]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/timer.c
a45e0c393fe634b8c1620525390a801ea3b05330
[thirdparty/systemd.git] / src / core / timer.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <stdlib.h>
4 #include <sys/stat.h>
5 #include <unistd.h>
6
7 #include "sd-bus.h"
8
9 #include "alloc-util.h"
10 #include "bus-error.h"
11 #include "calendarspec.h"
12 #include "dbus-timer.h"
13 #include "dbus-unit.h"
14 #include "fs-util.h"
15 #include "manager.h"
16 #include "random-util.h"
17 #include "serialize.h"
18 #include "siphash24.h"
19 #include "special.h"
20 #include "string-table.h"
21 #include "string-util.h"
22 #include "strv.h"
23 #include "timer.h"
24 #include "unit.h"
25 #include "user-util.h"
26 #include "virt.h"
27
28 static const UnitActiveState state_translation_table[_TIMER_STATE_MAX] = {
29 [TIMER_DEAD] = UNIT_INACTIVE,
30 [TIMER_WAITING] = UNIT_ACTIVE,
31 [TIMER_RUNNING] = UNIT_ACTIVE,
32 [TIMER_ELAPSED] = UNIT_ACTIVE,
33 [TIMER_FAILED] = UNIT_FAILED,
34 };
35
36 static int timer_dispatch(sd_event_source *s, uint64_t usec, void *userdata);
37
38 static void timer_init(Unit *u) {
39 Timer *t = ASSERT_PTR(TIMER(u));
40
41 assert(u->load_state == UNIT_STUB);
42
43 t->next_elapse_monotonic_or_boottime = USEC_INFINITY;
44 t->next_elapse_realtime = USEC_INFINITY;
45 t->accuracy_usec = u->manager->defaults.timer_accuracy_usec;
46 t->remain_after_elapse = true;
47 }
48
49 void timer_free_values(Timer *t) {
50 TimerValue *v;
51
52 assert(t);
53
54 while ((v = LIST_POP(value, t->values))) {
55 calendar_spec_free(v->calendar_spec);
56 free(v);
57 }
58 }
59
60 static void timer_done(Unit *u) {
61 Timer *t = ASSERT_PTR(TIMER(u));
62
63 timer_free_values(t);
64
65 t->monotonic_event_source = sd_event_source_disable_unref(t->monotonic_event_source);
66 t->realtime_event_source = sd_event_source_disable_unref(t->realtime_event_source);
67
68 t->stamp_path = mfree(t->stamp_path);
69 }
70
71 static int timer_verify(Timer *t) {
72 assert(t);
73 assert(UNIT(t)->load_state == UNIT_LOADED);
74
75 if (!t->values && !t->on_clock_change && !t->on_timezone_change)
76 return log_unit_error_errno(UNIT(t), SYNTHETIC_ERRNO(ENOEXEC), "Timer unit lacks value setting. Refusing.");
77
78 return 0;
79 }
80
81 static int timer_add_default_dependencies(Timer *t) {
82 int r;
83
84 assert(t);
85
86 if (!UNIT(t)->default_dependencies)
87 return 0;
88
89 r = unit_add_dependency_by_name(UNIT(t), UNIT_BEFORE, SPECIAL_TIMERS_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
90 if (r < 0)
91 return r;
92
93 if (MANAGER_IS_SYSTEM(UNIT(t)->manager)) {
94 r = unit_add_two_dependencies_by_name(UNIT(t), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
95 if (r < 0)
96 return r;
97
98 LIST_FOREACH(value, v, t->values) {
99 if (v->base != TIMER_CALENDAR)
100 continue;
101
102 FOREACH_STRING(target, SPECIAL_TIME_SYNC_TARGET, SPECIAL_TIME_SET_TARGET) {
103 r = unit_add_dependency_by_name(UNIT(t), UNIT_AFTER, target, true, UNIT_DEPENDENCY_DEFAULT);
104 if (r < 0)
105 return r;
106 }
107
108 break;
109 }
110 }
111
112 return unit_add_two_dependencies_by_name(UNIT(t), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
113 }
114
115 static int timer_add_trigger_dependencies(Timer *t) {
116 Unit *x;
117 int r;
118
119 assert(t);
120
121 if (UNIT_TRIGGER(UNIT(t)))
122 return 0;
123
124 r = unit_load_related_unit(UNIT(t), ".service", &x);
125 if (r < 0)
126 return r;
127
128 return unit_add_two_dependencies(UNIT(t), UNIT_BEFORE, UNIT_TRIGGERS, x, true, UNIT_DEPENDENCY_IMPLICIT);
129 }
130
131 static int timer_setup_persistent(Timer *t) {
132 _cleanup_free_ char *stamp_path = NULL;
133 int r;
134
135 assert(t);
136
137 if (!t->persistent)
138 return 0;
139
140 if (MANAGER_IS_SYSTEM(UNIT(t)->manager)) {
