]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
core: rework unit printing and implement 'combined' format
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bpf-foreign.h"
15 #include "bpf-socket-bind.h"
16 #include "bus-common-errors.h"
17 #include "bus-util.h"
18 #include "cgroup-setup.h"
19 #include "cgroup-util.h"
20 #include "core-varlink.h"
21 #include "dbus-unit.h"
22 #include "dbus.h"
23 #include "dropin.h"
24 #include "escape.h"
25 #include "execute.h"
26 #include "fd-util.h"
27 #include "fileio-label.h"
28 #include "fileio.h"
29 #include "format-util.h"
30 #include "id128-util.h"
31 #include "install.h"
32 #include "io-util.h"
33 #include "label.h"
34 #include "load-dropin.h"
35 #include "load-fragment.h"
36 #include "log.h"
37 #include "macro.h"
38 #include "missing_audit.h"
39 #include "mkdir.h"
40 #include "path-util.h"
41 #include "process-util.h"
42 #include "rm-rf.h"
43 #include "set.h"
44 #include "signal-util.h"
45 #include "sparse-endian.h"
46 #include "special.h"
47 #include "specifier.h"
48 #include "stat-util.h"
49 #include "stdio-util.h"
50 #include "string-table.h"
51 #include "string-util.h"
52 #include "strv.h"
53 #include "terminal-util.h"
54 #include "tmpfile-util.h"
55 #include "umask-util.h"
56 #include "unit-name.h"
57 #include "unit.h"
58 #include "user-util.h"
59 #include "virt.h"
60 #if BPF_FRAMEWORK
61 #include "bpf-link.h"
62 #endif
63
64 /* Thresholds for logging at INFO level about resource consumption */
65 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
66 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
67 #define MENTIONWORTHY_IP_BYTES (0ULL)
68
69 /* Thresholds for logging at INFO level about resource consumption */
70 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
71 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
72 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
73
74 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
75 [UNIT_SERVICE] = &service_vtable,
76 [UNIT_SOCKET] = &socket_vtable,
77 [UNIT_TARGET] = &target_vtable,
78 [UNIT_DEVICE] = &device_vtable,
79 [UNIT_MOUNT] = &mount_vtable,
80 [UNIT_AUTOMOUNT] = &automount_vtable,
81 [UNIT_SWAP] = &swap_vtable,
82 [UNIT_TIMER] = &timer_vtable,
83 [UNIT_PATH] = &path_vtable,
84 [UNIT_SLICE] = &slice_vtable,
85 [UNIT_SCOPE] = &scope_vtable,
86 };
87
88 Unit* unit_new(Manager *m, size_t size) {
89 Unit *u;
90
91 assert(m);
92 assert(size >= sizeof(Unit));
93
94 u = malloc0(size);
95 if (!u)
96 return NULL;
97
98 u->manager = m;
99 u->type = _UNIT_TYPE_INVALID;
100 u->default_dependencies = true;
101 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
102 u->unit_file_preset = -1;
103 u->on_failure_job_mode = JOB_REPLACE;
104 u->on_success_job_mode = JOB_FAIL;
105 u->cgroup_control_inotify_wd = -1;
106 u->cgroup_memory_inotify_wd = -1;
107 u->job_timeout = USEC_INFINITY;
108 u->job_running_timeout = USEC_INFINITY;
109 u->ref_uid = UID_INVALID;
110 u->ref_gid = GID_INVALID;
111 u->cpu_usage_last = NSEC_INFINITY;
112 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
113 u->failure_action_exit_status = u->success_action_exit_status = -1;
114
115 u->ip_accounting_ingress_map_fd = -1;
116 u->ip_accounting_egress_map_fd = -1;
117 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
118 u->io_accounting_last[i] = UINT64_MAX;
119
120 u->ipv4_allow_map_fd = -1;
121 u->ipv6_allow_map_fd = -1;
122 u->ipv4_deny_map_fd = -1;
123 u->ipv6_deny_map_fd = -1;
124
125 u->last_section_private = -1;
126
127 u->start_ratelimit = (RateLimit) { m->default_start_limit_interval, m->default_start_limit_burst };
128 u->auto_start_stop_ratelimit = (RateLimit) { 10 * USEC_PER_SEC, 16 };
129
130 return u;
131 }
132
133 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
134 _cleanup_(unit_freep) Unit *u = NULL;
135 int r;
136
137 u = unit_new(m, size);
138 if (!u)
139 return -ENOMEM;
140
141 r = unit_add_name(u, name);
142 if (r < 0)
143 return r;
144
145 *ret = TAKE_PTR(u);
146
147 return r;
148 }
149
150 bool unit_has_name(const Unit *u, const char *name) {
151 assert(u);
152 assert(name);
153
154 return streq_ptr(name, u->id) ||
155 set_contains(u->aliases, name);
156 }
157
158 static void unit_init(Unit *u) {
159 CGroupContext *cc;
160 ExecContext *ec;
161 KillContext *kc;
162
163 assert(u);
164 assert(u->manager);
165 assert(u->type >= 0);
166
167 cc = unit_get_cgroup_context(u);
168 if (cc) {
169 cgroup_context_init(cc);
170
171 /* Copy in the manager defaults into the cgroup
172 * context, _before_ the rest of the settings have
173 * been initialized */
174
175 cc->cpu_accounting = u->manager->default_cpu_accounting;
176 cc->io_accounting = u->manager->default_io_accounting;
177 cc->blockio_accounting = u->manager->default_blockio_accounting;
178 cc->memory_accounting = u->manager->default_memory_accounting;
179 cc->tasks_accounting = u->manager->default_tasks_accounting;
180 cc->ip_accounting = u->manager->default_ip_accounting;
181
182 if (u->type != UNIT_SLICE)
183 cc->tasks_max = u->manager->default_tasks_max;
184 }
185
186 ec = unit_get_exec_context(u);
187 if (ec) {
188 exec_context_init(ec);
189
190 if (MANAGER_IS_SYSTEM(u->manager))
191 ec->keyring_mode = EXEC_KEYRING_SHARED;
192 else {
193 ec->keyring_mode = EXEC_KEYRING_INHERIT;
194
195 /* User manager might have its umask redefined by PAM or UMask=. In this
196 * case let the units it manages inherit this value by default. They can
197 * still tune this value through their own unit file */
198 (void) get_process_umask(getpid_cached(), &ec->umask);
199 }
200 }
201
202 kc = unit_get_kill_context(u);
203 if (kc)
204 kill_context_init(kc);
205
206 if (UNIT_VTABLE(u)->init)
207 UNIT_VTABLE(u)->init(u);
208 }
209
210 static int unit_add_alias(Unit *u, char *donated_name) {
211 int r;
212
213 /* Make sure that u->names is allocated. We may leave u->names
214 * empty if we fail later, but this is not a problem. */
215 r = set_ensure_put(&u->aliases, &string_hash_ops, donated_name);
216 if (r < 0)
217 return r;
218 assert(r > 0);
219
220 return 0;
221 }
222
223 int unit_add_name(Unit *u, const char *text) {
224 _cleanup_free_ char *name = NULL, *instance = NULL;
225 UnitType t;
226 int r;
227
228 assert(u);
229 assert(text);
230
231 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
232 if (!u->instance)
233 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
234 "instance is not set when adding name '%s': %m", text);
235
236 r = unit_name_replace_instance(text, u->instance, &name);
237 if (r < 0)
238 return log_unit_debug_errno(u, r,
239 "failed to build instance name from '%s': %m", text);
240 } else {
241 name = strdup(text);
242 if (!name)
243 return -ENOMEM;
244 }
245
246 if (unit_has_name(u, name))
247 return 0;
248
249 if (hashmap_contains(u->manager->units, name))
250 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
251 "unit already exist when adding name '%s': %m", name);
252
253 if (!unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
254 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
255 "name '%s' is invalid: %m", name);
256
257 t = unit_name_to_type(name);
258 if (t < 0)
259 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
260 "failed to derive unit type from name '%s': %m", name);
261
262 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
263 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
264 "unit type is illegal: u->type(%d) and t(%d) for name '%s': %m",
265 u->type, t, name);
266
267 r = unit_name_to_instance(name, &instance);
268 if (r < 0)
269 return log_unit_debug_errno(u, r, "failed to extract instance from name '%s': %m", name);
270
271 if (instance && !unit_type_may_template(t))
272 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "templates are not allowed for name '%s': %m", name);
273
274 /* Ensure that this unit either has no instance, or that the instance matches. */
275 if (u->type != _UNIT_TYPE_INVALID && !streq_ptr(u->instance, instance))
276 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
277 "cannot add name %s, the instances don't match (\"%s\" != \"%s\").",
278 name, instance, u->instance);
279
280 if (u->id && !unit_type_may_alias(t))
281 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
282 "cannot add name %s, aliases are not allowed for %s units.",
283 name, unit_type_to_string(t));
284
285 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
286 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(E2BIG), "cannot add name, manager has too many units: %m");
287
288 /* Add name to the global hashmap first, because that's easier to undo */
289 r = hashmap_put(u->manager->units, name, u);
290 if (r < 0)
291 return log_unit_debug_errno(u, r, "add unit to hashmap failed for name '%s': %m", text);
292
293 if (u->id) {
294 r = unit_add_alias(u, name); /* unit_add_alias() takes ownership of the name on success */
295 if (r < 0) {
296 hashmap_remove(u->manager->units, name);
297 return r;
298 }
299 TAKE_PTR(name);
300
301 } else {
302 /* A new name, we don't need the set yet. */
303 assert(u->type == _UNIT_TYPE_INVALID);
304 assert(!u->instance);
305
306 u->type = t;
307 u->id = TAKE_PTR(name);
308 u->instance = TAKE_PTR(instance);
309
310 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
311 unit_init(u);
312 }
313
314 unit_add_to_dbus_queue(u);
315 return 0;
316 }
317
318 int unit_choose_id(Unit *u, const char *name) {
319 _cleanup_free_ char *t = NULL;
320 char *s;
321 int r;
322
323 assert(u);
324 assert(name);
325
326 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
327 if (!u->instance)
328 return -EINVAL;
329
330 r = unit_name_replace_instance(name, u->instance, &t);
331 if (r < 0)
332 return r;
333
334 name = t;
335 }
336
337 if (streq_ptr(u->id, name))
338 return 0; /* Nothing to do. */
339
340 /* Selects one of the aliases of this unit as the id */
341 s = set_get(u->aliases, (char*) name);
342 if (!s)
343 return -ENOENT;
344
345 if (u->id) {
346 r = set_remove_and_put(u->aliases, name, u->id);
347 if (r < 0)
348 return r;
349 } else
350 assert_se(set_remove(u->aliases, name)); /* see set_get() above… */
351
352 u->id = s; /* Old u->id is now stored in the set, and s is not stored anywhere */
353 unit_add_to_dbus_queue(u);
354
355 return 0;
356 }
357
358 int unit_set_description(Unit *u, const char *description) {
359 int r;
360
361 assert(u);
362
363 r = free_and_strdup(&u->description, empty_to_null(description));
364 if (r < 0)
365 return r;
366 if (r > 0)
367 unit_add_to_dbus_queue(u);
368
369 return 0;
370 }
371
372 bool unit_may_gc(Unit *u) {
373 UnitActiveState state;
374 int r;
375
376 assert(u);
377
378 /* Checks whether the unit is ready to be unloaded for garbage collection.
379 * Returns true when the unit may be collected, and false if there's some
380 * reason to keep it loaded.
381 *
382 * References from other units are *not* checked here. Instead, this is done
383 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
384 */
385
386 if (u->job)
387 return false;
388
389 if (u->nop_job)
390 return false;
391
392 state = unit_active_state(u);
393
394 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
395 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
396 UNIT_VTABLE(u)->release_resources)
397 UNIT_VTABLE(u)->release_resources(u);
398
399 if (u->perpetual)
400 return false;
401
402 if (sd_bus_track_count(u->bus_track) > 0)
403 return false;
404
405 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
406 switch (u->collect_mode) {
407
408 case COLLECT_INACTIVE:
409 if (state != UNIT_INACTIVE)
410 return false;
411
412 break;
413
414 case COLLECT_INACTIVE_OR_FAILED:
415 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
416 return false;
417
418 break;
419
420 default:
421 assert_not_reached("Unknown garbage collection mode");
422 }
423
424 if (u->cgroup_path) {
425 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
426 * around. Units with active processes should never be collected. */
427
428 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
429 if (r < 0)
430 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
431 if (r <= 0)
432 return false;
433 }
434
435 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
436 return false;
437
438 return true;
439 }
440
441 void unit_add_to_load_queue(Unit *u) {
442 assert(u);
443 assert(u->type != _UNIT_TYPE_INVALID);
444
445 if (u->load_state != UNIT_STUB || u->in_load_queue)
446 return;
447
448 LIST_PREPEND(load_queue, u->manager->load_queue, u);
449 u->in_load_queue = true;
450 }
451
452 void unit_add_to_cleanup_queue(Unit *u) {
453 assert(u);
454
455 if (u->in_cleanup_queue)
456 return;
457
458 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
459 u->in_cleanup_queue = true;
460 }
461
462 void unit_add_to_gc_queue(Unit *u) {
463 assert(u);
464
465 if (u->in_gc_queue || u->in_cleanup_queue)
466 return;
467
468 if (!unit_may_gc(u))
469 return;
470
471 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
472 u->in_gc_queue = true;
473 }
474
475 void unit_add_to_dbus_queue(Unit *u) {
476 assert(u);
477 assert(u->type != _UNIT_TYPE_INVALID);
478
479 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
480 return;
481
482 /* Shortcut things if nobody cares */
483 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
484 sd_bus_track_count(u->bus_track) <= 0 &&
485 set_isempty(u->manager->private_buses)) {
486 u->sent_dbus_new_signal = true;
487 return;
488 }
489
490 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
491 u->in_dbus_queue = true;
492 }
493
494 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
495 assert(u);
496
497 if (u->in_stop_when_unneeded_queue)
498 return;
499
500 if (!u->stop_when_unneeded)
501 return;
502
503 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
504 return;
505
506 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
507 u->in_stop_when_unneeded_queue = true;
508 }
509
510 void unit_submit_to_start_when_upheld_queue(Unit *u) {
511 assert(u);
512
513 if (u->in_start_when_upheld_queue)
514 return;
515
516 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)))
517 return;
518
519 if (!unit_has_dependency(u, UNIT_ATOM_START_STEADILY, NULL))
520 return;
521
522 LIST_PREPEND(start_when_upheld_queue, u->manager->start_when_upheld_queue, u);
523 u->in_start_when_upheld_queue = true;
524 }
525
526 void unit_submit_to_stop_when_bound_queue(Unit *u) {
527 assert(u);
528
529 if (u->in_stop_when_bound_queue)
530 return;
531
532 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
533 return;
534
535 if (!unit_has_dependency(u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT, NULL))
536 return;
537
538 LIST_PREPEND(stop_when_bound_queue, u->manager->stop_when_bound_queue, u);
539 u->in_stop_when_bound_queue = true;
540 }
541
542 static void unit_clear_dependencies(Unit *u) {
543 assert(u);
544
545 /* Removes all dependencies configured on u and their reverse dependencies. */
546
547 for (Hashmap *deps; (deps = hashmap_steal_first(u->dependencies));) {
548
549 for (Unit *other; (other = hashmap_steal_first_key(deps));) {
550 Hashmap *other_deps;
551
552 HASHMAP_FOREACH(other_deps, other->dependencies)
553 hashmap_remove(other_deps, u);
554
555 unit_add_to_gc_queue(other);
556 }
557
558 hashmap_free(deps);
559 }
560
561 u->dependencies = hashmap_free(u->dependencies);
562 }
563
564 static void unit_remove_transient(Unit *u) {
565 char **i;
566
567 assert(u);
568
569 if (!u->transient)
570 return;
571
572 if (u->fragment_path)
573 (void) unlink(u->fragment_path);
574
575 STRV_FOREACH(i, u->dropin_paths) {
576 _cleanup_free_ char *p = NULL, *pp = NULL;
577
578 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
579 if (!p)
580 continue;
581
582 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
583 if (!pp)
584 continue;
585
586 /* Only drop transient drop-ins */
587 if (!path_equal(u->manager->lookup_paths.transient, pp))
588 continue;
589
590 (void) unlink(*i);
591 (void) rmdir(p);
592 }
593 }
594
595 static void unit_free_requires_mounts_for(Unit *u) {
596 assert(u);
597
598 for (;;) {
599 _cleanup_free_ char *path = NULL;
600
601 path = hashmap_steal_first_key(u->requires_mounts_for);
602 if (!path)
603 break;
604 else {
605 char s[strlen(path) + 1];
606
607 PATH_FOREACH_PREFIX_MORE(s, path) {
608 char *y;
609 Set *x;
610
611 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
612 if (!x)
613 continue;
614
615 (void) set_remove(x, u);
616
617 if (set_isempty(x)) {
618 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
619 free(y);
620 set_free(x);
621 }
622 }
623 }
624 }
625
626 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
627 }
628
629 static void unit_done(Unit *u) {
630 ExecContext *ec;
631 CGroupContext *cc;
632
633 assert(u);
634
635 if (u->type < 0)
636 return;
637
638 if (UNIT_VTABLE(u)->done)
639 UNIT_VTABLE(u)->done(u);
640
641 ec = unit_get_exec_context(u);
642 if (ec)
643 exec_context_done(ec);
644
645 cc = unit_get_cgroup_context(u);
646 if (cc)
647 cgroup_context_done(cc);
648 }
649
650 Unit* unit_free(Unit *u) {
651 Unit *slice;
652 char *t;
653
654 if (!u)
655 return NULL;
656
657 u->transient_file = safe_fclose(u->transient_file);
658
659 if (!MANAGER_IS_RELOADING(u->manager))
660 unit_remove_transient(u);
661
662 bus_unit_send_removed_signal(u);
663
664 unit_done(u);
665
666 unit_dequeue_rewatch_pids(u);
667
668 sd_bus_slot_unref(u->match_bus_slot);
669 sd_bus_track_unref(u->bus_track);
670 u->deserialized_refs = strv_free(u->deserialized_refs);
671 u->pending_freezer_message = sd_bus_message_unref(u->pending_freezer_message);
672
673 unit_free_requires_mounts_for(u);
674
675 SET_FOREACH(t, u->aliases)
676 hashmap_remove_value(u->manager->units, t, u);
677 if (u->id)
678 hashmap_remove_value(u->manager->units, u->id, u);
679
680 if (!sd_id128_is_null(u->invocation_id))
681 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
682
683 if (u->job) {
684 Job *j = u->job;
685 job_uninstall(j);
686 job_free(j);
687 }
688
689 if (u->nop_job) {
690 Job *j = u->nop_job;
691 job_uninstall(j);
692 job_free(j);
693 }
694
695 /* A unit is being dropped from the tree, make sure our family is realized properly. Do this after we
696 * detach the unit from slice tree in order to eliminate its effect on controller masks. */
697 slice = UNIT_GET_SLICE(u);
698 unit_clear_dependencies(u);
699 if (slice)
700 unit_add_family_to_cgroup_realize_queue(slice);
701
702 if (u->on_console)
703 manager_unref_console(u->manager);
704
705
706 fdset_free(u->initial_socket_bind_link_fds);
707 #if BPF_FRAMEWORK
708 bpf_link_free(u->ipv4_socket_bind_link);
709 bpf_link_free(u->ipv6_socket_bind_link);
710 #endif
711
712 unit_release_cgroup(u);
713
714 if (!MANAGER_IS_RELOADING(u->manager))
715 unit_unlink_state_files(u);
716
717 unit_unref_uid_gid(u, false);
718
719 (void) manager_update_failed_units(u->manager, u, false);
720 set_remove(u->manager->startup_units, u);
721
722 unit_unwatch_all_pids(u);
723
724 while (u->refs_by_target)
725 unit_ref_unset(u->refs_by_target);
726
727 if (u->type != _UNIT_TYPE_INVALID)
728 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
729
730 if (u->in_load_queue)
731 LIST_REMOVE(load_queue, u->manager->load_queue, u);
732
733 if (u->in_dbus_queue)
734 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
735
736 if (u->in_gc_queue)
737 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
738
739 if (u->in_cgroup_realize_queue)
740 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
741
742 if (u->in_cgroup_empty_queue)
743 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
744
745 if (u->in_cleanup_queue)
746 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
747
748 if (u->in_target_deps_queue)
749 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
750
751 if (u->in_stop_when_unneeded_queue)
752 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
753
754 if (u->in_start_when_upheld_queue)
755 LIST_REMOVE(start_when_upheld_queue, u->manager->start_when_upheld_queue, u);
756
757 if (u->in_stop_when_bound_queue)
758 LIST_REMOVE(stop_when_bound_queue, u->manager->stop_when_bound_queue, u);
759
760 bpf_firewall_close(u);
761
762 hashmap_free(u->bpf_foreign_by_key);
763
764 bpf_program_unref(u->bpf_device_control_installed);
765
766 condition_free_list(u->conditions);
767 condition_free_list(u->asserts);
768
769 free(u->description);
770 strv_free(u->documentation);
771 free(u->fragment_path);
772 free(u->source_path);
773 strv_free(u->dropin_paths);
774 free(u->instance);
775
776 free(u->job_timeout_reboot_arg);
777 free(u->reboot_arg);
778
779 set_free_free(u->aliases);
780 free(u->id);
781
782 return mfree(u);
783 }
784
785 FreezerState unit_freezer_state(Unit *u) {
786 assert(u);
787
788 return u->freezer_state;
789 }
790
791 int unit_freezer_state_kernel(Unit *u, FreezerState *ret) {
792 char *values[1] = {};
793 int r;
794
795 assert(u);
796
797 r = cg_get_keyed_attribute(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
798 STRV_MAKE("frozen"), values);
799 if (r < 0)
800 return r;
801
802 r = _FREEZER_STATE_INVALID;
803
804 if (values[0]) {
805 if (streq(values[0], "0"))
806 r = FREEZER_RUNNING;
807 else if (streq(values[0], "1"))
808 r = FREEZER_FROZEN;
809 }
810
811 free(values[0]);
812 *ret = r;
813
814 return 0;
815 }
816
817 UnitActiveState unit_active_state(Unit *u) {
818 assert(u);
819
820 if (u->load_state == UNIT_MERGED)
821 return unit_active_state(unit_follow_merge(u));
822
823 /* After a reload it might happen that a unit is not correctly
824 * loaded but still has a process around. That's why we won't
825 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
826
827 return UNIT_VTABLE(u)->active_state(u);
828 }
829
830 const char* unit_sub_state_to_string(Unit *u) {
831 assert(u);
832
833 return UNIT_VTABLE(u)->sub_state_to_string(u);
834 }
835
836 static int unit_merge_names(Unit *u, Unit *other) {
837 char *name;
838 int r;
839
840 assert(u);
841 assert(other);
842
843 r = unit_add_alias(u, other->id);
844 if (r < 0)
845 return r;
846
847 r = set_move(u->aliases, other->aliases);
848 if (r < 0) {
849 set_remove(u->aliases, other->id);
850 return r;
851 }
852
853 TAKE_PTR(other->id);
854 other->aliases = set_free_free(other->aliases);
855
856 SET_FOREACH(name, u->aliases)
857 assert_se(hashmap_replace(u->manager->units, name, u) == 0);
858
859 return 0;
860 }
861
862 static int unit_reserve_dependencies(Unit *u, Unit *other) {
863 size_t n_reserve;
864 Hashmap* deps;
865 void *d;
866 int r;
867
868 assert(u);
869 assert(other);
870
871 /* Let's reserve some space in the dependency hashmaps so that later on merging the units cannot
872 * fail.
