIGKILL:
2123 case SERVICE_FINAL_SIGKILL:
2124 return KILL_KILL;
2125
2126 default:
2127 return _KILL_OPERATION_INVALID;
2128 }
2129 }
2130
2131 static void service_enter_signal(Service *s, ServiceState state, ServiceResult f) {
2132 int kill_operation, r;
2133
2134 assert(s);
2135
2136 if (s->result == SERVICE_SUCCESS)
2137 s->result = f;
2138
2139 /* Before sending any signal, make sure we track all members of this cgroup */
2140 (void) unit_watch_all_pids(UNIT(s));
2141
2142 /* Also, enqueue a job that we recheck all our PIDs a bit later, given that it's likely some processes have
2143 * died now */
2144 (void) unit_enqueue_rewatch_pids(UNIT(s));
2145
2146 kill_operation = state_to_kill_operation(s, state);
2147 r = unit_kill_context(
2148 UNIT(s),
2149 &s->kill_context,
2150 kill_operation,
2151 s->main_pid.pid,
2152 s->control_pid.pid,
2153 s->main_pid_alien);
2154 if (r < 0)
2155 goto fail;
2156
2157 if (r > 0) {
2158 r = service_arm_timer(s, /* relative= */ true,
2159 kill_operation == KILL_WATCHDOG ? service_timeout_abort_usec(s) : s->timeout_stop_usec);
2160 if (r < 0)
2161 goto fail;
2162
2163 service_set_state(s, state);
2164 } else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill)
2165 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_SUCCESS);
2166 else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL))
2167 service_enter_stop_post(s, SERVICE_SUCCESS);
2168 else if (IN_SET(state, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM) && s->kill_context.send_sigkill)
2169 service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS);
2170 else
2171 service_enter_dead(s, SERVICE_SUCCESS, true);
2172
2173 return;
2174
2175 fail:
2176 log_unit_warning_errno(UNIT(s), r, "Failed to kill processes: %m");
2177
2178 if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL))
2179 service_enter_stop_post(s, SERVICE_FAILURE_RESOURCES);
2180 else
2181 service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
2182 }
2183
2184 static void service_enter_stop_by_notify(Service *s) {
2185 assert(s);
2186
2187 (void) unit_enqueue_rewatch_pids(UNIT(s));
2188
2189 service_arm_timer(s, /* relative= */ true, s->timeout_stop_usec);
2190
2191 /* The service told us it's stopping, so it's as if we SIGTERM'd it. */
2192 service_set_state(s, SERVICE_STOP_SIGTERM);
2193 }
2194
2195 static void service_enter_stop(Service *s, ServiceResult f) {
2196 int r;
2197
2198 assert(s);
2199
2200 if (s->result == SERVICE_SUCCESS)
2201 s->result = f;
2202
2203 service_unwatch_control_pid(s);
2204 (void) unit_enqueue_rewatch_pids(UNIT(s));
2205
2206 s->control_command = s->exec_command[SERVICE_EXEC_STOP];
2207 if (s->control_command) {
2208 s->control_command_id = SERVICE_EXEC_STOP;
2209 pidref_done(&s->control_pid);
2210
2211 r = service_spawn(s,
2212 s->control_command,
2213 s->timeout_stop_usec,
2214 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP,
2215 &s->control_pid);
2216 if (r < 0)
2217 goto fail;
2218
2219 service_set_state(s, SERVICE_STOP);
2220 } else
2221 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS);
2222
2223 return;
2224
2225 fail:
2226 log_unit_warning_errno(UNIT(s), r, "Failed to run 'stop' task: %m");
2227 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
2228 }
2229
2230 static bool service_good(Service *s) {
2231 int main_pid_ok;
2232 assert(s);
2233
2234 if (s->type == SERVICE_DBUS && !s->bus_name_good)
2235 return false;
2236
2237 main_pid_ok = main_pid_good(s);
2238 if (main_pid_ok > 0) /* It's alive */
2239 return true;
2240 if (main_pid_ok == 0 && s->exit_type == SERVICE_EXIT_MAIN) /* It's dead */
2241 return false;
2242
2243 /* OK, we don't know anything about the main PID, maybe
2244 * because there is none. Let's check the control group
2245 * instead. */
2246
2247 return cgroup_good(s) != 0;
2248 }
2249
2250 static void service_enter_running(Service *s, ServiceResult f) {
2251 assert(s);
2252
2253 if (s->result == SERVICE_SUCCESS)
2254 s->result = f;
2255
2256 service_unwatch_control_pid(s);
2257
2258 if (s->result != SERVICE_SUCCESS)
2259 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
2260 else if (service_good(s)) {
2261
2262 /* If there are any queued up sd_notify() notifications, process them now */
2263 if (s->notify_state == NOTIFY_RELOADING)
2264 service_enter_reload_by_notify(s);
2265 else if (s->notify_state == NOTIFY_STOPPING)
2266 service_enter_stop_by_notify(s);
2267 else {
2268 service_set_state(s, SERVICE_RUNNING);
2269 service_arm_timer(s, /* relative= */ false, service_running_timeout(s));
2270 }
2271
2272 } else if (s->remain_after_exit)
2273 service_set_state(s, SERVICE_EXITED);
2274 else
2275 service_enter_stop(s, SERVICE_SUCCESS);
2276 }
2277
2278 static void service_enter_start_post(Service *s) {
2279 int r;
2280 assert(s);
2281
2282 service_unwatch_control_pid(s);
2283 service_reset_watchdog(s);
2284
2285 s->control_command = s->exec_command[SERVICE_EXEC_START_POST];
2286 if (s->control_command) {
2287 s->control_command_id = SERVICE_EXEC_START_POST;
2288 pidref_done(&s->control_pid);
2289
2290 r = service_spawn(s,
2291 s->control_command,
2292 s->timeout_start_usec,
2293 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP,
2294 &s->control_pid);
2295 if (r < 0)
2296 goto fail;
2297
2298 service_set_state(s, SERVICE_START_POST);
2299 } else
2300 service_enter_running(s, SERVICE_SUCCESS);
2301
2302 return;
2303
2304 fail:
2305 log_unit_warning_errno(UNIT(s), r, "Failed to run 'start-post' task: %m");
2306 service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
2307 }
2308
2309 static void service_kill_control_process(Service *s) {
2310 int r;
2311
2312 assert(s);
2313
2314 if (!pidref_is_set(&s->control_pid))
2315 return;
2316
2317 r = pidref_kill_and_sigcont(&s->control_pid, SIGKILL);
2318 if (r < 0) {
2319 _cleanup_free_ char *comm = NULL;
2320
2321 (void) get_process_comm(s->control_pid.pid, &comm);
2322
2323 log_unit_debug_errno(UNIT(s), r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m",
2324 s->control_pid.pid, strna(comm));
2325 }
2326 }
2327
2328 static int service_adverse_to_leftover_processes(Service *s) {
2329 assert(s);
2330
2331 /* KillMode=mixed and control group are used to indicate that all process should be killed off.
2332 * SendSIGKILL= is used for services that require a clean shutdown. These are typically database
2333 * service where a SigKilled process would result in a lengthy recovery and who's shutdown or startup
2334 * time is quite variable (so Timeout settings aren't of use).
2335 *
2336 * Here we take these two factors and refuse to start a service if there are existing processes
2337 * within a control group. Databases, while generally having some protection against multiple
2338 * instances running, lets not stress the rigor of these. Also ExecStartPre= parts of the service
2339 * aren't as rigoriously written to protect aganst against multiple use. */
2340
2341 if (unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_start) > 0 &&
2342 IN_SET(s->kill_context.kill_mode, KILL_MIXED, KILL_CONTROL_GROUP) &&
2343 !s->kill_context.send_sigkill)
2344 return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EBUSY),
2345 "Will not start SendSIGKILL=no service of type KillMode=control-group or mixed while processes exist");
2346
2347 return 0;
2348 }
2349
2350 static void service_enter_start(Service *s) {
2351 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
2352 ExecCommand *c;
2353 usec_t timeout;
2354 int r;
2355
2356 assert(s);
2357
2358 service_unwatch_control_pid(s);
2359 service_unwatch_main_pid(s);
2360
2361 r = service_adverse_to_leftover_processes(s);
2362 if (r < 0)
2363 goto fail;
2364
2365 if (s->type == SERVICE_FORKING) {
2366 s->control_command_id = SERVICE_EXEC_START;
2367 c = s->control_command = s->exec_command[SERVICE_EXEC_START];
2368
2369 s->main_command = NULL;
2370 } else {
2371 s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
2372 s->control_command = NULL;
2373
2374 c = s->main_command = s->exec_command[SERVICE_EXEC_START];
2375 }
2376
2377 if (!c) {
2378 if (s->type != SERVICE_ONESHOT) {
2379 /* There's no command line configured for the main command? Hmm, that is strange.
2380 * This can only happen if the configuration changes at runtime. In this case,
2381 * let's enter a failure state. */
2382 r = log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENXIO), "There's no 'start' task anymore we could start.");
2383 goto fail;
2384 }
2385
2386 /* We force a fake state transition here. Otherwise, the unit would go directly from
2387 * SERVICE_DEAD to SERVICE_DEAD without SERVICE_ACTIVATING or SERVICE_ACTIVE
2388 * in between. This way we can later trigger actions that depend on the state
2389 * transition, including SuccessAction=. */
2390 service_set_state(s, SERVICE_START);
2391
2392 service_enter_start_post(s);
2393 return;
2394 }
2395
2396 if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE))
2397 /* For simple + idle this is the main process. We don't apply any timeout here, but
2398 * service_enter_running() will later apply the .runtime_max_usec timeout. */
2399 timeout = USEC_INFINITY;
2400 else
2401 timeout = s->timeout_start_usec;
2402
2403 r = service_spawn(s,
2404 c,
2405 timeout,
2406 EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG|EXEC_WRITE_CREDENTIALS|EXEC_SETENV_MONITOR_RESULT,
2407 &pidref);
2408 if (r < 0)
2409 goto fail;
2410
2411 if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) {
2412 /* For simple services we immediately start
2413 * the START_POST binaries. */
2414
2415 (void) service_set_main_pid(s, pidref.pid);
2416 service_enter_start_post(s);
2417
2418 } else if (s->type == SERVICE_FORKING) {
2419
2420 /* For forking services we wait until the start
2421 * process exited. */
2422
2423 pidref_done(&s->control_pid);
2424 s->control_pid = TAKE_PIDREF(pidref);
2425 service_set_state(s, SERVICE_START);
2426
2427 } else if (IN_SET(s->type, SERVICE_ONESHOT, SERVICE_DBUS, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD, SERVICE_EXEC)) {
2428
2429 /* For oneshot services we wait until the start process exited, too, but it is our main process. */
2430
2431 /* For D-Bus services we know the main pid right away, but wait for the bus name to appear on the
2432 * bus. 'notify' and 'exec' services are similar. */
2433
2434 (void) service_set_main_pid(s, pidref.pid);
2435 service_set_state(s, SERVICE_START);
2436 } else
2437 assert_not_reached();
2438
2439 return;
2440
2441 fail:
2442 log_unit_warning_errno(UNIT(s), r, "Failed to run 'start' task: %m");
2443 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
2444 }
2445
2446 static void service_enter_start_pre(Service *s) {
2447 int r;
2448
2449 assert(s);
2450
2451 service_unwatch_control_pid(s);
2452
2453 s->control_command = s->exec_command[SERVICE_EXEC_START_PRE];
2454 if (s->control_command) {
2455
2456 r = service_adverse_to_leftover_processes(s);
2457 if (r < 0)
2458 goto fail;
2459
2460 s->control_command_id = SERVICE_EXEC_START_PRE;
2461
2462 r = service_spawn(s,
2463 s->control_command,
2464 s->timeout_start_usec,
2465 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN|EXEC_SETENV_MONITOR_RESULT|EXEC_WRITE_CREDENTIALS,
2466 &s->control_pid);
2467 if (r < 0)
2468 goto fail;
2469
2470 service_set_state(s, SERVICE_START_PRE);
2471 } else
2472 service_enter_start(s);
2473
2474 return;
2475
2476 fail:
2477 log_unit_warning_errno(UNIT(s), r, "Failed to run 'start-pre' task: %m");
2478 service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
2479 }
2480
2481 static void service_enter_condition(Service *s) {
2482 int r;
2483
2484 assert(s);
2485
2486 service_unwatch_control_pid(s);
2487
2488 s->control_command = s->exec_command[SERVICE_EXEC_CONDITION];
2489 if (s->control_command) {
2490
2491 r = service_adverse_to_leftover_processes(s);
2492 if (r < 0)
2493 goto fail;
2494
2495 s->control_command_id = SERVICE_EXEC_CONDITION;
2496 pidref_done(&s->control_pid);
2497
2498 r = service_spawn(s,
2499 s->control_command,
2500 s->timeout_start_usec,
2501 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN,
2502 &s->control_pid);
2503
2504 if (r < 0)
2505 goto fail;
2506
2507 service_set_state(s, SERVICE_CONDITION);
2508 } else
2509 service_enter_start_pre(s);
2510
2511 return;
2512
2513 fail:
2514 log_unit_warning_errno(UNIT(s), r, "Failed to run 'exec-condition' task: %m");
2515 service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
2516 }
2517
2518 static void service_enter_restart(Service *s) {
2519 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2520 int r;
2521
2522 assert(s);
2523
2524 if (unit_has_job_type(UNIT(s), JOB_STOP)) {
2525 /* Don't restart things if we are going down anyway */
2526 log_unit_info(UNIT(s), "Stop job pending for unit, skipping automatic restart.");