141
142 r = unit_add_mounts_for(UNIT(t), "/var/lib/systemd/timers", UNIT_DEPENDENCY_FILE, UNIT_MOUNT_REQUIRES);
143 if (r < 0)
144 return r;
145
146 stamp_path = strjoin("/var/lib/systemd/timers/stamp-", UNIT(t)->id);
147 } else {
148 const char *e;
149
150 e = getenv("XDG_DATA_HOME");
151 if (e)
152 stamp_path = strjoin(e, "/systemd/timers/stamp-", UNIT(t)->id);
153 else {
154
155 _cleanup_free_ char *h = NULL;
156
157 r = get_home_dir(&h);
158 if (r < 0)
159 return log_unit_error_errno(UNIT(t), r, "Failed to determine home directory: %m");
160
161 stamp_path = strjoin(h, "/.local/share/systemd/timers/stamp-", UNIT(t)->id);
162 }
163 }
164
165 if (!stamp_path)
166 return log_oom();
167
168 return free_and_replace(t->stamp_path, stamp_path);
169 }
170
171 static uint64_t timer_get_fixed_delay_hash(Timer *t) {
172 static const uint8_t hash_key[] = {
173 0x51, 0x0a, 0xdb, 0x76, 0x29, 0x51, 0x42, 0xc2,
174 0x80, 0x35, 0xea, 0xe6, 0x8e, 0x3a, 0x37, 0xbd
175 };
176
177 struct siphash state;
178 sd_id128_t machine_id;
179 uid_t uid;
180 int r;
181
182 assert(t);
183
184 uid = getuid();
185 r = sd_id128_get_machine(&machine_id);
186 if (r < 0) {
187 log_unit_debug_errno(UNIT(t), r,
188 "Failed to get machine ID for the fixed delay calculation, proceeding with 0: %m");
189 machine_id = SD_ID128_NULL;
190 }
191
192 siphash24_init(&state, hash_key);
193 siphash24_compress_typesafe(machine_id, &state);
194 siphash24_compress_boolean(MANAGER_IS_SYSTEM(UNIT(t)->manager), &state);
195 siphash24_compress_typesafe(uid, &state);
196 siphash24_compress_string(UNIT(t)->id, &state);
197
198 return siphash24_finalize(&state);
199 }
200
201 static int timer_load(Unit *u) {
202 Timer *t = ASSERT_PTR(TIMER(u));
203 int r;
204
205 assert(u->load_state == UNIT_STUB);
206
207 r = unit_load_fragment_and_dropin(u, true);
208 if (r < 0)
209 return r;
210
211 if (u->load_state != UNIT_LOADED)
212 return 0;
213
214 /* This is a new unit? Then let's add in some extras */
215 r = timer_add_trigger_dependencies(t);
216 if (r < 0)
217 return r;
218
219 r = timer_setup_persistent(t);
220 if (r < 0)
221 return r;
222
223 r = timer_add_default_dependencies(t);
224 if (r < 0)
225 return r;
226
227 return timer_verify(t);
228 }
229
230 static void timer_dump(Unit *u, FILE *f, const char *prefix) {
231 Timer *t = ASSERT_PTR(TIMER(u));
232 Unit *trigger;
233
234 assert(f);
235 assert(prefix);
236
237 trigger = UNIT_TRIGGER(u);
238
239 fprintf(f,
240 "%sTimer State: %s\n"
241 "%sResult: %s\n"
242 "%sUnit: %s\n"
243 "%sPersistent: %s\n"
244 "%sWakeSystem: %s\n"
245 "%sAccuracy: %s\n"
246 "%sRemainAfterElapse: %s\n"
247 "%sFixedRandomDelay: %s\n"
248 "%sOnClockChange: %s\n"
249 "%sOnTimeZoneChange: %s\n"
250 "%sDeferReactivation: %s\n",
251 prefix, timer_state_to_string(t->state),
252 prefix, timer_result_to_string(t->result),
253 prefix, trigger ? trigger->id : "n/a",
254 prefix, yes_no(t->persistent),
255 prefix, yes_no(t->wake_system),
256 prefix, FORMAT_TIMESPAN(t->accuracy_usec, 1),
257 prefix, yes_no(t->remain_after_elapse),
258 prefix, yes_no(t->fixed_random_delay),
259 prefix, yes_no(t->on_clock_change),
260 prefix, yes_no(t->on_timezone_change),
261 prefix, yes_no(t->defer_reactivation));
262
263 LIST_FOREACH(value, v, t->values)
264 if (v->base == TIMER_CALENDAR) {
265 _cleanup_free_ char *p = NULL;
266
267 (void) calendar_spec_to_string(v->calendar_spec, &p);
268
269 fprintf(f,
270 "%s%s: %s\n",
271 prefix,
272 timer_base_to_string(v->base),
273 strna(p));
274 } else
275 fprintf(f,
276 "%s%s: %s\n",
277 prefix,
278 timer_base_to_string(v->base),
279 FORMAT_TIMESPAN(v->value, 0));
280 }
281
282 static void timer_set_state(Timer *t, TimerState state) {
283 TimerState old_state;
