]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
Merge pull request #12755 from keszybz/short-identifiers
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <sys/prctl.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9
10 #include "sd-id128.h"
11 #include "sd-messages.h"
12
13 #include "all-units.h"
14 #include "alloc-util.h"
15 #include "bpf-firewall.h"
16 #include "bus-common-errors.h"
17 #include "bus-util.h"
18 #include "cgroup-util.h"
19 #include "dbus-unit.h"
20 #include "dbus.h"
21 #include "dropin.h"
22 #include "escape.h"
23 #include "execute.h"
24 #include "fd-util.h"
25 #include "fileio-label.h"
26 #include "fileio.h"
27 #include "format-util.h"
28 #include "fs-util.h"
29 #include "id128-util.h"
30 #include "io-util.h"
31 #include "load-dropin.h"
32 #include "load-fragment.h"
33 #include "log.h"
34 #include "macro.h"
35 #include "missing.h"
36 #include "mkdir.h"
37 #include "parse-util.h"
38 #include "path-util.h"
39 #include "process-util.h"
40 #include "serialize.h"
41 #include "set.h"
42 #include "signal-util.h"
43 #include "sparse-endian.h"
44 #include "special.h"
45 #include "specifier.h"
46 #include "stat-util.h"
47 #include "stdio-util.h"
48 #include "string-table.h"
49 #include "string-util.h"
50 #include "strv.h"
51 #include "terminal-util.h"
52 #include "tmpfile-util.h"
53 #include "umask-util.h"
54 #include "unit-name.h"
55 #include "unit.h"
56 #include "user-util.h"
57 #include "virt.h"
58
59 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
60 [UNIT_SERVICE] = &service_vtable,
61 [UNIT_SOCKET] = &socket_vtable,
62 [UNIT_TARGET] = &target_vtable,
63 [UNIT_DEVICE] = &device_vtable,
64 [UNIT_MOUNT] = &mount_vtable,
65 [UNIT_AUTOMOUNT] = &automount_vtable,
66 [UNIT_SWAP] = &swap_vtable,
67 [UNIT_TIMER] = &timer_vtable,
68 [UNIT_PATH] = &path_vtable,
69 [UNIT_SLICE] = &slice_vtable,
70 [UNIT_SCOPE] = &scope_vtable,
71 };
72
73 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
74
75 Unit *unit_new(Manager *m, size_t size) {
76 Unit *u;
77
78 assert(m);
79 assert(size >= sizeof(Unit));
80
81 u = malloc0(size);
82 if (!u)
83 return NULL;
84
85 u->names = set_new(&string_hash_ops);
86 if (!u->names)
87 return mfree(u);
88
89 u->manager = m;
90 u->type = _UNIT_TYPE_INVALID;
91 u->default_dependencies = true;
92 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
93 u->unit_file_preset = -1;
94 u->on_failure_job_mode = JOB_REPLACE;
95 u->cgroup_control_inotify_wd = -1;
96 u->cgroup_memory_inotify_wd = -1;
97 u->job_timeout = USEC_INFINITY;
98 u->job_running_timeout = USEC_INFINITY;
99 u->ref_uid = UID_INVALID;
100 u->ref_gid = GID_INVALID;
101 u->cpu_usage_last = NSEC_INFINITY;
102 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
103 u->failure_action_exit_status = u->success_action_exit_status = -1;
104
105 u->ip_accounting_ingress_map_fd = -1;
106 u->ip_accounting_egress_map_fd = -1;
107 u->ipv4_allow_map_fd = -1;
108 u->ipv6_allow_map_fd = -1;
109 u->ipv4_deny_map_fd = -1;
110 u->ipv6_deny_map_fd = -1;
111
112 u->last_section_private = -1;
113
114 RATELIMIT_INIT(u->start_limit, m->default_start_limit_interval, m->default_start_limit_burst);
115 RATELIMIT_INIT(u->auto_stop_ratelimit, 10 * USEC_PER_SEC, 16);
116
117 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
118 u->io_accounting_last[i] = UINT64_MAX;
119
120 return u;
121 }
122
123 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
124 _cleanup_(unit_freep) Unit *u = NULL;
125 int r;
126
127 u = unit_new(m, size);
128 if (!u)
129 return -ENOMEM;
130
131 r = unit_add_name(u, name);
132 if (r < 0)
133 return r;
134
135 *ret = TAKE_PTR(u);
136
137 return r;
138 }
139
140 bool unit_has_name(const Unit *u, const char *name) {
141 assert(u);
142 assert(name);
143
144 return set_contains(u->names, (char*) name);
145 }
146
147 static void unit_init(Unit *u) {
148 CGroupContext *cc;
149 ExecContext *ec;
150 KillContext *kc;
151
152 assert(u);
153 assert(u->manager);
154 assert(u->type >= 0);
155
156 cc = unit_get_cgroup_context(u);
157 if (cc) {
158 cgroup_context_init(cc);
159
160 /* Copy in the manager defaults into the cgroup
161 * context, _before_ the rest of the settings have
162 * been initialized */
163
164 cc->cpu_accounting = u->manager->default_cpu_accounting;
165 cc->io_accounting = u->manager->default_io_accounting;
166 cc->blockio_accounting = u->manager->default_blockio_accounting;
167 cc->memory_accounting = u->manager->default_memory_accounting;
168 cc->tasks_accounting = u->manager->default_tasks_accounting;
169 cc->ip_accounting = u->manager->default_ip_accounting;
170
171 if (u->type != UNIT_SLICE)
172 cc->tasks_max = u->manager->default_tasks_max;
173 }
174
175 ec = unit_get_exec_context(u);
176 if (ec) {
177 exec_context_init(ec);
178
179 ec->keyring_mode = MANAGER_IS_SYSTEM(u->manager) ?
180 EXEC_KEYRING_SHARED : EXEC_KEYRING_INHERIT;
181 }
182
183 kc = unit_get_kill_context(u);
184 if (kc)
185 kill_context_init(kc);
186
187 if (UNIT_VTABLE(u)->init)
188 UNIT_VTABLE(u)->init(u);
189 }
190
191 int unit_add_name(Unit *u, const char *text) {
192 _cleanup_free_ char *s = NULL, *i = NULL;
193 UnitType t;
194 int r;
195
196 assert(u);
197 assert(text);
198
199 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
200
201 if (!u->instance)
202 return -EINVAL;
203
204 r = unit_name_replace_instance(text, u->instance, &s);
205 if (r < 0)
206 return r;
207 } else {
208 s = strdup(text);
209 if (!s)
210 return -ENOMEM;
211 }
212
213 if (set_contains(u->names, s))
214 return 0;
215 if (hashmap_contains(u->manager->units, s))
216 return -EEXIST;
217
218 if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
219 return -EINVAL;
220
221 t = unit_name_to_type(s);
222 if (t < 0)
223 return -EINVAL;
224
225 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
226 return -EINVAL;
227
228 r = unit_name_to_instance(s, &i);
229 if (r < 0)
230 return r;
231
232 if (i && !unit_type_may_template(t))
233 return -EINVAL;
234
235 /* Ensure that this unit is either instanced or not instanced,
236 * but not both. Note that we do allow names with different
237 * instance names however! */
238 if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i)
239 return -EINVAL;
240
241 if (!unit_type_may_alias(t) && !set_isempty(u->names))
242 return -EEXIST;
243
244 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
245 return -E2BIG;
246
247 r = set_put(u->names, s);
248 if (r < 0)
249 return r;
250 assert(r > 0);
251
252 r = hashmap_put(u->manager->units, s, u);
253 if (r < 0) {
254 (void) set_remove(u->names, s);
255 return r;
256 }
257
258 if (u->type == _UNIT_TYPE_INVALID) {
259 u->type = t;
260 u->id = s;
261 u->instance = TAKE_PTR(i);
262
263 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
264
265 unit_init(u);
266 }
267
268 s = NULL;
269
270 unit_add_to_dbus_queue(u);
271 return 0;
272 }
273
274 int unit_choose_id(Unit *u, const char *name) {
275 _cleanup_free_ char *t = NULL;
276 char *s, *i;
277 int r;
278
279 assert(u);
280 assert(name);
281
282 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
283
284 if (!u->instance)
285 return -EINVAL;
286
287 r = unit_name_replace_instance(name, u->instance, &t);
288 if (r < 0)
289 return r;
290
291 name = t;
292 }
293
294 /* Selects one of the names of this unit as the id */
295 s = set_get(u->names, (char*) name);
296 if (!s)
297 return -ENOENT;
298
299 /* Determine the new instance from the new id */
300 r = unit_name_to_instance(s, &i);
301 if (r < 0)
302 return r;
303
304 u->id = s;
305
306 free(u->instance);
307 u->instance = i;
308
309 unit_add_to_dbus_queue(u);
310
311 return 0;
312 }
313
314 int unit_set_description(Unit *u, const char *description) {
315 int r;
316
317 assert(u);
318
319 r = free_and_strdup(&u->description, empty_to_null(description));
320 if (r < 0)
321 return r;
322 if (r > 0)
323 unit_add_to_dbus_queue(u);
324
325 return 0;
326 }
327
328 bool unit_may_gc(Unit *u) {
329 UnitActiveState state;
330 int r;
331
332 assert(u);
333
334 /* Checks whether the unit is ready to be unloaded for garbage collection.
335 * Returns true when the unit may be collected, and false if there's some
336 * reason to keep it loaded.
