]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
core: use SYNTHETIC_ERRNO() macro
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bus-common-errors.h"
15 #include "bus-util.h"
16 #include "cgroup-setup.h"
17 #include "cgroup-util.h"
18 #include "core-varlink.h"
19 #include "dbus-unit.h"
20 #include "dbus.h"
21 #include "dropin.h"
22 #include "escape.h"
23 #include "execute.h"
24 #include "fd-util.h"
25 #include "fileio-label.h"
26 #include "fileio.h"
27 #include "format-util.h"
28 #include "id128-util.h"
29 #include "io-util.h"
30 #include "install.h"
31 #include "label.h"
32 #include "load-dropin.h"
33 #include "load-fragment.h"
34 #include "log.h"
35 #include "macro.h"
36 #include "missing_audit.h"
37 #include "mkdir.h"
38 #include "parse-util.h"
39 #include "path-util.h"
40 #include "process-util.h"
41 #include "rm-rf.h"
42 #include "serialize.h"
43 #include "set.h"
44 #include "signal-util.h"
45 #include "sparse-endian.h"
46 #include "special.h"
47 #include "specifier.h"
48 #include "stat-util.h"
49 #include "stdio-util.h"
50 #include "string-table.h"
51 #include "string-util.h"
52 #include "strv.h"
53 #include "terminal-util.h"
54 #include "tmpfile-util.h"
55 #include "umask-util.h"
56 #include "unit-name.h"
57 #include "unit.h"
58 #include "user-util.h"
59 #include "virt.h"
60
61 /* Thresholds for logging at INFO level about resource consumption */
62 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
63 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
64 #define MENTIONWORTHY_IP_BYTES (0ULL)
65
66 /* Thresholds for logging at INFO level about resource consumption */
67 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
68 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
69 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
70
71 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
72 [UNIT_SERVICE] = &service_vtable,
73 [UNIT_SOCKET] = &socket_vtable,
74 [UNIT_TARGET] = &target_vtable,
75 [UNIT_DEVICE] = &device_vtable,
76 [UNIT_MOUNT] = &mount_vtable,
77 [UNIT_AUTOMOUNT] = &automount_vtable,
78 [UNIT_SWAP] = &swap_vtable,
79 [UNIT_TIMER] = &timer_vtable,
80 [UNIT_PATH] = &path_vtable,
81 [UNIT_SLICE] = &slice_vtable,
82 [UNIT_SCOPE] = &scope_vtable,
83 };
84
85 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
86
87 Unit *unit_new(Manager *m, size_t size) {
88 Unit *u;
89
90 assert(m);
91 assert(size >= sizeof(Unit));
92
93 u = malloc0(size);
94 if (!u)
95 return NULL;
96
97 u->manager = m;
98 u->type = _UNIT_TYPE_INVALID;
99 u->default_dependencies = true;
100 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
101 u->unit_file_preset = -1;
102 u->on_failure_job_mode = JOB_REPLACE;
103 u->cgroup_control_inotify_wd = -1;
104 u->cgroup_memory_inotify_wd = -1;
105 u->job_timeout = USEC_INFINITY;
106 u->job_running_timeout = USEC_INFINITY;
107 u->ref_uid = UID_INVALID;
108 u->ref_gid = GID_INVALID;
109 u->cpu_usage_last = NSEC_INFINITY;
110 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
111 u->failure_action_exit_status = u->success_action_exit_status = -1;
112
113 u->ip_accounting_ingress_map_fd = -1;
114 u->ip_accounting_egress_map_fd = -1;
115 u->ipv4_allow_map_fd = -1;
116 u->ipv6_allow_map_fd = -1;
117 u->ipv4_deny_map_fd = -1;
118 u->ipv6_deny_map_fd = -1;
119
120 u->last_section_private = -1;
121
122 u->start_ratelimit = (RateLimit) { m->default_start_limit_interval, m->default_start_limit_burst };
123 u->auto_stop_ratelimit = (RateLimit) { 10 * USEC_PER_SEC, 16 };
124
125 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
126 u->io_accounting_last[i] = UINT64_MAX;
127
128 return u;
129 }
130
131 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
132 _cleanup_(unit_freep) Unit *u = NULL;
133 int r;
134
135 u = unit_new(m, size);
136 if (!u)
137 return -ENOMEM;
138
139 r = unit_add_name(u, name);
140 if (r < 0)
141 return r;
142
143 *ret = TAKE_PTR(u);
144
145 return r;
146 }
147
148 bool unit_has_name(const Unit *u, const char *name) {
149 assert(u);
150 assert(name);
151
152 return streq_ptr(name, u->id) ||
153 set_contains(u->aliases, name);
154 }
155
156 static void unit_init(Unit *u) {
157 CGroupContext *cc;
158 ExecContext *ec;
159 KillContext *kc;
160
161 assert(u);
162 assert(u->manager);
163 assert(u->type >= 0);
164
165 cc = unit_get_cgroup_context(u);
166 if (cc) {
167 cgroup_context_init(cc);
168
169 /* Copy in the manager defaults into the cgroup
170 * context, _before_ the rest of the settings have
171 * been initialized */
172
173 cc->cpu_accounting = u->manager->default_cpu_accounting;
174 cc->io_accounting = u->manager->default_io_accounting;
175 cc->blockio_accounting = u->manager->default_blockio_accounting;
176 cc->memory_accounting = u->manager->default_memory_accounting;
177 cc->tasks_accounting = u->manager->default_tasks_accounting;
178 cc->ip_accounting = u->manager->default_ip_accounting;
179
180 if (u->type != UNIT_SLICE)
181 cc->tasks_max = u->manager->default_tasks_max;
182 }
183
184 ec = unit_get_exec_context(u);
185 if (ec) {
186 exec_context_init(ec);
187
188 if (MANAGER_IS_SYSTEM(u->manager))
189 ec->keyring_mode = EXEC_KEYRING_SHARED;
190 else {
191 ec->keyring_mode = EXEC_KEYRING_INHERIT;
192
193 /* User manager might have its umask redefined by PAM or UMask=. In this
194 * case let the units it manages inherit this value by default. They can
195 * still tune this value through their own unit file */
196 (void) get_process_umask(getpid_cached(), &ec->umask);
197 }
198 }
199
200 kc = unit_get_kill_context(u);
201 if (kc)
202 kill_context_init(kc);
203
204 if (UNIT_VTABLE(u)->init)
205 UNIT_VTABLE(u)->init(u);
206 }
207
208 static int unit_add_alias(Unit *u, char *donated_name) {
209 int r;
210
211 /* Make sure that u->names is allocated. We may leave u->names
212 * empty if we fail later, but this is not a problem. */
213 r = set_ensure_put(&u->aliases, &string_hash_ops, donated_name);
214 if (r < 0)
215 return r;
216 assert(r > 0);
217
218 return 0;
219 }
220
221 int unit_add_name(Unit *u, const char *text) {
222 _cleanup_free_ char *name = NULL, *instance = NULL;
223 UnitType t;
224 int r;
225
226 assert(u);
227 assert(text);
228
229 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
230 if (!u->instance)
231 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
232 "instance is not set when adding name '%s': %m", text);
233
234 r = unit_name_replace_instance(text, u->instance, &name);
235 if (r < 0)
236 return log_unit_debug_errno(u, r,
237 "failed to build instance name from '%s': %m", text);
238 } else {
239 name = strdup(text);
240 if (!name)
241 return -ENOMEM;
242 }
243
244 if (unit_has_name(u, name))
245 return 0;
246
247 if (hashmap_contains(u->manager->units, name))
248 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
249 "unit already exist when adding name '%s': %m", name);
250
251 if (!unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
252 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
253 "name '%s' is invalid: %m", name);
254
255 t = unit_name_to_type(name);
256 if (t < 0)
257 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
258 "failed to derive unit type from name '%s': %m", name);
259
260 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
261 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
262 "unit type is illegal: u->type(%d) and t(%d) for name '%s': %m",
263 u->type, t, name);
264
265 r = unit_name_to_instance(name, &instance);
266 if (r < 0)
267 return log_unit_debug_errno(u, r, "failed to extract instance from name '%s': %m", name);
268
269 if (instance && !unit_type_may_template(t))
270 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "templates are not allowed for name '%s': %m", name);
271
272 /* Ensure that this unit either has no instance, or that the instance matches. */
273 if (u->type != _UNIT_TYPE_INVALID && !streq_ptr(u->instance, instance))
274 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
275 "cannot add name %s, the instances don't match (\"%s\" != \"%s\").",
276 name, instance, u->instance);
277
278 if (u->id && !unit_type_may_alias(t))
279 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
280 "cannot add name %s, aliases are not allowed for %s units.",
281 name, unit_type_to_string(t));
282
283 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
284 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(E2BIG), "cannot add name, manager has too many units: %m");
285
286 /* Add name to the global hashmap first, because that's easier to undo */
287 r = hashmap_put(u->manager->units, name, u);
288 if (r < 0)
289 return log_unit_debug_errno(u, r, "add unit to hashmap failed for name '%s': %m", text);
290
291 if (u->id) {
292 r = unit_add_alias(u, name); /* unit_add_alias() takes ownership of the name on success */
293 if (r < 0) {
294 hashmap_remove(u->manager->units, name);
295 return r;
296 }
297 TAKE_PTR(name);
298
299 } else {
300 /* A new name, we don't need the set yet. */
301 assert(u->type == _UNIT_TYPE_INVALID);
302 assert(!u->instance);
303
304 u->type = t;
305 u->id = TAKE_PTR(name);
306 u->instance = TAKE_PTR(instance);
307
308 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
309 unit_init(u);
310 }
311
312 unit_add_to_dbus_queue(u);
313 return 0;
314 }
315
316 int unit_choose_id(Unit *u, const char *name) {
317 _cleanup_free_ char *t = NULL;
318 char *s;
319 int r;
320
321 assert(u);
322 assert(name);
323
324 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
325 if (!u->instance)
326 return -EINVAL;
327
328 r = unit_name_replace_instance(name, u->instance, &t);
329 if (r < 0)
330 return r;
331
332 name = t;
333 }
334
335 if (streq_ptr(u->id, name))
336 return 0; /* Nothing to do. */
337
338 /* Selects one of the aliases of this unit as the id */
339 s = set_get(u->aliases, (char*) name);
340 if (!s)
341 return -ENOENT;
342
343 if (u->id) {
344 r = set_remove_and_put(u->aliases, name, u->id);
345 if (r < 0)
346 return r;
347 } else
348 assert_se(set_remove(u->aliases, name)); /* see set_get() above… */
349
350 u->id = s; /* Old u->id is now stored in the set, and s is not stored anywhere */
351 unit_add_to_dbus_queue(u);
352
353 return 0;
354 }
355
356 int unit_set_description(Unit *u, const char *description) {
357 int r;
358
359 assert(u);
360
361 r = free_and_strdup(&u->description, empty_to_null(description));
362 if (r < 0)
363 return r;
364 if (r > 0)
365 unit_add_to_dbus_queue(u);
366
367 return 0;
368 }
369
370 bool unit_may_gc(Unit *u) {
371 UnitActiveState state;
372 int r;
373
374 assert(u);
375
376 /* Checks whether the unit is ready to be unloaded for garbage collection.
377 * Returns true when the unit may be collected, and false if there's some
378 * reason to keep it loaded.
379 *
380 * References from other units are *not* checked here. Instead, this is done
381 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
382 */
383
384 if (u->job)
385 return false;
386
387 if (u->nop_job)
388 return false;
389
390 state = unit_active_state(u);
391
392 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
393 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
394 UNIT_VTABLE(u)->release_resources)
395 UNIT_VTABLE(u)->release_resources(u);
396
397 if (u->perpetual)
398 return false;
399
400 if (sd_bus_track_count(u->bus_track) > 0)
401 return false;
402
403 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
404 switch (u->collect_mode) {
405
406 case COLLECT_INACTIVE:
407 if (state != UNIT_INACTIVE)
408 return false;
409
410 break;
411
412 case COLLECT_INACTIVE_OR_FAILED:
413 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
414 return false;
415
416 break;
417
418 default:
419 assert_not_reached("Unknown garbage collection mode");
420 }
421
422 if (u->cgroup_path) {
423 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
424 * around. Units with active processes should never be collected. */
425
426 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
427 if (r < 0)
428 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
429 if (r <= 0)
430 return false;
431 }
432
433 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
434 return false;
435
436 return true;
437 }
438
439 void unit_add_to_load_queue(Unit *u) {
440 assert(u);
441 assert(u->type != _UNIT_TYPE_INVALID);
442
443 if (u->load_state != UNIT_STUB || u->in_load_queue)
444 return;
445
446 LIST_PREPEND(load_queue, u->manager->load_queue, u);
447 u->in_load_queue = true;
448 }
449
450 void unit_add_to_cleanup_queue(Unit *u) {
451 assert(u);
452
453 if (u->in_cleanup_queue)
454 return;
455
456 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
457 u->in_cleanup_queue = true;
458 }
459
460 void unit_add_to_gc_queue(Unit *u) {
461 assert(u);
462
463 if (u->in_gc_queue || u->in_cleanup_queue)
464 return;
465
466 if (!unit_may_gc(u))
467 return;
468
469 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
470 u->in_gc_queue = true;
471 }
472
473 void unit_add_to_dbus_queue(Unit *u) {
474 assert(u);
475 assert(u->type != _UNIT_TYPE_INVALID);
476
477 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
478 return;
479
480 /* Shortcut things if nobody cares */
481 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
482 sd_bus_track_count(u->bus_track) <= 0 &&
483 set_isempty(u->manager->private_buses)) {
484 u->sent_dbus_new_signal = true;
485 return;
486 }
487
488 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
489 u->in_dbus_queue = true;
490 }
491
492 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
493 assert(u);
494
495 if (u->in_stop_when_unneeded_queue)
496 return;
497
498 if (!u->stop_when_unneeded)
499 return;
500
501 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
502 return;
503
504 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
505 u->in_stop_when_unneeded_queue = true;
506 }
507
508 static void bidi_set_free(Unit *u, Hashmap *h) {
509 Unit *other;
510 void *v;
511
512 assert(u);
513
514 /* Frees the hashmap and makes sure we are dropped from the inverse pointers */
515
516 HASHMAP_FOREACH_KEY(v, other, h) {
517 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
518 hashmap_remove(other->dependencies[d], u);
519
520 unit_add_to_gc_queue(other);
521 }
522
523 hashmap_free(h);
524 }
525
526 static void unit_remove_transient(Unit *u) {
527 char **i;
528
529 assert(u);
530
531 if (!u->transient)
532 return;
533
534 if (u->fragment_path)
535 (void) unlink(u->fragment_path);
536
537 STRV_FOREACH(i, u->dropin_paths) {
538 _cleanup_free_ char *p = NULL, *pp = NULL;
539
540 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
541 if (!p)
542 continue;
543
544 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
545 if (!pp)
546 continue;
547
548 /* Only drop transient drop-ins */
549 if (!path_equal(u->manager->lookup_paths.transient, pp))
550 continue;
551
552 (void) unlink(*i);
553 (void) rmdir(p);
554 }
555 }
556
557 static void unit_free_requires_mounts_for(Unit *u) {
558 assert(u);
559
560 for (;;) {
561 _cleanup_free_ char *path;
562
563 path = hashmap_steal_first_key(u->requires_mounts_for);
564 if (!path)
565 break;
566 else {
567 char s[strlen(path) + 1];
568
569 PATH_FOREACH_PREFIX_MORE(s, path) {
570 char *y;
571 Set *x;
572
573 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
574 if (!x)
575 continue;
576
577 (void) set_remove(x, u);
578
579 if (set_isempty(x)) {
580 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
581 free(y);
582 set_free(x);
583 }
584 }
585 }
586 }
587
588 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
589 }
590
591 static void unit_done(Unit *u) {
592 ExecContext *ec;
593 CGroupContext *cc;
594
595 assert(u);
596
597 if (u->type < 0)
598 return;
599
600 if (UNIT_VTABLE(u)->done)
601 UNIT_VTABLE(u)->done(u);
602
603 ec = unit_get_exec_context(u);
604 if (ec)
605 exec_context_done(ec);
606
607 cc = unit_get_cgroup_context(u);
608 if (cc)
609 cgroup_context_done(cc);
610 }
611
612 void unit_free(Unit *u) {
613 char *t;
614
615 if (!u)
616 return;
617
618 u->transient_file = safe_fclose(u->transient_file);
619
620 if (!MANAGER_IS_RELOADING(u->manager))
621 unit_remove_transient(u);
622
623 bus_unit_send_removed_signal(u);
624
625 unit_done(u);
626
627 unit_dequeue_rewatch_pids(u);
628
629 sd_bus_slot_unref(u->match_bus_slot);
630 sd_bus_track_unref(u->bus_track);
631 u->deserialized_refs = strv_free(u->deserialized_refs);
632 u->pending_freezer_message = sd_bus_message_unref(u->pending_freezer_message);
633
634 unit_free_requires_mounts_for(u);
635
636 SET_FOREACH(t, u->aliases)
637 hashmap_remove_value(u->manager->units, t, u);
638 if (u->id)
639 hashmap_remove_value(u->manager->units, u->id, u);
640
641 if (!sd_id128_is_null(u->invocation_id))
642 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
643
644 if (u->job) {
645 Job *j = u->job;
646 job_uninstall(j);
647 job_free(j);
648 }
649
650 if (u->nop_job) {
651 Job *j = u->nop_job;
652 job_uninstall(j);
653 job_free(j);
654 }
655
656 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
657 bidi_set_free(u, u->dependencies[d]);
658
659 /* A unit is being dropped from the tree, make sure our family is realized properly. Do this after we
660 * detach the unit from slice tree in order to eliminate its effect on controller masks. */
661 if (UNIT_ISSET(u->slice))
662 unit_add_family_to_cgroup_realize_queue(UNIT_DEREF(u->slice));
663
664 if (u->on_console)
665 manager_unref_console(u->manager);
666
667 unit_release_cgroup(u);
668
669 if (!MANAGER_IS_RELOADING(u->manager))
670 unit_unlink_state_files(u);
671
672 unit_unref_uid_gid(u, false);
673
674 (void) manager_update_failed_units(u->manager, u, false);
675 set_remove(u->manager->startup_units, u);
676
677 unit_unwatch_all_pids(u);
678
679 unit_ref_unset(&u->slice);
680 while (u->refs_by_target)
681 unit_ref_unset(u->refs_by_target);
682
683 if (u->type != _UNIT_TYPE_INVALID)
684 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
685
686 if (u->in_load_queue)
687 LIST_REMOVE(load_queue, u->manager->load_queue, u);
688
689 if (u->in_dbus_queue)
690 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
691
692 if (u->in_gc_queue)
693 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
694
695 if (u->in_cgroup_realize_queue)
696 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
697
698 if (u->in_cgroup_empty_queue)
699 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
700
701 if (u->in_cleanup_queue)
702 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
703
704 if (u->in_target_deps_queue)
705 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
706
707 if (u->in_stop_when_unneeded_queue)
708 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
709
710 safe_close(u->ip_accounting_ingress_map_fd);
711 safe_close(u->ip_accounting_egress_map_fd);
712
713 safe_close(u->ipv4_allow_map_fd);
714 safe_close(u->ipv6_allow_map_fd);
715 safe_close(u->ipv4_deny_map_fd);
716 safe_close(u->ipv6_deny_map_fd);
717
718 bpf_program_unref(u->ip_bpf_ingress);
719 bpf_program_unref(u->ip_bpf_ingress_installed);
720 bpf_program_unref(u->ip_bpf_egress);
721 bpf_program_unref(u->ip_bpf_egress_installed);
722
723 set_free(u->ip_bpf_custom_ingress);
724 set_free(u->ip_bpf_custom_egress);
725 set_free(u->ip_bpf_custom_ingress_installed);
726 set_free(u->ip_bpf_custom_egress_installed);
727
728 bpf_program_unref(u->bpf_device_control_installed);
729
730 condition_free_list(u->conditions);
731 condition_free_list(u->asserts);
732
733 free(u->description);
734 strv_free(u->documentation);
735 free(u->fragment_path);
736 free(u->source_path);
737 strv_free(u->dropin_paths);
738 free(u->instance);
739
740 free(u->job_timeout_reboot_arg);
741 free(u->reboot_arg);
742
743 set_free_free(u->aliases);
744 free(u->id);
745
746 free(u);
747 }
748
749 FreezerState unit_freezer_state(Unit *u) {
750 assert(u);
751
752 return u->freezer_state;
753 }
754
755 int unit_freezer_state_kernel(Unit *u, FreezerState *ret) {
756 char *values[1] = {};
757 int r;
758
759 assert(u);
760
761 r = cg_get_keyed_attribute(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
762 STRV_MAKE("frozen"), values);
763 if (r < 0)
764 return r;
765
766 r = _FREEZER_STATE_INVALID;
767
768 if (values[0]) {
769 if (streq(values[0], "0"))
770 r = FREEZER_RUNNING;
771 else if (streq(values[0], "1"))
772 r = FREEZER_FROZEN;
773 }
774
775 free(values[0]);
776 *ret = r;
777
778 return 0;
779 }
780
781 UnitActiveState unit_active_state(Unit *u) {
782 assert(u);
783
784 if (u->load_state == UNIT_MERGED)
785 return unit_active_state(unit_follow_merge(u));
786
787 /* After a reload it might happen that a unit is not correctly
788 * loaded but still has a process around. That's why we won't
789 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
790
791 return UNIT_VTABLE(u)->active_state(u);
792 }
793
794 const char* unit_sub_state_to_string(Unit *u) {
795 assert(u);
796
797 return UNIT_VTABLE(u)->sub_state_to_string(u);
798 }
799
800 static int hashmap_complete_move(Hashmap **s, Hashmap **other) {
801 assert(s);
802 assert(other);
803
804 if (!*other)
805 return 0;
806
807 if (*s)
808 return hashmap_move(*s, *other);
809 else
810 *s = TAKE_PTR(*other);
811
812 return 0;
813 }
814
815 static int merge_names(Unit *u, Unit *other) {
816 char *name;
817 int r;
818
819 assert(u);
820 assert(other);
821
822 r = unit_add_alias(u, other->id);
823 if (r < 0)
824 return r;
825
826 r = set_move(u->aliases, other->aliases);
827 if (r < 0) {
828 set_remove(u->aliases, other->id);
829 return r;
830 }
831
832 TAKE_PTR(other->id);
833 other->aliases = set_free_free(other->aliases);
834
835 SET_FOREACH(name, u->aliases)
836 assert_se(hashmap_replace(u->manager->units, name, u) == 0);
837
838 return 0;
839 }
840
841 static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
842 unsigned n_reserve;
843
844 assert(u);
845 assert(other);
846 assert(d < _UNIT_DEPENDENCY_MAX);
847
848 /*
849 * If u does not have this dependency set allocated, there is no need
850 * to reserve anything. In that case other's set will be transferred
851 * as a whole to u by complete_move().