2527 return;
2528 }
2529
2530 /* Any units that are bound to this service must also be restarted. We use JOB_START for ourselves
2531 * but then set JOB_RESTART_DEPENDENCIES which will enqueue JOB_RESTART for those dependency jobs. */
2532 r = manager_add_job(UNIT(s)->manager, JOB_START, UNIT(s), JOB_RESTART_DEPENDENCIES, NULL, &error, NULL);
2533 if (r < 0)
2534 goto fail;
2535
2536 /* Count the jobs we enqueue for restarting. This counter is maintained as long as the unit isn't
2537 * fully stopped, i.e. as long as it remains up or remains in auto-start states. The user can reset
2538 * the counter explicitly however via the usual "systemctl reset-failure" logic. */
2539 s->n_restarts ++;
2540 s->flush_n_restarts = false;
2541
2542 s->notify_access_override = _NOTIFY_ACCESS_INVALID;
2543
2544 log_unit_struct(UNIT(s), LOG_INFO,
2545 "MESSAGE_ID=" SD_MESSAGE_UNIT_RESTART_SCHEDULED_STR,
2546 LOG_UNIT_INVOCATION_ID(UNIT(s)),
2547 LOG_UNIT_MESSAGE(UNIT(s),
2548 "Scheduled restart job, restart counter is at %u.", s->n_restarts),
2549 "N_RESTARTS=%u", s->n_restarts);
2550
2551 service_set_state(s, SERVICE_AUTO_RESTART_QUEUED);
2552
2553 /* Notify clients about changed restart counter */
2554 unit_add_to_dbus_queue(UNIT(s));
2555 return;
2556
2557 fail:
2558 log_unit_warning(UNIT(s), "Failed to schedule restart job: %s", bus_error_message(&error, r));
2559 service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false);
2560 }
2561
2562 static void service_enter_reload_by_notify(Service *s) {
2563 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2564 int r;
2565
2566 assert(s);
2567
2568 service_arm_timer(s, /* relative= */ true, s->timeout_start_usec);
2569 service_set_state(s, SERVICE_RELOAD_NOTIFY);
2570
2571 /* service_enter_reload_by_notify is never called during a reload, thus no loops are possible. */
2572 r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error);
2573 if (r < 0)
2574 log_unit_warning(UNIT(s), "Failed to schedule propagation of reload: %s", bus_error_message(&error, r));
2575 }
2576
2577 static void service_enter_reload(Service *s) {
2578 bool killed = false;
2579 int r;
2580
2581 assert(s);
2582
2583 service_unwatch_control_pid(s);
2584 s->reload_result = SERVICE_SUCCESS;
2585
2586 usec_t ts = now(CLOCK_MONOTONIC);
2587
2588 if (s->type == SERVICE_NOTIFY_RELOAD && pidref_is_set(&s->main_pid)) {
2589 r = pidref_kill_and_sigcont(&s->main_pid, s->reload_signal);
2590 if (r < 0) {
2591 log_unit_warning_errno(UNIT(s), r, "Failed to send reload signal: %m");
2592 goto fail;
2593 }
2594
2595 killed = true;
2596 }
2597
2598 s->control_command = s->exec_command[SERVICE_EXEC_RELOAD];
2599 if (s->control_command) {
2600 s->control_command_id = SERVICE_EXEC_RELOAD;
2601 pidref_done(&s->control_pid);
2602
2603 r = service_spawn(s,
2604 s->control_command,
2605 s->timeout_start_usec,
2606 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP,
2607 &s->control_pid);
2608 if (r < 0) {
2609 log_unit_warning_errno(UNIT(s), r, "Failed to run 'reload' task: %m");
2610 goto fail;
2611 }
2612
2613 service_set_state(s, SERVICE_RELOAD);
2614 } else if (killed) {
2615 service_arm_timer(s, /* relative= */ true, s->timeout_start_usec);
2616 service_set_state(s, SERVICE_RELOAD_SIGNAL);
2617 } else {
2618 service_enter_running(s, SERVICE_SUCCESS);
2619 return;
2620 }
2621
2622 /* Store the timestamp when we started reloading: when reloading via SIGHUP we won't leave the reload
2623 * state until we received both RELOADING=1 and READY=1 with MONOTONIC_USEC= set to a value above
2624 * this. Thus we know for sure the reload cycle was executed *after* we requested it, and is not one
2625 * that was already in progress before. */
2626 s->reload_begin_usec = ts;
2627 return;
2628
2629 fail:
2630 s->reload_result = SERVICE_FAILURE_RESOURCES;
2631 service_enter_running(s, SERVICE_SUCCESS);
2632 }
2633
2634 static void service_run_next_control(Service *s) {
2635 usec_t timeout;
2636 int r;
2637
2638 assert(s);
2639 assert(s->control_command);
2640 assert(s->control_command->command_next);
2641
2642 assert(s->control_command_id != SERVICE_EXEC_START);
2643
2644 s->control_command = s->control_command->command_next;
2645 service_unwatch_control_pid(s);
2646
2647 if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD))
2648 timeout = s->timeout_start_usec;
2649 else
2650 timeout = s->timeout_stop_usec;
2651
2652 pidref_done(&s->control_pid);
2653
2654 r = service_spawn(s,
2655 s->control_command,
2656 timeout,
2657 EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|
2658 (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD) ? EXEC_WRITE_CREDENTIALS : 0)|
2659 (IN_SET(s->control_command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE, SERVICE_EXEC_STOP_POST) ? EXEC_APPLY_TTY_STDIN : 0)|
2660 (IN_SET(s->control_command_id, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_SETENV_RESULT : 0)|
2661 (IN_SET(s->control_command_id, SERVICE_EXEC_START_PRE, SERVICE_EXEC_START) ? EXEC_SETENV_MONITOR_RESULT : 0)|
2662 (IN_SET(s->control_command_id, SERVICE_EXEC_START_POST, SERVICE_EXEC_RELOAD, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_CONTROL_CGROUP : 0),
2663 &s->control_pid);
2664 if (r < 0)
2665 goto fail;
2666
2667 return;
2668
2669 fail:
2670 log_unit_warning_errno(UNIT(s), r, "Failed to run next control task: %m");
2671
2672 if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START_POST, SERVICE_STOP))
2673 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
2674 else if (s->state == SERVICE_STOP_POST)
2675 service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
2676 else if (s->state == SERVICE_RELOAD) {
2677 s->reload_result = SERVICE_FAILURE_RESOURCES;
2678 service_enter_running(s, SERVICE_SUCCESS);
2679 } else
2680 service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
2681 }
2682
2683 static void service_run_next_main(Service *s) {
2684 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
2685 int r;
2686
2687 assert(s);
2688 assert(s->main_command);
2689 assert(s->main_command->command_next);
2690 assert(s->type == SERVICE_ONESHOT);
2691
2692 s->main_command = s->main_command->command_next;
2693 service_unwatch_main_pid(s);
2694
2695 r = service_spawn(s,
2696 s->main_command,
2697 s->timeout_start_usec,
2698 EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG|EXEC_SETENV_MONITOR_RESULT|EXEC_WRITE_CREDENTIALS,
2699 &pidref);
2700 if (r < 0)
2701 goto fail;
2702
2703 (void) service_set_main_pid(s, pidref.pid);
2704
2705 return;
2706
2707 fail:
2708 log_unit_warning_errno(UNIT(s), r, "Failed to run next main task: %m");
2709 service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
2710 }
2711
2712 static int service_start(Unit *u) {
2713 Service *s = SERVICE(u);
2714 int r;
2715
2716 assert(s);
2717
2718 /* We cannot fulfill this request right now, try again later
2719 * please! */
2720 if (IN_SET(s->state,
2721 SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
2722 SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING))
2723 return -EAGAIN;
2724
2725 /* Already on it! */
2726 if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST))
2727 return 0;
2728
2729 /* A service that will be restarted must be stopped first to trigger BindsTo and/or OnFailure
2730 * dependencies. If a user does not want to wait for the holdoff time to elapse, the service should
2731 * be manually restarted, not started. We simply return EAGAIN here, so that any start jobs stay
2732 * queued, and assume that the auto restart timer will eventually trigger the restart. */
2733 if (IN_SET(s->state, SERVICE_AUTO_RESTART, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART))
2734 return -EAGAIN;
2735
2736 assert(IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED, SERVICE_AUTO_RESTART_QUEUED));
2737
2738 r = unit_acquire_invocation_id(u);
2739 if (r < 0)
2740 return r;
2741
2742 s->result = SERVICE_SUCCESS;
2743 s->reload_result = SERVICE_SUCCESS;
2744 s->main_pid_known = false;
2745 s->main_pid_alien = false;
2746 s->forbid_restart = false;
2747
2748 s->status_text = mfree(s->status_text);
2749 s->status_errno = 0;
2750
2751 s->notify_access_override = _NOTIFY_ACCESS_INVALID;
2752 s->notify_state = NOTIFY_UNKNOWN;
2753
2754 s->watchdog_original_usec = s->watchdog_usec;
2755 s->watchdog_override_enable = false;
2756 s->watchdog_override_usec = USEC_INFINITY;
2757
2758 exec_command_reset_status_list_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX);
2759 exec_status_reset(&s->main_exec_status);
2760
2761 /* This is not an automatic restart? Flush the restart counter then */
2762 if (s->flush_n_restarts) {
2763 s->n_restarts = 0;
2764 s->flush_n_restarts = false;
2765 }
2766
2767 u->reset_accounting = true;
2768
2769 service_enter_condition(s);
2770 return 1;
2771 }
2772
2773 static int service_stop(Unit *u) {
2774 Service *s = SERVICE(u);
2775
2776 assert(s);
2777
2778 /* Don't create restart jobs from manual stops. */
2779 s->forbid_restart = true;
2780
2781 switch (s->state) {
2782
2783 case SERVICE_STOP:
2784 case SERVICE_STOP_SIGTERM:
2785 case SERVICE_STOP_SIGKILL:
2786 case SERVICE_STOP_POST:
2787 case SERVICE_FINAL_WATCHDOG:
2788 case SERVICE_FINAL_SIGTERM:
2789 case SERVICE_FINAL_SIGKILL:
2790 /* Already on it */
2791 return 0;
2792
2793 case SERVICE_AUTO_RESTART:
2794 case SERVICE_AUTO_RESTART_QUEUED:
2795 /* Give up on the auto restart */
2796 service_set_state(s, service_determine_dead_state(s));
2797 return 0;
2798
2799 case SERVICE_CONDITION:
2800 case SERVICE_START_PRE:
2801 case SERVICE_START:
2802 case SERVICE_START_POST:
2803 case SERVICE_RELOAD:
2804 case SERVICE_RELOAD_SIGNAL:
2805 case SERVICE_RELOAD_NOTIFY:
2806 case SERVICE_STOP_WATCHDOG:
2807 /* If there's already something running we go directly into kill mode. */
2808 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS);
2809 return 0;
2810
2811 case SERVICE_CLEANING:
2812 /* If we are currently cleaning, then abort it, brutally. */
2813 service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS);
2814 return 0;
2815
2816 case SERVICE_RUNNING:
2817 case SERVICE_EXITED:
2818 service_enter_stop(s, SERVICE_SUCCESS);
2819 return 1;
2820
2821 case SERVICE_DEAD_BEFORE_AUTO_RESTART:
2822 case SERVICE_FAILED_BEFORE_AUTO_RESTART:
2823 case SERVICE_DEAD:
2824 case SERVICE_FAILED:
2825 case SERVICE_DEAD_RESOURCES_PINNED:
2826 default:
2827 /* Unknown state, or unit_stop() should already have handled these */
2828 assert_not_reached();
2829 }
2830 }
2831
2832 static int service_reload(Unit *u) {
2833 Service *s = SERVICE(u);
2834
2835 assert(s);
2836
2837 assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED));
2838
2839 service_enter_reload(s);
2840 return 1;
2841 }
2842
2843 static bool service_can_reload(Unit *u) {
2844 Service *s = SERVICE(u);
2845
2846 assert(s);
2847
2848 return s->exec_command[SERVICE_EXEC_RELOAD] ||
2849 s->type == SERVICE_NOTIFY_RELOAD;
2850 }
2851
2852 static unsigned service_exec_command_index(Unit *u, ServiceExecCommand id, const ExecCommand *current) {
2853 Service *s = SERVICE(u);
2854 unsigned idx = 0;
2855
2856 assert(s);
2857 assert(id >= 0);
2858 assert(id < _SERVICE_EXEC_COMMAND_MAX);
2859
2860 const ExecCommand *first = s->exec_command[id];
2861
2862 /* Figure out where we are in the list by walking back to the beginning */
2863 for (const ExecCommand *c = current; c != first; c = c->command_prev)
2864 idx++;
2865
2866 return idx;
2867 }
2868
2869 static int service_serialize_exec_command(Unit *u, FILE *f, const ExecCommand *command) {
2870 _cleanup_free_ char *args = NULL, *p = NULL;
2871 Service *s = SERVICE(u);
2872 const char *type, *key;
2873 ServiceExecCommand id;
2874 size_t length = 0;
2875 unsigned idx;
2876
2877 assert(s);
2878 assert(f);
2879
2880 if (!command)
2881 return 0;
2882
2883 if (command == s->control_command) {
2884 type = "control";
2885 id = s->control_command_id;
2886 } else {
2887 type = "main";
2888 id = SERVICE_EXEC_START;
2889 }
2890
2891 idx = service_exec_command_index(u, id, command);
2892
2893 STRV_FOREACH(arg, command->argv) {
2894 _cleanup_free_ char *e = NULL;
2895 size_t n;
2896
2897 e = cescape(*arg);
2898 if (!e)
2899 return log_oom();
2900
2901 n = strlen(e);
2902 if (!GREEDY_REALLOC(args, length + 2 + n + 2))
2903 return log_oom();
2904
2905 if (length > 0)
2906 args[length++] = ' ';
2907
2908 args[length++] = '"';
2909 memcpy(args + length, e, n);
2910 length += n;
2911 args[length++] = '"';
2912 }
2913
2914 if (!GREEDY_REALLOC(args, length + 1))
2915 return log_oom();
2916
2917 args[length++] = 0;
2918
2919 p = cescape(command->path);
2920 if (!p)
2921 return log_oom();
2922
2923 key = strjoina(type, "-command");
2924
2925 /* We use '+1234' instead of '1234' to mark the last command in a sequence.