337 *
338 * References from other units are *not* checked here. Instead, this is done
339 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
340 */
341
342 if (u->job)
343 return false;
344
345 if (u->nop_job)
346 return false;
347
348 state = unit_active_state(u);
349
350 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
351 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
352 UNIT_VTABLE(u)->release_resources)
353 UNIT_VTABLE(u)->release_resources(u);
354
355 if (u->perpetual)
356 return false;
357
358 if (sd_bus_track_count(u->bus_track) > 0)
359 return false;
360
361 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
362 switch (u->collect_mode) {
363
364 case COLLECT_INACTIVE:
365 if (state != UNIT_INACTIVE)
366 return false;
367
368 break;
369
370 case COLLECT_INACTIVE_OR_FAILED:
371 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
372 return false;
373
374 break;
375
376 default:
377 assert_not_reached("Unknown garbage collection mode");
378 }
379
380 if (u->cgroup_path) {
381 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
382 * around. Units with active processes should never be collected. */
383
384 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
385 if (r < 0)
386 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
387 if (r <= 0)
388 return false;
389 }
390
391 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
392 return false;
393
394 return true;
395 }
396
397 void unit_add_to_load_queue(Unit *u) {
398 assert(u);
399 assert(u->type != _UNIT_TYPE_INVALID);
400
401 if (u->load_state != UNIT_STUB || u->in_load_queue)
402 return;
403
404 LIST_PREPEND(load_queue, u->manager->load_queue, u);
405 u->in_load_queue = true;
406 }
407
408 void unit_add_to_cleanup_queue(Unit *u) {
409 assert(u);
410
411 if (u->in_cleanup_queue)
412 return;
413
414 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
415 u->in_cleanup_queue = true;
416 }
417
418 void unit_add_to_gc_queue(Unit *u) {
419 assert(u);
420
421 if (u->in_gc_queue || u->in_cleanup_queue)
422 return;
423
424 if (!unit_may_gc(u))
425 return;
426
427 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
428 u->in_gc_queue = true;
429 }
430
431 void unit_add_to_dbus_queue(Unit *u) {
432 assert(u);
433 assert(u->type != _UNIT_TYPE_INVALID);
434
435 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
436 return;
437
438 /* Shortcut things if nobody cares */
439 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
440 sd_bus_track_count(u->bus_track) <= 0 &&
441 set_isempty(u->manager->private_buses)) {
442 u->sent_dbus_new_signal = true;
443 return;
444 }
445
446 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
447 u->in_dbus_queue = true;
448 }
449
450 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
451 assert(u);
452
453 if (u->in_stop_when_unneeded_queue)
454 return;
455
456 if (!u->stop_when_unneeded)
457 return;
458
459 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
460 return;
461
462 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
463 u->in_stop_when_unneeded_queue = true;
464 }
465
466 static void bidi_set_free(Unit *u, Hashmap *h) {
467 Unit *other;
468 Iterator i;
469 void *v;
470
471 assert(u);
472
473 /* Frees the hashmap and makes sure we are dropped from the inverse pointers */
474
475 HASHMAP_FOREACH_KEY(v, other, h, i) {
476 UnitDependency d;
477
478 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
479 hashmap_remove(other->dependencies[d], u);
480
481 unit_add_to_gc_queue(other);
482 }
483
484 hashmap_free(h);
485 }
486
487 static void unit_remove_transient(Unit *u) {
488 char **i;
489
490 assert(u);
491
492 if (!u->transient)
493 return;
494
495 if (u->fragment_path)
496 (void) unlink(u->fragment_path);
497
498 STRV_FOREACH(i, u->dropin_paths) {
499 _cleanup_free_ char *p = NULL, *pp = NULL;
500
501 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
502 if (!p)
503 continue;
504
505 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
506 if (!pp)
507 continue;
508
509 /* Only drop transient drop-ins */
510 if (!path_equal(u->manager->lookup_paths.transient, pp))
511 continue;
512
513 (void) unlink(*i);
514 (void) rmdir(p);
515 }
516 }
517
518 static void unit_free_requires_mounts_for(Unit *u) {
519 assert(u);
520
521 for (;;) {
522 _cleanup_free_ char *path;
523
524 path = hashmap_steal_first_key(u->requires_mounts_for);
525 if (!path)
526 break;
527 else {
528 char s[strlen(path) + 1];
529
530 PATH_FOREACH_PREFIX_MORE(s, path) {
531 char *y;
532 Set *x;
533
534 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
535 if (!x)
536 continue;
537
538 (void) set_remove(x, u);
539
540 if (set_isempty(x)) {
541 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
542 free(y);
543 set_free(x);
544 }
545 }
546 }
547 }
548
549 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
550 }
551
552 static void unit_done(Unit *u) {
553 ExecContext *ec;
554 CGroupContext *cc;
555
556 assert(u);
557
558 if (u->type < 0)
559 return;
560
561 if (UNIT_VTABLE(u)->done)
562 UNIT_VTABLE(u)->done(u);
563
564 ec = unit_get_exec_context(u);
565 if (ec)
566 exec_context_done(ec);
567
568 cc = unit_get_cgroup_context(u);
569 if (cc)
570 cgroup_context_done(cc);
571 }
572
573 void unit_free(Unit *u) {
574 UnitDependency d;
575 Iterator i;
576 char *t;
577
578 if (!u)
579 return;
580
581 if (UNIT_ISSET(u->slice)) {
582 /* A unit is being dropped from the tree, make sure our parent slice recalculates the member mask */
583 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
584
585 /* And make sure the parent is realized again, updating cgroup memberships */
586 unit_add_to_cgroup_realize_queue(UNIT_DEREF(u->slice));
587 }
588
589 u->transient_file = safe_fclose(u->transient_file);
590
591 if (!MANAGER_IS_RELOADING(u->manager))
592 unit_remove_transient(u);
593
594 bus_unit_send_removed_signal(u);
595
596 unit_done(u);
597
598 unit_dequeue_rewatch_pids(u);
599
600 sd_bus_slot_unref(u->match_bus_slot);
601 sd_bus_track_unref(u->bus_track);
602 u->deserialized_refs = strv_free(u->deserialized_refs);
603
604 unit_free_requires_mounts_for(u);
605
606 SET_FOREACH(t, u->names, i)
607 hashmap_remove_value(u->manager->units, t, u);
608
609 if (!sd_id128_is_null(u->invocation_id))
610 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
611
612 if (u->job) {
613 Job *j = u->job;
614 job_uninstall(j);
615 job_free(j);
616 }
617
618 if (u->nop_job) {
619 Job *j = u->nop_job;
620 job_uninstall(j);
621 job_free(j);
622 }
623
624 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
625 bidi_set_free(u, u->dependencies[d]);
626
627 if (u->on_console)
628 manager_unref_console(u->manager);
629
630 unit_release_cgroup(u);
631
632 if (!MANAGER_IS_RELOADING(u->manager))
633 unit_unlink_state_files(u);
634
635 unit_unref_uid_gid(u, false);
636
637 (void) manager_update_failed_units(u->manager, u, false);
638 set_remove(u->manager->startup_units, u);
639
640 unit_unwatch_all_pids(u);
641
642 unit_ref_unset(&u->slice);
643 while (u->refs_by_target)
644 unit_ref_unset(u->refs_by_target);
645
646 if (u->type != _UNIT_TYPE_INVALID)
647 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
648
649 if (u->in_load_queue)
650 LIST_REMOVE(load_queue, u->manager->load_queue, u);
651
652 if (u->in_dbus_queue)
653 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
654
655 if (u->in_gc_queue)
656 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
657
658 if (u->in_cgroup_realize_queue)
659 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
660
661 if (u->in_cgroup_empty_queue)
662 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
663
664 if (u->in_cleanup_queue)
665 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
666
667 if (u->in_target_deps_queue)
668 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
669
670 if (u->in_stop_when_unneeded_queue)
671 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
672
673 safe_close(u->ip_accounting_ingress_map_fd);
674 safe_close(u->ip_accounting_egress_map_fd);
675
676 safe_close(u->ipv4_allow_map_fd);
677 safe_close(u->ipv6_allow_map_fd);
678 safe_close(u->ipv4_deny_map_fd);
679 safe_close(u->ipv6_deny_map_fd);
680
681 bpf_program_unref(u->ip_bpf_ingress);
682 bpf_program_unref(u->ip_bpf_ingress_installed);
683 bpf_program_unref(u->ip_bpf_egress);
684 bpf_program_unref(u->ip_bpf_egress_installed);
685
686 set_free(u->ip_bpf_custom_ingress);
687 set_free(u->ip_bpf_custom_egress);
688 set_free(u->ip_bpf_custom_ingress_installed);
689 set_free(u->ip_bpf_custom_egress_installed);
690
691 bpf_program_unref(u->bpf_device_control_installed);
692
693 condition_free_list(u->conditions);
694 condition_free_list(u->asserts);
695
696 free(u->description);
697 strv_free(u->documentation);
698 free(u->fragment_path);
699 free(u->source_path);
700 strv_free(u->dropin_paths);
701 free(u->instance);
702
703 free(u->job_timeout_reboot_arg);
704
705 set_free_free(u->names);
706
707 free(u->reboot_arg);
708
709 free(u);
710 }
711
712 UnitActiveState unit_active_state(Unit *u) {
713 assert(u);
714
715 if (u->load_state == UNIT_MERGED)
716 return unit_active_state(unit_follow_merge(u));
717
718 /* After a reload it might happen that a unit is not correctly
719 * loaded but still has a process around. That's why we won't
720 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
721
722 return UNIT_VTABLE(u)->active_state(u);
723 }
724
725 const char* unit_sub_state_to_string(Unit *u) {
726 assert(u);
727
728 return UNIT_VTABLE(u)->sub_state_to_string(u);
729 }
730
731 static int set_complete_move(Set **s, Set **other) {
732 assert(s);
733 assert(other);
734
735 if (!other)
736 return 0;
737
738 if (*s)
739 return set_move(*s, *other);
740 else
741 *s = TAKE_PTR(*other);
742
743 return 0;
744 }
745
746 static int hashmap_complete_move(Hashmap **s, Hashmap **other) {
747 assert(s);
748 assert(other);
749
750 if (!*other)
751 return 0;
752
753 if (*s)
754 return hashmap_move(*s, *other);
755 else
756 *s = TAKE_PTR(*other);
757
758 return 0;
759 }
760
761 static int merge_names(Unit *u, Unit *other) {
762 char *t;
763 Iterator i;
764 int r;
765
766 assert(u);
767 assert(other);
768
769 r = set_complete_move(&u->names, &other->names);
770 if (r < 0)
771 return r;
772
773 set_free_free(other->names);
774 other->names = NULL;
775 other->id = NULL;
776
777 SET_FOREACH(t, u->names, i)
778 assert_se(hashmap_replace(u->manager->units, t, u) == 0);
779
780 return 0;
781 }
782
783 static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
784 unsigned n_reserve;
785
786 assert(u);
787 assert(other);
788 assert(d < _UNIT_DEPENDENCY_MAX);
789
790 /*
791 * If u does not have this dependency set allocated, there is no need
792 * to reserve anything. In that case other's set will be transferred
793 * as a whole to u by complete_move().
794 */
795 if (!u->dependencies[d])
796 return 0;
797
798 /* merge_dependencies() will skip a u-on-u dependency */
799 n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u);
800
801 return hashmap_reserve(u->dependencies[d], n_reserve);
802 }
803
804 static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
805 Iterator i;
806 Unit *back;
807 void *v;
808 int r;
809
810 /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */
811
812 assert(u);
813 assert(other);
814 assert(d < _UNIT_DEPENDENCY_MAX);
815
816 /* Fix backwards pointers. Let's iterate through all dependent units of the other unit. */
817 HASHMAP_FOREACH_KEY(v, back, other->dependencies[d], i) {
818 UnitDependency k;
819
820 /* Let's now iterate through the dependencies of that dependencies of the other units, looking for
821 * pointers back, and let's fix them up, to instead point to 'u'. */
822
823 for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) {
824 if (back == u) {
825 /* Do not add dependencies between u and itself. */
826 if (hashmap_remove(back->dependencies[k], other))
827 maybe_warn_about_dependency(u, other_id, k);
828 } else {
829 UnitDependencyInfo di_u, di_other, di_merged;
830
831 /* Let's drop this dependency between "back" and "other", and let's create it between
832 * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving,
833 * and any such dependency which might already exist */
834
835 di_other.data = hashmap_get(back->dependencies[k], other);
836 if (!di_other.data)
837 continue; /* dependency isn't set, let's try the next one */
838
839 di_u.data = hashmap_get(back->dependencies[k], u);
840
841 di_merged = (UnitDependencyInfo) {
842 .origin_mask = di_u.origin_mask | di_other.origin_mask,
843 .destination_mask = di_u.destination_mask | di_other.destination_mask,
844 };
845
846 r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data);
847 if (r < 0)
848 log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id);
849 assert(r >= 0);
850
851 /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */
852 }
853 }
854
855 }
856
857 /* Also do not move dependencies on u to itself */
858 back = hashmap_remove(other->dependencies[d], u);
859 if (back)
860 maybe_warn_about_dependency(u, other_id, d);
861
862 /* The move cannot fail. The caller must have performed a reservation. */
863 assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
864
865 other->dependencies[d] = hashmap_free(other->dependencies[d]);
866 }
867
868 int unit_merge(Unit *u, Unit *other) {
869 UnitDependency d;
870 const char *other_id = NULL;
871 int r;
872
873 assert(u);
874 assert(other);
875 assert(u->manager == other->manager);
876 assert(u->type != _UNIT_TYPE_INVALID);
877
878 other = unit_follow_merge(other);
879
880 if (other == u)
881 return 0;
882
883 if (u->type != other->type)
884 return -EINVAL;
885
886 if (!u->instance != !other->instance)
887 return -EINVAL;
888
889 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
890 return -EEXIST;
891
892 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
893 return -EEXIST;
894
895 if (other->job)
896 return -EEXIST;
897
898 if (other->nop_job)
899 return -EEXIST;
900
901 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
902 return -EEXIST;
903
904 if (other->id)
905 other_id = strdupa(other->id);
906
907 /* Make reservations to ensure merge_dependencies() won't fail */
908 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
909 r = reserve_dependencies(u, other, d);
910 /*
911 * We don't rollback reservations if we fail. We don't have
912 * a way to undo reservations. A reservation is not a leak.