873 *
874 * First make some room in the per dependency type hashmaps. Using the summed size of both unit's
875 * hashmaps is an estimate that is likely too high since they probably use some of the same
876 * types. But it's never too low, and that's all we need. */
877
878 n_reserve = MIN(hashmap_size(other->dependencies), LESS_BY((size_t) _UNIT_DEPENDENCY_MAX, hashmap_size(u->dependencies)));
879 if (n_reserve > 0) {
880 r = hashmap_ensure_allocated(&u->dependencies, NULL);
881 if (r < 0)
882 return r;
883
884 r = hashmap_reserve(u->dependencies, n_reserve);
885 if (r < 0)
886 return r;
887 }
888
889 /* Now, enlarge our per dependency type hashmaps by the number of entries in the same hashmap of the
890 * other unit's dependencies.
891 *
892 * NB: If u does not have a dependency set allocated for some dependency type, there is no need to
893 * reserve anything for. In that case other's set will be transferred as a whole to u by
894 * complete_move(). */
895
896 HASHMAP_FOREACH_KEY(deps, d, u->dependencies) {
897 Hashmap *other_deps;
898
899 other_deps = hashmap_get(other->dependencies, d);
900
901 r = hashmap_reserve(deps, hashmap_size(other_deps));
902 if (r < 0)
903 return r;
904 }
905
906 return 0;
907 }
908
909 static void unit_maybe_warn_about_dependency(
910 Unit *u,
911 const char *other_id,
912 UnitDependency dependency) {
913
914 assert(u);
915
916 /* Only warn about some unit types */
917 if (!IN_SET(dependency,
918 UNIT_CONFLICTS,
919 UNIT_CONFLICTED_BY,
920 UNIT_BEFORE,
921 UNIT_AFTER,
922 UNIT_ON_SUCCESS,
923 UNIT_ON_FAILURE,
924 UNIT_TRIGGERS,
925 UNIT_TRIGGERED_BY))
926 return;
927
928 if (streq_ptr(u->id, other_id))
929 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
930 else
931 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other_id), u->id);
932 }
933
934 static int unit_per_dependency_type_hashmap_update(
935 Hashmap *per_type,
936 Unit *other,
937 UnitDependencyMask origin_mask,
938 UnitDependencyMask destination_mask) {
939
940 UnitDependencyInfo info;
941 int r;
942
943 assert(other);
944 assert_cc(sizeof(void*) == sizeof(info));
945
946 /* Acquire the UnitDependencyInfo entry for the Unit* we are interested in, and update it if it
947 * exists, or insert it anew if not. */
948
949 info.data = hashmap_get(per_type, other);
950 if (info.data) {
951 /* Entry already exists. Add in our mask. */
952
953 if (FLAGS_SET(origin_mask, info.origin_mask) &&
954 FLAGS_SET(destination_mask, info.destination_mask))
955 return 0; /* NOP */
956
957 info.origin_mask |= origin_mask;
958 info.destination_mask |= destination_mask;
959
960 r = hashmap_update(per_type, other, info.data);
961 } else {
962 info = (UnitDependencyInfo) {
963 .origin_mask = origin_mask,
964 .destination_mask = destination_mask,
965 };
966
967 r = hashmap_put(per_type, other, info.data);
968 }
969 if (r < 0)
970 return r;
971
972
973 return 1;
974 }
975
976 static int unit_add_dependency_hashmap(
977 Hashmap **dependencies,
978 UnitDependency d,
979 Unit *other,
980 UnitDependencyMask origin_mask,
981 UnitDependencyMask destination_mask) {
982
983 Hashmap *per_type;
984 int r;
985
986 assert(dependencies);
987 assert(other);
988 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
989 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
990 assert(origin_mask > 0 || destination_mask > 0);
991
992 /* Ensure the top-level dependency hashmap exists that maps UnitDependency → Hashmap(Unit* →
993 * UnitDependencyInfo) */
994 r = hashmap_ensure_allocated(dependencies, NULL);
995 if (r < 0)
996 return r;
997
998 /* Acquire the inner hashmap, that maps Unit* → UnitDependencyInfo, for the specified dependency
999 * type, and if it's missing allocate it and insert it. */
1000 per_type = hashmap_get(*dependencies, UNIT_DEPENDENCY_TO_PTR(d));
1001 if (!per_type) {
1002 per_type = hashmap_new(NULL);
1003 if (!per_type)
1004 return -ENOMEM;
1005
1006 r = hashmap_put(*dependencies, UNIT_DEPENDENCY_TO_PTR(d), per_type);
1007 if (r < 0) {
1008 hashmap_free(per_type);
1009 return r;
1010 }
1011 }
1012
1013 return unit_per_dependency_type_hashmap_update(per_type, other, origin_mask, destination_mask);
1014 }
1015
1016 static void unit_merge_dependencies(
1017 Unit *u,
1018 Unit *other) {
1019
1020 int r;
1021
1022 assert(u);
1023 assert(other);
1024
1025 if (u == other)
1026 return;
1027
1028 for (;;) {
1029 _cleanup_(hashmap_freep) Hashmap *other_deps = NULL;
1030 UnitDependencyInfo di_back;
1031 Unit *back;
1032 void *dt; /* Actually of type UnitDependency, except that we don't bother casting it here,
1033 * since the hashmaps all want it as void pointer. */
1034
1035 /* Let's focus on one dependency type at a time, that 'other' has defined. */
1036 other_deps = hashmap_steal_first_key_and_value(other->dependencies, &dt);
1037 if (!other_deps)
1038 break; /* done! */
1039
1040 /* Now iterate through all dependencies of this dependency type, of 'other'. We refer to the
1041 * referenced units as 'back'. */
1042 HASHMAP_FOREACH_KEY(di_back.data, back, other_deps) {
1043 Hashmap *back_deps;
1044 void *back_dt;
1045
1046 if (back == u) {
1047 /* This is a dependency pointing back to the unit we want to merge with?
1048 * Suppress it (but warn) */
1049 unit_maybe_warn_about_dependency(u, other->id, UNIT_DEPENDENCY_FROM_PTR(dt));
1050 continue;
1051 }
1052
1053 /* Now iterate through all deps of 'back', and fix the ones pointing to 'other' to
1054 * point to 'u' instead. */
1055 HASHMAP_FOREACH_KEY(back_deps, back_dt, back->dependencies) {
1056 UnitDependencyInfo di_move;
1057
1058 di_move.data = hashmap_remove(back_deps, other);
1059 if (!di_move.data)
1060 continue;
1061
1062 assert_se(unit_per_dependency_type_hashmap_update(
1063 back_deps,
1064 u,
1065 di_move.origin_mask,
1066 di_move.destination_mask) >= 0);
1067 }
1068 }
1069
1070 /* Now all references towards 'other' of the current type 'dt' are corrected to point to
1071 * 'u'. Lets's now move the deps of type 'dt' from 'other' to 'u'. First, let's try to move
1072 * them per type wholesale. */
1073 r = hashmap_put(u->dependencies, dt, other_deps);
1074 if (r == -EEXIST) {
1075 Hashmap *deps;
1076
1077 /* The target unit already has dependencies of this type, let's then merge this individually. */
1078
1079 assert_se(deps = hashmap_get(u->dependencies, dt));
1080
1081 for (;;) {
1082 UnitDependencyInfo di_move;
1083
1084 /* Get first dep */
1085 di_move.data = hashmap_steal_first_key_and_value(other_deps, (void**) &back);
1086 if (!di_move.data)
1087 break; /* done */
1088 if (back == u) {
1089 /* Would point back to us, ignore */
1090 unit_maybe_warn_about_dependency(u, other->id, UNIT_DEPENDENCY_FROM_PTR(dt));
1091 continue;
1092 }
1093
1094 assert_se(unit_per_dependency_type_hashmap_update(deps, back, di_move.origin_mask, di_move.destination_mask) >= 0);
1095 }
1096 } else {
1097 assert_se(r >= 0);
1098 TAKE_PTR(other_deps);
1099
1100 if (hashmap_remove(other_deps, u))
1101 unit_maybe_warn_about_dependency(u, other->id, UNIT_DEPENDENCY_FROM_PTR(dt));
1102 }
1103 }
1104
1105 other->dependencies = hashmap_free(other->dependencies);
1106 }
1107
1108 int unit_merge(Unit *u, Unit *other) {
1109 int r;
1110
1111 assert(u);
1112 assert(other);
1113 assert(u->manager == other->manager);
1114 assert(u->type != _UNIT_TYPE_INVALID);
1115
1116 other = unit_follow_merge(other);
1117
1118 if (other == u)
1119 return 0;
1120
1121 if (u->type != other->type)
1122 return -EINVAL;
1123
1124 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
1125 return -EEXIST;
1126
1127 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
1128 return -EEXIST;
1129
1130 if (!streq_ptr(u->instance, other->instance))
1131 return -EINVAL;
1132
1133 if (other->job)
1134 return -EEXIST;
1135
1136 if (other->nop_job)
1137 return -EEXIST;
1138
1139 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
1140 return -EEXIST;
1141
1142 /* Make reservations to ensure merge_dependencies() won't fail. We don't rollback reservations if we
1143 * fail. We don't have a way to undo reservations. A reservation is not a leak. */
1144 r = unit_reserve_dependencies(u, other);
1145 if (r < 0)
1146 return r;
1147
1148 /* Merge names */
1149 r = unit_merge_names(u, other);
1150 if (r < 0)
1151 return r;
1152
1153 /* Redirect all references */
1154 while (other->refs_by_target)
1155 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
1156
1157 /* Merge dependencies */
1158 unit_merge_dependencies(u, other);
1159
1160 other->load_state = UNIT_MERGED;
1161 other->merged_into = u;
1162
1163 /* If there is still some data attached to the other node, we
1164 * don't need it anymore, and can free it. */
1165 if (other->load_state != UNIT_STUB)
1166 if (UNIT_VTABLE(other)->done)
1167 UNIT_VTABLE(other)->done(other);
1168
1169 unit_add_to_dbus_queue(u);
1170 unit_add_to_cleanup_queue(other);
1171
1172 return 0;
1173 }
1174
1175 int unit_merge_by_name(Unit *u, const char *name) {
1176 _cleanup_free_ char *s = NULL;
1177 Unit *other;
1178 int r;
1179
1180 /* Either add name to u, or if a unit with name already exists, merge it with u.
1181 * If name is a template, do the same for name@instance, where instance is u's instance. */
1182
1183 assert(u);
1184 assert(name);
1185
1186 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
1187 if (!u->instance)
1188 return -EINVAL;
1189
1190 r = unit_name_replace_instance(name, u->instance, &s);
1191 if (r < 0)
1192 return r;
1193
1194 name = s;
1195 }
1196
1197 other = manager_get_unit(u->manager, name);
1198 if (other)
1199 return unit_merge(u, other);
1200
1201 return unit_add_name(u, name);
1202 }
1203
1204 Unit* unit_follow_merge(Unit *u) {
1205 assert(u);
1206
1207 while (u->load_state == UNIT_MERGED)
1208 assert_se(u = u->merged_into);
1209
1210 return u;
1211 }
1212
1213 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
1214 int r;
1215
1216 assert(u);
1217 assert(c);
1218
1219 if (c->working_directory && !c->working_directory_missing_ok) {
1220 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1221 if (r < 0)
1222 return r;
1223 }
1224
1225 if (c->root_directory) {
1226 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1227 if (r < 0)
1228 return r;
1229 }
1230
1231 if (c->root_image) {
1232 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1233 if (r < 0)
1234 return r;
1235 }
1236
1237 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1238 if (!u->manager->prefix[dt])
1239 continue;
1240
1241 char **dp;
1242 STRV_FOREACH(dp, c->directories[dt].paths) {
1243 _cleanup_free_ char *p = NULL;
1244
1245 p = path_join(u->manager->prefix[dt], *dp);
1246 if (!p)
1247 return -ENOMEM;
1248
1249 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1250 if (r < 0)
1251 return r;
1252 }
1253 }
1254
1255 if (!MANAGER_IS_SYSTEM(u->manager))
1256 return 0;
1257
1258 /* For the following three directory types we need write access, and /var/ is possibly on the root
1259 * fs. Hence order after systemd-remount-fs.service, to ensure things are writable. */
1260 if (!strv_isempty(c->directories[EXEC_DIRECTORY_STATE].paths) ||
1261 !strv_isempty(c->directories[EXEC_DIRECTORY_CACHE].paths) ||
1262 !strv_isempty(c->directories[EXEC_DIRECTORY_LOGS].paths)) {
1263 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_REMOUNT_FS_SERVICE, true, UNIT_DEPENDENCY_FILE);
1264 if (r < 0)
1265 return r;
1266 }
1267
1268 if (c->private_tmp) {
1269
1270 /* FIXME: for now we make a special case for /tmp and add a weak dependency on
1271 * tmp.mount so /tmp being masked is supported. However there's no reason to treat
1272 * /tmp specifically and masking other mount units should be handled more
1273 * gracefully too, see PR#16894. */
1274 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "tmp.mount", true, UNIT_DEPENDENCY_FILE);
1275 if (r < 0)
1276 return r;
1277
1278 r = unit_require_mounts_for(u, "/var/tmp", UNIT_DEPENDENCY_FILE);
1279 if (r < 0)
1280 return r;
1281
1282 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1283 if (r < 0)
1284 return r;
1285 }
1286
1287 if (c->root_image) {
1288 /* We need to wait for /dev/loopX to appear when doing RootImage=, hence let's add an
1289 * implicit dependency on udev */
1290
1291 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_UDEVD_SERVICE, true, UNIT_DEPENDENCY_FILE);
1292 if (r < 0)
1293 return r;
1294 }
1295
1296 if (!IN_SET(c->std_output,
1297 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1298 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1299 !IN_SET(c->std_error,
1300 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1301 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1302 !c->log_namespace)
1303 return 0;
1304
1305 /* If syslog or kernel logging is requested (or log namespacing is), make sure our own logging daemon
1306 * is run first. */
1307
1308 if (c->log_namespace) {
1309 _cleanup_free_ char *socket_unit = NULL, *varlink_socket_unit = NULL;
1310
1311 r = unit_name_build_from_type("systemd-journald", c->log_namespace, UNIT_SOCKET, &socket_unit);
1312 if (r < 0)
1313 return r;
1314
1315 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, socket_unit, true, UNIT_DEPENDENCY_FILE);
1316 if (r < 0)
1317 return r;
1318
1319 r = unit_name_build_from_type("systemd-journald-varlink", c->log_namespace, UNIT_SOCKET, &varlink_socket_unit);
1320 if (r < 0)
1321 return r;
1322
1323 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, varlink_socket_unit, true, UNIT_DEPENDENCY_FILE);
1324 if (r < 0)
1325 return r;
1326 } else
1327 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1328 if (r < 0)
1329 return r;
1330
1331 return 0;
1332 }
1333
1334 const char* unit_description(Unit *u) {
1335 assert(u);
1336
1337 if (u->description)
1338 return u->description;
1339
1340 return strna(u->id);
1341 }
1342
1343 const char* unit_status_string(Unit *u, char **combined) {
1344 assert(u);
1345 assert(u->id);
1346
1347 /* Return u->id, u->description, or "{u->id} - {u->description}".
1348 * Versions with u->description are only used if it is set.