2926 * This is used in service_deserialize_exec_command(). */
2927 (void) serialize_item_format(
2928 f, key,
2929 "%s %s%u %s %s",
2930 service_exec_command_to_string(id),
2931 command->command_next ? "" : "+",
2932 idx,
2933 p, args);
2934
2935 return 0;
2936 }
2937
2938 static int service_serialize(Unit *u, FILE *f, FDSet *fds) {
2939 Service *s = SERVICE(u);
2940 int r;
2941
2942 assert(u);
2943 assert(f);
2944 assert(fds);
2945
2946 (void) serialize_item(f, "state", service_state_to_string(s->state));
2947 (void) serialize_item(f, "result", service_result_to_string(s->result));
2948 (void) serialize_item(f, "reload-result", service_result_to_string(s->reload_result));
2949
2950 if (pidref_is_set(&s->control_pid))
2951 (void) serialize_item_format(f, "control-pid", PID_FMT, s->control_pid.pid);
2952
2953 if (s->main_pid_known && pidref_is_set(&s->main_pid))
2954 (void) serialize_item_format(f, "main-pid", PID_FMT, s->main_pid.pid);
2955
2956 (void) serialize_bool(f, "main-pid-known", s->main_pid_known);
2957 (void) serialize_bool(f, "bus-name-good", s->bus_name_good);
2958 (void) serialize_bool(f, "bus-name-owner", s->bus_name_owner);
2959
2960 (void) serialize_item_format(f, "n-restarts", "%u", s->n_restarts);
2961 (void) serialize_bool(f, "flush-n-restarts", s->flush_n_restarts);
2962
2963 r = serialize_item_escaped(f, "status-text", s->status_text);
2964 if (r < 0)
2965 return r;
2966
2967 service_serialize_exec_command(u, f, s->control_command);
2968 service_serialize_exec_command(u, f, s->main_command);
2969
2970 r = serialize_fd(f, fds, "stdin-fd", s->stdin_fd);
2971 if (r < 0)
2972 return r;
2973 r = serialize_fd(f, fds, "stdout-fd", s->stdout_fd);
2974 if (r < 0)
2975 return r;
2976 r = serialize_fd(f, fds, "stderr-fd", s->stderr_fd);
2977 if (r < 0)
2978 return r;
2979
2980 if (s->exec_fd_event_source) {
2981 r = serialize_fd(f, fds, "exec-fd", sd_event_source_get_io_fd(s->exec_fd_event_source));
2982 if (r < 0)
2983 return r;
2984
2985 (void) serialize_bool(f, "exec-fd-hot", s->exec_fd_hot);
2986 }
2987
2988 if (UNIT_ISSET(s->accept_socket)) {
2989 r = serialize_item(f, "accept-socket", UNIT_DEREF(s->accept_socket)->id);
2990 if (r < 0)
2991 return r;
2992 }
2993
2994 r = serialize_fd(f, fds, "socket-fd", s->socket_fd);
2995 if (r < 0)
2996 return r;
2997
2998 LIST_FOREACH(fd_store, fs, s->fd_store) {
2999 _cleanup_free_ char *c = NULL;
3000 int copy;
3001
3002 copy = fdset_put_dup(fds, fs->fd);
3003 if (copy < 0)
3004 return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m");
3005
3006 c = cescape(fs->fdname);
3007 if (!c)
3008 return log_oom();
3009
3010 (void) serialize_item_format(f, "fd-store-fd", "%i \"%s\" %i", copy, c, fs->do_poll);
3011 }
3012
3013 if (s->main_exec_status.pid > 0) {
3014 (void) serialize_item_format(f, "main-exec-status-pid", PID_FMT, s->main_exec_status.pid);
3015 (void) serialize_dual_timestamp(f, "main-exec-status-start", &s->main_exec_status.start_timestamp);
3016 (void) serialize_dual_timestamp(f, "main-exec-status-exit", &s->main_exec_status.exit_timestamp);
3017
3018 if (dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) {
3019 (void) serialize_item_format(f, "main-exec-status-code", "%i", s->main_exec_status.code);
3020 (void) serialize_item_format(f, "main-exec-status-status", "%i", s->main_exec_status.status);
3021 }
3022 }
3023
3024 if (s->notify_access_override >= 0)
3025 (void) serialize_item(f, "notify-access-override", notify_access_to_string(s->notify_access_override));
3026
3027 (void) serialize_dual_timestamp(f, "watchdog-timestamp", &s->watchdog_timestamp);
3028 (void) serialize_bool(f, "forbid-restart", s->forbid_restart);
3029
3030 if (s->watchdog_override_enable)
3031 (void) serialize_item_format(f, "watchdog-override-usec", USEC_FMT, s->watchdog_override_usec);
3032
3033 if (s->watchdog_original_usec != USEC_INFINITY)
3034 (void) serialize_item_format(f, "watchdog-original-usec", USEC_FMT, s->watchdog_original_usec);
3035
3036 if (s->reload_begin_usec != USEC_INFINITY)
3037 (void) serialize_item_format(f, "reload-begin-usec", USEC_FMT, s->reload_begin_usec);
3038
3039 return 0;
3040 }
3041
3042 int service_deserialize_exec_command(
3043 Unit *u,
3044 const char *key,
3045 const char *value) {
3046
3047 Service *s = SERVICE(u);
3048 int r;
3049 unsigned idx = 0, i;
3050 bool control, found = false, last = false;
3051 ServiceExecCommand id = _SERVICE_EXEC_COMMAND_INVALID;
3052 ExecCommand *command = NULL;
3053 _cleanup_free_ char *path = NULL;
3054 _cleanup_strv_free_ char **argv = NULL;
3055
3056 enum ExecCommandState {
3057 STATE_EXEC_COMMAND_TYPE,
3058 STATE_EXEC_COMMAND_INDEX,
3059 STATE_EXEC_COMMAND_PATH,
3060 STATE_EXEC_COMMAND_ARGS,
3061 _STATE_EXEC_COMMAND_MAX,
3062 _STATE_EXEC_COMMAND_INVALID = -EINVAL,
3063 } state;
3064
3065 assert(s);
3066 assert(key);
3067 assert(value);
3068
3069 control = streq(key, "control-command");
3070
3071 state = STATE_EXEC_COMMAND_TYPE;
3072
3073 for (;;) {
3074 _cleanup_free_ char *arg = NULL;
3075
3076 r = extract_first_word(&value, &arg, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE);
3077 if (r < 0)
3078 return r;
3079 if (r == 0)
3080 break;
3081
3082 switch (state) {
3083 case STATE_EXEC_COMMAND_TYPE:
3084 id = service_exec_command_from_string(arg);
3085 if (id < 0)
3086 return id;
3087
3088 state = STATE_EXEC_COMMAND_INDEX;
3089 break;
3090 case STATE_EXEC_COMMAND_INDEX:
3091 /* PID 1234 is serialized as either '1234' or '+1234'. The second form is used to
3092 * mark the last command in a sequence. We warn if the deserialized command doesn't
3093 * match what we have loaded from the unit, but we don't need to warn if that is the
3094 * last command. */
3095
3096 r = safe_atou(arg, &idx);
3097 if (r < 0)
3098 return r;
3099 last = arg[0] == '+';
3100
3101 state = STATE_EXEC_COMMAND_PATH;
3102 break;
3103 case STATE_EXEC_COMMAND_PATH:
3104 path = TAKE_PTR(arg);
3105 state = STATE_EXEC_COMMAND_ARGS;
3106 break;
3107 case STATE_EXEC_COMMAND_ARGS:
3108 r = strv_extend(&argv, arg);
3109 if (r < 0)
3110 return -ENOMEM;
3111 break;
3112 default:
3113 assert_not_reached();
3114 }
3115 }
3116
3117 if (state != STATE_EXEC_COMMAND_ARGS)
3118 return -EINVAL;
3119 if (strv_isempty(argv))
3120 return -EINVAL; /* At least argv[0] must be always present. */
3121
3122 /* Let's check whether exec command on given offset matches data that we just deserialized */
3123 for (command = s->exec_command[id], i = 0; command; command = command->command_next, i++) {
3124 if (i != idx)
3125 continue;
3126
3127 found = strv_equal(argv, command->argv) && streq(command->path, path);
3128 break;
3129 }
3130
3131 if (!found) {
3132 /* Command at the index we serialized is different, let's look for command that exactly
3133 * matches but is on different index. If there is no such command we will not resume execution. */
3134 for (command = s->exec_command[id]; command; command = command->command_next)
3135 if (strv_equal(command->argv, argv) && streq(command->path, path))
3136 break;
3137 }
3138
3139 if (command && control) {
3140 s->control_command = command;
3141 s->control_command_id = id;
3142 } else if (command)
3143 s->main_command = command;
3144 else if (last)
3145 log_unit_debug(u, "Current command vanished from the unit file.");
3146 else
3147 log_unit_warning(u, "Current command vanished from the unit file, execution of the command list won't be resumed.");
3148
3149 return 0;
3150 }
3151
3152 static int service_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) {
3153 Service *s = SERVICE(u);
3154 int r;
3155
3156 assert(u);
3157 assert(key);
3158 assert(value);
3159 assert(fds);
3160
3161 if (streq(key, "state")) {
3162 ServiceState state;
3163
3164 state = service_state_from_string(value);
3165 if (state < 0)
3166 log_unit_debug(u, "Failed to parse state value: %s", value);
3167 else
3168 s->deserialized_state = state;
3169 } else if (streq(key, "result")) {
3170 ServiceResult f;
3171
3172 f = service_result_from_string(value);
3173 if (f < 0)
3174 log_unit_debug(u, "Failed to parse result value: %s", value);
3175 else if (f != SERVICE_SUCCESS)
3176 s->result = f;
3177
3178 } else if (streq(key, "reload-result")) {
3179 ServiceResult f;
3180
3181 f = service_result_from_string(value);
3182 if (f < 0)
3183 log_unit_debug(u, "Failed to parse reload result value: %s", value);
3184 else if (f != SERVICE_SUCCESS)
3185 s->reload_result = f;
3186
3187 } else if (streq(key, "control-pid")) {
3188 pidref_done(&s->control_pid);
3189 r = pidref_set_pidstr(&s->control_pid, value);
3190 if (r < 0)
3191 log_unit_debug_errno(u, r, "Failed to initialize control PID '%s' from serialization, ignoring.", value);
3192 } else if (streq(key, "main-pid")) {
3193 pid_t pid;
3194
3195 if (parse_pid(value, &pid) < 0)
3196 log_unit_debug(u, "Failed to parse main-pid value: %s", value);
3197 else
3198 (void) service_set_main_pid(s, pid);
3199 } else if (streq(key, "main-pid-known")) {
3200 int b;
3201
3202 b = parse_boolean(value);
3203 if (b < 0)
3204 log_unit_debug(u, "Failed to parse main-pid-known value: %s", value);
3205 else
3206 s->main_pid_known = b;
3207 } else if (streq(key, "bus-name-good")) {
3208 int b;
3209
3210 b = parse_boolean(value);
3211 if (b < 0)
3212 log_unit_debug(u, "Failed to parse bus-name-good value: %s", value);
3213 else
3214 s->bus_name_good = b;
3215 } else if (streq(key, "bus-name-owner")) {
3216 r = free_and_strdup(&s->bus_name_owner, value);
3217 if (r < 0)
3218 log_unit_error_errno(u, r, "Unable to deserialize current bus owner %s: %m", value);
3219 } else if (streq(key, "status-text")) {
3220 char *t;
3221 ssize_t l;
3222
3223 l = cunescape(value, 0, &t);
3224 if (l < 0)
3225 log_unit_debug_errno(u, l, "Failed to unescape status text '%s': %m", value);
3226 else
3227 free_and_replace(s->status_text, t);
3228
3229 } else if (streq(key, "accept-socket")) {
3230 Unit *socket;
3231
3232 if (u->type != UNIT_SOCKET) {
3233 log_unit_debug(u, "Failed to deserialize accept-socket: unit is not a socket");
3234 return 0;
3235 }
3236
3237 r = manager_load_unit(u->manager, value, NULL, NULL, &socket);
3238 if (r < 0)
3239 log_unit_debug_errno(u, r, "Failed to load accept-socket unit '%s': %m", value);
3240 else {
3241 unit_ref_set(&s->accept_socket, u, socket);
3242 SOCKET(socket)->n_connections++;
3243 }
3244
3245 } else if (streq(key, "socket-fd")) {
3246 int fd;
3247
3248 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd))
3249 log_unit_debug(u, "Failed to parse socket-fd value: %s", value);
3250 else {
3251 asynchronous_close(s->socket_fd);
3252 s->socket_fd = fdset_remove(fds, fd);
3253 }
3254 } else if (streq(key, "fd-store-fd")) {
3255 _cleanup_free_ char *fdv = NULL, *fdn = NULL, *fdp = NULL;
3256 int fd, do_poll;
3257
3258 r = extract_first_word(&value, &fdv, NULL, 0);
3259 if (r <= 0 || (fd = parse_fd(fdv)) < 0 || !fdset_contains(fds, fd)) {
3260 log_unit_debug(u, "Failed to parse fd-store-fd value: %s", value);
3261 return 0;
3262 }
3263
3264 r = extract_first_word(&value, &fdn, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE);
3265 if (r <= 0) {
3266 log_unit_debug(u, "Failed to parse fd-store-fd value: %s", value);
3267 return 0;
3268 }
3269
3270 r = extract_first_word(&value, &fdp, NULL, 0);
3271 if (r == 0) {
3272 /* If the value is not present, we assume the default */
3273 do_poll = 1;
3274 } else if (r < 0 || safe_atoi(fdp, &do_poll) < 0) {
3275 log_unit_debug_errno(u, r, "Failed to parse fd-store-fd value \"%s\": %m", value);
3276 return 0;
3277 }
3278
3279 r = fdset_remove(fds, fd);
3280 if (r < 0) {
3281 log_unit_error_errno(u, r, "Could not find deserialized fd %i in fdset: %m", fd);
3282 return 0;
3283 }
3284 assert(r == fd);
3285
3286 r = service_add_fd_store(s, fd, fdn, do_poll);
3287 if (r < 0) {
3288 log_unit_error_errno(u, r, "Failed to store deserialized fd %i: %m", fd);
3289 return 0;
3290 }
3291 } else if (streq(key, "main-exec-status-pid")) {
3292 pid_t pid;
3293
3294 if (parse_pid(value, &pid) < 0)
3295 log_unit_debug(u, "Failed to parse main-exec-status-pid value: %s", value);
3296 else
3297 s->main_exec_status.pid = pid;
3298 } else if (streq(key, "main-exec-status-code")) {
3299 int i;
3300
3301 if (safe_atoi(value, &i) < 0)
3302 log_unit_debug(u, "Failed to parse main-exec-status-code value: %s", value);
3303 else
3304 s->main_exec_status.code = i;
3305 } else if (streq(key, "main-exec-status-status")) {
3306 int i;
3307
3308 if (safe_atoi(value, &i) < 0)
3309 log_unit_debug(u, "Failed to parse main-exec-status-status value: %s", value);
3310 else
3311 s->main_exec_status.status = i;
3312 } else if (streq(key, "main-exec-status-start"))
3313 deserialize_dual_timestamp(value, &s->main_exec_status.start_timestamp);
3314 else if (streq(key, "main-exec-status-exit"))
3315 deserialize_dual_timestamp(value, &s->main_exec_status.exit_timestamp);
3316 else if (streq(key, "notify-access-override")) {
3317 NotifyAccess notify_access;
3318
3319 notify_access = notify_access_from_string(value);
3320 if (notify_access < 0)
3321 log_unit_debug(u, "Failed to parse notify-access-override value: %s", value);
3322 else
3323 s->notify_access_override = notify_access;
3324 } else if (streq(key, "watchdog-timestamp"))
3325 deserialize_dual_timestamp(value, &s->watchdog_timestamp);
3326 else if (streq(key, "forbid-restart")) {
3327 int b;
3328
3329 b = parse_boolean(value);
3330 if (b < 0)
3331 log_unit_debug(u, "Failed to parse forbid-restart value: %s", value);
3332 else
3333 s->forbid_restart = b;
3334 } else if (streq(key, "stdin-fd")) {
3335 int fd;
3336
3337 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd))