913 */
914 if (r < 0)
915 return r;
916 }
917
918 /* Merge names */
919 r = merge_names(u, other);
920 if (r < 0)
921 return r;
922
923 /* Redirect all references */
924 while (other->refs_by_target)
925 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
926
927 /* Merge dependencies */
928 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
929 merge_dependencies(u, other, other_id, d);
930
931 other->load_state = UNIT_MERGED;
932 other->merged_into = u;
933
934 /* If there is still some data attached to the other node, we
935 * don't need it anymore, and can free it. */
936 if (other->load_state != UNIT_STUB)
937 if (UNIT_VTABLE(other)->done)
938 UNIT_VTABLE(other)->done(other);
939
940 unit_add_to_dbus_queue(u);
941 unit_add_to_cleanup_queue(other);
942
943 return 0;
944 }
945
946 int unit_merge_by_name(Unit *u, const char *name) {
947 _cleanup_free_ char *s = NULL;
948 Unit *other;
949 int r;
950
951 assert(u);
952 assert(name);
953
954 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
955 if (!u->instance)
956 return -EINVAL;
957
958 r = unit_name_replace_instance(name, u->instance, &s);
959 if (r < 0)
960 return r;
961
962 name = s;
963 }
964
965 other = manager_get_unit(u->manager, name);
966 if (other)
967 return unit_merge(u, other);
968
969 return unit_add_name(u, name);
970 }
971
972 Unit* unit_follow_merge(Unit *u) {
973 assert(u);
974
975 while (u->load_state == UNIT_MERGED)
976 assert_se(u = u->merged_into);
977
978 return u;
979 }
980
981 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
982 ExecDirectoryType dt;
983 char **dp;
984 int r;
985
986 assert(u);
987 assert(c);
988
989 if (c->working_directory && !c->working_directory_missing_ok) {
990 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
991 if (r < 0)
992 return r;
993 }
994
995 if (c->root_directory) {
996 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
997 if (r < 0)
998 return r;
999 }
1000
1001 if (c->root_image) {
1002 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1003 if (r < 0)
1004 return r;
1005 }
1006
1007 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1008 if (!u->manager->prefix[dt])
1009 continue;
1010
1011 STRV_FOREACH(dp, c->directories[dt].paths) {
1012 _cleanup_free_ char *p;
1013
1014 p = path_join(u->manager->prefix[dt], *dp);
1015 if (!p)
1016 return -ENOMEM;
1017
1018 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1019 if (r < 0)
1020 return r;
1021 }
1022 }
1023
1024 if (!MANAGER_IS_SYSTEM(u->manager))
1025 return 0;
1026
1027 if (c->private_tmp) {
1028 const char *p;
1029
1030 FOREACH_STRING(p, "/tmp", "/var/tmp") {
1031 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1032 if (r < 0)
1033 return r;
1034 }
1035
1036 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1037 if (r < 0)
1038 return r;
1039 }
1040
1041 if (!IN_SET(c->std_output,
1042 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1043 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1044 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE) &&
1045 !IN_SET(c->std_error,
1046 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1047 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1048 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE))
1049 return 0;
1050
1051 /* If syslog or kernel logging is requested, make sure our own
1052 * logging daemon is run first. */
1053
1054 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1055 if (r < 0)
1056 return r;
1057
1058 return 0;
1059 }
1060
1061 const char *unit_description(Unit *u) {
1062 assert(u);
1063
1064 if (u->description)
1065 return u->description;
1066
1067 return strna(u->id);
1068 }
1069
1070 const char *unit_status_string(Unit *u) {
1071 assert(u);
1072
1073 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME && u->id)
1074 return u->id;
1075
1076 return unit_description(u);
1077 }
1078
1079 static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) {
1080 const struct {
1081 UnitDependencyMask mask;
1082 const char *name;
1083 } table[] = {
1084 { UNIT_DEPENDENCY_FILE, "file" },
1085 { UNIT_DEPENDENCY_IMPLICIT, "implicit" },
1086 { UNIT_DEPENDENCY_DEFAULT, "default" },
1087 { UNIT_DEPENDENCY_UDEV, "udev" },
1088 { UNIT_DEPENDENCY_PATH, "path" },
1089 { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" },
1090 { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" },
1091 { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" },
1092 };
1093 size_t i;
1094
1095 assert(f);
1096 assert(kind);
1097 assert(space);
1098
1099 for (i = 0; i < ELEMENTSOF(table); i++) {
1100
1101 if (mask == 0)
1102 break;
1103
1104 if (FLAGS_SET(mask, table[i].mask)) {
1105 if (*space)
1106 fputc(' ', f);
1107 else
1108 *space = true;
1109
1110 fputs(kind, f);
1111 fputs("-", f);
1112 fputs(table[i].name, f);
1113
1114 mask &= ~table[i].mask;
1115 }
1116 }
1117
1118 assert(mask == 0);
1119 }
1120
1121 void unit_dump(Unit *u, FILE *f, const char *prefix) {
1122 char *t, **j;
1123 UnitDependency d;
1124 Iterator i;
1125 const char *prefix2;
1126 char
1127 timestamp0[FORMAT_TIMESTAMP_MAX],
1128 timestamp1[FORMAT_TIMESTAMP_MAX],
1129 timestamp2[FORMAT_TIMESTAMP_MAX],
1130 timestamp3[FORMAT_TIMESTAMP_MAX],
1131 timestamp4[FORMAT_TIMESTAMP_MAX],
1132 timespan[FORMAT_TIMESPAN_MAX];
1133 Unit *following;
1134 _cleanup_set_free_ Set *following_set = NULL;
1135 const char *n;
1136 CGroupMask m;
1137 int r;
1138
1139 assert(u);
1140 assert(u->type >= 0);
1141
1142 prefix = strempty(prefix);
1143 prefix2 = strjoina(prefix, "\t");
1144
1145 fprintf(f,
1146 "%s-> Unit %s:\n"
1147 "%s\tDescription: %s\n"
1148 "%s\tInstance: %s\n"
1149 "%s\tUnit Load State: %s\n"
1150 "%s\tUnit Active State: %s\n"
1151 "%s\tState Change Timestamp: %s\n"
1152 "%s\tInactive Exit Timestamp: %s\n"
1153 "%s\tActive Enter Timestamp: %s\n"
1154 "%s\tActive Exit Timestamp: %s\n"
1155 "%s\tInactive Enter Timestamp: %s\n"
1156 "%s\tMay GC: %s\n"
1157 "%s\tNeed Daemon Reload: %s\n"
1158 "%s\tTransient: %s\n"
1159 "%s\tPerpetual: %s\n"
1160 "%s\tGarbage Collection Mode: %s\n"
1161 "%s\tSlice: %s\n"
1162 "%s\tCGroup: %s\n"
1163 "%s\tCGroup realized: %s\n",
1164 prefix, u->id,
1165 prefix, unit_description(u),
1166 prefix, strna(u->instance),
1167 prefix, unit_load_state_to_string(u->load_state),
1168 prefix, unit_active_state_to_string(unit_active_state(u)),
1169 prefix, strna(format_timestamp(timestamp0, sizeof(timestamp0), u->state_change_timestamp.realtime)),
1170 prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)),
1171 prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)),
1172 prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)),
1173 prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)),
1174 prefix, yes_no(unit_may_gc(u)),
1175 prefix, yes_no(unit_need_daemon_reload(u)),
1176 prefix, yes_no(u->transient),
1177 prefix, yes_no(u->perpetual),
1178 prefix, collect_mode_to_string(u->collect_mode),
1179 prefix, strna(unit_slice_name(u)),
1180 prefix, strna(u->cgroup_path),
1181 prefix, yes_no(u->cgroup_realized));
1182
1183 if (u->cgroup_realized_mask != 0) {
1184 _cleanup_free_ char *s = NULL;
1185 (void) cg_mask_to_string(u->cgroup_realized_mask, &s);
1186 fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s));
1187 }
1188
1189 if (u->cgroup_enabled_mask != 0) {
1190 _cleanup_free_ char *s = NULL;
1191 (void) cg_mask_to_string(u->cgroup_enabled_mask, &s);
1192 fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s));
1193 }
1194
1195 m = unit_get_own_mask(u);
1196 if (m != 0) {
1197 _cleanup_free_ char *s = NULL;
1198 (void) cg_mask_to_string(m, &s);
1199 fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s));
1200 }
1201
1202 m = unit_get_members_mask(u);
1203 if (m != 0) {
1204 _cleanup_free_ char *s = NULL;
1205 (void) cg_mask_to_string(m, &s);
1206 fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s));
1207 }
1208
1209 m = unit_get_delegate_mask(u);
1210 if (m != 0) {
1211 _cleanup_free_ char *s = NULL;
1212 (void) cg_mask_to_string(m, &s);
1213 fprintf(f, "%s\tCGroup delegate mask: %s\n", prefix, strnull(s));
1214 }
1215
1216 SET_FOREACH(t, u->names, i)
1217 fprintf(f, "%s\tName: %s\n", prefix, t);
1218
1219 if (!sd_id128_is_null(u->invocation_id))
1220 fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n",
1221 prefix, SD_ID128_FORMAT_VAL(u->invocation_id));
1222
1223 STRV_FOREACH(j, u->documentation)
1224 fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
1225
1226 following = unit_following(u);
1227 if (following)
1228 fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
1229
1230 r = unit_following_set(u, &following_set);
1231 if (r >= 0) {
1232 Unit *other;
1233
1234 SET_FOREACH(other, following_set, i)
1235 fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
1236 }
1237
1238 if (u->fragment_path)
1239 fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
1240
1241 if (u->source_path)
1242 fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
1243
1244 STRV_FOREACH(j, u->dropin_paths)
1245 fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
1246
1247 if (u->failure_action != EMERGENCY_ACTION_NONE)
1248 fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action));
1249 if (u->failure_action_exit_status >= 0)
1250 fprintf(f, "%s\tFailure Action Exit Status: %i\n", prefix, u->failure_action_exit_status);
1251 if (u->success_action != EMERGENCY_ACTION_NONE)
1252 fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action));
1253 if (u->success_action_exit_status >= 0)
1254 fprintf(f, "%s\tSuccess Action Exit Status: %i\n", prefix, u->success_action_exit_status);
1255
1256 if (u->job_timeout != USEC_INFINITY)
1257 fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
1258
1259 if (u->job_timeout_action != EMERGENCY_ACTION_NONE)
1260 fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action));
1261
1262 if (u->job_timeout_reboot_arg)
1263 fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
1264
1265 condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
1266 condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
1267
1268 if (dual_timestamp_is_set(&u->condition_timestamp))
1269 fprintf(f,
1270 "%s\tCondition Timestamp: %s\n"
1271 "%s\tCondition Result: %s\n",
1272 prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)),
1273 prefix, yes_no(u->condition_result));
1274
1275 if (dual_timestamp_is_set(&u->assert_timestamp))
1276 fprintf(f,
1277 "%s\tAssert Timestamp: %s\n"
1278 "%s\tAssert Result: %s\n",
1279 prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->assert_timestamp.realtime)),
1280 prefix, yes_no(u->assert_result));
1281
1282 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
1283 UnitDependencyInfo di;
1284 Unit *other;
1285
1286 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
1287 bool space = false;
1288
1289 fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id);
1290
1291 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1292 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1293
1294 fputs(")\n", f);
1295 }
1296 }
1297
1298 if (!hashmap_isempty(u->requires_mounts_for)) {
1299 UnitDependencyInfo di;
1300 const char *path;
1301
1302 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1303 bool space = false;
1304
1305 fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path);
1306
1307 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1308 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1309
1310 fputs(")\n", f);
1311 }
1312 }
1313
1314 if (u->load_state == UNIT_LOADED) {
1315
1316 fprintf(f,
1317 "%s\tStopWhenUnneeded: %s\n"
1318 "%s\tRefuseManualStart: %s\n"
1319 "%s\tRefuseManualStop: %s\n"
1320 "%s\tDefaultDependencies: %s\n"
1321 "%s\tOnFailureJobMode: %s\n"
1322 "%s\tIgnoreOnIsolate: %s\n",
1323 prefix, yes_no(u->stop_when_unneeded),
1324 prefix, yes_no(u->refuse_manual_start),
1325 prefix, yes_no(u->refuse_manual_stop),
1326 prefix, yes_no(u->default_dependencies),
1327 prefix, job_mode_to_string(u->on_failure_job_mode),
1328 prefix, yes_no(u->ignore_on_isolate));
1329
1330 if (UNIT_VTABLE(u)->dump)
1331 UNIT_VTABLE(u)->dump(u, f, prefix2);
1332
1333 } else if (u->load_state == UNIT_MERGED)
1334 fprintf(f,
1335 "%s\tMerged into: %s\n",
1336 prefix, u->merged_into->id);
1337 else if (u->load_state == UNIT_ERROR)
1338 fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror_safe(u->load_error));
1339
1340 for (n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track))
1341 fprintf(f, "%s\tBus Ref: %s\n", prefix, n);
1342
1343 if (u->job)
1344 job_dump(u->job, f, prefix2);
1345
1346 if (u->nop_job)
1347 job_dump(u->nop_job, f, prefix2);
1348 }
1349
1350 /* Common implementation for multiple backends */
1351 int unit_load_fragment_and_dropin(Unit *u) {
1352 int r;
1353
1354 assert(u);
1355
1356 /* Load a .{service,socket,...} file */
1357 r = unit_load_fragment(u);
1358 if (r < 0)
1359 return r;
1360
1361 if (u->load_state == UNIT_STUB)
1362 return -ENOENT;
1363
1364 /* Load drop-in directory data. If u is an alias, we might be reloading the
1365 * target unit needlessly. But we cannot be sure which drops-ins have already
1366 * been loaded and which not, at least without doing complicated book-keeping,
1367 * so let's always reread all drop-ins. */
1368 return unit_load_dropin(unit_follow_merge(u));
1369 }
1370
1371 /* Common implementation for multiple backends */
1372 int unit_load_fragment_and_dropin_optional(Unit *u) {
1373 int r;
1374
1375 assert(u);
1376
1377 /* Same as unit_load_fragment_and_dropin(), but whether
1378 * something can be loaded or not doesn't matter. */
1379
1380 /* Load a .service/.socket/.slice/… file */