1349 * The last option is used if configured and the caller provided 'combined' pointer. */
1350
1351 if (!u->description ||
1352 u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME ||
1353 (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && !combined))
1354 return u->id;
1355
1356 if (u->description && u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && combined) {
1357 char *t = strjoin(u->id, " - ", u->description);
1358 if (t) {
1359 *combined = t;
1360 return t;
1361 } else
1362 log_oom();
1363 }
1364
1365 return u->description;
1366 }
1367
1368 /* Common implementation for multiple backends */
1369 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1370 int r;
1371
1372 assert(u);
1373
1374 /* Load a .{service,socket,...} file */
1375 r = unit_load_fragment(u);
1376 if (r < 0)
1377 return r;
1378
1379 if (u->load_state == UNIT_STUB) {
1380 if (fragment_required)
1381 return -ENOENT;
1382
1383 u->load_state = UNIT_LOADED;
1384 }
1385
1386 /* Load drop-in directory data. If u is an alias, we might be reloading the
1387 * target unit needlessly. But we cannot be sure which drops-ins have already
1388 * been loaded and which not, at least without doing complicated book-keeping,
1389 * so let's always reread all drop-ins. */
1390 r = unit_load_dropin(unit_follow_merge(u));
1391 if (r < 0)
1392 return r;
1393
1394 if (u->source_path) {
1395 struct stat st;
1396
1397 if (stat(u->source_path, &st) >= 0)
1398 u->source_mtime = timespec_load(&st.st_mtim);
1399 else
1400 u->source_mtime = 0;
1401 }
1402
1403 return 0;
1404 }
1405
1406 void unit_add_to_target_deps_queue(Unit *u) {
1407 Manager *m = u->manager;
1408
1409 assert(u);
1410
1411 if (u->in_target_deps_queue)
1412 return;
1413
1414 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1415 u->in_target_deps_queue = true;
1416 }
1417
1418 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1419 assert(u);
1420 assert(target);
1421
1422 if (target->type != UNIT_TARGET)
1423 return 0;
1424
1425 /* Only add the dependency if both units are loaded, so that
1426 * that loop check below is reliable */
1427 if (u->load_state != UNIT_LOADED ||
1428 target->load_state != UNIT_LOADED)
1429 return 0;
1430
1431 /* If either side wants no automatic dependencies, then let's
1432 * skip this */
1433 if (!u->default_dependencies ||
1434 !target->default_dependencies)
1435 return 0;
1436
1437 /* Don't create loops */
1438 if (unit_has_dependency(target, UNIT_ATOM_BEFORE, u))
1439 return 0;
1440
1441 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1442 }
1443
1444 static int unit_add_slice_dependencies(Unit *u) {
1445 Unit *slice;
1446 assert(u);
1447
1448 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1449 return 0;
1450
1451 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1452 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1453 relationship). */
1454 UnitDependencyMask mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1455
1456 slice = UNIT_GET_SLICE(u);
1457 if (slice)
1458 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, slice, true, mask);
1459
1460 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1461 return 0;
1462
1463 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1464 }
1465
1466 static int unit_add_mount_dependencies(Unit *u) {
1467 UnitDependencyInfo di;
1468 const char *path;
1469 int r;
1470
1471 assert(u);
1472
1473 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1474 char prefix[strlen(path) + 1];
1475
1476 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1477 _cleanup_free_ char *p = NULL;
1478 Unit *m;
1479
1480 r = unit_name_from_path(prefix, ".mount", &p);
1481 if (IN_SET(r, -EINVAL, -ENAMETOOLONG))
1482 continue; /* If the path cannot be converted to a mount unit name, then it's
1483 * not manageable as a unit by systemd, and hence we don't need a
1484 * dependency on it. Let's thus silently ignore the issue. */
1485 if (r < 0)
1486 return r;
1487
1488 m = manager_get_unit(u->manager, p);
1489 if (!m) {
1490 /* Make sure to load the mount unit if it exists. If so the dependencies on
1491 * this unit will be added later during the loading of the mount unit. */
1492 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1493 continue;
1494 }
1495 if (m == u)
1496 continue;
1497
1498 if (m->load_state != UNIT_LOADED)
1499 continue;
1500
1501 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1502 if (r < 0)
1503 return r;
1504
1505 if (m->fragment_path) {
1506 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1507 if (r < 0)
1508 return r;
1509 }
1510 }
1511 }
1512
1513 return 0;
1514 }
1515
1516 static int unit_add_oomd_dependencies(Unit *u) {
1517 CGroupContext *c;
1518 bool wants_oomd;
1519 int r;
1520
1521 assert(u);
1522
1523 if (!u->default_dependencies)
1524 return 0;
1525
1526 c = unit_get_cgroup_context(u);
1527 if (!c)
1528 return 0;
1529
1530 wants_oomd = (c->moom_swap == MANAGED_OOM_KILL || c->moom_mem_pressure == MANAGED_OOM_KILL);
1531 if (!wants_oomd)
1532 return 0;
1533
1534 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "systemd-oomd.service", true, UNIT_DEPENDENCY_FILE);
1535 if (r < 0)
1536 return r;
1537
1538 return 0;
1539 }
1540
1541 static int unit_add_startup_units(Unit *u) {
1542 CGroupContext *c;
1543
1544 c = unit_get_cgroup_context(u);
1545 if (!c)
1546 return 0;
1547
1548 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1549 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1550 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1551 return 0;
1552
1553 return set_ensure_put(&u->manager->startup_units, NULL, u);
1554 }
1555
1556 static int unit_validate_on_failure_job_mode(
1557 Unit *u,
1558 const char *job_mode_setting,
1559 JobMode job_mode,
1560 const char *dependency_name,
1561 UnitDependencyAtom atom) {
1562
1563 Unit *other, *found = NULL;
1564
1565 if (job_mode != JOB_ISOLATE)
1566 return 0;
1567
1568 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
1569 if (!found)
1570 found = other;
1571 else if (found != other)
1572 return log_unit_error_errno(
1573 u, SYNTHETIC_ERRNO(ENOEXEC),
1574 "More than one %s dependencies specified but %sisolate set. Refusing.",
1575 dependency_name, job_mode_setting);
1576 }
1577
1578 return 0;
1579 }
1580
1581 int unit_load(Unit *u) {
1582 int r;
1583
1584 assert(u);
1585
1586 if (u->in_load_queue) {
1587 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1588 u->in_load_queue = false;
1589 }
1590
1591 if (u->type == _UNIT_TYPE_INVALID)
1592 return -EINVAL;
1593
1594 if (u->load_state != UNIT_STUB)
1595 return 0;
1596
1597 if (u->transient_file) {
1598 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1599 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1600
1601 r = fflush_and_check(u->transient_file);
1602 if (r < 0)
1603 goto fail;
1604
1605 u->transient_file = safe_fclose(u->transient_file);
1606 u->fragment_mtime = now(CLOCK_REALTIME);
1607 }
1608
1609 r = UNIT_VTABLE(u)->load(u);
1610 if (r < 0)
1611 goto fail;
1612
1613 assert(u->load_state != UNIT_STUB);
1614
1615 if (u->load_state == UNIT_LOADED) {
1616 unit_add_to_target_deps_queue(u);
1617
1618 r = unit_add_slice_dependencies(u);
1619 if (r < 0)
1620 goto fail;
1621
1622 r = unit_add_mount_dependencies(u);
1623 if (r < 0)
1624 goto fail;
1625
1626 r = unit_add_oomd_dependencies(u);
1627 if (r < 0)
1628 goto fail;
1629
1630 r = unit_add_startup_units(u);
1631 if (r < 0)
1632 goto fail;
1633
1634 r = unit_validate_on_failure_job_mode(u, "OnSuccessJobMode=", u->on_success_job_mode, "OnSuccess=", UNIT_ATOM_ON_SUCCESS);
1635 if (r < 0)
1636 goto fail;
1637
1638 r = unit_validate_on_failure_job_mode(u, "OnFailureJobMode=", u->on_failure_job_mode, "OnFailure=", UNIT_ATOM_ON_FAILURE);
1639 if (r < 0)
1640 goto fail;
1641
1642 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1643 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1644
1645 /* We finished loading, let's ensure our parents recalculate the members mask */
1646 unit_invalidate_cgroup_members_masks(u);
1647 }
1648
1649 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1650
1651 unit_add_to_dbus_queue(unit_follow_merge(u));
1652 unit_add_to_gc_queue(u);
1653 (void) manager_varlink_send_managed_oom_update(u);
1654
1655 return 0;
1656
1657 fail:
1658 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code
1659 * should hence return ENOEXEC to ensure units are placed in this state after loading. */
1660
1661 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1662 r == -ENOEXEC ? UNIT_BAD_SETTING :
1663 UNIT_ERROR;
1664 u->load_error = r;
1665
1666 /* Record the timestamp on the cache, so that if the cache gets updated between now and the next time
1667 * an attempt is made to load this unit, we know we need to check again. */
1668 if (u->load_state == UNIT_NOT_FOUND)
1669 u->fragment_not_found_timestamp_hash = u->manager->unit_cache_timestamp_hash;
1670
1671 unit_add_to_dbus_queue(u);
1672 unit_add_to_gc_queue(u);
1673
1674 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1675 }
1676
1677 _printf_(7, 8)
1678 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1679 Unit *u = userdata;
1680 va_list ap;
1681 int r;
1682
1683 if (u && !unit_log_level_test(u, level))
1684 return -ERRNO_VALUE(error);
1685
1686 va_start(ap, format);
1687 if (u)
1688 r = log_object_internalv(level, error, file, line, func,
1689 u->manager->unit_log_field,
1690 u->id,
1691 u->manager->invocation_log_field,
1692 u->invocation_id_string,
1693 format, ap);
1694 else
1695 r = log_internalv(level, error, file, line, func, format, ap);
1696 va_end(ap);
1697
1698 return r;
1699 }
1700
1701 static bool unit_test_condition(Unit *u) {
1702 _cleanup_strv_free_ char **env = NULL;
1703 int r;
1704
1705 assert(u);
1706
1707 dual_timestamp_get(&u->condition_timestamp);
1708
1709 r = manager_get_effective_environment(u->manager, &env);
1710 if (r < 0) {
1711 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1712 u->condition_result = CONDITION_ERROR;
1713 } else
1714 u->condition_result = condition_test_list(
1715 u->conditions,
1716 env,
1717 condition_type_to_string,
1718 log_unit_internal,
1719 u);
1720
1721 unit_add_to_dbus_queue(u);
1722 return u->condition_result;
1723 }
1724
1725 static bool unit_test_assert(Unit *u) {
1726 _cleanup_strv_free_ char **env = NULL;
1727 int r;
1728
1729 assert(u);
1730
1731 dual_timestamp_get(&u->assert_timestamp);
1732
1733 r = manager_get_effective_environment(u->manager, &env);
1734 if (r < 0) {
1735 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1736 u->assert_result = CONDITION_ERROR;
1737 } else
1738 u->assert_result = condition_test_list(
1739 u->asserts,
1740 env,
1741 assert_type_to_string,
1742 log_unit_internal,
1743 u);
1744
1745 unit_add_to_dbus_queue(u);
1746 return u->assert_result;
1747 }
1748
1749 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *format, const char *ident) {
1750 if (log_get_show_color()) {
1751 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && strchr(ident, ' '))
1752 ident = strjoina(ANSI_HIGHLIGHT, u->id, ANSI_NORMAL, " - ", u->description);
1753 else
1754 ident = strjoina(ANSI_HIGHLIGHT, ident, ANSI_NORMAL);
1755 }
1756
1757 DISABLE_WARNING_FORMAT_NONLITERAL;
1758 manager_status_printf(u->manager, status_type, status, format, ident);
1759 REENABLE_WARNING;
1760 }
1761
1762 int unit_test_start_limit(Unit *u) {
1763 const char *reason;
1764
1765 assert(u);
1766
1767 if (ratelimit_below(&u->start_ratelimit)) {
1768 u->start_limit_hit = false;
1769 return 0;
1770 }
1771
1772 log_unit_warning(u, "Start request repeated too quickly.");
1773 u->start_limit_hit = true;
1774
1775 reason = strjoina("unit ", u->id, " failed");
1776
1777 emergency_action(u->manager, u->start_limit_action,
1778 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1779 u->reboot_arg, -1, reason);
1780
1781 return -ECANCELED;
1782 }
1783
1784 bool unit_shall_confirm_spawn(Unit *u) {
1785 assert(u);
1786
1787 if (manager_is_confirm_spawn_disabled(u->manager))
1788 return false;
1789
1790 /* For some reasons units remaining in the same process group
1791 * as PID 1 fail to acquire the console even if it's not used
1792 * by any process. So skip the confirmation question for them. */
1793 return !unit_get_exec_context(u)->same_pgrp;
1794 }
1795
1796 static bool unit_verify_deps(Unit *u) {
1797 Unit *other;
1798
1799 assert(u);
1800
1801 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined
1802 * with After=. We do not check Requires= or Requisite= here as they only should have an effect on
1803 * the job processing, but do not have any effect afterwards. We don't check BindsTo= dependencies
1804 * that are not used in conjunction with After= as for them any such check would make things entirely
1805 * racy. */
1806
1807 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT) {
1808
1809 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other))
1810 continue;
1811
1812 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1813 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1814 return false;
1815 }
1816 }
1817
1818 return true;
1819 }
1820
1821 /* Errors that aren't really errors:
1822 * -EALREADY: Unit is already started.
1823 * -ECOMM: Condition failed
1824 * -EAGAIN: An operation is already in progress. Retry later.
1825 *
1826 * Errors that are real errors:
1827 * -EBADR: This unit type does not support starting.
1828 * -ECANCELED: Start limit hit, too many requests for now
1829 * -EPROTO: Assert failed
1830 * -EINVAL: Unit not loaded
1831 * -EOPNOTSUPP: Unit type not supported
1832 * -ENOLINK: The necessary dependencies are not fulfilled.
1833 * -ESTALE: This unit has been started before and can't be started a second time
1834 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1835 */
1836 int unit_start(Unit *u) {
1837 UnitActiveState state;
1838 Unit *following;
1839
1840 assert(u);
1841
1842 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1843 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1844 * waiting is finished. */
1845 state = unit_active_state(u);
1846 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1847 return -EALREADY;
1848 if (state == UNIT_MAINTENANCE)
1849 return -EAGAIN;
1850
1851 /* Units that aren't loaded cannot be started */
1852 if (u->load_state != UNIT_LOADED)
1853 return -EINVAL;
1854
1855 /* Refuse starting scope units more than once */
1856 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1857 return -ESTALE;
1858
1859 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1860 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1861 * recheck the condition in that case. */
1862 if (state != UNIT_ACTIVATING &&
1863 !unit_test_condition(u))
1864 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1865
1866 /* If the asserts failed, fail the entire job */
1867 if (state != UNIT_ACTIVATING &&
1868 !unit_test_assert(u))
1869 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1870
1871 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1872 * condition checks, so that we rather return condition check errors (which are usually not
1873 * considered a true failure) than "not supported" errors (which are considered a failure).
1874 */
1875 if (!unit_type_supported(u->type))
1876 return -EOPNOTSUPP;
1877
1878 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1879 * should have taken care of this already, but let's check this here again. After all, our
1880 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1881 if (!unit_verify_deps(u))
1882 return -ENOLINK;
1883
1884 /* Forward to the main object, if we aren't it. */
1885 following = unit_following(u);
1886 if (following) {
1887 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1888 return unit_start(following);
1889 }
1890
1891 /* If it is stopped, but we cannot start it, then fail */
1892 if (!UNIT_VTABLE(u)->start)
1893 return -EBADR;
1894
1895 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1896 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1897 * waits for a holdoff timer to elapse before it will start again. */
1898
1899 unit_add_to_dbus_queue(u);
1900 unit_cgroup_freezer_action(u, FREEZER_THAW);
1901
1902 return UNIT_VTABLE(u)->start(u);
1903 }
1904
1905 bool unit_can_start(Unit *u) {
1906 assert(u);
1907
1908 if (u->load_state != UNIT_LOADED)
1909 return false;
1910
1911 if (!unit_type_supported(u->type))
1912 return false;
1913
1914 /* Scope units may be started only once */
1915 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1916 return false;
1917
1918 return !!UNIT_VTABLE(u)->start;
1919 }
1920
1921 bool unit_can_isolate(Unit *u) {
1922 assert(u);
1923
1924 return unit_can_start(u) &&
1925 u->allow_isolate;
1926 }
1927
1928 /* Errors:
1929 * -EBADR: This unit type does not support stopping.
1930 * -EALREADY: Unit is already stopped.
1931 * -EAGAIN: An operation is already in progress. Retry later.
1932 */
1933 int unit_stop(Unit *u) {
1934 UnitActiveState state;
1935 Unit *following;
1936
1937 assert(u);
1938
1939 state = unit_active_state(u);
1940 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1941 return -EALREADY;
1942
1943 following = unit_following(u);
1944 if (following) {
1945 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1946 return unit_stop(following);
1947 }
1948
1949 if (!UNIT_VTABLE(u)->stop)
1950 return -EBADR;
1951
1952 unit_add_to_dbus_queue(u);
1953 unit_cgroup_freezer_action(u, FREEZER_THAW);
1954
1955 return UNIT_VTABLE(u)->stop(u);
1956 }
1957
1958 bool unit_can_stop(Unit *u) {
1959 assert(u);
1960
1961 /* Note: if we return true here, it does not mean that the unit may be successfully stopped.
1962 * Extrinsic units follow external state and they may stop following external state changes
1963 * (hence we return true here), but an attempt to do this through the manager will fail. */
1964
1965 if (!unit_type_supported(u->type))
1966 return false;
1967
1968 if (u->perpetual)
1969 return false;
1970
1971 return !!UNIT_VTABLE(u)->stop;
1972 }
1973
1974 /* Errors:
1975 * -EBADR: This unit type does not support reloading.
1976 * -ENOEXEC: Unit is not started.
1977 * -EAGAIN: An operation is already in progress. Retry later.