3338 log_unit_debug(u, "Failed to parse stdin-fd value: %s", value);
3339 else {
3340 asynchronous_close(s->stdin_fd);
3341 s->stdin_fd = fdset_remove(fds, fd);
3342 s->exec_context.stdio_as_fds = true;
3343 }
3344 } else if (streq(key, "stdout-fd")) {
3345 int fd;
3346
3347 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd))
3348 log_unit_debug(u, "Failed to parse stdout-fd value: %s", value);
3349 else {
3350 asynchronous_close(s->stdout_fd);
3351 s->stdout_fd = fdset_remove(fds, fd);
3352 s->exec_context.stdio_as_fds = true;
3353 }
3354 } else if (streq(key, "stderr-fd")) {
3355 int fd;
3356
3357 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd))
3358 log_unit_debug(u, "Failed to parse stderr-fd value: %s", value);
3359 else {
3360 asynchronous_close(s->stderr_fd);
3361 s->stderr_fd = fdset_remove(fds, fd);
3362 s->exec_context.stdio_as_fds = true;
3363 }
3364 } else if (streq(key, "exec-fd")) {
3365 int fd;
3366
3367 if ((fd = parse_fd(value)) < 0 || !fdset_contains(fds, fd))
3368 log_unit_debug(u, "Failed to parse exec-fd value: %s", value);
3369 else {
3370 s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
3371
3372 fd = fdset_remove(fds, fd);
3373 if (service_allocate_exec_fd_event_source(s, fd, &s->exec_fd_event_source) < 0)
3374 safe_close(fd);
3375 }
3376 } else if (streq(key, "watchdog-override-usec")) {
3377 if (deserialize_usec(value, &s->watchdog_override_usec) < 0)
3378 log_unit_debug(u, "Failed to parse watchdog_override_usec value: %s", value);
3379 else
3380 s->watchdog_override_enable = true;
3381
3382 } else if (streq(key, "watchdog-original-usec")) {
3383 if (deserialize_usec(value, &s->watchdog_original_usec) < 0)
3384 log_unit_debug(u, "Failed to parse watchdog_original_usec value: %s", value);
3385
3386 } else if (STR_IN_SET(key, "main-command", "control-command")) {
3387 r = service_deserialize_exec_command(u, key, value);
3388 if (r < 0)
3389 log_unit_debug_errno(u, r, "Failed to parse serialized command \"%s\": %m", value);
3390
3391 } else if (streq(key, "n-restarts")) {
3392 r = safe_atou(value, &s->n_restarts);
3393 if (r < 0)
3394 log_unit_debug_errno(u, r, "Failed to parse serialized restart counter '%s': %m", value);
3395
3396 } else if (streq(key, "flush-n-restarts")) {
3397 r = parse_boolean(value);
3398 if (r < 0)
3399 log_unit_debug_errno(u, r, "Failed to parse serialized flush restart counter setting '%s': %m", value);
3400 else
3401 s->flush_n_restarts = r;
3402 } else if (streq(key, "reload-begin-usec")) {
3403 r = deserialize_usec(value, &s->reload_begin_usec);
3404 if (r < 0)
3405 log_unit_debug_errno(u, r, "Failed to parse serialized reload begin timestamp '%s', ignoring: %m", value);
3406 } else
3407 log_unit_debug(u, "Unknown serialization key: %s", key);
3408
3409 return 0;
3410 }
3411
3412 static UnitActiveState service_active_state(Unit *u) {
3413 const UnitActiveState *table;
3414
3415 assert(u);
3416
3417 table = SERVICE(u)->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table;
3418
3419 return table[SERVICE(u)->state];
3420 }
3421
3422 static const char *service_sub_state_to_string(Unit *u) {
3423 assert(u);
3424
3425 return service_state_to_string(SERVICE(u)->state);
3426 }
3427
3428 static bool service_may_gc(Unit *u) {
3429 Service *s = SERVICE(u);
3430
3431 assert(s);
3432
3433 /* Never clean up services that still have a process around, even if the service is formally dead. Note that
3434 * unit_may_gc() already checked our cgroup for us, we just check our two additional PIDs, too, in case they
3435 * have moved outside of the cgroup. */
3436
3437 if (main_pid_good(s) > 0 ||
3438 control_pid_good(s) > 0)
3439 return false;
3440
3441 /* Only allow collection of actually dead services, i.e. not those that are in the transitionary
3442 * SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART states. */
3443 if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED))
3444 return false;
3445
3446 return true;
3447 }
3448
3449 static int service_retry_pid_file(Service *s) {
3450 int r;
3451
3452 assert(s->pid_file);
3453 assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST));
3454
3455 r = service_load_pid_file(s, false);
3456 if (r < 0)
3457 return r;
3458
3459 service_unwatch_pid_file(s);
3460
3461 service_enter_running(s, SERVICE_SUCCESS);
3462 return 0;
3463 }
3464
3465 static int service_watch_pid_file(Service *s) {
3466 int r;
3467
3468 log_unit_debug(UNIT(s), "Setting watch for PID file %s", s->pid_file_pathspec->path);
3469
3470 r = path_spec_watch(s->pid_file_pathspec, service_dispatch_inotify_io);
3471 if (r < 0)
3472 goto fail;
3473
3474 /* the pidfile might have appeared just before we set the watch */
3475 log_unit_debug(UNIT(s), "Trying to read PID file %s in case it changed", s->pid_file_pathspec->path);
3476 service_retry_pid_file(s);
3477
3478 return 0;
3479 fail:
3480 log_unit_error_errno(UNIT(s), r, "Failed to set a watch for PID file %s: %m", s->pid_file_pathspec->path);
3481 service_unwatch_pid_file(s);
3482 return r;
3483 }
3484
3485 static int service_demand_pid_file(Service *s) {
3486 _cleanup_free_ PathSpec *ps = NULL;
3487
3488 assert(s->pid_file);
3489 assert(!s->pid_file_pathspec);
3490
3491 ps = new(PathSpec, 1);
3492 if (!ps)
3493 return -ENOMEM;
3494
3495 *ps = (PathSpec) {
3496 .unit = UNIT(s),
3497 .path = strdup(s->pid_file),
3498 /* PATH_CHANGED would not be enough. There are daemons (sendmail) that keep their PID file
3499 * open all the time. */
3500 .type = PATH_MODIFIED,
3501 .inotify_fd = -EBADF,
3502 };
3503
3504 if (!ps->path)
3505 return -ENOMEM;
3506
3507 path_simplify(ps->path);
3508
3509 s->pid_file_pathspec = TAKE_PTR(ps);
3510
3511 return service_watch_pid_file(s);
3512 }
3513
3514 static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata) {
3515 PathSpec *p = ASSERT_PTR(userdata);
3516 Service *s;
3517
3518 s = SERVICE(p->unit);
3519
3520 assert(s);
3521 assert(fd >= 0);
3522 assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST));
3523 assert(s->pid_file_pathspec);
3524 assert(path_spec_owns_inotify_fd(s->pid_file_pathspec, fd));
3525
3526 log_unit_debug(UNIT(s), "inotify event");
3527
3528 if (path_spec_fd_event(p, events) < 0)
3529 goto fail;
3530
3531 if (service_retry_pid_file(s) == 0)
3532 return 0;
3533
3534 if (service_watch_pid_file(s) < 0)
3535 goto fail;
3536
3537 return 0;
3538
3539 fail:
3540 service_unwatch_pid_file(s);
3541 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
3542 return 0;
3543 }
3544
3545 static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata) {
3546 Service *s = SERVICE(userdata);
3547
3548 assert(s);
3549
3550 log_unit_debug(UNIT(s), "got exec-fd event");
3551
3552 /* If Type=exec is set, we'll consider a service started successfully the instant we invoked execve()
3553 * successfully for it. We implement this through a pipe() towards the child, which the kernel automatically
3554 * closes for us due to O_CLOEXEC on execve() in the child, which then triggers EOF on the pipe in the
3555 * parent. We need to be careful however, as there are other reasons that we might cause the child's side of
3556 * the pipe to be closed (for example, a simple exit()). To deal with that we'll ignore EOFs on the pipe unless
3557 * the child signalled us first that it is about to call the execve(). It does so by sending us a simple
3558 * non-zero byte via the pipe. We also provide the child with a way to inform us in case execve() failed: if it
3559 * sends a zero byte we'll ignore POLLHUP on the fd again. */
3560
3561 for (;;) {
3562 uint8_t x;
3563 ssize_t n;
3564
3565 n = read(fd, &x, sizeof(x));
3566 if (n < 0) {
3567 if (errno == EAGAIN) /* O_NONBLOCK in effect → everything queued has now been processed. */
3568 return 0;
3569
3570 return log_unit_error_errno(UNIT(s), errno, "Failed to read from exec_fd: %m");
3571 }
3572 if (n == 0) { /* EOF → the event we are waiting for */
3573
3574 s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
3575
3576 if (s->exec_fd_hot) { /* Did the child tell us to expect EOF now? */
3577 log_unit_debug(UNIT(s), "Got EOF on exec-fd");
3578
3579 s->exec_fd_hot = false;
3580
3581 /* Nice! This is what we have been waiting for. Transition to next state. */
3582 if (s->type == SERVICE_EXEC && s->state == SERVICE_START)
3583 service_enter_start_post(s);
3584 } else
3585 log_unit_debug(UNIT(s), "Got EOF on exec-fd while it was disabled, ignoring.");
3586
3587 return 0;
3588 }
3589
3590 /* A byte was read → this turns on/off the exec fd logic */
3591 assert(n == sizeof(x));
3592 s->exec_fd_hot = x;
3593 }
3594
3595 return 0;
3596 }
3597
3598 static void service_notify_cgroup_empty_event(Unit *u) {
3599 Service *s = SERVICE(u);
3600
3601 assert(u);
3602
3603 log_unit_debug(u, "Control group is empty.");
3604
3605 switch (s->state) {
3606
3607 /* Waiting for SIGCHLD is usually more interesting, because it includes return
3608 * codes/signals. Which is why we ignore the cgroup events for most cases, except when we
3609 * don't know pid which to expect the SIGCHLD for. */
3610
3611 case SERVICE_START:
3612 if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) &&
3613 main_pid_good(s) == 0 &&
3614 control_pid_good(s) == 0) {
3615 /* No chance of getting a ready notification anymore */
3616 service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL);
3617 break;
3618 }
3619
3620 if (s->exit_type == SERVICE_EXIT_CGROUP && main_pid_good(s) <= 0)
3621 service_enter_start_post(s);
3622
3623 _fallthrough_;
3624 case SERVICE_START_POST:
3625 if (s->pid_file_pathspec &&
3626 main_pid_good(s) == 0 &&
3627 control_pid_good(s) == 0) {
3628
3629 /* Give up hoping for the daemon to write its PID file */
3630 log_unit_warning(u, "Daemon never wrote its PID file. Failing.");
3631
3632 service_unwatch_pid_file(s);
3633 if (s->state == SERVICE_START)
3634 service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL);
3635 else
3636 service_enter_stop(s, SERVICE_FAILURE_PROTOCOL);
3637 }
3638 break;
3639
3640 case SERVICE_RUNNING:
3641 /* service_enter_running() will figure out what to do */
3642 service_enter_running(s, SERVICE_SUCCESS);
3643 break;
3644
3645 case SERVICE_STOP_WATCHDOG:
3646 case SERVICE_STOP_SIGTERM:
3647 case SERVICE_STOP_SIGKILL:
3648
3649 if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0)
3650 service_enter_stop_post(s, SERVICE_SUCCESS);
3651
3652 break;
3653
3654 case SERVICE_STOP_POST:
3655 case SERVICE_FINAL_WATCHDOG:
3656 case SERVICE_FINAL_SIGTERM:
3657 case SERVICE_FINAL_SIGKILL:
3658 if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0)
3659 service_enter_dead(s, SERVICE_SUCCESS, true);
3660
3661 break;
3662
3663 /* If the cgroup empty notification comes when the unit is not active, we must have failed to clean
3664 * up the cgroup earlier and should do it now. */
3665 case SERVICE_AUTO_RESTART:
3666 case SERVICE_AUTO_RESTART_QUEUED:
3667 unit_prune_cgroup(u);
3668 break;
3669
3670 default:
3671 ;
3672 }
3673 }
3674
3675 static void service_notify_cgroup_oom_event(Unit *u, bool managed_oom) {
3676 Service *s = SERVICE(u);
3677
3678 if (managed_oom)
3679 log_unit_debug(u, "Process(es) of control group were killed by systemd-oomd.");
3680 else
3681 log_unit_debug(u, "Process of control group was killed by the OOM killer.");
3682
3683 if (s->oom_policy == OOM_CONTINUE)
3684 return;
3685
3686 switch (s->state) {
3687
3688 case SERVICE_CONDITION:
3689 case SERVICE_START_PRE:
3690 case SERVICE_START:
3691 case SERVICE_START_POST:
3692 case SERVICE_STOP:
3693 if (s->oom_policy == OOM_STOP)
3694 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_OOM_KILL);
3695 else if (s->oom_policy == OOM_KILL)
3696 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
3697
3698 break;
3699
3700 case SERVICE_EXITED:
3701 case SERVICE_RUNNING:
3702 if (s->oom_policy == OOM_STOP)
3703 service_enter_stop(s, SERVICE_FAILURE_OOM_KILL);
3704 else if (s->oom_policy == OOM_KILL)
3705 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
3706
3707 break;
3708
3709 case SERVICE_STOP_WATCHDOG:
3710 case SERVICE_STOP_SIGTERM:
3711 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
3712 break;
3713
3714 case SERVICE_STOP_SIGKILL:
3715 case SERVICE_FINAL_SIGKILL:
3716 if (s->result == SERVICE_SUCCESS)
3717 s->result = SERVICE_FAILURE_OOM_KILL;
3718 break;
3719
3720 case SERVICE_STOP_POST:
3721 case SERVICE_FINAL_SIGTERM:
3722 service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_OOM_KILL);
3723 break;
3724
3725 default:
3726 ;
3727 }
3728 }
3729
3730 static void service_sigchld_event(Unit *u, pid_t pid, int code, int status) {
3731 bool notify_dbus = true;
3732 Service *s = SERVICE(u);
3733 ServiceResult f;
3734 ExitClean clean_mode;
3735
3736 assert(s);
3737 assert(pid >= 0);
3738
3739 /* Oneshot services and non-SERVICE_EXEC_START commands should not be
3740 * considered daemons as they are typically not long running. */
3741 if (s->type == SERVICE_ONESHOT || (s->control_pid.pid == pid && s->control_command_id != SERVICE_EXEC_START))
3742 clean_mode = EXIT_CLEAN_COMMAND;
3743 else
3744 clean_mode = EXIT_CLEAN_DAEMON;
3745
3746 if (is_clean_exit(code, status, clean_mode, &s->success_status))
3747 f = SERVICE_SUCCESS;
3748 else if (code == CLD_EXITED)
3749 f = SERVICE_FAILURE_EXIT_CODE;
3750 else if (code == CLD_KILLED)
3751 f = SERVICE_FAILURE_SIGNAL;
3752 else if (code == CLD_DUMPED)
3753 f = SERVICE_FAILURE_CORE_DUMP;
3754 else
3755 assert_not_reached();
3756
3757 if (s->main_pid.pid == pid) {
3758 /* Clean up the exec_fd event source. We want to do this here, not later in
3759 * service_set_state(), because service_enter_stop_post() calls service_spawn().
