]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
2d096cbaefb795f0c9272b8ae8f5a626f3ab70a5
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bpf-foreign.h"
15 #include "bpf-socket-bind.h"
16 #include "bus-common-errors.h"
17 #include "bus-internal.h"
18 #include "bus-util.h"
19 #include "cgroup-setup.h"
20 #include "cgroup-util.h"
21 #include "chase.h"
22 #include "core-varlink.h"
23 #include "dbus-unit.h"
24 #include "dbus.h"
25 #include "dropin.h"
26 #include "env-util.h"
27 #include "escape.h"
28 #include "exec-credential.h"
29 #include "execute.h"
30 #include "fd-util.h"
31 #include "fileio-label.h"
32 #include "fileio.h"
33 #include "format-util.h"
34 #include "id128-util.h"
35 #include "install.h"
36 #include "io-util.h"
37 #include "label-util.h"
38 #include "load-dropin.h"
39 #include "load-fragment.h"
40 #include "log.h"
41 #include "logarithm.h"
42 #include "macro.h"
43 #include "mkdir-label.h"
44 #include "path-util.h"
45 #include "process-util.h"
46 #include "rm-rf.h"
47 #include "serialize.h"
48 #include "set.h"
49 #include "signal-util.h"
50 #include "sparse-endian.h"
51 #include "special.h"
52 #include "specifier.h"
53 #include "stat-util.h"
54 #include "stdio-util.h"
55 #include "string-table.h"
56 #include "string-util.h"
57 #include "strv.h"
58 #include "terminal-util.h"
59 #include "tmpfile-util.h"
60 #include "umask-util.h"
61 #include "unit-name.h"
62 #include "unit.h"
63 #include "user-util.h"
64 #include "virt.h"
65 #if BPF_FRAMEWORK
66 #include "bpf-link.h"
67 #endif
68
69 /* Thresholds for logging at INFO level about resource consumption */
70 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
71 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
72 #define MENTIONWORTHY_IP_BYTES (0ULL)
73
74 /* Thresholds for logging at INFO level about resource consumption */
75 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
76 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
77 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
78
79 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
80 [UNIT_SERVICE] = &service_vtable,
81 [UNIT_SOCKET] = &socket_vtable,
82 [UNIT_TARGET] = &target_vtable,
83 [UNIT_DEVICE] = &device_vtable,
84 [UNIT_MOUNT] = &mount_vtable,
85 [UNIT_AUTOMOUNT] = &automount_vtable,
86 [UNIT_SWAP] = &swap_vtable,
87 [UNIT_TIMER] = &timer_vtable,
88 [UNIT_PATH] = &path_vtable,
89 [UNIT_SLICE] = &slice_vtable,
90 [UNIT_SCOPE] = &scope_vtable,
91 };
92
93 Unit* unit_new(Manager *m, size_t size) {
94 Unit *u;
95
96 assert(m);
97 assert(size >= sizeof(Unit));
98
99 u = malloc0(size);
100 if (!u)
101 return NULL;
102
103 u->manager = m;
104 u->type = _UNIT_TYPE_INVALID;
105 u->default_dependencies = true;
106 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
107 u->unit_file_preset = -1;
108 u->on_failure_job_mode = JOB_REPLACE;
109 u->on_success_job_mode = JOB_FAIL;
110 u->cgroup_control_inotify_wd = -1;
111 u->cgroup_memory_inotify_wd = -1;
112 u->job_timeout = USEC_INFINITY;
113 u->job_running_timeout = USEC_INFINITY;
114 u->ref_uid = UID_INVALID;
115 u->ref_gid = GID_INVALID;
116 u->cpu_usage_last = NSEC_INFINITY;
117 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
118 u->failure_action_exit_status = u->success_action_exit_status = -1;
119
120 u->ip_accounting_ingress_map_fd = -EBADF;
121 u->ip_accounting_egress_map_fd = -EBADF;
122 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
123 u->io_accounting_last[i] = UINT64_MAX;
124
125 u->ipv4_allow_map_fd = -EBADF;
126 u->ipv6_allow_map_fd = -EBADF;
127 u->ipv4_deny_map_fd = -EBADF;
128 u->ipv6_deny_map_fd = -EBADF;
129
130 u->last_section_private = -1;
131
132 u->start_ratelimit = (RateLimit) {
133 m->defaults.start_limit_interval,
134 m->defaults.start_limit_burst
135 };
136
137 u->auto_start_stop_ratelimit = (const RateLimit) {
138 10 * USEC_PER_SEC,
139 16
140 };
141
142 return u;
143 }
144
145 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
146 _cleanup_(unit_freep) Unit *u = NULL;
147 int r;
148
149 u = unit_new(m, size);
150 if (!u)
151 return -ENOMEM;
152
153 r = unit_add_name(u, name);
154 if (r < 0)
155 return r;
156
157 *ret = TAKE_PTR(u);
158
159 return r;
160 }
161
162 bool unit_has_name(const Unit *u, const char *name) {
163 assert(u);
164 assert(name);
165
166 return streq_ptr(name, u->id) ||
167 set_contains(u->aliases, name);
168 }
169
170 static void unit_init(Unit *u) {
171 CGroupContext *cc;
172 ExecContext *ec;
173 KillContext *kc;
174
175 assert(u);
176 assert(u->manager);
177 assert(u->type >= 0);
178
179 cc = unit_get_cgroup_context(u);
180 if (cc) {
181 cgroup_context_init(cc);
182
183 /* Copy in the manager defaults into the cgroup
184 * context, _before_ the rest of the settings have
185 * been initialized */
186
187 cc->cpu_accounting = u->manager->defaults.cpu_accounting;
188 cc->io_accounting = u->manager->defaults.io_accounting;
189 cc->blockio_accounting = u->manager->defaults.blockio_accounting;
190 cc->memory_accounting = u->manager->defaults.memory_accounting;
191 cc->tasks_accounting = u->manager->defaults.tasks_accounting;
192 cc->ip_accounting = u->manager->defaults.ip_accounting;
193
194 if (u->type != UNIT_SLICE)
195 cc->tasks_max = u->manager->defaults.tasks_max;
196
197 cc->memory_pressure_watch = u->manager->defaults.memory_pressure_watch;
198 cc->memory_pressure_threshold_usec = u->manager->defaults.memory_pressure_threshold_usec;
199 }
200
201 ec = unit_get_exec_context(u);
202 if (ec) {
203 exec_context_init(ec);
204
205 if (u->manager->defaults.oom_score_adjust_set) {
206 ec->oom_score_adjust = u->manager->defaults.oom_score_adjust;
207 ec->oom_score_adjust_set = true;
208 }
209
210 if (MANAGER_IS_SYSTEM(u->manager))
211 ec->keyring_mode = EXEC_KEYRING_SHARED;
212 else {
213 ec->keyring_mode = EXEC_KEYRING_INHERIT;
214
215 /* User manager might have its umask redefined by PAM or UMask=. In this
216 * case let the units it manages inherit this value by default. They can
217 * still tune this value through their own unit file */
218 (void) get_process_umask(0, &ec->umask);
219 }
220 }
221
222 kc = unit_get_kill_context(u);
223 if (kc)
224 kill_context_init(kc);
225
226 if (UNIT_VTABLE(u)->init)
227 UNIT_VTABLE(u)->init(u);
228 }
229
230 static int unit_add_alias(Unit *u, char *donated_name) {
231 int r;
232
233 /* Make sure that u->names is allocated. We may leave u->names
234 * empty if we fail later, but this is not a problem. */
235 r = set_ensure_put(&u->aliases, &string_hash_ops, donated_name);
236 if (r < 0)
237 return r;
238 assert(r > 0);
239
240 return 0;
241 }
242
243 int unit_add_name(Unit *u, const char *text) {
244 _cleanup_free_ char *name = NULL, *instance = NULL;
245 UnitType t;
246 int r;
247
248 assert(u);
249 assert(text);
250
251 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
252 if (!u->instance)
253 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
254 "instance is not set when adding name '%s': %m", text);
255
256 r = unit_name_replace_instance(text, u->instance, &name);
257 if (r < 0)
258 return log_unit_debug_errno(u, r,
259 "failed to build instance name from '%s': %m", text);
260 } else {
261 name = strdup(text);
262 if (!name)
263 return -ENOMEM;
264 }
265
266 if (unit_has_name(u, name))
267 return 0;
268
269 if (hashmap_contains(u->manager->units, name))
270 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
271 "unit already exist when adding name '%s': %m", name);
272
273 if (!unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
274 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
275 "name '%s' is invalid: %m", name);
276
277 t = unit_name_to_type(name);
278 if (t < 0)
279 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
280 "failed to derive unit type from name '%s': %m", name);
281
282 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
283 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
284 "unit type is illegal: u->type(%d) and t(%d) for name '%s': %m",
285 u->type, t, name);
286
287 r = unit_name_to_instance(name, &instance);
288 if (r < 0)
289 return log_unit_debug_errno(u, r, "failed to extract instance from name '%s': %m", name);
290
291 if (instance && !unit_type_may_template(t))
292 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "templates are not allowed for name '%s': %m", name);
293
294 /* Ensure that this unit either has no instance, or that the instance matches. */
295 if (u->type != _UNIT_TYPE_INVALID && !streq_ptr(u->instance, instance))
296 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
297 "cannot add name %s, the instances don't match (\"%s\" != \"%s\").",
298 name, instance, u->instance);
299
300 if (u->id && !unit_type_may_alias(t))
301 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
302 "cannot add name %s, aliases are not allowed for %s units.",
303 name, unit_type_to_string(t));
304
305 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
306 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(E2BIG), "cannot add name, manager has too many units: %m");
307
308 /* Add name to the global hashmap first, because that's easier to undo */
309 r = hashmap_put(u->manager->units, name, u);
310 if (r < 0)
311 return log_unit_debug_errno(u, r, "add unit to hashmap failed for name '%s': %m", text);
312
313 if (u->id) {
314 r = unit_add_alias(u, name); /* unit_add_alias() takes ownership of the name on success */
315 if (r < 0) {
316 hashmap_remove(u->manager->units, name);
317 return r;
318 }
319 TAKE_PTR(name);
320
321 } else {
322 /* A new name, we don't need the set yet. */
323 assert(u->type == _UNIT_TYPE_INVALID);
324 assert(!u->instance);
325
326 u->type = t;
327 u->id = TAKE_PTR(name);
328 u->instance = TAKE_PTR(instance);
329
330 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
331 unit_init(u);
332 }
333
334 unit_add_to_dbus_queue(u);
335 return 0;
336 }
337
338 int unit_choose_id(Unit *u, const char *name) {
339 _cleanup_free_ char *t = NULL;
340 char *s;
341 int r;
342
343 assert(u);
344 assert(name);
345
346 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
347 if (!u->instance)
348 return -EINVAL;
349
350 r = unit_name_replace_instance(name, u->instance, &t);
351 if (r < 0)
352 return r;
353
354 name = t;
355 }
356
357 if (streq_ptr(u->id, name))
358 return 0; /* Nothing to do. */
359
360 /* Selects one of the aliases of this unit as the id */
361 s = set_get(u->aliases, (char*) name);
362 if (!s)
363 return -ENOENT;
364
365 if (u->id) {
366 r = set_remove_and_put(u->aliases, name, u->id);
367 if (r < 0)
368 return r;
369 } else
370 assert_se(set_remove(u->aliases, name)); /* see set_get() above… */
371
372 u->id = s; /* Old u->id is now stored in the set, and s is not stored anywhere */
373 unit_add_to_dbus_queue(u);
374
375 return 0;
376 }
377
378 int unit_set_description(Unit *u, const char *description) {
379 int r;
380
381 assert(u);
382
383 r = free_and_strdup(&u->description, empty_to_null(description));
384 if (r < 0)
385 return r;
386 if (r > 0)
387 unit_add_to_dbus_queue(u);
388
389 return 0;
390 }
391
392 static bool unit_success_failure_handler_has_jobs(Unit *unit) {
393 Unit *other;
394
395 UNIT_FOREACH_DEPENDENCY(other, unit, UNIT_ATOM_ON_SUCCESS)
396 if (other->job || other->nop_job)
397 return true;
398
399 UNIT_FOREACH_DEPENDENCY(other, unit, UNIT_ATOM_ON_FAILURE)
400 if (other->job || other->nop_job)
401 return true;
402
403 return false;
404 }
405
406 void unit_release_resources(Unit *u) {
407 UnitActiveState state;
408 ExecContext *ec;
409
410 assert(u);
411
412 if (u->job || u->nop_job)
413 return;
414
415 if (u->perpetual)
416 return;
417
418 state = unit_active_state(u);
419 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
420 return;
421
422 if (unit_will_restart(u))
423 return;
424
425 ec = unit_get_exec_context(u);
426 if (ec && ec->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART)
427 exec_context_destroy_runtime_directory(ec, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
428
429 if (UNIT_VTABLE(u)->release_resources)
430 UNIT_VTABLE(u)->release_resources(u);
431 }
432
433 bool unit_may_gc(Unit *u) {
434 UnitActiveState state;
435 int r;
436
437 assert(u);
438
439 /* Checks whether the unit is ready to be unloaded for garbage collection. Returns true when the
440 * unit may be collected, and false if there's some reason to keep it loaded.
441 *
442 * References from other units are *not* checked here. Instead, this is done in unit_gc_sweep(), but
443 * using markers to properly collect dependency loops.
444 */
445
446 if (u->job || u->nop_job)
447 return false;
448
449 if (u->perpetual)
450 return false;
451
452 /* if we saw a cgroup empty event for this unit, stay around until we processed it so that we remove
453 * the empty cgroup if possible. Similar, process any pending OOM events if they are already queued
454 * before we release the unit. */
455 if (u->in_cgroup_empty_queue || u->in_cgroup_oom_queue)
456 return false;
457
458 /* Make sure to send out D-Bus events before we unload the unit */
459 if (u->in_dbus_queue)
460 return false;
461
462 if (sd_bus_track_count(u->bus_track) > 0)
463 return false;
464
465 state = unit_active_state(u);
466
467 /* But we keep the unit object around for longer when it is referenced or configured to not be
468 * gc'ed */
469 switch (u->collect_mode) {
470
471 case COLLECT_INACTIVE:
472 if (state != UNIT_INACTIVE)
473 return false;
474
475 break;
476
477 case COLLECT_INACTIVE_OR_FAILED:
478 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
479 return false;
480
481 break;
482
483 default:
484 assert_not_reached();
485 }
486
487 /* Check if any OnFailure= or on Success= jobs may be pending */
488 if (unit_success_failure_handler_has_jobs(u))
489 return false;
490
491 if (u->cgroup_path) {
492 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
493 * around. Units with active processes should never be collected. */
494
495 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
496 if (r < 0)
497 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
498 if (r <= 0)
499 return false;
500 }
501
502 if (!UNIT_VTABLE(u)->may_gc)
503 return true;
504
505 return UNIT_VTABLE(u)->may_gc(u);
506 }
507
508 void unit_add_to_load_queue(Unit *u) {
509 assert(u);
510 assert(u->type != _UNIT_TYPE_INVALID);
511
512 if (u->load_state != UNIT_STUB || u->in_load_queue)
513 return;
514
515 LIST_PREPEND(load_queue, u->manager->load_queue, u);
516 u->in_load_queue = true;
517 }
518
519 void unit_add_to_cleanup_queue(Unit *u) {
520 assert(u);
521
522 if (u->in_cleanup_queue)
523 return;
524
525 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
526 u->in_cleanup_queue = true;
527 }
528
529 void unit_add_to_gc_queue(Unit *u) {
530 assert(u);
531
532 if (u->in_gc_queue || u->in_cleanup_queue)
533 return;
534
535 if (!unit_may_gc(u))
536 return;
537
538 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
539 u->in_gc_queue = true;
540 }
541
542 void unit_add_to_dbus_queue(Unit *u) {
543 assert(u);
544 assert(u->type != _UNIT_TYPE_INVALID);
545
546 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
547 return;
548
549 /* Shortcut things if nobody cares */
550 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
551 sd_bus_track_count(u->bus_track) <= 0 &&
552 set_isempty(u->manager->private_buses)) {
553 u->sent_dbus_new_signal = true;
554 return;
555 }
556
557 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
558 u->in_dbus_queue = true;
559 }
560
561 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
562 assert(u);
563
564 if (u->in_stop_when_unneeded_queue)
565 return;
566
567 if (!u->stop_when_unneeded)
568 return;
569
570 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
571 return;
572
573 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
574 u->in_stop_when_unneeded_queue = true;
575 }
576
577 void unit_submit_to_start_when_upheld_queue(Unit *u) {
578 assert(u);
579
580 if (u->in_start_when_upheld_queue)
581 return;
582
583 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)))
584 return;
585
586 if (!unit_has_dependency(u, UNIT_ATOM_START_STEADILY, NULL))
587 return;
588
589 LIST_PREPEND(start_when_upheld_queue, u->manager->start_when_upheld_queue, u);
590 u->in_start_when_upheld_queue = true;
591 }
592
593 void unit_submit_to_stop_when_bound_queue(Unit *u) {
594 assert(u);
595
596 if (u->in_stop_when_bound_queue)
597 return;
598
599 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
600 return;
601
602 if (!unit_has_dependency(u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT, NULL))
603 return;
604
605 LIST_PREPEND(stop_when_bound_queue, u->manager->stop_when_bound_queue, u);
606 u->in_stop_when_bound_queue = true;
607 }
608
609 static bool unit_can_release_resources(Unit *u) {
610 ExecContext *ec;
611
612 assert(u);
613
614 if (UNIT_VTABLE(u)->release_resources)
615 return true;
616
617 ec = unit_get_exec_context(u);
618 if (ec && ec->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART)
619 return true;
620
621 return false;
622 }
623
624 void unit_submit_to_release_resources_queue(Unit *u) {
625 assert(u);
626
627 if (u->in_release_resources_queue)
628 return;
629
630 if (u->job || u->nop_job)
631 return;
632
633 if (u->perpetual)
634 return;
635
636 if (!unit_can_release_resources(u))
637 return;
638
639 LIST_PREPEND(release_resources_queue, u->manager->release_resources_queue, u);
640 u->in_release_resources_queue = true;
641 }
642
643 static void unit_clear_dependencies(Unit *u) {
644 assert(u);
645
646 /* Removes all dependencies configured on u and their reverse dependencies. */
647
648 for (Hashmap *deps; (deps = hashmap_steal_first(u->dependencies));) {
649
650 for (Unit *other; (other = hashmap_steal_first_key(deps));) {
651 Hashmap *other_deps;
652
653 HASHMAP_FOREACH(other_deps, other->dependencies)
654 hashmap_remove(other_deps, u);
655
656 unit_add_to_gc_queue(other);
657 }
658
659 hashmap_free(deps);
660 }
661
662 u->dependencies = hashmap_free(u->dependencies);
663 }
664
665 static void unit_remove_transient(Unit *u) {
666 assert(u);
667
668 if (!u->transient)
669 return;
670
671 if (u->fragment_path)
672 (void) unlink(u->fragment_path);
673
674 STRV_FOREACH(i, u->dropin_paths) {
675 _cleanup_free_ char *p = NULL, *pp = NULL;
676
677 if (path_extract_directory(*i, &p) < 0) /* Get the drop-in directory from the drop-in file */
678 continue;
679
680 if (path_extract_directory(p, &pp) < 0) /* Get the config directory from the drop-in directory */
681 continue;
682
683 /* Only drop transient drop-ins */
684 if (!path_equal(u->manager->lookup_paths.transient, pp))
685 continue;
686
687 (void) unlink(*i);
688 (void) rmdir(p);
689 }
690 }
691
692 static void unit_free_requires_mounts_for(Unit *u) {
693 assert(u);
694
695 for (;;) {
696 _cleanup_free_ char *path = NULL;
697
698 path = hashmap_steal_first_key(u->requires_mounts_for);
699 if (!path)
700 break;
701 else {
702 char s[strlen(path) + 1];
703
704 PATH_FOREACH_PREFIX_MORE(s, path) {
705 char *y;
706 Set *x;
707
708 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
709 if (!x)
710 continue;
711
712 (void) set_remove(x, u);
713
714 if (set_isempty(x)) {
715 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
716 free(y);
717 set_free(x);
718 }
719 }
720 }
721 }
722
723 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
724 }
725
726 static void unit_done(Unit *u) {
727 ExecContext *ec;
728 CGroupContext *cc;
729
730 assert(u);
731
732 if (u->type < 0)
733 return;
734
735 if (UNIT_VTABLE(u)->done)
736 UNIT_VTABLE(u)->done(u);
737
738 ec = unit_get_exec_context(u);
739 if (ec)
740 exec_context_done(ec);
741
742 cc = unit_get_cgroup_context(u);
743 if (cc)
744 cgroup_context_done(cc);
745 }
746
747 Unit* unit_free(Unit *u) {
748 Unit *slice;
749 char *t;
750
751 if (!u)
752 return NULL;
753
754 sd_event_source_disable_unref(u->auto_start_stop_event_source);
755
756 u->transient_file = safe_fclose(u->transient_file);
757
758 if (!MANAGER_IS_RELOADING(u->manager))
759 unit_remove_transient(u);
760
761 bus_unit_send_removed_signal(u);
762
763 unit_done(u);
764
765 unit_dequeue_rewatch_pids(u);
766
767 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
768 u->bus_track = sd_bus_track_unref(u->bus_track);
769 u->deserialized_refs = strv_free(u->deserialized_refs);
770 u->pending_freezer_invocation = sd_bus_message_unref(u->pending_freezer_invocation);
771
772 unit_free_requires_mounts_for(u);
773
774 SET_FOREACH(t, u->aliases)
775 hashmap_remove_value(u->manager->units, t, u);
776 if (u->id)
777 hashmap_remove_value(u->manager->units, u->id, u);
778
779 if (!sd_id128_is_null(u->invocation_id))
780 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
781
782 if (u->job) {
783 Job *j = u->job;
784 job_uninstall(j);
785 job_free(j);
786 }
787
788 if (u->nop_job) {
789 Job *j = u->nop_job;
790 job_uninstall(j);
791 job_free(j);
792 }
793
794 /* A unit is being dropped from the tree, make sure our family is realized properly. Do this after we
795 * detach the unit from slice tree in order to eliminate its effect on controller masks. */
796 slice = UNIT_GET_SLICE(u);
797 unit_clear_dependencies(u);
798 if (slice)
799 unit_add_family_to_cgroup_realize_queue(slice);
800
801 if (u->on_console)
802 manager_unref_console(u->manager);
803
804 fdset_free(u->initial_socket_bind_link_fds);
805 #if BPF_FRAMEWORK
806 bpf_link_free(u->ipv4_socket_bind_link);
807 bpf_link_free(u->ipv6_socket_bind_link);
808 #endif
809
810 unit_release_cgroup(u);
811
812 if (!MANAGER_IS_RELOADING(u->manager))
813 unit_unlink_state_files(u);
814
815 unit_unref_uid_gid(u, false);
816
817 (void) manager_update_failed_units(u->manager, u, false);
818 set_remove(u->manager->startup_units, u);
819
820 unit_unwatch_all_pids(u);
821
822 while (u->refs_by_target)
823 unit_ref_unset(u->refs_by_target);
824
825 if (u->type != _UNIT_TYPE_INVALID)
826 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
827
828 if (u->in_load_queue)
829 LIST_REMOVE(load_queue, u->manager->load_queue, u);
830
831 if (u->in_dbus_queue)
832 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
833
834 if (u->in_cleanup_queue)
835 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
836
837 if (u->in_gc_queue)
838 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
839
840 if (u->in_cgroup_realize_queue)
841 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
842
843 if (u->in_cgroup_empty_queue)
844 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
845
846 if (u->in_cgroup_oom_queue)
847 LIST_REMOVE(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
848
849 if (u->in_target_deps_queue)
850 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
851
852 if (u->in_stop_when_unneeded_queue)
853 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
854
855 if (u->in_start_when_upheld_queue)
856 LIST_REMOVE(start_when_upheld_queue, u->manager->start_when_upheld_queue, u);
857
858 if (u->in_stop_when_bound_queue)
859 LIST_REMOVE(stop_when_bound_queue, u->manager->stop_when_bound_queue, u);
860
861 if (u->in_release_resources_queue)
862 LIST_REMOVE(release_resources_queue, u->manager->release_resources_queue, u);
863
864 bpf_firewall_close(u);
865
866 hashmap_free(u->bpf_foreign_by_key);
867
868 bpf_program_free(u->bpf_device_control_installed);
869
870 #if BPF_FRAMEWORK
871 bpf_link_free(u->restrict_ifaces_ingress_bpf_link);
872 bpf_link_free(u->restrict_ifaces_egress_bpf_link);
873 #endif
874 fdset_free(u->initial_restric_ifaces_link_fds);
875
876 condition_free_list(u->conditions);
877 condition_free_list(u->asserts);
878
879 free(u->description);
880 strv_free(u->documentation);
881 free(u->fragment_path);
882 free(u->source_path);
883 strv_free(u->dropin_paths);
884 free(u->instance);
885
886 free(u->job_timeout_reboot_arg);
887 free(u->reboot_arg);
888
889 free(u->access_selinux_context);
890
891 set_free_free(u->aliases);
892 free(u->id);
893
894 activation_details_unref(u->activation_details);
895
896 return mfree(u);
897 }
898
899 FreezerState unit_freezer_state(Unit *u) {
900 assert(u);
901
902 return u->freezer_state;
903 }
904
905 int unit_freezer_state_kernel(Unit *u, FreezerState *ret) {
906 char *values[1] = {};
907 int r;
908
909 assert(u);
910
911 r = cg_get_keyed_attribute(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
912 STRV_MAKE("frozen"), values);
913 if (r < 0)
914 return r;
915
916 r = _FREEZER_STATE_INVALID;
917
918 if (values[0]) {
919 if (streq(values[0], "0"))
920 r = FREEZER_RUNNING;
921 else if (streq(values[0], "1"))
922 r = FREEZER_FROZEN;
923 }
924
925 free(values[0]);
926 *ret = r;
927
928 return 0;
929 }
930
931 UnitActiveState unit_active_state(Unit *u) {
932 assert(u);
933
934 if (u->load_state == UNIT_MERGED)
935 return unit_active_state(unit_follow_merge(u));
936
937 /* After a reload it might happen that a unit is not correctly
938 * loaded but still has a process around. That's why we won't
939 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
940
941 return UNIT_VTABLE(u)->active_state(u);
942 }
943
944 const char* unit_sub_state_to_string(Unit *u) {
945 assert(u);
946
947 return UNIT_VTABLE(u)->sub_state_to_string(u);
948 }
949
950 static int unit_merge_names(Unit *u, Unit *other) {
951 char *name;
952 int r;
953
954 assert(u);
955 assert(other);
956
957 r = unit_add_alias(u, other->id);
958 if (r < 0)
959 return r;
960
961 r = set_move(u->aliases, other->aliases);
962 if (r < 0) {
963 set_remove(u->aliases, other->id);
964 return r;
965 }
966
967 TAKE_PTR(other->id);
968 other->aliases = set_free_free(other->aliases);
969
970 SET_FOREACH(name, u->aliases)
971 assert_se(hashmap_replace(u->manager->units, name, u) == 0);
972
973 return 0;
974 }
975
976 static int unit_reserve_dependencies(Unit *u, Unit *other) {
977 size_t n_reserve;
978 Hashmap* deps;
979 void *d;
980 int r;
981
982 assert(u);
983 assert(other);
984
985 /* Let's reserve some space in the dependency hashmaps so that later on merging the units cannot
986 * fail.