1978 */
1979 int unit_reload(Unit *u) {
1980 UnitActiveState state;
1981 Unit *following;
1982
1983 assert(u);
1984
1985 if (u->load_state != UNIT_LOADED)
1986 return -EINVAL;
1987
1988 if (!unit_can_reload(u))
1989 return -EBADR;
1990
1991 state = unit_active_state(u);
1992 if (state == UNIT_RELOADING)
1993 return -EAGAIN;
1994
1995 if (state != UNIT_ACTIVE)
1996 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENOEXEC), "Unit cannot be reloaded because it is inactive.");
1997
1998 following = unit_following(u);
1999 if (following) {
2000 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
2001 return unit_reload(following);
2002 }
2003
2004 unit_add_to_dbus_queue(u);
2005
2006 if (!UNIT_VTABLE(u)->reload) {
2007 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
2008 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
2009 return 0;
2010 }
2011
2012 unit_cgroup_freezer_action(u, FREEZER_THAW);
2013
2014 return UNIT_VTABLE(u)->reload(u);
2015 }
2016
2017 bool unit_can_reload(Unit *u) {
2018 assert(u);
2019
2020 if (UNIT_VTABLE(u)->can_reload)
2021 return UNIT_VTABLE(u)->can_reload(u);
2022
2023 if (unit_has_dependency(u, UNIT_ATOM_PROPAGATES_RELOAD_TO, NULL))
2024 return true;
2025
2026 return UNIT_VTABLE(u)->reload;
2027 }
2028
2029 bool unit_is_unneeded(Unit *u) {
2030 Unit *other;
2031 assert(u);
2032
2033 if (!u->stop_when_unneeded)
2034 return false;
2035
2036 /* Don't clean up while the unit is transitioning or is even inactive. */
2037 if (unit_active_state(u) != UNIT_ACTIVE)
2038 return false;
2039 if (u->job)
2040 return false;
2041
2042 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_PINS_STOP_WHEN_UNNEEDED) {
2043 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
2044 * restart, then don't clean this one up. */
2045
2046 if (other->job)
2047 return false;
2048
2049 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2050 return false;
2051
2052 if (unit_will_restart(other))
2053 return false;
2054 }
2055
2056 return true;
2057 }
2058
2059 bool unit_is_upheld_by_active(Unit *u, Unit **ret_culprit) {
2060 Unit *other;
2061
2062 assert(u);
2063
2064 /* Checks if the unit needs to be started because it currently is not running, but some other unit
2065 * that is active declared an Uphold= dependencies on it */
2066
2067 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)) || u->job) {
2068 if (ret_culprit)
2069 *ret_culprit = NULL;
2070 return false;
2071 }
2072
2073 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_START_STEADILY) {
2074 if (other->job)
2075 continue;
2076
2077 if (UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
2078 if (ret_culprit)
2079 *ret_culprit = other;
2080 return true;
2081 }
2082 }
2083
2084 if (ret_culprit)
2085 *ret_culprit = NULL;
2086 return false;
2087 }
2088
2089 bool unit_is_bound_by_inactive(Unit *u, Unit **ret_culprit) {
2090 Unit *other;
2091
2092 assert(u);
2093
2094 /* Checks whether this unit is bound to another unit that is inactive, i.e. whether we should stop
2095 * because the other unit is down. */
2096
2097 if (unit_active_state(u) != UNIT_ACTIVE || u->job) {
2098 /* Don't clean up while the unit is transitioning or is even inactive. */
2099 if (ret_culprit)
2100 *ret_culprit = NULL;
2101 return false;
2102 }
2103
2104 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT) {
2105 if (other->job)
2106 continue;
2107
2108 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) {
2109 if (*ret_culprit)
2110 *ret_culprit = other;
2111
2112 return true;
2113 }
2114 }
2115
2116 if (ret_culprit)
2117 *ret_culprit = NULL;
2118 return false;
2119 }
2120
2121 static void check_unneeded_dependencies(Unit *u) {
2122 Unit *other;
2123 assert(u);
2124
2125 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2126
2127 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_STOP_WHEN_UNNEEDED_QUEUE)
2128 unit_submit_to_stop_when_unneeded_queue(other);
2129 }
2130
2131 static void check_uphold_dependencies(Unit *u) {
2132 Unit *other;
2133 assert(u);
2134
2135 /* Add all units this unit depends on to the queue that processes Uphold= behaviour. */
2136
2137 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_START_WHEN_UPHELD_QUEUE)
2138 unit_submit_to_start_when_upheld_queue(other);
2139 }
2140
2141 static void check_bound_by_dependencies(Unit *u) {
2142 Unit *other;
2143 assert(u);
2144
2145 /* Add all units this unit depends on to the queue that processes BindsTo= stop behaviour. */
2146
2147 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_CANNOT_BE_ACTIVE_WITHOUT_QUEUE)
2148 unit_submit_to_stop_when_bound_queue(other);
2149 }
2150
2151 static void retroactively_start_dependencies(Unit *u) {
2152 Unit *other;
2153
2154 assert(u);
2155 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2156
2157 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_START_REPLACE) /* Requires= + BindsTo= */
2158 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other) &&
2159 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2160 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2161
2162 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_START_FAIL) /* Wants= */
2163 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other) &&
2164 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2165 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2166
2167 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_STOP_ON_START) /* Conflicts= (and inverse) */
2168 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2169 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2170 }
2171
2172 static void retroactively_stop_dependencies(Unit *u) {
2173 Unit *other;
2174
2175 assert(u);
2176 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2177
2178 /* Pull down units which are bound to us recursively if enabled */
2179 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_STOP_ON_STOP) /* BoundBy= */
2180 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2181 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2182 }
2183
2184 void unit_start_on_failure(
2185 Unit *u,
2186 const char *dependency_name,
2187 UnitDependencyAtom atom,
2188 JobMode job_mode) {
2189
2190 bool logged = false;
2191 Unit *other;
2192 int r;
2193
2194 assert(u);
2195 assert(dependency_name);
2196 assert(IN_SET(atom, UNIT_ATOM_ON_SUCCESS, UNIT_ATOM_ON_FAILURE));
2197
2198 /* Act on OnFailure= and OnSuccess= dependencies */
2199
2200 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
2201 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2202
2203 if (!logged) {
2204 log_unit_info(u, "Triggering %s dependencies.", dependency_name);
2205 logged = true;
2206 }
2207
2208 r = manager_add_job(u->manager, JOB_START, other, job_mode, NULL, &error, NULL);
2209 if (r < 0)
2210 log_unit_warning_errno(
2211 u, r, "Failed to enqueue %s job, ignoring: %s",
2212 dependency_name, bus_error_message(&error, r));
2213 }
2214
2215 if (logged)
2216 log_unit_debug(u, "Triggering %s dependencies done.", dependency_name);
2217 }
2218
2219 void unit_trigger_notify(Unit *u) {
2220 Unit *other;
2221
2222 assert(u);
2223
2224 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_TRIGGERED_BY)
2225 if (UNIT_VTABLE(other)->trigger_notify)
2226 UNIT_VTABLE(other)->trigger_notify(other, u);
2227 }
2228
2229 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2230 if (condition_notice && log_level > LOG_NOTICE)
2231 return LOG_NOTICE;
2232 if (condition_info && log_level > LOG_INFO)
2233 return LOG_INFO;
2234 return log_level;
2235 }
2236
2237 static int unit_log_resources(Unit *u) {
2238 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2239 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2240 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2241 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a threshold */
2242 size_t n_message_parts = 0, n_iovec = 0;
2243 char* message_parts[1 + 2 + 2 + 1], *t;
2244 nsec_t nsec = NSEC_INFINITY;
2245 int r;
2246 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2247 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2248 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2249 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2250 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2251 };
2252 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2253 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2254 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2255 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2256 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2257 };
2258
2259 assert(u);
2260
2261 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2262 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2263 * information and the complete data in structured fields. */
2264
2265 (void) unit_get_cpu_usage(u, &nsec);
2266 if (nsec != NSEC_INFINITY) {
2267 char buf[FORMAT_TIMESPAN_MAX] = "";
2268
2269 /* Format the CPU time for inclusion in the structured log message */
2270 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2271 r = log_oom();
2272 goto finish;
2273 }
2274 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2275
2276 /* Format the CPU time for inclusion in the human language message string */
2277 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2278 t = strjoin("consumed ", buf, " CPU time");
2279 if (!t) {
2280 r = log_oom();
2281 goto finish;
2282 }
2283
2284 message_parts[n_message_parts++] = t;
2285
2286 log_level = raise_level(log_level,
2287 nsec > NOTICEWORTHY_CPU_NSEC,
2288 nsec > MENTIONWORTHY_CPU_NSEC);
2289 }
2290
2291 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2292 char buf[FORMAT_BYTES_MAX] = "";
2293 uint64_t value = UINT64_MAX;
2294
2295 assert(io_fields[k]);
2296
2297 (void) unit_get_io_accounting(u, k, k > 0, &value);
2298 if (value == UINT64_MAX)
2299 continue;
2300
2301 have_io_accounting = true;
2302 if (value > 0)
2303 any_io = true;
2304
2305 /* Format IO accounting data for inclusion in the structured log message */
2306 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2307 r = log_oom();
2308 goto finish;
2309 }
2310 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2311
2312 /* Format the IO accounting data for inclusion in the human language message string, but only
2313 * for the bytes counters (and not for the operations counters) */
2314 if (k == CGROUP_IO_READ_BYTES) {
2315 assert(!rr);
2316 rr = strjoin("read ", format_bytes(buf, sizeof(buf), value), " from disk");
2317 if (!rr) {
2318 r = log_oom();
2319 goto finish;
2320 }
2321 } else if (k == CGROUP_IO_WRITE_BYTES) {
2322 assert(!wr);
2323 wr = strjoin("written ", format_bytes(buf, sizeof(buf), value), " to disk");
2324 if (!wr) {
2325 r = log_oom();
2326 goto finish;
2327 }
2328 }
2329
2330 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2331 log_level = raise_level(log_level,
2332 value > MENTIONWORTHY_IO_BYTES,
2333 value > NOTICEWORTHY_IO_BYTES);
2334 }
2335
2336 if (have_io_accounting) {
2337 if (any_io) {
2338 if (rr)
2339 message_parts[n_message_parts++] = TAKE_PTR(rr);
2340 if (wr)
2341 message_parts[n_message_parts++] = TAKE_PTR(wr);
2342
2343 } else {
2344 char *k;
2345
2346 k = strdup("no IO");
2347 if (!k) {
2348 r = log_oom();
2349 goto finish;
2350 }
2351
2352 message_parts[n_message_parts++] = k;
2353 }
2354 }
2355
2356 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2357 char buf[FORMAT_BYTES_MAX] = "";
2358 uint64_t value = UINT64_MAX;
2359
2360 assert(ip_fields[m]);
2361
2362 (void) unit_get_ip_accounting(u, m, &value);
2363 if (value == UINT64_MAX)
2364 continue;
2365
2366 have_ip_accounting = true;
2367 if (value > 0)
2368 any_traffic = true;
2369
2370 /* Format IP accounting data for inclusion in the structured log message */
2371 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2372 r = log_oom();
2373 goto finish;
2374 }
2375 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2376
2377 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2378 * bytes counters (and not for the packets counters) */
2379 if (m == CGROUP_IP_INGRESS_BYTES) {
2380 assert(!igress);
2381 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2382 if (!igress) {
2383 r = log_oom();
2384 goto finish;
2385 }
2386 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2387 assert(!egress);
2388 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2389 if (!egress) {
2390 r = log_oom();
2391 goto finish;
2392 }
2393 }
2394
2395 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2396 log_level = raise_level(log_level,
2397 value > MENTIONWORTHY_IP_BYTES,
2398 value > NOTICEWORTHY_IP_BYTES);
2399 }
2400
2401 /* This check is here because it is the earliest point following all possible log_level assignments. If
2402 * log_level is assigned anywhere after this point, move this check. */
2403 if (!unit_log_level_test(u, log_level)) {
2404 r = 0;
2405 goto finish;
2406 }
2407
2408 if (have_ip_accounting) {
2409 if (any_traffic) {
2410 if (igress)
2411 message_parts[n_message_parts++] = TAKE_PTR(igress);
2412 if (egress)
2413 message_parts[n_message_parts++] = TAKE_PTR(egress);
2414
2415 } else {
2416 char *k;
2417
2418 k = strdup("no IP traffic");
2419 if (!k) {
2420 r = log_oom();
2421 goto finish;
2422 }
2423
2424 message_parts[n_message_parts++] = k;
2425 }
2426 }
2427
2428 /* Is there any accounting data available at all? */
2429 if (n_iovec == 0) {
2430 r = 0;
2431 goto finish;
2432 }
2433
2434 if (n_message_parts == 0)
2435 t = strjoina("MESSAGE=", u->id, ": Completed.");
2436 else {
2437 _cleanup_free_ char *joined = NULL;
2438
2439 message_parts[n_message_parts] = NULL;
2440
2441 joined = strv_join(message_parts, ", ");
2442 if (!joined) {
2443 r = log_oom();
2444 goto finish;
2445 }
2446
2447 joined[0] = ascii_toupper(joined[0]);
2448 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2449 }
2450
2451 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2452 * and hence don't increase n_iovec for them */
2453 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2454 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2455
2456 t = strjoina(u->manager->unit_log_field, u->id);
2457 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2458
2459 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2460 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2461
2462 log_unit_struct_iovec(u, log_level, iovec, n_iovec + 4);
2463 r = 0;
2464
2465 finish:
2466 for (size_t i = 0; i < n_message_parts; i++)
2467 free(message_parts[i]);
2468
2469 for (size_t i = 0; i < n_iovec; i++)
2470 free(iovec[i].iov_base);
2471
2472 return r;
2473
2474 }
2475
2476 static void unit_update_on_console(Unit *u) {
2477 bool b;
2478
2479 assert(u);
2480
2481 b = unit_needs_console(u);
2482 if (u->on_console == b)
2483 return;
2484
2485 u->on_console = b;
2486 if (b)
2487 manager_ref_console(u->manager);
2488 else
2489 manager_unref_console(u->manager);
2490 }
2491
2492 static void unit_emit_audit_start(Unit *u) {
2493 assert(u);
2494
2495 if (u->type != UNIT_SERVICE)
2496 return;
2497
2498 /* Write audit record if we have just finished starting up */
2499 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2500 u->in_audit = true;
2501 }
2502
2503 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2504 assert(u);
2505
2506 if (u->type != UNIT_SERVICE)
2507 return;
2508
2509 if (u->in_audit) {
2510 /* Write audit record if we have just finished shutting down */
2511 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2512 u->in_audit = false;
2513 } else {
2514 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2515 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2516
2517 if (state == UNIT_INACTIVE)
2518 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2519 }
2520 }
2521
2522 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2523 bool unexpected = false;
2524 JobResult result;
2525
2526 assert(j);
2527
2528 if (j->state == JOB_WAITING)
2529
2530 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2531 * due to EAGAIN. */
2532 job_add_to_run_queue(j);
2533
2534 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2535 * hence needs to invalidate jobs. */
2536
2537 switch (j->type) {
2538
2539 case JOB_START:
2540 case JOB_VERIFY_ACTIVE:
2541
2542 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2543 job_finish_and_invalidate(j, JOB_DONE, true, false);
2544 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2545 unexpected = true;
2546
2547 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2548 if (ns == UNIT_FAILED)
2549 result = JOB_FAILED;
2550 else
2551 result = JOB_DONE;
2552
2553 job_finish_and_invalidate(j, result, true, false);
2554 }
2555 }
2556
2557 break;
2558
2559 case JOB_RELOAD:
2560 case JOB_RELOAD_OR_START:
2561 case JOB_TRY_RELOAD:
2562
2563 if (j->state == JOB_RUNNING) {
2564 if (ns == UNIT_ACTIVE)
2565 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2566 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2567 unexpected = true;
2568
2569 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2570 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2571 }
2572 }
2573
2574 break;
2575
2576 case JOB_STOP:
2577 case JOB_RESTART:
2578 case JOB_TRY_RESTART:
2579
2580 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2581 job_finish_and_invalidate(j, JOB_DONE, true, false);
2582 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2583 unexpected = true;
2584 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2585 }
2586
2587 break;
2588
2589 default:
2590 assert_not_reached("Job type unknown");
2591 }
2592
2593 return unexpected;
2594 }
2595
2596 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2597 const char *reason;
2598 Manager *m;
2599
2600 assert(u);
2601 assert(os < _UNIT_ACTIVE_STATE_MAX);
2602 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2603
2604 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2605 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2606 * remounted this function will be called too! */
2607
2608 m = u->manager;
2609
2610 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2611 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2612 unit_add_to_dbus_queue(u);
2613
2614 /* Update systemd-oomd on the property/state change */
2615 if (os != ns) {
2616 /* Always send an update if the unit is going into an inactive state so systemd-oomd knows to stop
2617 * monitoring.
2618 * Also send an update whenever the unit goes active; this is to handle a case where an override file
2619 * sets one of the ManagedOOM*= properties to "kill", then later removes it. systemd-oomd needs to
2620 * know to stop monitoring when the unit changes from "kill" -> "auto" on daemon-reload, but we don't
2621 * have the information on the property. Thus, indiscriminately send an update. */
2622 if (UNIT_IS_INACTIVE_OR_FAILED(ns) || UNIT_IS_ACTIVE_OR_RELOADING(ns))
2623 (void) manager_varlink_send_managed_oom_update(u);
2624 }
2625
2626 /* Update timestamps for state changes */
2627 if (!MANAGER_IS_RELOADING(m)) {
2628 dual_timestamp_get(&u->state_change_timestamp);
2629
2630 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2631 u->inactive_exit_timestamp = u->state_change_timestamp;
2632 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2633 u->inactive_enter_timestamp = u->state_change_timestamp;
2634
2635 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2636 u->active_enter_timestamp = u->state_change_timestamp;
2637 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2638 u->active_exit_timestamp = u->state_change_timestamp;
2639 }
2640
2641 /* Keep track of failed units */
2642 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2643
2644 /* Make sure the cgroup and state files are always removed when we become inactive */
2645 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2646 SET_FLAG(u->markers,
2647 (1u << UNIT_MARKER_NEEDS_RELOAD)|(1u << UNIT_MARKER_NEEDS_RESTART),
2648 false);
2649 unit_prune_cgroup(u);
2650 unit_unlink_state_files(u);
2651 } else if (ns != os && ns == UNIT_RELOADING)
2652 SET_FLAG(u->markers, 1u << UNIT_MARKER_NEEDS_RELOAD, false);
2653
2654 unit_update_on_console(u);
2655
2656 if (!MANAGER_IS_RELOADING(m)) {
2657 bool unexpected;
2658
2659 /* Let's propagate state changes to the job */
2660 if (u->job)
2661 unexpected = unit_process_job(u->job, ns, flags);
2662 else
2663 unexpected = true;
2664
2665 /* If this state change happened without being requested by a job, then let's retroactively start or
2666 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2667 * additional jobs just because something is already activated. */
2668
2669 if (unexpected) {
2670 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2671 retroactively_start_dependencies(u);
2672 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2673 retroactively_stop_dependencies(u);
2674 }
2675
2676 if (ns != os && ns == UNIT_FAILED) {
2677 log_unit_debug(u, "Unit entered failed state.");
2678
2679 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2680 unit_start_on_failure(u, "OnFailure=", UNIT_ATOM_ON_FAILURE, u->on_failure_job_mode);
2681 }
2682
2683 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2684 /* This unit just finished starting up */
2685
2686 unit_emit_audit_start(u);
2687 manager_send_unit_plymouth(m, u);
2688 }
2689
2690 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2691 /* This unit just stopped/failed. */
2692
2693 unit_emit_audit_stop(u, ns);
2694 unit_log_resources(u);
2695 }
2696
2697 if (ns == UNIT_INACTIVE && !IN_SET(os, UNIT_FAILED, UNIT_INACTIVE, UNIT_MAINTENANCE) &&
2698 !(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2699 unit_start_on_failure(u, "OnSuccess=", UNIT_ATOM_ON_SUCCESS, u->on_success_job_mode);
2700 }
2701
2702 manager_recheck_journal(m);
2703 manager_recheck_dbus(m);
2704
2705 unit_trigger_notify(u);
2706
2707 if (!MANAGER_IS_RELOADING(m)) {
2708 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2709 reason = strjoina("unit ", u->id, " failed");