284
285 assert(t);
286
287 if (t->state != state)
288 bus_unit_send_pending_change_signal(UNIT(t), false);
289
290 old_state = t->state;
291 t->state = state;
292
293 if (state != TIMER_WAITING) {
294 t->monotonic_event_source = sd_event_source_disable_unref(t->monotonic_event_source);
295 t->realtime_event_source = sd_event_source_disable_unref(t->realtime_event_source);
296 t->next_elapse_monotonic_or_boottime = USEC_INFINITY;
297 t->next_elapse_realtime = USEC_INFINITY;
298 }
299
300 if (state != old_state)
301 log_unit_debug(UNIT(t), "Changed %s -> %s", timer_state_to_string(old_state), timer_state_to_string(state));
302
303 unit_notify(UNIT(t), state_translation_table[old_state], state_translation_table[state], /* reload_success = */ true);
304 }
305
306 static void timer_enter_waiting(Timer *t, bool time_change);
307
308 static int timer_coldplug(Unit *u) {
309 Timer *t = ASSERT_PTR(TIMER(u));
310
311 assert(t->state == TIMER_DEAD);
312
313 if (t->deserialized_state == t->state)
314 return 0;
315
316 if (t->deserialized_state == TIMER_WAITING)
317 timer_enter_waiting(t, false);
318 else
319 timer_set_state(t, t->deserialized_state);
320
321 return 0;
322 }
323
324 static void timer_enter_dead(Timer *t, TimerResult f) {
325 assert(t);
326
327 if (t->result == TIMER_SUCCESS)
328 t->result = f;
329
330 unit_log_result(UNIT(t), t->result == TIMER_SUCCESS, timer_result_to_string(t->result));
331 timer_set_state(t, t->result != TIMER_SUCCESS ? TIMER_FAILED : TIMER_DEAD);
332 }
333
334 static void timer_enter_elapsed(Timer *t, bool leave_around) {
335 assert(t);
336
337 /* If a unit is marked with RemainAfterElapse=yes we leave it
338 * around even after it elapsed once, so that starting it
339 * later again does not necessarily mean immediate
340 * retriggering. We unconditionally leave units with
341 * TIMER_UNIT_ACTIVE or TIMER_UNIT_INACTIVE triggers around,
342 * since they might be restarted automatically at any time
343 * later on. */
344
345 if (t->remain_after_elapse || leave_around)
346 timer_set_state(t, TIMER_ELAPSED);
347 else
348 timer_enter_dead(t, TIMER_SUCCESS);
349 }
350
351 static void add_random_delay(Timer *t, usec_t *v) {
352 usec_t add;
353
354 assert(t);
355 assert(v);
356
357 if (t->random_delay_usec == 0)
358 return;
359 if (*v == USEC_INFINITY)
360 return;
361
362 add = (t->fixed_random_delay ? timer_get_fixed_delay_hash(t) : random_u64()) % t->random_delay_usec;
363
364 if (*v + add < *v) /* overflow */
365 *v = (usec_t) -2; /* Highest possible value, that is not USEC_INFINITY */
366 else
367 *v += add;
368
369 log_unit_debug(UNIT(t), "Adding %s random time.", FORMAT_TIMESPAN(add, 0));
370 }
371
372 static void timer_enter_waiting(Timer *t, bool time_change) {
373 bool found_monotonic = false, found_realtime = false;
374 bool leave_around = false;
375 triple_timestamp ts;
376 Unit *trigger;
377 int r;
378
379 assert(t);
380
381 trigger = UNIT_TRIGGER(UNIT(t));
382 if (!trigger) {
383 log_unit_error(UNIT(t), "Unit to trigger vanished.");
384 goto fail;
385 }
386
387 triple_timestamp_now(&ts);
388 t->next_elapse_monotonic_or_boottime = t->next_elapse_realtime = 0;
389
390 LIST_FOREACH(value, v, t->values) {
391 if (v->disabled)
392 continue;
393
394 if (v->base == TIMER_CALENDAR) {
395 usec_t b, rebased, random_offset = 0;
396
397 if (t->random_offset_usec != 0)
398 random_offset = timer_get_fixed_delay_hash(t) % t->random_offset_usec;
399
400 /* If DeferReactivation= is enabled, schedule the job based on the last time
401 * the trigger unit entered inactivity. Otherwise, if we know the last time
402 * this was triggered, schedule the job based relative to that. If we don't,
403 * just start from the activation time or realtime.