987 *
988 * First make some room in the per dependency type hashmaps. Using the summed size of both units'
989 * hashmaps is an estimate that is likely too high since they probably use some of the same
990 * types. But it's never too low, and that's all we need. */
991
992 n_reserve = MIN(hashmap_size(other->dependencies), LESS_BY((size_t) _UNIT_DEPENDENCY_MAX, hashmap_size(u->dependencies)));
993 if (n_reserve > 0) {
994 r = hashmap_ensure_allocated(&u->dependencies, NULL);
995 if (r < 0)
996 return r;
997
998 r = hashmap_reserve(u->dependencies, n_reserve);
999 if (r < 0)
1000 return r;
1001 }
1002
1003 /* Now, enlarge our per dependency type hashmaps by the number of entries in the same hashmap of the
1004 * other unit's dependencies.
1005 *
1006 * NB: If u does not have a dependency set allocated for some dependency type, there is no need to
1007 * reserve anything for. In that case other's set will be transferred as a whole to u by
1008 * complete_move(). */
1009
1010 HASHMAP_FOREACH_KEY(deps, d, u->dependencies) {
1011 Hashmap *other_deps;
1012
1013 other_deps = hashmap_get(other->dependencies, d);
1014
1015 r = hashmap_reserve(deps, hashmap_size(other_deps));
1016 if (r < 0)
1017 return r;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static bool unit_should_warn_about_dependency(UnitDependency dependency) {
1024 /* Only warn about some unit types */
1025 return IN_SET(dependency,
1026 UNIT_CONFLICTS,
1027 UNIT_CONFLICTED_BY,
1028 UNIT_BEFORE,
1029 UNIT_AFTER,
1030 UNIT_ON_SUCCESS,
1031 UNIT_ON_FAILURE,
1032 UNIT_TRIGGERS,
1033 UNIT_TRIGGERED_BY);
1034 }
1035
1036 static int unit_per_dependency_type_hashmap_update(
1037 Hashmap *per_type,
1038 Unit *other,
1039 UnitDependencyMask origin_mask,
1040 UnitDependencyMask destination_mask) {
1041
1042 UnitDependencyInfo info;
1043 int r;
1044
1045 assert(other);
1046 assert_cc(sizeof(void*) == sizeof(info));
1047
1048 /* Acquire the UnitDependencyInfo entry for the Unit* we are interested in, and update it if it
1049 * exists, or insert it anew if not. */
1050
1051 info.data = hashmap_get(per_type, other);
1052 if (info.data) {
1053 /* Entry already exists. Add in our mask. */
1054
1055 if (FLAGS_SET(origin_mask, info.origin_mask) &&
1056 FLAGS_SET(destination_mask, info.destination_mask))
1057 return 0; /* NOP */
1058
1059 info.origin_mask |= origin_mask;
1060 info.destination_mask |= destination_mask;
1061
1062 r = hashmap_update(per_type, other, info.data);
1063 } else {
1064 info = (UnitDependencyInfo) {
1065 .origin_mask = origin_mask,
1066 .destination_mask = destination_mask,
1067 };
1068
1069 r = hashmap_put(per_type, other, info.data);
1070 }
1071 if (r < 0)
1072 return r;
1073
1074 return 1;
1075 }
1076
1077 static void unit_merge_dependencies(Unit *u, Unit *other) {
1078 Hashmap *deps;
1079 void *dt; /* Actually of type UnitDependency, except that we don't bother casting it here,
1080 * since the hashmaps all want it as void pointer. */
1081
1082 assert(u);
1083 assert(other);
1084
1085 if (u == other)
1086 return;
1087
1088 /* First, remove dependency to other. */
1089 HASHMAP_FOREACH_KEY(deps, dt, u->dependencies) {
1090 if (hashmap_remove(deps, other) && unit_should_warn_about_dependency(UNIT_DEPENDENCY_FROM_PTR(dt)))
1091 log_unit_warning(u, "Dependency %s=%s is dropped, as %s is merged into %s.",
1092 unit_dependency_to_string(UNIT_DEPENDENCY_FROM_PTR(dt)),
1093 other->id, other->id, u->id);
1094
1095 if (hashmap_isempty(deps))
1096 hashmap_free(hashmap_remove(u->dependencies, dt));
1097 }
1098
1099 for (;;) {
1100 _cleanup_hashmap_free_ Hashmap *other_deps = NULL;
1101 UnitDependencyInfo di_back;
1102 Unit *back;
1103
1104 /* Let's focus on one dependency type at a time, that 'other' has defined. */
1105 other_deps = hashmap_steal_first_key_and_value(other->dependencies, &dt);
1106 if (!other_deps)
1107 break; /* done! */
1108
1109 deps = hashmap_get(u->dependencies, dt);
1110
1111 /* Now iterate through all dependencies of this dependency type, of 'other'. We refer to the
1112 * referenced units as 'back'. */
1113 HASHMAP_FOREACH_KEY(di_back.data, back, other_deps) {
1114 Hashmap *back_deps;
1115 void *back_dt;
1116
1117 if (back == u) {
1118 /* This is a dependency pointing back to the unit we want to merge with?
1119 * Suppress it (but warn) */
1120 if (unit_should_warn_about_dependency(UNIT_DEPENDENCY_FROM_PTR(dt)))
1121 log_unit_warning(u, "Dependency %s=%s in %s is dropped, as %s is merged into %s.",
1122 unit_dependency_to_string(UNIT_DEPENDENCY_FROM_PTR(dt)),
1123 u->id, other->id, other->id, u->id);
1124
1125 hashmap_remove(other_deps, back);
1126 continue;
1127 }
1128
1129 /* Now iterate through all deps of 'back', and fix the ones pointing to 'other' to
1130 * point to 'u' instead. */
1131 HASHMAP_FOREACH_KEY(back_deps, back_dt, back->dependencies) {
1132 UnitDependencyInfo di_move;
1133
1134 di_move.data = hashmap_remove(back_deps, other);
1135 if (!di_move.data)
1136 continue;
1137
1138 assert_se(unit_per_dependency_type_hashmap_update(
1139 back_deps,
1140 u,
1141 di_move.origin_mask,
1142 di_move.destination_mask) >= 0);
1143 }
1144
1145 /* The target unit already has dependencies of this type, let's then merge this individually. */
1146 if (deps)
1147 assert_se(unit_per_dependency_type_hashmap_update(
1148 deps,
1149 back,
1150 di_back.origin_mask,
1151 di_back.destination_mask) >= 0);
1152 }
1153
1154 /* Now all references towards 'other' of the current type 'dt' are corrected to point to 'u'.
1155 * Lets's now move the deps of type 'dt' from 'other' to 'u'. If the unit does not have
1156 * dependencies of this type, let's move them per type wholesale. */
1157 if (!deps)
1158 assert_se(hashmap_put(u->dependencies, dt, TAKE_PTR(other_deps)) >= 0);
1159 }
1160
1161 other->dependencies = hashmap_free(other->dependencies);
1162 }
1163
1164 int unit_merge(Unit *u, Unit *other) {
1165 int r;
1166
1167 assert(u);
1168 assert(other);
1169 assert(u->manager == other->manager);
1170 assert(u->type != _UNIT_TYPE_INVALID);
1171
1172 other = unit_follow_merge(other);
1173
1174 if (other == u)
1175 return 0;
1176
1177 if (u->type != other->type)
1178 return -EINVAL;
1179
1180 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
1181 return -EEXIST;
1182
1183 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
1184 return -EEXIST;
1185
1186 if (!streq_ptr(u->instance, other->instance))
1187 return -EINVAL;
1188
1189 if (other->job)
1190 return -EEXIST;
1191
1192 if (other->nop_job)
1193 return -EEXIST;
1194
1195 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
1196 return -EEXIST;
1197
1198 /* Make reservations to ensure merge_dependencies() won't fail. We don't rollback reservations if we
1199 * fail. We don't have a way to undo reservations. A reservation is not a leak. */
1200 r = unit_reserve_dependencies(u, other);
1201 if (r < 0)
1202 return r;
1203
1204 /* Redirect all references */
1205 while (other->refs_by_target)
1206 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
1207
1208 /* Merge dependencies */
1209 unit_merge_dependencies(u, other);
1210
1211 /* Merge names. It is better to do that after merging deps, otherwise the log message contains n/a. */
1212 r = unit_merge_names(u, other);
1213 if (r < 0)
1214 return r;
1215
1216 other->load_state = UNIT_MERGED;
1217 other->merged_into = u;
1218
1219 if (!u->activation_details)
1220 u->activation_details = activation_details_ref(other->activation_details);
1221
1222 /* If there is still some data attached to the other node, we
1223 * don't need it anymore, and can free it. */
1224 if (other->load_state != UNIT_STUB)
1225 if (UNIT_VTABLE(other)->done)
1226 UNIT_VTABLE(other)->done(other);
1227
1228 unit_add_to_dbus_queue(u);
1229 unit_add_to_cleanup_queue(other);
1230
1231 return 0;
1232 }
1233
1234 int unit_merge_by_name(Unit *u, const char *name) {
1235 _cleanup_free_ char *s = NULL;
1236 Unit *other;
1237 int r;
1238
1239 /* Either add name to u, or if a unit with name already exists, merge it with u.
1240 * If name is a template, do the same for name@instance, where instance is u's instance. */
1241
1242 assert(u);
1243 assert(name);
1244
1245 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
1246 if (!u->instance)
1247 return -EINVAL;
1248
1249 r = unit_name_replace_instance(name, u->instance, &s);
1250 if (r < 0)
1251 return r;
1252
1253 name = s;
1254 }
1255
1256 other = manager_get_unit(u->manager, name);
1257 if (other)
1258 return unit_merge(u, other);
1259
1260 return unit_add_name(u, name);
1261 }
1262
1263 Unit* unit_follow_merge(Unit *u) {
1264 assert(u);
1265
1266 while (u->load_state == UNIT_MERGED)
1267 assert_se(u = u->merged_into);
1268
1269 return u;
1270 }
1271
1272 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
1273 int r;
1274
1275 assert(u);
1276 assert(c);
1277
1278 /* Unlike unit_add_dependency() or friends, this always returns 0 on success. */
1279
1280 if (c->working_directory && !c->working_directory_missing_ok) {
1281 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1282 if (r < 0)
1283 return r;
1284 }
1285
1286 if (c->root_directory) {
1287 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1288 if (r < 0)
1289 return r;
1290 }
1291
1292 if (c->root_image) {
1293 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1294 if (r < 0)
1295 return r;
1296 }
1297
1298 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1299 if (!u->manager->prefix[dt])
1300 continue;
1301
1302 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
1303 _cleanup_free_ char *p = NULL;
1304
1305 p = path_join(u->manager->prefix[dt], c->directories[dt].items[i].path);
1306 if (!p)
1307 return -ENOMEM;
1308
1309 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1310 if (r < 0)
1311 return r;
1312 }
1313 }
1314
1315 if (!MANAGER_IS_SYSTEM(u->manager))
1316 return 0;
1317
1318 /* For the following three directory types we need write access, and /var/ is possibly on the root
1319 * fs. Hence order after systemd-remount-fs.service, to ensure things are writable. */
1320 if (c->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
1321 c->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
1322 c->directories[EXEC_DIRECTORY_LOGS].n_items > 0) {
1323 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_REMOUNT_FS_SERVICE, true, UNIT_DEPENDENCY_FILE);
1324 if (r < 0)
1325 return r;
1326 }
1327
1328 if (c->private_tmp) {
1329
1330 /* FIXME: for now we make a special case for /tmp and add a weak dependency on
1331 * tmp.mount so /tmp being masked is supported. However there's no reason to treat
1332 * /tmp specifically and masking other mount units should be handled more
1333 * gracefully too, see PR#16894. */
1334 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "tmp.mount", true, UNIT_DEPENDENCY_FILE);
1335 if (r < 0)
1336 return r;
1337
1338 r = unit_require_mounts_for(u, "/var/tmp", UNIT_DEPENDENCY_FILE);
1339 if (r < 0)
1340 return r;
1341
1342 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1343 if (r < 0)
1344 return r;
1345 }
1346
1347 if (c->root_image) {
1348 /* We need to wait for /dev/loopX to appear when doing RootImage=, hence let's add an
1349 * implicit dependency on udev */
1350
1351 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_UDEVD_SERVICE, true, UNIT_DEPENDENCY_FILE);
1352 if (r < 0)
1353 return r;
1354 }
1355
1356 if (!IN_SET(c->std_output,
1357 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1358 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1359 !IN_SET(c->std_error,
1360 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1361 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1362 !c->log_namespace)
1363 return 0;
1364
1365 /* If syslog or kernel logging is requested (or log namespacing is), make sure our own logging daemon
1366 * is run first. */
1367
1368 if (c->log_namespace) {
1369 _cleanup_free_ char *socket_unit = NULL, *varlink_socket_unit = NULL;
1370
1371 r = unit_name_build_from_type("systemd-journald", c->log_namespace, UNIT_SOCKET, &socket_unit);
1372 if (r < 0)
1373 return r;
1374
1375 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, socket_unit, true, UNIT_DEPENDENCY_FILE);
1376 if (r < 0)
1377 return r;
1378
1379 r = unit_name_build_from_type("systemd-journald-varlink", c->log_namespace, UNIT_SOCKET, &varlink_socket_unit);
1380 if (r < 0)
1381 return r;
1382
1383 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, varlink_socket_unit, true, UNIT_DEPENDENCY_FILE);
1384 if (r < 0)
1385 return r;
1386 } else {
1387 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1388 if (r < 0)
1389 return r;
1390 }
1391
1392 r = unit_add_default_credential_dependencies(u, c);
1393 if (r < 0)
1394 return r;
1395
1396 return 0;
1397 }
1398
1399 const char* unit_description(Unit *u) {
1400 assert(u);
1401
1402 if (u->description)
1403 return u->description;
1404
1405 return strna(u->id);
1406 }
1407
1408 const char* unit_status_string(Unit *u, char **ret_combined_buffer) {
1409 assert(u);
1410 assert(u->id);
1411
1412 /* Return u->id, u->description, or "{u->id} - {u->description}".
1413 * Versions with u->description are only used if it is set.
1414 * The last option is used if configured and the caller provided the 'ret_combined_buffer'
1415 * pointer.