2710 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2711 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2712 reason = strjoina("unit ", u->id, " succeeded");
2713 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2714 }
2715 }
2716
2717 /* And now, add the unit or depending units to various queues that will act on the new situation if
2718 * needed. These queues generally check for continuous state changes rather than events (like most of
2719 * the state propagation above), and do work deferred instead of instantly, since they typically
2720 * don't want to run during reloading, and usually involve checking combined state of multiple units
2721 * at once. */
2722
2723 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2724 /* Stop unneeded units and bound-by units regardless if going down was expected or not */
2725 check_unneeded_dependencies(u);
2726 check_bound_by_dependencies(u);
2727
2728 /* Maybe someone wants us to remain up? */
2729 unit_submit_to_start_when_upheld_queue(u);
2730
2731 /* Maybe the unit should be GC'ed now? */
2732 unit_add_to_gc_queue(u);
2733 }
2734
2735 if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
2736 /* Start uphold units regardless if going up was expected or not */
2737 check_uphold_dependencies(u);
2738
2739 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2740 unit_submit_to_stop_when_unneeded_queue(u);
2741
2742 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens
2743 * when something BindsTo= to a Type=oneshot unit, as these units go directly from starting to
2744 * inactive, without ever entering started.) */
2745 unit_submit_to_stop_when_bound_queue(u);
2746 }
2747 }
2748
2749 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2750 int r;
2751
2752 assert(u);
2753 assert(pid_is_valid(pid));
2754
2755 /* Watch a specific PID */
2756
2757 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2758 * opportunity to remove any stalled references to this PID as they can be created
2759 * easily (when watching a process which is not our direct child). */
2760 if (exclusive)
2761 manager_unwatch_pid(u->manager, pid);
2762
2763 r = set_ensure_allocated(&u->pids, NULL);
2764 if (r < 0)
2765 return r;
2766
2767 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2768 if (r < 0)
2769 return r;
2770
2771 /* First try, let's add the unit keyed by "pid". */
2772 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2773 if (r == -EEXIST) {
2774 Unit **array;
2775 bool found = false;
2776 size_t n = 0;
2777
2778 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2779 * to an array of Units rather than just a Unit), lists us already. */
2780
2781 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2782 if (array)
2783 for (; array[n]; n++)
2784 if (array[n] == u)
2785 found = true;
2786
2787 if (found) /* Found it already? if so, do nothing */
2788 r = 0;
2789 else {
2790 Unit **new_array;
2791
2792 /* Allocate a new array */
2793 new_array = new(Unit*, n + 2);
2794 if (!new_array)
2795 return -ENOMEM;
2796
2797 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2798 new_array[n] = u;
2799 new_array[n+1] = NULL;
2800
2801 /* Add or replace the old array */
2802 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2803 if (r < 0) {
2804 free(new_array);
2805 return r;
2806 }
2807
2808 free(array);
2809 }
2810 } else if (r < 0)
2811 return r;
2812
2813 r = set_put(u->pids, PID_TO_PTR(pid));
2814 if (r < 0)
2815 return r;
2816
2817 return 0;
2818 }
2819
2820 void unit_unwatch_pid(Unit *u, pid_t pid) {
2821 Unit **array;
2822
2823 assert(u);
2824 assert(pid_is_valid(pid));
2825
2826 /* First let's drop the unit in case it's keyed as "pid". */
2827 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2828
2829 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2830 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2831 if (array) {
2832 /* Let's iterate through the array, dropping our own entry */
2833
2834 size_t m = 0;
2835 for (size_t n = 0; array[n]; n++)
2836 if (array[n] != u)
2837 array[m++] = array[n];
2838 array[m] = NULL;
2839
2840 if (m == 0) {
2841 /* The array is now empty, remove the entire entry */
2842 assert_se(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2843 free(array);
2844 }
2845 }
2846
2847 (void) set_remove(u->pids, PID_TO_PTR(pid));
2848 }
2849
2850 void unit_unwatch_all_pids(Unit *u) {
2851 assert(u);
2852
2853 while (!set_isempty(u->pids))
2854 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2855
2856 u->pids = set_free(u->pids);
2857 }
2858
2859 static void unit_tidy_watch_pids(Unit *u) {
2860 pid_t except1, except2;
2861 void *e;
2862
2863 assert(u);
2864
2865 /* Cleans dead PIDs from our list */
2866
2867 except1 = unit_main_pid(u);
2868 except2 = unit_control_pid(u);
2869
2870 SET_FOREACH(e, u->pids) {
2871 pid_t pid = PTR_TO_PID(e);
2872
2873 if (pid == except1 || pid == except2)
2874 continue;
2875
2876 if (!pid_is_unwaited(pid))
2877 unit_unwatch_pid(u, pid);
2878 }
2879 }
2880
2881 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2882 Unit *u = userdata;
2883
2884 assert(s);
2885 assert(u);
2886
2887 unit_tidy_watch_pids(u);
2888 unit_watch_all_pids(u);
2889
2890 /* If the PID set is empty now, then let's finish this off. */
2891 unit_synthesize_cgroup_empty_event(u);
2892
2893 return 0;
2894 }
2895
2896 int unit_enqueue_rewatch_pids(Unit *u) {
2897 int r;
2898
2899 assert(u);
2900
2901 if (!u->cgroup_path)
2902 return -ENOENT;
2903
2904 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2905 if (r < 0)
2906 return r;
2907 if (r > 0) /* On unified we can use proper notifications */
2908 return 0;
2909
2910 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2911 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2912 * involves issuing kill(pid, 0) on all processes we watch. */
2913
2914 if (!u->rewatch_pids_event_source) {
2915 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2916
2917 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2918 if (r < 0)
2919 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2920
2921 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2922 if (r < 0)
2923 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
2924
2925 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2926
2927 u->rewatch_pids_event_source = TAKE_PTR(s);
2928 }
2929
2930 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2931 if (r < 0)
2932 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2933
2934 return 0;
2935 }
2936
2937 void unit_dequeue_rewatch_pids(Unit *u) {
2938 int r;
2939 assert(u);
2940
2941 if (!u->rewatch_pids_event_source)
2942 return;
2943
2944 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2945 if (r < 0)
2946 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2947
2948 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2949 }
2950
2951 bool unit_job_is_applicable(Unit *u, JobType j) {
2952 assert(u);
2953 assert(j >= 0 && j < _JOB_TYPE_MAX);
2954
2955 switch (j) {
2956
2957 case JOB_VERIFY_ACTIVE:
2958 case JOB_START:
2959 case JOB_NOP:
2960 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2961 * startable by us but may appear due to external events, and it thus makes sense to permit enqueuing
2962 * jobs for it. */
2963 return true;
2964
2965 case JOB_STOP:
2966 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2967 * external events), hence it makes no sense to permit enqueuing such a request either. */
2968 return !u->perpetual;
2969
2970 case JOB_RESTART:
2971 case JOB_TRY_RESTART:
2972 return unit_can_stop(u) && unit_can_start(u);
2973
2974 case JOB_RELOAD:
2975 case JOB_TRY_RELOAD:
2976 return unit_can_reload(u);
2977
2978 case JOB_RELOAD_OR_START:
2979 return unit_can_reload(u) && unit_can_start(u);
2980
2981 default:
2982 assert_not_reached("Invalid job type");
2983 }
2984 }
2985
2986 int unit_add_dependency(
2987 Unit *u,
2988 UnitDependency d,
2989 Unit *other,
2990 bool add_reference,
2991 UnitDependencyMask mask) {
2992
2993 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
2994 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
2995 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
2996 [UNIT_WANTS] = UNIT_WANTED_BY,
2997 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
2998 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
2999 [UNIT_UPHOLDS] = UNIT_UPHELD_BY,
3000 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
3001 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
3002 [UNIT_WANTED_BY] = UNIT_WANTS,
3003 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
3004 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
3005 [UNIT_UPHELD_BY] = UNIT_UPHOLDS,
3006 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
3007 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
3008 [UNIT_BEFORE] = UNIT_AFTER,
3009 [UNIT_AFTER] = UNIT_BEFORE,
3010 [UNIT_ON_SUCCESS] = UNIT_ON_SUCCESS_OF,
3011 [UNIT_ON_SUCCESS_OF] = UNIT_ON_SUCCESS,
3012 [UNIT_ON_FAILURE] = UNIT_ON_FAILURE_OF,
3013 [UNIT_ON_FAILURE_OF] = UNIT_ON_FAILURE,
3014 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
3015 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
3016 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
3017 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
3018 [UNIT_PROPAGATES_STOP_TO] = UNIT_STOP_PROPAGATED_FROM,
3019 [UNIT_STOP_PROPAGATED_FROM] = UNIT_PROPAGATES_STOP_TO,
3020 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF, /* symmetric! 👓 */
3021 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
3022 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
3023 [UNIT_IN_SLICE] = UNIT_SLICE_OF,
3024 [UNIT_SLICE_OF] = UNIT_IN_SLICE,
3025 };
3026 Unit *original_u = u, *original_other = other;
3027 UnitDependencyAtom a;
3028 int r;
3029
3030 /* Helper to know whether sending a notification is necessary or not: if the dependency is already
3031 * there, no need to notify! */
3032 bool noop;
3033
3034 assert(u);
3035 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3036 assert(other);
3037
3038 u = unit_follow_merge(u);
3039 other = unit_follow_merge(other);
3040 a = unit_dependency_to_atom(d);
3041 assert(a >= 0);
3042
3043 /* We won't allow dependencies on ourselves. We will not consider them an error however. */
3044 if (u == other) {
3045 unit_maybe_warn_about_dependency(original_u, original_other->id, d);
3046 return 0;
3047 }
3048
3049 /* Note that ordering a device unit after a unit is permitted since it allows to start its job
3050 * running timeout at a specific time. */
3051 if (FLAGS_SET(a, UNIT_ATOM_BEFORE) && other->type == UNIT_DEVICE) {
3052 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
3053 return 0;
3054 }
3055
3056 if (FLAGS_SET(a, UNIT_ATOM_ON_FAILURE) && !UNIT_VTABLE(u)->can_fail) {
3057 log_unit_warning(u, "Requested dependency OnFailure=%s ignored (%s units cannot fail).", other->id, unit_type_to_string(u->type));
3058 return 0;
3059 }
3060
3061 if (FLAGS_SET(a, UNIT_ATOM_TRIGGERS) && !UNIT_VTABLE(u)->can_trigger)
3062 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3063 "Requested dependency Triggers=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(u->type));
3064 if (FLAGS_SET(a, UNIT_ATOM_TRIGGERED_BY) && !UNIT_VTABLE(other)->can_trigger)
3065 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3066 "Requested dependency TriggeredBy=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(other->type));
3067
3068 if (FLAGS_SET(a, UNIT_ATOM_IN_SLICE) && other->type != UNIT_SLICE)
3069 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3070 "Requested dependency Slice=%s refused (%s is not a slice unit).", other->id, other->id);
3071 if (FLAGS_SET(a, UNIT_ATOM_SLICE_OF) && u->type != UNIT_SLICE)
3072 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3073 "Requested dependency SliceOf=%s refused (%s is not a slice unit).", other->id, u->id);
3074
3075 if (FLAGS_SET(a, UNIT_ATOM_IN_SLICE) && !UNIT_HAS_CGROUP_CONTEXT(u))
3076 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3077 "Requested dependency Slice=%s refused (%s is not a cgroup unit).", other->id, u->id);
3078
3079 if (FLAGS_SET(a, UNIT_ATOM_SLICE_OF) && !UNIT_HAS_CGROUP_CONTEXT(other))
3080 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3081 "Requested dependency SliceOf=%s refused (%s is not a cgroup unit).", other->id, other->id);
3082
3083 r = unit_add_dependency_hashmap(&u->dependencies, d, other, mask, 0);
3084 if (r < 0)
3085 return r;
3086 noop = !r;
3087
3088 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
3089 r = unit_add_dependency_hashmap(&other->dependencies, inverse_table[d], u, 0, mask);
3090 if (r < 0)
3091 return r;
3092 if (r)
3093 noop = false;
3094 }
3095
3096 if (add_reference) {
3097 r = unit_add_dependency_hashmap(&u->dependencies, UNIT_REFERENCES, other, mask, 0);
3098 if (r < 0)
3099 return r;
3100 if (r)
3101 noop = false;
3102
3103 r = unit_add_dependency_hashmap(&other->dependencies, UNIT_REFERENCED_BY, u, 0, mask);
3104 if (r < 0)
3105 return r;
3106 if (r)
3107 noop = false;
3108 }
3109
3110 if (!noop)
3111 unit_add_to_dbus_queue(u);
3112
3113 return 0;
3114 }
3115
3116 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
3117 int r;
3118
3119 assert(u);
3120
3121 r = unit_add_dependency(u, d, other, add_reference, mask);
3122 if (r < 0)
3123 return r;
3124
3125 return unit_add_dependency(u, e, other, add_reference, mask);
3126 }
3127
3128 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
3129 int r;
3130
3131 assert(u);
3132 assert(name);
3133 assert(buf);
3134 assert(ret);
3135
3136 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
3137 *buf = NULL;
3138 *ret = name;
3139 return 0;
3140 }
3141
3142 if (u->instance)
3143 r = unit_name_replace_instance(name, u->instance, buf);
3144 else {
3145 _cleanup_free_ char *i = NULL;
3146
3147 r = unit_name_to_prefix(u->id, &i);
3148 if (r < 0)
3149 return r;
3150
3151 r = unit_name_replace_instance(name, i, buf);
3152 }
3153 if (r < 0)
3154 return r;
3155
3156 *ret = *buf;
3157 return 0;
3158 }
3159
3160 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3161 _cleanup_free_ char *buf = NULL;
3162 Unit *other;
3163 int r;
3164
3165 assert(u);
3166 assert(name);
3167
3168 r = resolve_template(u, name, &buf, &name);
3169 if (r < 0)
3170 return r;
3171
3172 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3173 if (r < 0)
3174 return r;
3175
3176 return unit_add_dependency(u, d, other, add_reference, mask);
3177 }
3178
3179 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3180 _cleanup_free_ char *buf = NULL;
3181 Unit *other;
3182 int r;
3183
3184 assert(u);
3185 assert(name);
3186
3187 r = resolve_template(u, name, &buf, &name);
3188 if (r < 0)
3189 return r;
3190
3191 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3192 if (r < 0)
3193 return r;
3194
3195 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3196 }
3197
3198 int set_unit_path(const char *p) {
3199 /* This is mostly for debug purposes */
3200 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
3201 return -errno;
3202
3203 return 0;
3204 }
3205
3206 char *unit_dbus_path(Unit *u) {
3207 assert(u);
3208
3209 if (!u->id)
3210 return NULL;
3211
3212 return unit_dbus_path_from_name(u->id);
3213 }
3214
3215 char *unit_dbus_path_invocation_id(Unit *u) {
3216 assert(u);
3217
3218 if (sd_id128_is_null(u->invocation_id))
3219 return NULL;
3220
3221 return unit_dbus_path_from_name(u->invocation_id_string);
3222 }
3223
3224 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
3225 int r;
3226
3227 assert(u);
3228
3229 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
3230
3231 if (sd_id128_equal(u->invocation_id, id))
3232 return 0;
3233
3234 if (!sd_id128_is_null(u->invocation_id))
3235 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
3236
3237 if (sd_id128_is_null(id)) {
3238 r = 0;
3239 goto reset;
3240 }
3241
3242 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
3243 if (r < 0)
3244 goto reset;
3245
3246 u->invocation_id = id;
3247 sd_id128_to_string(id, u->invocation_id_string);
3248
3249 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
3250 if (r < 0)
3251 goto reset;
3252
3253 return 0;
3254
3255 reset:
3256 u->invocation_id = SD_ID128_NULL;
3257 u->invocation_id_string[0] = 0;
3258 return r;
3259 }
3260
3261 int unit_set_slice(Unit *u, Unit *slice, UnitDependencyMask mask) {
3262 int r;
3263
3264 assert(u);
3265 assert(slice);
3266
3267 /* Sets the unit slice if it has not been set before. Is extra careful, to only allow this for units
3268 * that actually have a cgroup context. Also, we don't allow to set this for slices (since the parent
3269 * slice is derived from the name). Make sure the unit we set is actually a slice. */
3270
3271 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3272 return -EOPNOTSUPP;
3273
3274 if (u->type == UNIT_SLICE)
3275 return -EINVAL;
3276
3277 if (unit_active_state(u) != UNIT_INACTIVE)
3278 return -EBUSY;
3279
3280 if (slice->type != UNIT_SLICE)
3281 return -EINVAL;
3282
3283 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3284 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3285 return -EPERM;
3286
3287 if (UNIT_GET_SLICE(u) == slice)
3288 return 0;
3289
3290 /* Disallow slice changes if @u is already bound to cgroups */
3291 if (UNIT_GET_SLICE(u) && u->cgroup_realized)
3292 return -EBUSY;
3293
3294 r = unit_add_dependency(u, UNIT_IN_SLICE, slice, true, mask);
3295 if (r < 0)
3296 return r;
3297
3298 return 1;
3299 }
3300
3301 int unit_set_default_slice(Unit *u) {
3302 const char *slice_name;
3303 Unit *slice;
3304 int r;
3305
3306 assert(u);
3307
3308 if (UNIT_GET_SLICE(u))
3309 return 0;
3310
3311 if (u->instance) {
3312 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3313
3314 /* Implicitly place all instantiated units in their
3315 * own per-template slice */
3316
3317 r = unit_name_to_prefix(u->id, &prefix);
3318 if (r < 0)
3319 return r;
3320
3321 /* The prefix is already escaped, but it might include
3322 * "-" which has a special meaning for slice units,
3323 * hence escape it here extra. */
3324 escaped = unit_name_escape(prefix);
3325 if (!escaped)
3326 return -ENOMEM;
3327
3328 if (MANAGER_IS_SYSTEM(u->manager))
3329 slice_name = strjoina("system-", escaped, ".slice");
3330 else
3331 slice_name = strjoina("app-", escaped, ".slice");
3332
3333 } else if (unit_is_extrinsic(u))
3334 /* Keep all extrinsic units (e.g. perpetual units and swap and mount units in user mode) in
3335 * the root slice. They don't really belong in one of the subslices. */
3336 slice_name = SPECIAL_ROOT_SLICE;
3337
3338 else if (MANAGER_IS_SYSTEM(u->manager))
3339 slice_name = SPECIAL_SYSTEM_SLICE;
3340 else
3341 slice_name = SPECIAL_APP_SLICE;
3342
3343 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3344 if (r < 0)
3345 return r;
3346
3347 return unit_set_slice(u, slice, UNIT_DEPENDENCY_FILE);
3348 }
3349
3350 const char *unit_slice_name(Unit *u) {
3351 Unit *slice;
3352 assert(u);
3353
3354 slice = UNIT_GET_SLICE(u);
3355 if (!slice)
3356 return NULL;
3357
3358 return slice->id;
3359 }
3360
3361 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3362 _cleanup_free_ char *t = NULL;
3363 int r;
3364
3365 assert(u);
3366 assert(type);
3367 assert(_found);
3368
3369 r = unit_name_change_suffix(u->id, type, &t);
3370 if (r < 0)
3371 return r;
3372 if (unit_has_name(u, t))
3373 return -EINVAL;
3374
3375 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3376 assert(r < 0 || *_found != u);
3377 return r;
3378 }
3379
3380 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3381 const char *new_owner;
3382 Unit *u = userdata;
3383 int r;
3384
3385 assert(message);
3386 assert(u);
3387
3388 r = sd_bus_message_read(message, "sss", NULL, NULL, &new_owner);
3389 if (r < 0) {
3390 bus_log_parse_error(r);
3391 return 0;
3392 }
3393
3394 if (UNIT_VTABLE(u)->bus_name_owner_change)
3395 UNIT_VTABLE(u)->bus_name_owner_change(u, empty_to_null(new_owner));
3396
3397 return 0;
3398 }
3399
3400 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3401 const sd_bus_error *e;
3402 const char *new_owner;
3403 Unit *u = userdata;
3404 int r;
3405
3406 assert(message);
3407 assert(u);
3408
3409 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3410
3411 e = sd_bus_message_get_error(message);
3412 if (e) {
3413 if (!sd_bus_error_has_name(e, "org.freedesktop.DBus.Error.NameHasNoOwner"))
3414 log_unit_error(u, "Unexpected error response from GetNameOwner(): %s", e->message);
3415
3416 new_owner = NULL;
3417 } else {
3418 r = sd_bus_message_read(message, "s", &new_owner);
3419 if (r < 0)
3420 return bus_log_parse_error(r);
3421
3422 assert(!isempty(new_owner));
3423 }
3424
3425 if (UNIT_VTABLE(u)->bus_name_owner_change)
3426 UNIT_VTABLE(u)->bus_name_owner_change(u, new_owner);
3427
3428 return 0;
3429 }
3430
3431 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3432 const char *match;
3433 int r;
3434
3435 assert(u);
3436 assert(bus);
3437 assert(name);
3438
3439 if (u->match_bus_slot || u->get_name_owner_slot)
3440 return -EBUSY;
3441
3442 match = strjoina("type='signal',"
3443 "sender='org.freedesktop.DBus',"
3444 "path='/org/freedesktop/DBus',"
3445 "interface='org.freedesktop.DBus',"
3446 "member='NameOwnerChanged',"
3447 "arg0='", name, "'");
3448
3449 r = sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3450 if (r < 0)
3451 return r;
3452
3453 r = sd_bus_call_method_async(
3454 bus,
3455 &u->get_name_owner_slot,
3456 "org.freedesktop.DBus",
3457 "/org/freedesktop/DBus",
3458 "org.freedesktop.DBus",
3459 "GetNameOwner",
3460 get_name_owner_handler,
3461 u,
3462 "s", name);
3463 if (r < 0) {
3464 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3465 return r;
3466 }
3467
3468 log_unit_debug(u, "Watching D-Bus name '%s'.", name);
3469 return 0;
3470 }
3471
3472 int unit_watch_bus_name(Unit *u, const char *name) {
3473 int r;
3474
3475 assert(u);
3476 assert(name);
3477
3478 /* Watch a specific name on the bus. We only support one unit
3479 * watching each name for now. */
3480
3481 if (u->manager->api_bus) {
3482 /* If the bus is already available, install the match directly.