852 */
853 if (!u->dependencies[d])
854 return 0;
855
856 /* merge_dependencies() will skip a u-on-u dependency */
857 n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u);
858
859 return hashmap_reserve(u->dependencies[d], n_reserve);
860 }
861
862 static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
863 Unit *back;
864 void *v;
865 int r;
866
867 /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */
868
869 assert(u);
870 assert(other);
871 assert(d < _UNIT_DEPENDENCY_MAX);
872
873 /* Fix backwards pointers. Let's iterate through all dependent units of the other unit. */
874 HASHMAP_FOREACH_KEY(v, back, other->dependencies[d])
875
876 /* Let's now iterate through the dependencies of that dependencies of the other units,
877 * looking for pointers back, and let's fix them up, to instead point to 'u'. */
878 for (UnitDependency k = 0; k < _UNIT_DEPENDENCY_MAX; k++)
879 if (back == u) {
880 /* Do not add dependencies between u and itself. */
881 if (hashmap_remove(back->dependencies[k], other))
882 maybe_warn_about_dependency(u, other_id, k);
883 } else {
884 UnitDependencyInfo di_u, di_other;
885
886 /* Let's drop this dependency between "back" and "other", and let's create it between
887 * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving,
888 * and any such dependency which might already exist */
889
890 di_other.data = hashmap_get(back->dependencies[k], other);
891 if (!di_other.data)
892 continue; /* dependency isn't set, let's try the next one */
893
894 di_u.data = hashmap_get(back->dependencies[k], u);
895
896 UnitDependencyInfo di_merged = {
897 .origin_mask = di_u.origin_mask | di_other.origin_mask,
898 .destination_mask = di_u.destination_mask | di_other.destination_mask,
899 };
900
901 r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data);
902 if (r < 0)
903 log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id);
904 assert(r >= 0);
905
906 /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */
907 }
908
909 /* Also do not move dependencies on u to itself */
910 back = hashmap_remove(other->dependencies[d], u);
911 if (back)
912 maybe_warn_about_dependency(u, other_id, d);
913
914 /* The move cannot fail. The caller must have performed a reservation. */
915 assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
916
917 other->dependencies[d] = hashmap_free(other->dependencies[d]);
918 }
919
920 int unit_merge(Unit *u, Unit *other) {
921 const char *other_id = NULL;
922 int r;
923
924 assert(u);
925 assert(other);
926 assert(u->manager == other->manager);
927 assert(u->type != _UNIT_TYPE_INVALID);
928
929 other = unit_follow_merge(other);
930
931 if (other == u)
932 return 0;
933
934 if (u->type != other->type)
935 return -EINVAL;
936
937 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
938 return -EEXIST;
939
940 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
941 return -EEXIST;
942
943 if (!streq_ptr(u->instance, other->instance))
944 return -EINVAL;
945
946 if (other->job)
947 return -EEXIST;
948
949 if (other->nop_job)
950 return -EEXIST;
951
952 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
953 return -EEXIST;
954
955 if (other->id)
956 other_id = strdupa(other->id);
957
958 /* Make reservations to ensure merge_dependencies() won't fail */
959 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
960 r = reserve_dependencies(u, other, d);
961 /*
962 * We don't rollback reservations if we fail. We don't have
963 * a way to undo reservations. A reservation is not a leak.
964 */
965 if (r < 0)
966 return r;
967 }
968
969 /* Merge names */
970 r = merge_names(u, other);
971 if (r < 0)
972 return r;
973
974 /* Redirect all references */
975 while (other->refs_by_target)
976 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
977
978 /* Merge dependencies */
979 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
980 merge_dependencies(u, other, other_id, d);
981
982 other->load_state = UNIT_MERGED;
983 other->merged_into = u;
984
985 /* If there is still some data attached to the other node, we
986 * don't need it anymore, and can free it. */
987 if (other->load_state != UNIT_STUB)
988 if (UNIT_VTABLE(other)->done)
989 UNIT_VTABLE(other)->done(other);
990
991 unit_add_to_dbus_queue(u);
992 unit_add_to_cleanup_queue(other);
993
994 return 0;
995 }
996
997 int unit_merge_by_name(Unit *u, const char *name) {
998 _cleanup_free_ char *s = NULL;
999 Unit *other;
1000 int r;
1001
1002 /* Either add name to u, or if a unit with name already exists, merge it with u.
1003 * If name is a template, do the same for name@instance, where instance is u's instance. */
1004
1005 assert(u);
1006 assert(name);
1007
1008 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
1009 if (!u->instance)
1010 return -EINVAL;
1011
1012 r = unit_name_replace_instance(name, u->instance, &s);
1013 if (r < 0)
1014 return r;
1015
1016 name = s;
1017 }
1018
1019 other = manager_get_unit(u->manager, name);
1020 if (other)
1021 return unit_merge(u, other);
1022
1023 return unit_add_name(u, name);
1024 }
1025
1026 Unit* unit_follow_merge(Unit *u) {
1027 assert(u);
1028
1029 while (u->load_state == UNIT_MERGED)
1030 assert_se(u = u->merged_into);
1031
1032 return u;
1033 }
1034
1035 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
1036 int r;
1037
1038 assert(u);
1039 assert(c);
1040
1041 if (c->working_directory && !c->working_directory_missing_ok) {
1042 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1043 if (r < 0)
1044 return r;
1045 }
1046
1047 if (c->root_directory) {
1048 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1049 if (r < 0)
1050 return r;
1051 }
1052
1053 if (c->root_image) {
1054 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1055 if (r < 0)
1056 return r;
1057 }
1058
1059 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1060 if (!u->manager->prefix[dt])
1061 continue;
1062
1063 char **dp;
1064 STRV_FOREACH(dp, c->directories[dt].paths) {
1065 _cleanup_free_ char *p;
1066
1067 p = path_join(u->manager->prefix[dt], *dp);
1068 if (!p)
1069 return -ENOMEM;
1070
1071 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1072 if (r < 0)
1073 return r;
1074 }
1075 }
1076
1077 if (!MANAGER_IS_SYSTEM(u->manager))
1078 return 0;
1079
1080 /* For the following three directory types we need write access, and /var/ is possibly on the root
1081 * fs. Hence order after systemd-remount-fs.service, to ensure things are writable. */
1082 if (!strv_isempty(c->directories[EXEC_DIRECTORY_STATE].paths) ||
1083 !strv_isempty(c->directories[EXEC_DIRECTORY_CACHE].paths) ||
1084 !strv_isempty(c->directories[EXEC_DIRECTORY_LOGS].paths)) {
1085 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_REMOUNT_FS_SERVICE, true, UNIT_DEPENDENCY_FILE);
1086 if (r < 0)
1087 return r;
1088 }
1089
1090 if (c->private_tmp) {
1091 const char *p;
1092
1093 FOREACH_STRING(p, "/tmp", "/var/tmp") {
1094 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1095 if (r < 0)
1096 return r;
1097 }
1098
1099 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1100 if (r < 0)
1101 return r;
1102 }
1103
1104 if (c->root_image) {
1105 /* We need to wait for /dev/loopX to appear when doing RootImage=, hence let's add an
1106 * implicit dependency on udev */
1107
1108 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_UDEVD_SERVICE, true, UNIT_DEPENDENCY_FILE);
1109 if (r < 0)
1110 return r;
1111 }
1112
1113 if (!IN_SET(c->std_output,
1114 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1115 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1116 !IN_SET(c->std_error,
1117 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1118 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1119 !c->log_namespace)
1120 return 0;
1121
1122 /* If syslog or kernel logging is requested (or log namespacing is), make sure our own logging daemon
1123 * is run first. */
1124
1125 if (c->log_namespace) {
1126 _cleanup_free_ char *socket_unit = NULL, *varlink_socket_unit = NULL;
1127
1128 r = unit_name_build_from_type("systemd-journald", c->log_namespace, UNIT_SOCKET, &socket_unit);
1129 if (r < 0)
1130 return r;
1131
1132 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, socket_unit, true, UNIT_DEPENDENCY_FILE);
1133 if (r < 0)
1134 return r;
1135
1136 r = unit_name_build_from_type("systemd-journald-varlink", c->log_namespace, UNIT_SOCKET, &varlink_socket_unit);
1137 if (r < 0)
1138 return r;
1139
1140 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, varlink_socket_unit, true, UNIT_DEPENDENCY_FILE);
1141 if (r < 0)
1142 return r;
1143 } else
1144 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1145 if (r < 0)
1146 return r;
1147
1148 return 0;
1149 }
1150
1151 const char *unit_description(Unit *u) {
1152 assert(u);
1153
1154 if (u->description)
1155 return u->description;
1156
1157 return strna(u->id);
1158 }
1159
1160 const char *unit_status_string(Unit *u) {
1161 assert(u);
1162
1163 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME && u->id)
1164 return u->id;
1165
1166 return unit_description(u);
1167 }
1168
1169 static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) {
1170 const struct {
1171 UnitDependencyMask mask;
1172 const char *name;
1173 } table[] = {
1174 { UNIT_DEPENDENCY_FILE, "file" },
1175 { UNIT_DEPENDENCY_IMPLICIT, "implicit" },
1176 { UNIT_DEPENDENCY_DEFAULT, "default" },
1177 { UNIT_DEPENDENCY_UDEV, "udev" },
1178 { UNIT_DEPENDENCY_PATH, "path" },
1179 { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" },
1180 { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" },
1181 { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" },
1182 };
1183
1184 assert(f);
1185 assert(kind);
1186 assert(space);
1187
1188 for (size_t i = 0; i < ELEMENTSOF(table); i++) {
1189
1190 if (mask == 0)
1191 break;
1192
1193 if (FLAGS_SET(mask, table[i].mask)) {
1194 if (*space)
1195 fputc(' ', f);
1196 else
1197 *space = true;
1198
1199 fputs(kind, f);
1200 fputs("-", f);
1201 fputs(table[i].name, f);
1202
1203 mask &= ~table[i].mask;
1204 }
1205 }
1206
1207 assert(mask == 0);
1208 }
1209
1210 void unit_dump(Unit *u, FILE *f, const char *prefix) {
1211 char *t, **j;
1212 const char *prefix2;
1213 char timestamp[5][FORMAT_TIMESTAMP_MAX], timespan[FORMAT_TIMESPAN_MAX];
1214 Unit *following;
1215 _cleanup_set_free_ Set *following_set = NULL;
1216 CGroupMask m;
1217 int r;
1218
1219 assert(u);
1220 assert(u->type >= 0);
1221
1222 prefix = strempty(prefix);
1223 prefix2 = strjoina(prefix, "\t");
1224
1225 fprintf(f,
1226 "%s-> Unit %s:\n",
1227 prefix, u->id);
1228
1229 SET_FOREACH(t, u->aliases)
1230 fprintf(f, "%s\tAlias: %s\n", prefix, t);
1231
1232 fprintf(f,
1233 "%s\tDescription: %s\n"
1234 "%s\tInstance: %s\n"
1235 "%s\tUnit Load State: %s\n"
1236 "%s\tUnit Active State: %s\n"
1237 "%s\tState Change Timestamp: %s\n"
1238 "%s\tInactive Exit Timestamp: %s\n"
1239 "%s\tActive Enter Timestamp: %s\n"
1240 "%s\tActive Exit Timestamp: %s\n"
1241 "%s\tInactive Enter Timestamp: %s\n"
1242 "%s\tMay GC: %s\n"
1243 "%s\tNeed Daemon Reload: %s\n"
1244 "%s\tTransient: %s\n"
1245 "%s\tPerpetual: %s\n"
1246 "%s\tGarbage Collection Mode: %s\n"
1247 "%s\tSlice: %s\n"
1248 "%s\tCGroup: %s\n"
1249 "%s\tCGroup realized: %s\n",
1250 prefix, unit_description(u),
1251 prefix, strna(u->instance),
1252 prefix, unit_load_state_to_string(u->load_state),
1253 prefix, unit_active_state_to_string(unit_active_state(u)),
1254 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->state_change_timestamp.realtime)),
1255 prefix, strna(format_timestamp(timestamp[1], sizeof(timestamp[1]), u->inactive_exit_timestamp.realtime)),
1256 prefix, strna(format_timestamp(timestamp[2], sizeof(timestamp[2]), u->active_enter_timestamp.realtime)),
1257 prefix, strna(format_timestamp(timestamp[3], sizeof(timestamp[3]), u->active_exit_timestamp.realtime)),
1258 prefix, strna(format_timestamp(timestamp[4], sizeof(timestamp[4]), u->inactive_enter_timestamp.realtime)),
1259 prefix, yes_no(unit_may_gc(u)),
1260 prefix, yes_no(unit_need_daemon_reload(u)),
1261 prefix, yes_no(u->transient),
1262 prefix, yes_no(u->perpetual),
1263 prefix, collect_mode_to_string(u->collect_mode),
1264 prefix, strna(unit_slice_name(u)),
1265 prefix, strna(u->cgroup_path),
1266 prefix, yes_no(u->cgroup_realized));
1267
1268 if (u->cgroup_realized_mask != 0) {
1269 _cleanup_free_ char *s = NULL;
1270 (void) cg_mask_to_string(u->cgroup_realized_mask, &s);
1271 fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s));
1272 }
1273
1274 if (u->cgroup_enabled_mask != 0) {
1275 _cleanup_free_ char *s = NULL;
1276 (void) cg_mask_to_string(u->cgroup_enabled_mask, &s);
1277 fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s));
1278 }
1279
1280 m = unit_get_own_mask(u);
1281 if (m != 0) {
1282 _cleanup_free_ char *s = NULL;
1283 (void) cg_mask_to_string(m, &s);
1284 fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s));
1285 }
1286
1287 m = unit_get_members_mask(u);
1288 if (m != 0) {
1289 _cleanup_free_ char *s = NULL;
1290 (void) cg_mask_to_string(m, &s);
1291 fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s));
1292 }
1293
1294 m = unit_get_delegate_mask(u);
1295 if (m != 0) {
1296 _cleanup_free_ char *s = NULL;
1297 (void) cg_mask_to_string(m, &s);
1298 fprintf(f, "%s\tCGroup delegate mask: %s\n", prefix, strnull(s));
1299 }
1300
1301 if (!sd_id128_is_null(u->invocation_id))
1302 fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n",
1303 prefix, SD_ID128_FORMAT_VAL(u->invocation_id));
1304
1305 STRV_FOREACH(j, u->documentation)
1306 fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
1307
1308 following = unit_following(u);
1309 if (following)
1310 fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
1311
1312 r = unit_following_set(u, &following_set);
1313 if (r >= 0) {
1314 Unit *other;
1315
1316 SET_FOREACH(other, following_set)
1317 fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
1318 }
1319
1320 if (u->fragment_path)
1321 fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
1322
1323 if (u->source_path)
1324 fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
1325
1326 STRV_FOREACH(j, u->dropin_paths)
1327 fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
1328
1329 if (u->failure_action != EMERGENCY_ACTION_NONE)
1330 fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action));
1331 if (u->failure_action_exit_status >= 0)
1332 fprintf(f, "%s\tFailure Action Exit Status: %i\n", prefix, u->failure_action_exit_status);
1333 if (u->success_action != EMERGENCY_ACTION_NONE)
1334 fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action));
1335 if (u->success_action_exit_status >= 0)
1336 fprintf(f, "%s\tSuccess Action Exit Status: %i\n", prefix, u->success_action_exit_status);
1337
1338 if (u->job_timeout != USEC_INFINITY)
1339 fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
1340
1341 if (u->job_timeout_action != EMERGENCY_ACTION_NONE)
1342 fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action));
1343
1344 if (u->job_timeout_reboot_arg)
1345 fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
1346
1347 condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
1348 condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
1349
1350 if (dual_timestamp_is_set(&u->condition_timestamp))
1351 fprintf(f,
1352 "%s\tCondition Timestamp: %s\n"
1353 "%s\tCondition Result: %s\n",
1354 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->condition_timestamp.realtime)),
1355 prefix, yes_no(u->condition_result));
1356
1357 if (dual_timestamp_is_set(&u->assert_timestamp))
1358 fprintf(f,
1359 "%s\tAssert Timestamp: %s\n"
1360 "%s\tAssert Result: %s\n",
1361 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->assert_timestamp.realtime)),
1362 prefix, yes_no(u->assert_result));
1363
1364 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
1365 UnitDependencyInfo di;
1366 Unit *other;
1367
1368 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d]) {
1369 bool space = false;
1370
1371 fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id);
1372
1373 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1374 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1375
1376 fputs(")\n", f);
1377 }
1378 }
1379
1380 if (!hashmap_isempty(u->requires_mounts_for)) {
1381 UnitDependencyInfo di;
1382 const char *path;
1383
1384 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1385 bool space = false;
1386
1387 fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path);
1388
1389 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1390 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1391
1392 fputs(")\n", f);
1393 }
1394 }
1395
1396 if (u->load_state == UNIT_LOADED) {
1397
1398 fprintf(f,
1399 "%s\tStopWhenUnneeded: %s\n"
1400 "%s\tRefuseManualStart: %s\n"
1401 "%s\tRefuseManualStop: %s\n"
1402 "%s\tDefaultDependencies: %s\n"
1403 "%s\tOnFailureJobMode: %s\n"
1404 "%s\tIgnoreOnIsolate: %s\n",
1405 prefix, yes_no(u->stop_when_unneeded),
1406 prefix, yes_no(u->refuse_manual_start),
1407 prefix, yes_no(u->refuse_manual_stop),
1408 prefix, yes_no(u->default_dependencies),
1409 prefix, job_mode_to_string(u->on_failure_job_mode),
1410 prefix, yes_no(u->ignore_on_isolate));
1411
1412 if (UNIT_VTABLE(u)->dump)
1413 UNIT_VTABLE(u)->dump(u, f, prefix2);
1414
1415 } else if (u->load_state == UNIT_MERGED)
1416 fprintf(f,
1417 "%s\tMerged into: %s\n",
1418 prefix, u->merged_into->id);
1419 else if (u->load_state == UNIT_ERROR)
1420 fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror_safe(u->load_error));
1421
1422 for (const char *n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track))
1423 fprintf(f, "%s\tBus Ref: %s\n", prefix, n);
1424
1425 if (u->job)
1426 job_dump(u->job, f, prefix2);
1427
1428 if (u->nop_job)
1429 job_dump(u->nop_job, f, prefix2);
1430 }
1431
1432 /* Common implementation for multiple backends */
1433 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1434 int r;
1435
1436 assert(u);
1437
1438 /* Load a .{service,socket,...} file */
1439 r = unit_load_fragment(u);
1440 if (r < 0)
1441 return r;
1442
1443 if (u->load_state == UNIT_STUB) {
1444 if (fragment_required)
1445 return -ENOENT;
1446
1447 u->load_state = UNIT_LOADED;
1448 }
1449
1450 /* Load drop-in directory data. If u is an alias, we might be reloading the
1451 * target unit needlessly. But we cannot be sure which drops-ins have already
1452 * been loaded and which not, at least without doing complicated book-keeping,
1453 * so let's always reread all drop-ins. */
1454 r = unit_load_dropin(unit_follow_merge(u));
1455 if (r < 0)
1456 return r;
1457
1458 if (u->source_path) {
1459 struct stat st;
1460
1461 if (stat(u->source_path, &st) >= 0)
1462 u->source_mtime = timespec_load(&st.st_mtim);
1463 else
1464 u->source_mtime = 0;
1465 }
1466
1467 return 0;
1468 }
1469
1470 void unit_add_to_target_deps_queue(Unit *u) {
1471 Manager *m = u->manager;
1472
1473 assert(u);
1474
1475 if (u->in_target_deps_queue)
1476 return;
1477
1478 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1479 u->in_target_deps_queue = true;
1480 }
1481
1482 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1483 assert(u);
1484 assert(target);
1485
1486 if (target->type != UNIT_TARGET)
1487 return 0;
1488
1489 /* Only add the dependency if both units are loaded, so that
1490 * that loop check below is reliable */
1491 if (u->load_state != UNIT_LOADED ||
1492 target->load_state != UNIT_LOADED)
1493 return 0;
1494
1495 /* If either side wants no automatic dependencies, then let's
1496 * skip this */
1497 if (!u->default_dependencies ||
1498 !target->default_dependencies)
1499 return 0;
1500
1501 /* Don't create loops */
1502 if (hashmap_get(target->dependencies[UNIT_BEFORE], u))
1503 return 0;
1504
1505 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1506 }
1507
1508 static int unit_add_slice_dependencies(Unit *u) {
1509 assert(u);
1510
1511 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1512 return 0;
1513
1514 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1515 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1516 relationship). */
1517 UnitDependencyMask mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1518
1519 if (UNIT_ISSET(u->slice))
1520 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask);
1521
1522 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1523 return 0;
1524
1525 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1526 }
1527
1528 static int unit_add_mount_dependencies(Unit *u) {
1529 UnitDependencyInfo di;
1530 const char *path;
1531 int r;
1532
1533 assert(u);
1534
1535 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1536 char prefix[strlen(path) + 1];
1537
1538 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1539 _cleanup_free_ char *p = NULL;
1540 Unit *m;
1541
1542 r = unit_name_from_path(prefix, ".mount", &p);
1543 if (r < 0)
1544 return r;
1545
1546 m = manager_get_unit(u->manager, p);
1547 if (!m) {
1548 /* Make sure to load the mount unit if
1549 * it exists. If so the dependencies
1550 * on this unit will be added later
1551 * during the loading of the mount
1552 * unit. */
1553 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1554 continue;
1555 }
1556 if (m == u)
1557 continue;
1558
1559 if (m->load_state != UNIT_LOADED)
1560 continue;
1561
1562 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1563 if (r < 0)
1564 return r;
1565
1566 if (m->fragment_path) {
1567 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1568 if (r < 0)
1569 return r;
1570 }
1571 }
1572 }
1573
1574 return 0;
1575 }
1576
1577 static int unit_add_oomd_dependencies(Unit *u) {
1578 CGroupContext *c;
1579 bool wants_oomd;
1580 int r;
1581
1582 assert(u);
1583
1584 if (!u->default_dependencies)