1416 *
1417 * Note that *ret_combined_buffer may be set to NULL. */
1418
1419 if (!u->description ||
1420 u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME ||
1421 (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && !ret_combined_buffer) ||
1422 streq(u->description, u->id)) {
1423
1424 if (ret_combined_buffer)
1425 *ret_combined_buffer = NULL;
1426 return u->id;
1427 }
1428
1429 if (ret_combined_buffer) {
1430 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED) {
1431 *ret_combined_buffer = strjoin(u->id, " - ", u->description);
1432 if (*ret_combined_buffer)
1433 return *ret_combined_buffer;
1434 log_oom(); /* Fall back to ->description */
1435 } else
1436 *ret_combined_buffer = NULL;
1437 }
1438
1439 return u->description;
1440 }
1441
1442 /* Common implementation for multiple backends */
1443 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1444 int r;
1445
1446 assert(u);
1447
1448 /* Load a .{service,socket,...} file */
1449 r = unit_load_fragment(u);
1450 if (r < 0)
1451 return r;
1452
1453 if (u->load_state == UNIT_STUB) {
1454 if (fragment_required)
1455 return -ENOENT;
1456
1457 u->load_state = UNIT_LOADED;
1458 }
1459
1460 /* Load drop-in directory data. If u is an alias, we might be reloading the
1461 * target unit needlessly. But we cannot be sure which drops-ins have already
1462 * been loaded and which not, at least without doing complicated book-keeping,
1463 * so let's always reread all drop-ins. */
1464 r = unit_load_dropin(unit_follow_merge(u));
1465 if (r < 0)
1466 return r;
1467
1468 if (u->source_path) {
1469 struct stat st;
1470
1471 if (stat(u->source_path, &st) >= 0)
1472 u->source_mtime = timespec_load(&st.st_mtim);
1473 else
1474 u->source_mtime = 0;
1475 }
1476
1477 return 0;
1478 }
1479
1480 void unit_add_to_target_deps_queue(Unit *u) {
1481 Manager *m = ASSERT_PTR(ASSERT_PTR(u)->manager);
1482
1483 if (u->in_target_deps_queue)
1484 return;
1485
1486 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1487 u->in_target_deps_queue = true;
1488 }
1489
1490 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1491 assert(u);
1492 assert(target);
1493
1494 if (target->type != UNIT_TARGET)
1495 return 0;
1496
1497 /* Only add the dependency if both units are loaded, so that
1498 * that loop check below is reliable */
1499 if (u->load_state != UNIT_LOADED ||
1500 target->load_state != UNIT_LOADED)
1501 return 0;
1502
1503 /* If either side wants no automatic dependencies, then let's
1504 * skip this */
1505 if (!u->default_dependencies ||
1506 !target->default_dependencies)
1507 return 0;
1508
1509 /* Don't create loops */
1510 if (unit_has_dependency(target, UNIT_ATOM_BEFORE, u))
1511 return 0;
1512
1513 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1514 }
1515
1516 static int unit_add_slice_dependencies(Unit *u) {
1517 Unit *slice;
1518 assert(u);
1519
1520 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1521 return 0;
1522
1523 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1524 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1525 relationship). */
1526 UnitDependencyMask mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1527
1528 slice = UNIT_GET_SLICE(u);
1529 if (slice)
1530 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, slice, true, mask);
1531
1532 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1533 return 0;
1534
1535 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1536 }
1537
1538 static int unit_add_mount_dependencies(Unit *u) {
1539 UnitDependencyInfo di;
1540 const char *path;
1541 bool changed = false;
1542 int r;
1543
1544 assert(u);
1545
1546 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1547 char prefix[strlen(path) + 1];
1548
1549 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1550 _cleanup_free_ char *p = NULL;
1551 Unit *m;
1552
1553 r = unit_name_from_path(prefix, ".mount", &p);
1554 if (r == -EINVAL)
1555 continue; /* If the path cannot be converted to a mount unit name, then it's
1556 * not manageable as a unit by systemd, and hence we don't need a
1557 * dependency on it. Let's thus silently ignore the issue. */
1558 if (r < 0)
1559 return r;
1560
1561 m = manager_get_unit(u->manager, p);
1562 if (!m) {
1563 /* Make sure to load the mount unit if it exists. If so the dependencies on
1564 * this unit will be added later during the loading of the mount unit. */
1565 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1566 continue;
1567 }
1568 if (m == u)
1569 continue;
1570
1571 if (m->load_state != UNIT_LOADED)
1572 continue;
1573
1574 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1575 if (r < 0)
1576 return r;
1577 changed = changed || r > 0;
1578
1579 if (m->fragment_path) {
1580 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1581 if (r < 0)
1582 return r;
1583 changed = changed || r > 0;
1584 }
1585 }
1586 }
1587
1588 return changed;
1589 }
1590
1591 static int unit_add_oomd_dependencies(Unit *u) {
1592 CGroupContext *c;
1593 CGroupMask mask;
1594 int r;
1595
1596 assert(u);
1597
1598 if (!u->default_dependencies)
1599 return 0;
1600
1601 c = unit_get_cgroup_context(u);
1602 if (!c)
1603 return 0;
1604
1605 bool wants_oomd = c->moom_swap == MANAGED_OOM_KILL || c->moom_mem_pressure == MANAGED_OOM_KILL;
1606 if (!wants_oomd)
1607 return 0;
1608
1609 if (!cg_all_unified())
1610 return 0;
1611
1612 r = cg_mask_supported(&mask);
1613 if (r < 0)
1614 return log_debug_errno(r, "Failed to determine supported controllers: %m");
1615
1616 if (!FLAGS_SET(mask, CGROUP_MASK_MEMORY))
1617 return 0;
1618
1619 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "systemd-oomd.service", true, UNIT_DEPENDENCY_FILE);
1620 }
1621
1622 static int unit_add_startup_units(Unit *u) {
1623 if (!unit_has_startup_cgroup_constraints(u))
1624 return 0;
1625
1626 return set_ensure_put(&u->manager->startup_units, NULL, u);
1627 }
1628
1629 static int unit_validate_on_failure_job_mode(
1630 Unit *u,
1631 const char *job_mode_setting,
1632 JobMode job_mode,
1633 const char *dependency_name,
1634 UnitDependencyAtom atom) {
1635
1636 Unit *other, *found = NULL;
1637
1638 if (job_mode != JOB_ISOLATE)
1639 return 0;
1640
1641 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
1642 if (!found)
1643 found = other;
1644 else if (found != other)
1645 return log_unit_error_errno(
1646 u, SYNTHETIC_ERRNO(ENOEXEC),
1647 "More than one %s dependencies specified but %sisolate set. Refusing.",
1648 dependency_name, job_mode_setting);
1649 }
1650
1651 return 0;
1652 }
1653
1654 int unit_load(Unit *u) {
1655 int r;
1656
1657 assert(u);
1658
1659 if (u->in_load_queue) {
1660 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1661 u->in_load_queue = false;
1662 }
1663
1664 if (u->type == _UNIT_TYPE_INVALID)
1665 return -EINVAL;
1666
1667 if (u->load_state != UNIT_STUB)
1668 return 0;
1669
1670 if (u->transient_file) {
1671 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1672 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1673
1674 r = fflush_and_check(u->transient_file);
1675 if (r < 0)
1676 goto fail;
1677
1678 u->transient_file = safe_fclose(u->transient_file);
1679 u->fragment_mtime = now(CLOCK_REALTIME);
1680 }
1681
1682 r = UNIT_VTABLE(u)->load(u);
1683 if (r < 0)
1684 goto fail;
1685
1686 assert(u->load_state != UNIT_STUB);
1687
1688 if (u->load_state == UNIT_LOADED) {
1689 unit_add_to_target_deps_queue(u);
1690
1691 r = unit_add_slice_dependencies(u);
1692 if (r < 0)
1693 goto fail;
1694
1695 r = unit_add_mount_dependencies(u);
1696 if (r < 0)
1697 goto fail;
1698
1699 r = unit_add_oomd_dependencies(u);
1700 if (r < 0)
1701 goto fail;
1702
1703 r = unit_add_startup_units(u);
1704 if (r < 0)
1705 goto fail;
1706
1707 r = unit_validate_on_failure_job_mode(u, "OnSuccessJobMode=", u->on_success_job_mode, "OnSuccess=", UNIT_ATOM_ON_SUCCESS);
1708 if (r < 0)
1709 goto fail;
1710
1711 r = unit_validate_on_failure_job_mode(u, "OnFailureJobMode=", u->on_failure_job_mode, "OnFailure=", UNIT_ATOM_ON_FAILURE);
1712 if (r < 0)
1713 goto fail;
1714
1715 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1716 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1717
1718 /* We finished loading, let's ensure our parents recalculate the members mask */
1719 unit_invalidate_cgroup_members_masks(u);
1720 }
1721
1722 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1723
1724 unit_add_to_dbus_queue(unit_follow_merge(u));
1725 unit_add_to_gc_queue(u);
1726 (void) manager_varlink_send_managed_oom_update(u);
1727
1728 return 0;
1729
1730 fail:
1731 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code
1732 * should hence return ENOEXEC to ensure units are placed in this state after loading. */
1733
1734 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1735 r == -ENOEXEC ? UNIT_BAD_SETTING :
1736 UNIT_ERROR;
1737 u->load_error = r;
1738
1739 /* Record the timestamp on the cache, so that if the cache gets updated between now and the next time
1740 * an attempt is made to load this unit, we know we need to check again. */
1741 if (u->load_state == UNIT_NOT_FOUND)
1742 u->fragment_not_found_timestamp_hash = u->manager->unit_cache_timestamp_hash;
1743
1744 unit_add_to_dbus_queue(u);
1745 unit_add_to_gc_queue(u);
1746
1747 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1748 }
1749
1750 _printf_(7, 8)
1751 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1752 Unit *u = userdata;
1753 va_list ap;
1754 int r;
1755
1756 if (u && !unit_log_level_test(u, level))
1757 return -ERRNO_VALUE(error);
1758
1759 va_start(ap, format);
1760 if (u)
1761 r = log_object_internalv(level, error, file, line, func,
1762 u->manager->unit_log_field,
1763 u->id,
1764 u->manager->invocation_log_field,
1765 u->invocation_id_string,
1766 format, ap);
1767 else
1768 r = log_internalv(level, error, file, line, func, format, ap);
1769 va_end(ap);
1770
1771 return r;
1772 }
1773
1774 static bool unit_test_condition(Unit *u) {
1775 _cleanup_strv_free_ char **env = NULL;
1776 int r;
1777
1778 assert(u);
1779
1780 dual_timestamp_get(&u->condition_timestamp);
1781
1782 r = manager_get_effective_environment(u->manager, &env);
1783 if (r < 0) {
1784 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1785 u->condition_result = true;
1786 } else
1787 u->condition_result = condition_test_list(
1788 u->conditions,
1789 env,
1790 condition_type_to_string,
1791 log_unit_internal,
1792 u);
1793
1794 unit_add_to_dbus_queue(u);
1795 return u->condition_result;
1796 }
1797
1798 static bool unit_test_assert(Unit *u) {
1799 _cleanup_strv_free_ char **env = NULL;
1800 int r;
1801
1802 assert(u);
1803
1804 dual_timestamp_get(&u->assert_timestamp);
1805
1806 r = manager_get_effective_environment(u->manager, &env);
1807 if (r < 0) {
1808 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1809 u->assert_result = CONDITION_ERROR;
1810 } else
1811 u->assert_result = condition_test_list(
1812 u->asserts,
1813 env,
1814 assert_type_to_string,
1815 log_unit_internal,
1816 u);
1817
1818 unit_add_to_dbus_queue(u);
1819 return u->assert_result;
1820 }
1821
1822 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *format, const char *ident) {
1823 if (log_get_show_color()) {
1824 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && strchr(ident, ' '))
1825 ident = strjoina(ANSI_HIGHLIGHT, u->id, ANSI_NORMAL, " - ", u->description);
1826 else
1827 ident = strjoina(ANSI_HIGHLIGHT, ident, ANSI_NORMAL);
1828 }
1829
1830 DISABLE_WARNING_FORMAT_NONLITERAL;
1831 manager_status_printf(u->manager, status_type, status, format, ident);
1832 REENABLE_WARNING;
1833 }
1834
1835 int unit_test_start_limit(Unit *u) {
1836 const char *reason;
1837
1838 assert(u);
1839
1840 if (ratelimit_below(&u->start_ratelimit)) {
1841 u->start_limit_hit = false;
1842 return 0;
1843 }
1844
1845 log_unit_warning(u, "Start request repeated too quickly.");
1846 u->start_limit_hit = true;
1847
1848 reason = strjoina("unit ", u->id, " failed");
1849
1850 emergency_action(u->manager, u->start_limit_action,
1851 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1852 u->reboot_arg, -1, reason);
1853
1854 return -ECANCELED;
1855 }
1856
1857 bool unit_shall_confirm_spawn(Unit *u) {
1858 assert(u);
1859
1860 if (manager_is_confirm_spawn_disabled(u->manager))
1861 return false;
1862
1863 /* For some reasons units remaining in the same process group
1864 * as PID 1 fail to acquire the console even if it's not used
1865 * by any process. So skip the confirmation question for them. */
1866 return !unit_get_exec_context(u)->same_pgrp;
1867 }
1868
1869 static bool unit_verify_deps(Unit *u) {
1870 Unit *other;
1871
1872 assert(u);
1873
1874 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined
1875 * with After=. We do not check Requires= or Requisite= here as they only should have an effect on
1876 * the job processing, but do not have any effect afterwards. We don't check BindsTo= dependencies
1877 * that are not used in conjunction with After= as for them any such check would make things entirely
1878 * racy. */
1879
1880 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT) {
1881
1882 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other))
1883 continue;
1884
1885 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1886 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1887 return false;
1888 }
1889 }
1890
1891 return true;
1892 }
1893
1894 /* Errors that aren't really errors:
1895 * -EALREADY: Unit is already started.
1896 * -ECOMM: Condition failed
1897 * -EAGAIN: An operation is already in progress. Retry later.
1898 *
1899 * Errors that are real errors:
1900 * -EBADR: This unit type does not support starting.
1901 * -ECANCELED: Start limit hit, too many requests for now
1902 * -EPROTO: Assert failed
1903 * -EINVAL: Unit not loaded
1904 * -EOPNOTSUPP: Unit type not supported
1905 * -ENOLINK: The necessary dependencies are not fulfilled.
1906 * -ESTALE: This unit has been started before and can't be started a second time
1907 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1908 */
1909 int unit_start(Unit *u, ActivationDetails *details) {
1910 UnitActiveState state;
1911 Unit *following;
1912 int r;
1913
1914 assert(u);
1915
1916 /* Let's hold off running start jobs for mount units when /proc/self/mountinfo monitor is ratelimited. */
1917 if (UNIT_VTABLE(u)->subsystem_ratelimited) {
1918 r = UNIT_VTABLE(u)->subsystem_ratelimited(u->manager);
1919 if (r < 0)
1920 return r;
1921 if (r > 0)
1922 return -EAGAIN;
1923 }
1924
1925 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1926 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1927 * waiting is finished. */
1928 state = unit_active_state(u);
1929 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1930 return -EALREADY;
1931 if (state == UNIT_MAINTENANCE)
1932 return -EAGAIN;
1933
1934 /* Units that aren't loaded cannot be started */
1935 if (u->load_state != UNIT_LOADED)
1936 return -EINVAL;
1937
1938 /* Refuse starting scope units more than once */
1939 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1940 return -ESTALE;
1941
1942 /* If the conditions were unmet, don't do anything at all. If we already are activating this call might
1943 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1944 * recheck the condition in that case. */
1945 if (state != UNIT_ACTIVATING &&
1946 !unit_test_condition(u))
1947 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition not met. Not starting unit.");
1948
1949 /* If the asserts failed, fail the entire job */
1950 if (state != UNIT_ACTIVATING &&
1951 !unit_test_assert(u))
1952 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1953
1954 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1955 * condition checks, so that we rather return condition check errors (which are usually not
1956 * considered a true failure) than "not supported" errors (which are considered a failure).
1957 */
1958 if (!unit_type_supported(u->type))
1959 return -EOPNOTSUPP;
1960
1961 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1962 * should have taken care of this already, but let's check this here again. After all, our
1963 * dependencies might not be in effect anymore, due to a reload or due to an unmet condition. */
1964 if (!unit_verify_deps(u))
1965 return -ENOLINK;
1966
1967 /* Forward to the main object, if we aren't it. */
1968 following = unit_following(u);
1969 if (following) {
1970 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1971 return unit_start(following, details);
1972 }
1973
1974 /* Check our ability to start early so that failure conditions don't cause us to enter a busy loop. */
1975 if (UNIT_VTABLE(u)->can_start) {
1976 r = UNIT_VTABLE(u)->can_start(u);
1977 if (r < 0)
1978 return r;
1979 }
1980
1981 /* If it is stopped, but we cannot start it, then fail */
1982 if (!UNIT_VTABLE(u)->start)
1983 return -EBADR;
1984
1985 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1986 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1987 * waits for a holdoff timer to elapse before it will start again. */
1988
1989 unit_add_to_dbus_queue(u);
1990 unit_cgroup_freezer_action(u, FREEZER_THAW);
1991
1992 if (!u->activation_details) /* Older details object wins */
1993 u->activation_details = activation_details_ref(details);
1994
1995 return UNIT_VTABLE(u)->start(u);
1996 }
1997
1998 bool unit_can_start(Unit *u) {
1999 assert(u);
2000
2001 if (u->load_state != UNIT_LOADED)
2002 return false;
2003
2004 if (!unit_type_supported(u->type))
2005 return false;
2006
2007 /* Scope units may be started only once */
2008 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
2009 return false;
2010
2011 return !!UNIT_VTABLE(u)->start;
2012 }
2013
2014 bool unit_can_isolate(Unit *u) {
2015 assert(u);
2016
2017 return unit_can_start(u) &&
2018 u->allow_isolate;
2019 }
2020
2021 /* Errors:
2022 * -EBADR: This unit type does not support stopping.
2023 * -EALREADY: Unit is already stopped.
2024 * -EAGAIN: An operation is already in progress. Retry later.
2025 */
2026 int unit_stop(Unit *u) {
2027 UnitActiveState state;
2028 Unit *following;
2029
2030 assert(u);
2031
2032 state = unit_active_state(u);
2033 if (UNIT_IS_INACTIVE_OR_FAILED(state))
2034 return -EALREADY;
2035
2036 following = unit_following(u);
2037 if (following) {
2038 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
2039 return unit_stop(following);
2040 }
2041
2042 if (!UNIT_VTABLE(u)->stop)
2043 return -EBADR;
2044
2045 unit_add_to_dbus_queue(u);
2046 unit_cgroup_freezer_action(u, FREEZER_THAW);
2047
2048 return UNIT_VTABLE(u)->stop(u);
2049 }
2050
2051 bool unit_can_stop(Unit *u) {
2052 assert(u);
2053
2054 /* Note: if we return true here, it does not mean that the unit may be successfully stopped.
2055 * Extrinsic units follow external state and they may stop following external state changes
2056 * (hence we return true here), but an attempt to do this through the manager will fail. */
2057
2058 if (!unit_type_supported(u->type))
2059 return false;
2060
2061 if (u->perpetual)
2062 return false;
2063
2064 return !!UNIT_VTABLE(u)->stop;
2065 }
2066
2067 /* Errors:
2068 * -EBADR: This unit type does not support reloading.
2069 * -ENOEXEC: Unit is not started.
2070 * -EAGAIN: An operation is already in progress. Retry later.
2071 */
2072 int unit_reload(Unit *u) {
2073 UnitActiveState state;
2074 Unit *following;
2075
2076 assert(u);
2077
2078 if (u->load_state != UNIT_LOADED)
2079 return -EINVAL;
2080
2081 if (!unit_can_reload(u))
2082 return -EBADR;
2083
2084 state = unit_active_state(u);
2085 if (state == UNIT_RELOADING)
2086 return -EAGAIN;
2087
2088 if (state != UNIT_ACTIVE)
2089 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENOEXEC), "Unit cannot be reloaded because it is inactive.");
2090
2091 following = unit_following(u);
2092 if (following) {
2093 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
2094 return unit_reload(following);
2095 }
2096
2097 unit_add_to_dbus_queue(u);
2098
2099 if (!UNIT_VTABLE(u)->reload) {
2100 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
2101 unit_notify(u, unit_active_state(u), unit_active_state(u), /* reload_success = */ true);
2102 return 0;
2103 }
2104
2105 unit_cgroup_freezer_action(u, FREEZER_THAW);
2106
2107 return UNIT_VTABLE(u)->reload(u);
2108 }
2109
2110 bool unit_can_reload(Unit *u) {
2111 assert(u);
2112
2113 if (UNIT_VTABLE(u)->can_reload)
2114 return UNIT_VTABLE(u)->can_reload(u);
2115
2116 if (unit_has_dependency(u, UNIT_ATOM_PROPAGATES_RELOAD_TO, NULL))
2117 return true;
2118
2119 return UNIT_VTABLE(u)->reload;
2120 }
2121
2122 bool unit_is_unneeded(Unit *u) {
2123 Unit *other;
2124 assert(u);
2125
2126 if (!u->stop_when_unneeded)
2127 return false;
2128
2129 /* Don't clean up while the unit is transitioning or is even inactive. */
2130 if (unit_active_state(u) != UNIT_ACTIVE)
2131 return false;
2132 if (u->job)
2133 return false;
2134
2135 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_PINS_STOP_WHEN_UNNEEDED) {
2136 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
2137 * restart, then don't clean this one up. */
2138
2139 if (other->job)
2140 return false;
2141
2142 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2143 return false;
2144
2145 if (unit_will_restart(other))
2146 return false;
2147 }
2148
2149 return true;
2150 }
2151
2152 bool unit_is_upheld_by_active(Unit *u, Unit **ret_culprit) {
2153 Unit *other;
2154
2155 assert(u);
2156
2157 /* Checks if the unit needs to be started because it currently is not running, but some other unit
2158 * that is active declared an Uphold= dependencies on it */
2159
2160 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)) || u->job) {
2161 if (ret_culprit)
2162 *ret_culprit = NULL;
2163 return false;
2164 }
2165
2166 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_START_STEADILY) {
2167 if (other->job)
2168 continue;
2169
2170 if (UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
2171 if (ret_culprit)
2172 *ret_culprit = other;
2173 return true;
2174 }
2175 }
2176
2177 if (ret_culprit)
2178 *ret_culprit = NULL;
2179 return false;
2180 }
2181
2182 bool unit_is_bound_by_inactive(Unit *u, Unit **ret_culprit) {
2183 Unit *other;
2184
2185 assert(u);
2186
2187 /* Checks whether this unit is bound to another unit that is inactive, i.e. whether we should stop
2188 * because the other unit is down. */
2189
2190 if (unit_active_state(u) != UNIT_ACTIVE || u->job) {
2191 /* Don't clean up while the unit is transitioning or is even inactive. */
2192 if (ret_culprit)
2193 *ret_culprit = NULL;
2194 return false;
2195 }
2196
2197 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT) {
2198 if (other->job)
2199 continue;
2200
2201 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) {
2202 if (ret_culprit)
2203 *ret_culprit = other;
2204
2205 return true;
2206 }
2207 }
2208
2209 if (ret_culprit)
2210 *ret_culprit = NULL;
2211 return false;
2212 }
2213
2214 static void check_unneeded_dependencies(Unit *u) {
2215 Unit *other;
2216 assert(u);
2217
2218 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2219
2220 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_STOP_WHEN_UNNEEDED_QUEUE)
2221 unit_submit_to_stop_when_unneeded_queue(other);
2222 }
2223
2224 static void check_uphold_dependencies(Unit *u) {
2225 Unit *other;
2226 assert(u);
2227
2228 /* Add all units this unit depends on to the queue that processes Uphold= behaviour. */
2229
2230 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_START_WHEN_UPHELD_QUEUE)
2231 unit_submit_to_start_when_upheld_queue(other);
2232 }
2233
2234 static void check_bound_by_dependencies(Unit *u) {
2235 Unit *other;
2236 assert(u);
2237
2238 /* Add all units this unit depends on to the queue that processes BindsTo= stop behaviour. */
2239
2240 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_CANNOT_BE_ACTIVE_WITHOUT_QUEUE)
2241 unit_submit_to_stop_when_bound_queue(other);
2242 }
2243
2244 static void retroactively_start_dependencies(Unit *u) {
2245 Unit *other;
2246
2247 assert(u);
2248 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2249
2250 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_START_REPLACE) /* Requires= + BindsTo= */
2251 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other) &&
2252 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2253 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2254
2255 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_START_FAIL) /* Wants= */
2256 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other) &&
2257 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2258 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2259
2260 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_STOP_ON_START) /* Conflicts= (and inverse) */
2261 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2262 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2263 }
2264
2265 static void retroactively_stop_dependencies(Unit *u) {
2266 Unit *other;
2267
2268 assert(u);
2269 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2270
2271 /* Pull down units which are bound to us recursively if enabled */
2272 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_STOP_ON_STOP) /* BoundBy= */
2273 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2274 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2275 }
2276
2277 void unit_start_on_failure(
2278 Unit *u,
2279 const char *dependency_name,
2280 UnitDependencyAtom atom,
2281 JobMode job_mode) {
2282
2283 int n_jobs = -1;
2284 Unit *other;
2285 int r;
2286
2287 assert(u);
2288 assert(dependency_name);
2289 assert(IN_SET(atom, UNIT_ATOM_ON_SUCCESS, UNIT_ATOM_ON_FAILURE));
2290
2291 /* Act on OnFailure= and OnSuccess= dependencies */
2292
2293 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
2294 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2295
2296 if (n_jobs < 0) {
2297 log_unit_info(u, "Triggering %s dependencies.", dependency_name);
2298 n_jobs = 0;
2299 }
2300
2301 r = manager_add_job(u->manager, JOB_START, other, job_mode, NULL, &error, NULL);
2302 if (r < 0)
2303 log_unit_warning_errno(
2304 u, r, "Failed to enqueue %s job, ignoring: %s",
2305 dependency_name, bus_error_message(&error, r));
2306 n_jobs ++;
2307 }
2308
2309 if (n_jobs >= 0)
2310 log_unit_debug(u, "Triggering %s dependencies done (%i %s).",
2311 dependency_name, n_jobs, n_jobs == 1 ? "job" : "jobs");
2312 }
2313
2314 void unit_trigger_notify(Unit *u) {
2315 Unit *other;
2316
2317 assert(u);
2318
2319 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_TRIGGERED_BY)
2320 if (UNIT_VTABLE(other)->trigger_notify)
2321 UNIT_VTABLE(other)->trigger_notify(other, u);
2322 }
2323
2324 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2325 if (condition_notice && log_level > LOG_NOTICE)
2326 return LOG_NOTICE;
2327 if (condition_info && log_level > LOG_INFO)
2328 return LOG_INFO;
2329 return log_level;
2330 }
2331
2332 static int unit_log_resources(Unit *u) {
2333 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2334 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2335 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2336 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a threshold */
2337 size_t n_message_parts = 0, n_iovec = 0;
2338 char* message_parts[1 + 2 + 2 + 1], *t;
2339 nsec_t nsec = NSEC_INFINITY;
2340 int r;
2341 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2342 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2343 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2344 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2345 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2346 };
2347 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2348 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2349 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2350 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2351 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2352 };
2353
2354 assert(u);
2355
2356 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2357 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2358 * information and the complete data in structured fields. */
2359
2360 (void) unit_get_cpu_usage(u, &nsec);
2361 if (nsec != NSEC_INFINITY) {
2362 /* Format the CPU time for inclusion in the structured log message */
2363 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2364 r = log_oom();
2365 goto finish;
2366 }
2367 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2368
2369 /* Format the CPU time for inclusion in the human language message string */
2370 t = strjoin("consumed ", FORMAT_TIMESPAN(nsec / NSEC_PER_USEC, USEC_PER_MSEC), " CPU time");
2371 if (!t) {
2372 r = log_oom();
2373 goto finish;
2374 }
2375
2376 message_parts[n_message_parts++] = t;
2377
2378 log_level = raise_level(log_level,
2379 nsec > MENTIONWORTHY_CPU_NSEC,
2380 nsec > NOTICEWORTHY_CPU_NSEC);
2381 }
2382
2383 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2384 uint64_t value = UINT64_MAX;
2385
2386 assert(io_fields[k]);
2387
2388 (void) unit_get_io_accounting(u, k, k > 0, &value);
2389 if (value == UINT64_MAX)
2390 continue;
2391
2392 have_io_accounting = true;
2393 if (value > 0)
2394 any_io = true;
2395
2396 /* Format IO accounting data for inclusion in the structured log message */
2397 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2398 r = log_oom();
2399 goto finish;
2400 }
2401 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2402
2403 /* Format the IO accounting data for inclusion in the human language message string, but only
2404 * for the bytes counters (and not for the operations counters) */
2405 if (k == CGROUP_IO_READ_BYTES) {
2406 assert(!rr);
2407 rr = strjoin("read ", strna(FORMAT_BYTES(value)), " from disk");
2408 if (!rr) {
2409 r = log_oom();
2410 goto finish;
2411 }
2412 } else if (k == CGROUP_IO_WRITE_BYTES) {
2413 assert(!wr);
2414 wr = strjoin("written ", strna(FORMAT_BYTES(value)), " to disk");
2415 if (!wr) {
2416 r = log_oom();
2417 goto finish;
2418 }
2419 }
2420
2421 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2422 log_level = raise_level(log_level,
2423 value > MENTIONWORTHY_IO_BYTES,
2424 value > NOTICEWORTHY_IO_BYTES);
2425 }
2426
2427 if (have_io_accounting) {
2428 if (any_io) {
2429 if (rr)
2430 message_parts[n_message_parts++] = TAKE_PTR(rr);
2431 if (wr)
2432 message_parts[n_message_parts++] = TAKE_PTR(wr);
2433
2434 } else {
2435 char *k;
2436
2437 k = strdup("no IO");
2438 if (!k) {
2439 r = log_oom();
2440 goto finish;
2441 }
2442
2443 message_parts[n_message_parts++] = k;
2444 }
2445 }
2446
2447 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2448 uint64_t value = UINT64_MAX;
2449
2450 assert(ip_fields[m]);
2451
2452 (void) unit_get_ip_accounting(u, m, &value);
2453 if (value == UINT64_MAX)
2454 continue;
2455
2456 have_ip_accounting = true;
2457 if (value > 0)
2458 any_traffic = true;
2459
2460 /* Format IP accounting data for inclusion in the structured log message */
2461 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2462 r = log_oom();
2463 goto finish;
2464 }
2465 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2466
2467 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2468 * bytes counters (and not for the packets counters) */
2469 if (m == CGROUP_IP_INGRESS_BYTES) {
2470 assert(!igress);
2471 igress = strjoin("received ", strna(FORMAT_BYTES(value)), " IP traffic");
2472 if (!igress) {
2473 r = log_oom();
2474 goto finish;
2475 }
2476 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2477 assert(!egress);
2478 egress = strjoin("sent ", strna(FORMAT_BYTES(value)), " IP traffic");
2479 if (!egress) {
2480 r = log_oom();
2481 goto finish;
2482 }
2483 }
2484
2485 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2486 log_level = raise_level(log_level,
2487 value > MENTIONWORTHY_IP_BYTES,
2488 value > NOTICEWORTHY_IP_BYTES);
2489 }
2490
2491 /* This check is here because it is the earliest point following all possible log_level assignments. If
2492 * log_level is assigned anywhere after this point, move this check. */
2493 if (!unit_log_level_test(u, log_level)) {
2494 r = 0;
2495 goto finish;
2496 }
2497
2498 if (have_ip_accounting) {
2499 if (any_traffic) {
2500 if (igress)
2501 message_parts[n_message_parts++] = TAKE_PTR(igress);
2502 if (egress)
2503 message_parts[n_message_parts++] = TAKE_PTR(egress);
2504
2505 } else {
2506 char *k;
2507
2508 k = strdup("no IP traffic");
2509 if (!k) {
2510 r = log_oom();
2511 goto finish;
2512 }
2513
2514 message_parts[n_message_parts++] = k;
2515 }
2516 }
2517
2518 /* Is there any accounting data available at all? */
2519 if (n_iovec == 0) {
2520 r = 0;
2521 goto finish;
2522 }
2523
2524 if (n_message_parts == 0)
2525 t = strjoina("MESSAGE=", u->id, ": Completed.");
2526 else {
2527 _cleanup_free_ char *joined = NULL;
2528
2529 message_parts[n_message_parts] = NULL;
2530
2531 joined = strv_join(message_parts, ", ");
2532 if (!joined) {
2533 r = log_oom();
2534 goto finish;
2535 }
2536
2537 joined[0] = ascii_toupper(joined[0]);
2538 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2539 }
2540
2541 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2542 * and hence don't increase n_iovec for them */
2543 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2544 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2545
2546 t = strjoina(u->manager->unit_log_field, u->id);
2547 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2548
2549 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2550 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2551
2552 log_unit_struct_iovec(u, log_level, iovec, n_iovec + 4);
2553 r = 0;
2554
2555 finish:
2556 free_many_charp(message_parts, n_message_parts);
2557
2558 for (size_t i = 0; i < n_iovec; i++)
2559 free(iovec[i].iov_base);
2560
2561 return r;
2562
2563 }
2564
2565 static void unit_update_on_console(Unit *u) {
2566 bool b;
2567
2568 assert(u);
2569
2570 b = unit_needs_console(u);
2571 if (u->on_console == b)
2572 return;
2573
2574 u->on_console = b;
2575 if (b)
2576 manager_ref_console(u->manager);
2577 else
2578 manager_unref_console(u->manager);
2579 }
2580
2581 static void unit_emit_audit_start(Unit *u) {
2582 assert(u);
2583
2584 if (UNIT_VTABLE(u)->audit_start_message_type <= 0)
2585 return;
2586
2587 /* Write audit record if we have just finished starting up */
2588 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_start_message_type, /* success= */ true);
2589 u->in_audit = true;
2590 }
2591
2592 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2593 assert(u);
2594
2595 if (UNIT_VTABLE(u)->audit_start_message_type <= 0)
2596 return;
2597
2598 if (u->in_audit) {
2599 /* Write audit record if we have just finished shutting down */
2600 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_stop_message_type, /* success= */ state == UNIT_INACTIVE);
2601 u->in_audit = false;
2602 } else {
2603 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2604 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_start_message_type, /* success= */ state == UNIT_INACTIVE);
2605
2606 if (state == UNIT_INACTIVE)
2607 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_stop_message_type, /* success= */ true);
2608 }
2609 }
2610
2611 static bool unit_process_job(Job *j, UnitActiveState ns, bool reload_success) {
2612 bool unexpected = false;
2613 JobResult result;
2614
2615 assert(j);
2616
2617 if (j->state == JOB_WAITING)
2618 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2619 * due to EAGAIN. */
2620 job_add_to_run_queue(j);
2621
2622 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2623 * hence needs to invalidate jobs. */
2624
2625 switch (j->type) {
2626
2627 case JOB_START:
2628 case JOB_VERIFY_ACTIVE:
2629
2630 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2631 job_finish_and_invalidate(j, JOB_DONE, true, false);
2632 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2633 unexpected = true;
2634
2635 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2636 if (ns == UNIT_FAILED)
2637 result = JOB_FAILED;
2638 else
2639 result = JOB_DONE;
2640
2641 job_finish_and_invalidate(j, result, true, false);
2642 }
2643 }
2644
2645 break;
2646
2647 case JOB_RELOAD:
2648 case JOB_RELOAD_OR_START:
2649 case JOB_TRY_RELOAD:
2650
2651 if (j->state == JOB_RUNNING) {
2652 if (ns == UNIT_ACTIVE)
2653 job_finish_and_invalidate(j, reload_success ? JOB_DONE : JOB_FAILED, true, false);
2654 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2655 unexpected = true;
2656
2657 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2658 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2659 }
2660 }
2661
2662 break;
2663
2664 case JOB_STOP:
2665 case JOB_RESTART:
2666 case JOB_TRY_RESTART:
2667
2668 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2669 job_finish_and_invalidate(j, JOB_DONE, true, false);
2670 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2671 unexpected = true;
2672 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2673 }
2674
2675 break;
2676
2677 default:
2678 assert_not_reached();
2679 }
2680
2681 return unexpected;
2682 }
2683
2684 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) {
2685 const char *reason;
2686 Manager *m;
2687
2688 assert(u);
2689 assert(os < _UNIT_ACTIVE_STATE_MAX);
2690 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2691
2692 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2693 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2694 * remounted this function will be called too! */
2695
2696 m = u->manager;
2697
2698 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2699 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2700 unit_add_to_dbus_queue(u);
2701
2702 /* Update systemd-oomd on the property/state change */
2703 if (os != ns) {
2704 /* Always send an update if the unit is going into an inactive state so systemd-oomd knows to stop
2705 * monitoring.