404 *
405 * Unless we have a real last-trigger time, we subtract the random_offset because
406 * any event that elapsed within the last random_offset has actually been delayed
407 * and thus hasn't truly elapsed yet. */
408
409 if (t->defer_reactivation &&
410 dual_timestamp_is_set(&trigger->inactive_enter_timestamp)) {
411 if (dual_timestamp_is_set(&t->last_trigger))
412 b = MAX(trigger->inactive_enter_timestamp.realtime,
413 t->last_trigger.realtime);
414 else
415 b = trigger->inactive_enter_timestamp.realtime;
416 } else if (dual_timestamp_is_set(&t->last_trigger))
417 b = t->last_trigger.realtime;
418 else if (dual_timestamp_is_set(&UNIT(t)->inactive_exit_timestamp))
419 b = UNIT(t)->inactive_exit_timestamp.realtime - random_offset;
420 else
421 b = ts.realtime - random_offset;
422
423 r = calendar_spec_next_usec(v->calendar_spec, b, &v->next_elapse);
424 if (r < 0)
425 continue;
426
427 v->next_elapse += random_offset;
428
429 /* To make the delay due to RandomizedDelaySec= work even at boot, if the scheduled
430 * time has already passed, set the time when systemd first started as the scheduled
431 * time. Note that we base this on the monotonic timestamp of the boot, not the
432 * realtime one, since the wallclock might have been off during boot. */
433 rebased = map_clock_usec(UNIT(t)->manager->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic,
434 CLOCK_MONOTONIC, CLOCK_REALTIME);
435 if (v->next_elapse < rebased)
436 v->next_elapse = rebased;
437
438 if (!found_realtime)
439 t->next_elapse_realtime = v->next_elapse;
440 else
441 t->next_elapse_realtime = MIN(t->next_elapse_realtime, v->next_elapse);
442
443 found_realtime = true;
444
445 } else {
446 usec_t base;
447
448 switch (v->base) {
449
450 case TIMER_ACTIVE:
451 if (state_translation_table[t->state] == UNIT_ACTIVE)
452 base = UNIT(t)->inactive_exit_timestamp.monotonic;
453 else
454 base = ts.monotonic;
455 break;
456
457 case TIMER_BOOT:
458 if (detect_container() <= 0) {
459 /* CLOCK_MONOTONIC equals the uptime on Linux */
460 base = 0;
461 break;
462 }
463 /* In a container we don't want to include the time the host
464 * was already up when the container started, so count from
465 * our own startup. */
466 _fallthrough_;
467 case TIMER_STARTUP:
468 base = UNIT(t)->manager->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
469 break;
470
471 case TIMER_UNIT_ACTIVE:
472 leave_around = true;
473 base = MAX(trigger->inactive_exit_timestamp.monotonic, t->last_trigger.monotonic);
474 if (base <= 0)
475 continue;
476 break;
477
478 case TIMER_UNIT_INACTIVE:
479 leave_around = true;
480 base = MAX(trigger->inactive_enter_timestamp.monotonic, t->last_trigger.monotonic);
481 if (base <= 0)
482 continue;
483 break;
484
485 default:
486 assert_not_reached();
487 }
488
489 if (!time_change)
490 v->next_elapse = usec_add(usec_shift_clock(base, CLOCK_MONOTONIC, TIMER_MONOTONIC_CLOCK(t)), v->value);
491
492 if (dual_timestamp_is_set(&t->last_trigger) &&
493 !time_change &&
494 v->next_elapse < triple_timestamp_by_clock(&ts, TIMER_MONOTONIC_CLOCK(t)) &&
495 IN_SET(v->base, TIMER_ACTIVE, TIMER_BOOT, TIMER_STARTUP)) {
496 /* This is a one time trigger, disable it now */
497 v->disabled = true;
498 continue;
499 }
500
501 if (!found_monotonic)
502 t->next_elapse_monotonic_or_boottime = v->next_elapse;
503 else
504 t->next_elapse_monotonic_or_boottime = MIN(t->next_elapse_monotonic_or_boottime, v->next_elapse);
505
506 found_monotonic = true;
507 }
508 }
509
510 if (!found_monotonic && !found_realtime && !t->on_timezone_change && !t->on_clock_change) {
511 log_unit_debug(UNIT(t), "Timer is elapsed.");
512 timer_enter_elapsed(t, leave_around);
513 return;
514 }
515
516 if (found_monotonic) {
517 usec_t left;
518
519 add_random_delay(t, &t->next_elapse_monotonic_or_boottime);
520
521 left = usec_sub_unsigned(t->next_elapse_monotonic_or_boottime, triple_timestamp_by_clock(&ts, TIMER_MONOTONIC_CLOCK(t)));
522 log_unit_debug(UNIT(t), "Monotonic timer elapses in %s.", FORMAT_TIMESPAN(left, 0));