1585 return 0;
1586
1587 c = unit_get_cgroup_context(u);
1588 if (!c)
1589 return 0;
1590
1591 wants_oomd = (c->moom_swap == MANAGED_OOM_KILL || c->moom_mem_pressure == MANAGED_OOM_KILL);
1592 if (!wants_oomd)
1593 return 0;
1594
1595 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "systemd-oomd.service", true, UNIT_DEPENDENCY_FILE);
1596 if (r < 0)
1597 return r;
1598
1599 return 0;
1600 }
1601
1602 static int unit_add_startup_units(Unit *u) {
1603 CGroupContext *c;
1604
1605 c = unit_get_cgroup_context(u);
1606 if (!c)
1607 return 0;
1608
1609 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1610 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1611 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1612 return 0;
1613
1614 return set_ensure_put(&u->manager->startup_units, NULL, u);
1615 }
1616
1617 int unit_load(Unit *u) {
1618 int r;
1619
1620 assert(u);
1621
1622 if (u->in_load_queue) {
1623 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1624 u->in_load_queue = false;
1625 }
1626
1627 if (u->type == _UNIT_TYPE_INVALID)
1628 return -EINVAL;
1629
1630 if (u->load_state != UNIT_STUB)
1631 return 0;
1632
1633 if (u->transient_file) {
1634 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1635 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1636
1637 r = fflush_and_check(u->transient_file);
1638 if (r < 0)
1639 goto fail;
1640
1641 u->transient_file = safe_fclose(u->transient_file);
1642 u->fragment_mtime = now(CLOCK_REALTIME);
1643 }
1644
1645 r = UNIT_VTABLE(u)->load(u);
1646 if (r < 0)
1647 goto fail;
1648
1649 assert(u->load_state != UNIT_STUB);
1650
1651 if (u->load_state == UNIT_LOADED) {
1652 unit_add_to_target_deps_queue(u);
1653
1654 r = unit_add_slice_dependencies(u);
1655 if (r < 0)
1656 goto fail;
1657
1658 r = unit_add_mount_dependencies(u);
1659 if (r < 0)
1660 goto fail;
1661
1662 r = unit_add_oomd_dependencies(u);
1663 if (r < 0)
1664 goto fail;
1665
1666 r = unit_add_startup_units(u);
1667 if (r < 0)
1668 goto fail;
1669
1670 if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
1671 r = log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOEXEC),
1672 "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
1673 goto fail;
1674 }
1675
1676 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1677 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1678
1679 /* We finished loading, let's ensure our parents recalculate the members mask */
1680 unit_invalidate_cgroup_members_masks(u);
1681 }
1682
1683 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1684
1685 unit_add_to_dbus_queue(unit_follow_merge(u));
1686 unit_add_to_gc_queue(u);
1687 (void) manager_varlink_send_managed_oom_update(u);
1688
1689 return 0;
1690
1691 fail:
1692 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code
1693 * should hence return ENOEXEC to ensure units are placed in this state after loading. */
1694
1695 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1696 r == -ENOEXEC ? UNIT_BAD_SETTING :
1697 UNIT_ERROR;
1698 u->load_error = r;
1699
1700 /* Record the timestamp on the cache, so that if the cache gets updated between now and the next time
1701 * an attempt is made to load this unit, we know we need to check again. */
1702 if (u->load_state == UNIT_NOT_FOUND)
1703 u->fragment_not_found_timestamp_hash = u->manager->unit_cache_timestamp_hash;
1704
1705 unit_add_to_dbus_queue(u);
1706 unit_add_to_gc_queue(u);
1707
1708 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1709 }
1710
1711 _printf_(7, 8)
1712 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1713 Unit *u = userdata;
1714 va_list ap;
1715 int r;
1716
1717 va_start(ap, format);
1718 if (u)
1719 r = log_object_internalv(level, error, file, line, func,
1720 u->manager->unit_log_field,
1721 u->id,
1722 u->manager->invocation_log_field,
1723 u->invocation_id_string,
1724 format, ap);
1725 else
1726 r = log_internalv(level, error, file, line, func, format, ap);
1727 va_end(ap);
1728
1729 return r;
1730 }
1731
1732 static bool unit_test_condition(Unit *u) {
1733 _cleanup_strv_free_ char **env = NULL;
1734 int r;
1735
1736 assert(u);
1737
1738 dual_timestamp_get(&u->condition_timestamp);
1739
1740 r = manager_get_effective_environment(u->manager, &env);
1741 if (r < 0) {
1742 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1743 u->condition_result = CONDITION_ERROR;
1744 } else
1745 u->condition_result = condition_test_list(
1746 u->conditions,
1747 env,
1748 condition_type_to_string,
1749 log_unit_internal,
1750 u);
1751
1752 unit_add_to_dbus_queue(u);
1753 return u->condition_result;
1754 }
1755
1756 static bool unit_test_assert(Unit *u) {
1757 _cleanup_strv_free_ char **env = NULL;
1758 int r;
1759
1760 assert(u);
1761
1762 dual_timestamp_get(&u->assert_timestamp);
1763
1764 r = manager_get_effective_environment(u->manager, &env);
1765 if (r < 0) {
1766 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1767 u->assert_result = CONDITION_ERROR;
1768 } else
1769 u->assert_result = condition_test_list(
1770 u->asserts,
1771 env,
1772 assert_type_to_string,
1773 log_unit_internal,
1774 u);
1775
1776 unit_add_to_dbus_queue(u);
1777 return u->assert_result;
1778 }
1779
1780 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *unit_status_msg_format) {
1781 const char *d;
1782
1783 d = unit_status_string(u);
1784 if (log_get_show_color())
1785 d = strjoina(ANSI_HIGHLIGHT, d, ANSI_NORMAL);
1786
1787 DISABLE_WARNING_FORMAT_NONLITERAL;
1788 manager_status_printf(u->manager, status_type, status, unit_status_msg_format, d);
1789 REENABLE_WARNING;
1790 }
1791
1792 int unit_test_start_limit(Unit *u) {
1793 const char *reason;
1794
1795 assert(u);
1796
1797 if (ratelimit_below(&u->start_ratelimit)) {
1798 u->start_limit_hit = false;
1799 return 0;
1800 }
1801
1802 log_unit_warning(u, "Start request repeated too quickly.");
1803 u->start_limit_hit = true;
1804
1805 reason = strjoina("unit ", u->id, " failed");
1806
1807 emergency_action(u->manager, u->start_limit_action,
1808 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1809 u->reboot_arg, -1, reason);
1810
1811 return -ECANCELED;
1812 }
1813
1814 bool unit_shall_confirm_spawn(Unit *u) {
1815 assert(u);
1816
1817 if (manager_is_confirm_spawn_disabled(u->manager))
1818 return false;
1819
1820 /* For some reasons units remaining in the same process group
1821 * as PID 1 fail to acquire the console even if it's not used
1822 * by any process. So skip the confirmation question for them. */
1823 return !unit_get_exec_context(u)->same_pgrp;
1824 }
1825
1826 static bool unit_verify_deps(Unit *u) {
1827 Unit *other;
1828 void *v;
1829
1830 assert(u);
1831
1832 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with
1833 * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job
1834 * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in
1835 * conjunction with After= as for them any such check would make things entirely racy. */
1836
1837 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO]) {
1838
1839 if (!hashmap_contains(u->dependencies[UNIT_AFTER], other))
1840 continue;
1841
1842 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1843 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1844 return false;
1845 }
1846 }
1847
1848 return true;
1849 }
1850
1851 /* Errors that aren't really errors:
1852 * -EALREADY: Unit is already started.
1853 * -ECOMM: Condition failed
1854 * -EAGAIN: An operation is already in progress. Retry later.
1855 *
1856 * Errors that are real errors:
1857 * -EBADR: This unit type does not support starting.
1858 * -ECANCELED: Start limit hit, too many requests for now
1859 * -EPROTO: Assert failed
1860 * -EINVAL: Unit not loaded
1861 * -EOPNOTSUPP: Unit type not supported
1862 * -ENOLINK: The necessary dependencies are not fulfilled.
1863 * -ESTALE: This unit has been started before and can't be started a second time
1864 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1865 */
1866 int unit_start(Unit *u) {
1867 UnitActiveState state;
1868 Unit *following;
1869
1870 assert(u);
1871
1872 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1873 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1874 * waiting is finished. */
1875 state = unit_active_state(u);
1876 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1877 return -EALREADY;
1878 if (state == UNIT_MAINTENANCE)
1879 return -EAGAIN;
1880
1881 /* Units that aren't loaded cannot be started */
1882 if (u->load_state != UNIT_LOADED)
1883 return -EINVAL;
1884
1885 /* Refuse starting scope units more than once */
1886 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1887 return -ESTALE;
1888
1889 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1890 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1891 * recheck the condition in that case. */
1892 if (state != UNIT_ACTIVATING &&
1893 !unit_test_condition(u))
1894 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1895
1896 /* If the asserts failed, fail the entire job */
1897 if (state != UNIT_ACTIVATING &&
1898 !unit_test_assert(u))
1899 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1900
1901 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1902 * condition checks, so that we rather return condition check errors (which are usually not
1903 * considered a true failure) than "not supported" errors (which are considered a failure).
1904 */
1905 if (!unit_type_supported(u->type))
1906 return -EOPNOTSUPP;
1907
1908 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1909 * should have taken care of this already, but let's check this here again. After all, our
1910 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1911 if (!unit_verify_deps(u))
1912 return -ENOLINK;
1913
1914 /* Forward to the main object, if we aren't it. */
1915 following = unit_following(u);
1916 if (following) {
1917 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1918 return unit_start(following);
1919 }
1920
1921 /* If it is stopped, but we cannot start it, then fail */
1922 if (!UNIT_VTABLE(u)->start)
1923 return -EBADR;
1924
1925 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1926 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1927 * waits for a holdoff timer to elapse before it will start again. */
1928
1929 unit_add_to_dbus_queue(u);
1930 unit_cgroup_freezer_action(u, FREEZER_THAW);
1931
1932 return UNIT_VTABLE(u)->start(u);
1933 }
1934
1935 bool unit_can_start(Unit *u) {
1936 assert(u);
1937
1938 if (u->load_state != UNIT_LOADED)
1939 return false;
1940
1941 if (!unit_type_supported(u->type))
1942 return false;
1943
1944 /* Scope units may be started only once */
1945 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1946 return false;
1947
1948 return !!UNIT_VTABLE(u)->start;
1949 }
1950
1951 bool unit_can_isolate(Unit *u) {
1952 assert(u);
1953
1954 return unit_can_start(u) &&
1955 u->allow_isolate;
1956 }
1957
1958 /* Errors:
1959 * -EBADR: This unit type does not support stopping.
1960 * -EALREADY: Unit is already stopped.
1961 * -EAGAIN: An operation is already in progress. Retry later.
1962 */
1963 int unit_stop(Unit *u) {
1964 UnitActiveState state;
1965 Unit *following;
1966
1967 assert(u);
1968
1969 state = unit_active_state(u);
1970 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1971 return -EALREADY;
1972
1973 following = unit_following(u);
1974 if (following) {
1975 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1976 return unit_stop(following);
1977 }
1978
1979 if (!UNIT_VTABLE(u)->stop)
1980 return -EBADR;
1981
1982 unit_add_to_dbus_queue(u);
1983 unit_cgroup_freezer_action(u, FREEZER_THAW);
1984
1985 return UNIT_VTABLE(u)->stop(u);
1986 }
1987
1988 bool unit_can_stop(Unit *u) {
1989 assert(u);
1990
1991 /* Note: if we return true here, it does not mean that the unit may be successfully stopped.
1992 * Extrinsic units follow external state and they may stop following external state changes
1993 * (hence we return true here), but an attempt to do this through the manager will fail. */
1994
1995 if (!unit_type_supported(u->type))
1996 return false;
1997
1998 if (u->perpetual)
1999 return false;
2000
2001 return !!UNIT_VTABLE(u)->stop;
2002 }
2003
2004 /* Errors:
2005 * -EBADR: This unit type does not support reloading.
2006 * -ENOEXEC: Unit is not started.
2007 * -EAGAIN: An operation is already in progress. Retry later.
2008 */
2009 int unit_reload(Unit *u) {
2010 UnitActiveState state;
2011 Unit *following;
2012
2013 assert(u);
2014
2015 if (u->load_state != UNIT_LOADED)
2016 return -EINVAL;
2017
2018 if (!unit_can_reload(u))
2019 return -EBADR;
2020
2021 state = unit_active_state(u);
2022 if (state == UNIT_RELOADING)
2023 return -EAGAIN;
2024
2025 if (state != UNIT_ACTIVE)
2026 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENOEXEC), "Unit cannot be reloaded because it is inactive.");
2027
2028 following = unit_following(u);
2029 if (following) {
2030 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
2031 return unit_reload(following);
2032 }
2033
2034 unit_add_to_dbus_queue(u);
2035
2036 if (!UNIT_VTABLE(u)->reload) {
2037 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
2038 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
2039 return 0;
2040 }
2041
2042 unit_cgroup_freezer_action(u, FREEZER_THAW);
2043
2044 return UNIT_VTABLE(u)->reload(u);
2045 }
2046
2047 bool unit_can_reload(Unit *u) {
2048 assert(u);
2049
2050 if (UNIT_VTABLE(u)->can_reload)
2051 return UNIT_VTABLE(u)->can_reload(u);
2052
2053 if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO]))
2054 return true;
2055
2056 return UNIT_VTABLE(u)->reload;
2057 }
2058
2059 bool unit_is_unneeded(Unit *u) {
2060 static const UnitDependency deps[] = {
2061 UNIT_REQUIRED_BY,
2062 UNIT_REQUISITE_OF,
2063 UNIT_WANTED_BY,
2064 UNIT_BOUND_BY,
2065 };
2066
2067 assert(u);
2068
2069 if (!u->stop_when_unneeded)
2070 return false;
2071
2072 /* Don't clean up while the unit is transitioning or is even inactive. */
2073 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
2074 return false;
2075 if (u->job)
2076 return false;
2077
2078 for (size_t j = 0; j < ELEMENTSOF(deps); j++) {
2079 Unit *other;
2080 void *v;
2081
2082 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
2083 * restart, then don't clean this one up. */
2084
2085 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]]) {
2086 if (other->job)
2087 return false;
2088
2089 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2090 return false;
2091
2092 if (unit_will_restart(other))
2093 return false;
2094 }
2095 }
2096
2097 return true;
2098 }
2099
2100 static void check_unneeded_dependencies(Unit *u) {
2101
2102 static const UnitDependency deps[] = {
2103 UNIT_REQUIRES,
2104 UNIT_REQUISITE,
2105 UNIT_WANTS,
2106 UNIT_BINDS_TO,
2107 };
2108
2109 assert(u);
2110
2111 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2112
2113 for (size_t j = 0; j < ELEMENTSOF(deps); j++) {
2114 Unit *other;
2115 void *v;
2116
2117 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]])
2118 unit_submit_to_stop_when_unneeded_queue(other);
2119 }
2120 }
2121
2122 static void unit_check_binds_to(Unit *u) {
2123 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2124 bool stop = false;
2125 Unit *other;
2126 void *v;
2127 int r;
2128
2129 assert(u);
2130
2131 if (u->job)
2132 return;
2133
2134 if (unit_active_state(u) != UNIT_ACTIVE)
2135 return;
2136
2137 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO]) {
2138 if (other->job)
2139 continue;
2140
2141 if (!other->coldplugged)
2142 /* We might yet create a job for the other unit… */
2143 continue;
2144
2145 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2146 continue;
2147
2148 stop = true;
2149 break;
2150 }
2151
2152 if (!stop)
2153 return;
2154
2155 /* If stopping a unit fails continuously we might enter a stop
2156 * loop here, hence stop acting on the service being
2157 * unnecessary after a while. */
2158 if (!ratelimit_below(&u->auto_stop_ratelimit)) {
2159 log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
2160 return;
2161 }
2162
2163 assert(other);
2164 log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
2165
2166 /* A unit we need to run is gone. Sniff. Let's stop this. */
2167 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
2168 if (r < 0)
2169 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
2170 }
2171
2172 static void retroactively_start_dependencies(Unit *u) {
2173 Unit *other;
2174 void *v;
2175
2176 assert(u);
2177 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2178
2179 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES])
2180 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2181 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2182 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2183
2184 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO])
2185 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2186 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2187 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2188
2189 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS])
2190 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2191 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2192 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2193
2194 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS])
2195 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2196 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2197
2198 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY])
2199 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2200 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2201 }
2202
2203 static void retroactively_stop_dependencies(Unit *u) {
2204 Unit *other;
2205 void *v;
2206
2207 assert(u);
2208 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2209
2210 /* Pull down units which are bound to us recursively if enabled */
2211 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY])
2212 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2213 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2214 }
2215
2216 void unit_start_on_failure(Unit *u) {
2217 Unit *other;
2218 void *v;
2219 int r;
2220
2221 assert(u);
2222
2223 if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2224 return;
2225
2226 log_unit_info(u, "Triggering OnFailure= dependencies.");
2227
2228 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE]) {
2229 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2230
2231 r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, NULL, &error, NULL);
2232 if (r < 0)
2233 log_unit_warning_errno(u, r, "Failed to enqueue OnFailure= job, ignoring: %s", bus_error_message(&error, r));
2234 }
2235 }
2236
2237 void unit_trigger_notify(Unit *u) {
2238 Unit *other;
2239 void *v;
2240
2241 assert(u);
2242
2243 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY])
2244 if (UNIT_VTABLE(other)->trigger_notify)
2245 UNIT_VTABLE(other)->trigger_notify(other, u);
2246 }
2247
2248 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2249 if (condition_notice && log_level > LOG_NOTICE)
2250 return LOG_NOTICE;
2251 if (condition_info && log_level > LOG_INFO)
2252 return LOG_INFO;
2253 return log_level;
2254 }
2255
2256 static int unit_log_resources(Unit *u) {
2257 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2258 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2259 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2260 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a threshold */
2261 size_t n_message_parts = 0, n_iovec = 0;
2262 char* message_parts[1 + 2 + 2 + 1], *t;
2263 nsec_t nsec = NSEC_INFINITY;
2264 int r;
2265 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2266 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2267 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2268 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2269 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2270 };
2271 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2272 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2273 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2274 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2275 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2276 };
2277
2278 assert(u);
2279
2280 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2281 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2282 * information and the complete data in structured fields. */
2283
2284 (void) unit_get_cpu_usage(u, &nsec);
2285 if (nsec != NSEC_INFINITY) {
2286 char buf[FORMAT_TIMESPAN_MAX] = "";
2287
2288 /* Format the CPU time for inclusion in the structured log message */
2289 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2290 r = log_oom();
2291 goto finish;
2292 }
2293 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2294
2295 /* Format the CPU time for inclusion in the human language message string */
2296 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2297 t = strjoin("consumed ", buf, " CPU time");
2298 if (!t) {
2299 r = log_oom();
2300 goto finish;
2301 }
2302
2303 message_parts[n_message_parts++] = t;
2304
2305 log_level = raise_level(log_level,
2306 nsec > NOTICEWORTHY_CPU_NSEC,
2307 nsec > MENTIONWORTHY_CPU_NSEC);
2308 }
2309
2310 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2311 char buf[FORMAT_BYTES_MAX] = "";
2312 uint64_t value = UINT64_MAX;
2313
2314 assert(io_fields[k]);
2315
2316 (void) unit_get_io_accounting(u, k, k > 0, &value);
2317 if (value == UINT64_MAX)
2318 continue;
2319
2320 have_io_accounting = true;
2321 if (value > 0)
2322 any_io = true;
2323
2324 /* Format IO accounting data for inclusion in the structured log message */