2706 * Also send an update whenever the unit goes active; this is to handle a case where an override file
2707 * sets one of the ManagedOOM*= properties to "kill", then later removes it. systemd-oomd needs to
2708 * know to stop monitoring when the unit changes from "kill" -> "auto" on daemon-reload, but we don't
2709 * have the information on the property. Thus, indiscriminately send an update. */
2710 if (UNIT_IS_INACTIVE_OR_FAILED(ns) || UNIT_IS_ACTIVE_OR_RELOADING(ns))
2711 (void) manager_varlink_send_managed_oom_update(u);
2712 }
2713
2714 /* Update timestamps for state changes */
2715 if (!MANAGER_IS_RELOADING(m)) {
2716 dual_timestamp_get(&u->state_change_timestamp);
2717
2718 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2719 u->inactive_exit_timestamp = u->state_change_timestamp;
2720 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2721 u->inactive_enter_timestamp = u->state_change_timestamp;
2722
2723 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2724 u->active_enter_timestamp = u->state_change_timestamp;
2725 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2726 u->active_exit_timestamp = u->state_change_timestamp;
2727 }
2728
2729 /* Keep track of failed units */
2730 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2731
2732 /* Make sure the cgroup and state files are always removed when we become inactive */
2733 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2734 SET_FLAG(u->markers,
2735 (1u << UNIT_MARKER_NEEDS_RELOAD)|(1u << UNIT_MARKER_NEEDS_RESTART),
2736 false);
2737 unit_prune_cgroup(u);
2738 unit_unlink_state_files(u);
2739 } else if (ns != os && ns == UNIT_RELOADING)
2740 SET_FLAG(u->markers, 1u << UNIT_MARKER_NEEDS_RELOAD, false);
2741
2742 unit_update_on_console(u);
2743
2744 if (!MANAGER_IS_RELOADING(m)) {
2745 bool unexpected;
2746
2747 /* Let's propagate state changes to the job */
2748 if (u->job)
2749 unexpected = unit_process_job(u->job, ns, reload_success);
2750 else
2751 unexpected = true;
2752
2753 /* If this state change happened without being requested by a job, then let's retroactively start or
2754 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2755 * additional jobs just because something is already activated. */
2756
2757 if (unexpected) {
2758 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2759 retroactively_start_dependencies(u);
2760 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2761 retroactively_stop_dependencies(u);
2762 }
2763
2764 if (ns != os && ns == UNIT_FAILED) {
2765 log_unit_debug(u, "Unit entered failed state.");
2766 unit_start_on_failure(u, "OnFailure=", UNIT_ATOM_ON_FAILURE, u->on_failure_job_mode);
2767 }
2768
2769 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2770 /* This unit just finished starting up */
2771
2772 unit_emit_audit_start(u);
2773 manager_send_unit_plymouth(m, u);
2774 }
2775
2776 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2777 /* This unit just stopped/failed. */
2778
2779 unit_emit_audit_stop(u, ns);
2780 unit_log_resources(u);
2781 }
2782
2783 if (ns == UNIT_INACTIVE && !IN_SET(os, UNIT_FAILED, UNIT_INACTIVE, UNIT_MAINTENANCE))
2784 unit_start_on_failure(u, "OnSuccess=", UNIT_ATOM_ON_SUCCESS, u->on_success_job_mode);
2785 }
2786
2787 manager_recheck_journal(m);
2788 manager_recheck_dbus(m);
2789
2790 unit_trigger_notify(u);
2791
2792 if (!MANAGER_IS_RELOADING(m)) {
2793 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2794 reason = strjoina("unit ", u->id, " failed");
2795 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2796 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2797 reason = strjoina("unit ", u->id, " succeeded");
2798 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2799 }
2800 }
2801
2802 /* And now, add the unit or depending units to various queues that will act on the new situation if
2803 * needed. These queues generally check for continuous state changes rather than events (like most of
2804 * the state propagation above), and do work deferred instead of instantly, since they typically
2805 * don't want to run during reloading, and usually involve checking combined state of multiple units
2806 * at once. */
2807
2808 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2809 /* Stop unneeded units and bound-by units regardless if going down was expected or not */
2810 check_unneeded_dependencies(u);
2811 check_bound_by_dependencies(u);
2812
2813 /* Maybe someone wants us to remain up? */
2814 unit_submit_to_start_when_upheld_queue(u);
2815
2816 /* Maybe the unit should be GC'ed now? */
2817 unit_add_to_gc_queue(u);
2818
2819 /* Maybe we can release some resources now? */
2820 unit_submit_to_release_resources_queue(u);
2821 }
2822
2823 if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
2824 /* Start uphold units regardless if going up was expected or not */
2825 check_uphold_dependencies(u);
2826
2827 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2828 unit_submit_to_stop_when_unneeded_queue(u);
2829
2830 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens
2831 * when something BindsTo= to a Type=oneshot unit, as these units go directly from starting to
2832 * inactive, without ever entering started.) */
2833 unit_submit_to_stop_when_bound_queue(u);
2834 }
2835 }
2836
2837 int unit_watch_pidref(Unit *u, PidRef *pid, bool exclusive) {
2838 _cleanup_(pidref_freep) PidRef *pid_dup = NULL;
2839 int r;
2840
2841 /* Adds a specific PID to the set of PIDs this unit watches. */
2842
2843 assert(u);
2844 assert(pidref_is_set(pid));
2845
2846 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2847 * opportunity to remove any stalled references to this PID as they can be created
2848 * easily (when watching a process which is not our direct child). */
2849 if (exclusive)
2850 manager_unwatch_pidref(u->manager, pid);
2851
2852 if (set_contains(u->pids, pid)) /* early exit if already being watched */
2853 return 0;
2854
2855 r = pidref_dup(pid, &pid_dup);
2856 if (r < 0)
2857 return r;
2858
2859 /* First, insert into the set of PIDs maintained by the unit */
2860 r = set_ensure_put(&u->pids, &pidref_hash_ops, pid_dup);
2861 if (r < 0)
2862 return r;
2863
2864 pid = TAKE_PTR(pid_dup); /* continue with our copy now that we have installed it properly in our set */
2865
2866 /* Second, insert it into the simple global table, see if that works */
2867 r = hashmap_ensure_put(&u->manager->watch_pids, &pidref_hash_ops, pid, u);
2868 if (r != -EEXIST)
2869 return r;
2870
2871 /* OK, the key is already assigned to a different unit. That's fine, then add us via the second
2872 * hashmap that points to an array. */
2873
2874 PidRef *old_pid = NULL;
2875 Unit **array = hashmap_get2(u->manager->watch_pids_more, pid, (void**) &old_pid);
2876
2877 /* Count entries in array */
2878 size_t n = 0;
2879 for (; array && array[n]; n++)
2880 ;
2881
2882 /* Allocate a new array */
2883 _cleanup_free_ Unit **new_array = new(Unit*, n + 2);
2884 if (!new_array)
2885 return -ENOMEM;
2886
2887 /* Append us to the end */
2888 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2889 new_array[n] = u;
2890 new_array[n+1] = NULL;
2891
2892 /* Make sure the hashmap is allocated */
2893 r = hashmap_ensure_allocated(&u->manager->watch_pids_more, &pidref_hash_ops);
2894 if (r < 0)
2895 return r;
2896
2897 /* Add or replace the old array */
2898 r = hashmap_replace(u->manager->watch_pids_more, old_pid ?: pid, new_array);
2899 if (r < 0)
2900 return r;
2901
2902 TAKE_PTR(new_array); /* Now part of the hash table */
2903 free(array); /* Which means we can now delete the old version */
2904 return 0;
2905 }
2906
2907 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2908 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
2909 int r;
2910
2911 assert(u);
2912 assert(pid_is_valid(pid));
2913
2914 r = pidref_set_pid(&pidref, pid);
2915 if (r < 0)
2916 return r;
2917
2918 return unit_watch_pidref(u, &pidref, exclusive);
2919 }
2920
2921 void unit_unwatch_pidref(Unit *u, PidRef *pid) {
2922 assert(u);
2923 assert(pidref_is_set(pid));
2924
2925 /* Remove from the set we maintain for this unit. (And destroy the returned pid eventually) */
2926 _cleanup_(pidref_freep) PidRef *pid1 = set_remove(u->pids, pid);
2927 if (!pid1)
2928 return; /* Early exit if this PID was never watched by us */
2929
2930 /* First let's drop the unit from the simple hash table, if it is included there */
2931 PidRef *pid2 = NULL;
2932 Unit *uu = hashmap_get2(u->manager->watch_pids, pid, (void**) &pid2);
2933
2934 /* Quick validation: iff we are in the watch_pids table then the PidRef object must be the same as in our local pids set */
2935 assert((uu == u) == (pid1 == pid2));
2936
2937 if (uu == u)
2938 /* OK, we are in the first table. Let's remove it there then, and we are done already. */
2939 assert_se(hashmap_remove_value(u->manager->watch_pids, pid2, uu) == uu);
2940 else {
2941 /* We weren't in the first table, then let's consult the 2nd table that points to an array */
2942 PidRef *pid3 = NULL;
2943 Unit **array = hashmap_get2(u->manager->watch_pids_more, pid, (void**) &pid3);
2944
2945 /* Let's iterate through the array, dropping our own entry */
2946 size_t m = 0, n = 0;
2947 for (; array && array[n]; n++)
2948 if (array[n] != u)
2949 array[m++] = array[n];
2950 if (n == m)
2951 return; /* Not there */
2952
2953 array[m] = NULL; /* set trailing NULL marker on the new end */
2954
2955 if (m == 0) {
2956 /* The array is now empty, remove the entire entry */
2957 assert_se(hashmap_remove_value(u->manager->watch_pids_more, pid3, array) == array);
2958 free(array);
2959 } else {
2960 /* The array is not empty, but let's make sure the entry is not keyed by the PidRef
2961 * we will delete, but by the PidRef object of the Unit that is now first in the
2962 * array. */
2963
2964 PidRef *new_pid3 = ASSERT_PTR(set_get(array[0]->pids, pid));
2965 assert_se(hashmap_replace(u->manager->watch_pids_more, new_pid3, array) >= 0);
2966 }
2967 }
2968 }
2969
2970 void unit_unwatch_pid(Unit *u, pid_t pid) {
2971 return unit_unwatch_pidref(u, &PIDREF_MAKE_FROM_PID(pid));
2972 }
2973
2974 void unit_unwatch_all_pids(Unit *u) {
2975 assert(u);
2976
2977 while (!set_isempty(u->pids))
2978 unit_unwatch_pidref(u, set_first(u->pids));
2979
2980 u->pids = set_free(u->pids);
2981 }
2982
2983 static void unit_tidy_watch_pids(Unit *u) {
2984 PidRef *except1, *except2, *e;
2985
2986 assert(u);
2987
2988 /* Cleans dead PIDs from our list */
2989
2990 except1 = unit_main_pid(u);
2991 except2 = unit_control_pid(u);
2992
2993 SET_FOREACH(e, u->pids) {
2994 if (pidref_equal(except1, e) || pidref_equal(except2, e))
2995 continue;
2996
2997 if (!pid_is_unwaited(e->pid))
2998 unit_unwatch_pidref(u, e);
2999 }
3000 }
3001
3002 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
3003 Unit *u = ASSERT_PTR(userdata);
3004
3005 assert(s);
3006
3007 unit_tidy_watch_pids(u);
3008 unit_watch_all_pids(u);
3009
3010 /* If the PID set is empty now, then let's finish this off. */
3011 unit_synthesize_cgroup_empty_event(u);
3012
3013 return 0;
3014 }
3015
3016 int unit_enqueue_rewatch_pids(Unit *u) {
3017 int r;
3018
3019 assert(u);
3020
3021 if (!u->cgroup_path)
3022 return -ENOENT;
3023
3024 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3025 if (r < 0)
3026 return r;
3027 if (r > 0) /* On unified we can use proper notifications */
3028 return 0;
3029
3030 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
3031 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
3032 * involves issuing kill(pid, 0) on all processes we watch. */
3033
3034 if (!u->rewatch_pids_event_source) {
3035 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3036
3037 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
3038 if (r < 0)
3039 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
3040
3041 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
3042 if (r < 0)
3043 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
3044
3045 (void) sd_event_source_set_description(s, "tidy-watch-pids");
3046
3047 u->rewatch_pids_event_source = TAKE_PTR(s);
3048 }
3049
3050 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
3051 if (r < 0)
3052 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
3053
3054 return 0;
3055 }
3056
3057 void unit_dequeue_rewatch_pids(Unit *u) {
3058 int r;
3059 assert(u);
3060
3061 if (!u->rewatch_pids_event_source)
3062 return;
3063
3064 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
3065 if (r < 0)
3066 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
3067
3068 u->rewatch_pids_event_source = sd_event_source_disable_unref(u->rewatch_pids_event_source);
3069 }
3070
3071 bool unit_job_is_applicable(Unit *u, JobType j) {
3072 assert(u);
3073 assert(j >= 0 && j < _JOB_TYPE_MAX);
3074
3075 switch (j) {
3076
3077 case JOB_VERIFY_ACTIVE:
3078 case JOB_START:
3079 case JOB_NOP:
3080 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
3081 * startable by us but may appear due to external events, and it thus makes sense to permit enqueuing
3082 * jobs for it. */
3083 return true;
3084
3085 case JOB_STOP:
3086 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
3087 * external events), hence it makes no sense to permit enqueuing such a request either. */
3088 return !u->perpetual;
3089
3090 case JOB_RESTART:
3091 case JOB_TRY_RESTART:
3092 return unit_can_stop(u) && unit_can_start(u);
3093
3094 case JOB_RELOAD:
3095 case JOB_TRY_RELOAD:
3096 return unit_can_reload(u);
3097
3098 case JOB_RELOAD_OR_START:
3099 return unit_can_reload(u) && unit_can_start(u);
3100
3101 default:
3102 assert_not_reached();
3103 }
3104 }
3105
3106 static Hashmap *unit_get_dependency_hashmap_per_type(Unit *u, UnitDependency d) {
3107 Hashmap *deps;
3108
3109 assert(u);
3110 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3111
3112 deps = hashmap_get(u->dependencies, UNIT_DEPENDENCY_TO_PTR(d));
3113 if (!deps) {
3114 _cleanup_hashmap_free_ Hashmap *h = NULL;
3115
3116 h = hashmap_new(NULL);
3117 if (!h)
3118 return NULL;
3119
3120 if (hashmap_ensure_put(&u->dependencies, NULL, UNIT_DEPENDENCY_TO_PTR(d), h) < 0)
3121 return NULL;
3122
3123 deps = TAKE_PTR(h);
3124 }
3125
3126 return deps;
3127 }
3128
3129 typedef enum NotifyDependencyFlags {
3130 NOTIFY_DEPENDENCY_UPDATE_FROM = 1 << 0,
3131 NOTIFY_DEPENDENCY_UPDATE_TO = 1 << 1,
3132 } NotifyDependencyFlags;
3133
3134 static int unit_add_dependency_impl(
3135 Unit *u,
3136 UnitDependency d,
3137 Unit *other,
3138 UnitDependencyMask mask) {
3139
3140 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
3141 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
3142 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
3143 [UNIT_WANTS] = UNIT_WANTED_BY,
3144 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
3145 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
3146 [UNIT_UPHOLDS] = UNIT_UPHELD_BY,
3147 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
3148 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
3149 [UNIT_WANTED_BY] = UNIT_WANTS,
3150 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
3151 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
3152 [UNIT_UPHELD_BY] = UNIT_UPHOLDS,
3153 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
3154 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
3155 [UNIT_BEFORE] = UNIT_AFTER,
3156 [UNIT_AFTER] = UNIT_BEFORE,
3157 [UNIT_ON_SUCCESS] = UNIT_ON_SUCCESS_OF,
3158 [UNIT_ON_SUCCESS_OF] = UNIT_ON_SUCCESS,
3159 [UNIT_ON_FAILURE] = UNIT_ON_FAILURE_OF,
3160 [UNIT_ON_FAILURE_OF] = UNIT_ON_FAILURE,
3161 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
3162 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
3163 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
3164 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
3165 [UNIT_PROPAGATES_STOP_TO] = UNIT_STOP_PROPAGATED_FROM,
3166 [UNIT_STOP_PROPAGATED_FROM] = UNIT_PROPAGATES_STOP_TO,
3167 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF, /* symmetric! 👓 */
3168 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
3169 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
3170 [UNIT_IN_SLICE] = UNIT_SLICE_OF,
3171 [UNIT_SLICE_OF] = UNIT_IN_SLICE,
3172 };
3173
3174 Hashmap *u_deps, *other_deps;
3175 UnitDependencyInfo u_info, u_info_old, other_info, other_info_old;
3176 NotifyDependencyFlags flags = 0;
3177 int r;
3178
3179 assert(u);
3180 assert(other);
3181 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3182 assert(inverse_table[d] >= 0 && inverse_table[d] < _UNIT_DEPENDENCY_MAX);
3183 assert(mask > 0 && mask < _UNIT_DEPENDENCY_MASK_FULL);
3184
3185 /* Ensure the following two hashmaps for each unit exist:
3186 * - the top-level dependency hashmap that maps UnitDependency → Hashmap(Unit* → UnitDependencyInfo),
3187 * - the inner hashmap, that maps Unit* → UnitDependencyInfo, for the specified dependency type. */
3188 u_deps = unit_get_dependency_hashmap_per_type(u, d);
3189 if (!u_deps)
3190 return -ENOMEM;
3191
3192 other_deps = unit_get_dependency_hashmap_per_type(other, inverse_table[d]);
3193 if (!other_deps)
3194 return -ENOMEM;
3195
3196 /* Save the original dependency info. */
3197 u_info.data = u_info_old.data = hashmap_get(u_deps, other);
3198 other_info.data = other_info_old.data = hashmap_get(other_deps, u);
3199
3200 /* Update dependency info. */
3201 u_info.origin_mask |= mask;
3202 other_info.destination_mask |= mask;
3203
3204 /* Save updated dependency info. */
3205 if (u_info.data != u_info_old.data) {
3206 r = hashmap_replace(u_deps, other, u_info.data);
3207 if (r < 0)
3208 return r;
3209
3210 flags = NOTIFY_DEPENDENCY_UPDATE_FROM;
3211 }
3212
3213 if (other_info.data != other_info_old.data) {
3214 r = hashmap_replace(other_deps, u, other_info.data);
3215 if (r < 0) {
3216 if (u_info.data != u_info_old.data) {
3217 /* Restore the old dependency. */
3218 if (u_info_old.data)
3219 (void) hashmap_update(u_deps, other, u_info_old.data);
3220 else
3221 hashmap_remove(u_deps, other);
3222 }
3223 return r;
3224 }
3225
3226 flags |= NOTIFY_DEPENDENCY_UPDATE_TO;
3227 }
3228
3229 return flags;
3230 }
3231
3232 int unit_add_dependency(
3233 Unit *u,
3234 UnitDependency d,
3235 Unit *other,
3236 bool add_reference,
3237 UnitDependencyMask mask) {
3238
3239 UnitDependencyAtom a;
3240 int r;
3241
3242 /* Helper to know whether sending a notification is necessary or not: if the dependency is already
3243 * there, no need to notify! */
3244 NotifyDependencyFlags notify_flags;
3245
3246 assert(u);
3247 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3248 assert(other);
3249
3250 u = unit_follow_merge(u);
3251 other = unit_follow_merge(other);
3252 a = unit_dependency_to_atom(d);
3253 assert(a >= 0);
3254
3255 /* We won't allow dependencies on ourselves. We will not consider them an error however. */
3256 if (u == other) {
3257 if (unit_should_warn_about_dependency(d))
3258 log_unit_warning(u, "Dependency %s=%s is dropped.",
3259 unit_dependency_to_string(d), u->id);
3260 return 0;
3261 }
3262
3263 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3264 return 0;
3265
3266 /* Note that ordering a device unit after a unit is permitted since it allows to start its job
3267 * running timeout at a specific time. */
3268 if (FLAGS_SET(a, UNIT_ATOM_BEFORE) && other->type == UNIT_DEVICE) {
3269 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
3270 return 0;
3271 }
3272
3273 if (FLAGS_SET(a, UNIT_ATOM_ON_FAILURE) && !UNIT_VTABLE(u)->can_fail) {
3274 log_unit_warning(u, "Requested dependency OnFailure=%s ignored (%s units cannot fail).", other->id, unit_type_to_string(u->type));
3275 return 0;
3276 }
3277
3278 if (FLAGS_SET(a, UNIT_ATOM_TRIGGERS) && !UNIT_VTABLE(u)->can_trigger)
3279 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3280 "Requested dependency Triggers=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(u->type));
3281 if (FLAGS_SET(a, UNIT_ATOM_TRIGGERED_BY) && !UNIT_VTABLE(other)->can_trigger)
3282 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3283 "Requested dependency TriggeredBy=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(other->type));
3284
3285 if (FLAGS_SET(a, UNIT_ATOM_IN_SLICE) && other->type != UNIT_SLICE)
3286 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3287 "Requested dependency Slice=%s refused (%s is not a slice unit).", other->id, other->id);
3288 if (FLAGS_SET(a, UNIT_ATOM_SLICE_OF) && u->type != UNIT_SLICE)
3289 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3290 "Requested dependency SliceOf=%s refused (%s is not a slice unit).", other->id, u->id);
3291
3292 if (FLAGS_SET(a, UNIT_ATOM_IN_SLICE) && !UNIT_HAS_CGROUP_CONTEXT(u))
3293 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3294 "Requested dependency Slice=%s refused (%s is not a cgroup unit).", other->id, u->id);
3295
3296 if (FLAGS_SET(a, UNIT_ATOM_SLICE_OF) && !UNIT_HAS_CGROUP_CONTEXT(other))
3297 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3298 "Requested dependency SliceOf=%s refused (%s is not a cgroup unit).", other->id, other->id);
3299
3300 r = unit_add_dependency_impl(u, d, other, mask);
3301 if (r < 0)
3302 return r;
3303 notify_flags = r;
3304
3305 if (add_reference) {
3306 r = unit_add_dependency_impl(u, UNIT_REFERENCES, other, mask);
3307 if (r < 0)
3308 return r;
3309 notify_flags |= r;
3310 }
3311
3312 if (FLAGS_SET(notify_flags, NOTIFY_DEPENDENCY_UPDATE_FROM))
3313 unit_add_to_dbus_queue(u);
3314 if (FLAGS_SET(notify_flags, NOTIFY_DEPENDENCY_UPDATE_TO))
3315 unit_add_to_dbus_queue(other);
3316
3317 return notify_flags != 0;
3318 }
3319
3320 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
3321 int r = 0, s = 0;
3322
3323 assert(u);
3324 assert(d >= 0 || e >= 0);
3325
3326 if (d >= 0) {
3327 r = unit_add_dependency(u, d, other, add_reference, mask);