523
524 if (t->monotonic_event_source) {
525 r = sd_event_source_set_time(t->monotonic_event_source, t->next_elapse_monotonic_or_boottime);
526 if (r < 0) {
527 log_unit_warning_errno(UNIT(t), r, "Failed to reschedule monotonic event source: %m");
528 goto fail;
529 }
530
531 r = sd_event_source_set_enabled(t->monotonic_event_source, SD_EVENT_ONESHOT);
532 if (r < 0) {
533 log_unit_warning_errno(UNIT(t), r, "Failed to enable monotonic event source: %m");
534 goto fail;
535 }
536 } else {
537 r = sd_event_add_time(
538 UNIT(t)->manager->event,
539 &t->monotonic_event_source,
540 t->wake_system ? CLOCK_BOOTTIME_ALARM : CLOCK_MONOTONIC,
541 t->next_elapse_monotonic_or_boottime, t->accuracy_usec,
542 timer_dispatch, t);
543 if (r < 0) {
544 log_unit_warning_errno(UNIT(t), r, "Failed to add monotonic event source: %m");
545 goto fail;
546 }
547
548 (void) sd_event_source_set_description(t->monotonic_event_source, "timer-monotonic");
549 }
550
551 } else {
552 r = sd_event_source_set_enabled(t->monotonic_event_source, SD_EVENT_OFF);
553 if (r < 0) {
554 log_unit_warning_errno(UNIT(t), r, "Failed to disable monotonic event source: %m");
555 goto fail;
556 }
557 }
558
559 if (found_realtime) {
560 add_random_delay(t, &t->next_elapse_realtime);
561
562 log_unit_debug(UNIT(t), "Realtime timer elapses at %s.", FORMAT_TIMESTAMP(t->next_elapse_realtime));
563
564 if (t->realtime_event_source) {
565 r = sd_event_source_set_time(t->realtime_event_source, t->next_elapse_realtime);
566 if (r < 0) {
567 log_unit_warning_errno(UNIT(t), r, "Failed to reschedule realtime event source: %m");
568 goto fail;
569 }
570
571 r = sd_event_source_set_enabled(t->realtime_event_source, SD_EVENT_ONESHOT);
572 if (r < 0) {
573 log_unit_warning_errno(UNIT(t), r, "Failed to enable realtime event source: %m");
574 goto fail;
575 }
576 } else {
577 r = sd_event_add_time(
578 UNIT(t)->manager->event,
579 &t->realtime_event_source,
580 t->wake_system ? CLOCK_REALTIME_ALARM : CLOCK_REALTIME,
581 t->next_elapse_realtime, t->accuracy_usec,
582 timer_dispatch, t);
583 if (r < 0) {
584 log_unit_warning_errno(UNIT(t), r, "Failed to add realtime event source: %m");
585 goto fail;
586 }
587
588 (void) sd_event_source_set_description(t->realtime_event_source, "timer-realtime");
589 }
590
591 } else if (t->realtime_event_source) {
592
593 r = sd_event_source_set_enabled(t->realtime_event_source, SD_EVENT_OFF);
594 if (r < 0) {
595 log_unit_warning_errno(UNIT(t), r, "Failed to disable realtime event source: %m");
596 goto fail;
597 }
598 }
599
600 timer_set_state(t, TIMER_WAITING);
601 return;
602
603 fail:
604 timer_enter_dead(t, TIMER_FAILURE_RESOURCES);
605 }
606
607 static void timer_enter_running(Timer *t) {
608 _cleanup_(activation_details_unrefp) ActivationDetails *details = NULL;
609 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
610 Unit *trigger;
611 Job *job;
612 int r;
613
614 assert(t);
615
616 /* Don't start job if we are supposed to go down */
617 if (unit_stop_pending(UNIT(t)))
618 return;
619
620 trigger = UNIT_TRIGGER(UNIT(t));
621 if (!trigger) {
622 log_unit_error(UNIT(t), "Unit to trigger vanished.");
623 goto fail;
624 }
625
626 details = activation_details_new(UNIT(t));
627 if (!details) {
628 log_oom();
629 goto fail;
630 }
631
632 r = manager_add_job(UNIT(t)->manager, JOB_START, trigger, JOB_REPLACE, &error, &job);
633 if (r < 0) {
634 log_unit_warning(UNIT(t), "Failed to queue unit startup job: %s", bus_error_message(&error, r));
635 goto fail;
636 }
637
638 dual_timestamp_now(&t->last_trigger);
639 ACTIVATION_DETAILS_TIMER(details)->last_trigger = t->last_trigger;
640
641 job_set_activation_details(job, details);
642
643 if (t->stamp_path)
644 touch_file(t->stamp_path, true, t->last_trigger.realtime, UID_INVALID, GID_INVALID, MODE_INVALID);
645
646 timer_set_state(t, TIMER_RUNNING);
647 return;
648
649 fail:
650 timer_enter_dead(t, TIMER_FAILURE_RESOURCES);
651 }
652
653 static int timer_start(Unit *u) {