2325 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2326 r = log_oom();
2327 goto finish;
2328 }
2329 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2330
2331 /* Format the IO accounting data for inclusion in the human language message string, but only
2332 * for the bytes counters (and not for the operations counters) */
2333 if (k == CGROUP_IO_READ_BYTES) {
2334 assert(!rr);
2335 rr = strjoin("read ", format_bytes(buf, sizeof(buf), value), " from disk");
2336 if (!rr) {
2337 r = log_oom();
2338 goto finish;
2339 }
2340 } else if (k == CGROUP_IO_WRITE_BYTES) {
2341 assert(!wr);
2342 wr = strjoin("written ", format_bytes(buf, sizeof(buf), value), " to disk");
2343 if (!wr) {
2344 r = log_oom();
2345 goto finish;
2346 }
2347 }
2348
2349 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2350 log_level = raise_level(log_level,
2351 value > MENTIONWORTHY_IO_BYTES,
2352 value > NOTICEWORTHY_IO_BYTES);
2353 }
2354
2355 if (have_io_accounting) {
2356 if (any_io) {
2357 if (rr)
2358 message_parts[n_message_parts++] = TAKE_PTR(rr);
2359 if (wr)
2360 message_parts[n_message_parts++] = TAKE_PTR(wr);
2361
2362 } else {
2363 char *k;
2364
2365 k = strdup("no IO");
2366 if (!k) {
2367 r = log_oom();
2368 goto finish;
2369 }
2370
2371 message_parts[n_message_parts++] = k;
2372 }
2373 }
2374
2375 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2376 char buf[FORMAT_BYTES_MAX] = "";
2377 uint64_t value = UINT64_MAX;
2378
2379 assert(ip_fields[m]);
2380
2381 (void) unit_get_ip_accounting(u, m, &value);
2382 if (value == UINT64_MAX)
2383 continue;
2384
2385 have_ip_accounting = true;
2386 if (value > 0)
2387 any_traffic = true;
2388
2389 /* Format IP accounting data for inclusion in the structured log message */
2390 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2391 r = log_oom();
2392 goto finish;
2393 }
2394 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2395
2396 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2397 * bytes counters (and not for the packets counters) */
2398 if (m == CGROUP_IP_INGRESS_BYTES) {
2399 assert(!igress);
2400 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2401 if (!igress) {
2402 r = log_oom();
2403 goto finish;
2404 }
2405 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2406 assert(!egress);
2407 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2408 if (!egress) {
2409 r = log_oom();
2410 goto finish;
2411 }
2412 }
2413
2414 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2415 log_level = raise_level(log_level,
2416 value > MENTIONWORTHY_IP_BYTES,
2417 value > NOTICEWORTHY_IP_BYTES);
2418 }
2419
2420 if (have_ip_accounting) {
2421 if (any_traffic) {
2422 if (igress)
2423 message_parts[n_message_parts++] = TAKE_PTR(igress);
2424 if (egress)
2425 message_parts[n_message_parts++] = TAKE_PTR(egress);
2426
2427 } else {
2428 char *k;
2429
2430 k = strdup("no IP traffic");
2431 if (!k) {
2432 r = log_oom();
2433 goto finish;
2434 }
2435
2436 message_parts[n_message_parts++] = k;
2437 }
2438 }
2439
2440 /* Is there any accounting data available at all? */
2441 if (n_iovec == 0) {
2442 r = 0;
2443 goto finish;
2444 }
2445
2446 if (n_message_parts == 0)
2447 t = strjoina("MESSAGE=", u->id, ": Completed.");
2448 else {
2449 _cleanup_free_ char *joined;
2450
2451 message_parts[n_message_parts] = NULL;
2452
2453 joined = strv_join(message_parts, ", ");
2454 if (!joined) {
2455 r = log_oom();
2456 goto finish;
2457 }
2458
2459 joined[0] = ascii_toupper(joined[0]);
2460 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2461 }
2462
2463 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2464 * and hence don't increase n_iovec for them */
2465 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2466 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2467
2468 t = strjoina(u->manager->unit_log_field, u->id);
2469 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2470
2471 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2472 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2473
2474 log_struct_iovec(log_level, iovec, n_iovec + 4);
2475 r = 0;
2476
2477 finish:
2478 for (size_t i = 0; i < n_message_parts; i++)
2479 free(message_parts[i]);
2480
2481 for (size_t i = 0; i < n_iovec; i++)
2482 free(iovec[i].iov_base);
2483
2484 return r;
2485
2486 }
2487
2488 static void unit_update_on_console(Unit *u) {
2489 bool b;
2490
2491 assert(u);
2492
2493 b = unit_needs_console(u);
2494 if (u->on_console == b)
2495 return;
2496
2497 u->on_console = b;
2498 if (b)
2499 manager_ref_console(u->manager);
2500 else
2501 manager_unref_console(u->manager);
2502 }
2503
2504 static void unit_emit_audit_start(Unit *u) {
2505 assert(u);
2506
2507 if (u->type != UNIT_SERVICE)
2508 return;
2509
2510 /* Write audit record if we have just finished starting up */
2511 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2512 u->in_audit = true;
2513 }
2514
2515 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2516 assert(u);
2517
2518 if (u->type != UNIT_SERVICE)
2519 return;
2520
2521 if (u->in_audit) {
2522 /* Write audit record if we have just finished shutting down */
2523 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2524 u->in_audit = false;
2525 } else {
2526 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2527 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2528
2529 if (state == UNIT_INACTIVE)
2530 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2531 }
2532 }
2533
2534 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2535 bool unexpected = false;
2536 JobResult result;
2537
2538 assert(j);
2539
2540 if (j->state == JOB_WAITING)
2541
2542 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2543 * due to EAGAIN. */
2544 job_add_to_run_queue(j);
2545
2546 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2547 * hence needs to invalidate jobs. */
2548
2549 switch (j->type) {
2550
2551 case JOB_START:
2552 case JOB_VERIFY_ACTIVE:
2553
2554 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2555 job_finish_and_invalidate(j, JOB_DONE, true, false);
2556 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2557 unexpected = true;
2558
2559 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2560 if (ns == UNIT_FAILED)
2561 result = JOB_FAILED;
2562 else if (FLAGS_SET(flags, UNIT_NOTIFY_SKIP_CONDITION))
2563 result = JOB_SKIPPED;
2564 else
2565 result = JOB_DONE;
2566
2567 job_finish_and_invalidate(j, result, true, false);
2568 }
2569 }
2570
2571 break;
2572
2573 case JOB_RELOAD:
2574 case JOB_RELOAD_OR_START:
2575 case JOB_TRY_RELOAD:
2576
2577 if (j->state == JOB_RUNNING) {
2578 if (ns == UNIT_ACTIVE)
2579 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2580 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2581 unexpected = true;
2582
2583 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2584 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2585 }
2586 }
2587
2588 break;
2589
2590 case JOB_STOP:
2591 case JOB_RESTART:
2592 case JOB_TRY_RESTART:
2593
2594 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2595 job_finish_and_invalidate(j, JOB_DONE, true, false);
2596 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2597 unexpected = true;
2598 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2599 }
2600
2601 break;
2602
2603 default:
2604 assert_not_reached("Job type unknown");
2605 }
2606
2607 return unexpected;
2608 }
2609
2610 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2611 const char *reason;
2612 Manager *m;
2613
2614 assert(u);
2615 assert(os < _UNIT_ACTIVE_STATE_MAX);
2616 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2617
2618 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2619 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2620 * remounted this function will be called too! */
2621
2622 m = u->manager;
2623
2624 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2625 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2626 unit_add_to_dbus_queue(u);
2627
2628 /* Update systemd-oomd on the property/state change */
2629 if (os != ns) {
2630 /* Always send an update if the unit is going into an inactive state so systemd-oomd knows to stop
2631 * monitoring.
2632 * Also send an update whenever the unit goes active; this is to handle a case where an override file
2633 * sets one of the ManagedOOM*= properties to "kill", then later removes it. systemd-oomd needs to
2634 * know to stop monitoring when the unit changes from "kill" -> "auto" on daemon-reload, but we don't
2635 * have the information on the property. Thus, indiscriminately send an update. */
2636 if (UNIT_IS_INACTIVE_OR_FAILED(ns) || UNIT_IS_ACTIVE_OR_RELOADING(ns))
2637 (void) manager_varlink_send_managed_oom_update(u);
2638 }
2639
2640 /* Update timestamps for state changes */
2641 if (!MANAGER_IS_RELOADING(m)) {
2642 dual_timestamp_get(&u->state_change_timestamp);
2643
2644 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2645 u->inactive_exit_timestamp = u->state_change_timestamp;
2646 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2647 u->inactive_enter_timestamp = u->state_change_timestamp;
2648
2649 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2650 u->active_enter_timestamp = u->state_change_timestamp;
2651 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2652 u->active_exit_timestamp = u->state_change_timestamp;
2653 }
2654
2655 /* Keep track of failed units */
2656 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2657
2658 /* Make sure the cgroup and state files are always removed when we become inactive */
2659 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2660 unit_prune_cgroup(u);
2661 unit_unlink_state_files(u);
2662 }
2663
2664 unit_update_on_console(u);
2665
2666 if (!MANAGER_IS_RELOADING(m)) {
2667 bool unexpected;
2668
2669 /* Let's propagate state changes to the job */
2670 if (u->job)
2671 unexpected = unit_process_job(u->job, ns, flags);
2672 else
2673 unexpected = true;
2674
2675 /* If this state change happened without being requested by a job, then let's retroactively start or
2676 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2677 * additional jobs just because something is already activated. */
2678
2679 if (unexpected) {
2680 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2681 retroactively_start_dependencies(u);
2682 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2683 retroactively_stop_dependencies(u);
2684 }
2685
2686 /* stop unneeded units regardless if going down was expected or not */
2687 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2688 check_unneeded_dependencies(u);
2689
2690 if (ns != os && ns == UNIT_FAILED) {
2691 log_unit_debug(u, "Unit entered failed state.");
2692
2693 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2694 unit_start_on_failure(u);
2695 }
2696
2697 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2698 /* This unit just finished starting up */
2699
2700 unit_emit_audit_start(u);
2701 manager_send_unit_plymouth(m, u);
2702 }
2703
2704 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2705 /* This unit just stopped/failed. */
2706
2707 unit_emit_audit_stop(u, ns);
2708 unit_log_resources(u);
2709 }
2710 }
2711
2712 manager_recheck_journal(m);
2713 manager_recheck_dbus(m);
2714
2715 unit_trigger_notify(u);
2716
2717 if (!MANAGER_IS_RELOADING(m)) {
2718 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2719 unit_submit_to_stop_when_unneeded_queue(u);
2720
2721 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens when
2722 * something BindsTo= to a Type=oneshot unit, as these units go directly from starting to inactive,
2723 * without ever entering started.) */
2724 unit_check_binds_to(u);
2725
2726 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2727 reason = strjoina("unit ", u->id, " failed");
2728 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2729 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2730 reason = strjoina("unit ", u->id, " succeeded");
2731 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2732 }
2733 }
2734
2735 unit_add_to_gc_queue(u);
2736 }
2737
2738 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2739 int r;
2740
2741 assert(u);
2742 assert(pid_is_valid(pid));
2743
2744 /* Watch a specific PID */
2745
2746 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2747 * opportunity to remove any stalled references to this PID as they can be created
2748 * easily (when watching a process which is not our direct child). */
2749 if (exclusive)
2750 manager_unwatch_pid(u->manager, pid);
2751
2752 r = set_ensure_allocated(&u->pids, NULL);
2753 if (r < 0)
2754 return r;
2755
2756 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2757 if (r < 0)
2758 return r;
2759
2760 /* First try, let's add the unit keyed by "pid". */
2761 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2762 if (r == -EEXIST) {
2763 Unit **array;
2764 bool found = false;
2765 size_t n = 0;
2766
2767 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2768 * to an array of Units rather than just a Unit), lists us already. */
2769
2770 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2771 if (array)
2772 for (; array[n]; n++)
2773 if (array[n] == u)
2774 found = true;
2775
2776 if (found) /* Found it already? if so, do nothing */
2777 r = 0;
2778 else {
2779 Unit **new_array;
2780
2781 /* Allocate a new array */
2782 new_array = new(Unit*, n + 2);
2783 if (!new_array)
2784 return -ENOMEM;
2785
2786 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2787 new_array[n] = u;
2788 new_array[n+1] = NULL;
2789
2790 /* Add or replace the old array */
2791 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2792 if (r < 0) {
2793 free(new_array);
2794 return r;
2795 }
2796
2797 free(array);
2798 }
2799 } else if (r < 0)
2800 return r;
2801
2802 r = set_put(u->pids, PID_TO_PTR(pid));
2803 if (r < 0)
2804 return r;
2805
2806 return 0;
2807 }
2808
2809 void unit_unwatch_pid(Unit *u, pid_t pid) {
2810 Unit **array;
2811
2812 assert(u);
2813 assert(pid_is_valid(pid));
2814
2815 /* First let's drop the unit in case it's keyed as "pid". */
2816 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2817
2818 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2819 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2820 if (array) {
2821 /* Let's iterate through the array, dropping our own entry */
2822
2823 size_t m = 0;
2824 for (size_t n = 0; array[n]; n++)
2825 if (array[n] != u)
2826 array[m++] = array[n];
2827 array[m] = NULL;
2828
2829 if (m == 0) {
2830 /* The array is now empty, remove the entire entry */
2831 assert_se(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2832 free(array);
2833 }
2834 }
2835
2836 (void) set_remove(u->pids, PID_TO_PTR(pid));
2837 }
2838
2839 void unit_unwatch_all_pids(Unit *u) {
2840 assert(u);
2841
2842 while (!set_isempty(u->pids))
2843 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2844
2845 u->pids = set_free(u->pids);
2846 }
2847
2848 static void unit_tidy_watch_pids(Unit *u) {
2849 pid_t except1, except2;
2850 void *e;
2851
2852 assert(u);
2853
2854 /* Cleans dead PIDs from our list */
2855
2856 except1 = unit_main_pid(u);
2857 except2 = unit_control_pid(u);
2858
2859 SET_FOREACH(e, u->pids) {
2860 pid_t pid = PTR_TO_PID(e);
2861
2862 if (pid == except1 || pid == except2)
2863 continue;
2864
2865 if (!pid_is_unwaited(pid))
2866 unit_unwatch_pid(u, pid);
2867 }
2868 }
2869
2870 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2871 Unit *u = userdata;
2872
2873 assert(s);
2874 assert(u);
2875
2876 unit_tidy_watch_pids(u);
2877 unit_watch_all_pids(u);
2878
2879 /* If the PID set is empty now, then let's finish this off. */
2880 unit_synthesize_cgroup_empty_event(u);
2881
2882 return 0;
2883 }
2884
2885 int unit_enqueue_rewatch_pids(Unit *u) {
2886 int r;
2887
2888 assert(u);
2889
2890 if (!u->cgroup_path)
2891 return -ENOENT;
2892
2893 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2894 if (r < 0)
2895 return r;
2896 if (r > 0) /* On unified we can use proper notifications */
2897 return 0;
2898
2899 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2900 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2901 * involves issuing kill(pid, 0) on all processes we watch. */
2902
2903 if (!u->rewatch_pids_event_source) {
2904 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2905
2906 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2907 if (r < 0)
2908 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2909
2910 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2911 if (r < 0)
2912 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
2913
2914 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2915
2916 u->rewatch_pids_event_source = TAKE_PTR(s);
2917 }
2918
2919 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2920 if (r < 0)
2921 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2922
2923 return 0;
2924 }
2925
2926 void unit_dequeue_rewatch_pids(Unit *u) {
2927 int r;
2928 assert(u);
2929
2930 if (!u->rewatch_pids_event_source)
2931 return;
2932
2933 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2934 if (r < 0)
2935 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2936
2937 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2938 }
2939
2940 bool unit_job_is_applicable(Unit *u, JobType j) {
2941 assert(u);
2942 assert(j >= 0 && j < _JOB_TYPE_MAX);
2943
2944 switch (j) {
2945
2946 case JOB_VERIFY_ACTIVE:
2947 case JOB_START:
2948 case JOB_NOP:
2949 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2950 * startable by us but may appear due to external events, and it thus makes sense to permit enqueuing
2951 * jobs for it. */
2952 return true;
2953
2954 case JOB_STOP:
2955 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2956 * external events), hence it makes no sense to permit enqueuing such a request either. */
2957 return !u->perpetual;
2958
2959 case JOB_RESTART:
2960 case JOB_TRY_RESTART:
2961 return unit_can_stop(u) && unit_can_start(u);
2962
2963 case JOB_RELOAD:
2964 case JOB_TRY_RELOAD:
2965 return unit_can_reload(u);
2966
2967 case JOB_RELOAD_OR_START:
2968 return unit_can_reload(u) && unit_can_start(u);
2969
2970 default:
2971 assert_not_reached("Invalid job type");
2972 }
2973 }
2974
2975 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
2976 assert(u);
2977
2978 /* Only warn about some unit types */
2979 if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
2980 return;
2981
2982 if (streq_ptr(u->id, other))
2983 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
2984 else
2985 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
2986 }
2987
2988 static int unit_add_dependency_hashmap(
2989 Hashmap **h,
2990 Unit *other,
2991 UnitDependencyMask origin_mask,
2992 UnitDependencyMask destination_mask) {
2993
2994 UnitDependencyInfo info;
2995 int r;
2996
2997 assert(h);
2998 assert(other);
2999 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
3000 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
3001 assert(origin_mask > 0 || destination_mask > 0);
3002
3003 r = hashmap_ensure_allocated(h, NULL);
3004 if (r < 0)
3005 return r;
3006
3007 assert_cc(sizeof(void*) == sizeof(info));
3008
3009 info.data = hashmap_get(*h, other);
3010 if (info.data) {
3011 /* Entry already exists. Add in our mask. */
3012
3013 if (FLAGS_SET(origin_mask, info.origin_mask) &&
3014 FLAGS_SET(destination_mask, info.destination_mask))
3015 return 0; /* NOP */
3016
3017 info.origin_mask |= origin_mask;
3018 info.destination_mask |= destination_mask;
3019
3020 r = hashmap_update(*h, other, info.data);
3021 } else {
3022 info = (UnitDependencyInfo) {
3023 .origin_mask = origin_mask,
3024 .destination_mask = destination_mask,
3025 };
3026
3027 r = hashmap_put(*h, other, info.data);
3028 }
3029 if (r < 0)
3030 return r;
3031
3032 return 1;
3033 }
3034
3035 int unit_add_dependency(
3036 Unit *u,
3037 UnitDependency d,
3038 Unit *other,
3039 bool add_reference,
3040 UnitDependencyMask mask) {
3041
3042 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
3043 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
3044 [UNIT_WANTS] = UNIT_WANTED_BY,
3045 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
3046 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
3047 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
3048 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
3049 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
3050 [UNIT_WANTED_BY] = UNIT_WANTS,
3051 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
3052 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
3053 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
3054 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
3055 [UNIT_BEFORE] = UNIT_AFTER,
3056 [UNIT_AFTER] = UNIT_BEFORE,
3057 [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
3058 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
3059 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
3060 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
3061 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
3062 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
3063 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
3064 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
3065 };
3066 Unit *original_u = u, *original_other = other;
3067 int r;
3068 /* Helper to know whether sending a notification is necessary or not:
3069 * if the dependency is already there, no need to notify! */
3070 bool noop = true;
3071
3072 assert(u);
3073 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3074 assert(other);
3075
3076 u = unit_follow_merge(u);
3077 other = unit_follow_merge(other);
3078
3079 /* We won't allow dependencies on ourselves. We will not