3483 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3484 r = unit_install_bus_match(u, u->manager->api_bus, name);
3485 if (r < 0)
3486 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3487 }
3488
3489 r = hashmap_put(u->manager->watch_bus, name, u);
3490 if (r < 0) {
3491 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3492 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3493 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3494 }
3495
3496 return 0;
3497 }
3498
3499 void unit_unwatch_bus_name(Unit *u, const char *name) {
3500 assert(u);
3501 assert(name);
3502
3503 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3504 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3505 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3506 }
3507
3508 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
3509 _cleanup_free_ char *e = NULL;
3510 Unit *device;
3511 int r;
3512
3513 assert(u);
3514
3515 /* Adds in links to the device node that this unit is based on */
3516 if (isempty(what))
3517 return 0;
3518
3519 if (!is_device_path(what))
3520 return 0;
3521
3522 /* When device units aren't supported (such as in a container), don't create dependencies on them. */
3523 if (!unit_type_supported(UNIT_DEVICE))
3524 return 0;
3525
3526 r = unit_name_from_path(what, ".device", &e);
3527 if (r < 0)
3528 return r;
3529
3530 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3531 if (r < 0)
3532 return r;
3533
3534 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3535 dep = UNIT_BINDS_TO;
3536
3537 return unit_add_two_dependencies(u, UNIT_AFTER,
3538 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3539 device, true, mask);
3540 }
3541
3542 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask) {
3543 _cleanup_free_ char *escaped = NULL, *target = NULL;
3544 int r;
3545
3546 assert(u);
3547
3548 if (isempty(what))
3549 return 0;
3550
3551 if (!path_startswith(what, "/dev/"))
3552 return 0;
3553
3554 /* If we don't support devices, then also don't bother with blockdev@.target */
3555 if (!unit_type_supported(UNIT_DEVICE))
3556 return 0;
3557
3558 r = unit_name_path_escape(what, &escaped);
3559 if (r < 0)
3560 return r;
3561
3562 r = unit_name_build("blockdev", escaped, ".target", &target);
3563 if (r < 0)
3564 return r;
3565
3566 return unit_add_dependency_by_name(u, UNIT_AFTER, target, true, mask);
3567 }
3568
3569 int unit_coldplug(Unit *u) {
3570 int r = 0, q;
3571 char **i;
3572 Job *uj;
3573
3574 assert(u);
3575
3576 /* Make sure we don't enter a loop, when coldplugging recursively. */
3577 if (u->coldplugged)
3578 return 0;
3579
3580 u->coldplugged = true;
3581
3582 STRV_FOREACH(i, u->deserialized_refs) {
3583 q = bus_unit_track_add_name(u, *i);
3584 if (q < 0 && r >= 0)
3585 r = q;
3586 }
3587 u->deserialized_refs = strv_free(u->deserialized_refs);
3588
3589 if (UNIT_VTABLE(u)->coldplug) {
3590 q = UNIT_VTABLE(u)->coldplug(u);
3591 if (q < 0 && r >= 0)
3592 r = q;
3593 }
3594
3595 uj = u->job ?: u->nop_job;
3596 if (uj) {
3597 q = job_coldplug(uj);
3598 if (q < 0 && r >= 0)
3599 r = q;
3600 }
3601
3602 return r;
3603 }
3604
3605 void unit_catchup(Unit *u) {
3606 assert(u);
3607
3608 if (UNIT_VTABLE(u)->catchup)
3609 UNIT_VTABLE(u)->catchup(u);
3610 }
3611
3612 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
3613 struct stat st;
3614
3615 if (!path)
3616 return false;
3617
3618 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
3619 * are never out-of-date. */
3620 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
3621 return false;
3622
3623 if (stat(path, &st) < 0)
3624 /* What, cannot access this anymore? */
3625 return true;
3626
3627 if (path_masked)
3628 /* For masked files check if they are still so */
3629 return !null_or_empty(&st);
3630 else
3631 /* For non-empty files check the mtime */
3632 return timespec_load(&st.st_mtim) > mtime;
3633
3634 return false;
3635 }
3636
3637 bool unit_need_daemon_reload(Unit *u) {
3638 _cleanup_strv_free_ char **t = NULL;
3639 char **path;
3640
3641 assert(u);
3642
3643 /* For unit files, we allow masking… */
3644 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
3645 u->load_state == UNIT_MASKED))
3646 return true;
3647
3648 /* Source paths should not be masked… */
3649 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
3650 return true;
3651
3652 if (u->load_state == UNIT_LOADED)
3653 (void) unit_find_dropin_paths(u, &t);
3654 if (!strv_equal(u->dropin_paths, t))
3655 return true;
3656
3657 /* … any drop-ins that are masked are simply omitted from the list. */
3658 STRV_FOREACH(path, u->dropin_paths)
3659 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
3660 return true;
3661
3662 return false;
3663 }
3664
3665 void unit_reset_failed(Unit *u) {
3666 assert(u);
3667
3668 if (UNIT_VTABLE(u)->reset_failed)
3669 UNIT_VTABLE(u)->reset_failed(u);
3670
3671 ratelimit_reset(&u->start_ratelimit);
3672 u->start_limit_hit = false;
3673 }
3674
3675 Unit *unit_following(Unit *u) {
3676 assert(u);
3677
3678 if (UNIT_VTABLE(u)->following)
3679 return UNIT_VTABLE(u)->following(u);
3680
3681 return NULL;
3682 }
3683
3684 bool unit_stop_pending(Unit *u) {
3685 assert(u);
3686
3687 /* This call does check the current state of the unit. It's
3688 * hence useful to be called from state change calls of the
3689 * unit itself, where the state isn't updated yet. This is
3690 * different from unit_inactive_or_pending() which checks both
3691 * the current state and for a queued job. */
3692
3693 return unit_has_job_type(u, JOB_STOP);
3694 }
3695
3696 bool unit_inactive_or_pending(Unit *u) {
3697 assert(u);
3698
3699 /* Returns true if the unit is inactive or going down */
3700
3701 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
3702 return true;
3703
3704 if (unit_stop_pending(u))
3705 return true;
3706
3707 return false;
3708 }
3709
3710 bool unit_active_or_pending(Unit *u) {
3711 assert(u);
3712
3713 /* Returns true if the unit is active or going up */
3714
3715 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
3716 return true;
3717
3718 if (u->job &&
3719 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
3720 return true;
3721
3722 return false;
3723 }
3724
3725 bool unit_will_restart_default(Unit *u) {
3726 assert(u);
3727
3728 return unit_has_job_type(u, JOB_START);
3729 }
3730
3731 bool unit_will_restart(Unit *u) {
3732 assert(u);
3733
3734 if (!UNIT_VTABLE(u)->will_restart)
3735 return false;
3736
3737 return UNIT_VTABLE(u)->will_restart(u);
3738 }
3739
3740 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
3741 assert(u);
3742 assert(w >= 0 && w < _KILL_WHO_MAX);
3743 assert(SIGNAL_VALID(signo));
3744
3745 if (!UNIT_VTABLE(u)->kill)
3746 return -EOPNOTSUPP;
3747
3748 return UNIT_VTABLE(u)->kill(u, w, signo, error);
3749 }
3750
3751 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
3752 _cleanup_set_free_ Set *pid_set = NULL;
3753 int r;
3754
3755 pid_set = set_new(NULL);
3756 if (!pid_set)
3757 return NULL;
3758
3759 /* Exclude the main/control pids from being killed via the cgroup */
3760 if (main_pid > 0) {
3761 r = set_put(pid_set, PID_TO_PTR(main_pid));
3762 if (r < 0)
3763 return NULL;
3764 }
3765
3766 if (control_pid > 0) {
3767 r = set_put(pid_set, PID_TO_PTR(control_pid));
3768 if (r < 0)
3769 return NULL;
3770 }
3771
3772 return TAKE_PTR(pid_set);
3773 }
3774
3775 static int kill_common_log(pid_t pid, int signo, void *userdata) {
3776 _cleanup_free_ char *comm = NULL;
3777 Unit *u = userdata;
3778
3779 assert(u);
3780
3781 (void) get_process_comm(pid, &comm);
3782 log_unit_info(u, "Sending signal SIG%s to process " PID_FMT " (%s) on client request.",
3783 signal_to_string(signo), pid, strna(comm));
3784
3785 return 1;
3786 }
3787
3788 int unit_kill_common(
3789 Unit *u,
3790 KillWho who,
3791 int signo,
3792 pid_t main_pid,
3793 pid_t control_pid,
3794 sd_bus_error *error) {
3795
3796 int r = 0;
3797 bool killed = false;
3798
3799 /* This is the common implementation for explicit user-requested killing of unit processes, shared by
3800 * various unit types. Do not confuse with unit_kill_context(), which is what we use when we want to
3801 * stop a service ourselves. */
3802
3803 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
3804 if (main_pid < 0)
3805 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
3806 if (main_pid == 0)
3807 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
3808 }
3809
3810 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
3811 if (control_pid < 0)
3812 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
3813 if (control_pid == 0)
3814 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
3815 }
3816
3817 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
3818 if (control_pid > 0) {
3819 _cleanup_free_ char *comm = NULL;
3820 (void) get_process_comm(control_pid, &comm);
3821
3822 if (kill(control_pid, signo) < 0) {
3823 /* Report this failure both to the logs and to the client */
3824 sd_bus_error_set_errnof(
3825 error, errno,
3826 "Failed to send signal SIG%s to control process " PID_FMT " (%s): %m",
3827 signal_to_string(signo), control_pid, strna(comm));
3828 r = log_unit_warning_errno(
3829 u, errno,
3830 "Failed to send signal SIG%s to control process " PID_FMT " (%s) on client request: %m",
3831 signal_to_string(signo), control_pid, strna(comm));
3832 } else {
3833 log_unit_info(u, "Sent signal SIG%s to control process " PID_FMT " (%s) on client request.",
3834 signal_to_string(signo), control_pid, strna(comm));
3835 killed = true;
3836 }
3837 }
3838
3839 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
3840 if (main_pid > 0) {
3841 _cleanup_free_ char *comm = NULL;
3842 (void) get_process_comm(main_pid, &comm);
3843
3844 if (kill(main_pid, signo) < 0) {
3845 if (r == 0)
3846 sd_bus_error_set_errnof(
3847 error, errno,
3848 "Failed to send signal SIG%s to main process " PID_FMT " (%s): %m",
3849 signal_to_string(signo), main_pid, strna(comm));
3850
3851 r = log_unit_warning_errno(
3852 u, errno,
3853 "Failed to send signal SIG%s to main process " PID_FMT " (%s) on client request: %m",
3854 signal_to_string(signo), main_pid, strna(comm));
3855 } else {
3856 log_unit_info(u, "Sent signal SIG%s to main process " PID_FMT " (%s) on client request.",
3857 signal_to_string(signo), main_pid, strna(comm));
3858 killed = true;
3859 }
3860 }
3861
3862 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
3863 _cleanup_set_free_ Set *pid_set = NULL;
3864 int q;
3865
3866 /* Exclude the main/control pids from being killed via the cgroup */
3867 pid_set = unit_pid_set(main_pid, control_pid);
3868 if (!pid_set)
3869 return log_oom();
3870
3871 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, kill_common_log, u);
3872 if (q < 0) {
3873 if (!IN_SET(q, -ESRCH, -ENOENT)) {
3874 if (r == 0)
3875 sd_bus_error_set_errnof(
3876 error, q,
3877 "Failed to send signal SIG%s to auxiliary processes: %m",
3878 signal_to_string(signo));
3879
3880 r = log_unit_warning_errno(
3881 u, q,
3882 "Failed to send signal SIG%s to auxiliary processes on client request: %m",
3883 signal_to_string(signo));
3884 }
3885 } else
3886 killed = true;
3887 }
3888
3889 /* If the "fail" versions of the operation are requested, then complain if the set of processes we killed is empty */
3890 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL, KILL_MAIN_FAIL))
3891 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No matching processes to kill");
3892
3893 return r;
3894 }
3895
3896 int unit_following_set(Unit *u, Set **s) {
3897 assert(u);
3898 assert(s);
3899
3900 if (UNIT_VTABLE(u)->following_set)
3901 return UNIT_VTABLE(u)->following_set(u, s);
3902
3903 *s = NULL;
3904 return 0;
3905 }
3906
3907 UnitFileState unit_get_unit_file_state(Unit *u) {
3908 int r;
3909
3910 assert(u);
3911
3912 if (u->unit_file_state < 0 && u->fragment_path) {
3913 r = unit_file_get_state(
3914 u->manager->unit_file_scope,
3915 NULL,
3916 u->id,
3917 &u->unit_file_state);
3918 if (r < 0)
3919 u->unit_file_state = UNIT_FILE_BAD;
3920 }
3921
3922 return u->unit_file_state;
3923 }
3924
3925 int unit_get_unit_file_preset(Unit *u) {
3926 assert(u);
3927
3928 if (u->unit_file_preset < 0 && u->fragment_path)
3929 u->unit_file_preset = unit_file_query_preset(
3930 u->manager->unit_file_scope,
3931 NULL,
3932 basename(u->fragment_path),
3933 NULL);
3934
3935 return u->unit_file_preset;
3936 }
3937
3938 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
3939 assert(ref);
3940 assert(source);
3941 assert(target);
3942
3943 if (ref->target)
3944 unit_ref_unset(ref);
3945
3946 ref->source = source;
3947 ref->target = target;
3948 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
3949 return target;
3950 }
3951
3952 void unit_ref_unset(UnitRef *ref) {
3953 assert(ref);
3954
3955 if (!ref->target)
3956 return;
3957
3958 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
3959 * be unreferenced now. */
3960 unit_add_to_gc_queue(ref->target);
3961
3962 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
3963 ref->source = ref->target = NULL;
3964 }
3965
3966 static int user_from_unit_name(Unit *u, char **ret) {
3967
3968 static const uint8_t hash_key[] = {
3969 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
3970 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
3971 };
3972
3973 _cleanup_free_ char *n = NULL;
3974 int r;
3975
3976 r = unit_name_to_prefix(u->id, &n);
3977 if (r < 0)
3978 return r;
3979
3980 if (valid_user_group_name(n, 0)) {
3981 *ret = TAKE_PTR(n);
3982 return 0;
3983 }
3984
3985 /* If we can't use the unit name as a user name, then let's hash it and use that */
3986 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
3987 return -ENOMEM;
3988
3989 return 0;
3990 }
3991
3992 int unit_patch_contexts(Unit *u) {
3993 CGroupContext *cc;
3994 ExecContext *ec;
3995 int r;
3996
3997 assert(u);
3998
3999 /* Patch in the manager defaults into the exec and cgroup
4000 * contexts, _after_ the rest of the settings have been
4001 * initialized */
4002
4003 ec = unit_get_exec_context(u);
4004 if (ec) {
4005 /* This only copies in the ones that need memory */
4006 for (unsigned i = 0; i < _RLIMIT_MAX; i++)
4007 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4008 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4009 if (!ec->rlimit[i])
4010 return -ENOMEM;
4011 }
4012
4013 if (MANAGER_IS_USER(u->manager) &&
4014 !ec->working_directory) {
4015
4016 r = get_home_dir(&ec->working_directory);
4017 if (r < 0)
4018 return r;
4019
4020 /* Allow user services to run, even if the
4021 * home directory is missing */
4022 ec->working_directory_missing_ok = true;
4023 }
4024
4025 if (ec->private_devices)
4026 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4027
4028 if (ec->protect_kernel_modules)
4029 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4030
4031 if (ec->protect_kernel_logs)
4032 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4033
4034 if (ec->protect_clock)
4035 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_SYS_TIME) | (UINT64_C(1) << CAP_WAKE_ALARM));
4036
4037 if (ec->dynamic_user) {
4038 if (!ec->user) {
4039 r = user_from_unit_name(u, &ec->user);
4040 if (r < 0)
4041 return r;
4042 }
4043
4044 if (!ec->group) {
4045 ec->group = strdup(ec->user);
4046 if (!ec->group)
4047 return -ENOMEM;
4048 }
4049
4050 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4051 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4052 * sandbox. */
4053
4054 ec->private_tmp = true;
4055 ec->remove_ipc = true;
4056 ec->protect_system = PROTECT_SYSTEM_STRICT;
4057 if (ec->protect_home == PROTECT_HOME_NO)
4058 ec->protect_home = PROTECT_HOME_READ_ONLY;
4059
4060 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4061 * them. */
4062 ec->no_new_privileges = true;
4063 ec->restrict_suid_sgid = true;
4064 }
4065 }
4066
4067 cc = unit_get_cgroup_context(u);
4068 if (cc && ec) {
4069
4070 if (ec->private_devices &&
4071 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4072 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4073
4074 if ((ec->root_image || !LIST_IS_EMPTY(ec->mount_images)) &&
4075 (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow)) {
4076 const char *p;
4077
4078 /* When RootImage= or MountImages= is specified, the following devices are touched. */
4079 FOREACH_STRING(p, "/dev/loop-control", "/dev/mapper/control") {
4080 r = cgroup_add_device_allow(cc, p, "rw");
4081 if (r < 0)
4082 return r;
4083 }
4084 FOREACH_STRING(p, "block-loop", "block-blkext", "block-device-mapper") {
4085 r = cgroup_add_device_allow(cc, p, "rwm");
4086 if (r < 0)
4087 return r;
4088 }
4089
4090 /* Make sure "block-loop" can be resolved, i.e. make sure "loop" shows up in /proc/devices.