3760 * The source owns its end of the pipe, so this will close that too. */
3761 s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source);
3762
3763 /* Forking services may occasionally move to a new PID.
3764 * As long as they update the PID file before exiting the old
3765 * PID, they're fine. */
3766 if (service_load_pid_file(s, false) > 0)
3767 return;
3768
3769 pidref_done(&s->main_pid);
3770 exec_status_exit(&s->main_exec_status, &s->exec_context, pid, code, status);
3771
3772 if (s->main_command) {
3773 /* If this is not a forking service than the
3774 * main process got started and hence we copy
3775 * the exit status so that it is recorded both
3776 * as main and as control process exit
3777 * status */
3778
3779 s->main_command->exec_status = s->main_exec_status;
3780
3781 if (s->main_command->flags & EXEC_COMMAND_IGNORE_FAILURE)
3782 f = SERVICE_SUCCESS;
3783 } else if (s->exec_command[SERVICE_EXEC_START]) {
3784
3785 /* If this is a forked process, then we should
3786 * ignore the return value if this was
3787 * configured for the starter process */
3788
3789 if (s->exec_command[SERVICE_EXEC_START]->flags & EXEC_COMMAND_IGNORE_FAILURE)
3790 f = SERVICE_SUCCESS;
3791 }
3792
3793 unit_log_process_exit(
3794 u,
3795 "Main process",
3796 service_exec_command_to_string(SERVICE_EXEC_START),
3797 f == SERVICE_SUCCESS,
3798 code, status);
3799
3800 if (s->result == SERVICE_SUCCESS)
3801 s->result = f;
3802
3803 if (s->main_command &&
3804 s->main_command->command_next &&
3805 s->type == SERVICE_ONESHOT &&
3806 f == SERVICE_SUCCESS) {
3807
3808 /* There is another command to execute, so let's do that. */
3809
3810 log_unit_debug(u, "Running next main command for state %s.", service_state_to_string(s->state));
3811 service_run_next_main(s);
3812
3813 } else {
3814 s->main_command = NULL;
3815
3816 /* Services with ExitType=cgroup do not act on main PID exiting, unless the cgroup is
3817 * already empty */
3818 if (s->exit_type == SERVICE_EXIT_MAIN || cgroup_good(s) <= 0) {
3819 /* The service exited, so the service is officially gone. */
3820 switch (s->state) {
3821
3822 case SERVICE_START_POST:
3823 case SERVICE_RELOAD:
3824 case SERVICE_RELOAD_SIGNAL:
3825 case SERVICE_RELOAD_NOTIFY:
3826 /* If neither main nor control processes are running then the current
3827 * state can never exit cleanly, hence immediately terminate the
3828 * service. */
3829 if (control_pid_good(s) <= 0)
3830 service_enter_stop(s, f);
3831
3832 /* Otherwise need to wait until the operation is done. */
3833 break;
3834
3835 case SERVICE_STOP:
3836 /* Need to wait until the operation is done. */
3837 break;
3838
3839 case SERVICE_START:
3840 if (s->type == SERVICE_ONESHOT) {
3841 /* This was our main goal, so let's go on */
3842 if (f == SERVICE_SUCCESS)
3843 service_enter_start_post(s);
3844 else
3845 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
3846 break;
3847 } else if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD)) {
3848 /* Only enter running through a notification, so that the
3849 * SERVICE_START state signifies that no ready notification
3850 * has been received */
3851 if (f != SERVICE_SUCCESS)
3852 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
3853 else if (!s->remain_after_exit || service_get_notify_access(s) == NOTIFY_MAIN)
3854 /* The service has never been and will never be active */
3855 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL);
3856 break;
3857 }
3858
3859 _fallthrough_;
3860 case SERVICE_RUNNING:
3861 service_enter_running(s, f);
3862 break;
3863
3864 case SERVICE_STOP_WATCHDOG:
3865 case SERVICE_STOP_SIGTERM:
3866 case SERVICE_STOP_SIGKILL:
3867
3868 if (control_pid_good(s) <= 0)
3869 service_enter_stop_post(s, f);
3870
3871 /* If there is still a control process, wait for that first */
3872 break;
3873
3874 case SERVICE_STOP_POST:
3875
3876 if (control_pid_good(s) <= 0)
3877 service_enter_signal(s, SERVICE_FINAL_SIGTERM, f);
3878
3879 break;
3880
3881 case SERVICE_FINAL_WATCHDOG:
3882 case SERVICE_FINAL_SIGTERM:
3883 case SERVICE_FINAL_SIGKILL:
3884
3885 if (control_pid_good(s) <= 0)
3886 service_enter_dead(s, f, true);
3887 break;
3888
3889 default:
3890 assert_not_reached();
3891 }
3892 } else if (s->exit_type == SERVICE_EXIT_CGROUP && s->state == SERVICE_START)
3893 /* If a main process exits very quickly, this function might be executed
3894 * before service_dispatch_exec_io(). Since this function disabled IO events
3895 * to monitor the main process above, we need to update the state here too.
3896 * Let's consider the process is successfully launched and exited. */
3897 service_enter_start_post(s);
3898 }
3899
3900 } else if (s->control_pid.pid == pid) {
3901 const char *kind;
3902 bool success;
3903
3904 pidref_done(&s->control_pid);
3905
3906 if (s->control_command) {
3907 exec_status_exit(&s->control_command->exec_status, &s->exec_context, pid, code, status);
3908
3909 if (s->control_command->flags & EXEC_COMMAND_IGNORE_FAILURE)
3910 f = SERVICE_SUCCESS;
3911 }
3912
3913 /* ExecCondition= calls that exit with (0, 254] should invoke skip-like behavior instead of failing */
3914 if (s->state == SERVICE_CONDITION) {
3915 if (f == SERVICE_FAILURE_EXIT_CODE && status < 255) {
3916 UNIT(s)->condition_result = false;
3917 f = SERVICE_SKIP_CONDITION;
3918 success = true;
3919 } else if (f == SERVICE_SUCCESS) {
3920 UNIT(s)->condition_result = true;
3921 success = true;
3922 } else
3923 success = false;
3924
3925 kind = "Condition check process";
3926 } else {
3927 kind = "Control process";
3928 success = f == SERVICE_SUCCESS;
3929 }
3930
3931 unit_log_process_exit(
3932 u,
3933 kind,
3934 service_exec_command_to_string(s->control_command_id),
3935 success,
3936 code, status);
3937
3938 if (s->state != SERVICE_RELOAD && s->result == SERVICE_SUCCESS)
3939 s->result = f;
3940
3941 if (s->control_command &&
3942 s->control_command->command_next &&
3943 f == SERVICE_SUCCESS) {
3944
3945 /* There is another command to * execute, so let's do that. */
3946
3947 log_unit_debug(u, "Running next control command for state %s.", service_state_to_string(s->state));
3948 service_run_next_control(s);
3949
3950 } else {
3951 /* No further commands for this step, so let's figure out what to do next */
3952
3953 s->control_command = NULL;
3954 s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
3955
3956 log_unit_debug(u, "Got final SIGCHLD for state %s.", service_state_to_string(s->state));
3957
3958 switch (s->state) {
3959
3960 case SERVICE_CONDITION:
3961 if (f == SERVICE_SUCCESS)
3962 service_enter_start_pre(s);
3963 else
3964 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
3965 break;
3966
3967 case SERVICE_START_PRE:
3968 if (f == SERVICE_SUCCESS)
3969 service_enter_start(s);
3970 else
3971 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
3972 break;
3973
3974 case SERVICE_START:
3975 if (s->type != SERVICE_FORKING)
3976 /* Maybe spurious event due to a reload that changed the type? */
3977 break;
3978
3979 if (f != SERVICE_SUCCESS) {
3980 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
3981 break;
3982 }
3983
3984 if (s->pid_file) {
3985 bool has_start_post;
3986 int r;
3987
3988 /* Let's try to load the pid file here if we can.