1381 r = unit_load_fragment(u);
1382 if (r < 0)
1383 return r;
1384
1385 if (u->load_state == UNIT_STUB)
1386 u->load_state = UNIT_LOADED;
1387
1388 /* Load drop-in directory data */
1389 return unit_load_dropin(unit_follow_merge(u));
1390 }
1391
1392 void unit_add_to_target_deps_queue(Unit *u) {
1393 Manager *m = u->manager;
1394
1395 assert(u);
1396
1397 if (u->in_target_deps_queue)
1398 return;
1399
1400 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1401 u->in_target_deps_queue = true;
1402 }
1403
1404 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1405 assert(u);
1406 assert(target);
1407
1408 if (target->type != UNIT_TARGET)
1409 return 0;
1410
1411 /* Only add the dependency if both units are loaded, so that
1412 * that loop check below is reliable */
1413 if (u->load_state != UNIT_LOADED ||
1414 target->load_state != UNIT_LOADED)
1415 return 0;
1416
1417 /* If either side wants no automatic dependencies, then let's
1418 * skip this */
1419 if (!u->default_dependencies ||
1420 !target->default_dependencies)
1421 return 0;
1422
1423 /* Don't create loops */
1424 if (hashmap_get(target->dependencies[UNIT_BEFORE], u))
1425 return 0;
1426
1427 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1428 }
1429
1430 static int unit_add_slice_dependencies(Unit *u) {
1431 UnitDependencyMask mask;
1432 assert(u);
1433
1434 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1435 return 0;
1436
1437 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1438 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1439 relationship). */
1440 mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1441
1442 if (UNIT_ISSET(u->slice))
1443 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask);
1444
1445 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1446 return 0;
1447
1448 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1449 }
1450
1451 static int unit_add_mount_dependencies(Unit *u) {
1452 UnitDependencyInfo di;
1453 const char *path;
1454 Iterator i;
1455 int r;
1456
1457 assert(u);
1458
1459 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1460 char prefix[strlen(path) + 1];
1461
1462 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1463 _cleanup_free_ char *p = NULL;
1464 Unit *m;
1465
1466 r = unit_name_from_path(prefix, ".mount", &p);
1467 if (r < 0)
1468 return r;
1469
1470 m = manager_get_unit(u->manager, p);
1471 if (!m) {
1472 /* Make sure to load the mount unit if
1473 * it exists. If so the dependencies
1474 * on this unit will be added later
1475 * during the loading of the mount
1476 * unit. */
1477 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1478 continue;
1479 }
1480 if (m == u)
1481 continue;
1482
1483 if (m->load_state != UNIT_LOADED)
1484 continue;
1485
1486 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1487 if (r < 0)
1488 return r;
1489
1490 if (m->fragment_path) {
1491 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1492 if (r < 0)
1493 return r;
1494 }
1495 }
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int unit_add_startup_units(Unit *u) {
1502 CGroupContext *c;
1503 int r;
1504
1505 c = unit_get_cgroup_context(u);
1506 if (!c)
1507 return 0;
1508
1509 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1510 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1511 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1512 return 0;
1513
1514 r = set_ensure_allocated(&u->manager->startup_units, NULL);
1515 if (r < 0)
1516 return r;
1517
1518 return set_put(u->manager->startup_units, u);
1519 }
1520
1521 int unit_load(Unit *u) {
1522 int r;
1523
1524 assert(u);
1525
1526 if (u->in_load_queue) {
1527 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1528 u->in_load_queue = false;
1529 }
1530
1531 if (u->type == _UNIT_TYPE_INVALID)
1532 return -EINVAL;
1533
1534 if (u->load_state != UNIT_STUB)
1535 return 0;
1536
1537 if (u->transient_file) {
1538 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1539 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1540
1541 r = fflush_and_check(u->transient_file);
1542 if (r < 0)
1543 goto fail;
1544
1545 u->transient_file = safe_fclose(u->transient_file);
1546 u->fragment_mtime = now(CLOCK_REALTIME);
1547 }
1548
1549 if (UNIT_VTABLE(u)->load) {
1550 r = UNIT_VTABLE(u)->load(u);
1551 if (r < 0)
1552 goto fail;
1553 }
1554
1555 if (u->load_state == UNIT_STUB) {
1556 r = -ENOENT;
1557 goto fail;
1558 }
1559
1560 if (u->load_state == UNIT_LOADED) {
1561 unit_add_to_target_deps_queue(u);
1562
1563 r = unit_add_slice_dependencies(u);
1564 if (r < 0)
1565 goto fail;
1566
1567 r = unit_add_mount_dependencies(u);
1568 if (r < 0)
1569 goto fail;
1570
1571 r = unit_add_startup_units(u);
1572 if (r < 0)
1573 goto fail;
1574
1575 if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
1576 log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
1577 r = -ENOEXEC;
1578 goto fail;
1579 }
1580
1581 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1582 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1583
1584 /* We finished loading, let's ensure our parents recalculate the members mask */
1585 unit_invalidate_cgroup_members_masks(u);
1586 }
1587
1588 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1589
1590 unit_add_to_dbus_queue(unit_follow_merge(u));
1591 unit_add_to_gc_queue(u);
1592
1593 return 0;
1594
1595 fail:
1596 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code should hence
1597 * return ENOEXEC to ensure units are placed in this state after loading */
1598
1599 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1600 r == -ENOEXEC ? UNIT_BAD_SETTING :
1601 UNIT_ERROR;
1602 u->load_error = r;
1603
1604 unit_add_to_dbus_queue(u);
1605 unit_add_to_gc_queue(u);
1606
1607 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1608 }
1609
1610 _printf_(7, 8)
1611 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1612 Unit *u = userdata;
1613 va_list ap;
1614 int r;
1615
1616 va_start(ap, format);
1617 if (u)
1618 r = log_object_internalv(level, error, file, line, func,
1619 u->manager->unit_log_field,
1620 u->id,
1621 u->manager->invocation_log_field,
1622 u->invocation_id_string,
1623 format, ap);
1624 else
1625 r = log_internalv(level, error, file, line, func, format, ap);
1626 va_end(ap);
1627
1628 return r;
1629 }
1630
1631 static bool unit_test_condition(Unit *u) {
1632 assert(u);
1633
1634 dual_timestamp_get(&u->condition_timestamp);
1635 u->condition_result = condition_test_list(u->conditions, condition_type_to_string, log_unit_internal, u);
1636
1637 unit_add_to_dbus_queue(u);
1638
1639 return u->condition_result;
1640 }
1641
1642 static bool unit_test_assert(Unit *u) {
1643 assert(u);
1644
1645 dual_timestamp_get(&u->assert_timestamp);
1646 u->assert_result = condition_test_list(u->asserts, assert_type_to_string, log_unit_internal, u);
1647
1648 unit_add_to_dbus_queue(u);
1649
1650 return u->assert_result;
1651 }
1652
1653 void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) {
1654 const char *d;
1655
1656 d = unit_status_string(u);
1657 if (log_get_show_color())
1658 d = strjoina(ANSI_HIGHLIGHT, d, ANSI_NORMAL);
1659
1660 DISABLE_WARNING_FORMAT_NONLITERAL;
1661 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, status, unit_status_msg_format, d);
1662 REENABLE_WARNING;
1663 }
1664
1665 int unit_test_start_limit(Unit *u) {
1666 const char *reason;
1667
1668 assert(u);
1669
1670 if (ratelimit_below(&u->start_limit)) {
1671 u->start_limit_hit = false;
1672 return 0;
1673 }
1674
1675 log_unit_warning(u, "Start request repeated too quickly.");
1676 u->start_limit_hit = true;
1677
1678 reason = strjoina("unit ", u->id, " failed");
1679
1680 emergency_action(u->manager, u->start_limit_action,
1681 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1682 u->reboot_arg, -1, reason);
1683
1684 return -ECANCELED;
1685 }
1686
1687 bool unit_shall_confirm_spawn(Unit *u) {
1688 assert(u);
1689
1690 if (manager_is_confirm_spawn_disabled(u->manager))
1691 return false;
1692
1693 /* For some reasons units remaining in the same process group
1694 * as PID 1 fail to acquire the console even if it's not used
1695 * by any process. So skip the confirmation question for them. */
1696 return !unit_get_exec_context(u)->same_pgrp;
1697 }
1698
1699 static bool unit_verify_deps(Unit *u) {
1700 Unit *other;
1701 Iterator j;
1702 void *v;
1703
1704 assert(u);
1705
1706 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with
1707 * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job
1708 * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in
1709 * conjunction with After= as for them any such check would make things entirely racy. */
1710
1711 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], j) {
1712
1713 if (!hashmap_contains(u->dependencies[UNIT_AFTER], other))
1714 continue;
1715
1716 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1717 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1718 return false;
1719 }
1720 }
1721
1722 return true;
1723 }
1724
1725 /* Errors that aren't really errors:
1726 * -EALREADY: Unit is already started.
1727 * -ECOMM: Condition failed
1728 * -EAGAIN: An operation is already in progress. Retry later.
1729 *
1730 * Errors that are real errors:
1731 * -EBADR: This unit type does not support starting.
1732 * -ECANCELED: Start limit hit, too many requests for now
1733 * -EPROTO: Assert failed
1734 * -EINVAL: Unit not loaded
1735 * -EOPNOTSUPP: Unit type not supported
1736 * -ENOLINK: The necessary dependencies are not fulfilled.
1737 * -ESTALE: This unit has been started before and can't be started a second time
1738 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1739 */
1740 int unit_start(Unit *u) {
1741 UnitActiveState state;
1742 Unit *following;
1743 int r;
1744
1745 assert(u);
1746
1747 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1748 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1749 * waiting is finished. */
1750 state = unit_active_state(u);
1751 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1752 return -EALREADY;
1753
1754 /* Units that aren't loaded cannot be started */
1755 if (u->load_state != UNIT_LOADED)
1756 return -EINVAL;
1757
1758 /* Refuse starting scope units more than once */
1759 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1760 return -ESTALE;
1761
1762 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1763 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1764 * recheck the condition in that case. */
1765 if (state != UNIT_ACTIVATING &&
1766 !unit_test_condition(u)) {
1767
1768 /* Let's also check the start limit here. Normally, the start limit is only checked by the
1769 * .start() method of the unit type after it did some additional checks verifying everything
1770 * is in order (so that those other checks can propagate errors properly). However, if a
1771 * condition check doesn't hold we don't get that far but we should still ensure we are not
1772 * called in a tight loop without a rate limit check enforced, hence do the check here. Note
1773 * that ECOMM is generally not a reason for a job to fail, unlike most other errors here,
1774 * hence the chance is big that any triggering unit for us will trigger us again. Note this
1775 * condition check is a bit different from the condition check inside the per-unit .start()
1776 * function, as this one will not change the unit's state in any way (and we shouldn't here,
1777 * after all the condition failed). */
1778
1779 r = unit_test_start_limit(u);
1780 if (r < 0)
1781 return r;
1782
1783 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1784 }
1785
1786 /* If the asserts failed, fail the entire job */
1787 if (state != UNIT_ACTIVATING &&
1788 !unit_test_assert(u))
1789 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1790
1791 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1792 * condition checks, so that we rather return condition check errors (which are usually not
1793 * considered a true failure) than "not supported" errors (which are considered a failure).
1794 */
1795 if (!unit_supported(u))
1796 return -EOPNOTSUPP;
1797
1798 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1799 * should have taken care of this already, but let's check this here again. After all, our
1800 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1801 if (!unit_verify_deps(u))
1802 return -ENOLINK;
1803
1804 /* Forward to the main object, if we aren't it. */
1805 following = unit_following(u);
1806 if (following) {
1807 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1808 return unit_start(following);
1809 }
1810
1811 /* If it is stopped, but we cannot start it, then fail */
1812 if (!UNIT_VTABLE(u)->start)
1813 return -EBADR;
1814
1815 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1816 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1817 * waits for a holdoff timer to elapse before it will start again. */
1818
1819 unit_add_to_dbus_queue(u);
1820
1821 return UNIT_VTABLE(u)->start(u);
1822 }
1823
1824 bool unit_can_start(Unit *u) {
1825 assert(u);
1826
1827 if (u->load_state != UNIT_LOADED)
1828 return false;
1829
1830 if (!unit_supported(u))
1831 return false;
1832
1833 /* Scope units may be started only once */
1834 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1835 return false;
1836
1837 return !!UNIT_VTABLE(u)->start;
1838 }
1839
1840 bool unit_can_isolate(Unit *u) {
1841 assert(u);
1842
1843 return unit_can_start(u) &&
1844 u->allow_isolate;
1845 }
1846
1847 /* Errors:
1848 * -EBADR: This unit type does not support stopping.