3328 if (r < 0)
3329 return r;
3330 }
3331
3332 if (e >= 0) {
3333 s = unit_add_dependency(u, e, other, add_reference, mask);
3334 if (s < 0)
3335 return s;
3336 }
3337
3338 return r > 0 || s > 0;
3339 }
3340
3341 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
3342 int r;
3343
3344 assert(u);
3345 assert(name);
3346 assert(buf);
3347 assert(ret);
3348
3349 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
3350 *buf = NULL;
3351 *ret = name;
3352 return 0;
3353 }
3354
3355 if (u->instance)
3356 r = unit_name_replace_instance(name, u->instance, buf);
3357 else {
3358 _cleanup_free_ char *i = NULL;
3359
3360 r = unit_name_to_prefix(u->id, &i);
3361 if (r < 0)
3362 return r;
3363
3364 r = unit_name_replace_instance(name, i, buf);
3365 }
3366 if (r < 0)
3367 return r;
3368
3369 *ret = *buf;
3370 return 0;
3371 }
3372
3373 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3374 _cleanup_free_ char *buf = NULL;
3375 Unit *other;
3376 int r;
3377
3378 assert(u);
3379 assert(name);
3380
3381 r = resolve_template(u, name, &buf, &name);
3382 if (r < 0)
3383 return r;
3384
3385 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3386 return 0;
3387
3388 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3389 if (r < 0)
3390 return r;
3391
3392 return unit_add_dependency(u, d, other, add_reference, mask);
3393 }
3394
3395 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3396 _cleanup_free_ char *buf = NULL;
3397 Unit *other;
3398 int r;
3399
3400 assert(u);
3401 assert(name);
3402
3403 r = resolve_template(u, name, &buf, &name);
3404 if (r < 0)
3405 return r;
3406
3407 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3408 return 0;
3409
3410 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3411 if (r < 0)
3412 return r;
3413
3414 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3415 }
3416
3417 int set_unit_path(const char *p) {
3418 /* This is mostly for debug purposes */
3419 return RET_NERRNO(setenv("SYSTEMD_UNIT_PATH", p, 1));
3420 }
3421
3422 char *unit_dbus_path(Unit *u) {
3423 assert(u);
3424
3425 if (!u->id)
3426 return NULL;
3427
3428 return unit_dbus_path_from_name(u->id);
3429 }
3430
3431 char *unit_dbus_path_invocation_id(Unit *u) {
3432 assert(u);
3433
3434 if (sd_id128_is_null(u->invocation_id))
3435 return NULL;
3436
3437 return unit_dbus_path_from_name(u->invocation_id_string);
3438 }
3439
3440 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
3441 int r;
3442
3443 assert(u);
3444
3445 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
3446
3447 if (sd_id128_equal(u->invocation_id, id))
3448 return 0;
3449
3450 if (!sd_id128_is_null(u->invocation_id))
3451 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
3452
3453 if (sd_id128_is_null(id)) {
3454 r = 0;
3455 goto reset;
3456 }
3457
3458 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
3459 if (r < 0)
3460 goto reset;
3461
3462 u->invocation_id = id;
3463 sd_id128_to_string(id, u->invocation_id_string);
3464
3465 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
3466 if (r < 0)
3467 goto reset;
3468
3469 return 0;
3470
3471 reset:
3472 u->invocation_id = SD_ID128_NULL;
3473 u->invocation_id_string[0] = 0;
3474 return r;
3475 }
3476
3477 int unit_set_slice(Unit *u, Unit *slice) {
3478 int r;
3479
3480 assert(u);
3481 assert(slice);
3482
3483 /* Sets the unit slice if it has not been set before. Is extra careful, to only allow this for units
3484 * that actually have a cgroup context. Also, we don't allow to set this for slices (since the parent
3485 * slice is derived from the name). Make sure the unit we set is actually a slice. */
3486
3487 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3488 return -EOPNOTSUPP;
3489
3490 if (u->type == UNIT_SLICE)
3491 return -EINVAL;
3492
3493 if (unit_active_state(u) != UNIT_INACTIVE)
3494 return -EBUSY;
3495
3496 if (slice->type != UNIT_SLICE)
3497 return -EINVAL;
3498
3499 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3500 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3501 return -EPERM;
3502
3503 if (UNIT_GET_SLICE(u) == slice)
3504 return 0;
3505
3506 /* Disallow slice changes if @u is already bound to cgroups */
3507 if (UNIT_GET_SLICE(u) && u->cgroup_realized)
3508 return -EBUSY;
3509
3510 /* Remove any slices assigned prior; we should only have one UNIT_IN_SLICE dependency */
3511 if (UNIT_GET_SLICE(u))
3512 unit_remove_dependencies(u, UNIT_DEPENDENCY_SLICE_PROPERTY);
3513
3514 r = unit_add_dependency(u, UNIT_IN_SLICE, slice, true, UNIT_DEPENDENCY_SLICE_PROPERTY);
3515 if (r < 0)
3516 return r;
3517
3518 return 1;
3519 }
3520
3521 int unit_set_default_slice(Unit *u) {
3522 const char *slice_name;
3523 Unit *slice;
3524 int r;
3525
3526 assert(u);
3527
3528 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3529 return 0;
3530
3531 if (UNIT_GET_SLICE(u))
3532 return 0;
3533
3534 if (u->instance) {
3535 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3536
3537 /* Implicitly place all instantiated units in their
3538 * own per-template slice */
3539
3540 r = unit_name_to_prefix(u->id, &prefix);
3541 if (r < 0)
3542 return r;
3543
3544 /* The prefix is already escaped, but it might include
3545 * "-" which has a special meaning for slice units,
3546 * hence escape it here extra. */
3547 escaped = unit_name_escape(prefix);
3548 if (!escaped)
3549 return -ENOMEM;
3550
3551 if (MANAGER_IS_SYSTEM(u->manager))
3552 slice_name = strjoina("system-", escaped, ".slice");
3553 else
3554 slice_name = strjoina("app-", escaped, ".slice");
3555
3556 } else if (unit_is_extrinsic(u))
3557 /* Keep all extrinsic units (e.g. perpetual units and swap and mount units in user mode) in
3558 * the root slice. They don't really belong in one of the subslices. */
3559 slice_name = SPECIAL_ROOT_SLICE;
3560
3561 else if (MANAGER_IS_SYSTEM(u->manager))
3562 slice_name = SPECIAL_SYSTEM_SLICE;
3563 else
3564 slice_name = SPECIAL_APP_SLICE;
3565
3566 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3567 if (r < 0)
3568 return r;
3569
3570 return unit_set_slice(u, slice);
3571 }
3572
3573 const char *unit_slice_name(Unit *u) {
3574 Unit *slice;
3575 assert(u);
3576
3577 slice = UNIT_GET_SLICE(u);
3578 if (!slice)
3579 return NULL;
3580
3581 return slice->id;
3582 }
3583
3584 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3585 _cleanup_free_ char *t = NULL;
3586 int r;
3587
3588 assert(u);
3589 assert(type);
3590 assert(_found);
3591
3592 r = unit_name_change_suffix(u->id, type, &t);
3593 if (r < 0)
3594 return r;
3595 if (unit_has_name(u, t))
3596 return -EINVAL;
3597
3598 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3599 assert(r < 0 || *_found != u);
3600 return r;
3601 }
3602
3603 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3604 const char *new_owner;
3605 Unit *u = ASSERT_PTR(userdata);
3606 int r;
3607
3608 assert(message);
3609
3610 r = sd_bus_message_read(message, "sss", NULL, NULL, &new_owner);
3611 if (r < 0) {
3612 bus_log_parse_error(r);
3613 return 0;
3614 }
3615
3616 if (UNIT_VTABLE(u)->bus_name_owner_change)
3617 UNIT_VTABLE(u)->bus_name_owner_change(u, empty_to_null(new_owner));
3618
3619 return 0;
3620 }
3621
3622 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3623 const sd_bus_error *e;
3624 const char *new_owner;
3625 Unit *u = ASSERT_PTR(userdata);
3626 int r;
3627
3628 assert(message);
3629
3630 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3631
3632 e = sd_bus_message_get_error(message);
3633 if (e) {
3634 if (!sd_bus_error_has_name(e, SD_BUS_ERROR_NAME_HAS_NO_OWNER)) {
3635 r = sd_bus_error_get_errno(e);
3636 log_unit_error_errno(u, r,
3637 "Unexpected error response from GetNameOwner(): %s",
3638 bus_error_message(e, r));
3639 }
3640
3641 new_owner = NULL;
3642 } else {
3643 r = sd_bus_message_read(message, "s", &new_owner);
3644 if (r < 0)
3645 return bus_log_parse_error(r);
3646
3647 assert(!isempty(new_owner));
3648 }
3649
3650 if (UNIT_VTABLE(u)->bus_name_owner_change)
3651 UNIT_VTABLE(u)->bus_name_owner_change(u, new_owner);
3652
3653 return 0;
3654 }
3655
3656 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3657 _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
3658 const char *match;
3659 usec_t timeout_usec = 0;
3660 int r;
3661
3662 assert(u);
3663 assert(bus);
3664 assert(name);
3665
3666 if (u->match_bus_slot || u->get_name_owner_slot)
3667 return -EBUSY;
3668
3669 /* NameOwnerChanged and GetNameOwner is used to detect when a service finished starting up. The dbus
3670 * call timeout shouldn't be earlier than that. If we couldn't get the start timeout, use the default
3671 * value defined above. */
3672 if (UNIT_VTABLE(u)->get_timeout_start_usec)
3673 timeout_usec = UNIT_VTABLE(u)->get_timeout_start_usec(u);
3674
3675 match = strjoina("type='signal',"
3676 "sender='org.freedesktop.DBus',"
3677 "path='/org/freedesktop/DBus',"
3678 "interface='org.freedesktop.DBus',"
3679 "member='NameOwnerChanged',"
3680 "arg0='", name, "'");
3681
3682 r = bus_add_match_full(
3683 bus,
3684 &u->match_bus_slot,
3685 true,
3686 match,
3687 signal_name_owner_changed,
3688 NULL,
3689 u,
3690 timeout_usec);
3691 if (r < 0)
3692 return r;
3693
3694 r = sd_bus_message_new_method_call(
3695 bus,
3696 &m,
3697 "org.freedesktop.DBus",
3698 "/org/freedesktop/DBus",
3699 "org.freedesktop.DBus",
3700 "GetNameOwner");
3701 if (r < 0)
3702 return r;
3703
3704 r = sd_bus_message_append(m, "s", name);
3705 if (r < 0)
3706 return r;
3707
3708 r = sd_bus_call_async(
3709 bus,
3710 &u->get_name_owner_slot,
3711 m,
3712 get_name_owner_handler,
3713 u,
3714 timeout_usec);
3715
3716 if (r < 0) {
3717 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3718 return r;
3719 }
3720
3721 log_unit_debug(u, "Watching D-Bus name '%s'.", name);
3722 return 0;
3723 }
3724
3725 int unit_watch_bus_name(Unit *u, const char *name) {
3726 int r;
3727
3728 assert(u);
3729 assert(name);
3730
3731 /* Watch a specific name on the bus. We only support one unit
3732 * watching each name for now. */
3733
3734 if (u->manager->api_bus) {
3735 /* If the bus is already available, install the match directly.
3736 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3737 r = unit_install_bus_match(u, u->manager->api_bus, name);
3738 if (r < 0)
3739 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3740 }
3741
3742 r = hashmap_put(u->manager->watch_bus, name, u);
3743 if (r < 0) {
3744 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3745 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3746 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3747 }
3748
3749 return 0;
3750 }
3751
3752 void unit_unwatch_bus_name(Unit *u, const char *name) {
3753 assert(u);
3754 assert(name);
3755
3756 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3757 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3758 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3759 }
3760
3761 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
3762 _cleanup_free_ char *e = NULL;
3763 Unit *device;
3764 int r;
3765
3766 assert(u);
3767
3768 /* Adds in links to the device node that this unit is based on */
3769 if (isempty(what))
3770 return 0;
3771
3772 if (!is_device_path(what))
3773 return 0;
3774
3775 /* When device units aren't supported (such as in a container), don't create dependencies on them. */
3776 if (!unit_type_supported(UNIT_DEVICE))
3777 return 0;
3778
3779 r = unit_name_from_path(what, ".device", &e);
3780 if (r < 0)
3781 return r;
3782
3783 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3784 if (r < 0)
3785 return r;
3786
3787 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3788 dep = UNIT_BINDS_TO;
3789
3790 return unit_add_two_dependencies(u, UNIT_AFTER,
3791 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3792 device, true, mask);
3793 }
3794
3795 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask) {
3796 _cleanup_free_ char *escaped = NULL, *target = NULL;
3797 int r;
3798
3799 assert(u);
3800
3801 if (isempty(what))
3802 return 0;
3803
3804 if (!path_startswith(what, "/dev/"))
3805 return 0;
3806
3807 /* If we don't support devices, then also don't bother with blockdev@.target */
3808 if (!unit_type_supported(UNIT_DEVICE))
3809 return 0;
3810
3811 r = unit_name_path_escape(what, &escaped);
3812 if (r < 0)
3813 return r;
3814
3815 r = unit_name_build("blockdev", escaped, ".target", &target);
3816 if (r < 0)
3817 return r;
3818
3819 return unit_add_dependency_by_name(u, UNIT_AFTER, target, true, mask);
3820 }
3821
3822 int unit_coldplug(Unit *u) {
3823 int r = 0;
3824
3825 assert(u);
3826
3827 /* Make sure we don't enter a loop, when coldplugging recursively. */
3828 if (u->coldplugged)
3829 return 0;
3830
3831 u->coldplugged = true;
3832
3833 STRV_FOREACH(i, u->deserialized_refs)
3834 RET_GATHER(r, bus_unit_track_add_name(u, *i));
3835
3836 u->deserialized_refs = strv_free(u->deserialized_refs);
3837
3838 if (UNIT_VTABLE(u)->coldplug)
3839 RET_GATHER(r, UNIT_VTABLE(u)->coldplug(u));
3840
3841 if (u->job)
3842 RET_GATHER(r, job_coldplug(u->job));
3843 if (u->nop_job)
3844 RET_GATHER(r, job_coldplug(u->nop_job));
3845
3846 CGroupContext *c = unit_get_cgroup_context(u);
3847 if (c)
3848 cgroup_modify_nft_set(u, /* add = */ true);
3849
3850 return r;
3851 }
3852
3853 void unit_catchup(Unit *u) {
3854 assert(u);
3855
3856 if (UNIT_VTABLE(u)->catchup)
3857 UNIT_VTABLE(u)->catchup(u);
3858
3859 unit_cgroup_catchup(u);
3860 }
3861
3862 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
3863 struct stat st;
3864
3865 if (!path)
3866 return false;
3867
3868 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
3869 * are never out-of-date. */
3870 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
3871 return false;
3872
3873 if (stat(path, &st) < 0)
3874 /* What, cannot access this anymore? */
3875 return true;
3876
3877 if (path_masked)
3878 /* For masked files check if they are still so */
3879 return !null_or_empty(&st);
3880 else
3881 /* For non-empty files check the mtime */
3882 return timespec_load(&st.st_mtim) > mtime;
3883
3884 return false;
3885 }
3886
3887 bool unit_need_daemon_reload(Unit *u) {
3888 _cleanup_strv_free_ char **dropins = NULL;
3889
3890 assert(u);
3891 assert(u->manager);
3892
3893 if (u->manager->unit_file_state_outdated)
3894 return true;
3895
3896 /* For unit files, we allow masking… */
3897 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
3898 u->load_state == UNIT_MASKED))
3899 return true;
3900
3901 /* Source paths should not be masked… */
3902 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
3903 return true;
3904
3905 if (u->load_state == UNIT_LOADED)
3906 (void) unit_find_dropin_paths(u, &dropins);
3907 if (!strv_equal(u->dropin_paths, dropins))
3908 return true;
3909
3910 /* … any drop-ins that are masked are simply omitted from the list. */
3911 STRV_FOREACH(path, u->dropin_paths)
3912 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
3913 return true;
3914
3915 return false;
3916 }
3917
3918 void unit_reset_failed(Unit *u) {
3919 assert(u);
3920
3921 if (UNIT_VTABLE(u)->reset_failed)
3922 UNIT_VTABLE(u)->reset_failed(u);
3923
3924 ratelimit_reset(&u->start_ratelimit);
3925 u->start_limit_hit = false;
3926 }
3927
3928 Unit *unit_following(Unit *u) {
3929 assert(u);
3930
3931 if (UNIT_VTABLE(u)->following)
3932 return UNIT_VTABLE(u)->following(u);
3933
3934 return NULL;
3935 }
3936
3937 bool unit_stop_pending(Unit *u) {
3938 assert(u);
3939
3940 /* This call does check the current state of the unit. It's
3941 * hence useful to be called from state change calls of the
3942 * unit itself, where the state isn't updated yet. This is
3943 * different from unit_inactive_or_pending() which checks both
3944 * the current state and for a queued job. */
3945
3946 return unit_has_job_type(u, JOB_STOP);
3947 }
3948
3949 bool unit_inactive_or_pending(Unit *u) {
3950 assert(u);
3951
3952 /* Returns true if the unit is inactive or going down */
3953
3954 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
3955 return true;
3956
3957 if (unit_stop_pending(u))
3958 return true;
3959
3960 return false;
3961 }
3962
3963 bool unit_active_or_pending(Unit *u) {
3964 assert(u);
3965
3966 /* Returns true if the unit is active or going up */
3967
3968 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
3969 return true;
3970
3971 if (u->job &&
3972 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
3973 return true;
3974
3975 return false;
3976 }
3977
3978 bool unit_will_restart_default(Unit *u) {
3979 assert(u);
3980
3981 return unit_has_job_type(u, JOB_START);
3982 }
3983
3984 bool unit_will_restart(Unit *u) {
3985 assert(u);
3986
3987 if (!UNIT_VTABLE(u)->will_restart)
3988 return false;
3989
3990 return UNIT_VTABLE(u)->will_restart(u);
3991 }
3992
3993 void unit_notify_cgroup_oom(Unit *u, bool managed_oom) {
3994 assert(u);
3995
3996 if (UNIT_VTABLE(u)->notify_cgroup_oom)
3997 UNIT_VTABLE(u)->notify_cgroup_oom(u, managed_oom);
3998 }
3999
4000 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
4001 _cleanup_set_free_ Set *pid_set = NULL;
4002 int r;
4003
4004 pid_set = set_new(NULL);
4005 if (!pid_set)
4006 return NULL;
4007
4008 /* Exclude the main/control pids from being killed via the cgroup */
4009 if (main_pid > 0) {
4010 r = set_put(pid_set, PID_TO_PTR(main_pid));
4011 if (r < 0)
4012 return NULL;
4013 }
4014
4015 if (control_pid > 0) {
4016 r = set_put(pid_set, PID_TO_PTR(control_pid));
4017 if (r < 0)
4018 return NULL;
4019 }
4020
4021 return TAKE_PTR(pid_set);
4022 }
4023
4024 static int kill_common_log(pid_t pid, int signo, void *userdata) {
4025 _cleanup_free_ char *comm = NULL;
4026 Unit *u = ASSERT_PTR(userdata);
4027
4028 (void) get_process_comm(pid, &comm);
4029 log_unit_info(u, "Sending signal SIG%s to process " PID_FMT " (%s) on client request.",
4030 signal_to_string(signo), pid, strna(comm));
4031
4032 return 1;
4033 }
4034
4035 static int kill_or_sigqueue(PidRef* pidref, int signo, int code, int value) {
4036 assert(pidref_is_set(pidref));
4037 assert(SIGNAL_VALID(signo));
4038
4039 switch (code) {
4040
4041 case SI_USER:
4042 log_debug("Killing " PID_FMT " with signal SIG%s.", pidref->pid, signal_to_string(signo));
4043 return pidref_kill(pidref, signo);
4044
4045 case SI_QUEUE:
4046 log_debug("Enqueuing value %i to " PID_FMT " on signal SIG%s.", value, pidref->pid, signal_to_string(signo));
4047 return pidref_sigqueue(pidref, signo, value);
4048
4049 default:
4050 assert_not_reached();
4051 }
4052 }
4053
4054 int unit_kill(
4055 Unit *u,
4056 KillWho who,
4057 int signo,
4058 int code,
4059 int value,
4060 sd_bus_error *error) {
4061
4062 PidRef *main_pid, *control_pid;
4063 bool killed = false;
4064 int ret = 0, r;
4065
4066 /* This is the common implementation for explicit user-requested killing of unit processes, shared by
4067 * various unit types. Do not confuse with unit_kill_context(), which is what we use when we want to
4068 * stop a service ourselves. */
4069
4070 assert(u);
4071 assert(who >= 0);
4072 assert(who < _KILL_WHO_MAX);
4073 assert(SIGNAL_VALID(signo));
4074 assert(IN_SET(code, SI_USER, SI_QUEUE));
4075
4076 main_pid = unit_main_pid(u);
4077 control_pid = unit_control_pid(u);
4078
4079 if (!UNIT_HAS_CGROUP_CONTEXT(u) && !main_pid && !control_pid)
4080 return sd_bus_error_setf(error, SD_BUS_ERROR_NOT_SUPPORTED, "Unit type does not support process killing.");
4081
4082 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4083 if (!main_pid)
4084 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4085 if (!pidref_is_set(main_pid))
4086 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4087 }
4088
4089 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4090 if (!control_pid)
4091 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4092 if (!pidref_is_set(control_pid))
4093 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4094 }
4095
4096 if (pidref_is_set(control_pid) &&
4097 IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL)) {
4098 _cleanup_free_ char *comm = NULL;
4099 (void) get_process_comm(control_pid->pid, &comm);
4100
4101 r = kill_or_sigqueue(control_pid, signo, code, value);
4102 if (r < 0) {
4103 ret = r;
4104
4105 /* Report this failure both to the logs and to the client */
4106 sd_bus_error_set_errnof(
4107 error, r,
4108 "Failed to send signal SIG%s to control process " PID_FMT " (%s): %m",
4109 signal_to_string(signo), control_pid->pid, strna(comm));
4110 log_unit_warning_errno(
4111 u, r,
4112 "Failed to send signal SIG%s to control process " PID_FMT " (%s) on client request: %m",
4113 signal_to_string(signo), control_pid->pid, strna(comm));
4114 } else {
4115 log_unit_info(u, "Sent signal SIG%s to control process " PID_FMT " (%s) on client request.",
4116 signal_to_string(signo), control_pid->pid, strna(comm));
4117 killed = true;
4118 }
4119 }
4120
4121 if (pidref_is_set(main_pid) &&
4122 IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL)) {
4123
4124 _cleanup_free_ char *comm = NULL;
4125 (void) get_process_comm(main_pid->pid, &comm);
4126
4127 r = kill_or_sigqueue(main_pid, signo, code, value);
4128 if (r < 0) {
4129 if (ret == 0) {
4130 ret = r;
4131
4132 sd_bus_error_set_errnof(
4133 error, r,
4134 "Failed to send signal SIG%s to main process " PID_FMT " (%s): %m",
4135 signal_to_string(signo), main_pid->pid, strna(comm));
4136 }
4137
4138 log_unit_warning_errno(
4139 u, r,
4140 "Failed to send signal SIG%s to main process " PID_FMT " (%s) on client request: %m",
4141 signal_to_string(signo), main_pid->pid, strna(comm));
4142
4143 } else {
4144 log_unit_info(u, "Sent signal SIG%s to main process " PID_FMT " (%s) on client request.",
4145 signal_to_string(signo), main_pid->pid, strna(comm));
4146 killed = true;
4147 }
4148 }
4149