3989 * The PID file might actually be created by a START_POST
3990 * script. In that case don't worry if the loading fails. */
3991
3992 has_start_post = s->exec_command[SERVICE_EXEC_START_POST];
3993 r = service_load_pid_file(s, !has_start_post);
3994 if (!has_start_post && r < 0) {
3995 r = service_demand_pid_file(s);
3996 if (r < 0 || cgroup_good(s) == 0)
3997 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL);
3998 break;
3999 }
4000 } else
4001 service_search_main_pid(s);
4002
4003 service_enter_start_post(s);
4004 break;
4005
4006 case SERVICE_START_POST:
4007 if (f != SERVICE_SUCCESS) {
4008 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
4009 break;
4010 }
4011
4012 if (s->pid_file) {
4013 int r;
4014
4015 r = service_load_pid_file(s, true);
4016 if (r < 0) {
4017 r = service_demand_pid_file(s);
4018 if (r < 0 || cgroup_good(s) == 0)
4019 service_enter_stop(s, SERVICE_FAILURE_PROTOCOL);
4020 break;
4021 }
4022 } else
4023 service_search_main_pid(s);
4024
4025 service_enter_running(s, SERVICE_SUCCESS);
4026 break;
4027
4028 case SERVICE_RELOAD:
4029 case SERVICE_RELOAD_SIGNAL:
4030 case SERVICE_RELOAD_NOTIFY:
4031 if (f == SERVICE_SUCCESS)
4032 if (service_load_pid_file(s, true) < 0)
4033 service_search_main_pid(s);
4034
4035 s->reload_result = f;
4036
4037 /* If the last notification we received from the service process indicates
4038 * we are still reloading, then don't leave reloading state just yet, just
4039 * transition into SERVICE_RELOAD_NOTIFY, to wait for the READY=1 coming,
4040 * too. */
4041 if (s->notify_state == NOTIFY_RELOADING)
4042 service_set_state(s, SERVICE_RELOAD_NOTIFY);
4043 else
4044 service_enter_running(s, SERVICE_SUCCESS);
4045 break;
4046
4047 case SERVICE_STOP:
4048 service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
4049 break;
4050
4051 case SERVICE_STOP_WATCHDOG:
4052 case SERVICE_STOP_SIGTERM:
4053 case SERVICE_STOP_SIGKILL:
4054 if (main_pid_good(s) <= 0)
4055 service_enter_stop_post(s, f);
4056
4057 /* If there is still a service process around, wait until
4058 * that one quit, too */
4059 break;
4060
4061 case SERVICE_STOP_POST:
4062 if (main_pid_good(s) <= 0)
4063 service_enter_signal(s, SERVICE_FINAL_SIGTERM, f);
4064 break;
4065
4066 case SERVICE_FINAL_WATCHDOG:
4067 case SERVICE_FINAL_SIGTERM:
4068 case SERVICE_FINAL_SIGKILL:
4069 if (main_pid_good(s) <= 0)
4070 service_enter_dead(s, f, true);
4071 break;
4072
4073 case SERVICE_CLEANING:
4074
4075 if (s->clean_result == SERVICE_SUCCESS)
4076 s->clean_result = f;
4077
4078 service_enter_dead(s, SERVICE_SUCCESS, false);
4079 break;
4080
4081 default:
4082 assert_not_reached();
4083 }
4084 }
4085 } else /* Neither control nor main PID? If so, don't notify about anything */
4086 notify_dbus = false;
4087
4088 /* Notify clients about changed exit status */
4089 if (notify_dbus)
4090 unit_add_to_dbus_queue(u);
4091
4092 /* We watch the main/control process otherwise we can't retrieve the unit they
4093 * belong to with cgroupv1. But if they are not our direct child, we won't get a
4094 * SIGCHLD for them. Therefore we need to look for others to watch so we can
4095 * detect when the cgroup becomes empty. Note that the control process is always
4096 * our child so it's pointless to watch all other processes. */
4097 if (!control_pid_good(s))
4098 if (!s->main_pid_known || s->main_pid_alien)
4099 (void) unit_enqueue_rewatch_pids(u);
4100 }
4101
4102 static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata) {
4103 Service *s = SERVICE(userdata);
4104
4105 assert(s);
4106 assert(source == s->timer_event_source);
4107
4108 switch (s->state) {
4109
4110 case SERVICE_CONDITION:
4111 case SERVICE_START_PRE:
4112 case SERVICE_START:
4113 case SERVICE_START_POST:
4114 switch (s->timeout_start_failure_mode) {
4115
4116 case SERVICE_TIMEOUT_TERMINATE:
4117 log_unit_warning(UNIT(s), "%s operation timed out. Terminating.", service_state_to_string(s->state));
4118 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT);
4119 break;
4120
4121 case SERVICE_TIMEOUT_ABORT:
4122 log_unit_warning(UNIT(s), "%s operation timed out. Aborting.", service_state_to_string(s->state));
4123 service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
4124 break;
4125
4126 case SERVICE_TIMEOUT_KILL:
4127 if (s->kill_context.send_sigkill) {
4128 log_unit_warning(UNIT(s), "%s operation timed out. Killing.", service_state_to_string(s->state));
4129 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4130 } else {
4131 log_unit_warning(UNIT(s), "%s operation timed out. Skipping SIGKILL.", service_state_to_string(s->state));
4132 service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
4133 }
4134 break;
4135
4136 default:
4137 assert_not_reached();
4138 }
4139 break;
4140
4141 case SERVICE_RUNNING:
4142 log_unit_warning(UNIT(s), "Service reached runtime time limit. Stopping.");
4143 service_enter_stop(s, SERVICE_FAILURE_TIMEOUT);
4144 break;
4145
4146 case SERVICE_RELOAD:
4147 case SERVICE_RELOAD_SIGNAL:
4148 case SERVICE_RELOAD_NOTIFY:
4149 log_unit_warning(UNIT(s), "Reload operation timed out. Killing reload process.");
4150 service_kill_control_process(s);
4151 s->reload_result = SERVICE_FAILURE_TIMEOUT;
4152 service_enter_running(s, SERVICE_SUCCESS);
4153 break;
4154
4155 case SERVICE_STOP:
4156 switch (s->timeout_stop_failure_mode) {
4157
4158 case SERVICE_TIMEOUT_TERMINATE:
4159 log_unit_warning(UNIT(s), "Stopping timed out. Terminating.");
4160 service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT);
4161 break;
4162
4163 case SERVICE_TIMEOUT_ABORT:
4164 log_unit_warning(UNIT(s), "Stopping timed out. Aborting.");
4165 service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
4166 break;
4167
4168 case SERVICE_TIMEOUT_KILL:
4169 if (s->kill_context.send_sigkill) {
4170 log_unit_warning(UNIT(s), "Stopping timed out. Killing.");
4171 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4172 } else {
4173 log_unit_warning(UNIT(s), "Stopping timed out. Skipping SIGKILL.");
4174 service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
4175 }
4176 break;
4177
4178 default:
4179 assert_not_reached();
4180 }
4181 break;
4182
4183 case SERVICE_STOP_WATCHDOG:
4184 if (s->kill_context.send_sigkill) {
4185 log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Killing.");
4186 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4187 } else {
4188 log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Skipping SIGKILL.");
4189 service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
4190 }
4191 break;
4192
4193 case SERVICE_STOP_SIGTERM:
4194 if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) {
4195 log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Aborting.");
4196 service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
4197 } else if (s->kill_context.send_sigkill) {
4198 log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Killing.");
4199 service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4200 } else {
4201 log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Skipping SIGKILL.");
4202 service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
4203 }
4204
4205 break;
4206
4207 case SERVICE_STOP_SIGKILL:
4208 /* Uh, we sent a SIGKILL and it is still not gone?
4209 * Must be something we cannot kill, so let's just be
4210 * weirded out and continue */
4211
4212 log_unit_warning(UNIT(s), "Processes still around after SIGKILL. Ignoring.");
4213 service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
4214 break;
4215
4216 case SERVICE_STOP_POST:
4217 switch (s->timeout_stop_failure_mode) {
4218
4219 case SERVICE_TIMEOUT_TERMINATE:
4220 log_unit_warning(UNIT(s), "State 'stop-post' timed out. Terminating.");
4221 service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_TIMEOUT);
4222 break;
4223
4224 case SERVICE_TIMEOUT_ABORT:
4225 log_unit_warning(UNIT(s), "State 'stop-post' timed out. Aborting.");
4226 service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
4227 break;
4228
4229 case SERVICE_TIMEOUT_KILL:
4230 if (s->kill_context.send_sigkill) {
4231 log_unit_warning(UNIT(s), "State 'stop-post' timed out. Killing.");
4232 service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4233 } else {
4234 log_unit_warning(UNIT(s), "State 'stop-post' timed out. Skipping SIGKILL. Entering failed mode.");
4235 service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
4236 }
4237 break;
4238
4239 default:
4240 assert_not_reached();
4241 }
4242 break;
4243
4244 case SERVICE_FINAL_WATCHDOG:
4245 if (s->kill_context.send_sigkill) {
4246 log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Killing.");
4247 service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4248 } else {
4249 log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Skipping SIGKILL. Entering failed mode.");
4250 service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
4251 }
4252 break;
4253
4254 case SERVICE_FINAL_SIGTERM:
4255 if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) {
4256 log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Aborting.");
4257 service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
4258 } else if (s->kill_context.send_sigkill) {
4259 log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Killing.");
4260 service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
4261 } else {
4262 log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Skipping SIGKILL. Entering failed mode.");
4263 service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
4264 }
4265
4266 break;
4267
4268 case SERVICE_FINAL_SIGKILL:
4269 log_unit_warning(UNIT(s), "Processes still around after final SIGKILL. Entering failed mode.");
4270 service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, true);
4271 break;
4272
4273 case SERVICE_AUTO_RESTART:
4274 if (s->restart_usec > 0)
4275 log_unit_debug(UNIT(s),
4276 "Service restart interval %s expired, scheduling restart.",
4277 FORMAT_TIMESPAN(service_restart_usec_next(s), USEC_PER_SEC));
4278 else
4279 log_unit_debug(UNIT(s),
4280 "Service has no hold-off time (RestartSec=0), scheduling restart.");
4281
4282 service_enter_restart(s);
4283 break;
4284
4285 case SERVICE_CLEANING:
4286 log_unit_warning(UNIT(s), "Cleaning timed out. killing.");
4287
4288 if (s->clean_result == SERVICE_SUCCESS)
4289 s->clean_result = SERVICE_FAILURE_TIMEOUT;
4290
4291 service_enter_signal(s, SERVICE_FINAL_SIGKILL, 0);
4292 break;
4293
4294 default:
4295 assert_not_reached();
4296 }
4297
4298 return 0;
4299 }
4300
4301 static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata) {
4302 Service *s = SERVICE(userdata);
4303 usec_t watchdog_usec;
4304
4305 assert(s);
4306 assert(source == s->watchdog_event_source);
4307
4308 watchdog_usec = service_get_watchdog_usec(s);
4309
4310 if (UNIT(s)->manager->service_watchdogs) {
4311 log_unit_error(UNIT(s), "Watchdog timeout (limit %s)!",
4312 FORMAT_TIMESPAN(watchdog_usec, 1));
4313
4314 service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG);
4315 } else
4316 log_unit_warning(UNIT(s), "Watchdog disabled! Ignoring watchdog timeout (limit %s)!",
4317 FORMAT_TIMESPAN(watchdog_usec, 1));
4318
4319 return 0;
4320 }
4321
4322 static bool service_notify_message_authorized(Service *s, pid_t pid, FDSet *fds) {
4323 assert(s);
4324
4325 NotifyAccess notify_access = service_get_notify_access(s);
4326
4327 if (notify_access == NOTIFY_NONE) {
4328 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception is disabled.", pid);
4329 return false;
4330 }
4331
4332 if (notify_access == NOTIFY_MAIN && pid != s->main_pid.pid) {
4333 if (pidref_is_set(&s->main_pid))
4334 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid.pid);
4335 else
4336 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID which is currently not known", pid);
4337
4338 return false;
4339 }
4340
4341 if (notify_access == NOTIFY_EXEC && pid != s->main_pid.pid && pid != s->control_pid.pid) {
4342 if (pidref_is_set(&s->main_pid) && pidref_is_set(&s->control_pid))
4343 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT" and control PID "PID_FMT,
4344 pid, s->main_pid.pid, s->control_pid.pid);
4345 else if (pidref_is_set(&s->main_pid))
4346 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid.pid);
4347 else if (pidref_is_set(&s->control_pid))
4348 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for control PID "PID_FMT, pid, s->control_pid.pid);
4349 else
4350 log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID and control PID which are currently not known", pid);
4351
4352 return false;
4353 }
4354
4355 return true;
4356 }
4357
4358 static void service_force_watchdog(Service *s) {
4359 if (!UNIT(s)->manager->service_watchdogs)
4360 return;
4361
4362 log_unit_error(UNIT(s), "Watchdog request (last status: %s)!",
4363 s->status_text ?: "<unset>");
4364
4365 service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG);
4366 }
4367
4368 static void service_notify_message(
4369 Unit *u,
4370 const struct ucred *ucred,
4371 char * const *tags,
4372 FDSet *fds) {
4373
4374 Service *s = SERVICE(u);
4375 bool notify_dbus = false;
4376 usec_t monotonic_usec = USEC_INFINITY;