3080 * consider them an error however. */
3081 if (u == other) {
3082 maybe_warn_about_dependency(original_u, original_other->id, d);
3083 return 0;
3084 }
3085
3086 /* Note that ordering a device unit after a unit is permitted since it
3087 * allows to start its job running timeout at a specific time. */
3088 if (d == UNIT_BEFORE && other->type == UNIT_DEVICE) {
3089 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
3090 return 0;
3091 }
3092
3093 if (d == UNIT_ON_FAILURE && !UNIT_VTABLE(u)->can_fail) {
3094 log_unit_warning(u, "Requested dependency OnFailure=%s ignored (%s units cannot fail).", other->id, unit_type_to_string(u->type));
3095 return 0;
3096 }
3097
3098 if (d == UNIT_TRIGGERS && !UNIT_VTABLE(u)->can_trigger)
3099 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3100 "Requested dependency Triggers=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(u->type));
3101 if (d == UNIT_TRIGGERED_BY && !UNIT_VTABLE(other)->can_trigger)
3102 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3103 "Requested dependency TriggeredBy=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(other->type));
3104
3105 r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0);
3106 if (r < 0)
3107 return r;
3108 else if (r > 0)
3109 noop = false;
3110
3111 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
3112 r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask);
3113 if (r < 0)
3114 return r;
3115 else if (r > 0)
3116 noop = false;
3117 }
3118
3119 if (add_reference) {
3120 r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0);
3121 if (r < 0)
3122 return r;
3123 else if (r > 0)
3124 noop = false;
3125
3126 r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask);
3127 if (r < 0)
3128 return r;
3129 else if (r > 0)
3130 noop = false;
3131 }
3132
3133 if (!noop)
3134 unit_add_to_dbus_queue(u);
3135 return 0;
3136 }
3137
3138 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
3139 int r;
3140
3141 assert(u);
3142
3143 r = unit_add_dependency(u, d, other, add_reference, mask);
3144 if (r < 0)
3145 return r;
3146
3147 return unit_add_dependency(u, e, other, add_reference, mask);
3148 }
3149
3150 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
3151 int r;
3152
3153 assert(u);
3154 assert(name);
3155 assert(buf);
3156 assert(ret);
3157
3158 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
3159 *buf = NULL;
3160 *ret = name;
3161 return 0;
3162 }
3163
3164 if (u->instance)
3165 r = unit_name_replace_instance(name, u->instance, buf);
3166 else {
3167 _cleanup_free_ char *i = NULL;
3168
3169 r = unit_name_to_prefix(u->id, &i);
3170 if (r < 0)
3171 return r;
3172
3173 r = unit_name_replace_instance(name, i, buf);
3174 }
3175 if (r < 0)
3176 return r;
3177
3178 *ret = *buf;
3179 return 0;
3180 }
3181
3182 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3183 _cleanup_free_ char *buf = NULL;
3184 Unit *other;
3185 int r;
3186
3187 assert(u);
3188 assert(name);
3189
3190 r = resolve_template(u, name, &buf, &name);
3191 if (r < 0)
3192 return r;
3193
3194 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3195 if (r < 0)
3196 return r;
3197
3198 return unit_add_dependency(u, d, other, add_reference, mask);
3199 }
3200
3201 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3202 _cleanup_free_ char *buf = NULL;
3203 Unit *other;
3204 int r;
3205
3206 assert(u);
3207 assert(name);
3208
3209 r = resolve_template(u, name, &buf, &name);
3210 if (r < 0)
3211 return r;
3212
3213 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3214 if (r < 0)
3215 return r;
3216
3217 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3218 }
3219
3220 int set_unit_path(const char *p) {
3221 /* This is mostly for debug purposes */
3222 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
3223 return -errno;
3224
3225 return 0;
3226 }
3227
3228 char *unit_dbus_path(Unit *u) {
3229 assert(u);
3230
3231 if (!u->id)
3232 return NULL;
3233
3234 return unit_dbus_path_from_name(u->id);
3235 }
3236
3237 char *unit_dbus_path_invocation_id(Unit *u) {
3238 assert(u);
3239
3240 if (sd_id128_is_null(u->invocation_id))
3241 return NULL;
3242
3243 return unit_dbus_path_from_name(u->invocation_id_string);
3244 }
3245
3246 static int unit_set_invocation_id(Unit *u, sd_id128_t id) {
3247 int r;
3248
3249 assert(u);
3250
3251 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
3252
3253 if (sd_id128_equal(u->invocation_id, id))
3254 return 0;
3255
3256 if (!sd_id128_is_null(u->invocation_id))
3257 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
3258
3259 if (sd_id128_is_null(id)) {
3260 r = 0;
3261 goto reset;
3262 }
3263
3264 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
3265 if (r < 0)
3266 goto reset;
3267
3268 u->invocation_id = id;
3269 sd_id128_to_string(id, u->invocation_id_string);
3270
3271 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
3272 if (r < 0)
3273 goto reset;
3274
3275 return 0;
3276
3277 reset:
3278 u->invocation_id = SD_ID128_NULL;
3279 u->invocation_id_string[0] = 0;
3280 return r;
3281 }
3282
3283 int unit_set_slice(Unit *u, Unit *slice) {
3284 assert(u);
3285 assert(slice);
3286
3287 /* Sets the unit slice if it has not been set before. Is extra
3288 * careful, to only allow this for units that actually have a
3289 * cgroup context. Also, we don't allow to set this for slices
3290 * (since the parent slice is derived from the name). Make
3291 * sure the unit we set is actually a slice. */
3292
3293 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3294 return -EOPNOTSUPP;
3295
3296 if (u->type == UNIT_SLICE)
3297 return -EINVAL;
3298
3299 if (unit_active_state(u) != UNIT_INACTIVE)
3300 return -EBUSY;
3301
3302 if (slice->type != UNIT_SLICE)
3303 return -EINVAL;
3304
3305 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3306 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3307 return -EPERM;
3308
3309 if (UNIT_DEREF(u->slice) == slice)
3310 return 0;
3311
3312 /* Disallow slice changes if @u is already bound to cgroups */
3313 if (UNIT_ISSET(u->slice) && u->cgroup_realized)
3314 return -EBUSY;
3315
3316 unit_ref_set(&u->slice, u, slice);
3317 return 1;
3318 }
3319
3320 int unit_set_default_slice(Unit *u) {
3321 const char *slice_name;
3322 Unit *slice;
3323 int r;
3324
3325 assert(u);
3326
3327 if (UNIT_ISSET(u->slice))
3328 return 0;
3329
3330 if (u->instance) {
3331 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3332
3333 /* Implicitly place all instantiated units in their
3334 * own per-template slice */
3335
3336 r = unit_name_to_prefix(u->id, &prefix);
3337 if (r < 0)
3338 return r;
3339
3340 /* The prefix is already escaped, but it might include
3341 * "-" which has a special meaning for slice units,
3342 * hence escape it here extra. */
3343 escaped = unit_name_escape(prefix);
3344 if (!escaped)
3345 return -ENOMEM;
3346
3347 if (MANAGER_IS_SYSTEM(u->manager))
3348 slice_name = strjoina("system-", escaped, ".slice");
3349 else
3350 slice_name = strjoina("app-", escaped, ".slice");
3351
3352 } else if (unit_is_extrinsic(u))
3353 /* Keep all extrinsic units (e.g. perpetual units and swap and mount units in user mode) in
3354 * the root slice. They don't really belong in one of the subslices. */
3355 slice_name = SPECIAL_ROOT_SLICE;
3356
3357 else if (MANAGER_IS_SYSTEM(u->manager))
3358 slice_name = SPECIAL_SYSTEM_SLICE;
3359 else
3360 slice_name = SPECIAL_APP_SLICE;
3361
3362 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3363 if (r < 0)
3364 return r;
3365
3366 return unit_set_slice(u, slice);
3367 }
3368
3369 const char *unit_slice_name(Unit *u) {
3370 assert(u);
3371
3372 if (!UNIT_ISSET(u->slice))
3373 return NULL;
3374
3375 return UNIT_DEREF(u->slice)->id;
3376 }
3377
3378 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3379 _cleanup_free_ char *t = NULL;
3380 int r;
3381
3382 assert(u);
3383 assert(type);
3384 assert(_found);
3385
3386 r = unit_name_change_suffix(u->id, type, &t);
3387 if (r < 0)
3388 return r;
3389 if (unit_has_name(u, t))
3390 return -EINVAL;
3391
3392 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3393 assert(r < 0 || *_found != u);
3394 return r;
3395 }
3396
3397 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3398 const char *new_owner;
3399 Unit *u = userdata;
3400 int r;
3401
3402 assert(message);
3403 assert(u);
3404
3405 r = sd_bus_message_read(message, "sss", NULL, NULL, &new_owner);
3406 if (r < 0) {
3407 bus_log_parse_error(r);
3408 return 0;
3409 }
3410
3411 if (UNIT_VTABLE(u)->bus_name_owner_change)
3412 UNIT_VTABLE(u)->bus_name_owner_change(u, empty_to_null(new_owner));
3413
3414 return 0;
3415 }
3416
3417 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3418 const sd_bus_error *e;
3419 const char *new_owner;
3420 Unit *u = userdata;
3421 int r;
3422
3423 assert(message);
3424 assert(u);
3425
3426 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3427
3428 e = sd_bus_message_get_error(message);
3429 if (e) {
3430 if (!sd_bus_error_has_name(e, "org.freedesktop.DBus.Error.NameHasNoOwner"))
3431 log_unit_error(u, "Unexpected error response from GetNameOwner(): %s", e->message);
3432
3433 new_owner = NULL;
3434 } else {
3435 r = sd_bus_message_read(message, "s", &new_owner);
3436 if (r < 0)
3437 return bus_log_parse_error(r);
3438
3439 assert(!isempty(new_owner));
3440 }
3441
3442 if (UNIT_VTABLE(u)->bus_name_owner_change)
3443 UNIT_VTABLE(u)->bus_name_owner_change(u, new_owner);
3444
3445 return 0;
3446 }
3447
3448 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3449 const char *match;
3450 int r;
3451
3452 assert(u);
3453 assert(bus);
3454 assert(name);
3455
3456 if (u->match_bus_slot || u->get_name_owner_slot)
3457 return -EBUSY;
3458
3459 match = strjoina("type='signal',"
3460 "sender='org.freedesktop.DBus',"
3461 "path='/org/freedesktop/DBus',"
3462 "interface='org.freedesktop.DBus',"
3463 "member='NameOwnerChanged',"
3464 "arg0='", name, "'");
3465
3466 r = sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3467 if (r < 0)
3468 return r;
3469
3470 r = sd_bus_call_method_async(
3471 bus,
3472 &u->get_name_owner_slot,
3473 "org.freedesktop.DBus",
3474 "/org/freedesktop/DBus",
3475 "org.freedesktop.DBus",
3476 "GetNameOwner",
3477 get_name_owner_handler,
3478 u,
3479 "s", name);
3480 if (r < 0) {
3481 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3482 return r;
3483 }
3484
3485 log_unit_debug(u, "Watching D-Bus name '%s'.", name);
3486 return 0;
3487 }
3488
3489 int unit_watch_bus_name(Unit *u, const char *name) {
3490 int r;
3491
3492 assert(u);
3493 assert(name);
3494
3495 /* Watch a specific name on the bus. We only support one unit
3496 * watching each name for now. */
3497
3498 if (u->manager->api_bus) {
3499 /* If the bus is already available, install the match directly.
3500 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3501 r = unit_install_bus_match(u, u->manager->api_bus, name);
3502 if (r < 0)
3503 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3504 }
3505
3506 r = hashmap_put(u->manager->watch_bus, name, u);
3507 if (r < 0) {
3508 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3509 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3510 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3511 }
3512
3513 return 0;
3514 }
3515
3516 void unit_unwatch_bus_name(Unit *u, const char *name) {
3517 assert(u);
3518 assert(name);
3519
3520 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3521 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3522 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3523 }
3524
3525 bool unit_can_serialize(Unit *u) {
3526 assert(u);
3527
3528 return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
3529 }
3530
3531 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
3532 _cleanup_free_ char *s = NULL;
3533 int r;
3534
3535 assert(f);
3536 assert(key);
3537
3538 if (mask == 0)
3539 return 0;
3540
3541 r = cg_mask_to_string(mask, &s);
3542 if (r < 0)
3543 return log_error_errno(r, "Failed to format cgroup mask: %m");
3544
3545 return serialize_item(f, key, s);
3546 }
3547
3548 static const char *const ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
3549 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
3550 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
3551 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
3552 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
3553 };
3554
3555 static const char *const io_accounting_metric_field_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3556 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
3557 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
3558 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
3559 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
3560 };
3561
3562 static const char *const io_accounting_metric_field_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3563 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
3564 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
3565 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
3566 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
3567 };
3568
3569 int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
3570 int r;
3571
3572 assert(u);
3573 assert(f);
3574 assert(fds);
3575
3576 if (unit_can_serialize(u)) {
3577 r = UNIT_VTABLE(u)->serialize(u, f, fds);
3578 if (r < 0)
3579 return r;
3580 }
3581
3582 (void) serialize_dual_timestamp(f, "state-change-timestamp", &u->state_change_timestamp);
3583
3584 (void) serialize_dual_timestamp(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
3585 (void) serialize_dual_timestamp(f, "active-enter-timestamp", &u->active_enter_timestamp);
3586 (void) serialize_dual_timestamp(f, "active-exit-timestamp", &u->active_exit_timestamp);
3587 (void) serialize_dual_timestamp(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
3588
3589 (void) serialize_dual_timestamp(f, "condition-timestamp", &u->condition_timestamp);
3590 (void) serialize_dual_timestamp(f, "assert-timestamp", &u->assert_timestamp);
3591
3592 if (dual_timestamp_is_set(&u->condition_timestamp))
3593 (void) serialize_bool(f, "condition-result", u->condition_result);
3594
3595 if (dual_timestamp_is_set(&u->assert_timestamp))
3596 (void) serialize_bool(f, "assert-result", u->assert_result);
3597
3598 (void) serialize_bool(f, "transient", u->transient);
3599 (void) serialize_bool(f, "in-audit", u->in_audit);
3600
3601 (void) serialize_bool(f, "exported-invocation-id", u->exported_invocation_id);
3602 (void) serialize_bool(f, "exported-log-level-max", u->exported_log_level_max);
3603 (void) serialize_bool(f, "exported-log-extra-fields", u->exported_log_extra_fields);
3604 (void) serialize_bool(f, "exported-log-rate-limit-interval", u->exported_log_ratelimit_interval);
3605 (void) serialize_bool(f, "exported-log-rate-limit-burst", u->exported_log_ratelimit_burst);
3606
3607 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base);
3608 if (u->cpu_usage_last != NSEC_INFINITY)
3609 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last);
3610
3611 if (u->managed_oom_kill_last > 0)
3612 (void) serialize_item_format(f, "managed-oom-kill-last", "%" PRIu64, u->managed_oom_kill_last);
3613
3614 if (u->oom_kill_last > 0)
3615 (void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, u->oom_kill_last);
3616
3617 for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
3618 (void) serialize_item_format(f, io_accounting_metric_field_base[im], "%" PRIu64, u->io_accounting_base[im]);
3619
3620 if (u->io_accounting_last[im] != UINT64_MAX)
3621 (void) serialize_item_format(f, io_accounting_metric_field_last[im], "%" PRIu64, u->io_accounting_last[im]);
3622 }
3623
3624 if (u->cgroup_path)
3625 (void) serialize_item(f, "cgroup", u->cgroup_path);
3626
3627 (void) serialize_bool(f, "cgroup-realized", u->cgroup_realized);
3628 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask);
3629 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask);
3630 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", u->cgroup_invalidated_mask);
3631
3632 if (uid_is_valid(u->ref_uid))
3633 (void) serialize_item_format(f, "ref-uid", UID_FMT, u->ref_uid);
3634 if (gid_is_valid(u->ref_gid))
3635 (void) serialize_item_format(f, "ref-gid", GID_FMT, u->ref_gid);
3636
3637 if (!sd_id128_is_null(u->invocation_id))
3638 (void) serialize_item_format(f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id));
3639
3640 (void) serialize_item_format(f, "freezer-state", "%s", freezer_state_to_string(unit_freezer_state(u)));
3641
3642 bus_track_serialize(u->bus_track, f, "ref");
3643
3644 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
3645 uint64_t v;
3646
3647 r = unit_get_ip_accounting(u, m, &v);
3648 if (r >= 0)
3649 (void) serialize_item_format(f, ip_accounting_metric_field[m], "%" PRIu64, v);
3650 }
3651
3652 if (serialize_jobs) {
3653 if (u->job) {
3654 fputs("job\n", f);
3655 job_serialize(u->job, f);
3656 }
3657
3658 if (u->nop_job) {
3659 fputs("job\n", f);
3660 job_serialize(u->nop_job, f);
3661 }
3662 }
3663
3664 /* End marker */
3665 fputc('\n', f);
3666 return 0;
3667 }
3668
3669 static int unit_deserialize_job(Unit *u, FILE *f) {
3670 _cleanup_(job_freep) Job *j = NULL;
3671 int r;
3672
3673 assert(u);
3674 assert(f);
3675
3676 j = job_new_raw(u);
3677 if (!j)
3678 return log_oom();
3679
3680 r = job_deserialize(j, f);
3681 if (r < 0)
3682 return r;
3683
3684 r = job_install_deserialized(j);
3685 if (r < 0)
3686 return r;
3687
3688 TAKE_PTR(j);
3689 return 0;
3690 }
3691
3692 int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
3693 int r;
3694
3695 assert(u);
3696 assert(f);
3697 assert(fds);
3698
3699 for (;;) {
3700 _cleanup_free_ char *line = NULL;
3701 char *l, *v;
3702 ssize_t m;
3703 size_t k;
3704
3705 r = read_line(f, LONG_LINE_MAX, &line);
3706 if (r < 0)
3707 return log_error_errno(r, "Failed to read serialization line: %m");
3708 if (r == 0) /* eof */
3709 break;
3710
3711 l = strstrip(line);
3712 if (isempty(l)) /* End marker */
3713 break;
3714
3715 k = strcspn(l, "=");
3716
3717 if (l[k] == '=') {
3718 l[k] = 0;
3719 v = l+k+1;
3720 } else
3721 v = l+k;
3722
3723 if (streq(l, "job")) {
3724 if (v[0] == '\0') {
3725 /* New-style serialized job */
3726 r = unit_deserialize_job(u, f);
3727 if (r < 0)
3728 return r;
3729 } else /* Legacy for pre-44 */
3730 log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
3731 continue;
3732 } else if (streq(l, "state-change-timestamp")) {
3733 (void) deserialize_dual_timestamp(v, &u->state_change_timestamp);
3734 continue;
3735 } else if (streq(l, "inactive-exit-timestamp")) {
3736 (void) deserialize_dual_timestamp(v, &u->inactive_exit_timestamp);
3737 continue;
3738 } else if (streq(l, "active-enter-timestamp")) {
3739 (void) deserialize_dual_timestamp(v, &u->active_enter_timestamp);
3740 continue;
3741 } else if (streq(l, "active-exit-timestamp")) {
3742 (void) deserialize_dual_timestamp(v, &u->active_exit_timestamp);
3743 continue;
3744 } else if (streq(l, "inactive-enter-timestamp")) {
3745 (void) deserialize_dual_timestamp(v, &u->inactive_enter_timestamp);
3746 continue;
3747 } else if (streq(l, "condition-timestamp")) {
3748 (void) deserialize_dual_timestamp(v, &u->condition_timestamp);
3749 continue;
3750 } else if (streq(l, "assert-timestamp")) {
3751 (void) deserialize_dual_timestamp(v, &u->assert_timestamp);
3752 continue;
3753 } else if (streq(l, "condition-result")) {
3754
3755 r = parse_boolean(v);
3756 if (r < 0)
3757 log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
3758 else
3759 u->condition_result = r;
3760
3761 continue;
3762
3763 } else if (streq(l, "assert-result")) {
3764
3765 r = parse_boolean(v);
3766 if (r < 0)
3767 log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
3768 else
3769 u->assert_result = r;
3770
3771 continue;
3772
3773 } else if (streq(l, "transient")) {
3774
3775 r = parse_boolean(v);
3776 if (r < 0)
3777 log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
3778 else
3779 u->transient = r;
3780
3781 continue;
3782
3783 } else if (streq(l, "in-audit")) {
3784
3785 r = parse_boolean(v);
3786 if (r < 0)
3787 log_unit_debug(u, "Failed to parse in-audit bool %s, ignoring.", v);
3788 else
3789 u->in_audit = r;
3790
3791 continue;
3792
3793 } else if (streq(l, "exported-invocation-id")) {
3794
3795 r = parse_boolean(v);
3796 if (r < 0)
3797 log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v);
3798 else
3799 u->exported_invocation_id = r;
3800
3801 continue;
3802
3803 } else if (streq(l, "exported-log-level-max")) {
3804
3805 r = parse_boolean(v);
3806 if (r < 0)
3807 log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v);
3808 else
3809 u->exported_log_level_max = r;
3810
3811 continue;
3812
3813 } else if (streq(l, "exported-log-extra-fields")) {
3814
3815 r = parse_boolean(v);
3816 if (r < 0)
3817 log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v);
3818 else
3819 u->exported_log_extra_fields = r;
3820
3821 continue;
3822
3823 } else if (streq(l, "exported-log-rate-limit-interval")) {
3824
3825 r = parse_boolean(v);
3826 if (r < 0)
3827 log_unit_debug(u, "Failed to parse exported log rate limit interval %s, ignoring.", v);
3828 else
3829 u->exported_log_ratelimit_interval = r;
3830
3831 continue;
3832
3833 } else if (streq(l, "exported-log-rate-limit-burst")) {
3834
3835 r = parse_boolean(v);
3836 if (r < 0)
3837 log_unit_debug(u, "Failed to parse exported log rate limit burst %s, ignoring.", v);
3838 else
3839 u->exported_log_ratelimit_burst = r;
3840
3841 continue;
3842
3843 } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) {
3844
3845 r = safe_atou64(v, &u->cpu_usage_base);
3846 if (r < 0)
3847 log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v);