654 Timer *t = ASSERT_PTR(TIMER(u));
655 int r;
656
657 assert(IN_SET(t->state, TIMER_DEAD, TIMER_FAILED));
658
659 r = unit_test_trigger_loaded(u);
660 if (r < 0)
661 return r;
662
663 r = unit_acquire_invocation_id(u);
664 if (r < 0)
665 return r;
666
667 t->last_trigger = DUAL_TIMESTAMP_NULL;
668
669 /* Reenable all timers that depend on unit activation time */
670 LIST_FOREACH(value, v, t->values)
671 if (v->base == TIMER_ACTIVE)
672 v->disabled = false;
673
674 if (t->stamp_path) {
675 struct stat st;
676
677 if (stat(t->stamp_path, &st) >= 0) {
678 usec_t ft;
679
680 /* Load the file timestamp, but only if it is actually in the past. If it is in the future,
681 * something is wrong with the system clock. */
682
683 ft = timespec_load(&st.st_mtim);
684 if (ft < now(CLOCK_REALTIME))
685 t->last_trigger.realtime = ft;
686 else
687 log_unit_warning(u, "Not using persistent file timestamp %s as it is in the future.",
688 FORMAT_TIMESTAMP(ft));
689
690 } else if (errno == ENOENT)
691 /* The timer has never run before, make sure a stamp file exists. */
692 (void) touch_file(t->stamp_path, true, USEC_INFINITY, UID_INVALID, GID_INVALID, MODE_INVALID);
693 }
694
695 t->result = TIMER_SUCCESS;
696 timer_enter_waiting(t, false);
697 return 1;
698 }
699
700 static int timer_stop(Unit *u) {
701 Timer *t = ASSERT_PTR(TIMER(u));
702
703 assert(IN_SET(t->state, TIMER_WAITING, TIMER_RUNNING, TIMER_ELAPSED));
704
705 timer_enter_dead(t, TIMER_SUCCESS);
706 return 1;
707 }
708
709 static int timer_serialize(Unit *u, FILE *f, FDSet *fds) {
710 Timer *t = ASSERT_PTR(TIMER(u));
711
712 assert(f);
713 assert(fds);
714
715 (void) serialize_item(f, "state", timer_state_to_string(t->state));
716 (void) serialize_item(f, "result", timer_result_to_string(t->result));
717
718 if (dual_timestamp_is_set(&t->last_trigger))
719 (void) serialize_usec(f, "last-trigger-realtime", t->last_trigger.realtime);
720
721 if (t->last_trigger.monotonic > 0)
722 (void) serialize_usec(f, "last-trigger-monotonic", t->last_trigger.monotonic);
723
724 return 0;
725 }
726
727 static int timer_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) {
728 Timer *t = ASSERT_PTR(TIMER(u));
729
730 assert(key);
731 assert(value);
732 assert(fds);
733
734 if (streq(key, "state")) {
735 TimerState state;
736
737 state = timer_state_from_string(value);
738 if (state < 0)
739 log_unit_debug(u, "Failed to parse state value: %s", value);
740 else
741 t->deserialized_state = state;
742
743 } else if (streq(key, "result")) {
744 TimerResult f;
745
746 f = timer_result_from_string(value);
747 if (f < 0)
748 log_unit_debug(u, "Failed to parse result value: %s", value);
749 else if (f != TIMER_SUCCESS)
750 t->result = f;
751
752 } else if (streq(key, "last-trigger-realtime"))
753 (void) deserialize_usec(value, &t->last_trigger.realtime);
754 else if (streq(key, "last-trigger-monotonic"))
755 (void) deserialize_usec(value, &t->last_trigger.monotonic);
756 else
757 log_unit_debug(u, "Unknown serialization key: %s", key);
758
759 return 0;
760 }
761
762 static UnitActiveState timer_active_state(Unit *u) {
763 Timer *t = ASSERT_PTR(TIMER(u));
764
765 return state_translation_table[t->state];
766 }
767
768 static const char *timer_sub_state_to_string(Unit *u) {
769 Timer *t = ASSERT_PTR(TIMER(u));
770
771 return timer_state_to_string(t->state);
772 }
773
774 static int timer_dispatch(sd_event_source *s, uint64_t usec, void *userdata) {
775 Timer *t = ASSERT_PTR(TIMER(userdata));
776
777 if (t->state != TIMER_WAITING)
778 return 0;
779
780 log_unit_debug(UNIT(t), "Timer elapsed.");
781 timer_enter_running(t);
782 return 0;
783 }
784
785 static void timer_trigger_notify(Unit *u, Unit *other) {
786 Timer *t = ASSERT_PTR(TIMER(u));
787
788 assert(other);
789
790 /* Filter out invocations with bogus state */
791 assert(UNIT_IS_LOAD_COMPLETE(other->load_state));
792
793 /* Reenable all timers that depend on unit state */
794 LIST_FOREACH(value, v, t->values)