1849 * -EALREADY: Unit is already stopped.
1850 * -EAGAIN: An operation is already in progress. Retry later.
1851 */
1852 int unit_stop(Unit *u) {
1853 UnitActiveState state;
1854 Unit *following;
1855
1856 assert(u);
1857
1858 state = unit_active_state(u);
1859 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1860 return -EALREADY;
1861
1862 following = unit_following(u);
1863 if (following) {
1864 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1865 return unit_stop(following);
1866 }
1867
1868 if (!UNIT_VTABLE(u)->stop)
1869 return -EBADR;
1870
1871 unit_add_to_dbus_queue(u);
1872
1873 return UNIT_VTABLE(u)->stop(u);
1874 }
1875
1876 bool unit_can_stop(Unit *u) {
1877 assert(u);
1878
1879 if (!unit_supported(u))
1880 return false;
1881
1882 if (u->perpetual)
1883 return false;
1884
1885 return !!UNIT_VTABLE(u)->stop;
1886 }
1887
1888 /* Errors:
1889 * -EBADR: This unit type does not support reloading.
1890 * -ENOEXEC: Unit is not started.
1891 * -EAGAIN: An operation is already in progress. Retry later.
1892 */
1893 int unit_reload(Unit *u) {
1894 UnitActiveState state;
1895 Unit *following;
1896
1897 assert(u);
1898
1899 if (u->load_state != UNIT_LOADED)
1900 return -EINVAL;
1901
1902 if (!unit_can_reload(u))
1903 return -EBADR;
1904
1905 state = unit_active_state(u);
1906 if (state == UNIT_RELOADING)
1907 return -EAGAIN;
1908
1909 if (state != UNIT_ACTIVE) {
1910 log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
1911 return -ENOEXEC;
1912 }
1913
1914 following = unit_following(u);
1915 if (following) {
1916 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
1917 return unit_reload(following);
1918 }
1919
1920 unit_add_to_dbus_queue(u);
1921
1922 if (!UNIT_VTABLE(u)->reload) {
1923 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
1924 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
1925 return 0;
1926 }
1927
1928 return UNIT_VTABLE(u)->reload(u);
1929 }
1930
1931 bool unit_can_reload(Unit *u) {
1932 assert(u);
1933
1934 if (UNIT_VTABLE(u)->can_reload)
1935 return UNIT_VTABLE(u)->can_reload(u);
1936
1937 if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO]))
1938 return true;
1939
1940 return UNIT_VTABLE(u)->reload;
1941 }
1942
1943 bool unit_is_unneeded(Unit *u) {
1944 static const UnitDependency deps[] = {
1945 UNIT_REQUIRED_BY,
1946 UNIT_REQUISITE_OF,
1947 UNIT_WANTED_BY,
1948 UNIT_BOUND_BY,
1949 };
1950 size_t j;
1951
1952 assert(u);
1953
1954 if (!u->stop_when_unneeded)
1955 return false;
1956
1957 /* Don't clean up while the unit is transitioning or is even inactive. */
1958 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
1959 return false;
1960 if (u->job)
1961 return false;
1962
1963 for (j = 0; j < ELEMENTSOF(deps); j++) {
1964 Unit *other;
1965 Iterator i;
1966 void *v;
1967
1968 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
1969 * restart, then don't clean this one up. */
1970
1971 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i) {
1972 if (other->job)
1973 return false;
1974
1975 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
1976 return false;
1977
1978 if (unit_will_restart(other))
1979 return false;
1980 }
1981 }
1982
1983 return true;
1984 }
1985
1986 static void check_unneeded_dependencies(Unit *u) {
1987
1988 static const UnitDependency deps[] = {
1989 UNIT_REQUIRES,
1990 UNIT_REQUISITE,
1991 UNIT_WANTS,
1992 UNIT_BINDS_TO,
1993 };
1994 size_t j;
1995
1996 assert(u);
1997
1998 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
1999
2000 for (j = 0; j < ELEMENTSOF(deps); j++) {
2001 Unit *other;
2002 Iterator i;
2003 void *v;
2004
2005 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i)
2006 unit_submit_to_stop_when_unneeded_queue(other);
2007 }
2008 }
2009
2010 static void unit_check_binds_to(Unit *u) {
2011 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2012 bool stop = false;
2013 Unit *other;
2014 Iterator i;
2015 void *v;
2016 int r;
2017
2018 assert(u);
2019
2020 if (u->job)
2021 return;
2022
2023 if (unit_active_state(u) != UNIT_ACTIVE)
2024 return;
2025
2026 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) {
2027 if (other->job)
2028 continue;
2029
2030 if (!other->coldplugged)
2031 /* We might yet create a job for the other unit… */
2032 continue;
2033
2034 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2035 continue;
2036
2037 stop = true;
2038 break;
2039 }
2040
2041 if (!stop)
2042 return;
2043
2044 /* If stopping a unit fails continuously we might enter a stop
2045 * loop here, hence stop acting on the service being
2046 * unnecessary after a while. */
2047 if (!ratelimit_below(&u->auto_stop_ratelimit)) {
2048 log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
2049 return;
2050 }
2051
2052 assert(other);
2053 log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
2054
2055 /* A unit we need to run is gone. Sniff. Let's stop this. */
2056 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
2057 if (r < 0)
2058 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
2059 }
2060
2061 static void retroactively_start_dependencies(Unit *u) {
2062 Iterator i;
2063 Unit *other;
2064 void *v;
2065
2066 assert(u);
2067 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2068
2069 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES], i)
2070 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2071 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2072 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2073
2074 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i)
2075 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2076 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2077 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2078
2079 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS], i)
2080 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2081 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2082 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2083
2084 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS], i)
2085 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2086 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2087
2088 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY], i)
2089 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2090 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2091 }
2092
2093 static void retroactively_stop_dependencies(Unit *u) {
2094 Unit *other;
2095 Iterator i;
2096 void *v;
2097
2098 assert(u);
2099 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2100
2101 /* Pull down units which are bound to us recursively if enabled */
2102 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY], i)
2103 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2104 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2105 }
2106
2107 void unit_start_on_failure(Unit *u) {
2108 Unit *other;
2109 Iterator i;
2110 void *v;
2111 int r;
2112
2113 assert(u);
2114
2115 if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2116 return;
2117
2118 log_unit_info(u, "Triggering OnFailure= dependencies.");
2119
2120 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE], i) {
2121 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2122
2123 r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, NULL, &error, NULL);
2124 if (r < 0)
2125 log_unit_warning_errno(u, r, "Failed to enqueue OnFailure= job, ignoring: %s", bus_error_message(&error, r));
2126 }
2127 }
2128
2129 void unit_trigger_notify(Unit *u) {
2130 Unit *other;
2131 Iterator i;
2132 void *v;
2133
2134 assert(u);
2135
2136 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY], i)
2137 if (UNIT_VTABLE(other)->trigger_notify)
2138 UNIT_VTABLE(other)->trigger_notify(other, u);
2139 }
2140
2141 static int unit_log_resources(Unit *u) {
2142 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2143 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2144 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2145 size_t n_message_parts = 0, n_iovec = 0;
2146 char* message_parts[1 + 2 + 2 + 1], *t;
2147 nsec_t nsec = NSEC_INFINITY;
2148 CGroupIPAccountingMetric m;
2149 size_t i;
2150 int r;
2151 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2152 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2153 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2154 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2155 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2156 };
2157 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2158 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2159 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2160 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2161 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2162 };
2163
2164 assert(u);
2165
2166 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2167 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2168 * information and the complete data in structured fields. */
2169
2170 (void) unit_get_cpu_usage(u, &nsec);
2171 if (nsec != NSEC_INFINITY) {
2172 char buf[FORMAT_TIMESPAN_MAX] = "";
2173
2174 /* Format the CPU time for inclusion in the structured log message */
2175 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2176 r = log_oom();
2177 goto finish;
2178 }
2179 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2180
2181 /* Format the CPU time for inclusion in the human language message string */
2182 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2183 t = strjoin("consumed ", buf, " CPU time");
2184 if (!t) {
2185 r = log_oom();
2186 goto finish;
2187 }
2188
2189 message_parts[n_message_parts++] = t;
2190 }
2191
2192 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2193 char buf[FORMAT_BYTES_MAX] = "";
2194 uint64_t value = UINT64_MAX;
2195
2196 assert(io_fields[k]);
2197
2198 (void) unit_get_io_accounting(u, k, k > 0, &value);
2199 if (value == UINT64_MAX)
2200 continue;
2201
2202 have_io_accounting = true;
2203 if (value > 0)
2204 any_io = true;
2205
2206 /* Format IO accounting data for inclusion in the structured log message */
2207 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2208 r = log_oom();
2209 goto finish;
2210 }
2211 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2212
2213 /* Format the IO accounting data for inclusion in the human language message string, but only
2214 * for the bytes counters (and not for the operations counters) */
2215 if (k == CGROUP_IO_READ_BYTES) {
2216 assert(!rr);
2217 rr = strjoin("read ", format_bytes(buf, sizeof(buf), value), " from disk");
2218 if (!rr) {
2219 r = log_oom();
2220 goto finish;
2221 }
2222 } else if (k == CGROUP_IO_WRITE_BYTES) {
2223 assert(!wr);
2224 wr = strjoin("written ", format_bytes(buf, sizeof(buf), value), " to disk");
2225 if (!wr) {
2226 r = log_oom();
2227 goto finish;
2228 }
2229 }
2230 }
2231
2232 if (have_io_accounting) {
2233 if (any_io) {
2234 if (rr)
2235 message_parts[n_message_parts++] = TAKE_PTR(rr);
2236 if (wr)
2237 message_parts[n_message_parts++] = TAKE_PTR(wr);
2238
2239 } else {
2240 char *k;
2241
2242 k = strdup("no IO");
2243 if (!k) {
2244 r = log_oom();
2245 goto finish;
2246 }
2247
2248 message_parts[n_message_parts++] = k;
2249 }
2250 }
2251
2252 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2253 char buf[FORMAT_BYTES_MAX] = "";
2254 uint64_t value = UINT64_MAX;
2255
2256 assert(ip_fields[m]);
2257
2258 (void) unit_get_ip_accounting(u, m, &value);
2259 if (value == UINT64_MAX)
2260 continue;
2261
2262 have_ip_accounting = true;
2263 if (value > 0)
2264 any_traffic = true;
2265
2266 /* Format IP accounting data for inclusion in the structured log message */
2267 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2268 r = log_oom();
2269 goto finish;
2270 }
2271 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2272
2273 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2274 * bytes counters (and not for the packets counters) */
2275 if (m == CGROUP_IP_INGRESS_BYTES) {
2276 assert(!igress);
2277 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2278 if (!igress) {
2279 r = log_oom();
2280 goto finish;
2281 }
2282 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2283 assert(!egress);
2284 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2285 if (!egress) {
2286 r = log_oom();
2287 goto finish;
2288 }
2289 }
2290 }
2291
2292 if (have_ip_accounting) {
2293 if (any_traffic) {
2294 if (igress)
2295 message_parts[n_message_parts++] = TAKE_PTR(igress);
2296 if (egress)
2297 message_parts[n_message_parts++] = TAKE_PTR(egress);
2298
2299 } else {
2300 char *k;
2301
2302 k = strdup("no IP traffic");
2303 if (!k) {