3848
3849 continue;
3850
3851 } else if (streq(l, "cpu-usage-last")) {
3852
3853 r = safe_atou64(v, &u->cpu_usage_last);
3854 if (r < 0)
3855 log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v);
3856
3857 continue;
3858
3859 } else if (streq(l, "managed-oom-kill-last")) {
3860
3861 r = safe_atou64(v, &u->managed_oom_kill_last);
3862 if (r < 0)
3863 log_unit_debug(u, "Failed to read managed OOM kill last %s, ignoring.", v);
3864
3865 continue;
3866
3867 } else if (streq(l, "oom-kill-last")) {
3868
3869 r = safe_atou64(v, &u->oom_kill_last);
3870 if (r < 0)
3871 log_unit_debug(u, "Failed to read OOM kill last %s, ignoring.", v);
3872
3873 continue;
3874
3875 } else if (streq(l, "cgroup")) {
3876
3877 r = unit_set_cgroup_path(u, v);
3878 if (r < 0)
3879 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
3880
3881 (void) unit_watch_cgroup(u);
3882 (void) unit_watch_cgroup_memory(u);
3883
3884 continue;
3885 } else if (streq(l, "cgroup-realized")) {
3886 int b;
3887
3888 b = parse_boolean(v);
3889 if (b < 0)
3890 log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
3891 else
3892 u->cgroup_realized = b;
3893
3894 continue;
3895
3896 } else if (streq(l, "cgroup-realized-mask")) {
3897
3898 r = cg_mask_from_string(v, &u->cgroup_realized_mask);
3899 if (r < 0)
3900 log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v);
3901 continue;
3902
3903 } else if (streq(l, "cgroup-enabled-mask")) {
3904
3905 r = cg_mask_from_string(v, &u->cgroup_enabled_mask);
3906 if (r < 0)
3907 log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v);
3908 continue;
3909
3910 } else if (streq(l, "cgroup-invalidated-mask")) {
3911
3912 r = cg_mask_from_string(v, &u->cgroup_invalidated_mask);
3913 if (r < 0)
3914 log_unit_debug(u, "Failed to parse cgroup-invalidated-mask %s, ignoring.", v);
3915 continue;
3916
3917 } else if (streq(l, "ref-uid")) {
3918 uid_t uid;
3919
3920 r = parse_uid(v, &uid);
3921 if (r < 0)
3922 log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v);
3923 else
3924 unit_ref_uid_gid(u, uid, GID_INVALID);
3925
3926 continue;
3927
3928 } else if (streq(l, "ref-gid")) {
3929 gid_t gid;
3930
3931 r = parse_gid(v, &gid);
3932 if (r < 0)
3933 log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v);
3934 else
3935 unit_ref_uid_gid(u, UID_INVALID, gid);
3936
3937 continue;
3938
3939 } else if (streq(l, "ref")) {
3940
3941 r = strv_extend(&u->deserialized_refs, v);
3942 if (r < 0)
3943 return log_oom();
3944
3945 continue;
3946 } else if (streq(l, "invocation-id")) {
3947 sd_id128_t id;
3948
3949 r = sd_id128_from_string(v, &id);
3950 if (r < 0)
3951 log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v);
3952 else {
3953 r = unit_set_invocation_id(u, id);
3954 if (r < 0)
3955 log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m");
3956 }
3957
3958 continue;
3959 } else if (streq(l, "freezer-state")) {
3960 FreezerState s;
3961
3962 s = freezer_state_from_string(v);
3963 if (s < 0)
3964 log_unit_debug(u, "Failed to deserialize freezer-state '%s', ignoring.", v);
3965 else
3966 u->freezer_state = s;
3967
3968 continue;
3969 }
3970
3971 /* Check if this is an IP accounting metric serialization field */
3972 m = string_table_lookup(ip_accounting_metric_field, ELEMENTSOF(ip_accounting_metric_field), l);
3973 if (m >= 0) {
3974 uint64_t c;
3975
3976 r = safe_atou64(v, &c);
3977 if (r < 0)
3978 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v);
3979 else
3980 u->ip_accounting_extra[m] = c;
3981 continue;
3982 }
3983
3984 m = string_table_lookup(io_accounting_metric_field_base, ELEMENTSOF(io_accounting_metric_field_base), l);
3985 if (m >= 0) {
3986 uint64_t c;
3987
3988 r = safe_atou64(v, &c);
3989 if (r < 0)
3990 log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", v);
3991 else
3992 u->io_accounting_base[m] = c;
3993 continue;
3994 }
3995
3996 m = string_table_lookup(io_accounting_metric_field_last, ELEMENTSOF(io_accounting_metric_field_last), l);
3997 if (m >= 0) {
3998 uint64_t c;
3999
4000 r = safe_atou64(v, &c);
4001 if (r < 0)
4002 log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", v);
4003 else
4004 u->io_accounting_last[m] = c;
4005 continue;
4006 }
4007
4008 if (unit_can_serialize(u)) {
4009 r = exec_runtime_deserialize_compat(u, l, v, fds);
4010 if (r < 0) {
4011 log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
4012 continue;
4013 }
4014
4015 /* Returns positive if key was handled by the call */
4016 if (r > 0)
4017 continue;
4018
4019 r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
4020 if (r < 0)
4021 log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
4022 }
4023 }
4024
4025 /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is
4026 * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from
4027 * before 228 where the base for timeouts was not persistent across reboots. */
4028
4029 if (!dual_timestamp_is_set(&u->state_change_timestamp))
4030 dual_timestamp_get(&u->state_change_timestamp);
4031
4032 /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied
4033 * after we are done. For that we invalidate anything already realized, so that we can realize it again. */
4034 unit_invalidate_cgroup(u, _CGROUP_MASK_ALL);
4035 unit_invalidate_cgroup_bpf(u);
4036
4037 return 0;
4038 }
4039
4040 int unit_deserialize_skip(FILE *f) {
4041 int r;
4042 assert(f);
4043
4044 /* Skip serialized data for this unit. We don't know what it is. */
4045
4046 for (;;) {
4047 _cleanup_free_ char *line = NULL;
4048 char *l;
4049
4050 r = read_line(f, LONG_LINE_MAX, &line);
4051 if (r < 0)
4052 return log_error_errno(r, "Failed to read serialization line: %m");
4053 if (r == 0)
4054 return 0;
4055
4056 l = strstrip(line);
4057
4058 /* End marker */
4059 if (isempty(l))
4060 return 1;
4061 }
4062 }
4063
4064 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
4065 _cleanup_free_ char *e = NULL;
4066 Unit *device;
4067 int r;
4068
4069 assert(u);
4070
4071 /* Adds in links to the device node that this unit is based on */
4072 if (isempty(what))
4073 return 0;
4074
4075 if (!is_device_path(what))
4076 return 0;
4077
4078 /* When device units aren't supported (such as in a container), don't create dependencies on them. */
4079 if (!unit_type_supported(UNIT_DEVICE))
4080 return 0;
4081
4082 r = unit_name_from_path(what, ".device", &e);
4083 if (r < 0)
4084 return r;
4085
4086 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
4087 if (r < 0)
4088 return r;
4089
4090 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
4091 dep = UNIT_BINDS_TO;
4092
4093 return unit_add_two_dependencies(u, UNIT_AFTER,
4094 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
4095 device, true, mask);
4096 }
4097
4098 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask) {
4099 _cleanup_free_ char *escaped = NULL, *target = NULL;
4100 int r;
4101
4102 assert(u);
4103
4104 if (isempty(what))
4105 return 0;
4106
4107 if (!path_startswith(what, "/dev/"))
4108 return 0;
4109
4110 /* If we don't support devices, then also don't bother with blockdev@.target */
4111 if (!unit_type_supported(UNIT_DEVICE))
4112 return 0;
4113
4114 r = unit_name_path_escape(what, &escaped);
4115 if (r < 0)
4116 return r;
4117
4118 r = unit_name_build("blockdev", escaped, ".target", &target);
4119 if (r < 0)
4120 return r;
4121
4122 return unit_add_dependency_by_name(u, UNIT_AFTER, target, true, mask);
4123 }
4124
4125 int unit_coldplug(Unit *u) {
4126 int r = 0, q;
4127 char **i;
4128 Job *uj;
4129
4130 assert(u);
4131
4132 /* Make sure we don't enter a loop, when coldplugging recursively. */
4133 if (u->coldplugged)
4134 return 0;
4135
4136 u->coldplugged = true;
4137
4138 STRV_FOREACH(i, u->deserialized_refs) {
4139 q = bus_unit_track_add_name(u, *i);
4140 if (q < 0 && r >= 0)
4141 r = q;
4142 }
4143 u->deserialized_refs = strv_free(u->deserialized_refs);
4144
4145 if (UNIT_VTABLE(u)->coldplug) {
4146 q = UNIT_VTABLE(u)->coldplug(u);
4147 if (q < 0 && r >= 0)
4148 r = q;
4149 }
4150
4151 uj = u->job ?: u->nop_job;
4152 if (uj) {
4153 q = job_coldplug(uj);
4154 if (q < 0 && r >= 0)
4155 r = q;
4156 }
4157
4158 return r;
4159 }
4160
4161 void unit_catchup(Unit *u) {
4162 assert(u);
4163
4164 if (UNIT_VTABLE(u)->catchup)
4165 UNIT_VTABLE(u)->catchup(u);
4166 }
4167
4168 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
4169 struct stat st;
4170
4171 if (!path)
4172 return false;
4173
4174 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
4175 * are never out-of-date. */
4176 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
4177 return false;
4178
4179 if (stat(path, &st) < 0)
4180 /* What, cannot access this anymore? */
4181 return true;
4182
4183 if (path_masked)
4184 /* For masked files check if they are still so */
4185 return !null_or_empty(&st);
4186 else
4187 /* For non-empty files check the mtime */
4188 return timespec_load(&st.st_mtim) > mtime;
4189
4190 return false;
4191 }
4192
4193 bool unit_need_daemon_reload(Unit *u) {
4194 _cleanup_strv_free_ char **t = NULL;
4195 char **path;
4196
4197 assert(u);
4198
4199 /* For unit files, we allow masking… */
4200 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
4201 u->load_state == UNIT_MASKED))
4202 return true;
4203
4204 /* Source paths should not be masked… */
4205 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
4206 return true;
4207
4208 if (u->load_state == UNIT_LOADED)
4209 (void) unit_find_dropin_paths(u, &t);
4210 if (!strv_equal(u->dropin_paths, t))
4211 return true;
4212
4213 /* … any drop-ins that are masked are simply omitted from the list. */
4214 STRV_FOREACH(path, u->dropin_paths)
4215 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
4216 return true;
4217
4218 return false;
4219 }
4220
4221 void unit_reset_failed(Unit *u) {
4222 assert(u);
4223
4224 if (UNIT_VTABLE(u)->reset_failed)
4225 UNIT_VTABLE(u)->reset_failed(u);
4226
4227 ratelimit_reset(&u->start_ratelimit);
4228 u->start_limit_hit = false;
4229 }
4230
4231 Unit *unit_following(Unit *u) {
4232 assert(u);
4233
4234 if (UNIT_VTABLE(u)->following)
4235 return UNIT_VTABLE(u)->following(u);
4236
4237 return NULL;
4238 }
4239
4240 bool unit_stop_pending(Unit *u) {
4241 assert(u);
4242
4243 /* This call does check the current state of the unit. It's
4244 * hence useful to be called from state change calls of the
4245 * unit itself, where the state isn't updated yet. This is
4246 * different from unit_inactive_or_pending() which checks both
4247 * the current state and for a queued job. */
4248
4249 return unit_has_job_type(u, JOB_STOP);
4250 }
4251
4252 bool unit_inactive_or_pending(Unit *u) {
4253 assert(u);
4254
4255 /* Returns true if the unit is inactive or going down */
4256
4257 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
4258 return true;
4259
4260 if (unit_stop_pending(u))
4261 return true;
4262
4263 return false;
4264 }
4265
4266 bool unit_active_or_pending(Unit *u) {
4267 assert(u);
4268
4269 /* Returns true if the unit is active or going up */
4270
4271 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
4272 return true;
4273
4274 if (u->job &&
4275 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
4276 return true;
4277
4278 return false;
4279 }
4280
4281 bool unit_will_restart_default(Unit *u) {
4282 assert(u);
4283
4284 return unit_has_job_type(u, JOB_START);
4285 }
4286
4287 bool unit_will_restart(Unit *u) {
4288 assert(u);
4289
4290 if (!UNIT_VTABLE(u)->will_restart)
4291 return false;
4292
4293 return UNIT_VTABLE(u)->will_restart(u);
4294 }
4295
4296 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
4297 assert(u);
4298 assert(w >= 0 && w < _KILL_WHO_MAX);
4299 assert(SIGNAL_VALID(signo));
4300
4301 if (!UNIT_VTABLE(u)->kill)
4302 return -EOPNOTSUPP;
4303
4304 return UNIT_VTABLE(u)->kill(u, w, signo, error);
4305 }
4306
4307 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
4308 _cleanup_set_free_ Set *pid_set = NULL;
4309 int r;
4310
4311 pid_set = set_new(NULL);
4312 if (!pid_set)
4313 return NULL;
4314
4315 /* Exclude the main/control pids from being killed via the cgroup */
4316 if (main_pid > 0) {
4317 r = set_put(pid_set, PID_TO_PTR(main_pid));
4318 if (r < 0)
4319 return NULL;
4320 }
4321
4322 if (control_pid > 0) {
4323 r = set_put(pid_set, PID_TO_PTR(control_pid));
4324 if (r < 0)
4325 return NULL;
4326 }
4327
4328 return TAKE_PTR(pid_set);
4329 }
4330
4331 static int kill_common_log(pid_t pid, int signo, void *userdata) {
4332 _cleanup_free_ char *comm = NULL;
4333 Unit *u = userdata;
4334
4335 assert(u);
4336
4337 (void) get_process_comm(pid, &comm);
4338 log_unit_info(u, "Sending signal SIG%s to process " PID_FMT " (%s) on client request.",
4339 signal_to_string(signo), pid, strna(comm));
4340
4341 return 1;
4342 }
4343
4344 int unit_kill_common(
4345 Unit *u,
4346 KillWho who,
4347 int signo,
4348 pid_t main_pid,
4349 pid_t control_pid,
4350 sd_bus_error *error) {
4351
4352 int r = 0;
4353 bool killed = false;
4354
4355 /* This is the common implementation for explicit user-requested killing of unit processes, shared by
4356 * various unit types. Do not confuse with unit_kill_context(), which is what we use when we want to
4357 * stop a service ourselves. */
4358
4359 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4360 if (main_pid < 0)
4361 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4362 if (main_pid == 0)
4363 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4364 }
4365
4366 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4367 if (control_pid < 0)
4368 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4369 if (control_pid == 0)
4370 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4371 }
4372
4373 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
4374 if (control_pid > 0) {
4375 _cleanup_free_ char *comm = NULL;
4376 (void) get_process_comm(control_pid, &comm);
4377
4378 if (kill(control_pid, signo) < 0) {
4379 /* Report this failure both to the logs and to the client */
4380 sd_bus_error_set_errnof(
4381 error, errno,
4382 "Failed to send signal SIG%s to control process " PID_FMT " (%s): %m",
4383 signal_to_string(signo), control_pid, strna(comm));
4384 r = log_unit_warning_errno(
4385 u, errno,
4386 "Failed to send signal SIG%s to control process " PID_FMT " (%s) on client request: %m",
4387 signal_to_string(signo), control_pid, strna(comm));
4388 } else {
4389 log_unit_info(u, "Sent signal SIG%s to control process " PID_FMT " (%s) on client request.",
4390 signal_to_string(signo), control_pid, strna(comm));
4391 killed = true;
4392 }
4393 }
4394
4395 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
4396 if (main_pid > 0) {
4397 _cleanup_free_ char *comm = NULL;
4398 (void) get_process_comm(main_pid, &comm);
4399
4400 if (kill(main_pid, signo) < 0) {
4401 if (r == 0)
4402 sd_bus_error_set_errnof(
4403 error, errno,
4404 "Failed to send signal SIG%s to main process " PID_FMT " (%s): %m",
4405 signal_to_string(signo), main_pid, strna(comm));
4406
4407 r = log_unit_warning_errno(
4408 u, errno,
4409 "Failed to send signal SIG%s to main process " PID_FMT " (%s) on client request: %m",
4410 signal_to_string(signo), main_pid, strna(comm));
4411 } else {
4412 log_unit_info(u, "Sent signal SIG%s to main process " PID_FMT " (%s) on client request.",
4413 signal_to_string(signo), main_pid, strna(comm));
4414 killed = true;
4415 }
4416 }
4417
4418 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
4419 _cleanup_set_free_ Set *pid_set = NULL;
4420 int q;
4421
4422 /* Exclude the main/control pids from being killed via the cgroup */
4423 pid_set = unit_pid_set(main_pid, control_pid);
4424 if (!pid_set)
4425 return log_oom();
4426
4427 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, kill_common_log, u);
4428 if (q < 0) {
4429 if (!IN_SET(q, -ESRCH, -ENOENT)) {
4430 if (r == 0)
4431 sd_bus_error_set_errnof(
4432 error, q,
4433 "Failed to send signal SIG%s to auxiliary processes: %m",
4434 signal_to_string(signo));
4435
4436 r = log_unit_warning_errno(
4437 u, q,
4438 "Failed to send signal SIG%s to auxiliary processes on client request: %m",
4439 signal_to_string(signo));
4440 }
4441 } else
4442 killed = true;
4443 }
4444
4445 /* If the "fail" versions of the operation are requested, then complain if the set of processes we killed is empty */
4446 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL, KILL_MAIN_FAIL))
4447 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No matching processes to kill");
4448
4449 return r;
4450 }
4451
4452 int unit_following_set(Unit *u, Set **s) {
4453 assert(u);
4454 assert(s);
4455
4456 if (UNIT_VTABLE(u)->following_set)
4457 return UNIT_VTABLE(u)->following_set(u, s);
4458
4459 *s = NULL;
4460 return 0;
4461 }
4462
4463 UnitFileState unit_get_unit_file_state(Unit *u) {
4464 int r;
4465
4466 assert(u);
4467
4468 if (u->unit_file_state < 0 && u->fragment_path) {
4469 r = unit_file_get_state(
4470 u->manager->unit_file_scope,
4471 NULL,
4472 u->id,
4473 &u->unit_file_state);
4474 if (r < 0)
4475 u->unit_file_state = UNIT_FILE_BAD;
4476 }
4477
4478 return u->unit_file_state;
4479 }
4480
4481 int unit_get_unit_file_preset(Unit *u) {
4482 assert(u);
4483
4484 if (u->unit_file_preset < 0 && u->fragment_path)
4485 u->unit_file_preset = unit_file_query_preset(
4486 u->manager->unit_file_scope,
4487 NULL,
4488 basename(u->fragment_path),
4489 NULL);
4490
4491 return u->unit_file_preset;
4492 }
4493
4494 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4495 assert(ref);
4496 assert(source);
4497 assert(target);
4498
4499 if (ref->target)
4500 unit_ref_unset(ref);
4501
4502 ref->source = source;
4503 ref->target = target;
4504 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4505 return target;
4506 }
4507
4508 void unit_ref_unset(UnitRef *ref) {
4509 assert(ref);
4510
4511 if (!ref->target)
4512 return;
4513
4514 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4515 * be unreferenced now. */
4516 unit_add_to_gc_queue(ref->target);
4517
4518 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4519 ref->source = ref->target = NULL;
4520 }
4521
4522 static int user_from_unit_name(Unit *u, char **ret) {
4523
4524 static const uint8_t hash_key[] = {
4525 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4526 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4527 };
4528
4529 _cleanup_free_ char *n = NULL;
4530 int r;
4531
4532 r = unit_name_to_prefix(u->id, &n);
4533 if (r < 0)
4534 return r;
4535
4536 if (valid_user_group_name(n, 0)) {
4537 *ret = TAKE_PTR(n);
4538 return 0;
4539 }
4540
4541 /* If we can't use the unit name as a user name, then let's hash it and use that */
4542 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4543 return -ENOMEM;
4544
4545 return 0;
4546 }
4547
4548 int unit_patch_contexts(Unit *u) {
4549 CGroupContext *cc;
4550 ExecContext *ec;
4551 int r;
4552
4553 assert(u);
4554
4555 /* Patch in the manager defaults into the exec and cgroup
4556 * contexts, _after_ the rest of the settings have been
4557 * initialized */
4558
4559 ec = unit_get_exec_context(u);
4560 if (ec) {
4561 /* This only copies in the ones that need memory */
4562 for (unsigned i = 0; i < _RLIMIT_MAX; i++)
4563 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4564 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4565 if (!ec->rlimit[i])
4566 return -ENOMEM;
4567 }
4568
4569 if (MANAGER_IS_USER(u->manager) &&
4570 !ec->working_directory) {
4571
4572 r = get_home_dir(&ec->working_directory);
4573 if (r < 0)
4574 return r;
4575
4576 /* Allow user services to run, even if the
4577 * home directory is missing */
4578 ec->working_directory_missing_ok = true;
4579 }
4580
4581 if (ec->private_devices)
4582 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4583
4584 if (ec->protect_kernel_modules)
4585 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4586
4587 if (ec->protect_kernel_logs)
4588 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4589
4590 if (ec->protect_clock)
4591 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_SYS_TIME) | (UINT64_C(1) << CAP_WAKE_ALARM));
4592
4593 if (ec->dynamic_user) {
4594 if (!ec->user) {
4595 r = user_from_unit_name(u, &ec->user);
4596 if (r < 0)
4597 return r;
4598 }
4599
4600 if (!ec->group) {
4601 ec->group = strdup(ec->user);
4602 if (!ec->group)
4603 return -ENOMEM;
4604 }
4605
4606 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4607 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4608 * sandbox. */
4609
4610 ec->private_tmp = true;
4611 ec->remove_ipc = true;
4612 ec->protect_system = PROTECT_SYSTEM_STRICT;
4613 if (ec->protect_home == PROTECT_HOME_NO)
4614 ec->protect_home = PROTECT_HOME_READ_ONLY;
4615
4616 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4617 * them. */
4618 ec->no_new_privileges = true;
4619 ec->restrict_suid_sgid = true;
4620 }
4621 }
4622
4623 cc = unit_get_cgroup_context(u);
4624 if (cc && ec) {
4625
4626 if (ec->private_devices &&
4627 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4628 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4629
4630 if ((ec->root_image || !LIST_IS_EMPTY(ec->mount_images)) &&
4631 (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow)) {
4632 const char *p;
4633
4634 /* When RootImage= or MountImages= is specified, the following devices are touched. */
4635 FOREACH_STRING(p, "/dev/loop-control", "/dev/mapper/control") {
4636 r = cgroup_add_device_allow(cc, p, "rw");
4637 if (r < 0)
4638 return r;
4639 }
4640 FOREACH_STRING(p, "block-loop", "block-blkext", "block-device-mapper") {
4641 r = cgroup_add_device_allow(cc, p, "rwm");
4642 if (r < 0)
4643 return r;
4644 }
4645
4646 /* Make sure "block-loop" can be resolved, i.e. make sure "loop" shows up in /proc/devices.