795 if (IN_SET(v->base, TIMER_UNIT_ACTIVE, TIMER_UNIT_INACTIVE))
796 v->disabled = false;
797
798 switch (t->state) {
799
800 case TIMER_WAITING:
801 case TIMER_ELAPSED:
802
803 /* Recalculate sleep time */
804 timer_enter_waiting(t, false);
805 break;
806
807 case TIMER_RUNNING:
808
809 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) {
810 log_unit_debug(UNIT(t), "Got notified about unit deactivation.");
811 timer_enter_waiting(t, false);
812 }
813 break;
814
815 case TIMER_DEAD:
816 case TIMER_FAILED:
817 break;
818
819 default:
820 assert_not_reached();
821 }
822 }
823
824 static void timer_reset_failed(Unit *u) {
825 Timer *t = ASSERT_PTR(TIMER(u));
826
827 if (t->state == TIMER_FAILED)
828 timer_set_state(t, TIMER_DEAD);
829
830 t->result = TIMER_SUCCESS;
831 }
832
833 static void timer_time_change(Unit *u) {
834 Timer *t = ASSERT_PTR(TIMER(u));
835 usec_t ts;
836
837 if (t->state != TIMER_WAITING)
838 return;
839
840 /* If we appear to have triggered in the future, the system clock must
841 * have been set backwards. So let's rewind our own clock and allow
842 * the future triggers to happen again :). Exactly the same as when
843 * you start a timer unit with Persistent=yes. */
844 ts = now(CLOCK_REALTIME);
845 if (t->last_trigger.realtime > ts)
846 t->last_trigger.realtime = ts;
847
848 if (t->on_clock_change) {
849 log_unit_debug(u, "Time change, triggering activation.");
850 timer_enter_running(t);
851 } else {
852 log_unit_debug(u, "Time change, recalculating next elapse.");
853 timer_enter_waiting(t, true);
854 }
855 }
856
857 static void timer_timezone_change(Unit *u) {
858 Timer *t = ASSERT_PTR(TIMER(u));
859
860 if (t->state != TIMER_WAITING)
861 return;
862
863 if (t->on_timezone_change) {
864 log_unit_debug(u, "Timezone change, triggering activation.");
865 timer_enter_running(t);
866 } else {
867 log_unit_debug(u, "Timezone change, recalculating next elapse.");
868 timer_enter_waiting(t, false);
869 }
870 }
871
872 static int timer_clean(Unit *u, ExecCleanMask mask) {
873 Timer *t = ASSERT_PTR(TIMER(u));
874 int r;
875
876 assert(mask != 0);
877
878 if (t->state != TIMER_DEAD)
879 return -EBUSY;
880
881 if (mask != EXEC_CLEAN_STATE)
882 return -EUNATCH;
883
884 r = timer_setup_persistent(t);
885 if (r < 0)
886 return r;
887
888 if (!t->stamp_path)
889 return -EUNATCH;
890
891 if (unlink(t->stamp_path) && errno != ENOENT)
892 return log_unit_error_errno(u, errno, "Failed to clean stamp file of timer: %m");
893
894 return 0;
895 }
896
897 static int timer_can_clean(Unit *u, ExecCleanMask *ret) {
898 Timer *t = ASSERT_PTR(TIMER(u));
899
900 assert(ret);
901
902 *ret = t->persistent ? EXEC_CLEAN_STATE : 0;
903 return 0;
904 }
905
906 static int timer_can_start(Unit *u) {
907 Timer *t = ASSERT_PTR(TIMER(u));
908 int r;
909
910 r = unit_test_start_limit(u);
911 if (r < 0) {
912 timer_enter_dead(t, TIMER_FAILURE_START_LIMIT_HIT);
913 return r;
914 }
915
916 return 1;
917 }
918
919 static void activation_details_timer_serialize(const ActivationDetails *details, FILE *f) {
920 const ActivationDetailsTimer *t = ASSERT_PTR(ACTIVATION_DETAILS_TIMER(details));
921
922 assert(f);
923 assert(t);
924
925 (void) serialize_dual_timestamp(f, "activation-details-timer-last-trigger", &t->last_trigger);
926 }
927
928 static int activation_details_timer_deserialize(const char *key, const char *value, ActivationDetails **details) {
929 int r;
930
931 assert(key);
932 assert(value);
933
934 if (!details || !*details)
935 return -EINVAL;
936
937 ActivationDetailsTimer *t = ACTIVATION_DETAILS_TIMER(*details);
938 if (!t)
939 return -EINVAL;
940
941 if (!streq(key, "activation-details-timer-last-trigger"))
942 return -EINVAL;
943
944 r = deserialize_dual_timestamp(value, &t->last_trigger);
945 if (r < 0)
946 return r;
947
948 return 0;
949 }
950
951 static int activation_details_timer_append_env(const ActivationDetails *details, char ***strv) {
952 const ActivationDetailsTimer *t = ASSERT_PTR(ACTIVATION_DETAILS_TIMER(details));