2304 r = log_oom();
2305 goto finish;
2306 }
2307
2308 message_parts[n_message_parts++] = k;
2309 }
2310 }
2311
2312 /* Is there any accounting data available at all? */
2313 if (n_iovec == 0) {
2314 r = 0;
2315 goto finish;
2316 }
2317
2318 if (n_message_parts == 0)
2319 t = strjoina("MESSAGE=", u->id, ": Completed.");
2320 else {
2321 _cleanup_free_ char *joined;
2322
2323 message_parts[n_message_parts] = NULL;
2324
2325 joined = strv_join(message_parts, ", ");
2326 if (!joined) {
2327 r = log_oom();
2328 goto finish;
2329 }
2330
2331 joined[0] = ascii_toupper(joined[0]);
2332 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2333 }
2334
2335 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2336 * and hence don't increase n_iovec for them */
2337 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2338 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2339
2340 t = strjoina(u->manager->unit_log_field, u->id);
2341 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2342
2343 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2344 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2345
2346 log_struct_iovec(LOG_INFO, iovec, n_iovec + 4);
2347 r = 0;
2348
2349 finish:
2350 for (i = 0; i < n_message_parts; i++)
2351 free(message_parts[i]);
2352
2353 for (i = 0; i < n_iovec; i++)
2354 free(iovec[i].iov_base);
2355
2356 return r;
2357
2358 }
2359
2360 static void unit_update_on_console(Unit *u) {
2361 bool b;
2362
2363 assert(u);
2364
2365 b = unit_needs_console(u);
2366 if (u->on_console == b)
2367 return;
2368
2369 u->on_console = b;
2370 if (b)
2371 manager_ref_console(u->manager);
2372 else
2373 manager_unref_console(u->manager);
2374 }
2375
2376 static void unit_emit_audit_start(Unit *u) {
2377 assert(u);
2378
2379 if (u->type != UNIT_SERVICE)
2380 return;
2381
2382 /* Write audit record if we have just finished starting up */
2383 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2384 u->in_audit = true;
2385 }
2386
2387 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2388 assert(u);
2389
2390 if (u->type != UNIT_SERVICE)
2391 return;
2392
2393 if (u->in_audit) {
2394 /* Write audit record if we have just finished shutting down */
2395 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2396 u->in_audit = false;
2397 } else {
2398 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2399 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2400
2401 if (state == UNIT_INACTIVE)
2402 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2403 }
2404 }
2405
2406 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2407 bool unexpected = false;
2408
2409 assert(j);
2410
2411 if (j->state == JOB_WAITING)
2412
2413 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2414 * due to EAGAIN. */
2415 job_add_to_run_queue(j);
2416
2417 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2418 * hence needs to invalidate jobs. */
2419
2420 switch (j->type) {
2421
2422 case JOB_START:
2423 case JOB_VERIFY_ACTIVE:
2424
2425 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2426 job_finish_and_invalidate(j, JOB_DONE, true, false);
2427 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2428 unexpected = true;
2429
2430 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2431 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2432 }
2433
2434 break;
2435
2436 case JOB_RELOAD:
2437 case JOB_RELOAD_OR_START:
2438 case JOB_TRY_RELOAD:
2439
2440 if (j->state == JOB_RUNNING) {
2441 if (ns == UNIT_ACTIVE)
2442 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2443 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2444 unexpected = true;
2445
2446 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2447 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2448 }
2449 }
2450
2451 break;
2452
2453 case JOB_STOP:
2454 case JOB_RESTART:
2455 case JOB_TRY_RESTART:
2456
2457 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2458 job_finish_and_invalidate(j, JOB_DONE, true, false);
2459 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2460 unexpected = true;
2461 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2462 }
2463
2464 break;
2465
2466 default:
2467 assert_not_reached("Job type unknown");
2468 }
2469
2470 return unexpected;
2471 }
2472
2473 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2474 const char *reason;
2475 Manager *m;
2476
2477 assert(u);
2478 assert(os < _UNIT_ACTIVE_STATE_MAX);
2479 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2480
2481 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2482 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2483 * remounted this function will be called too! */
2484
2485 m = u->manager;
2486
2487 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2488 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2489 unit_add_to_dbus_queue(u);
2490
2491 /* Update timestamps for state changes */
2492 if (!MANAGER_IS_RELOADING(m)) {
2493 dual_timestamp_get(&u->state_change_timestamp);
2494
2495 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2496 u->inactive_exit_timestamp = u->state_change_timestamp;
2497 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2498 u->inactive_enter_timestamp = u->state_change_timestamp;
2499
2500 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2501 u->active_enter_timestamp = u->state_change_timestamp;
2502 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2503 u->active_exit_timestamp = u->state_change_timestamp;
2504 }
2505
2506 /* Keep track of failed units */
2507 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2508
2509 /* Make sure the cgroup and state files are always removed when we become inactive */
2510 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2511 unit_prune_cgroup(u);
2512 unit_unlink_state_files(u);
2513 }
2514
2515 unit_update_on_console(u);
2516
2517 if (!MANAGER_IS_RELOADING(m)) {
2518 bool unexpected;
2519
2520 /* Let's propagate state changes to the job */
2521 if (u->job)
2522 unexpected = unit_process_job(u->job, ns, flags);
2523 else
2524 unexpected = true;
2525
2526 /* If this state change happened without being requested by a job, then let's retroactively start or
2527 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2528 * additional jobs just because something is already activated. */
2529
2530 if (unexpected) {
2531 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2532 retroactively_start_dependencies(u);
2533 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2534 retroactively_stop_dependencies(u);
2535 }
2536
2537 /* stop unneeded units regardless if going down was expected or not */
2538 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2539 check_unneeded_dependencies(u);
2540
2541 if (ns != os && ns == UNIT_FAILED) {
2542 log_unit_debug(u, "Unit entered failed state.");
2543
2544 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2545 unit_start_on_failure(u);
2546 }
2547
2548 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2549 /* This unit just finished starting up */
2550
2551 unit_emit_audit_start(u);
2552 manager_send_unit_plymouth(m, u);
2553 }
2554
2555 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2556 /* This unit just stopped/failed. */
2557
2558 unit_emit_audit_stop(u, ns);
2559 unit_log_resources(u);
2560 }
2561 }
2562
2563 manager_recheck_journal(m);
2564 manager_recheck_dbus(m);
2565
2566 unit_trigger_notify(u);
2567
2568 if (!MANAGER_IS_RELOADING(m)) {
2569 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2570 unit_submit_to_stop_when_unneeded_queue(u);
2571
2572 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens when
2573 * something BindsTo= to a Type=oneshot unit, as these units go directly from starting to inactive,
2574 * without ever entering started.) */
2575 unit_check_binds_to(u);
2576
2577 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2578 reason = strjoina("unit ", u->id, " failed");
2579 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2580 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2581 reason = strjoina("unit ", u->id, " succeeded");
2582 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2583 }
2584 }
2585
2586 unit_add_to_gc_queue(u);
2587 }
2588
2589 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2590 int r;
2591
2592 assert(u);
2593 assert(pid_is_valid(pid));
2594
2595 /* Watch a specific PID */
2596
2597 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2598 * opportunity to remove any stalled references to this PID as they can be created
2599 * easily (when watching a process which is not our direct child). */
2600 if (exclusive)
2601 manager_unwatch_pid(u->manager, pid);
2602
2603 r = set_ensure_allocated(&u->pids, NULL);
2604 if (r < 0)
2605 return r;
2606
2607 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2608 if (r < 0)
2609 return r;
2610
2611 /* First try, let's add the unit keyed by "pid". */
2612 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2613 if (r == -EEXIST) {
2614 Unit **array;
2615 bool found = false;
2616 size_t n = 0;
2617
2618 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2619 * to an array of Units rather than just a Unit), lists us already. */
2620
2621 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2622 if (array)
2623 for (; array[n]; n++)
2624 if (array[n] == u)
2625 found = true;
2626
2627 if (found) /* Found it already? if so, do nothing */
2628 r = 0;
2629 else {
2630 Unit **new_array;
2631
2632 /* Allocate a new array */
2633 new_array = new(Unit*, n + 2);
2634 if (!new_array)
2635 return -ENOMEM;
2636
2637 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2638 new_array[n] = u;
2639 new_array[n+1] = NULL;
2640
2641 /* Add or replace the old array */
2642 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2643 if (r < 0) {
2644 free(new_array);
2645 return r;
2646 }
2647
2648 free(array);
2649 }
2650 } else if (r < 0)
2651 return r;
2652
2653 r = set_put(u->pids, PID_TO_PTR(pid));
2654 if (r < 0)
2655 return r;
2656
2657 return 0;
2658 }
2659
2660 void unit_unwatch_pid(Unit *u, pid_t pid) {
2661 Unit **array;
2662
2663 assert(u);
2664 assert(pid_is_valid(pid));
2665
2666 /* First let's drop the unit in case it's keyed as "pid". */
2667 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2668
2669 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2670 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2671 if (array) {
2672 size_t n, m = 0;
2673
2674 /* Let's iterate through the array, dropping our own entry */
2675 for (n = 0; array[n]; n++)
2676 if (array[n] != u)
2677 array[m++] = array[n];
2678 array[m] = NULL;
2679
2680 if (m == 0) {
2681 /* The array is now empty, remove the entire entry */
2682 assert(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2683 free(array);
2684 }
2685 }
2686
2687 (void) set_remove(u->pids, PID_TO_PTR(pid));
2688 }
2689
2690 void unit_unwatch_all_pids(Unit *u) {
2691 assert(u);
2692
2693 while (!set_isempty(u->pids))
2694 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2695
2696 u->pids = set_free(u->pids);
2697 }
2698
2699 static void unit_tidy_watch_pids(Unit *u) {
2700 pid_t except1, except2;
2701 Iterator i;
2702 void *e;
2703
2704 assert(u);
2705
2706 /* Cleans dead PIDs from our list */
2707
2708 except1 = unit_main_pid(u);
2709 except2 = unit_control_pid(u);
2710
2711 SET_FOREACH(e, u->pids, i) {
2712 pid_t pid = PTR_TO_PID(e);
2713
2714 if (pid == except1 || pid == except2)
2715 continue;
2716
2717 if (!pid_is_unwaited(pid))
2718 unit_unwatch_pid(u, pid);
2719 }
2720 }
2721
2722 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2723 Unit *u = userdata;
2724
2725 assert(s);
2726 assert(u);
2727
2728 unit_tidy_watch_pids(u);
2729 unit_watch_all_pids(u);
2730
2731 /* If the PID set is empty now, then let's finish this off. */
2732 unit_synthesize_cgroup_empty_event(u);
2733
2734 return 0;
2735 }
2736
2737 int unit_enqueue_rewatch_pids(Unit *u) {
2738 int r;
2739
2740 assert(u);
2741
2742 if (!u->cgroup_path)
2743 return -ENOENT;
2744
2745 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2746 if (r < 0)
2747 return r;
2748 if (r > 0) /* On unified we can use proper notifications */
2749 return 0;
2750
2751 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2752 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2753 * involves issuing kill(pid, 0) on all processes we watch. */
2754
2755 if (!u->rewatch_pids_event_source) {
2756 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2757
2758 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2759 if (r < 0)
2760 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2761