4150 /* Note: if we shall enqueue rather than kill we won't do this via the cgroup mechanism, since it
4151 * doesn't really make much sense (and given that enqueued values are a relatively expensive
4152 * resource, and we shouldn't allow us to be subjects for such allocation sprees) */
4153 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path && code == SI_USER) {
4154 _cleanup_set_free_ Set *pid_set = NULL;
4155
4156 /* Exclude the main/control pids from being killed via the cgroup */
4157 pid_set = unit_pid_set(main_pid ? main_pid->pid : 0, control_pid ? control_pid->pid : 0);
4158 if (!pid_set)
4159 return log_oom();
4160
4161 r = cg_kill_recursive(u->cgroup_path, signo, 0, pid_set, kill_common_log, u);
4162 if (r < 0) {
4163 if (!IN_SET(r, -ESRCH, -ENOENT)) {
4164 if (ret == 0) {
4165 ret = r;
4166
4167 sd_bus_error_set_errnof(
4168 error, r,
4169 "Failed to send signal SIG%s to auxiliary processes: %m",
4170 signal_to_string(signo));
4171 }
4172
4173 log_unit_warning_errno(
4174 u, r,
4175 "Failed to send signal SIG%s to auxiliary processes on client request: %m",
4176 signal_to_string(signo));
4177 }
4178 } else
4179 killed = true;
4180 }
4181
4182 /* If the "fail" versions of the operation are requested, then complain if the set of processes we killed is empty */
4183 if (ret == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL, KILL_MAIN_FAIL))
4184 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No matching processes to kill");
4185
4186 return ret;
4187 }
4188
4189 int unit_following_set(Unit *u, Set **s) {
4190 assert(u);
4191 assert(s);
4192
4193 if (UNIT_VTABLE(u)->following_set)
4194 return UNIT_VTABLE(u)->following_set(u, s);
4195
4196 *s = NULL;
4197 return 0;
4198 }
4199
4200 UnitFileState unit_get_unit_file_state(Unit *u) {
4201 int r;
4202
4203 assert(u);
4204
4205 if (u->unit_file_state < 0 && u->fragment_path) {
4206 r = unit_file_get_state(
4207 u->manager->runtime_scope,
4208 NULL,
4209 u->id,
4210 &u->unit_file_state);
4211 if (r < 0)
4212 u->unit_file_state = UNIT_FILE_BAD;
4213 }
4214
4215 return u->unit_file_state;
4216 }
4217
4218 PresetAction unit_get_unit_file_preset(Unit *u) {
4219 int r;
4220
4221 assert(u);
4222
4223 if (u->unit_file_preset < 0 && u->fragment_path) {
4224 _cleanup_free_ char *bn = NULL;
4225
4226 r = path_extract_filename(u->fragment_path, &bn);
4227 if (r < 0)
4228 return (u->unit_file_preset = r);
4229
4230 if (r == O_DIRECTORY)
4231 return (u->unit_file_preset = -EISDIR);
4232
4233 u->unit_file_preset = unit_file_query_preset(
4234 u->manager->runtime_scope,
4235 NULL,
4236 bn,
4237 NULL);
4238 }
4239
4240 return u->unit_file_preset;
4241 }
4242
4243 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4244 assert(ref);
4245 assert(source);
4246 assert(target);
4247
4248 if (ref->target)
4249 unit_ref_unset(ref);
4250
4251 ref->source = source;
4252 ref->target = target;
4253 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4254 return target;
4255 }
4256
4257 void unit_ref_unset(UnitRef *ref) {
4258 assert(ref);
4259
4260 if (!ref->target)
4261 return;
4262
4263 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4264 * be unreferenced now. */
4265 unit_add_to_gc_queue(ref->target);
4266
4267 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4268 ref->source = ref->target = NULL;
4269 }
4270
4271 static int user_from_unit_name(Unit *u, char **ret) {
4272
4273 static const uint8_t hash_key[] = {
4274 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4275 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4276 };
4277
4278 _cleanup_free_ char *n = NULL;
4279 int r;
4280
4281 r = unit_name_to_prefix(u->id, &n);
4282 if (r < 0)
4283 return r;
4284
4285 if (valid_user_group_name(n, 0)) {
4286 *ret = TAKE_PTR(n);
4287 return 0;
4288 }
4289
4290 /* If we can't use the unit name as a user name, then let's hash it and use that */
4291 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4292 return -ENOMEM;
4293
4294 return 0;
4295 }
4296
4297 int unit_patch_contexts(Unit *u) {
4298 CGroupContext *cc;
4299 ExecContext *ec;
4300 int r;
4301
4302 assert(u);
4303
4304 /* Patch in the manager defaults into the exec and cgroup
4305 * contexts, _after_ the rest of the settings have been
4306 * initialized */
4307
4308 ec = unit_get_exec_context(u);
4309 if (ec) {
4310 /* This only copies in the ones that need memory */
4311 for (unsigned i = 0; i < _RLIMIT_MAX; i++)
4312 if (u->manager->defaults.rlimit[i] && !ec->rlimit[i]) {
4313 ec->rlimit[i] = newdup(struct rlimit, u->manager->defaults.rlimit[i], 1);
4314 if (!ec->rlimit[i])
4315 return -ENOMEM;
4316 }
4317
4318 if (MANAGER_IS_USER(u->manager) &&
4319 !ec->working_directory) {
4320
4321 r = get_home_dir(&ec->working_directory);
4322 if (r < 0)
4323 return r;
4324
4325 /* Allow user services to run, even if the
4326 * home directory is missing */
4327 ec->working_directory_missing_ok = true;
4328 }
4329
4330 if (ec->private_devices)
4331 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4332
4333 if (ec->protect_kernel_modules)
4334 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4335
4336 if (ec->protect_kernel_logs)
4337 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4338
4339 if (ec->protect_clock)
4340 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_SYS_TIME) | (UINT64_C(1) << CAP_WAKE_ALARM));
4341
4342 if (ec->dynamic_user) {
4343 if (!ec->user) {
4344 r = user_from_unit_name(u, &ec->user);
4345 if (r < 0)
4346 return r;
4347 }
4348
4349 if (!ec->group) {
4350 ec->group = strdup(ec->user);
4351 if (!ec->group)
4352 return -ENOMEM;
4353 }
4354
4355 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4356 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4357 * sandbox. */
4358
4359 ec->private_tmp = true;
4360 ec->remove_ipc = true;
4361 ec->protect_system = PROTECT_SYSTEM_STRICT;
4362 if (ec->protect_home == PROTECT_HOME_NO)
4363 ec->protect_home = PROTECT_HOME_READ_ONLY;
4364
4365 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4366 * them. */
4367 ec->no_new_privileges = true;
4368 ec->restrict_suid_sgid = true;
4369 }
4370
4371 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++)
4372 exec_directory_sort(ec->directories + dt);
4373 }
4374
4375 cc = unit_get_cgroup_context(u);
4376 if (cc && ec) {
4377
4378 if (ec->private_devices &&
4379 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4380 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4381
4382 /* Only add these if needed, as they imply that everything else is blocked. */
4383 if (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow) {
4384 if (ec->root_image || ec->mount_images) {
4385
4386 /* When RootImage= or MountImages= is specified, the following devices are touched. */
4387 FOREACH_STRING(p, "/dev/loop-control", "/dev/mapper/control") {
4388 r = cgroup_add_device_allow(cc, p, "rw");
4389 if (r < 0)
4390 return r;
4391 }
4392 FOREACH_STRING(p, "block-loop", "block-blkext", "block-device-mapper") {
4393 r = cgroup_add_device_allow(cc, p, "rwm");
4394 if (r < 0)
4395 return r;
4396 }
4397
4398 /* Make sure "block-loop" can be resolved, i.e. make sure "loop" shows up in /proc/devices.
4399 * Same for mapper and verity. */
4400 FOREACH_STRING(p, "modprobe@loop.service", "modprobe@dm_mod.service", "modprobe@dm_verity.service") {
4401 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, p, true, UNIT_DEPENDENCY_FILE);
4402 if (r < 0)
4403 return r;
4404 }
4405 }
4406
4407 if (ec->protect_clock) {
4408 r = cgroup_add_device_allow(cc, "char-rtc", "r");
4409 if (r < 0)
4410 return r;
4411 }
4412
4413 /* If there are encrypted credentials we might need to access the TPM. */
4414 if (exec_context_has_encrypted_credentials(ec)) {
4415 r = cgroup_add_device_allow(cc, "char-tpm", "rw");
4416 if (r < 0)
4417 return r;
4418 }
4419 }
4420 }
4421
4422 return 0;
4423 }
4424
4425 ExecContext *unit_get_exec_context(const Unit *u) {
4426 size_t offset;
4427 assert(u);
4428
4429 if (u->type < 0)
4430 return NULL;
4431
4432 offset = UNIT_VTABLE(u)->exec_context_offset;
4433 if (offset <= 0)
4434 return NULL;
4435
4436 return (ExecContext*) ((uint8_t*) u + offset);
4437 }
4438
4439 KillContext *unit_get_kill_context(Unit *u) {
4440 size_t offset;
4441 assert(u);
4442
4443 if (u->type < 0)
4444 return NULL;
4445
4446 offset = UNIT_VTABLE(u)->kill_context_offset;
4447 if (offset <= 0)
4448 return NULL;
4449
4450 return (KillContext*) ((uint8_t*) u + offset);
4451 }
4452
4453 CGroupContext *unit_get_cgroup_context(Unit *u) {
4454 size_t offset;
4455
4456 if (u->type < 0)
4457 return NULL;
4458
4459 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4460 if (offset <= 0)
4461 return NULL;
4462
4463 return (CGroupContext*) ((uint8_t*) u + offset);
4464 }
4465
4466 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4467 size_t offset;
4468
4469 if (u->type < 0)
4470 return NULL;
4471
4472 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4473 if (offset <= 0)
4474 return NULL;
4475
4476 return *(ExecRuntime**) ((uint8_t*) u + offset);
4477 }
4478
4479 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4480 assert(u);
4481
4482 if (UNIT_WRITE_FLAGS_NOOP(flags))
4483 return NULL;
4484
4485 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4486 return u->manager->lookup_paths.transient;
4487
4488 if (flags & UNIT_PERSISTENT)
4489 return u->manager->lookup_paths.persistent_control;
4490
4491 if (flags & UNIT_RUNTIME)
4492 return u->manager->lookup_paths.runtime_control;
4493
4494 return NULL;
4495 }
4496
4497 const char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4498 assert(s);
4499 assert(popcount(flags & (UNIT_ESCAPE_EXEC_SYNTAX_ENV | UNIT_ESCAPE_EXEC_SYNTAX | UNIT_ESCAPE_C)) <= 1);
4500 assert(buf);
4501
4502 _cleanup_free_ char *t = NULL;
4503
4504 /* Returns a string with any escaping done. If no escaping was necessary, *buf is set to NULL, and
4505 * the input pointer is returned as-is. If an allocation was needed, the return buffer pointer is
4506 * written to *buf. This means the return value always contains a properly escaped version, but *buf
4507 * only contains a pointer if an allocation was made. Callers can use this to optimize memory
4508 * allocations. */
4509
4510 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4511 t = specifier_escape(s);
4512 if (!t)
4513 return NULL;
4514
4515 s = t;
4516 }
4517
4518 /* We either do C-escaping or shell-escaping, to additionally escape characters that we parse for
4519 * ExecStart= and friends, i.e. '$' and quotes. */
4520
4521 if (flags & (UNIT_ESCAPE_EXEC_SYNTAX_ENV | UNIT_ESCAPE_EXEC_SYNTAX)) {
4522 char *t2;
4523
4524 if (flags & UNIT_ESCAPE_EXEC_SYNTAX_ENV) {
4525 t2 = strreplace(s, "$", "$$");
4526 if (!t2)
4527 return NULL;
4528 free_and_replace(t, t2);
4529 }
4530
4531 t2 = shell_escape(t ?: s, "\"");
4532 if (!t2)
4533 return NULL;
4534 free_and_replace(t, t2);
4535
4536 s = t;
4537
4538 } else if (flags & UNIT_ESCAPE_C) {
4539 char *t2;
4540
4541 t2 = cescape(s);
4542 if (!t2)
4543 return NULL;
4544 free_and_replace(t, t2);
4545
4546 s = t;
4547 }
4548
4549 *buf = TAKE_PTR(t);
4550 return s;
4551 }
4552
4553 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4554 _cleanup_free_ char *result = NULL;
4555 size_t n = 0;
4556
4557 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command
4558 * lines in a way suitable for ExecStart= stanzas. */
4559
4560 STRV_FOREACH(i, l) {
4561 _cleanup_free_ char *buf = NULL;
4562 const char *p;
4563 size_t a;
4564 char *q;
4565
4566 p = unit_escape_setting(*i, flags, &buf);
4567 if (!p)
4568 return NULL;
4569
4570 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4571 if (!GREEDY_REALLOC(result, n + a + 1))
4572 return NULL;
4573
4574 q = result + n;
4575 if (n > 0)
4576 *(q++) = ' ';
4577
4578 *(q++) = '"';
4579 q = stpcpy(q, p);
4580 *(q++) = '"';
4581
4582 n += a;
4583 }
4584
4585 if (!GREEDY_REALLOC(result, n + 1))
4586 return NULL;
4587
4588 result[n] = 0;
4589
4590 return TAKE_PTR(result);
4591 }
4592
4593 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4594 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4595 const char *dir, *wrapped;
4596 int r;
4597
4598 assert(u);
4599 assert(name);
4600 assert(data);
4601
4602 if (UNIT_WRITE_FLAGS_NOOP(flags))
4603 return 0;
4604
4605 data = unit_escape_setting(data, flags, &escaped);
4606 if (!data)
4607 return -ENOMEM;
4608
4609 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4610 * previous section header is the same */
4611
4612 if (flags & UNIT_PRIVATE) {
4613 if (!UNIT_VTABLE(u)->private_section)
4614 return -EINVAL;
4615
4616 if (!u->transient_file || u->last_section_private < 0)
4617 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4618 else if (u->last_section_private == 0)
4619 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4620 } else {
4621 if (!u->transient_file || u->last_section_private < 0)
4622 data = strjoina("[Unit]\n", data);
4623 else if (u->last_section_private > 0)
4624 data = strjoina("\n[Unit]\n", data);
4625 }
4626
4627 if (u->transient_file) {
4628 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4629 * write to the transient unit file. */
4630 fputs(data, u->transient_file);
4631
4632 if (!endswith(data, "\n"))
4633 fputc('\n', u->transient_file);
4634
4635 /* Remember which section we wrote this entry to */
4636 u->last_section_private = !!(flags & UNIT_PRIVATE);
4637 return 0;
4638 }
4639
4640 dir = unit_drop_in_dir(u, flags);
4641 if (!dir)
4642 return -EINVAL;
4643
4644 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4645 "# or an equivalent operation. Do not edit.\n",
4646 data,
4647 "\n");
4648
4649 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4650 if (r < 0)
4651 return r;
4652
4653 (void) mkdir_p_label(p, 0755);
4654
4655 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4656 * recreate the cache after every drop-in we write. */
4657 if (u->manager->unit_path_cache) {
4658 r = set_put_strdup(&u->manager->unit_path_cache, p);
4659 if (r < 0)
4660 return r;
4661 }
4662
4663 r = write_string_file_atomic_label(q, wrapped);
4664 if (r < 0)
4665 return r;
4666
4667 r = strv_push(&u->dropin_paths, q);
4668 if (r < 0)
4669 return r;
4670 q = NULL;
4671
4672 strv_uniq(u->dropin_paths);
4673
4674 u->dropin_mtime = now(CLOCK_REALTIME);
4675
4676 return 0;
4677 }
4678
4679 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4680 _cleanup_free_ char *p = NULL;
4681 va_list ap;
4682 int r;
4683
4684 assert(u);
4685 assert(name);
4686 assert(format);
4687
4688 if (UNIT_WRITE_FLAGS_NOOP(flags))
4689 return 0;
4690
4691 va_start(ap, format);
4692 r = vasprintf(&p, format, ap);
4693 va_end(ap);
4694
4695 if (r < 0)
4696 return -ENOMEM;
4697
4698 return unit_write_setting(u, flags, name, p);
4699 }
4700
4701 int unit_make_transient(Unit *u) {
4702 _cleanup_free_ char *path = NULL;
4703 FILE *f;
4704
4705 assert(u);
4706
4707 if (!UNIT_VTABLE(u)->can_transient)
4708 return -EOPNOTSUPP;
4709
4710 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4711
4712 path = path_join(u->manager->lookup_paths.transient, u->id);
4713 if (!path)
4714 return -ENOMEM;
4715
4716 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4717 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4718
4719 WITH_UMASK(0022) {
4720 f = fopen(path, "we");
4721 if (!f)
4722 return -errno;
4723 }
4724
4725 safe_fclose(u->transient_file);
4726 u->transient_file = f;
4727
4728 free_and_replace(u->fragment_path, path);
4729
4730 u->source_path = mfree(u->source_path);
4731 u->dropin_paths = strv_free(u->dropin_paths);
4732 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4733
4734 u->load_state = UNIT_STUB;
4735 u->load_error = 0;
4736 u->transient = true;
4737
4738 unit_add_to_dbus_queue(u);
4739 unit_add_to_gc_queue(u);
4740
4741 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4742 u->transient_file);
4743
4744 return 0;
4745 }
4746
4747 static int log_kill(pid_t pid, int sig, void *userdata) {
4748 _cleanup_free_ char *comm = NULL;
4749
4750 (void) get_process_comm(pid, &comm);
4751
4752 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4753 only, like for example systemd's own PAM stub process. */
4754 if (comm && comm[0] == '(')
4755 /* Although we didn't log anything, as this callback is used in unit_kill_context we must return 1
4756 * here to let the manager know that a process was killed. */
4757 return 1;
4758
4759 log_unit_notice(userdata,
4760 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4761 pid,
4762 strna(comm),
4763 signal_to_string(sig));
4764
4765 return 1;
4766 }
4767
4768 static int operation_to_signal(
4769 const KillContext *c,
4770 KillOperation k,
4771 bool *ret_noteworthy) {
4772
4773 assert(c);
4774
4775 switch (k) {
4776
4777 case KILL_TERMINATE:
4778 case KILL_TERMINATE_AND_LOG:
4779 *ret_noteworthy = false;
4780 return c->kill_signal;
4781
4782 case KILL_RESTART:
4783 *ret_noteworthy = false;
4784 return restart_kill_signal(c);
4785
4786 case KILL_KILL:
4787 *ret_noteworthy = true;
4788 return c->final_kill_signal;
4789
4790 case KILL_WATCHDOG:
4791 *ret_noteworthy = true;
4792 return c->watchdog_signal;
4793
4794 default:
4795 assert_not_reached();
4796 }
4797 }
4798
4799 int unit_kill_context(
4800 Unit *u,
4801 KillContext *c,
4802 KillOperation k,
4803 PidRef* main_pid,
4804 PidRef* control_pid,
4805 bool main_pid_alien) {
4806
4807 bool wait_for_exit = false, send_sighup;
4808 cg_kill_log_func_t log_func = NULL;
4809 int sig, r;
4810
4811 assert(u);
4812 assert(c);
4813
4814 /* Kill the processes belonging to this unit, in preparation for shutting the unit down. Returns > 0
4815 * if we killed something worth waiting for, 0 otherwise. Do not confuse with unit_kill_common()
4816 * which is used for user-requested killing of unit processes. */
4817
4818 if (c->kill_mode == KILL_NONE)
4819 return 0;
4820
4821 bool noteworthy;
4822 sig = operation_to_signal(c, k, &noteworthy);
4823 if (noteworthy)
4824 log_func = log_kill;
4825
4826 send_sighup =
4827 c->send_sighup &&
4828 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4829 sig != SIGHUP;
4830
4831 if (pidref_is_set(main_pid)) {
4832 if (log_func)
4833 log_func(main_pid->pid, sig, u);
4834
4835 r = pidref_kill_and_sigcont(main_pid, sig);
4836 if (r < 0 && r != -ESRCH) {
4837 _cleanup_free_ char *comm = NULL;
4838 (void) get_process_comm(main_pid->pid, &comm);
4839
4840 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid->pid, strna(comm));
4841 } else {
4842 if (!main_pid_alien)
4843 wait_for_exit = true;
4844
4845 if (r != -ESRCH && send_sighup)
4846 (void) pidref_kill(main_pid, SIGHUP);
4847 }
4848 }
4849
4850 if (pidref_is_set(control_pid)) {
4851 if (log_func)
4852 log_func(control_pid->pid, sig, u);
4853
4854 r = pidref_kill_and_sigcont(control_pid, sig);
4855 if (r < 0 && r != -ESRCH) {
4856 _cleanup_free_ char *comm = NULL;
4857 (void) get_process_comm(control_pid->pid, &comm);
4858
4859 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid->pid, strna(comm));
4860 } else {
4861 wait_for_exit = true;
4862
4863 if (r != -ESRCH && send_sighup)
4864 (void) pidref_kill(control_pid, SIGHUP);
4865 }
4866 }
4867
4868 if (u->cgroup_path &&
4869 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4870 _cleanup_set_free_ Set *pid_set = NULL;
4871
4872 /* Exclude the main/control pids from being killed via the cgroup */
4873 pid_set = unit_pid_set(main_pid ? main_pid->pid : 0, control_pid ? control_pid->pid : 0);
4874 if (!pid_set)
4875 return -ENOMEM;
4876
4877 r = cg_kill_recursive(
4878 u->cgroup_path,
4879 sig,
4880 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4881 pid_set,
4882 log_func, u);
4883 if (r < 0) {
4884 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4885 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", empty_to_root(u->cgroup_path));
4886
4887 } else if (r > 0) {
4888
4889 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4890 * we are running in a container or if this is a delegation unit, simply because cgroup
4891 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4892 * of containers it can be confused easily by left-over directories in the cgroup — which
4893 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4894 * there we get proper events. Hence rely on them. */
4895
4896 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4897 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4898 wait_for_exit = true;
4899
4900 if (send_sighup) {
4901 set_free(pid_set);
4902
4903 pid_set = unit_pid_set(main_pid ? main_pid->pid : 0, control_pid ? control_pid->pid : 0);
4904 if (!pid_set)
4905 return -ENOMEM;
4906
4907 (void) cg_kill_recursive(
4908 u->cgroup_path,
4909 SIGHUP,
4910 CGROUP_IGNORE_SELF,
4911 pid_set,
4912 /* kill_log= */ NULL,
4913 /* userdata= */ NULL);
4914 }
4915 }
4916 }
4917
4918 return wait_for_exit;
4919 }
4920
4921 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4922 int r;
4923
4924 assert(u);
4925 assert(path);
4926
4927 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these
4928 * paths in the unit (from the path to the UnitDependencyInfo structure indicating how to the
4929 * dependency came to be). However, we build a prefix table for all possible prefixes so that new
4930 * appearing mount units can easily determine which units to make themselves a dependency of. */
4931
4932 if (!path_is_absolute(path))
4933 return -EINVAL;
4934
4935 if (hashmap_contains(u->requires_mounts_for, path)) /* Exit quickly if the path is already covered. */
4936 return 0;
4937
4938 _cleanup_free_ char *p = strdup(path);
4939 if (!p)
4940 return -ENOMEM;
4941
4942 /* Use the canonical form of the path as the stored key. We call path_is_normalized()
4943 * only after simplification, since path_is_normalized() rejects paths with '.'.