4091 * Same for mapper and verity. */
4092 FOREACH_STRING(p, "modprobe@loop.service", "modprobe@dm_mod.service", "modprobe@dm_verity.service") {
4093 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, p, true, UNIT_DEPENDENCY_FILE);
4094 if (r < 0)
4095 return r;
4096 }
4097 }
4098
4099 if (ec->protect_clock) {
4100 r = cgroup_add_device_allow(cc, "char-rtc", "r");
4101 if (r < 0)
4102 return r;
4103 }
4104 }
4105
4106 return 0;
4107 }
4108
4109 ExecContext *unit_get_exec_context(const Unit *u) {
4110 size_t offset;
4111 assert(u);
4112
4113 if (u->type < 0)
4114 return NULL;
4115
4116 offset = UNIT_VTABLE(u)->exec_context_offset;
4117 if (offset <= 0)
4118 return NULL;
4119
4120 return (ExecContext*) ((uint8_t*) u + offset);
4121 }
4122
4123 KillContext *unit_get_kill_context(Unit *u) {
4124 size_t offset;
4125 assert(u);
4126
4127 if (u->type < 0)
4128 return NULL;
4129
4130 offset = UNIT_VTABLE(u)->kill_context_offset;
4131 if (offset <= 0)
4132 return NULL;
4133
4134 return (KillContext*) ((uint8_t*) u + offset);
4135 }
4136
4137 CGroupContext *unit_get_cgroup_context(Unit *u) {
4138 size_t offset;
4139
4140 if (u->type < 0)
4141 return NULL;
4142
4143 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4144 if (offset <= 0)
4145 return NULL;
4146
4147 return (CGroupContext*) ((uint8_t*) u + offset);
4148 }
4149
4150 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4151 size_t offset;
4152
4153 if (u->type < 0)
4154 return NULL;
4155
4156 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4157 if (offset <= 0)
4158 return NULL;
4159
4160 return *(ExecRuntime**) ((uint8_t*) u + offset);
4161 }
4162
4163 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4164 assert(u);
4165
4166 if (UNIT_WRITE_FLAGS_NOOP(flags))
4167 return NULL;
4168
4169 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4170 return u->manager->lookup_paths.transient;
4171
4172 if (flags & UNIT_PERSISTENT)
4173 return u->manager->lookup_paths.persistent_control;
4174
4175 if (flags & UNIT_RUNTIME)
4176 return u->manager->lookup_paths.runtime_control;
4177
4178 return NULL;
4179 }
4180
4181 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4182 char *ret = NULL;
4183
4184 if (!s)
4185 return NULL;
4186
4187 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4188 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4189 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4190 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4191 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4192 * allocations. */
4193
4194 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4195 ret = specifier_escape(s);
4196 if (!ret)
4197 return NULL;
4198
4199 s = ret;
4200 }
4201
4202 if (flags & UNIT_ESCAPE_C) {
4203 char *a;
4204
4205 a = cescape(s);
4206 free(ret);
4207 if (!a)
4208 return NULL;
4209
4210 ret = a;
4211 }
4212
4213 if (buf) {
4214 *buf = ret;
4215 return ret ?: (char*) s;
4216 }
4217
4218 return ret ?: strdup(s);
4219 }
4220
4221 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4222 _cleanup_free_ char *result = NULL;
4223 size_t n = 0;
4224 char **i;
4225
4226 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4227 * way suitable for ExecStart= stanzas */
4228
4229 STRV_FOREACH(i, l) {
4230 _cleanup_free_ char *buf = NULL;
4231 const char *p;
4232 size_t a;
4233 char *q;
4234
4235 p = unit_escape_setting(*i, flags, &buf);
4236 if (!p)
4237 return NULL;
4238
4239 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4240 if (!GREEDY_REALLOC(result, n + a + 1))
4241 return NULL;
4242
4243 q = result + n;
4244 if (n > 0)
4245 *(q++) = ' ';
4246
4247 *(q++) = '"';
4248 q = stpcpy(q, p);
4249 *(q++) = '"';
4250
4251 n += a;
4252 }
4253
4254 if (!GREEDY_REALLOC(result, n + 1))
4255 return NULL;
4256
4257 result[n] = 0;
4258
4259 return TAKE_PTR(result);
4260 }
4261
4262 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4263 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4264 const char *dir, *wrapped;
4265 int r;
4266
4267 assert(u);
4268 assert(name);
4269 assert(data);
4270
4271 if (UNIT_WRITE_FLAGS_NOOP(flags))
4272 return 0;
4273
4274 data = unit_escape_setting(data, flags, &escaped);
4275 if (!data)
4276 return -ENOMEM;
4277
4278 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4279 * previous section header is the same */
4280
4281 if (flags & UNIT_PRIVATE) {
4282 if (!UNIT_VTABLE(u)->private_section)
4283 return -EINVAL;
4284
4285 if (!u->transient_file || u->last_section_private < 0)
4286 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4287 else if (u->last_section_private == 0)
4288 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4289 } else {
4290 if (!u->transient_file || u->last_section_private < 0)
4291 data = strjoina("[Unit]\n", data);
4292 else if (u->last_section_private > 0)
4293 data = strjoina("\n[Unit]\n", data);
4294 }
4295
4296 if (u->transient_file) {
4297 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4298 * write to the transient unit file. */
4299 fputs(data, u->transient_file);
4300
4301 if (!endswith(data, "\n"))
4302 fputc('\n', u->transient_file);
4303
4304 /* Remember which section we wrote this entry to */
4305 u->last_section_private = !!(flags & UNIT_PRIVATE);
4306 return 0;
4307 }
4308
4309 dir = unit_drop_in_dir(u, flags);
4310 if (!dir)
4311 return -EINVAL;
4312
4313 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4314 "# or an equivalent operation. Do not edit.\n",
4315 data,
4316 "\n");
4317
4318 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4319 if (r < 0)
4320 return r;
4321
4322 (void) mkdir_p_label(p, 0755);
4323
4324 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4325 * recreate the cache after every drop-in we write. */
4326 if (u->manager->unit_path_cache) {
4327 r = set_put_strdup(&u->manager->unit_path_cache, p);
4328 if (r < 0)
4329 return r;
4330 }
4331
4332 r = write_string_file_atomic_label(q, wrapped);
4333 if (r < 0)
4334 return r;
4335
4336 r = strv_push(&u->dropin_paths, q);
4337 if (r < 0)
4338 return r;
4339 q = NULL;
4340
4341 strv_uniq(u->dropin_paths);
4342
4343 u->dropin_mtime = now(CLOCK_REALTIME);
4344
4345 return 0;
4346 }
4347
4348 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4349 _cleanup_free_ char *p = NULL;
4350 va_list ap;
4351 int r;
4352
4353 assert(u);
4354 assert(name);
4355 assert(format);
4356
4357 if (UNIT_WRITE_FLAGS_NOOP(flags))
4358 return 0;
4359
4360 va_start(ap, format);
4361 r = vasprintf(&p, format, ap);
4362 va_end(ap);
4363
4364 if (r < 0)
4365 return -ENOMEM;
4366
4367 return unit_write_setting(u, flags, name, p);
4368 }
4369
4370 int unit_make_transient(Unit *u) {
4371 _cleanup_free_ char *path = NULL;
4372 FILE *f;
4373
4374 assert(u);
4375
4376 if (!UNIT_VTABLE(u)->can_transient)
4377 return -EOPNOTSUPP;
4378
4379 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4380
4381 path = path_join(u->manager->lookup_paths.transient, u->id);
4382 if (!path)
4383 return -ENOMEM;
4384
4385 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4386 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4387
4388 RUN_WITH_UMASK(0022) {
4389 f = fopen(path, "we");
4390 if (!f)
4391 return -errno;
4392 }
4393
4394 safe_fclose(u->transient_file);
4395 u->transient_file = f;
4396
4397 free_and_replace(u->fragment_path, path);
4398
4399 u->source_path = mfree(u->source_path);
4400 u->dropin_paths = strv_free(u->dropin_paths);
4401 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4402
4403 u->load_state = UNIT_STUB;
4404 u->load_error = 0;
4405 u->transient = true;
4406
4407 unit_add_to_dbus_queue(u);
4408 unit_add_to_gc_queue(u);
4409
4410 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4411 u->transient_file);
4412
4413 return 0;
4414 }
4415
4416 static int log_kill(pid_t pid, int sig, void *userdata) {
4417 _cleanup_free_ char *comm = NULL;
4418
4419 (void) get_process_comm(pid, &comm);
4420
4421 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4422 only, like for example systemd's own PAM stub process. */
4423 if (comm && comm[0] == '(')
4424 return 0;
4425
4426 log_unit_notice(userdata,
4427 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4428 pid,
4429 strna(comm),
4430 signal_to_string(sig));
4431
4432 return 1;
4433 }
4434
4435 static int operation_to_signal(const KillContext *c, KillOperation k, bool *noteworthy) {
4436 assert(c);
4437
4438 switch (k) {
4439
4440 case KILL_TERMINATE:
4441 case KILL_TERMINATE_AND_LOG:
4442 *noteworthy = false;
4443 return c->kill_signal;
4444
4445 case KILL_RESTART:
4446 *noteworthy = false;
4447 return restart_kill_signal(c);
4448
4449 case KILL_KILL:
4450 *noteworthy = true;
4451 return c->final_kill_signal;
4452
4453 case KILL_WATCHDOG:
4454 *noteworthy = true;
4455 return c->watchdog_signal;
4456
4457 default:
4458 assert_not_reached("KillOperation unknown");
4459 }
4460 }
4461
4462 int unit_kill_context(
4463 Unit *u,
4464 KillContext *c,
4465 KillOperation k,
4466 pid_t main_pid,
4467 pid_t control_pid,
4468 bool main_pid_alien) {
4469
4470 bool wait_for_exit = false, send_sighup;
4471 cg_kill_log_func_t log_func = NULL;
4472 int sig, r;
4473
4474 assert(u);
4475 assert(c);
4476
4477 /* Kill the processes belonging to this unit, in preparation for shutting the unit down. Returns > 0
4478 * if we killed something worth waiting for, 0 otherwise. Do not confuse with unit_kill_common()
4479 * which is used for user-requested killing of unit processes. */
4480
4481 if (c->kill_mode == KILL_NONE)
4482 return 0;
4483
4484 bool noteworthy;
4485 sig = operation_to_signal(c, k, &noteworthy);
4486 if (noteworthy)
4487 log_func = log_kill;
4488
4489 send_sighup =
4490 c->send_sighup &&
4491 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4492 sig != SIGHUP;
4493
4494 if (main_pid > 0) {
4495 if (log_func)
4496 log_func(main_pid, sig, u);
4497
4498 r = kill_and_sigcont(main_pid, sig);
4499 if (r < 0 && r != -ESRCH) {
4500 _cleanup_free_ char *comm = NULL;
4501 (void) get_process_comm(main_pid, &comm);
4502
4503 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
4504 } else {
4505 if (!main_pid_alien)
4506 wait_for_exit = true;
4507
4508 if (r != -ESRCH && send_sighup)
4509 (void) kill(main_pid, SIGHUP);
4510 }
4511 }
4512
4513 if (control_pid > 0) {
4514 if (log_func)
4515 log_func(control_pid, sig, u);
4516
4517 r = kill_and_sigcont(control_pid, sig);
4518 if (r < 0 && r != -ESRCH) {
4519 _cleanup_free_ char *comm = NULL;
4520 (void) get_process_comm(control_pid, &comm);
4521
4522 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
4523 } else {
4524 wait_for_exit = true;
4525
4526 if (r != -ESRCH && send_sighup)
4527 (void) kill(control_pid, SIGHUP);
4528 }
4529 }
4530
4531 if (u->cgroup_path &&
4532 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4533 _cleanup_set_free_ Set *pid_set = NULL;
4534
4535 /* Exclude the main/control pids from being killed via the cgroup */
4536 pid_set = unit_pid_set(main_pid, control_pid);
4537 if (!pid_set)
4538 return -ENOMEM;
4539
4540 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4541 sig,
4542 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4543 pid_set,
4544 log_func, u);
4545 if (r < 0) {
4546 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4547 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
4548
4549 } else if (r > 0) {
4550
4551 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4552 * we are running in a container or if this is a delegation unit, simply because cgroup
4553 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4554 * of containers it can be confused easily by left-over directories in the cgroup — which
4555 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4556 * there we get proper events. Hence rely on them. */
4557
4558 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4559 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4560 wait_for_exit = true;
4561
4562 if (send_sighup) {
4563 set_free(pid_set);
4564
4565 pid_set = unit_pid_set(main_pid, control_pid);
4566 if (!pid_set)
4567 return -ENOMEM;
4568
4569 (void) cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4570 SIGHUP,
4571 CGROUP_IGNORE_SELF,
4572 pid_set,
4573 NULL, NULL);
4574 }
4575 }
4576 }
4577
4578 return wait_for_exit;
4579 }
4580
4581 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4582 int r;
4583
4584 assert(u);
4585 assert(path);
4586
4587 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these
4588 * paths in the unit (from the path to the UnitDependencyInfo structure indicating how to the
4589 * dependency came to be). However, we build a prefix table for all possible prefixes so that new
4590 * appearing mount units can easily determine which units to make themselves a dependency of. */
4591
4592 if (!path_is_absolute(path))
4593 return -EINVAL;
4594
4595 if (hashmap_contains(u->requires_mounts_for, path)) /* Exit quickly if the path is already covered. */
4596 return 0;
4597
4598 _cleanup_free_ char *p = strdup(path);
4599 if (!p)
4600 return -ENOMEM;
4601
4602 /* Use the canonical form of the path as the stored key. We call path_is_normalized()
4603 * only after simplification, since path_is_normalized() rejects paths with '.'.
4604 * path_is_normalized() also verifies that the path fits in PATH_MAX. */
4605 path = path_simplify(p);
4606
4607 if (!path_is_normalized(path))
4608 return -EPERM;
4609
4610 UnitDependencyInfo di = {
4611 .origin_mask = mask
4612 };
4613
4614 r = hashmap_ensure_put(&u->requires_mounts_for, &path_hash_ops, p, di.data);
4615 if (r < 0)
4616 return r;
4617 assert(r > 0);
4618 TAKE_PTR(p); /* path remains a valid pointer to the string stored in the hashmap */
4619
4620 char prefix[strlen(path) + 1];
4621 PATH_FOREACH_PREFIX_MORE(prefix, path) {
4622 Set *x;
4623
4624 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
4625 if (!x) {
4626 _cleanup_free_ char *q = NULL;
4627
4628 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
4629 if (r < 0)
4630 return r;
4631
4632 q = strdup(prefix);
4633 if (!q)
4634 return -ENOMEM;
4635
4636 x = set_new(NULL);
4637 if (!x)
4638 return -ENOMEM;
4639
4640 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
4641 if (r < 0) {
4642 set_free(x);
4643 return r;
4644 }
4645 q = NULL;
4646 }
4647
4648 r = set_put(x, u);
4649 if (r < 0)
4650 return r;
4651 }
4652
4653 return 0;
4654 }
4655
4656 int unit_setup_exec_runtime(Unit *u) {
4657 ExecRuntime **rt;
4658 size_t offset;
4659 Unit *other;
4660 int r;
4661
4662 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4663 assert(offset > 0);
4664
4665 /* Check if there already is an ExecRuntime for this unit? */
4666 rt = (ExecRuntime**) ((uint8_t*) u + offset);
4667 if (*rt)
4668 return 0;
4669
4670 /* Try to get it from somebody else */
4671 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_JOINS_NAMESPACE_OF) {
4672 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
4673 if (r == 1)
4674 return 1;
4675 }
4676
4677 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
4678 }
4679
4680 int unit_setup_dynamic_creds(Unit *u) {
4681 ExecContext *ec;
4682 DynamicCreds *dcreds;
4683 size_t offset;
4684
4685 assert(u);
4686
4687 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
4688 assert(offset > 0);
4689 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
4690
4691 ec = unit_get_exec_context(u);
4692 assert(ec);
4693
4694 if (!ec->dynamic_user)
4695 return 0;
4696
4697 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
4698 }
4699
4700 bool unit_type_supported(UnitType t) {
4701 if (_unlikely_(t < 0))
4702 return false;
4703 if (_unlikely_(t >= _UNIT_TYPE_MAX))
4704 return false;
4705
4706 if (!unit_vtable[t]->supported)
4707 return true;
4708
4709 return unit_vtable[t]->supported();
4710 }
4711
4712 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
4713 int r;
4714
4715 assert(u);
4716 assert(where);
4717
4718 if (!unit_log_level_test(u, LOG_NOTICE))
4719 return;
4720
4721 r = dir_is_empty(where);
4722 if (r > 0 || r == -ENOTDIR)
4723 return;
4724 if (r < 0) {
4725 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
4726 return;
4727 }
4728
4729 log_unit_struct(u, LOG_NOTICE,
4730 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4731 LOG_UNIT_INVOCATION_ID(u),
4732 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
4733 "WHERE=%s", where);
4734 }
4735
4736 int unit_fail_if_noncanonical(Unit *u, const char* where) {
4737 _cleanup_free_ char *canonical_where = NULL;
4738 int r;
4739
4740 assert(u);
4741 assert(where);
4742
4743 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
4744 if (r < 0) {
4745 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
4746 return 0;
4747 }
4748
4749 /* We will happily ignore a trailing slash (or any redundant slashes) */
4750 if (path_equal(where, canonical_where))
4751 return 0;
4752
4753 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
4754 log_unit_struct(u, LOG_ERR,
4755 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4756 LOG_UNIT_INVOCATION_ID(u),
4757 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
4758 "WHERE=%s", where);
4759
4760 return -ELOOP;
4761 }
4762
4763 bool unit_is_pristine(Unit *u) {
4764 assert(u);
4765
4766 /* Check if the unit already exists or is already around,
4767 * in a number of different ways. Note that to cater for unit
4768 * types such as slice, we are generally fine with units that
4769 * are marked UNIT_LOADED even though nothing was actually
4770 * loaded, as those unit types don't require a file on disk. */
4771
4772 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
4773 u->fragment_path ||
4774 u->source_path ||
4775 !strv_isempty(u->dropin_paths) ||
4776 u->job ||
4777 u->merged_into);
4778 }
4779
4780 pid_t unit_control_pid(Unit *u) {
4781 assert(u);
4782
4783 if (UNIT_VTABLE(u)->control_pid)
4784 return UNIT_VTABLE(u)->control_pid(u);
4785
4786 return 0;
4787 }
4788
4789 pid_t unit_main_pid(Unit *u) {
4790 assert(u);
4791
4792 if (UNIT_VTABLE(u)->main_pid)
4793 return UNIT_VTABLE(u)->main_pid(u);
4794
4795 return 0;
4796 }
4797
4798 static void unit_unref_uid_internal(
4799 Unit *u,
4800 uid_t *ref_uid,
4801 bool destroy_now,
4802 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
4803
4804 assert(u);
4805 assert(ref_uid);
4806 assert(_manager_unref_uid);
4807
4808 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
4809 * gid_t are actually the same time, with the same validity rules.
4810 *
4811 * Drops a reference to UID/GID from a unit. */
4812
4813 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4814 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4815
4816 if (!uid_is_valid(*ref_uid))
4817 return;
4818
4819 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
4820 *ref_uid = UID_INVALID;
4821 }
4822
4823 static void unit_unref_uid(Unit *u, bool destroy_now) {
4824 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
4825 }
4826
4827 static void unit_unref_gid(Unit *u, bool destroy_now) {
4828 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
4829 }
4830
4831 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
4832 assert(u);
4833
4834 unit_unref_uid(u, destroy_now);
4835 unit_unref_gid(u, destroy_now);
4836 }
4837
4838 static int unit_ref_uid_internal(
4839 Unit *u,
4840 uid_t *ref_uid,
4841 uid_t uid,
4842 bool clean_ipc,
4843 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
4844
4845 int r;
4846
4847 assert(u);
4848 assert(ref_uid);
4849 assert(uid_is_valid(uid));
4850 assert(_manager_ref_uid);
4851
4852 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
4853 * are actually the same type, and have the same validity rules.