2762 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2763 if (r < 0)
2764 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: m");
2765
2766 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2767
2768 u->rewatch_pids_event_source = TAKE_PTR(s);
2769 }
2770
2771 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2772 if (r < 0)
2773 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2774
2775 return 0;
2776 }
2777
2778 void unit_dequeue_rewatch_pids(Unit *u) {
2779 int r;
2780 assert(u);
2781
2782 if (!u->rewatch_pids_event_source)
2783 return;
2784
2785 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2786 if (r < 0)
2787 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2788
2789 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2790 }
2791
2792 bool unit_job_is_applicable(Unit *u, JobType j) {
2793 assert(u);
2794 assert(j >= 0 && j < _JOB_TYPE_MAX);
2795
2796 switch (j) {
2797
2798 case JOB_VERIFY_ACTIVE:
2799 case JOB_START:
2800 case JOB_NOP:
2801 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2802 * startable by us but may appear due to external events, and it thus makes sense to permit enqueing
2803 * jobs for it. */
2804 return true;
2805
2806 case JOB_STOP:
2807 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2808 * external events), hence it makes no sense to permit enqueing such a request either. */
2809 return !u->perpetual;
2810
2811 case JOB_RESTART:
2812 case JOB_TRY_RESTART:
2813 return unit_can_stop(u) && unit_can_start(u);
2814
2815 case JOB_RELOAD:
2816 case JOB_TRY_RELOAD:
2817 return unit_can_reload(u);
2818
2819 case JOB_RELOAD_OR_START:
2820 return unit_can_reload(u) && unit_can_start(u);
2821
2822 default:
2823 assert_not_reached("Invalid job type");
2824 }
2825 }
2826
2827 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
2828 assert(u);
2829
2830 /* Only warn about some unit types */
2831 if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
2832 return;
2833
2834 if (streq_ptr(u->id, other))
2835 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
2836 else
2837 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
2838 }
2839
2840 static int unit_add_dependency_hashmap(
2841 Hashmap **h,
2842 Unit *other,
2843 UnitDependencyMask origin_mask,
2844 UnitDependencyMask destination_mask) {
2845
2846 UnitDependencyInfo info;
2847 int r;
2848
2849 assert(h);
2850 assert(other);
2851 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
2852 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
2853 assert(origin_mask > 0 || destination_mask > 0);
2854
2855 r = hashmap_ensure_allocated(h, NULL);
2856 if (r < 0)
2857 return r;
2858
2859 assert_cc(sizeof(void*) == sizeof(info));
2860
2861 info.data = hashmap_get(*h, other);
2862 if (info.data) {
2863 /* Entry already exists. Add in our mask. */
2864
2865 if (FLAGS_SET(origin_mask, info.origin_mask) &&
2866 FLAGS_SET(destination_mask, info.destination_mask))
2867 return 0; /* NOP */
2868
2869 info.origin_mask |= origin_mask;
2870 info.destination_mask |= destination_mask;
2871
2872 r = hashmap_update(*h, other, info.data);
2873 } else {
2874 info = (UnitDependencyInfo) {
2875 .origin_mask = origin_mask,
2876 .destination_mask = destination_mask,
2877 };
2878
2879 r = hashmap_put(*h, other, info.data);
2880 }
2881 if (r < 0)
2882 return r;
2883
2884 return 1;
2885 }
2886
2887 int unit_add_dependency(
2888 Unit *u,
2889 UnitDependency d,
2890 Unit *other,
2891 bool add_reference,
2892 UnitDependencyMask mask) {
2893
2894 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
2895 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
2896 [UNIT_WANTS] = UNIT_WANTED_BY,
2897 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
2898 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
2899 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
2900 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
2901 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
2902 [UNIT_WANTED_BY] = UNIT_WANTS,
2903 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
2904 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
2905 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
2906 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
2907 [UNIT_BEFORE] = UNIT_AFTER,
2908 [UNIT_AFTER] = UNIT_BEFORE,
2909 [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
2910 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
2911 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
2912 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
2913 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
2914 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
2915 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
2916 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
2917 };
2918 Unit *original_u = u, *original_other = other;
2919 int r;
2920
2921 assert(u);
2922 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
2923 assert(other);
2924
2925 u = unit_follow_merge(u);
2926 other = unit_follow_merge(other);
2927
2928 /* We won't allow dependencies on ourselves. We will not
2929 * consider them an error however. */
2930 if (u == other) {
2931 maybe_warn_about_dependency(original_u, original_other->id, d);
2932 return 0;
2933 }
2934
2935 if ((d == UNIT_BEFORE && other->type == UNIT_DEVICE) ||
2936 (d == UNIT_AFTER && u->type == UNIT_DEVICE)) {
2937 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
2938 return 0;
2939 }
2940
2941 r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0);
2942 if (r < 0)
2943 return r;
2944
2945 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
2946 r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask);
2947 if (r < 0)
2948 return r;
2949 }
2950
2951 if (add_reference) {
2952 r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0);
2953 if (r < 0)
2954 return r;
2955
2956 r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask);
2957 if (r < 0)
2958 return r;
2959 }
2960
2961 unit_add_to_dbus_queue(u);
2962 return 0;
2963 }
2964
2965 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
2966 int r;
2967
2968 assert(u);
2969
2970 r = unit_add_dependency(u, d, other, add_reference, mask);
2971 if (r < 0)
2972 return r;
2973
2974 return unit_add_dependency(u, e, other, add_reference, mask);
2975 }
2976
2977 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
2978 int r;
2979
2980 assert(u);
2981 assert(name);
2982 assert(buf);
2983 assert(ret);
2984
2985 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
2986 *buf = NULL;
2987 *ret = name;
2988 return 0;
2989 }
2990
2991 if (u->instance)
2992 r = unit_name_replace_instance(name, u->instance, buf);
2993 else {
2994 _cleanup_free_ char *i = NULL;
2995
2996 r = unit_name_to_prefix(u->id, &i);
2997 if (r < 0)
2998 return r;
2999
3000 r = unit_name_replace_instance(name, i, buf);
3001 }
3002 if (r < 0)
3003 return r;
3004
3005 *ret = *buf;
3006 return 0;
3007 }
3008
3009 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3010 _cleanup_free_ char *buf = NULL;
3011 Unit *other;
3012 int r;
3013
3014 assert(u);
3015 assert(name);
3016
3017 r = resolve_template(u, name, &buf, &name);
3018 if (r < 0)
3019 return r;
3020
3021 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3022 if (r < 0)
3023 return r;
3024
3025 return unit_add_dependency(u, d, other, add_reference, mask);
3026 }
3027
3028 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3029 _cleanup_free_ char *buf = NULL;
3030 Unit *other;
3031 int r;
3032
3033 assert(u);
3034 assert(name);
3035
3036 r = resolve_template(u, name, &buf, &name);
3037 if (r < 0)
3038 return r;
3039
3040 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3041 if (r < 0)
3042 return r;
3043
3044 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3045 }
3046
3047 int set_unit_path(const char *p) {
3048 /* This is mostly for debug purposes */
3049 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
3050 return -errno;
3051
3052 return 0;
3053 }
3054
3055 char *unit_dbus_path(Unit *u) {
3056 assert(u);
3057
3058 if (!u->id)
3059 return NULL;
3060
3061 return unit_dbus_path_from_name(u->id);
3062 }
3063
3064 char *unit_dbus_path_invocation_id(Unit *u) {
3065 assert(u);
3066
3067 if (sd_id128_is_null(u->invocation_id))
3068 return NULL;
3069
3070 return unit_dbus_path_from_name(u->invocation_id_string);
3071 }
3072
3073 int unit_set_slice(Unit *u, Unit *slice) {
3074 assert(u);
3075 assert(slice);
3076
3077 /* Sets the unit slice if it has not been set before. Is extra
3078 * careful, to only allow this for units that actually have a
3079 * cgroup context. Also, we don't allow to set this for slices
3080 * (since the parent slice is derived from the name). Make
3081 * sure the unit we set is actually a slice. */
3082
3083 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3084 return -EOPNOTSUPP;
3085
3086 if (u->type == UNIT_SLICE)
3087 return -EINVAL;
3088
3089 if (unit_active_state(u) != UNIT_INACTIVE)
3090 return -EBUSY;
3091
3092 if (slice->type != UNIT_SLICE)
3093 return -EINVAL;
3094
3095 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3096 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3097 return -EPERM;
3098
3099 if (UNIT_DEREF(u->slice) == slice)
3100 return 0;
3101
3102 /* Disallow slice changes if @u is already bound to cgroups */
3103 if (UNIT_ISSET(u->slice) && u->cgroup_realized)
3104 return -EBUSY;
3105
3106 unit_ref_set(&u->slice, u, slice);
3107 return 1;
3108 }
3109
3110 int unit_set_default_slice(Unit *u) {
3111 const char *slice_name;
3112 Unit *slice;
3113 int r;
3114
3115 assert(u);
3116
3117 if (UNIT_ISSET(u->slice))
3118 return 0;
3119
3120 if (u->instance) {
3121 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3122
3123 /* Implicitly place all instantiated units in their
3124 * own per-template slice */
3125
3126 r = unit_name_to_prefix(u->id, &prefix);
3127 if (r < 0)
3128 return r;
3129
3130 /* The prefix is already escaped, but it might include
3131 * "-" which has a special meaning for slice units,
3132 * hence escape it here extra. */
3133 escaped = unit_name_escape(prefix);
3134 if (!escaped)
3135 return -ENOMEM;
3136
3137 if (MANAGER_IS_SYSTEM(u->manager))
3138 slice_name = strjoina("system-", escaped, ".slice");
3139 else
3140 slice_name = strjoina(escaped, ".slice");
3141 } else
3142 slice_name =
3143 MANAGER_IS_SYSTEM(u->manager) && !unit_has_name(u, SPECIAL_INIT_SCOPE)
3144 ? SPECIAL_SYSTEM_SLICE
3145 : SPECIAL_ROOT_SLICE;
3146
3147 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3148 if (r < 0)
3149 return r;
3150
3151 return unit_set_slice(u, slice);
3152 }
3153
3154 const char *unit_slice_name(Unit *u) {
3155 assert(u);
3156
3157 if (!UNIT_ISSET(u->slice))
3158 return NULL;
3159
3160 return UNIT_DEREF(u->slice)->id;
3161 }
3162
3163 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3164 _cleanup_free_ char *t = NULL;
3165 int r;
3166
3167 assert(u);
3168 assert(type);
3169 assert(_found);
3170
3171 r = unit_name_change_suffix(u->id, type, &t);
3172 if (r < 0)
3173 return r;
3174 if (unit_has_name(u, t))
3175 return -EINVAL;
3176
3177 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3178 assert(r < 0 || *_found != u);
3179 return r;
3180 }
3181
3182 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3183 const char *name, *old_owner, *new_owner;
3184 Unit *u = userdata;
3185 int r;
3186
3187 assert(message);
3188 assert(u);
3189
3190 r = sd_bus_message_read(message, "sss", &name, &old_owner, &new_owner);
3191 if (r < 0) {
3192 bus_log_parse_error(r);
3193 return 0;
3194 }
3195
3196 old_owner = empty_to_null(old_owner);
3197 new_owner = empty_to_null(new_owner);
3198
3199 if (UNIT_VTABLE(u)->bus_name_owner_change)
3200 UNIT_VTABLE(u)->bus_name_owner_change(u, name, old_owner, new_owner);
3201
3202 return 0;
3203 }
3204
3205 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3206 const char *match;
3207
3208 assert(u);
3209 assert(bus);
3210 assert(name);
3211
3212 if (u->match_bus_slot)
3213 return -EBUSY;
3214
3215 match = strjoina("type='signal',"
3216 "sender='org.freedesktop.DBus',"
3217 "path='/org/freedesktop/DBus',"
3218 "interface='org.freedesktop.DBus',"
3219 "member='NameOwnerChanged',"
3220 "arg0='", name, "'");
3221
3222 return sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3223 }
3224
3225 int unit_watch_bus_name(Unit *u, const char *name) {
3226 int r;
3227
3228 assert(u);
3229 assert(name);
3230
3231 /* Watch a specific name on the bus. We only support one unit
3232 * watching each name for now. */
3233
3234 if (u->manager->api_bus) {
3235 /* If the bus is already available, install the match directly.