953 int r;
954
955 assert(strv);
956 assert(t);
957
958 if (!dual_timestamp_is_set(&t->last_trigger))
959 return 0;
960
961 r = strv_extendf(strv, "TRIGGER_TIMER_REALTIME_USEC=" USEC_FMT, t->last_trigger.realtime);
962 if (r < 0)
963 return r;
964
965 r = strv_extendf(strv, "TRIGGER_TIMER_MONOTONIC_USEC=" USEC_FMT, t->last_trigger.monotonic);
966 if (r < 0)
967 return r;
968
969 return 2; /* Return the number of variables added to the env block */
970 }
971
972 static int activation_details_timer_append_pair(const ActivationDetails *details, char ***strv) {
973 const ActivationDetailsTimer *t = ASSERT_PTR(ACTIVATION_DETAILS_TIMER(details));
974 int r;
975
976 assert(strv);
977 assert(t);
978
979 if (!dual_timestamp_is_set(&t->last_trigger))
980 return 0;
981
982 r = strv_extend(strv, "trigger_timer_realtime_usec");
983 if (r < 0)
984 return r;
985
986 r = strv_extendf(strv, USEC_FMT, t->last_trigger.realtime);
987 if (r < 0)
988 return r;
989
990 r = strv_extend(strv, "trigger_timer_monotonic_usec");
991 if (r < 0)
992 return r;
993
994 r = strv_extendf(strv, USEC_FMT, t->last_trigger.monotonic);
995 if (r < 0)
996 return r;
997
998 return 2; /* Return the number of pairs added to the env block */
999 }
1000
1001 uint64_t timer_next_elapse_monotonic(const Timer *t) {
1002 assert(t);
1003
1004 return (uint64_t) usec_shift_clock(t->next_elapse_monotonic_or_boottime,
1005 TIMER_MONOTONIC_CLOCK(t), CLOCK_MONOTONIC);
1006 }
1007
1008 static const char* const timer_base_table[_TIMER_BASE_MAX] = {
1009 [TIMER_ACTIVE] = "OnActiveSec",
1010 [TIMER_BOOT] = "OnBootSec",
1011 [TIMER_STARTUP] = "OnStartupSec",
1012 [TIMER_UNIT_ACTIVE] = "OnUnitActiveSec",
1013 [TIMER_UNIT_INACTIVE] = "OnUnitInactiveSec",
1014 [TIMER_CALENDAR] = "OnCalendar",
1015 };
1016
1017 DEFINE_STRING_TABLE_LOOKUP(timer_base, TimerBase);
1018
1019 char* timer_base_to_usec_string(TimerBase i) {
1020 _cleanup_free_ char *buf = NULL;
1021 const char *s;
1022 size_t l;
1023
1024 s = timer_base_to_string(i);
1025
1026 if (endswith(s, "Sec")) {
1027 /* s/Sec/USec/ */
1028 l = strlen(s);
1029 buf = new(char, l+2);
1030 if (!buf)
1031 return NULL;
1032
1033 memcpy(buf, s, l-3);
1034 memcpy(buf+l-3, "USec", 5);
1035 } else {
1036 buf = strdup(s);
1037 if (!buf)
1038 return NULL;
1039 }
1040
1041 return TAKE_PTR(buf);
1042 }
1043
1044 static const char* const timer_result_table[_TIMER_RESULT_MAX] = {
1045 [TIMER_SUCCESS] = "success",
1046 [TIMER_FAILURE_RESOURCES] = "resources",
1047 [TIMER_FAILURE_START_LIMIT_HIT] = "start-limit-hit",
1048 };
1049
1050 DEFINE_STRING_TABLE_LOOKUP(timer_result, TimerResult);
1051
1052 const UnitVTable timer_vtable = {
1053 .object_size = sizeof(Timer),
1054
1055 .sections =
1056 "Unit\0"
1057 "Timer\0"
1058 "Install\0",
1059 .private_section = "Timer",
1060
1061 .can_transient = true,
1062 .can_fail = true,
1063 .can_trigger = true,
1064
1065 .init = timer_init,
1066 .done = timer_done,
1067 .load = timer_load,
1068
1069 .coldplug = timer_coldplug,
1070
1071 .dump = timer_dump,
1072
1073 .start = timer_start,
1074 .stop = timer_stop,
1075
1076 .clean = timer_clean,
1077 .can_clean = timer_can_clean,
1078
1079 .serialize = timer_serialize,
1080 .deserialize_item = timer_deserialize_item,
1081
1082 .active_state = timer_active_state,
1083 .sub_state_to_string = timer_sub_state_to_string,
1084
1085 .trigger_notify = timer_trigger_notify,
1086
1087 .reset_failed = timer_reset_failed,
1088 .time_change = timer_time_change,
1089 .timezone_change = timer_timezone_change,
1090
1091 .bus_set_property = bus_timer_set_property,
1092
1093 .can_start = timer_can_start,
1094 };
1095
1096 const ActivationDetailsVTable activation_details_timer_vtable = {
1097 .object_size = sizeof(ActivationDetailsTimer),
1098
1099 .serialize = activation_details_timer_serialize,
1100 .deserialize = activation_details_timer_deserialize,
1101 .append_env = activation_details_timer_append_env,
1102 .append_pair = activation_details_timer_append_pair,
1103 };