4854 *
4855 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
4856 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
4857 * drops to zero. */
4858
4859 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4860 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4861
4862 if (*ref_uid == uid)
4863 return 0;
4864
4865 if (uid_is_valid(*ref_uid)) /* Already set? */
4866 return -EBUSY;
4867
4868 r = _manager_ref_uid(u->manager, uid, clean_ipc);
4869 if (r < 0)
4870 return r;
4871
4872 *ref_uid = uid;
4873 return 1;
4874 }
4875
4876 static int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
4877 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
4878 }
4879
4880 static int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
4881 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
4882 }
4883
4884 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
4885 int r = 0, q = 0;
4886
4887 assert(u);
4888
4889 /* Reference both a UID and a GID in one go. Either references both, or neither. */
4890
4891 if (uid_is_valid(uid)) {
4892 r = unit_ref_uid(u, uid, clean_ipc);
4893 if (r < 0)
4894 return r;
4895 }
4896
4897 if (gid_is_valid(gid)) {
4898 q = unit_ref_gid(u, gid, clean_ipc);
4899 if (q < 0) {
4900 if (r > 0)
4901 unit_unref_uid(u, false);
4902
4903 return q;
4904 }
4905 }
4906
4907 return r > 0 || q > 0;
4908 }
4909
4910 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
4911 ExecContext *c;
4912 int r;
4913
4914 assert(u);
4915
4916 c = unit_get_exec_context(u);
4917
4918 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
4919 if (r < 0)
4920 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
4921
4922 return r;
4923 }
4924
4925 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
4926 int r;
4927
4928 assert(u);
4929
4930 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
4931 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
4932 * objects when no service references the UID/GID anymore. */
4933
4934 r = unit_ref_uid_gid(u, uid, gid);
4935 if (r > 0)
4936 unit_add_to_dbus_queue(u);
4937 }
4938
4939 int unit_acquire_invocation_id(Unit *u) {
4940 sd_id128_t id;
4941 int r;
4942
4943 assert(u);
4944
4945 r = sd_id128_randomize(&id);
4946 if (r < 0)
4947 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
4948
4949 r = unit_set_invocation_id(u, id);
4950 if (r < 0)
4951 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
4952
4953 unit_add_to_dbus_queue(u);
4954 return 0;
4955 }
4956
4957 int unit_set_exec_params(Unit *u, ExecParameters *p) {
4958 int r;
4959
4960 assert(u);
4961 assert(p);
4962
4963 /* Copy parameters from manager */
4964 r = manager_get_effective_environment(u->manager, &p->environment);
4965 if (r < 0)
4966 return r;
4967
4968 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
4969 p->cgroup_supported = u->manager->cgroup_supported;
4970 p->prefix = u->manager->prefix;
4971 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
4972
4973 /* Copy parameters from unit */
4974 p->cgroup_path = u->cgroup_path;
4975 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
4976
4977 p->received_credentials = u->manager->received_credentials;
4978
4979 return 0;
4980 }
4981
4982 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
4983 int r;
4984
4985 assert(u);
4986 assert(ret);
4987
4988 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
4989 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
4990
4991 (void) unit_realize_cgroup(u);
4992
4993 r = safe_fork(name, FORK_REOPEN_LOG, ret);
4994 if (r != 0)
4995 return r;
4996
4997 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE);
4998 (void) ignore_signals(SIGPIPE);
4999
5000 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5001
5002 if (u->cgroup_path) {
5003 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5004 if (r < 0) {
5005 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5006 _exit(EXIT_CGROUP);
5007 }
5008 }
5009
5010 return 0;
5011 }
5012
5013 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid) {
5014 pid_t pid;
5015 int r;
5016
5017 assert(u);
5018 assert(ret_pid);
5019
5020 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5021 if (r < 0)
5022 return r;
5023 if (r == 0) {
5024 int ret = EXIT_SUCCESS;
5025 char **i;
5026
5027 STRV_FOREACH(i, paths) {
5028 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5029 if (r < 0) {
5030 log_error_errno(r, "Failed to remove '%s': %m", *i);
5031 ret = EXIT_FAILURE;
5032 }
5033 }
5034
5035 _exit(ret);
5036 }
5037
5038 r = unit_watch_pid(u, pid, true);
5039 if (r < 0)
5040 return r;
5041
5042 *ret_pid = pid;
5043 return 0;
5044 }
5045
5046 static void unit_update_dependency_mask(Hashmap *deps, Unit *other, UnitDependencyInfo di) {
5047 assert(deps);
5048 assert(other);
5049
5050 if (di.origin_mask == 0 && di.destination_mask == 0)
5051 /* No bit set anymore, let's drop the whole entry */
5052 assert_se(hashmap_remove(deps, other));
5053 else
5054 /* Mask was reduced, let's update the entry */
5055 assert_se(hashmap_update(deps, other, di.data) == 0);
5056 }
5057
5058 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5059 Hashmap *deps;
5060 assert(u);
5061
5062 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5063
5064 if (mask == 0)
5065 return;
5066
5067 HASHMAP_FOREACH(deps, u->dependencies) {
5068 bool done;
5069
5070 do {
5071 UnitDependencyInfo di;
5072 Unit *other;
5073
5074 done = true;
5075
5076 HASHMAP_FOREACH_KEY(di.data, other, deps) {
5077 Hashmap *other_deps;
5078
5079 if (FLAGS_SET(~mask, di.origin_mask))
5080 continue;
5081
5082 di.origin_mask &= ~mask;
5083 unit_update_dependency_mask(deps, other, di);
5084
5085 /* We updated the dependency from our unit to the other unit now. But most
5086 * dependencies imply a reverse dependency. Hence, let's delete that one
5087 * too. For that we go through all dependency types on the other unit and
5088 * delete all those which point to us and have the right mask set. */
5089
5090 HASHMAP_FOREACH(other_deps, other->dependencies) {
5091 UnitDependencyInfo dj;
5092
5093 dj.data = hashmap_get(other_deps, u);
5094 if (FLAGS_SET(~mask, dj.destination_mask))
5095 continue;
5096
5097 dj.destination_mask &= ~mask;
5098 unit_update_dependency_mask(other_deps, u, dj);
5099 }
5100
5101 unit_add_to_gc_queue(other);
5102
5103 done = false;
5104 break;
5105 }
5106
5107 } while (!done);
5108 }
5109 }
5110
5111 static int unit_get_invocation_path(Unit *u, char **ret) {
5112 char *p;
5113 int r;
5114
5115 assert(u);
5116 assert(ret);
5117
5118 if (MANAGER_IS_SYSTEM(u->manager))
5119 p = strjoin("/run/systemd/units/invocation:", u->id);
5120 else {
5121 _cleanup_free_ char *user_path = NULL;
5122 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5123 if (r < 0)
5124 return r;
5125 p = strjoin(user_path, u->id);
5126 }
5127
5128 if (!p)
5129 return -ENOMEM;
5130
5131 *ret = p;
5132 return 0;
5133 }
5134
5135 static int unit_export_invocation_id(Unit *u) {
5136 _cleanup_free_ char *p = NULL;
5137 int r;
5138
5139 assert(u);
5140
5141 if (u->exported_invocation_id)
5142 return 0;
5143
5144 if (sd_id128_is_null(u->invocation_id))
5145 return 0;
5146
5147 r = unit_get_invocation_path(u, &p);
5148 if (r < 0)
5149 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5150
5151 r = symlink_atomic_label(u->invocation_id_string, p);
5152 if (r < 0)
5153 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5154
5155 u->exported_invocation_id = true;
5156 return 0;
5157 }
5158
5159 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5160 const char *p;
5161 char buf[2];
5162 int r;
5163
5164 assert(u);
5165 assert(c);
5166
5167 if (u->exported_log_level_max)
5168 return 0;
5169
5170 if (c->log_level_max < 0)
5171 return 0;
5172
5173 assert(c->log_level_max <= 7);
5174
5175 buf[0] = '0' + c->log_level_max;
5176 buf[1] = 0;
5177
5178 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5179 r = symlink_atomic(buf, p);
5180 if (r < 0)
5181 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5182
5183 u->exported_log_level_max = true;
5184 return 0;
5185 }
5186
5187 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5188 _cleanup_close_ int fd = -1;
5189 struct iovec *iovec;
5190 const char *p;
5191 char *pattern;
5192 le64_t *sizes;
5193 ssize_t n;
5194 int r;
5195
5196 if (u->exported_log_extra_fields)
5197 return 0;
5198
5199 if (c->n_log_extra_fields <= 0)
5200 return 0;
5201
5202 sizes = newa(le64_t, c->n_log_extra_fields);
5203 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5204
5205 for (size_t i = 0; i < c->n_log_extra_fields; i++) {
5206 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5207
5208 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5209 iovec[i*2+1] = c->log_extra_fields[i];
5210 }
5211
5212 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5213 pattern = strjoina(p, ".XXXXXX");
5214
5215 fd = mkostemp_safe(pattern);
5216 if (fd < 0)
5217 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5218
5219 n = writev(fd, iovec, c->n_log_extra_fields*2);
5220 if (n < 0) {
5221 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5222 goto fail;
5223 }
5224
5225 (void) fchmod(fd, 0644);
5226
5227 if (rename(pattern, p) < 0) {
5228 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5229 goto fail;
5230 }
5231
5232 u->exported_log_extra_fields = true;
5233 return 0;
5234
5235 fail:
5236 (void) unlink(pattern);
5237 return r;
5238 }
5239
5240 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5241 _cleanup_free_ char *buf = NULL;
5242 const char *p;
5243 int r;
5244
5245 assert(u);
5246 assert(c);
5247
5248 if (u->exported_log_ratelimit_interval)
5249 return 0;
5250
5251 if (c->log_ratelimit_interval_usec == 0)
5252 return 0;
5253
5254 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5255
5256 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5257 return log_oom();
5258
5259 r = symlink_atomic(buf, p);
5260 if (r < 0)
5261 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5262
5263 u->exported_log_ratelimit_interval = true;
5264 return 0;
5265 }
5266
5267 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5268 _cleanup_free_ char *buf = NULL;
5269 const char *p;
5270 int r;
5271
5272 assert(u);
5273 assert(c);
5274
5275 if (u->exported_log_ratelimit_burst)
5276 return 0;
5277
5278 if (c->log_ratelimit_burst == 0)
5279 return 0;
5280
5281 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5282
5283 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5284 return log_oom();
5285
5286 r = symlink_atomic(buf, p);
5287 if (r < 0)
5288 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5289
5290 u->exported_log_ratelimit_burst = true;
5291 return 0;
5292 }
5293
5294 void unit_export_state_files(Unit *u) {
5295 const ExecContext *c;
5296
5297 assert(u);
5298
5299 if (!u->id)
5300 return;
5301
5302 if (MANAGER_IS_TEST_RUN(u->manager))
5303 return;
5304
5305 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5306 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5307 * the IPC system itself and PID 1 also log to the journal.
5308 *
5309 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5310 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5311 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5312 * namespace at least.
5313 *
5314 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5315 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5316 * them with one. */
5317
5318 (void) unit_export_invocation_id(u);
5319
5320 if (!MANAGER_IS_SYSTEM(u->manager))
5321 return;
5322
5323 c = unit_get_exec_context(u);
5324 if (c) {
5325 (void) unit_export_log_level_max(u, c);
5326 (void) unit_export_log_extra_fields(u, c);
5327 (void) unit_export_log_ratelimit_interval(u, c);
5328 (void) unit_export_log_ratelimit_burst(u, c);
5329 }
5330 }
5331
5332 void unit_unlink_state_files(Unit *u) {
5333 const char *p;
5334
5335 assert(u);
5336
5337 if (!u->id)
5338 return;
5339
5340 /* Undoes the effect of unit_export_state() */
5341
5342 if (u->exported_invocation_id) {
5343 _cleanup_free_ char *invocation_path = NULL;
5344 int r = unit_get_invocation_path(u, &invocation_path);
5345 if (r >= 0) {
5346 (void) unlink(invocation_path);
5347 u->exported_invocation_id = false;
5348 }
5349 }
5350
5351 if (!MANAGER_IS_SYSTEM(u->manager))
5352 return;
5353
5354 if (u->exported_log_level_max) {
5355 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5356 (void) unlink(p);
5357
5358 u->exported_log_level_max = false;
5359 }
5360
5361 if (u->exported_log_extra_fields) {
5362 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5363 (void) unlink(p);
5364
5365 u->exported_log_extra_fields = false;
5366 }
5367
5368 if (u->exported_log_ratelimit_interval) {
5369 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5370 (void) unlink(p);
5371
5372 u->exported_log_ratelimit_interval = false;
5373 }
5374
5375 if (u->exported_log_ratelimit_burst) {
5376 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5377 (void) unlink(p);
5378
5379 u->exported_log_ratelimit_burst = false;
5380 }
5381 }
5382
5383 int unit_prepare_exec(Unit *u) {
5384 int r;
5385
5386 assert(u);
5387
5388 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5389 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5390 r = bpf_firewall_load_custom(u);
5391 if (r < 0)
5392 return r;
5393
5394 /* Prepares everything so that we can fork of a process for this unit */
5395
5396 (void) unit_realize_cgroup(u);
5397
5398 if (u->reset_accounting) {
5399 (void) unit_reset_accounting(u);
5400 u->reset_accounting = false;
5401 }
5402
5403 unit_export_state_files(u);
5404
5405 r = unit_setup_exec_runtime(u);
5406 if (r < 0)
5407 return r;
5408
5409 r = unit_setup_dynamic_creds(u);
5410 if (r < 0)
5411 return r;
5412
5413 return 0;
5414 }
5415
5416 static bool ignore_leftover_process(const char *comm) {
5417 return comm && comm[0] == '('; /* Most likely our own helper process (PAM?), ignore */
5418 }
5419
5420 int unit_log_leftover_process_start(pid_t pid, int sig, void *userdata) {
5421 _cleanup_free_ char *comm = NULL;
5422
5423 (void) get_process_comm(pid, &comm);
5424
5425 if (ignore_leftover_process(comm))
5426 return 0;
5427
5428 /* During start we print a warning */
5429
5430 log_unit_warning(userdata,
5431 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5432 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5433 pid, strna(comm));
5434
5435 return 1;
5436 }
5437
5438 int unit_log_leftover_process_stop(pid_t pid, int sig, void *userdata) {
5439 _cleanup_free_ char *comm = NULL;
5440
5441 (void) get_process_comm(pid, &comm);
5442
5443 if (ignore_leftover_process(comm))
5444 return 0;
5445
5446 /* During stop we only print an informational message */
5447
5448 log_unit_info(userdata,
5449 "Unit process " PID_FMT " (%s) remains running after unit stopped.",
5450 pid, strna(comm));
5451
5452 return 1;
5453 }
5454
5455 int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func) {
5456 assert(u);
5457
5458 (void) unit_pick_cgroup_path(u);
5459
5460 if (!u->cgroup_path)
5461 return 0;
5462
5463 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_func, u);
5464 }
5465
5466 bool unit_needs_console(Unit *u) {
5467 ExecContext *ec;
5468 UnitActiveState state;
5469
5470 assert(u);
5471
5472 state = unit_active_state(u);
5473
5474 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5475 return false;
5476
5477 if (UNIT_VTABLE(u)->needs_console)
5478 return UNIT_VTABLE(u)->needs_console(u);
5479
5480 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5481 ec = unit_get_exec_context(u);
5482 if (!ec)
5483 return false;
5484
5485 return exec_context_may_touch_console(ec);
5486 }
5487
5488 const char *unit_label_path(const Unit *u) {
5489 const char *p;
5490
5491 assert(u);
5492
5493 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
5494 * when validating access checks. */
5495
5496 p = u->source_path ?: u->fragment_path;
5497 if (!p)
5498 return NULL;
5499
5500 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
5501 if (null_or_empty_path(p) > 0)
5502 return NULL;
5503
5504 return p;
5505 }
5506
5507 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
5508 int r;
5509
5510 assert(u);
5511
5512 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5513 * and not a kernel thread either */
5514
5515 /* First, a simple range check */
5516 if (!pid_is_valid(pid))
5517 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
5518
5519 /* Some extra safety check */
5520 if (pid == 1 || pid == getpid_cached())
5521 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
5522
5523 /* Don't even begin to bother with kernel threads */
5524 r = is_kernel_thread(pid);
5525 if (r == -ESRCH)
5526 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
5527 if (r < 0)
5528 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
5529 if (r > 0)
5530 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
5531
5532 return 0;
5533 }
5534
5535 void unit_log_success(Unit *u) {
5536 assert(u);
5537
5538 /* Let's show message "Deactivated successfully" in debug mode (when manager is user) rather than in info mode.
5539 * This message has low information value for regular users and it might be a bit overwhelming on a system with
5540 * a lot of devices. */
5541 log_unit_struct(u,
5542 MANAGER_IS_USER(u->manager) ? LOG_DEBUG : LOG_INFO,
5543 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5544 LOG_UNIT_INVOCATION_ID(u),
5545 LOG_UNIT_MESSAGE(u, "Deactivated successfully."));
5546 }
5547
5548 void unit_log_failure(Unit *u, const char *result) {
5549 assert(u);
5550 assert(result);
5551
5552 log_unit_struct(u, LOG_WARNING,
5553 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5554 LOG_UNIT_INVOCATION_ID(u),
5555 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5556 "UNIT_RESULT=%s", result);
5557 }
5558
5559 void unit_log_skip(Unit *u, const char *result) {
5560 assert(u);
5561 assert(result);
5562
5563 log_unit_struct(u, LOG_INFO,
5564 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
5565 LOG_UNIT_INVOCATION_ID(u),
5566 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
5567 "UNIT_RESULT=%s", result);
5568 }
5569
5570 void unit_log_process_exit(
5571 Unit *u,
5572 const char *kind,
5573 const char *command,
5574 bool success,
5575 int code,
5576 int status) {
5577
5578 int level;
5579
5580 assert(u);
5581 assert(kind);
5582
5583 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
5584 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
5585 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
5586 * WARNING. */
5587 if (success)
5588 level = LOG_DEBUG;
5589 else if (code == CLD_EXITED)
5590 level = LOG_NOTICE;
5591 else
5592 level = LOG_WARNING;
5593
5594 log_unit_struct(u, level,
5595 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
5596 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
5597 kind,
5598 sigchld_code_to_string(code), status,
5599 strna(code == CLD_EXITED
5600 ? exit_status_to_string(status, EXIT_STATUS_FULL)
5601 : signal_to_string(status))),
5602 "EXIT_CODE=%s", sigchld_code_to_string(code),
5603 "EXIT_STATUS=%i", status,
5604 "COMMAND=%s", strna(command),
5605 LOG_UNIT_INVOCATION_ID(u));
5606 }
5607
5608 int unit_exit_status(Unit *u) {
5609 assert(u);
5610
5611 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
5612 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
5613 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
5614 * service process has exited abnormally (signal/coredump). */
5615
5616 if (!UNIT_VTABLE(u)->exit_status)
5617 return -EOPNOTSUPP;
5618
5619 return UNIT_VTABLE(u)->exit_status(u);
5620 }
5621
5622 int unit_failure_action_exit_status(Unit *u) {
5623 int r;
5624
5625 assert(u);
5626
5627 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
5628
5629 if (u->failure_action_exit_status >= 0)
5630 return u->failure_action_exit_status;
5631
5632 r = unit_exit_status(u);
5633 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5634 return 255;
5635
5636 return r;
5637 }
5638
5639 int unit_success_action_exit_status(Unit *u) {
5640 int r;
5641
5642 assert(u);
5643
5644 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
5645
5646 if (u->success_action_exit_status >= 0)
5647 return u->success_action_exit_status;
5648
5649 r = unit_exit_status(u);
5650 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5651 return 255;
5652
5653 return r;
5654 }
5655
5656 int unit_test_trigger_loaded(Unit *u) {
5657 Unit *trigger;
5658
5659 /* Tests whether the unit to trigger is loaded */
5660
5661 trigger = UNIT_TRIGGER(u);
5662 if (!trigger)
5663 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
5664 "Refusing to start, no unit to trigger.");
5665 if (trigger->load_state != UNIT_LOADED)
5666 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
5667 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
5668
5669 return 0;
5670 }
5671
5672 void unit_destroy_runtime_data(Unit *u, const ExecContext *context) {
5673 assert(u);
5674 assert(context);
5675
5676 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO ||
5677 (context->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART && !unit_will_restart(u)))
5678 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
5679
5680 exec_context_destroy_credentials(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME], u->id);
5681 }
5682
5683 int unit_clean(Unit *u, ExecCleanMask mask) {
5684 UnitActiveState state;
5685
5686 assert(u);
5687
5688 /* Special return values:
5689 *
5690 * -EOPNOTSUPP → cleaning not supported for this unit type
5691 * -EUNATCH → cleaning not defined for this resource type
5692 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
5693 * a job queued or similar
5694 */
5695
5696 if (!UNIT_VTABLE(u)->clean)
5697 return -EOPNOTSUPP;
5698
5699 if (mask == 0)
5700 return -EUNATCH;
5701
5702 if (u->load_state != UNIT_LOADED)
5703 return -EBUSY;
5704
5705 if (u->job)
5706 return -EBUSY;
5707
5708 state = unit_active_state(u);
5709 if (!IN_SET(state, UNIT_INACTIVE))
5710 return -EBUSY;
5711
5712 return UNIT_VTABLE(u)->clean(u, mask);
5713 }
5714
5715 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
5716 assert(u);
5717
5718 if (!UNIT_VTABLE(u)->clean ||
5719 u->load_state != UNIT_LOADED) {
5720 *ret = 0;
5721 return 0;
5722 }
5723
5724 /* When the clean() method is set, can_clean() really should be set too */
5725 assert(UNIT_VTABLE(u)->can_clean);
5726
5727 return UNIT_VTABLE(u)->can_clean(u, ret);
5728 }
5729
5730 bool unit_can_freeze(Unit *u) {
5731 assert(u);
5732
5733 if (UNIT_VTABLE(u)->can_freeze)
5734 return UNIT_VTABLE(u)->can_freeze(u);
5735
5736 return UNIT_VTABLE(u)->freeze;
5737 }
5738
5739 void unit_frozen(Unit *u) {
5740 assert(u);
5741
5742 u->freezer_state = FREEZER_FROZEN;
5743
5744 bus_unit_send_pending_freezer_message(u);
5745 }
5746
5747 void unit_thawed(Unit *u) {
5748 assert(u);
5749
5750 u->freezer_state = FREEZER_RUNNING;
5751
5752 bus_unit_send_pending_freezer_message(u);
5753 }
5754
5755 static int unit_freezer_action(Unit *u, FreezerAction action) {
5756 UnitActiveState s;
5757 int (*method)(Unit*);
5758 int r;
5759
5760 assert(u);
5761 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
5762
5763 method = action == FREEZER_FREEZE ? UNIT_VTABLE(u)->freeze : UNIT_VTABLE(u)->thaw;
5764 if (!method || !cg_freezer_supported())
5765 return -EOPNOTSUPP;
5766
5767 if (u->job)
5768 return -EBUSY;
5769
5770 if (u->load_state != UNIT_LOADED)
5771 return -EHOSTDOWN;
5772
5773 s = unit_active_state(u);
5774 if (s != UNIT_ACTIVE)
5775 return -EHOSTDOWN;
5776
5777 if (IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING))
5778 return -EALREADY;
5779
5780 r = method(u);
5781 if (r <= 0)
5782 return r;
5783
5784 return 1;
5785 }
5786
5787 int unit_freeze(Unit *u) {
5788 return unit_freezer_action(u, FREEZER_FREEZE);
5789 }
5790
5791 int unit_thaw(Unit *u) {
5792 return unit_freezer_action(u, FREEZER_THAW);
5793 }
5794
5795 /* Wrappers around low-level cgroup freezer operations common for service and scope units */
5796 int unit_freeze_vtable_common(Unit *u) {
5797 return unit_cgroup_freezer_action(u, FREEZER_FREEZE);
5798 }
5799
5800 int unit_thaw_vtable_common(Unit *u) {
5801 return unit_cgroup_freezer_action(u, FREEZER_THAW);
5802 }
5803
5804 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
5805 [COLLECT_INACTIVE] = "inactive",
5806 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
5807 };
5808
5809 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);
5810
5811 Unit* unit_has_dependency(const Unit *u, UnitDependencyAtom atom, Unit *other) {
5812 Unit *i;
5813
5814 assert(u);
5815
5816 /* Checks if the unit has a dependency on 'other' with the specified dependency atom. If 'other' is
5817 * NULL checks if the unit has *any* dependency of that atom. Returns 'other' if found (or if 'other'
5818 * is NULL the first entry found), or NULL if not found. */
5819
5820 UNIT_FOREACH_DEPENDENCY(i, u, atom)
5821 if (!other || other == i)
5822 return i;
5823
5824 return NULL;
5825 }
5826
5827 int unit_get_dependency_array(const Unit *u, UnitDependencyAtom atom, Unit ***ret_array) {
5828 _cleanup_free_ Unit **array = NULL;
5829 size_t n = 0;
5830 Unit *other;
5831
5832 assert(u);
5833 assert(ret_array);
5834
5835 /* Gets a list of units matching a specific atom as array. This is useful when iterating through
5836 * dependencies while modifying them: the array is an "atomic snapshot" of sorts, that can be read
5837 * while the dependency table is continuously updated. */
5838
5839 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
5840 if (!GREEDY_REALLOC(array, n + 1))
5841 return -ENOMEM;
5842
5843 array[n++] = other;
5844 }
5845
5846 *ret_array = TAKE_PTR(array);
5847
5848 assert(n <= INT_MAX);
5849 return (int) n;
5850 }