4377 const char *e;
4378 int r;
4379
4380 assert(u);
4381 assert(ucred);
4382
4383 if (!service_notify_message_authorized(s, ucred->pid, fds))
4384 return;
4385
4386 if (DEBUG_LOGGING) {
4387 _cleanup_free_ char *cc = NULL;
4388
4389 cc = strv_join(tags, ", ");
4390 log_unit_debug(u, "Got notification message from PID "PID_FMT" (%s)", ucred->pid, isempty(cc) ? "n/a" : cc);
4391 }
4392
4393 /* Interpret MAINPID= */
4394 e = strv_find_startswith(tags, "MAINPID=");
4395 if (e && IN_SET(s->state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY)) {
4396 pid_t new_main_pid;
4397
4398 if (parse_pid(e, &new_main_pid) < 0)
4399 log_unit_warning(u, "Failed to parse MAINPID= field in notification message, ignoring: %s", e);
4400 else if (!s->main_pid_known || new_main_pid != s->main_pid.pid) {
4401
4402 r = service_is_suitable_main_pid(s, new_main_pid, LOG_WARNING);
4403 if (r == 0) {
4404 /* The new main PID is a bit suspicious, which is OK if the sender is privileged. */
4405
4406 if (ucred->uid == 0) {
4407 log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, but we'll accept it as the request to change it came from a privileged process.", new_main_pid);
4408 r = 1;
4409 } else
4410 log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, refusing.", new_main_pid);
4411 }
4412 if (r > 0) {
4413 (void) service_set_main_pid(s, new_main_pid);
4414
4415 r = unit_watch_pid(UNIT(s), new_main_pid, /* exclusive= */ false);
4416 if (r < 0)
4417 log_unit_warning_errno(UNIT(s), r, "Failed to watch new main PID "PID_FMT" for service: %m", new_main_pid);
4418
4419 notify_dbus = true;
4420 }
4421 }
4422 }
4423
4424 /* Parse MONOTONIC_USEC= */
4425 e = strv_find_startswith(tags, "MONOTONIC_USEC=");
4426 if (e) {
4427 r = safe_atou64(e, &monotonic_usec);
4428 if (r < 0)
4429 log_unit_warning_errno(u, r, "Failed to parse MONOTONIC_USEC= field in notification message, ignoring: %s", e);
4430 }
4431
4432 /* Interpret READY=/STOPPING=/RELOADING=. STOPPING= wins over the others, and READY= over RELOADING= */
4433 if (strv_contains(tags, "STOPPING=1")) {
4434 s->notify_state = NOTIFY_STOPPING;
4435
4436 if (IN_SET(s->state, SERVICE_RUNNING, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY))
4437 service_enter_stop_by_notify(s);
4438
4439 notify_dbus = true;
4440
4441 } else if (strv_contains(tags, "READY=1")) {
4442
4443 s->notify_state = NOTIFY_READY;
4444
4445 /* Type=notify services inform us about completed initialization with READY=1 */
4446 if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) &&
4447 s->state == SERVICE_START)
4448 service_enter_start_post(s);
4449
4450 /* Sending READY=1 while we are reloading informs us that the reloading is complete. */
4451 if (s->state == SERVICE_RELOAD_NOTIFY)
4452 service_enter_running(s, SERVICE_SUCCESS);
4453
4454 /* Combined RELOADING=1 and READY=1? Then this is indication that the service started and
4455 * immediately finished reloading. */
4456 if (s->state == SERVICE_RELOAD_SIGNAL &&
4457 strv_contains(tags, "RELOADING=1") &&
4458 monotonic_usec != USEC_INFINITY &&
4459 monotonic_usec >= s->reload_begin_usec) {
4460 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
4461
4462 /* Propagate a reload explicitly */
4463 r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error);
4464 if (r < 0)
4465 log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", bus_error_message(&error, r));
4466
4467 service_enter_running(s, SERVICE_SUCCESS);
4468 }
4469
4470 notify_dbus = true;
4471
4472 } else if (strv_contains(tags, "RELOADING=1")) {
4473
4474 s->notify_state = NOTIFY_RELOADING;
4475
4476 /* Sending RELOADING=1 after we send SIGHUP to request a reload will transition
4477 * things to "reload-notify" state, where we'll wait for READY=1 to let us know the
4478 * reload is done. Note that we insist on a timestamp being sent along here, so that
4479 * we know for sure this is a reload cycle initiated *after* we sent the signal */
4480 if (s->state == SERVICE_RELOAD_SIGNAL &&
4481 monotonic_usec != USEC_INFINITY &&
4482 monotonic_usec >= s->reload_begin_usec)
4483 /* Note, we don't call service_enter_reload_by_notify() here, because we
4484 * don't need reload propagation nor do we want to restart the time-out. */
4485 service_set_state(s, SERVICE_RELOAD_NOTIFY);
4486
4487 if (s->state == SERVICE_RUNNING)
4488 service_enter_reload_by_notify(s);
4489
4490 notify_dbus = true;
4491 }
4492
4493 /* Interpret STATUS= */
4494 e = strv_find_startswith(tags, "STATUS=");
4495 if (e) {
4496 _cleanup_free_ char *t = NULL;
4497
4498 if (!isempty(e)) {
4499 /* Note that this size limit check is mostly paranoia: since the datagram size we are willing
4500 * to process is already limited to NOTIFY_BUFFER_MAX, this limit here should never be hit. */
4501 if (strlen(e) > STATUS_TEXT_MAX)
4502 log_unit_warning(u, "Status message overly long (%zu > %u), ignoring.", strlen(e), STATUS_TEXT_MAX);
4503 else if (!utf8_is_valid(e))
4504 log_unit_warning(u, "Status message in notification message is not UTF-8 clean, ignoring.");
4505 else {
4506 t = strdup(e);
4507 if (!t)
4508 log_oom();
4509 }
4510 }
4511
4512 if (!streq_ptr(s->status_text, t)) {
4513 free_and_replace(s->status_text, t);
4514 notify_dbus = true;
4515 }
4516 }
4517
4518 /* Interpret NOTIFYACCESS= */
4519 e = strv_find_startswith(tags, "NOTIFYACCESS=");
4520 if (e) {
4521 NotifyAccess notify_access;
4522
4523 notify_access = notify_access_from_string(e);
4524 if (notify_access < 0)
4525 log_unit_warning_errno(u, notify_access,
4526 "Failed to parse NOTIFYACCESS= field value '%s' in notification message, ignoring: %m", e);
4527
4528 /* We don't need to check whether the new access mode is more strict than what is
4529 * already in use, since only the privileged process is allowed to change it
4530 * in the first place. */
4531 if (service_get_notify_access(s) != notify_access) {
4532 service_override_notify_access(s, notify_access);
4533 notify_dbus = true;
4534 }
4535 }
4536
4537 /* Interpret ERRNO= */
4538 e = strv_find_startswith(tags, "ERRNO=");
4539 if (e) {
4540 int status_errno;
4541
4542 status_errno = parse_errno(e);
4543 if (status_errno < 0)
4544 log_unit_warning_errno(u, status_errno,
4545 "Failed to parse ERRNO= field value '%s' in notification message: %m", e);
4546 else if (s->status_errno != status_errno) {
4547 s->status_errno = status_errno;
4548 notify_dbus = true;
4549 }
4550 }
4551
4552 /* Interpret EXTEND_TIMEOUT= */
4553 e = strv_find_startswith(tags, "EXTEND_TIMEOUT_USEC=");
4554 if (e) {
4555 usec_t extend_timeout_usec;
4556 if (safe_atou64(e, &extend_timeout_usec) < 0)
4557 log_unit_warning(u, "Failed to parse EXTEND_TIMEOUT_USEC=%s", e);
4558 else
4559 service_extend_timeout(s, extend_timeout_usec);
4560 }
4561
4562 /* Interpret WATCHDOG= */
4563 e = strv_find_startswith(tags, "WATCHDOG=");
4564 if (e) {
4565 if (streq(e, "1"))
4566 service_reset_watchdog(s);
4567 else if (streq(e, "trigger"))
4568 service_force_watchdog(s);
4569 else
4570 log_unit_warning(u, "Passed WATCHDOG= field is invalid, ignoring.");
4571 }
4572
4573 e = strv_find_startswith(tags, "WATCHDOG_USEC=");
4574 if (e) {
4575 usec_t watchdog_override_usec;
4576 if (safe_atou64(e, &watchdog_override_usec) < 0)
4577 log_unit_warning(u, "Failed to parse WATCHDOG_USEC=%s", e);
4578 else
4579 service_override_watchdog_timeout(s, watchdog_override_usec);
4580 }
4581
4582 /* Process FD store messages. Either FDSTOREREMOVE=1 for removal, or FDSTORE=1 for addition. In both cases,
4583 * process FDNAME= for picking the file descriptor name to use. Note that FDNAME= is required when removing
4584 * fds, but optional when pushing in new fds, for compatibility reasons. */
4585 if (strv_contains(tags, "FDSTOREREMOVE=1")) {
4586 const char *name;
4587
4588 name = strv_find_startswith(tags, "FDNAME=");
4589 if (!name || !fdname_is_valid(name))
4590 log_unit_warning(u, "FDSTOREREMOVE=1 requested, but no valid file descriptor name passed, ignoring.");
4591 else
4592 service_remove_fd_store(s, name);
4593
4594 } else if (strv_contains(tags, "FDSTORE=1")) {
4595 const char *name;
4596
4597 name = strv_find_startswith(tags, "FDNAME=");
4598 if (name && !fdname_is_valid(name)) {
4599 log_unit_warning(u, "Passed FDNAME= name is invalid, ignoring.");
4600 name = NULL;
4601 }
4602
4603 (void) service_add_fd_store_set(s, fds, name, !strv_contains(tags, "FDPOLL=0"));
4604 }
4605
4606 /* Notify clients about changed status or main pid */
4607 if (notify_dbus)
4608 unit_add_to_dbus_queue(u);
4609 }
4610
4611 static int service_get_timeout(Unit *u, usec_t *timeout) {
4612 Service *s = SERVICE(u);
4613 uint64_t t;
4614 int r;
4615
4616 if (!s->timer_event_source)
4617 return 0;
4618
4619 r = sd_event_source_get_time(s->timer_event_source, &t);
4620 if (r < 0)
4621 return r;
4622 if (t == USEC_INFINITY)
4623 return 0;
4624
4625 *timeout = t;
4626 return 1;
4627 }
4628
4629 static usec_t service_get_timeout_start_usec(Unit *u) {
4630 Service *s = SERVICE(ASSERT_PTR(u));
4631 return s->timeout_start_usec;
4632 }
4633
4634 static bool pick_up_pid_from_bus_name(Service *s) {
4635 assert(s);
4636
4637 /* If the service is running but we have no main PID yet, get it from the owner of the D-Bus name */
4638
4639 return !pidref_is_set(&s->main_pid) &&
4640 IN_SET(s->state,
4641 SERVICE_START,
4642 SERVICE_START_POST,
4643 SERVICE_RUNNING,
4644 SERVICE_RELOAD,
4645 SERVICE_RELOAD_SIGNAL,
4646 SERVICE_RELOAD_NOTIFY);
4647 }
4648
4649 static int bus_name_pid_lookup_callback(sd_bus_message *reply, void *userdata, sd_bus_error *ret_error) {
4650 const sd_bus_error *e;
4651 Unit *u = ASSERT_PTR(userdata);
4652 uint32_t pid;
4653 Service *s;
4654 int r;
4655
4656 assert(reply);
4657
4658 s = SERVICE(u);
4659 s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot);
4660
4661 if (!s->bus_name || !pick_up_pid_from_bus_name(s))
4662 return 1;
4663
4664 e = sd_bus_message_get_error(reply);
4665 if (e) {
4666 r = sd_bus_error_get_errno(e);
4667 log_warning_errno(r, "GetConnectionUnixProcessID() failed: %s", bus_error_message(e, r));
4668 return 1;
4669 }
4670
4671 r = sd_bus_message_read(reply, "u", &pid);
4672 if (r < 0) {
4673 bus_log_parse_error(r);
4674 return 1;
4675 }
4676
4677 if (!pid_is_valid(pid)) {
4678 log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "GetConnectionUnixProcessID() returned invalid PID");
4679 return 1;
4680 }
4681
4682 log_unit_debug(u, "D-Bus name %s is now owned by process " PID_FMT, s->bus_name, (pid_t) pid);
4683
4684 (void) service_set_main_pid(s, pid);
4685 (void) unit_watch_pid(UNIT(s), pid, /* exclusive= */ false);
4686 return 1;
4687 }
4688
4689 static void service_bus_name_owner_change(Unit *u, const char *new_owner) {
4690
4691 Service *s = SERVICE(u);
4692 int r;
4693
4694 assert(s);
4695
4696 if (new_owner)
4697 log_unit_debug(u, "D-Bus name %s now owned by %s", s->bus_name, new_owner);
4698 else
4699 log_unit_debug(u, "D-Bus name %s now not owned by anyone.", s->bus_name);
4700
4701 s->bus_name_good = new_owner;
4702
4703 /* Track the current owner, so we can reconstruct changes after a daemon reload */
4704 r = free_and_strdup(&s->bus_name_owner, new_owner);
4705 if (r < 0) {
4706 log_unit_error_errno(u, r, "Unable to set new bus name owner %s: %m", new_owner);
4707 return;
4708 }
4709
4710 if (s->type == SERVICE_DBUS) {
4711
4712 /* service_enter_running() will figure out what to
4713 * do */
4714 if (s->state == SERVICE_RUNNING)
4715 service_enter_running(s, SERVICE_SUCCESS);
4716 else if (s->state == SERVICE_START && new_owner)
4717 service_enter_start_post(s);
4718
4719 } else if (new_owner && pick_up_pid_from_bus_name(s)) {
4720
4721 /* Try to acquire PID from bus service */
4722
4723 s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot);
4724
4725 r = sd_bus_call_method_async(
4726 u->manager->api_bus,
4727 &s->bus_name_pid_lookup_slot,
4728 "org.freedesktop.DBus",
4729 "/org/freedesktop/DBus",
4730 "org.freedesktop.DBus",
4731 "GetConnectionUnixProcessID",
4732 bus_name_pid_lookup_callback,
4733 s,
4734 "s",
4735 s->bus_name);
4736 if (r < 0)
4737 log_debug_errno(r, "Failed to request owner PID of service name, ignoring: %m");
4738 }
4739 }
4740
4741 int service_set_socket_fd(
4742 Service *s,
4743 int fd,
4744 Socket *sock,
4745 SocketPeer *peer,
4746 bool selinux_context_net) {
4747
4748 _cleanup_free_ char *peer_text = NULL;
4749 int r;
4750
4751 assert(s);
4752 assert(fd >= 0);
4753
4754 /* This is called by the socket code when instantiating a new service for a stream socket and the socket needs
4755 * to be configured. We take ownership of the passed fd on success. */
4756
4757 if (UNIT(s)->load_state != UNIT_LOADED)
4758 return -EINVAL;
4759
4760 if (s->socket_fd >= 0)
4761 return -EBUSY;
4762
4763 assert(!s->socket_peer);
4764
4765 if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED))
4766 return -EAGAIN;
4767
4768 if (getpeername_pretty(fd, true, &peer_text) >= 0) {
4769
4770 if (UNIT(s)->description) {
4771 _cleanup_free_ char *a = NULL;
4772
4773 a = strjoin(UNIT(s)->description, " (", peer_text, ")");
4774 if (!a)
4775 return -ENOMEM;
4776