4647 * Same for mapper and verity. */
4648 FOREACH_STRING(p, "modprobe@loop.service", "modprobe@dm_mod.service", "modprobe@dm_verity.service") {
4649 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, p, true, UNIT_DEPENDENCY_FILE);
4650 if (r < 0)
4651 return r;
4652 }
4653 }
4654
4655 if (ec->protect_clock) {
4656 r = cgroup_add_device_allow(cc, "char-rtc", "r");
4657 if (r < 0)
4658 return r;
4659 }
4660 }
4661
4662 return 0;
4663 }
4664
4665 ExecContext *unit_get_exec_context(Unit *u) {
4666 size_t offset;
4667 assert(u);
4668
4669 if (u->type < 0)
4670 return NULL;
4671
4672 offset = UNIT_VTABLE(u)->exec_context_offset;
4673 if (offset <= 0)
4674 return NULL;
4675
4676 return (ExecContext*) ((uint8_t*) u + offset);
4677 }
4678
4679 KillContext *unit_get_kill_context(Unit *u) {
4680 size_t offset;
4681 assert(u);
4682
4683 if (u->type < 0)
4684 return NULL;
4685
4686 offset = UNIT_VTABLE(u)->kill_context_offset;
4687 if (offset <= 0)
4688 return NULL;
4689
4690 return (KillContext*) ((uint8_t*) u + offset);
4691 }
4692
4693 CGroupContext *unit_get_cgroup_context(Unit *u) {
4694 size_t offset;
4695
4696 if (u->type < 0)
4697 return NULL;
4698
4699 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4700 if (offset <= 0)
4701 return NULL;
4702
4703 return (CGroupContext*) ((uint8_t*) u + offset);
4704 }
4705
4706 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4707 size_t offset;
4708
4709 if (u->type < 0)
4710 return NULL;
4711
4712 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4713 if (offset <= 0)
4714 return NULL;
4715
4716 return *(ExecRuntime**) ((uint8_t*) u + offset);
4717 }
4718
4719 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4720 assert(u);
4721
4722 if (UNIT_WRITE_FLAGS_NOOP(flags))
4723 return NULL;
4724
4725 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4726 return u->manager->lookup_paths.transient;
4727
4728 if (flags & UNIT_PERSISTENT)
4729 return u->manager->lookup_paths.persistent_control;
4730
4731 if (flags & UNIT_RUNTIME)
4732 return u->manager->lookup_paths.runtime_control;
4733
4734 return NULL;
4735 }
4736
4737 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4738 char *ret = NULL;
4739
4740 if (!s)
4741 return NULL;
4742
4743 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4744 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4745 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4746 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4747 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4748 * allocations. */
4749
4750 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4751 ret = specifier_escape(s);
4752 if (!ret)
4753 return NULL;
4754
4755 s = ret;
4756 }
4757
4758 if (flags & UNIT_ESCAPE_C) {
4759 char *a;
4760
4761 a = cescape(s);
4762 free(ret);
4763 if (!a)
4764 return NULL;
4765
4766 ret = a;
4767 }
4768
4769 if (buf) {
4770 *buf = ret;
4771 return ret ?: (char*) s;
4772 }
4773
4774 return ret ?: strdup(s);
4775 }
4776
4777 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4778 _cleanup_free_ char *result = NULL;
4779 size_t n = 0, allocated = 0;
4780 char **i;
4781
4782 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4783 * way suitable for ExecStart= stanzas */
4784
4785 STRV_FOREACH(i, l) {
4786 _cleanup_free_ char *buf = NULL;
4787 const char *p;
4788 size_t a;
4789 char *q;
4790
4791 p = unit_escape_setting(*i, flags, &buf);
4792 if (!p)
4793 return NULL;
4794
4795 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4796 if (!GREEDY_REALLOC(result, allocated, n + a + 1))
4797 return NULL;
4798
4799 q = result + n;
4800 if (n > 0)
4801 *(q++) = ' ';
4802
4803 *(q++) = '"';
4804 q = stpcpy(q, p);
4805 *(q++) = '"';
4806
4807 n += a;
4808 }
4809
4810 if (!GREEDY_REALLOC(result, allocated, n + 1))
4811 return NULL;
4812
4813 result[n] = 0;
4814
4815 return TAKE_PTR(result);
4816 }
4817
4818 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4819 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4820 const char *dir, *wrapped;
4821 int r;
4822
4823 assert(u);
4824 assert(name);
4825 assert(data);
4826
4827 if (UNIT_WRITE_FLAGS_NOOP(flags))
4828 return 0;
4829
4830 data = unit_escape_setting(data, flags, &escaped);
4831 if (!data)
4832 return -ENOMEM;
4833
4834 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4835 * previous section header is the same */
4836
4837 if (flags & UNIT_PRIVATE) {
4838 if (!UNIT_VTABLE(u)->private_section)
4839 return -EINVAL;
4840
4841 if (!u->transient_file || u->last_section_private < 0)
4842 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4843 else if (u->last_section_private == 0)
4844 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4845 } else {
4846 if (!u->transient_file || u->last_section_private < 0)
4847 data = strjoina("[Unit]\n", data);
4848 else if (u->last_section_private > 0)
4849 data = strjoina("\n[Unit]\n", data);
4850 }
4851
4852 if (u->transient_file) {
4853 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4854 * write to the transient unit file. */
4855 fputs(data, u->transient_file);
4856
4857 if (!endswith(data, "\n"))
4858 fputc('\n', u->transient_file);
4859
4860 /* Remember which section we wrote this entry to */
4861 u->last_section_private = !!(flags & UNIT_PRIVATE);
4862 return 0;
4863 }
4864
4865 dir = unit_drop_in_dir(u, flags);
4866 if (!dir)
4867 return -EINVAL;
4868
4869 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4870 "# or an equivalent operation. Do not edit.\n",
4871 data,
4872 "\n");
4873
4874 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4875 if (r < 0)
4876 return r;
4877
4878 (void) mkdir_p_label(p, 0755);
4879
4880 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4881 * recreate the cache after every drop-in we write. */
4882 if (u->manager->unit_path_cache) {
4883 r = set_put_strdup(&u->manager->unit_path_cache, p);
4884 if (r < 0)
4885 return r;
4886 }
4887
4888 r = write_string_file_atomic_label(q, wrapped);
4889 if (r < 0)
4890 return r;
4891
4892 r = strv_push(&u->dropin_paths, q);
4893 if (r < 0)
4894 return r;
4895 q = NULL;
4896
4897 strv_uniq(u->dropin_paths);
4898
4899 u->dropin_mtime = now(CLOCK_REALTIME);
4900
4901 return 0;
4902 }
4903
4904 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4905 _cleanup_free_ char *p = NULL;
4906 va_list ap;
4907 int r;
4908
4909 assert(u);
4910 assert(name);
4911 assert(format);
4912
4913 if (UNIT_WRITE_FLAGS_NOOP(flags))
4914 return 0;
4915
4916 va_start(ap, format);
4917 r = vasprintf(&p, format, ap);
4918 va_end(ap);
4919
4920 if (r < 0)
4921 return -ENOMEM;
4922
4923 return unit_write_setting(u, flags, name, p);
4924 }
4925
4926 int unit_make_transient(Unit *u) {
4927 _cleanup_free_ char *path = NULL;
4928 FILE *f;
4929
4930 assert(u);
4931
4932 if (!UNIT_VTABLE(u)->can_transient)
4933 return -EOPNOTSUPP;
4934
4935 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4936
4937 path = path_join(u->manager->lookup_paths.transient, u->id);
4938 if (!path)
4939 return -ENOMEM;
4940
4941 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4942 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4943
4944 RUN_WITH_UMASK(0022) {
4945 f = fopen(path, "we");
4946 if (!f)
4947 return -errno;
4948 }
4949
4950 safe_fclose(u->transient_file);
4951 u->transient_file = f;
4952
4953 free_and_replace(u->fragment_path, path);
4954
4955 u->source_path = mfree(u->source_path);
4956 u->dropin_paths = strv_free(u->dropin_paths);
4957 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4958
4959 u->load_state = UNIT_STUB;
4960 u->load_error = 0;
4961 u->transient = true;
4962
4963 unit_add_to_dbus_queue(u);
4964 unit_add_to_gc_queue(u);
4965
4966 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4967 u->transient_file);
4968
4969 return 0;
4970 }
4971
4972 static int log_kill(pid_t pid, int sig, void *userdata) {
4973 _cleanup_free_ char *comm = NULL;
4974
4975 (void) get_process_comm(pid, &comm);
4976
4977 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4978 only, like for example systemd's own PAM stub process. */
4979 if (comm && comm[0] == '(')
4980 return 0;
4981
4982 log_unit_notice(userdata,
4983 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4984 pid,
4985 strna(comm),
4986 signal_to_string(sig));
4987
4988 return 1;
4989 }
4990
4991 static int operation_to_signal(const KillContext *c, KillOperation k, bool *noteworthy) {
4992 assert(c);
4993
4994 switch (k) {
4995
4996 case KILL_TERMINATE:
4997 case KILL_TERMINATE_AND_LOG:
4998 *noteworthy = false;
4999 return c->kill_signal;
5000
5001 case KILL_RESTART:
5002 *noteworthy = false;
5003 return restart_kill_signal(c);
5004
5005 case KILL_KILL:
5006 *noteworthy = true;
5007 return c->final_kill_signal;
5008
5009 case KILL_WATCHDOG:
5010 *noteworthy = true;
5011 return c->watchdog_signal;
5012
5013 default:
5014 assert_not_reached("KillOperation unknown");
5015 }
5016 }
5017
5018 int unit_kill_context(
5019 Unit *u,
5020 KillContext *c,
5021 KillOperation k,
5022 pid_t main_pid,
5023 pid_t control_pid,
5024 bool main_pid_alien) {
5025
5026 bool wait_for_exit = false, send_sighup;
5027 cg_kill_log_func_t log_func = NULL;
5028 int sig, r;
5029
5030 assert(u);
5031 assert(c);
5032
5033 /* Kill the processes belonging to this unit, in preparation for shutting the unit down. Returns > 0
5034 * if we killed something worth waiting for, 0 otherwise. Do not confuse with unit_kill_common()
5035 * which is used for user-requested killing of unit processes. */
5036
5037 if (c->kill_mode == KILL_NONE)
5038 return 0;
5039
5040 bool noteworthy;
5041 sig = operation_to_signal(c, k, &noteworthy);
5042 if (noteworthy)
5043 log_func = log_kill;
5044
5045 send_sighup =
5046 c->send_sighup &&
5047 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
5048 sig != SIGHUP;
5049
5050 if (main_pid > 0) {
5051 if (log_func)
5052 log_func(main_pid, sig, u);
5053
5054 r = kill_and_sigcont(main_pid, sig);
5055 if (r < 0 && r != -ESRCH) {
5056 _cleanup_free_ char *comm = NULL;
5057 (void) get_process_comm(main_pid, &comm);
5058
5059 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
5060 } else {
5061 if (!main_pid_alien)
5062 wait_for_exit = true;
5063
5064 if (r != -ESRCH && send_sighup)
5065 (void) kill(main_pid, SIGHUP);
5066 }
5067 }
5068
5069 if (control_pid > 0) {
5070 if (log_func)
5071 log_func(control_pid, sig, u);
5072
5073 r = kill_and_sigcont(control_pid, sig);
5074 if (r < 0 && r != -ESRCH) {
5075 _cleanup_free_ char *comm = NULL;
5076 (void) get_process_comm(control_pid, &comm);
5077
5078 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
5079 } else {
5080 wait_for_exit = true;
5081
5082 if (r != -ESRCH && send_sighup)
5083 (void) kill(control_pid, SIGHUP);
5084 }
5085 }
5086
5087 if (u->cgroup_path &&
5088 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
5089 _cleanup_set_free_ Set *pid_set = NULL;
5090
5091 /* Exclude the main/control pids from being killed via the cgroup */
5092 pid_set = unit_pid_set(main_pid, control_pid);
5093 if (!pid_set)
5094 return -ENOMEM;
5095
5096 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
5097 sig,
5098 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
5099 pid_set,
5100 log_func, u);
5101 if (r < 0) {
5102 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
5103 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
5104
5105 } else if (r > 0) {
5106
5107 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
5108 * we are running in a container or if this is a delegation unit, simply because cgroup
5109 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
5110 * of containers it can be confused easily by left-over directories in the cgroup — which
5111 * however should not exist in non-delegated units. On the unified hierarchy that's different,
5112 * there we get proper events. Hence rely on them. */
5113
5114 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
5115 (detect_container() == 0 && !unit_cgroup_delegate(u)))
5116 wait_for_exit = true;
5117
5118 if (send_sighup) {
5119 set_free(pid_set);
5120
5121 pid_set = unit_pid_set(main_pid, control_pid);
5122 if (!pid_set)
5123 return -ENOMEM;
5124
5125 (void) cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
5126 SIGHUP,
5127 CGROUP_IGNORE_SELF,
5128 pid_set,
5129 NULL, NULL);
5130 }
5131 }
5132 }
5133
5134 return wait_for_exit;
5135 }
5136
5137 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
5138 _cleanup_free_ char *p = NULL;
5139 UnitDependencyInfo di;
5140 int r;
5141
5142 assert(u);
5143 assert(path);
5144
5145 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in
5146 * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to
5147 * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily
5148 * determine which units to make themselves a dependency of. */
5149
5150 if (!path_is_absolute(path))
5151 return -EINVAL;
5152
5153 r = hashmap_ensure_allocated(&u->requires_mounts_for, &path_hash_ops);
5154 if (r < 0)
5155 return r;
5156
5157 p = strdup(path);
5158 if (!p)
5159 return -ENOMEM;
5160
5161 path = path_simplify(p, true);
5162
5163 if (!path_is_normalized(path))
5164 return -EPERM;
5165
5166 if (hashmap_contains(u->requires_mounts_for, path))
5167 return 0;
5168
5169 di = (UnitDependencyInfo) {
5170 .origin_mask = mask
5171 };
5172
5173 r = hashmap_put(u->requires_mounts_for, path, di.data);
5174 if (r < 0)
5175 return r;
5176 p = NULL;
5177
5178 char prefix[strlen(path) + 1];
5179 PATH_FOREACH_PREFIX_MORE(prefix, path) {
5180 Set *x;
5181
5182 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
5183 if (!x) {
5184 _cleanup_free_ char *q = NULL;
5185
5186 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
5187 if (r < 0)
5188 return r;
5189
5190 q = strdup(prefix);
5191 if (!q)
5192 return -ENOMEM;
5193
5194 x = set_new(NULL);
5195 if (!x)
5196 return -ENOMEM;
5197
5198 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
5199 if (r < 0) {
5200 set_free(x);
5201 return r;
5202 }
5203 q = NULL;
5204 }
5205
5206 r = set_put(x, u);
5207 if (r < 0)
5208 return r;
5209 }
5210
5211 return 0;
5212 }
5213
5214 int unit_setup_exec_runtime(Unit *u) {
5215 ExecRuntime **rt;
5216 size_t offset;
5217 Unit *other;
5218 void *v;
5219 int r;
5220
5221 offset = UNIT_VTABLE(u)->exec_runtime_offset;
5222 assert(offset > 0);
5223
5224 /* Check if there already is an ExecRuntime for this unit? */
5225 rt = (ExecRuntime**) ((uint8_t*) u + offset);
5226 if (*rt)
5227 return 0;
5228
5229 /* Try to get it from somebody else */
5230 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF]) {
5231 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
5232 if (r == 1)
5233 return 1;
5234 }
5235
5236 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
5237 }
5238
5239 int unit_setup_dynamic_creds(Unit *u) {
5240 ExecContext *ec;
5241 DynamicCreds *dcreds;
5242 size_t offset;
5243
5244 assert(u);
5245
5246 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
5247 assert(offset > 0);
5248 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
5249
5250 ec = unit_get_exec_context(u);
5251 assert(ec);
5252
5253 if (!ec->dynamic_user)
5254 return 0;
5255
5256 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
5257 }
5258
5259 bool unit_type_supported(UnitType t) {
5260 if (_unlikely_(t < 0))
5261 return false;
5262 if (_unlikely_(t >= _UNIT_TYPE_MAX))
5263 return false;
5264
5265 if (!unit_vtable[t]->supported)
5266 return true;
5267
5268 return unit_vtable[t]->supported();
5269 }
5270
5271 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
5272 int r;
5273
5274 assert(u);
5275 assert(where);
5276
5277 r = dir_is_empty(where);
5278 if (r > 0 || r == -ENOTDIR)
5279 return;
5280 if (r < 0) {
5281 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
5282 return;
5283 }
5284
5285 log_struct(LOG_NOTICE,
5286 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5287 LOG_UNIT_ID(u),
5288 LOG_UNIT_INVOCATION_ID(u),
5289 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
5290 "WHERE=%s", where);
5291 }
5292
5293 int unit_fail_if_noncanonical(Unit *u, const char* where) {
5294 _cleanup_free_ char *canonical_where = NULL;
5295 int r;
5296
5297 assert(u);
5298 assert(where);
5299
5300 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
5301 if (r < 0) {
5302 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
5303 return 0;
5304 }
5305
5306 /* We will happily ignore a trailing slash (or any redundant slashes) */
5307 if (path_equal(where, canonical_where))
5308 return 0;
5309
5310 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
5311 log_struct(LOG_ERR,
5312 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5313 LOG_UNIT_ID(u),
5314 LOG_UNIT_INVOCATION_ID(u),
5315 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
5316 "WHERE=%s", where);
5317
5318 return -ELOOP;
5319 }
5320
5321 bool unit_is_pristine(Unit *u) {
5322 assert(u);
5323
5324 /* Check if the unit already exists or is already around,
5325 * in a number of different ways. Note that to cater for unit
5326 * types such as slice, we are generally fine with units that
5327 * are marked UNIT_LOADED even though nothing was actually
5328 * loaded, as those unit types don't require a file on disk. */
5329
5330 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
5331 u->fragment_path ||
5332 u->source_path ||
5333 !strv_isempty(u->dropin_paths) ||
5334 u->job ||
5335 u->merged_into);
5336 }
5337
5338 pid_t unit_control_pid(Unit *u) {
5339 assert(u);
5340
5341 if (UNIT_VTABLE(u)->control_pid)
5342 return UNIT_VTABLE(u)->control_pid(u);
5343
5344 return 0;
5345 }
5346
5347 pid_t unit_main_pid(Unit *u) {
5348 assert(u);
5349
5350 if (UNIT_VTABLE(u)->main_pid)
5351 return UNIT_VTABLE(u)->main_pid(u);
5352
5353 return 0;
5354 }
5355
5356 static void unit_unref_uid_internal(
5357 Unit *u,
5358 uid_t *ref_uid,
5359 bool destroy_now,
5360 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
5361
5362 assert(u);
5363 assert(ref_uid);
5364 assert(_manager_unref_uid);
5365
5366 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
5367 * gid_t are actually the same time, with the same validity rules.
5368 *
5369 * Drops a reference to UID/GID from a unit. */
5370
5371 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5372 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5373
5374 if (!uid_is_valid(*ref_uid))
5375 return;
5376
5377 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
5378 *ref_uid = UID_INVALID;
5379 }
5380
5381 static void unit_unref_uid(Unit *u, bool destroy_now) {
5382 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
5383 }
5384
5385 static void unit_unref_gid(Unit *u, bool destroy_now) {
5386 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
5387 }
5388
5389 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5390 assert(u);
5391
5392 unit_unref_uid(u, destroy_now);
5393 unit_unref_gid(u, destroy_now);
5394 }
5395
5396 static int unit_ref_uid_internal(
5397 Unit *u,
5398 uid_t *ref_uid,
5399 uid_t uid,
5400 bool clean_ipc,
5401 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
5402
5403 int r;
5404
5405 assert(u);
5406 assert(ref_uid);
5407 assert(uid_is_valid(uid));
5408 assert(_manager_ref_uid);
5409
5410 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
5411 * are actually the same type, and have the same validity rules.