4944 * path_is_normalized() also verifies that the path fits in PATH_MAX. */
4945 path = path_simplify(p);
4946
4947 if (!path_is_normalized(path))
4948 return -EPERM;
4949
4950 UnitDependencyInfo di = {
4951 .origin_mask = mask
4952 };
4953
4954 r = hashmap_ensure_put(&u->requires_mounts_for, &path_hash_ops, p, di.data);
4955 if (r < 0)
4956 return r;
4957 assert(r > 0);
4958 TAKE_PTR(p); /* path remains a valid pointer to the string stored in the hashmap */
4959
4960 char prefix[strlen(path) + 1];
4961 PATH_FOREACH_PREFIX_MORE(prefix, path) {
4962 Set *x;
4963
4964 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
4965 if (!x) {
4966 _cleanup_free_ char *q = NULL;
4967
4968 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
4969 if (r < 0)
4970 return r;
4971
4972 q = strdup(prefix);
4973 if (!q)
4974 return -ENOMEM;
4975
4976 x = set_new(NULL);
4977 if (!x)
4978 return -ENOMEM;
4979
4980 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
4981 if (r < 0) {
4982 set_free(x);
4983 return r;
4984 }
4985 q = NULL;
4986 }
4987
4988 r = set_put(x, u);
4989 if (r < 0)
4990 return r;
4991 }
4992
4993 return 0;
4994 }
4995
4996 int unit_setup_exec_runtime(Unit *u) {
4997 _cleanup_(exec_shared_runtime_unrefp) ExecSharedRuntime *esr = NULL;
4998 _cleanup_(dynamic_creds_unrefp) DynamicCreds *dcreds = NULL;
4999 _cleanup_set_free_ Set *units = NULL;
5000 ExecRuntime **rt;
5001 ExecContext *ec;
5002 size_t offset;
5003 Unit *other;
5004 int r;
5005
5006 offset = UNIT_VTABLE(u)->exec_runtime_offset;
5007 assert(offset > 0);
5008
5009 /* Check if there already is an ExecRuntime for this unit? */
5010 rt = (ExecRuntime**) ((uint8_t*) u + offset);
5011 if (*rt)
5012 return 0;
5013
5014 ec = unit_get_exec_context(u);
5015 assert(ec);
5016
5017 r = unit_get_transitive_dependency_set(u, UNIT_ATOM_JOINS_NAMESPACE_OF, &units);
5018 if (r < 0)
5019 return r;
5020
5021 /* Try to get it from somebody else */
5022 SET_FOREACH(other, units) {
5023 r = exec_shared_runtime_acquire(u->manager, NULL, other->id, false, &esr);
5024 if (r < 0)
5025 return r;
5026 if (r > 0)
5027 break;
5028 }
5029
5030 if (!esr) {
5031 r = exec_shared_runtime_acquire(u->manager, ec, u->id, true, &esr);
5032 if (r < 0)
5033 return r;
5034 }
5035
5036 if (ec->dynamic_user) {
5037 r = dynamic_creds_make(u->manager, ec->user, ec->group, &dcreds);
5038 if (r < 0)
5039 return r;
5040 }
5041
5042 r = exec_runtime_make(u, ec, esr, dcreds, rt);
5043 if (r < 0)
5044 return r;
5045
5046 TAKE_PTR(esr);
5047 TAKE_PTR(dcreds);
5048
5049 return r;
5050 }
5051
5052 bool unit_type_supported(UnitType t) {
5053 static int8_t cache[_UNIT_TYPE_MAX] = {}; /* -1: disabled, 1: enabled: 0: don't know */
5054 int r;
5055
5056 if (_unlikely_(t < 0))
5057 return false;
5058 if (_unlikely_(t >= _UNIT_TYPE_MAX))
5059 return false;
5060
5061 if (cache[t] == 0) {
5062 char *e;
5063
5064 e = strjoina("SYSTEMD_SUPPORT_", unit_type_to_string(t));
5065
5066 r = getenv_bool(ascii_strupper(e));
5067 if (r < 0 && r != -ENXIO)
5068 log_debug_errno(r, "Failed to parse $%s, ignoring: %m", e);
5069
5070 cache[t] = r == 0 ? -1 : 1;
5071 }
5072 if (cache[t] < 0)
5073 return false;
5074
5075 if (!unit_vtable[t]->supported)
5076 return true;
5077
5078 return unit_vtable[t]->supported();
5079 }
5080
5081 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
5082 int r;
5083
5084 assert(u);
5085 assert(where);
5086
5087 if (!unit_log_level_test(u, LOG_NOTICE))
5088 return;
5089
5090 r = dir_is_empty(where, /* ignore_hidden_or_backup= */ false);
5091 if (r > 0 || r == -ENOTDIR)
5092 return;
5093 if (r < 0) {
5094 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
5095 return;
5096 }
5097
5098 log_unit_struct(u, LOG_NOTICE,
5099 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5100 LOG_UNIT_INVOCATION_ID(u),
5101 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
5102 "WHERE=%s", where);
5103 }
5104
5105 int unit_fail_if_noncanonical(Unit *u, const char* where) {
5106 _cleanup_free_ char *canonical_where = NULL;
5107 int r;
5108
5109 assert(u);
5110 assert(where);
5111
5112 r = chase(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
5113 if (r < 0) {
5114 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
5115 return 0;
5116 }
5117
5118 /* We will happily ignore a trailing slash (or any redundant slashes) */
5119 if (path_equal(where, canonical_where))
5120 return 0;
5121
5122 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
5123 log_unit_struct(u, LOG_ERR,
5124 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5125 LOG_UNIT_INVOCATION_ID(u),
5126 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
5127 "WHERE=%s", where);
5128
5129 return -ELOOP;
5130 }
5131
5132 bool unit_is_pristine(Unit *u) {
5133 assert(u);
5134
5135 /* Check if the unit already exists or is already around, in a number of different ways. Note that to
5136 * cater for unit types such as slice, we are generally fine with units that are marked UNIT_LOADED
5137 * even though nothing was actually loaded, as those unit types don't require a file on disk.
5138 *
5139 * Note that we don't check for drop-ins here, because we allow drop-ins for transient units
5140 * identically to non-transient units, both unit-specific and hierarchical. E.g. for a-b-c.service:
5141 * service.d/….conf, a-.service.d/….conf, a-b-.service.d/….conf, a-b-c.service.d/….conf.
5142 */
5143
5144 return IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) &&
5145 !u->fragment_path &&
5146 !u->source_path &&
5147 !u->job &&
5148 !u->merged_into;
5149 }
5150
5151 PidRef* unit_control_pid(Unit *u) {
5152 assert(u);
5153
5154 if (UNIT_VTABLE(u)->control_pid)
5155 return UNIT_VTABLE(u)->control_pid(u);
5156
5157 return NULL;
5158 }
5159
5160 PidRef* unit_main_pid(Unit *u) {
5161 assert(u);
5162
5163 if (UNIT_VTABLE(u)->main_pid)
5164 return UNIT_VTABLE(u)->main_pid(u);
5165
5166 return NULL;
5167 }
5168
5169 static void unit_modify_user_nft_set(Unit *u, bool add, NFTSetSource source, uint32_t element) {
5170 int r;
5171
5172 assert(u);
5173
5174 if (!MANAGER_IS_SYSTEM(u->manager))
5175 return;
5176
5177 CGroupContext *c;
5178 c = unit_get_cgroup_context(u);
5179 if (!c)
5180 return;
5181
5182 if (!u->manager->fw_ctx) {
5183 r = fw_ctx_new_full(&u->manager->fw_ctx, /* init_tables= */ false);
5184 if (r < 0)
5185 return;
5186
5187 assert(u->manager->fw_ctx);
5188 }
5189
5190 FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets) {
5191 if (nft_set->source != source)
5192 continue;
5193
5194 r = nft_set_element_modify_any(u->manager->fw_ctx, add, nft_set->nfproto, nft_set->table, nft_set->set, &element, sizeof(element));
5195 if (r < 0)
5196 log_warning_errno(r, "Failed to %s NFT set: family %s, table %s, set %s, ID %u, ignoring: %m",
5197 add? "add" : "delete", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, element);
5198 else
5199 log_debug("%s NFT set: family %s, table %s, set %s, ID %u",
5200 add? "Added" : "Deleted", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, element);
5201 }
5202 }
5203
5204 static void unit_unref_uid_internal(
5205 Unit *u,
5206 uid_t *ref_uid,
5207 bool destroy_now,
5208 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
5209
5210 assert(u);
5211 assert(ref_uid);
5212 assert(_manager_unref_uid);
5213
5214 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
5215 * gid_t are actually the same time, with the same validity rules.
5216 *
5217 * Drops a reference to UID/GID from a unit. */
5218
5219 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5220 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5221
5222 if (!uid_is_valid(*ref_uid))
5223 return;
5224
5225 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
5226 *ref_uid = UID_INVALID;
5227 }
5228
5229 static void unit_unref_uid(Unit *u, bool destroy_now) {
5230 assert(u);
5231
5232 unit_modify_user_nft_set(u, /* add = */ false, NFT_SET_SOURCE_USER, u->ref_uid);
5233
5234 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
5235 }
5236
5237 static void unit_unref_gid(Unit *u, bool destroy_now) {
5238 assert(u);
5239
5240 unit_modify_user_nft_set(u, /* add = */ false, NFT_SET_SOURCE_GROUP, u->ref_gid);
5241
5242 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
5243 }
5244
5245 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5246 assert(u);
5247
5248 unit_unref_uid(u, destroy_now);
5249 unit_unref_gid(u, destroy_now);
5250 }
5251
5252 static int unit_ref_uid_internal(
5253 Unit *u,
5254 uid_t *ref_uid,
5255 uid_t uid,
5256 bool clean_ipc,
5257 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
5258
5259 int r;
5260
5261 assert(u);
5262 assert(ref_uid);
5263 assert(uid_is_valid(uid));
5264 assert(_manager_ref_uid);
5265
5266 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
5267 * are actually the same type, and have the same validity rules.
5268 *
5269 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5270 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5271 * drops to zero. */
5272
5273 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5274 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5275
5276 if (*ref_uid == uid)
5277 return 0;
5278
5279 if (uid_is_valid(*ref_uid)) /* Already set? */
5280 return -EBUSY;
5281
5282 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5283 if (r < 0)
5284 return r;
5285
5286 *ref_uid = uid;
5287 return 1;
5288 }
5289
5290 static int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5291 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5292 }
5293
5294 static int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5295 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5296 }
5297
5298 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5299 int r = 0, q = 0;
5300
5301 assert(u);
5302
5303 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5304
5305 if (uid_is_valid(uid)) {
5306 r = unit_ref_uid(u, uid, clean_ipc);
5307 if (r < 0)
5308 return r;
5309 }
5310
5311 if (gid_is_valid(gid)) {
5312 q = unit_ref_gid(u, gid, clean_ipc);
5313 if (q < 0) {
5314 if (r > 0)
5315 unit_unref_uid(u, false);
5316
5317 return q;
5318 }
5319 }
5320
5321 return r > 0 || q > 0;
5322 }
5323
5324 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5325 ExecContext *c;
5326 int r;
5327
5328 assert(u);
5329
5330 c = unit_get_exec_context(u);
5331
5332 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5333 if (r < 0)
5334 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5335
5336 unit_modify_user_nft_set(u, /* add = */ true, NFT_SET_SOURCE_USER, uid);
5337 unit_modify_user_nft_set(u, /* add = */ true, NFT_SET_SOURCE_GROUP, gid);
5338
5339 return r;
5340 }
5341
5342 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5343 int r;
5344
5345 assert(u);
5346
5347 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5348 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5349 * objects when no service references the UID/GID anymore. */
5350
5351 r = unit_ref_uid_gid(u, uid, gid);
5352 if (r > 0)
5353 unit_add_to_dbus_queue(u);
5354 }
5355
5356 int unit_acquire_invocation_id(Unit *u) {
5357 sd_id128_t id;
5358 int r;
5359
5360 assert(u);
5361
5362 r = sd_id128_randomize(&id);
5363 if (r < 0)
5364 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5365
5366 r = unit_set_invocation_id(u, id);
5367 if (r < 0)
5368 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5369
5370 unit_add_to_dbus_queue(u);
5371 return 0;
5372 }
5373
5374 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5375 int r;
5376
5377 assert(u);
5378 assert(p);
5379
5380 /* Copy parameters from manager */
5381 r = manager_get_effective_environment(u->manager, &p->environment);
5382 if (r < 0)
5383 return r;
5384
5385 p->runtime_scope = u->manager->runtime_scope;
5386
5387 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5388 p->cgroup_supported = u->manager->cgroup_supported;
5389 p->prefix = u->manager->prefix;
5390 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5391
5392 /* Copy parameters from unit */
5393 p->cgroup_path = u->cgroup_path;
5394 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5395
5396 p->received_credentials_directory = u->manager->received_credentials_directory;
5397 p->received_encrypted_credentials_directory = u->manager->received_encrypted_credentials_directory;
5398
5399 return 0;
5400 }
5401
5402 int unit_fork_helper_process(Unit *u, const char *name, PidRef *ret) {
5403 pid_t pid;
5404 int r;
5405
5406 assert(u);
5407 assert(ret);
5408
5409 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5410 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5411
5412 (void) unit_realize_cgroup(u);
5413
5414 r = safe_fork(name, FORK_REOPEN_LOG|FORK_DEATHSIG, &pid);
5415 if (r < 0)
5416 return r;
5417 if (r > 0) {
5418 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
5419 int q;
5420
5421 /* Parent */
5422
5423 q = pidref_set_pid(&pidref, pid);
5424 if (q < 0)
5425 return q;
5426
5427 *ret = TAKE_PIDREF(pidref);
5428 return r;
5429 }
5430
5431 /* Child */
5432
5433 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE);
5434 (void) ignore_signals(SIGPIPE);
5435
5436 if (u->cgroup_path) {
5437 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5438 if (r < 0) {
5439 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", empty_to_root(u->cgroup_path));
5440 _exit(EXIT_CGROUP);
5441 }
5442 }
5443
5444 return 0;
5445 }
5446
5447 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, PidRef *ret_pid) {
5448 _cleanup_(pidref_done) PidRef pid = PIDREF_NULL;
5449 int r;
5450
5451 assert(u);
5452 assert(ret_pid);
5453
5454 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5455 if (r < 0)
5456 return r;
5457 if (r == 0) {
5458 int ret = EXIT_SUCCESS;
5459
5460 STRV_FOREACH(i, paths) {
5461 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5462 if (r < 0) {
5463 log_error_errno(r, "Failed to remove '%s': %m", *i);
5464 ret = EXIT_FAILURE;
5465 }
5466 }
5467
5468 _exit(ret);
5469 }
5470
5471 r = unit_watch_pidref(u, &pid, /* exclusive= */ true);
5472 if (r < 0)
5473 return r;
5474
5475 *ret_pid = TAKE_PIDREF(pid);
5476 return 0;
5477 }
5478
5479 static void unit_update_dependency_mask(Hashmap *deps, Unit *other, UnitDependencyInfo di) {
5480 assert(deps);
5481 assert(other);
5482
5483 if (di.origin_mask == 0 && di.destination_mask == 0)
5484 /* No bit set anymore, let's drop the whole entry */
5485 assert_se(hashmap_remove(deps, other));
5486 else
5487 /* Mask was reduced, let's update the entry */
5488 assert_se(hashmap_update(deps, other, di.data) == 0);
5489 }
5490
5491 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5492 Hashmap *deps;
5493 assert(u);
5494
5495 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5496
5497 if (mask == 0)
5498 return;
5499
5500 HASHMAP_FOREACH(deps, u->dependencies) {
5501 bool done;
5502
5503 do {
5504 UnitDependencyInfo di;
5505 Unit *other;
5506
5507 done = true;
5508
5509 HASHMAP_FOREACH_KEY(di.data, other, deps) {
5510 Hashmap *other_deps;
5511
5512 if (FLAGS_SET(~mask, di.origin_mask))
5513 continue;
5514
5515 di.origin_mask &= ~mask;
5516 unit_update_dependency_mask(deps, other, di);
5517
5518 /* We updated the dependency from our unit to the other unit now. But most
5519 * dependencies imply a reverse dependency. Hence, let's delete that one
5520 * too. For that we go through all dependency types on the other unit and
5521 * delete all those which point to us and have the right mask set. */
5522
5523 HASHMAP_FOREACH(other_deps, other->dependencies) {
5524 UnitDependencyInfo dj;
5525
5526 dj.data = hashmap_get(other_deps, u);
5527 if (FLAGS_SET(~mask, dj.destination_mask))
5528 continue;
5529
5530 dj.destination_mask &= ~mask;
5531 unit_update_dependency_mask(other_deps, u, dj);
5532 }
5533
5534 unit_add_to_gc_queue(other);
5535
5536 /* The unit 'other' may not be wanted by the unit 'u'. */
5537 unit_submit_to_stop_when_unneeded_queue(other);
5538
5539 done = false;
5540 break;
5541 }
5542
5543 } while (!done);
5544 }
5545 }
5546
5547 static int unit_get_invocation_path(Unit *u, char **ret) {
5548 char *p;
5549 int r;
5550
5551 assert(u);
5552 assert(ret);
5553
5554 if (MANAGER_IS_SYSTEM(u->manager))
5555 p = strjoin("/run/systemd/units/invocation:", u->id);
5556 else {
5557 _cleanup_free_ char *user_path = NULL;
5558 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5559 if (r < 0)
5560 return r;
5561 p = strjoin(user_path, u->id);
5562 }
5563
5564 if (!p)
5565 return -ENOMEM;
5566
5567 *ret = p;
5568 return 0;
5569 }
5570
5571 static int unit_export_invocation_id(Unit *u) {
5572 _cleanup_free_ char *p = NULL;
5573 int r;
5574
5575 assert(u);
5576
5577 if (u->exported_invocation_id)
5578 return 0;
5579
5580 if (sd_id128_is_null(u->invocation_id))
5581 return 0;
5582
5583 r = unit_get_invocation_path(u, &p);
5584 if (r < 0)
5585 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5586
5587 r = symlink_atomic_label(u->invocation_id_string, p);
5588 if (r < 0)
5589 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5590
5591 u->exported_invocation_id = true;
5592 return 0;
5593 }
5594
5595 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5596 const char *p;
5597 char buf[2];
5598 int r;
5599
5600 assert(u);
5601 assert(c);
5602
5603 if (u->exported_log_level_max)
5604 return 0;
5605
5606 if (c->log_level_max < 0)
5607 return 0;
5608
5609 assert(c->log_level_max <= 7);
5610
5611 buf[0] = '0' + c->log_level_max;
5612 buf[1] = 0;
5613
5614 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5615 r = symlink_atomic(buf, p);
5616 if (r < 0)
5617 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5618
5619 u->exported_log_level_max = true;
5620 return 0;
5621 }
5622
5623 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5624 _cleanup_close_ int fd = -EBADF;
5625 struct iovec *iovec;
5626 const char *p;
5627 char *pattern;
5628 le64_t *sizes;
5629 ssize_t n;
5630 int r;
5631
5632 if (u->exported_log_extra_fields)
5633 return 0;
5634
5635 if (c->n_log_extra_fields <= 0)
5636 return 0;
5637
5638 sizes = newa(le64_t, c->n_log_extra_fields);
5639 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5640
5641 for (size_t i = 0; i < c->n_log_extra_fields; i++) {
5642 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5643
5644 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5645 iovec[i*2+1] = c->log_extra_fields[i];
5646 }
5647
5648 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5649 pattern = strjoina(p, ".XXXXXX");
5650
5651 fd = mkostemp_safe(pattern);
5652 if (fd < 0)
5653 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5654
5655 n = writev(fd, iovec, c->n_log_extra_fields*2);
5656 if (n < 0) {
5657 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5658 goto fail;
5659 }
5660
5661 (void) fchmod(fd, 0644);
5662
5663 if (rename(pattern, p) < 0) {
5664 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5665 goto fail;
5666 }
5667
5668 u->exported_log_extra_fields = true;
5669 return 0;
5670
5671 fail:
5672 (void) unlink(pattern);
5673 return r;
5674 }
5675
5676 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5677 _cleanup_free_ char *buf = NULL;
5678 const char *p;
5679 int r;
5680
5681 assert(u);
5682 assert(c);
5683
5684 if (u->exported_log_ratelimit_interval)
5685 return 0;
5686
5687 if (c->log_ratelimit_interval_usec == 0)
5688 return 0;
5689
5690 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5691
5692 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5693 return log_oom();
5694
5695 r = symlink_atomic(buf, p);
5696 if (r < 0)
5697 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5698
5699 u->exported_log_ratelimit_interval = true;
5700 return 0;
5701 }
5702
5703 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5704 _cleanup_free_ char *buf = NULL;
5705 const char *p;
5706 int r;
5707
5708 assert(u);
5709 assert(c);
5710
5711 if (u->exported_log_ratelimit_burst)
5712 return 0;
5713
5714 if (c->log_ratelimit_burst == 0)
5715 return 0;
5716
5717 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5718
5719 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5720 return log_oom();
5721
5722 r = symlink_atomic(buf, p);
5723 if (r < 0)
5724 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5725
5726 u->exported_log_ratelimit_burst = true;
5727 return 0;
5728 }
5729
5730 void unit_export_state_files(Unit *u) {
5731 const ExecContext *c;
5732
5733 assert(u);
5734
5735 if (!u->id)
5736 return;
5737
5738 if (MANAGER_IS_TEST_RUN(u->manager))
5739 return;
5740
5741 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5742 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5743 * the IPC system itself and PID 1 also log to the journal.