4777 r = unit_set_description(UNIT(s), a);
4778 } else
4779 r = unit_set_description(UNIT(s), peer_text);
4780 if (r < 0)
4781 return r;
4782 }
4783
4784 r = unit_add_two_dependencies(UNIT(sock), UNIT_BEFORE, UNIT_TRIGGERS, UNIT(s), false, UNIT_DEPENDENCY_IMPLICIT);
4785 if (r < 0)
4786 return r;
4787
4788 s->socket_fd = fd;
4789 s->socket_peer = socket_peer_ref(peer);
4790 s->socket_fd_selinux_context_net = selinux_context_net;
4791
4792 unit_ref_set(&s->accept_socket, UNIT(s), UNIT(sock));
4793 return 0;
4794 }
4795
4796 static void service_reset_failed(Unit *u) {
4797 Service *s = SERVICE(u);
4798
4799 assert(s);
4800
4801 if (s->state == SERVICE_FAILED)
4802 service_set_state(s, service_determine_dead_state(s));
4803
4804 s->result = SERVICE_SUCCESS;
4805 s->reload_result = SERVICE_SUCCESS;
4806 s->clean_result = SERVICE_SUCCESS;
4807 s->n_restarts = 0;
4808 s->flush_n_restarts = false;
4809 }
4810
4811 static int service_kill(Unit *u, KillWho who, int signo, int code, int value, sd_bus_error *error) {
4812 Service *s = SERVICE(u);
4813
4814 assert(s);
4815
4816 return unit_kill_common(u, who, signo, code, value, s->main_pid.pid, s->control_pid.pid, error);
4817 }
4818
4819 static int service_main_pid(Unit *u) {
4820 Service *s = SERVICE(u);
4821
4822 assert(s);
4823
4824 return s->main_pid.pid;
4825 }
4826
4827 static int service_control_pid(Unit *u) {
4828 Service *s = SERVICE(u);
4829
4830 assert(s);
4831
4832 return s->control_pid.pid;
4833 }
4834
4835 static bool service_needs_console(Unit *u) {
4836 Service *s = SERVICE(u);
4837
4838 assert(s);
4839
4840 /* We provide our own implementation of this here, instead of relying of the generic implementation
4841 * unit_needs_console() provides, since we want to return false if we are in SERVICE_EXITED state. */
4842
4843 if (!exec_context_may_touch_console(&s->exec_context))
4844 return false;
4845
4846 return IN_SET(s->state,
4847 SERVICE_CONDITION,
4848 SERVICE_START_PRE,
4849 SERVICE_START,
4850 SERVICE_START_POST,
4851 SERVICE_RUNNING,
4852 SERVICE_RELOAD,
4853 SERVICE_RELOAD_SIGNAL,
4854 SERVICE_RELOAD_NOTIFY,
4855 SERVICE_STOP,
4856 SERVICE_STOP_WATCHDOG,
4857 SERVICE_STOP_SIGTERM,
4858 SERVICE_STOP_SIGKILL,
4859 SERVICE_STOP_POST,
4860 SERVICE_FINAL_WATCHDOG,
4861 SERVICE_FINAL_SIGTERM,
4862 SERVICE_FINAL_SIGKILL);
4863 }
4864
4865 static int service_exit_status(Unit *u) {
4866 Service *s = SERVICE(u);
4867
4868 assert(u);
4869
4870 if (s->main_exec_status.pid <= 0 ||
4871 !dual_timestamp_is_set(&s->main_exec_status.exit_timestamp))
4872 return -ENODATA;
4873
4874 if (s->main_exec_status.code != CLD_EXITED)
4875 return -EBADE;
4876
4877 return s->main_exec_status.status;
4878 }
4879
4880 static const char* service_status_text(Unit *u) {
4881 Service *s = SERVICE(u);
4882
4883 assert(s);
4884
4885 return s->status_text;
4886 }
4887
4888 static int service_clean(Unit *u, ExecCleanMask mask) {
4889 _cleanup_strv_free_ char **l = NULL;
4890 bool may_clean_fdstore = false;
4891 Service *s = SERVICE(u);
4892 pid_t pid;
4893 int r;
4894
4895 assert(s);
4896 assert(mask != 0);
4897
4898 if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED))
4899 return -EBUSY;
4900
4901 /* Determine if there's anything we could potentially clean */
4902 r = exec_context_get_clean_directories(&s->exec_context, u->manager->prefix, mask, &l);
4903 if (r < 0)
4904 return r;
4905
4906 if (mask & EXEC_CLEAN_FDSTORE)
4907 may_clean_fdstore = s->n_fd_store > 0 || s->n_fd_store_max > 0;
4908
4909 if (strv_isempty(l) && !may_clean_fdstore)
4910 return -EUNATCH; /* Nothing to potentially clean */
4911
4912 /* Let's clean the stuff we can clean quickly */
4913 if (may_clean_fdstore)
4914 service_release_fd_store(s);
4915
4916 /* If we are done, leave quickly */
4917 if (strv_isempty(l)) {
4918 if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store)
4919 service_set_state(s, SERVICE_DEAD);
4920 return 0;
4921 }
4922
4923 /* We need to clean disk stuff. This is slow, hence do it out of process, and change state */
4924 service_unwatch_control_pid(s);
4925 s->clean_result = SERVICE_SUCCESS;
4926 s->control_command = NULL;
4927 s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
4928
4929 r = service_arm_timer(s, /* relative= */ true, s->exec_context.timeout_clean_usec);
4930 if (r < 0)
4931 goto fail;
4932
4933 r = unit_fork_and_watch_rm_rf(u, l, &pid);
4934 if (r < 0)
4935 goto fail;
4936
4937 r = pidref_set_pid(&s->control_pid, pid);
4938 if (r < 0)
4939 goto fail;
4940
4941 service_set_state(s, SERVICE_CLEANING);
4942 return 0;
4943
4944 fail:
4945 log_unit_warning_errno(u, r, "Failed to initiate cleaning: %m");
4946 s->clean_result = SERVICE_FAILURE_RESOURCES;
4947 s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source);
4948 return r;
4949 }
4950
4951 static int service_can_clean(Unit *u, ExecCleanMask *ret) {
4952 Service *s = SERVICE(u);
4953 ExecCleanMask mask = 0;
4954 int r;
4955
4956 assert(s);
4957 assert(ret);
4958
4959 r = exec_context_get_clean_mask(&s->exec_context, &mask);
4960 if (r < 0)
4961 return r;
4962
4963 if (s->n_fd_store_max > 0)
4964 mask |= EXEC_CLEAN_FDSTORE;
4965
4966 *ret = mask;
4967 return 0;
4968 }
4969
4970 static const char *service_finished_job(Unit *u, JobType t, JobResult result) {
4971 if (t == JOB_START &&
4972 result == JOB_DONE &&
4973 SERVICE(u)->type == SERVICE_ONESHOT)
4974 return "Finished %s.";
4975
4976 /* Fall back to generic */
4977 return NULL;
4978 }
4979
4980 static int service_can_start(Unit *u) {
4981 Service *s = SERVICE(u);
4982 int r;
4983
4984 assert(s);
4985
4986 /* Make sure we don't enter a busy loop of some kind. */
4987 r = unit_test_start_limit(u);
4988 if (r < 0) {
4989 service_enter_dead(s, SERVICE_FAILURE_START_LIMIT_HIT, false);
4990 return r;
4991 }
4992
4993 return 1;
4994 }
4995
4996 static void service_release_resources(Unit *u) {
4997 Service *s = SERVICE(ASSERT_PTR(u));
4998
4999 /* Invoked by the unit state engine, whenever it realizes that unit is dead and there's no job
5000 * anymore for it, and it hence is a good idea to release resources */
5001
5002 /* Don't release resources if this is a transitionary failed/dead state
5003 * (i.e. SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART), insist on a permanent
5004 * failure state. */
5005 if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED))
5006 return;
5007
5008 log_unit_debug(u, "Releasing resources...");
5009
5010 service_release_socket_fd(s);
5011 service_release_stdio_fd(s);
5012
5013 if (s->fd_store_preserve_mode != EXEC_PRESERVE_YES)
5014 service_release_fd_store(s);
5015
5016 if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store)
5017 service_set_state(s, SERVICE_DEAD);
5018 }
5019
5020 static const char* const service_restart_table[_SERVICE_RESTART_MAX] = {
5021 [SERVICE_RESTART_NO] = "no",
5022 [SERVICE_RESTART_ON_SUCCESS] = "on-success",
5023 [SERVICE_RESTART_ON_FAILURE] = "on-failure",
5024 [SERVICE_RESTART_ON_ABNORMAL] = "on-abnormal",
5025 [SERVICE_RESTART_ON_WATCHDOG] = "on-watchdog",
5026 [SERVICE_RESTART_ON_ABORT] = "on-abort",
5027 [SERVICE_RESTART_ALWAYS] = "always",
5028 };
5029
5030 DEFINE_STRING_TABLE_LOOKUP(service_restart, ServiceRestart);
5031
5032 static const char* const service_restart_mode_table[_SERVICE_RESTART_MODE_MAX] = {
5033 [SERVICE_RESTART_MODE_NORMAL] = "normal",
5034 [SERVICE_RESTART_MODE_DIRECT] = "direct",
5035 };
5036
5037 DEFINE_STRING_TABLE_LOOKUP(service_restart_mode, ServiceRestartMode);
5038
5039 static const char* const service_type_table[_SERVICE_TYPE_MAX] = {
5040 [SERVICE_SIMPLE] = "simple",
5041 [SERVICE_FORKING] = "forking",
5042 [SERVICE_ONESHOT] = "oneshot",
5043 [SERVICE_DBUS] = "dbus",
5044 [SERVICE_NOTIFY] = "notify",
5045 [SERVICE_NOTIFY_RELOAD] = "notify-reload",
5046 [SERVICE_IDLE] = "idle",
5047 [SERVICE_EXEC] = "exec",
5048 };
5049
5050 DEFINE_STRING_TABLE_LOOKUP(service_type, ServiceType);
5051
5052 static const char* const service_exit_type_table[_SERVICE_EXIT_TYPE_MAX] = {
5053 [SERVICE_EXIT_MAIN] = "main",
5054 [SERVICE_EXIT_CGROUP] = "cgroup",
5055 };
5056
5057 DEFINE_STRING_TABLE_LOOKUP(service_exit_type, ServiceExitType);
5058
5059 static const char* const service_exec_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
5060 [SERVICE_EXEC_CONDITION] = "ExecCondition",
5061 [SERVICE_EXEC_START_PRE] = "ExecStartPre",
5062 [SERVICE_EXEC_START] = "ExecStart",
5063 [SERVICE_EXEC_START_POST] = "ExecStartPost",
5064 [SERVICE_EXEC_RELOAD] = "ExecReload",
5065 [SERVICE_EXEC_STOP] = "ExecStop",
5066 [SERVICE_EXEC_STOP_POST] = "ExecStopPost",
5067 };
5068
5069 DEFINE_STRING_TABLE_LOOKUP(service_exec_command, ServiceExecCommand);
5070
5071 static const char* const service_exec_ex_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
5072 [SERVICE_EXEC_CONDITION] = "ExecConditionEx",
5073 [SERVICE_EXEC_START_PRE] = "ExecStartPreEx",
5074 [SERVICE_EXEC_START] = "ExecStartEx",
5075 [SERVICE_EXEC_START_POST] = "ExecStartPostEx",
5076 [SERVICE_EXEC_RELOAD] = "ExecReloadEx",
5077 [SERVICE_EXEC_STOP] = "ExecStopEx",
5078 [SERVICE_EXEC_STOP_POST] = "ExecStopPostEx",
5079 };
5080
5081 DEFINE_STRING_TABLE_LOOKUP(service_exec_ex_command, ServiceExecCommand);
5082
5083 static const char* const notify_state_table[_NOTIFY_STATE_MAX] = {
5084 [NOTIFY_UNKNOWN] = "unknown",
5085 [NOTIFY_READY] = "ready",
5086 [NOTIFY_RELOADING] = "reloading",
5087 [NOTIFY_STOPPING] = "stopping",
5088 };
5089
5090 DEFINE_STRING_TABLE_LOOKUP(notify_state, NotifyState);
5091
5092 static const char* const service_result_table[_SERVICE_RESULT_MAX] = {
5093 [SERVICE_SUCCESS] = "success",
5094 [SERVICE_FAILURE_RESOURCES] = "resources",
5095 [SERVICE_FAILURE_PROTOCOL] = "protocol",
5096 [SERVICE_FAILURE_TIMEOUT] = "timeout",
5097 [SERVICE_FAILURE_EXIT_CODE] = "exit-code",
5098 [SERVICE_FAILURE_SIGNAL] = "signal",
5099 [SERVICE_FAILURE_CORE_DUMP] = "core-dump",
5100 [SERVICE_FAILURE_WATCHDOG] = "watchdog",
5101 [SERVICE_FAILURE_START_LIMIT_HIT] = "start-limit-hit",
5102 [SERVICE_FAILURE_OOM_KILL] = "oom-kill",
5103 [SERVICE_SKIP_CONDITION] = "exec-condition",
5104 };
5105
5106 DEFINE_STRING_TABLE_LOOKUP(service_result, ServiceResult);
5107
5108 static const char* const service_timeout_failure_mode_table[_SERVICE_TIMEOUT_FAILURE_MODE_MAX] = {
5109 [SERVICE_TIMEOUT_TERMINATE] = "terminate",
5110 [SERVICE_TIMEOUT_ABORT] = "abort",
5111 [SERVICE_TIMEOUT_KILL] = "kill",
5112 };
5113
5114 DEFINE_STRING_TABLE_LOOKUP(service_timeout_failure_mode, ServiceTimeoutFailureMode);
5115
5116 const UnitVTable service_vtable = {
5117 .object_size = sizeof(Service),
5118 .exec_context_offset = offsetof(Service, exec_context),
5119 .cgroup_context_offset = offsetof(Service, cgroup_context),
5120 .kill_context_offset = offsetof(Service, kill_context),
5121 .exec_runtime_offset = offsetof(Service, exec_runtime),
5122
5123 .sections =
5124 "Unit\0"
5125 "Service\0"
5126 "Install\0",
5127 .private_section = "Service",
5128
5129 .can_transient = true,
5130 .can_delegate = true,
5131 .can_fail = true,
5132 .can_set_managed_oom = true,
5133
5134 .init = service_init,
5135 .done = service_done,
5136 .load = service_load,
5137 .release_resources = service_release_resources,
5138
5139 .coldplug = service_coldplug,
5140
5141 .dump = service_dump,
5142
5143 .start = service_start,
5144 .stop = service_stop,
5145 .reload = service_reload,
5146
5147 .can_reload = service_can_reload,
5148
5149 .kill = service_kill,
5150 .clean = service_clean,
5151 .can_clean = service_can_clean,
5152
5153 .freeze = unit_freeze_vtable_common,
5154 .thaw = unit_thaw_vtable_common,
5155
5156 .serialize = service_serialize,
5157 .deserialize_item = service_deserialize_item,
5158
5159 .active_state = service_active_state,
5160 .sub_state_to_string = service_sub_state_to_string,
5161
5162 .will_restart = service_will_restart,
5163
5164 .may_gc = service_may_gc,
5165
5166 .sigchld_event = service_sigchld_event,
5167
5168 .reset_failed = service_reset_failed,
5169
5170 .notify_cgroup_empty = service_notify_cgroup_empty_event,
5171 .notify_cgroup_oom = service_notify_cgroup_oom_event,
5172 .notify_message = service_notify_message,
5173
5174 .main_pid = service_main_pid,
5175 .control_pid = service_control_pid,
5176
5177 .bus_name_owner_change = service_bus_name_owner_change,
5178
5179 .bus_set_property = bus_service_set_property,
5180 .bus_commit_properties = bus_service_commit_properties,
5181
5182 .get_timeout = service_get_timeout,
5183 .get_timeout_start_usec = service_get_timeout_start_usec,
5184 .needs_console = service_needs_console,
5185 .exit_status = service_exit_status,
5186 .status_text = service_status_text,
5187
5188 .status_message_formats = {
5189 .finished_start_job = {
5190 [JOB_FAILED] = "Failed to start %s.",
5191 },
5192 .finished_stop_job = {
5193 [JOB_DONE] = "Stopped %s.",
5194 [JOB_FAILED] = "Stopped (with error) %s.",
5195 },
5196 .finished_job = service_finished_job,
5197 },
5198
5199 .can_start = service_can_start,
5200
5201 .notify_plymouth = true,
5202
5203 .audit_start_message_type = AUDIT_SERVICE_START,
5204 .audit_stop_message_type = AUDIT_SERVICE_STOP,
5205 };