5412 *
5413 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5414 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5415 * drops to zero. */
5416
5417 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5418 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5419
5420 if (*ref_uid == uid)
5421 return 0;
5422
5423 if (uid_is_valid(*ref_uid)) /* Already set? */
5424 return -EBUSY;
5425
5426 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5427 if (r < 0)
5428 return r;
5429
5430 *ref_uid = uid;
5431 return 1;
5432 }
5433
5434 static int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5435 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5436 }
5437
5438 static int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5439 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5440 }
5441
5442 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5443 int r = 0, q = 0;
5444
5445 assert(u);
5446
5447 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5448
5449 if (uid_is_valid(uid)) {
5450 r = unit_ref_uid(u, uid, clean_ipc);
5451 if (r < 0)
5452 return r;
5453 }
5454
5455 if (gid_is_valid(gid)) {
5456 q = unit_ref_gid(u, gid, clean_ipc);
5457 if (q < 0) {
5458 if (r > 0)
5459 unit_unref_uid(u, false);
5460
5461 return q;
5462 }
5463 }
5464
5465 return r > 0 || q > 0;
5466 }
5467
5468 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5469 ExecContext *c;
5470 int r;
5471
5472 assert(u);
5473
5474 c = unit_get_exec_context(u);
5475
5476 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5477 if (r < 0)
5478 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5479
5480 return r;
5481 }
5482
5483 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5484 int r;
5485
5486 assert(u);
5487
5488 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5489 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5490 * objects when no service references the UID/GID anymore. */
5491
5492 r = unit_ref_uid_gid(u, uid, gid);
5493 if (r > 0)
5494 unit_add_to_dbus_queue(u);
5495 }
5496
5497 int unit_acquire_invocation_id(Unit *u) {
5498 sd_id128_t id;
5499 int r;
5500
5501 assert(u);
5502
5503 r = sd_id128_randomize(&id);
5504 if (r < 0)
5505 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5506
5507 r = unit_set_invocation_id(u, id);
5508 if (r < 0)
5509 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5510
5511 unit_add_to_dbus_queue(u);
5512 return 0;
5513 }
5514
5515 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5516 int r;
5517
5518 assert(u);
5519 assert(p);
5520
5521 /* Copy parameters from manager */
5522 r = manager_get_effective_environment(u->manager, &p->environment);
5523 if (r < 0)
5524 return r;
5525
5526 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5527 p->cgroup_supported = u->manager->cgroup_supported;
5528 p->prefix = u->manager->prefix;
5529 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5530
5531 /* Copy parameters from unit */
5532 p->cgroup_path = u->cgroup_path;
5533 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5534
5535 p->received_credentials = u->manager->received_credentials;
5536
5537 return 0;
5538 }
5539
5540 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5541 int r;
5542
5543 assert(u);
5544 assert(ret);
5545
5546 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5547 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5548
5549 (void) unit_realize_cgroup(u);
5550
5551 r = safe_fork(name, FORK_REOPEN_LOG, ret);
5552 if (r != 0)
5553 return r;
5554
5555 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1);
5556 (void) ignore_signals(SIGPIPE, -1);
5557
5558 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5559
5560 if (u->cgroup_path) {
5561 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5562 if (r < 0) {
5563 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5564 _exit(EXIT_CGROUP);
5565 }
5566 }
5567
5568 return 0;
5569 }
5570
5571 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid) {
5572 pid_t pid;
5573 int r;
5574
5575 assert(u);
5576 assert(ret_pid);
5577
5578 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5579 if (r < 0)
5580 return r;
5581 if (r == 0) {
5582 int ret = EXIT_SUCCESS;
5583 char **i;
5584
5585 STRV_FOREACH(i, paths) {
5586 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5587 if (r < 0) {
5588 log_error_errno(r, "Failed to remove '%s': %m", *i);
5589 ret = EXIT_FAILURE;
5590 }
5591 }
5592
5593 _exit(ret);
5594 }
5595
5596 r = unit_watch_pid(u, pid, true);
5597 if (r < 0)
5598 return r;
5599
5600 *ret_pid = pid;
5601 return 0;
5602 }
5603
5604 static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) {
5605 assert(u);
5606 assert(d >= 0);
5607 assert(d < _UNIT_DEPENDENCY_MAX);
5608 assert(other);
5609
5610 if (di.origin_mask == 0 && di.destination_mask == 0) {
5611 /* No bit set anymore, let's drop the whole entry */
5612 assert_se(hashmap_remove(u->dependencies[d], other));
5613 log_unit_debug(u, "lost dependency %s=%s", unit_dependency_to_string(d), other->id);
5614 } else
5615 /* Mask was reduced, let's update the entry */
5616 assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0);
5617 }
5618
5619 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5620 assert(u);
5621
5622 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5623
5624 if (mask == 0)
5625 return;
5626
5627 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
5628 bool done;
5629
5630 do {
5631 UnitDependencyInfo di;
5632 Unit *other;
5633
5634 done = true;
5635
5636 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d]) {
5637 if (FLAGS_SET(~mask, di.origin_mask))
5638 continue;
5639 di.origin_mask &= ~mask;
5640 unit_update_dependency_mask(u, d, other, di);
5641
5642 /* We updated the dependency from our unit to the other unit now. But most dependencies
5643 * imply a reverse dependency. Hence, let's delete that one too. For that we go through
5644 * all dependency types on the other unit and delete all those which point to us and
5645 * have the right mask set. */
5646
5647 for (UnitDependency q = 0; q < _UNIT_DEPENDENCY_MAX; q++) {
5648 UnitDependencyInfo dj;
5649
5650 dj.data = hashmap_get(other->dependencies[q], u);
5651 if (FLAGS_SET(~mask, dj.destination_mask))
5652 continue;
5653 dj.destination_mask &= ~mask;
5654
5655 unit_update_dependency_mask(other, q, u, dj);
5656 }
5657
5658 unit_add_to_gc_queue(other);
5659
5660 done = false;
5661 break;
5662 }
5663
5664 } while (!done);
5665 }
5666 }
5667
5668 static int unit_get_invocation_path(Unit *u, char **ret) {
5669 char *p;
5670 int r;
5671
5672 assert(u);
5673 assert(ret);
5674
5675 if (MANAGER_IS_SYSTEM(u->manager))
5676 p = strjoin("/run/systemd/units/invocation:", u->id);
5677 else {
5678 _cleanup_free_ char *user_path = NULL;
5679 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5680 if (r < 0)
5681 return r;
5682 p = strjoin(user_path, u->id);
5683 }
5684
5685 if (!p)
5686 return -ENOMEM;
5687
5688 *ret = p;
5689 return 0;
5690 }
5691
5692 static int unit_export_invocation_id(Unit *u) {
5693 _cleanup_free_ char *p = NULL;
5694 int r;
5695
5696 assert(u);
5697
5698 if (u->exported_invocation_id)
5699 return 0;
5700
5701 if (sd_id128_is_null(u->invocation_id))
5702 return 0;
5703
5704 r = unit_get_invocation_path(u, &p);
5705 if (r < 0)
5706 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5707
5708 r = symlink_atomic_label(u->invocation_id_string, p);
5709 if (r < 0)
5710 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5711
5712 u->exported_invocation_id = true;
5713 return 0;
5714 }
5715
5716 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5717 const char *p;
5718 char buf[2];
5719 int r;
5720
5721 assert(u);
5722 assert(c);
5723
5724 if (u->exported_log_level_max)
5725 return 0;
5726
5727 if (c->log_level_max < 0)
5728 return 0;
5729
5730 assert(c->log_level_max <= 7);
5731
5732 buf[0] = '0' + c->log_level_max;
5733 buf[1] = 0;
5734
5735 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5736 r = symlink_atomic(buf, p);
5737 if (r < 0)
5738 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5739
5740 u->exported_log_level_max = true;
5741 return 0;
5742 }
5743
5744 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5745 _cleanup_close_ int fd = -1;
5746 struct iovec *iovec;
5747 const char *p;
5748 char *pattern;
5749 le64_t *sizes;
5750 ssize_t n;
5751 int r;
5752
5753 if (u->exported_log_extra_fields)
5754 return 0;
5755
5756 if (c->n_log_extra_fields <= 0)
5757 return 0;
5758
5759 sizes = newa(le64_t, c->n_log_extra_fields);
5760 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5761
5762 for (size_t i = 0; i < c->n_log_extra_fields; i++) {
5763 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5764
5765 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5766 iovec[i*2+1] = c->log_extra_fields[i];
5767 }
5768
5769 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5770 pattern = strjoina(p, ".XXXXXX");
5771
5772 fd = mkostemp_safe(pattern);
5773 if (fd < 0)
5774 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5775
5776 n = writev(fd, iovec, c->n_log_extra_fields*2);
5777 if (n < 0) {
5778 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5779 goto fail;
5780 }
5781
5782 (void) fchmod(fd, 0644);
5783
5784 if (rename(pattern, p) < 0) {
5785 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5786 goto fail;
5787 }
5788
5789 u->exported_log_extra_fields = true;
5790 return 0;
5791
5792 fail:
5793 (void) unlink(pattern);
5794 return r;
5795 }
5796
5797 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5798 _cleanup_free_ char *buf = NULL;
5799 const char *p;
5800 int r;
5801
5802 assert(u);
5803 assert(c);
5804
5805 if (u->exported_log_ratelimit_interval)
5806 return 0;
5807
5808 if (c->log_ratelimit_interval_usec == 0)
5809 return 0;
5810
5811 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5812
5813 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5814 return log_oom();
5815
5816 r = symlink_atomic(buf, p);
5817 if (r < 0)
5818 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5819
5820 u->exported_log_ratelimit_interval = true;
5821 return 0;
5822 }
5823
5824 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5825 _cleanup_free_ char *buf = NULL;
5826 const char *p;
5827 int r;
5828
5829 assert(u);
5830 assert(c);
5831
5832 if (u->exported_log_ratelimit_burst)
5833 return 0;
5834
5835 if (c->log_ratelimit_burst == 0)
5836 return 0;
5837
5838 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5839
5840 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5841 return log_oom();
5842
5843 r = symlink_atomic(buf, p);
5844 if (r < 0)
5845 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5846
5847 u->exported_log_ratelimit_burst = true;
5848 return 0;
5849 }
5850
5851 void unit_export_state_files(Unit *u) {
5852 const ExecContext *c;
5853
5854 assert(u);
5855
5856 if (!u->id)
5857 return;
5858
5859 if (MANAGER_IS_TEST_RUN(u->manager))
5860 return;
5861
5862 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5863 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5864 * the IPC system itself and PID 1 also log to the journal.
5865 *
5866 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5867 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5868 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5869 * namespace at least.
5870 *
5871 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5872 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5873 * them with one. */
5874
5875 (void) unit_export_invocation_id(u);
5876
5877 if (!MANAGER_IS_SYSTEM(u->manager))
5878 return;
5879
5880 c = unit_get_exec_context(u);
5881 if (c) {
5882 (void) unit_export_log_level_max(u, c);
5883 (void) unit_export_log_extra_fields(u, c);
5884 (void) unit_export_log_ratelimit_interval(u, c);
5885 (void) unit_export_log_ratelimit_burst(u, c);
5886 }
5887 }
5888
5889 void unit_unlink_state_files(Unit *u) {
5890 const char *p;
5891
5892 assert(u);
5893
5894 if (!u->id)
5895 return;
5896
5897 /* Undoes the effect of unit_export_state() */
5898
5899 if (u->exported_invocation_id) {
5900 _cleanup_free_ char *invocation_path = NULL;
5901 int r = unit_get_invocation_path(u, &invocation_path);
5902 if (r >= 0) {
5903 (void) unlink(invocation_path);
5904 u->exported_invocation_id = false;
5905 }
5906 }
5907
5908 if (!MANAGER_IS_SYSTEM(u->manager))
5909 return;
5910
5911 if (u->exported_log_level_max) {
5912 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5913 (void) unlink(p);
5914
5915 u->exported_log_level_max = false;
5916 }
5917
5918 if (u->exported_log_extra_fields) {
5919 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5920 (void) unlink(p);
5921
5922 u->exported_log_extra_fields = false;
5923 }
5924
5925 if (u->exported_log_ratelimit_interval) {
5926 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5927 (void) unlink(p);
5928
5929 u->exported_log_ratelimit_interval = false;
5930 }
5931
5932 if (u->exported_log_ratelimit_burst) {
5933 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5934 (void) unlink(p);
5935
5936 u->exported_log_ratelimit_burst = false;
5937 }
5938 }
5939
5940 int unit_prepare_exec(Unit *u) {
5941 int r;
5942
5943 assert(u);
5944
5945 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5946 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5947 r = bpf_firewall_load_custom(u);
5948 if (r < 0)
5949 return r;
5950
5951 /* Prepares everything so that we can fork of a process for this unit */
5952
5953 (void) unit_realize_cgroup(u);
5954
5955 if (u->reset_accounting) {
5956 (void) unit_reset_accounting(u);
5957 u->reset_accounting = false;
5958 }
5959
5960 unit_export_state_files(u);
5961
5962 r = unit_setup_exec_runtime(u);
5963 if (r < 0)
5964 return r;
5965
5966 r = unit_setup_dynamic_creds(u);
5967 if (r < 0)
5968 return r;
5969
5970 return 0;
5971 }
5972
5973 static bool ignore_leftover_process(const char *comm) {
5974 return comm && comm[0] == '('; /* Most likely our own helper process (PAM?), ignore */
5975 }
5976
5977 int unit_log_leftover_process_start(pid_t pid, int sig, void *userdata) {
5978 _cleanup_free_ char *comm = NULL;
5979
5980 (void) get_process_comm(pid, &comm);
5981
5982 if (ignore_leftover_process(comm))
5983 return 0;
5984
5985 /* During start we print a warning */
5986
5987 log_unit_warning(userdata,
5988 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5989 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5990 pid, strna(comm));
5991
5992 return 1;
5993 }
5994
5995 int unit_log_leftover_process_stop(pid_t pid, int sig, void *userdata) {
5996 _cleanup_free_ char *comm = NULL;
5997
5998 (void) get_process_comm(pid, &comm);
5999
6000 if (ignore_leftover_process(comm))
6001 return 0;
6002
6003 /* During stop we only print an informational message */
6004
6005 log_unit_info(userdata,
6006 "Unit process " PID_FMT " (%s) remains running after unit stopped.",
6007 pid, strna(comm));
6008
6009 return 1;
6010 }
6011
6012 int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func) {
6013 assert(u);
6014
6015 (void) unit_pick_cgroup_path(u);
6016
6017 if (!u->cgroup_path)
6018 return 0;
6019
6020 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_func, u);
6021 }
6022
6023 bool unit_needs_console(Unit *u) {
6024 ExecContext *ec;
6025 UnitActiveState state;
6026
6027 assert(u);
6028
6029 state = unit_active_state(u);
6030
6031 if (UNIT_IS_INACTIVE_OR_FAILED(state))
6032 return false;
6033
6034 if (UNIT_VTABLE(u)->needs_console)
6035 return UNIT_VTABLE(u)->needs_console(u);
6036
6037 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
6038 ec = unit_get_exec_context(u);
6039 if (!ec)
6040 return false;
6041
6042 return exec_context_may_touch_console(ec);
6043 }
6044
6045 const char *unit_label_path(const Unit *u) {
6046 const char *p;
6047
6048 assert(u);
6049
6050 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
6051 * when validating access checks. */
6052
6053 p = u->source_path ?: u->fragment_path;
6054 if (!p)
6055 return NULL;
6056
6057 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
6058 if (null_or_empty_path(p) > 0)
6059 return NULL;
6060
6061 return p;
6062 }
6063
6064 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
6065 int r;
6066
6067 assert(u);
6068
6069 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
6070 * and not a kernel thread either */
6071
6072 /* First, a simple range check */
6073 if (!pid_is_valid(pid))
6074 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
6075
6076 /* Some extra safety check */
6077 if (pid == 1 || pid == getpid_cached())
6078 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
6079
6080 /* Don't even begin to bother with kernel threads */
6081 r = is_kernel_thread(pid);
6082 if (r == -ESRCH)
6083 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
6084 if (r < 0)
6085 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
6086 if (r > 0)
6087 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
6088
6089 return 0;
6090 }
6091
6092 void unit_log_success(Unit *u) {
6093 assert(u);
6094
6095 log_struct(LOG_INFO,
6096 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
6097 LOG_UNIT_ID(u),
6098 LOG_UNIT_INVOCATION_ID(u),
6099 LOG_UNIT_MESSAGE(u, "Succeeded."));
6100 }
6101
6102 void unit_log_failure(Unit *u, const char *result) {
6103 assert(u);
6104 assert(result);
6105
6106 log_struct(LOG_WARNING,
6107 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
6108 LOG_UNIT_ID(u),
6109 LOG_UNIT_INVOCATION_ID(u),
6110 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
6111 "UNIT_RESULT=%s", result);
6112 }
6113
6114 void unit_log_skip(Unit *u, const char *result) {
6115 assert(u);
6116 assert(result);
6117
6118 log_struct(LOG_INFO,
6119 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
6120 LOG_UNIT_ID(u),
6121 LOG_UNIT_INVOCATION_ID(u),
6122 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
6123 "UNIT_RESULT=%s", result);
6124 }
6125
6126 void unit_log_process_exit(
6127 Unit *u,
6128 const char *kind,
6129 const char *command,
6130 bool success,
6131 int code,
6132 int status) {
6133
6134 int level;
6135
6136 assert(u);
6137 assert(kind);
6138
6139 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
6140 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
6141 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
6142 * WARNING. */
6143 if (success)
6144 level = LOG_DEBUG;
6145 else if (code == CLD_EXITED)
6146 level = LOG_NOTICE;
6147 else
6148 level = LOG_WARNING;
6149
6150 log_struct(level,
6151 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
6152 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
6153 kind,
6154 sigchld_code_to_string(code), status,
6155 strna(code == CLD_EXITED
6156 ? exit_status_to_string(status, EXIT_STATUS_FULL)
6157 : signal_to_string(status))),
6158 "EXIT_CODE=%s", sigchld_code_to_string(code),
6159 "EXIT_STATUS=%i", status,
6160 "COMMAND=%s", strna(command),
6161 LOG_UNIT_ID(u),
6162 LOG_UNIT_INVOCATION_ID(u));
6163 }
6164
6165 int unit_exit_status(Unit *u) {
6166 assert(u);
6167
6168 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
6169 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
6170 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
6171 * service process has exited abnormally (signal/coredump). */
6172
6173 if (!UNIT_VTABLE(u)->exit_status)
6174 return -EOPNOTSUPP;
6175
6176 return UNIT_VTABLE(u)->exit_status(u);
6177 }
6178
6179 int unit_failure_action_exit_status(Unit *u) {
6180 int r;
6181
6182 assert(u);
6183
6184 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
6185
6186 if (u->failure_action_exit_status >= 0)
6187 return u->failure_action_exit_status;
6188
6189 r = unit_exit_status(u);
6190 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6191 return 255;
6192
6193 return r;
6194 }
6195
6196 int unit_success_action_exit_status(Unit *u) {
6197 int r;
6198
6199 assert(u);
6200
6201 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
6202
6203 if (u->success_action_exit_status >= 0)
6204 return u->success_action_exit_status;
6205
6206 r = unit_exit_status(u);
6207 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6208 return 255;
6209
6210 return r;
6211 }
6212
6213 int unit_test_trigger_loaded(Unit *u) {
6214 Unit *trigger;
6215
6216 /* Tests whether the unit to trigger is loaded */
6217
6218 trigger = UNIT_TRIGGER(u);
6219 if (!trigger)
6220 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6221 "Refusing to start, no unit to trigger.");
6222 if (trigger->load_state != UNIT_LOADED)
6223 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6224 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
6225
6226 return 0;
6227 }
6228
6229 void unit_destroy_runtime_data(Unit *u, const ExecContext *context) {
6230 assert(u);
6231 assert(context);
6232
6233 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO ||
6234 (context->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART && !unit_will_restart(u)))
6235 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
6236
6237 exec_context_destroy_credentials(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME], u->id);
6238 }
6239
6240 int unit_clean(Unit *u, ExecCleanMask mask) {
6241 UnitActiveState state;
6242
6243 assert(u);
6244
6245 /* Special return values:
6246 *
6247 * -EOPNOTSUPP → cleaning not supported for this unit type
6248 * -EUNATCH → cleaning not defined for this resource type
6249 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
6250 * a job queued or similar
6251 */
6252
6253 if (!UNIT_VTABLE(u)->clean)
6254 return -EOPNOTSUPP;
6255
6256 if (mask == 0)
6257 return -EUNATCH;
6258
6259 if (u->load_state != UNIT_LOADED)
6260 return -EBUSY;
6261
6262 if (u->job)
6263 return -EBUSY;
6264
6265 state = unit_active_state(u);
6266 if (!IN_SET(state, UNIT_INACTIVE))
6267 return -EBUSY;
6268
6269 return UNIT_VTABLE(u)->clean(u, mask);
6270 }
6271
6272 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
6273 assert(u);
6274
6275 if (!UNIT_VTABLE(u)->clean ||
6276 u->load_state != UNIT_LOADED) {
6277 *ret = 0;
6278 return 0;
6279 }
6280
6281 /* When the clean() method is set, can_clean() really should be set too */
6282 assert(UNIT_VTABLE(u)->can_clean);
6283
6284 return UNIT_VTABLE(u)->can_clean(u, ret);
6285 }
6286
6287 bool unit_can_freeze(Unit *u) {
6288 assert(u);
6289
6290 if (UNIT_VTABLE(u)->can_freeze)
6291 return UNIT_VTABLE(u)->can_freeze(u);
6292
6293 return UNIT_VTABLE(u)->freeze;
6294 }
6295
6296 void unit_frozen(Unit *u) {
6297 assert(u);
6298
6299 u->freezer_state = FREEZER_FROZEN;
6300
6301 bus_unit_send_pending_freezer_message(u);
6302 }
6303
6304 void unit_thawed(Unit *u) {
6305 assert(u);
6306
6307 u->freezer_state = FREEZER_RUNNING;
6308
6309 bus_unit_send_pending_freezer_message(u);
6310 }
6311
6312 static int unit_freezer_action(Unit *u, FreezerAction action) {
6313 UnitActiveState s;
6314 int (*method)(Unit*);
6315 int r;
6316
6317 assert(u);
6318 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
6319
6320 method = action == FREEZER_FREEZE ? UNIT_VTABLE(u)->freeze : UNIT_VTABLE(u)->thaw;
6321 if (!method || !cg_freezer_supported())
6322 return -EOPNOTSUPP;
6323
6324 if (u->job)
6325 return -EBUSY;
6326
6327 if (u->load_state != UNIT_LOADED)
6328 return -EHOSTDOWN;
6329
6330 s = unit_active_state(u);
6331 if (s != UNIT_ACTIVE)
6332 return -EHOSTDOWN;
6333
6334 if (IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING))
6335 return -EALREADY;
6336
6337 r = method(u);
6338 if (r <= 0)
6339 return r;
6340
6341 return 1;
6342 }
6343
6344 int unit_freeze(Unit *u) {
6345 return unit_freezer_action(u, FREEZER_FREEZE);
6346 }
6347
6348 int unit_thaw(Unit *u) {
6349 return unit_freezer_action(u, FREEZER_THAW);
6350 }
6351
6352 /* Wrappers around low-level cgroup freezer operations common for service and scope units */
6353 int unit_freeze_vtable_common(Unit *u) {
6354 return unit_cgroup_freezer_action(u, FREEZER_FREEZE);
6355 }
6356
6357 int unit_thaw_vtable_common(Unit *u) {
6358 return unit_cgroup_freezer_action(u, FREEZER_THAW);
6359 }
6360
6361 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
6362 [COLLECT_INACTIVE] = "inactive",
6363 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
6364 };
6365
6366 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);