5744 *
5745 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5746 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5747 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5748 * namespace at least.
5749 *
5750 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5751 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5752 * them with one. */
5753
5754 (void) unit_export_invocation_id(u);
5755
5756 if (!MANAGER_IS_SYSTEM(u->manager))
5757 return;
5758
5759 c = unit_get_exec_context(u);
5760 if (c) {
5761 (void) unit_export_log_level_max(u, c);
5762 (void) unit_export_log_extra_fields(u, c);
5763 (void) unit_export_log_ratelimit_interval(u, c);
5764 (void) unit_export_log_ratelimit_burst(u, c);
5765 }
5766 }
5767
5768 void unit_unlink_state_files(Unit *u) {
5769 const char *p;
5770
5771 assert(u);
5772
5773 if (!u->id)
5774 return;
5775
5776 /* Undoes the effect of unit_export_state() */
5777
5778 if (u->exported_invocation_id) {
5779 _cleanup_free_ char *invocation_path = NULL;
5780 int r = unit_get_invocation_path(u, &invocation_path);
5781 if (r >= 0) {
5782 (void) unlink(invocation_path);
5783 u->exported_invocation_id = false;
5784 }
5785 }
5786
5787 if (!MANAGER_IS_SYSTEM(u->manager))
5788 return;
5789
5790 if (u->exported_log_level_max) {
5791 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5792 (void) unlink(p);
5793
5794 u->exported_log_level_max = false;
5795 }
5796
5797 if (u->exported_log_extra_fields) {
5798 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5799 (void) unlink(p);
5800
5801 u->exported_log_extra_fields = false;
5802 }
5803
5804 if (u->exported_log_ratelimit_interval) {
5805 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5806 (void) unlink(p);
5807
5808 u->exported_log_ratelimit_interval = false;
5809 }
5810
5811 if (u->exported_log_ratelimit_burst) {
5812 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5813 (void) unlink(p);
5814
5815 u->exported_log_ratelimit_burst = false;
5816 }
5817 }
5818
5819 int unit_prepare_exec(Unit *u) {
5820 int r;
5821
5822 assert(u);
5823
5824 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5825 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5826 r = bpf_firewall_load_custom(u);
5827 if (r < 0)
5828 return r;
5829
5830 /* Prepares everything so that we can fork of a process for this unit */
5831
5832 (void) unit_realize_cgroup(u);
5833
5834 if (u->reset_accounting) {
5835 (void) unit_reset_accounting(u);
5836 u->reset_accounting = false;
5837 }
5838
5839 unit_export_state_files(u);
5840
5841 r = unit_setup_exec_runtime(u);
5842 if (r < 0)
5843 return r;
5844
5845 return 0;
5846 }
5847
5848 static bool ignore_leftover_process(const char *comm) {
5849 return comm && comm[0] == '('; /* Most likely our own helper process (PAM?), ignore */
5850 }
5851
5852 int unit_log_leftover_process_start(pid_t pid, int sig, void *userdata) {
5853 _cleanup_free_ char *comm = NULL;
5854
5855 (void) get_process_comm(pid, &comm);
5856
5857 if (ignore_leftover_process(comm))
5858 return 0;
5859
5860 /* During start we print a warning */
5861
5862 log_unit_warning(userdata,
5863 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5864 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5865 pid, strna(comm));
5866
5867 return 1;
5868 }
5869
5870 int unit_log_leftover_process_stop(pid_t pid, int sig, void *userdata) {
5871 _cleanup_free_ char *comm = NULL;
5872
5873 (void) get_process_comm(pid, &comm);
5874
5875 if (ignore_leftover_process(comm))
5876 return 0;
5877
5878 /* During stop we only print an informational message */
5879
5880 log_unit_info(userdata,
5881 "Unit process " PID_FMT " (%s) remains running after unit stopped.",
5882 pid, strna(comm));
5883
5884 return 1;
5885 }
5886
5887 int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func) {
5888 assert(u);
5889
5890 (void) unit_pick_cgroup_path(u);
5891
5892 if (!u->cgroup_path)
5893 return 0;
5894
5895 return cg_kill_recursive(
5896 u->cgroup_path,
5897 /* sig= */ 0,
5898 /* flags= */ 0,
5899 /* set= */ NULL,
5900 log_func,
5901 u);
5902 }
5903
5904 bool unit_needs_console(Unit *u) {
5905 ExecContext *ec;
5906 UnitActiveState state;
5907
5908 assert(u);
5909
5910 state = unit_active_state(u);
5911
5912 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5913 return false;
5914
5915 if (UNIT_VTABLE(u)->needs_console)
5916 return UNIT_VTABLE(u)->needs_console(u);
5917
5918 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5919 ec = unit_get_exec_context(u);
5920 if (!ec)
5921 return false;
5922
5923 return exec_context_may_touch_console(ec);
5924 }
5925
5926 int unit_pid_attachable(Unit *u, PidRef *pid, sd_bus_error *error) {
5927 int r;
5928
5929 assert(u);
5930
5931 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5932 * and not a kernel thread either */
5933
5934 /* First, a simple range check */
5935 if (!pidref_is_set(pid))
5936 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier is not valid.");
5937
5938 /* Some extra safety check */
5939 if (pid->pid == 1 || pid->pid == getpid_cached())
5940 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid->pid);
5941
5942 /* Don't even begin to bother with kernel threads */
5943 r = is_kernel_thread(pid->pid);
5944 if (r == -ESRCH)
5945 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid->pid);
5946 if (r < 0)
5947 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid->pid);
5948 if (r > 0)
5949 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid->pid);
5950
5951 return 0;
5952 }
5953
5954 void unit_log_success(Unit *u) {
5955 assert(u);
5956
5957 /* Let's show message "Deactivated successfully" in debug mode (when manager is user) rather than in info mode.
5958 * This message has low information value for regular users and it might be a bit overwhelming on a system with
5959 * a lot of devices. */
5960 log_unit_struct(u,
5961 MANAGER_IS_USER(u->manager) ? LOG_DEBUG : LOG_INFO,
5962 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5963 LOG_UNIT_INVOCATION_ID(u),
5964 LOG_UNIT_MESSAGE(u, "Deactivated successfully."));
5965 }
5966
5967 void unit_log_failure(Unit *u, const char *result) {
5968 assert(u);
5969 assert(result);
5970
5971 log_unit_struct(u, LOG_WARNING,
5972 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5973 LOG_UNIT_INVOCATION_ID(u),
5974 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5975 "UNIT_RESULT=%s", result);
5976 }
5977
5978 void unit_log_skip(Unit *u, const char *result) {
5979 assert(u);
5980 assert(result);
5981
5982 log_unit_struct(u, LOG_INFO,
5983 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
5984 LOG_UNIT_INVOCATION_ID(u),
5985 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
5986 "UNIT_RESULT=%s", result);
5987 }
5988
5989 void unit_log_process_exit(
5990 Unit *u,
5991 const char *kind,
5992 const char *command,
5993 bool success,
5994 int code,
5995 int status) {
5996
5997 int level;
5998
5999 assert(u);
6000 assert(kind);
6001
6002 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
6003 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
6004 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
6005 * WARNING. */
6006 if (success)
6007 level = LOG_DEBUG;
6008 else if (code == CLD_EXITED)
6009 level = LOG_NOTICE;
6010 else
6011 level = LOG_WARNING;
6012
6013 log_unit_struct(u, level,
6014 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
6015 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s%s",
6016 kind,
6017 sigchld_code_to_string(code), status,
6018 strna(code == CLD_EXITED
6019 ? exit_status_to_string(status, EXIT_STATUS_FULL)
6020 : signal_to_string(status)),
6021 success ? " (success)" : ""),
6022 "EXIT_CODE=%s", sigchld_code_to_string(code),
6023 "EXIT_STATUS=%i", status,
6024 "COMMAND=%s", strna(command),
6025 LOG_UNIT_INVOCATION_ID(u));
6026 }
6027
6028 int unit_exit_status(Unit *u) {
6029 assert(u);
6030
6031 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
6032 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
6033 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
6034 * service process has exited abnormally (signal/coredump). */
6035
6036 if (!UNIT_VTABLE(u)->exit_status)
6037 return -EOPNOTSUPP;
6038
6039 return UNIT_VTABLE(u)->exit_status(u);
6040 }
6041
6042 int unit_failure_action_exit_status(Unit *u) {
6043 int r;
6044
6045 assert(u);
6046
6047 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
6048
6049 if (u->failure_action_exit_status >= 0)
6050 return u->failure_action_exit_status;
6051
6052 r = unit_exit_status(u);
6053 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6054 return 255;
6055
6056 return r;
6057 }
6058
6059 int unit_success_action_exit_status(Unit *u) {
6060 int r;
6061
6062 assert(u);
6063
6064 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
6065
6066 if (u->success_action_exit_status >= 0)
6067 return u->success_action_exit_status;
6068
6069 r = unit_exit_status(u);
6070 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6071 return 255;
6072
6073 return r;
6074 }
6075
6076 int unit_test_trigger_loaded(Unit *u) {
6077 Unit *trigger;
6078
6079 /* Tests whether the unit to trigger is loaded */
6080
6081 trigger = UNIT_TRIGGER(u);
6082 if (!trigger)
6083 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6084 "Refusing to start, no unit to trigger.");
6085 if (trigger->load_state != UNIT_LOADED)
6086 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6087 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
6088
6089 return 0;
6090 }
6091
6092 void unit_destroy_runtime_data(Unit *u, const ExecContext *context) {
6093 assert(u);
6094 assert(context);
6095
6096 /* EXEC_PRESERVE_RESTART is handled via unit_release_resources()! */
6097 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
6098 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
6099
6100 exec_context_destroy_credentials(u);
6101 exec_context_destroy_mount_ns_dir(u);
6102 }
6103
6104 int unit_clean(Unit *u, ExecCleanMask mask) {
6105 UnitActiveState state;
6106
6107 assert(u);
6108
6109 /* Special return values:
6110 *
6111 * -EOPNOTSUPP → cleaning not supported for this unit type
6112 * -EUNATCH → cleaning not defined for this resource type
6113 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
6114 * a job queued or similar
6115 */
6116
6117 if (!UNIT_VTABLE(u)->clean)
6118 return -EOPNOTSUPP;
6119
6120 if (mask == 0)
6121 return -EUNATCH;
6122
6123 if (u->load_state != UNIT_LOADED)
6124 return -EBUSY;
6125
6126 if (u->job)
6127 return -EBUSY;
6128
6129 state = unit_active_state(u);
6130 if (state != UNIT_INACTIVE)
6131 return -EBUSY;
6132
6133 return UNIT_VTABLE(u)->clean(u, mask);
6134 }
6135
6136 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
6137 assert(u);
6138
6139 if (!UNIT_VTABLE(u)->clean ||
6140 u->load_state != UNIT_LOADED) {
6141 *ret = 0;
6142 return 0;
6143 }
6144
6145 /* When the clean() method is set, can_clean() really should be set too */
6146 assert(UNIT_VTABLE(u)->can_clean);
6147
6148 return UNIT_VTABLE(u)->can_clean(u, ret);
6149 }
6150
6151 bool unit_can_freeze(Unit *u) {
6152 assert(u);
6153
6154 if (UNIT_VTABLE(u)->can_freeze)
6155 return UNIT_VTABLE(u)->can_freeze(u);
6156
6157 return UNIT_VTABLE(u)->freeze;
6158 }
6159
6160 void unit_frozen(Unit *u) {
6161 assert(u);
6162
6163 u->freezer_state = FREEZER_FROZEN;
6164
6165 bus_unit_send_pending_freezer_message(u, false);
6166 }
6167
6168 void unit_thawed(Unit *u) {
6169 assert(u);
6170
6171 u->freezer_state = FREEZER_RUNNING;
6172
6173 bus_unit_send_pending_freezer_message(u, false);
6174 }
6175
6176 static int unit_freezer_action(Unit *u, FreezerAction action) {
6177 UnitActiveState s;
6178 int (*method)(Unit*);
6179 int r;
6180
6181 assert(u);
6182 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
6183
6184 method = action == FREEZER_FREEZE ? UNIT_VTABLE(u)->freeze : UNIT_VTABLE(u)->thaw;
6185 if (!method || !cg_freezer_supported())
6186 return -EOPNOTSUPP;
6187
6188 if (u->job)
6189 return -EBUSY;
6190
6191 if (u->load_state != UNIT_LOADED)
6192 return -EHOSTDOWN;
6193
6194 s = unit_active_state(u);
6195 if (s != UNIT_ACTIVE)
6196 return -EHOSTDOWN;
6197
6198 if ((IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING) && action == FREEZER_FREEZE) ||
6199 (u->freezer_state == FREEZER_THAWING && action == FREEZER_THAW))
6200 return -EALREADY;
6201
6202 r = method(u);
6203 if (r <= 0)
6204 return r;
6205
6206 assert(IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING));
6207
6208 return 1;
6209 }
6210
6211 int unit_freeze(Unit *u) {
6212 return unit_freezer_action(u, FREEZER_FREEZE);
6213 }
6214
6215 int unit_thaw(Unit *u) {
6216 return unit_freezer_action(u, FREEZER_THAW);
6217 }
6218
6219 /* Wrappers around low-level cgroup freezer operations common for service and scope units */
6220 int unit_freeze_vtable_common(Unit *u) {
6221 return unit_cgroup_freezer_action(u, FREEZER_FREEZE);
6222 }
6223
6224 int unit_thaw_vtable_common(Unit *u) {
6225 return unit_cgroup_freezer_action(u, FREEZER_THAW);
6226 }
6227
6228 Condition *unit_find_failed_condition(Unit *u) {
6229 Condition *failed_trigger = NULL;
6230 bool has_succeeded_trigger = false;
6231
6232 if (u->condition_result)
6233 return NULL;
6234
6235 LIST_FOREACH(conditions, c, u->conditions)
6236 if (c->trigger) {
6237 if (c->result == CONDITION_SUCCEEDED)
6238 has_succeeded_trigger = true;
6239 else if (!failed_trigger)
6240 failed_trigger = c;
6241 } else if (c->result != CONDITION_SUCCEEDED)
6242 return c;
6243
6244 return failed_trigger && !has_succeeded_trigger ? failed_trigger : NULL;
6245 }
6246
6247 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
6248 [COLLECT_INACTIVE] = "inactive",
6249 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
6250 };
6251
6252 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);
6253
6254 Unit* unit_has_dependency(const Unit *u, UnitDependencyAtom atom, Unit *other) {
6255 Unit *i;
6256
6257 assert(u);
6258
6259 /* Checks if the unit has a dependency on 'other' with the specified dependency atom. If 'other' is
6260 * NULL checks if the unit has *any* dependency of that atom. Returns 'other' if found (or if 'other'
6261 * is NULL the first entry found), or NULL if not found. */
6262
6263 UNIT_FOREACH_DEPENDENCY(i, u, atom)
6264 if (!other || other == i)
6265 return i;
6266
6267 return NULL;
6268 }
6269
6270 int unit_get_dependency_array(const Unit *u, UnitDependencyAtom atom, Unit ***ret_array) {
6271 _cleanup_free_ Unit **array = NULL;
6272 size_t n = 0;
6273 Unit *other;
6274
6275 assert(u);
6276 assert(ret_array);
6277
6278 /* Gets a list of units matching a specific atom as array. This is useful when iterating through
6279 * dependencies while modifying them: the array is an "atomic snapshot" of sorts, that can be read
6280 * while the dependency table is continuously updated. */
6281
6282 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
6283 if (!GREEDY_REALLOC(array, n + 1))
6284 return -ENOMEM;
6285
6286 array[n++] = other;
6287 }
6288
6289 *ret_array = TAKE_PTR(array);
6290
6291 assert(n <= INT_MAX);
6292 return (int) n;
6293 }
6294
6295 int unit_get_transitive_dependency_set(Unit *u, UnitDependencyAtom atom, Set **ret) {
6296 _cleanup_set_free_ Set *units = NULL, *queue = NULL;
6297 Unit *other;
6298 int r;
6299
6300 assert(u);
6301 assert(ret);
6302
6303 /* Similar to unit_get_dependency_array(), but also search the same dependency in other units. */
6304
6305 do {
6306 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
6307 r = set_ensure_put(&units, NULL, other);
6308 if (r < 0)
6309 return r;
6310 if (r == 0)
6311 continue;
6312 r = set_ensure_put(&queue, NULL, other);
6313 if (r < 0)
6314 return r;
6315 }
6316 } while ((u = set_steal_first(queue)));
6317
6318 *ret = TAKE_PTR(units);
6319 return 0;
6320 }
6321
6322 int unit_arm_timer(
6323 Unit *u,
6324 sd_event_source **source,
6325 bool relative,
6326 usec_t usec,
6327 sd_event_time_handler_t handler) {
6328
6329 int r;
6330
6331 assert(u);
6332 assert(source);
6333 assert(handler);
6334
6335 if (*source) {
6336 if (usec == USEC_INFINITY)
6337 return sd_event_source_set_enabled(*source, SD_EVENT_OFF);
6338
6339 r = (relative ? sd_event_source_set_time_relative : sd_event_source_set_time)(*source, usec);
6340 if (r < 0)
6341 return r;
6342
6343 return sd_event_source_set_enabled(*source, SD_EVENT_ONESHOT);
6344 }
6345
6346 if (usec == USEC_INFINITY)
6347 return 0;
6348
6349 r = (relative ? sd_event_add_time_relative : sd_event_add_time)(
6350 u->manager->event,
6351 source,
6352 CLOCK_MONOTONIC,
6353 usec, 0,
6354 handler,
6355 u);
6356 if (r < 0)
6357 return r;
6358
6359 const char *d = strjoina(unit_type_to_string(u->type), "-timer");
6360 (void) sd_event_source_set_description(*source, d);
6361
6362 return 0;
6363 }
6364
6365 const ActivationDetailsVTable * const activation_details_vtable[_UNIT_TYPE_MAX] = {
6366 [UNIT_PATH] = &activation_details_path_vtable,
6367 [UNIT_TIMER] = &activation_details_timer_vtable,
6368 };
6369
6370 ActivationDetails *activation_details_new(Unit *trigger_unit) {
6371 _cleanup_free_ ActivationDetails *details = NULL;
6372
6373 assert(trigger_unit);
6374 assert(trigger_unit->type != _UNIT_TYPE_INVALID);
6375 assert(trigger_unit->id);
6376
6377 details = malloc0(activation_details_vtable[trigger_unit->type]->object_size);
6378 if (!details)
6379 return NULL;
6380
6381 *details = (ActivationDetails) {
6382 .n_ref = 1,
6383 .trigger_unit_type = trigger_unit->type,
6384 };
6385
6386 details->trigger_unit_name = strdup(trigger_unit->id);
6387 if (!details->trigger_unit_name)
6388 return NULL;
6389
6390 if (ACTIVATION_DETAILS_VTABLE(details)->init)
6391 ACTIVATION_DETAILS_VTABLE(details)->init(details, trigger_unit);
6392
6393 return TAKE_PTR(details);
6394 }
6395
6396 static ActivationDetails *activation_details_free(ActivationDetails *details) {
6397 if (!details)
6398 return NULL;
6399
6400 if (ACTIVATION_DETAILS_VTABLE(details)->done)
6401 ACTIVATION_DETAILS_VTABLE(details)->done(details);
6402
6403 free(details->trigger_unit_name);
6404
6405 return mfree(details);
6406 }
6407
6408 void activation_details_serialize(ActivationDetails *details, FILE *f) {
6409 if (!details || details->trigger_unit_type == _UNIT_TYPE_INVALID)
6410 return;
6411
6412 (void) serialize_item(f, "activation-details-unit-type", unit_type_to_string(details->trigger_unit_type));
6413 if (details->trigger_unit_name)
6414 (void) serialize_item(f, "activation-details-unit-name", details->trigger_unit_name);
6415 if (ACTIVATION_DETAILS_VTABLE(details)->serialize)
6416 ACTIVATION_DETAILS_VTABLE(details)->serialize(details, f);
6417 }
6418
6419 int activation_details_deserialize(const char *key, const char *value, ActivationDetails **details) {
6420 int r;
6421
6422 assert(key);
6423 assert(value);
6424 assert(details);
6425
6426 if (!*details) {
6427 UnitType t;
6428
6429 if (!streq(key, "activation-details-unit-type"))
6430 return -EINVAL;
6431
6432 t = unit_type_from_string(value);
6433 if (t < 0)
6434 return t;
6435
6436 /* The activation details vtable has defined ops only for path and timer units */
6437 if (!activation_details_vtable[t])
6438 return -EINVAL;
6439
6440 *details = malloc0(activation_details_vtable[t]->object_size);
6441 if (!*details)
6442 return -ENOMEM;
6443
6444 **details = (ActivationDetails) {
6445 .n_ref = 1,
6446 .trigger_unit_type = t,
6447 };
6448
6449 return 0;
6450 }
6451
6452 if (streq(key, "activation-details-unit-name")) {
6453 r = free_and_strdup(&(*details)->trigger_unit_name, value);
6454 if (r < 0)
6455 return r;
6456
6457 return 0;
6458 }
6459
6460 if (ACTIVATION_DETAILS_VTABLE(*details)->deserialize)
6461 return ACTIVATION_DETAILS_VTABLE(*details)->deserialize(key, value, details);
6462
6463 return -EINVAL;
6464 }
6465
6466 int activation_details_append_env(ActivationDetails *details, char ***strv) {
6467 int r = 0;
6468
6469 assert(strv);
6470
6471 if (!details)
6472 return 0;
6473
6474 if (!isempty(details->trigger_unit_name)) {
6475 char *s = strjoin("TRIGGER_UNIT=", details->trigger_unit_name);
6476 if (!s)
6477 return -ENOMEM;
6478
6479 r = strv_consume(strv, TAKE_PTR(s));
6480 if (r < 0)
6481 return r;
6482 }
6483
6484 if (ACTIVATION_DETAILS_VTABLE(details)->append_env) {
6485 r = ACTIVATION_DETAILS_VTABLE(details)->append_env(details, strv);
6486 if (r < 0)
6487 return r;
6488 }
6489
6490 return r + !isempty(details->trigger_unit_name); /* Return the number of variables added to the env block */
6491 }
6492
6493 int activation_details_append_pair(ActivationDetails *details, char ***strv) {
6494 int r = 0;
6495
6496 assert(strv);
6497
6498 if (!details)
6499 return 0;
6500
6501 if (!isempty(details->trigger_unit_name)) {
6502 r = strv_extend(strv, "trigger_unit");
6503 if (r < 0)
6504 return r;
6505
6506 r = strv_extend(strv, details->trigger_unit_name);
6507 if (r < 0)
6508 return r;
6509 }
6510
6511 if (ACTIVATION_DETAILS_VTABLE(details)->append_env) {
6512 r = ACTIVATION_DETAILS_VTABLE(details)->append_pair(details, strv);
6513 if (r < 0)
6514 return r;
6515 }
6516
6517 return r + !isempty(details->trigger_unit_name); /* Return the number of pairs added to the strv */
6518 }
6519
6520 DEFINE_TRIVIAL_REF_UNREF_FUNC(ActivationDetails, activation_details, activation_details_free);