3236 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3237 r = unit_install_bus_match(u, u->manager->api_bus, name);
3238 if (r < 0)
3239 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3240 }
3241
3242 r = hashmap_put(u->manager->watch_bus, name, u);
3243 if (r < 0) {
3244 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3245 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3246 }
3247
3248 return 0;
3249 }
3250
3251 void unit_unwatch_bus_name(Unit *u, const char *name) {
3252 assert(u);
3253 assert(name);
3254
3255 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3256 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3257 }
3258
3259 bool unit_can_serialize(Unit *u) {
3260 assert(u);
3261
3262 return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
3263 }
3264
3265 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
3266 _cleanup_free_ char *s = NULL;
3267 int r;
3268
3269 assert(f);
3270 assert(key);
3271
3272 if (mask == 0)
3273 return 0;
3274
3275 r = cg_mask_to_string(mask, &s);
3276 if (r < 0)
3277 return log_error_errno(r, "Failed to format cgroup mask: %m");
3278
3279 return serialize_item(f, key, s);
3280 }
3281
3282 static const char *const ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
3283 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
3284 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
3285 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
3286 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
3287 };
3288
3289 static const char *const io_accounting_metric_field_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3290 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
3291 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
3292 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
3293 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
3294 };
3295
3296 static const char *const io_accounting_metric_field_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3297 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
3298 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
3299 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
3300 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
3301 };
3302
3303 int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
3304 CGroupIPAccountingMetric m;
3305 int r;
3306
3307 assert(u);
3308 assert(f);
3309 assert(fds);
3310
3311 if (unit_can_serialize(u)) {
3312 r = UNIT_VTABLE(u)->serialize(u, f, fds);
3313 if (r < 0)
3314 return r;
3315 }
3316
3317 (void) serialize_dual_timestamp(f, "state-change-timestamp", &u->state_change_timestamp);
3318
3319 (void) serialize_dual_timestamp(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
3320 (void) serialize_dual_timestamp(f, "active-enter-timestamp", &u->active_enter_timestamp);
3321 (void) serialize_dual_timestamp(f, "active-exit-timestamp", &u->active_exit_timestamp);
3322 (void) serialize_dual_timestamp(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
3323
3324 (void) serialize_dual_timestamp(f, "condition-timestamp", &u->condition_timestamp);
3325 (void) serialize_dual_timestamp(f, "assert-timestamp", &u->assert_timestamp);
3326
3327 if (dual_timestamp_is_set(&u->condition_timestamp))
3328 (void) serialize_bool(f, "condition-result", u->condition_result);
3329
3330 if (dual_timestamp_is_set(&u->assert_timestamp))
3331 (void) serialize_bool(f, "assert-result", u->assert_result);
3332
3333 (void) serialize_bool(f, "transient", u->transient);
3334 (void) serialize_bool(f, "in-audit", u->in_audit);
3335
3336 (void) serialize_bool(f, "exported-invocation-id", u->exported_invocation_id);
3337 (void) serialize_bool(f, "exported-log-level-max", u->exported_log_level_max);
3338 (void) serialize_bool(f, "exported-log-extra-fields", u->exported_log_extra_fields);
3339 (void) serialize_bool(f, "exported-log-rate-limit-interval", u->exported_log_rate_limit_interval);
3340 (void) serialize_bool(f, "exported-log-rate-limit-burst", u->exported_log_rate_limit_burst);
3341
3342 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base);
3343 if (u->cpu_usage_last != NSEC_INFINITY)
3344 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last);
3345
3346 if (u->oom_kill_last > 0)
3347 (void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, u->oom_kill_last);
3348
3349 for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
3350 (void) serialize_item_format(f, io_accounting_metric_field_base[im], "%" PRIu64, u->io_accounting_base[im]);
3351
3352 if (u->io_accounting_last[im] != UINT64_MAX)
3353 (void) serialize_item_format(f, io_accounting_metric_field_last[im], "%" PRIu64, u->io_accounting_last[im]);
3354 }
3355
3356 if (u->cgroup_path)
3357 (void) serialize_item(f, "cgroup", u->cgroup_path);
3358
3359 (void) serialize_bool(f, "cgroup-realized", u->cgroup_realized);
3360 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask);
3361 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask);
3362 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", u->cgroup_invalidated_mask);
3363
3364 if (uid_is_valid(u->ref_uid))
3365 (void) serialize_item_format(f, "ref-uid", UID_FMT, u->ref_uid);
3366 if (gid_is_valid(u->ref_gid))
3367 (void) serialize_item_format(f, "ref-gid", GID_FMT, u->ref_gid);
3368
3369 if (!sd_id128_is_null(u->invocation_id))
3370 (void) serialize_item_format(f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id));
3371
3372 bus_track_serialize(u->bus_track, f, "ref");
3373
3374 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
3375 uint64_t v;
3376
3377 r = unit_get_ip_accounting(u, m, &v);
3378 if (r >= 0)
3379 (void) serialize_item_format(f, ip_accounting_metric_field[m], "%" PRIu64, v);
3380 }
3381
3382 if (serialize_jobs) {
3383 if (u->job) {
3384 fputs("job\n", f);
3385 job_serialize(u->job, f);
3386 }
3387
3388 if (u->nop_job) {
3389 fputs("job\n", f);
3390 job_serialize(u->nop_job, f);
3391 }
3392 }
3393
3394 /* End marker */
3395 fputc('\n', f);
3396 return 0;
3397 }
3398
3399 static int unit_deserialize_job(Unit *u, FILE *f) {
3400 _cleanup_(job_freep) Job *j = NULL;
3401 int r;
3402
3403 assert(u);
3404 assert(f);
3405
3406 j = job_new_raw(u);
3407 if (!j)
3408 return log_oom();
3409
3410 r = job_deserialize(j, f);
3411 if (r < 0)
3412 return r;
3413
3414 r = job_install_deserialized(j);
3415 if (r < 0)
3416 return r;
3417
3418 TAKE_PTR(j);
3419 return 0;
3420 }
3421
3422 int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
3423 int r;
3424
3425 assert(u);
3426 assert(f);
3427 assert(fds);
3428
3429 for (;;) {
3430 _cleanup_free_ char *line = NULL;
3431 char *l, *v;
3432 ssize_t m;
3433 size_t k;
3434
3435 r = read_line(f, LONG_LINE_MAX, &line);
3436 if (r < 0)
3437 return log_error_errno(r, "Failed to read serialization line: %m");
3438 if (r == 0) /* eof */
3439 break;
3440
3441 l = strstrip(line);
3442 if (isempty(l)) /* End marker */
3443 break;
3444
3445 k = strcspn(l, "=");
3446
3447 if (l[k] == '=') {
3448 l[k] = 0;
3449 v = l+k+1;
3450 } else
3451 v = l+k;
3452
3453 if (streq(l, "job")) {
3454 if (v[0] == '\0') {
3455 /* New-style serialized job */
3456 r = unit_deserialize_job(u, f);
3457 if (r < 0)
3458 return r;
3459 } else /* Legacy for pre-44 */
3460 log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
3461 continue;
3462 } else if (streq(l, "state-change-timestamp")) {
3463 (void) deserialize_dual_timestamp(v, &u->state_change_timestamp);
3464 continue;
3465 } else if (streq(l, "inactive-exit-timestamp")) {
3466 (void) deserialize_dual_timestamp(v, &u->inactive_exit_timestamp);
3467 continue;
3468 } else if (streq(l, "active-enter-timestamp")) {
3469 (void) deserialize_dual_timestamp(v, &u->active_enter_timestamp);
3470 continue;
3471 } else if (streq(l, "active-exit-timestamp")) {
3472 (void) deserialize_dual_timestamp(v, &u->active_exit_timestamp);
3473 continue;
3474 } else if (streq(l, "inactive-enter-timestamp")) {
3475 (void) deserialize_dual_timestamp(v, &u->inactive_enter_timestamp);
3476 continue;
3477 } else if (streq(l, "condition-timestamp")) {
3478 (void) deserialize_dual_timestamp(v, &u->condition_timestamp);
3479 continue;
3480 } else if (streq(l, "assert-timestamp")) {
3481 (void) deserialize_dual_timestamp(v, &u->assert_timestamp);
3482 continue;
3483 } else if (streq(l, "condition-result")) {
3484
3485 r = parse_boolean(v);
3486 if (r < 0)
3487 log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
3488 else
3489 u->condition_result = r;
3490
3491 continue;
3492
3493 } else if (streq(l, "assert-result")) {
3494
3495 r = parse_boolean(v);
3496 if (r < 0)
3497 log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
3498 else
3499 u->assert_result = r;
3500
3501 continue;
3502
3503 } else if (streq(l, "transient")) {
3504
3505 r = parse_boolean(v);
3506 if (r < 0)
3507 log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
3508 else
3509 u->transient = r;
3510
3511 continue;
3512
3513 } else if (streq(l, "in-audit")) {
3514
3515 r = parse_boolean(v);
3516 if (r < 0)
3517 log_unit_debug(u, "Failed to parse in-audit bool %s, ignoring.", v);
3518 else
3519 u->in_audit = r;
3520
3521 continue;
3522
3523 } else if (streq(l, "exported-invocation-id")) {
3524
3525 r = parse_boolean(v);
3526 if (r < 0)
3527 log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v);
3528 else
3529 u->exported_invocation_id = r;
3530
3531 continue;
3532
3533 } else if (streq(l, "exported-log-level-max")) {
3534
3535 r = parse_boolean(v);
3536 if (r < 0)
3537 log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v);
3538 else
3539 u->exported_log_level_max = r;
3540
3541 continue;
3542
3543 } else if (streq(l, "exported-log-extra-fields")) {
3544
3545 r = parse_boolean(v);
3546 if (r < 0)
3547 log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v);
3548 else
3549 u->exported_log_extra_fields = r;
3550
3551 continue;
3552
3553 } else if (streq(l, "exported-log-rate-limit-interval")) {
3554
3555 r = parse_boolean(v);
3556 if (r < 0)
3557 log_unit_debug(u, "Failed to parse exported log rate limit interval %s, ignoring.", v);
3558 else
3559 u->exported_log_rate_limit_interval = r;
3560
3561 continue;
3562
3563 } else if (streq(l, "exported-log-rate-limit-burst")) {
3564
3565 r = parse_boolean(v);
3566 if (r < 0)
3567 log_unit_debug(u, "Failed to parse exported log rate limit burst %s, ignoring.", v);
3568 else
3569 u->exported_log_rate_limit_burst = r;
3570
3571 continue;
3572
3573 } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) {
3574
3575 r = safe_atou64(v, &u->cpu_usage_base);
3576 if (r < 0)
3577 log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v);
3578
3579 continue;
3580
3581 } else if (streq(l, "cpu-usage-last")) {
3582
3583 r = safe_atou64(v, &u->cpu_usage_last);
3584 if (r < 0)
3585 log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v);
3586
3587 continue;
3588
3589 } else if (streq(l, "oom-kill-last")) {
3590
3591 r = safe_atou64(v, &u->oom_kill_last);
3592 if (r < 0)
3593 log_unit_debug(u, "Failed to read OOM kill last %s, ignoring.", v);
3594
3595 continue;
3596
3597 } else if (streq(l, "cgroup")) {
3598
3599 r = unit_set_cgroup_path(u, v);
3600 if (r < 0)
3601 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
3602
3603 (void) unit_watch_cgroup(u);
3604 (void) unit_watch_cgroup_memory(u);
3605
3606 continue;
3607 } else if (streq(l, "cgroup-realized")) {
3608 int b;
3609
3610 b = parse_boolean(v);
3611 if (b < 0)
3612 log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
3613 else
3614 u->cgroup_realized = b;
3615
3616 continue;
3617
3618 } else if (streq(l, "cgroup-realized-mask")) {
3619
3620 r = cg_mask_from_string(v, &u->cgroup_realized_mask);
3621 if (r < 0)
3622 log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v);
3623 continue;
3624
3625 } else if (streq(l, "cgroup-enabled-mask")) {
3626
3627 r = cg_mask_from_string(v, &u->cgroup_enabled_mask);
3628 if (r < 0)
3629 log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v);
3630 continue;
3631
3632 } else if (streq(l, "cgroup-invalidated-mask")) {
3633
3634 r = cg_mask_from_string(v, &u->cgroup_invalidated_mask);
3635 if (r < 0)
3636 log_unit_debug(u, "Failed to parse cgroup-invalidated-mask %s, ignoring.", v);
3637 continue;
3638
3639 } else if (streq(l, "ref-uid")) {
3640 uid_t uid;
3641
3642 r = parse_uid(v, &uid);
3643 if (r < 0)
3644 log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v);
3645 else
3646 unit_ref_uid_gid(u, uid, GID_INVALID);
3647
3648 continue;
3649
3650 } else if (streq(l, "ref-gid")) {
3651 gid_t gid;
3652
3653 r = parse_gid(v, &gid);
3654 if (r < 0)
3655 log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v);
3656 else
3657 unit_ref_uid_gid(u, UID_INVALID, gid);
3658
3659 continue;
3660
3661 } else if (streq(l, "ref")) {
3662
3663 r = strv_extend(&u->deserialized_refs, v);
3664 if (r < 0)
3665 return log_oom();
3666
3667 continue;
3668 } else if (streq(l, "invocation-id")) {
3669 sd_id128_t id;
3670
3671 r = sd_id128_from_string(v, &id);
3672 if (r < 0)
3673 log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v);
3674 else {
3675 r = unit_set_invocation_id(u, id);
3676 if (r < 0)
3677 log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m");
3678 }
3679
3680 continue;
3681 }
3682
3683 /* Check if this is an IP accounting metric serialization field */
3684 m = string_table_lookup(ip_accounting_metric_field, ELEMENTSOF(ip_accounting_metric_field), l);
3685 if (m >= 0) {
3686 uint64_t c;
3687
3688 r = safe_atou64(v, &c);
3689 if (r < 0)
3690 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v);
3691 else
3692 u->ip_accounting_extra[m] = c;
3693 continue;
3694 }
3695
3696 m = string_table_lookup(io_accounting_metric_field_base, ELEMENTSOF(io_accounting_metric_field_base), l);
3697 if (m >= 0) {
3698 uint64_t c;
3699
3700 r = safe_atou64(v, &c);
3701 if (r < 0)
3702 log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", v);
3703 else
3704 u->io_accounting_base[m] = c;
3705 continue;
3706 }
3707
3708 m = string_table_lookup(io_accounting_metric_field_last, ELEMENTSOF(io_accounting_metric_field_last), l);
3709 if (m >= 0) {
3710 uint64_t c;
3711
3712 r = safe_atou64(v, &c);
3713 if (r < 0)
3714 log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", v);
3715 else
3716 u->io_accounting_last[m] = c;
3717 continue;
3718 }
3719
3720 if (unit_can_serialize(u)) {
3721 r = exec_runtime_deserialize_compat(u, l, v, fds);
3722 if (r < 0) {
3723 log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
3724 continue;
3725 }
3726
3727 /* Returns positive if key was handled by the call */
3728 if (r > 0)
3729 continue;
3730
3731 r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
3732 if (r < 0)
3733 log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
3734 }
3735 }
3736
3737 /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is
3738 * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from
3739 * before 228 where the base for timeouts was not persistent across reboots. */
3740
3741 if (!dual_timestamp_is_set(&u->state_change_timestamp))
3742 dual_timestamp_get(&u->state_change_timestamp);
3743
3744 /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied
3745 * after we are done. For that we invalidate anything already realized, so that we can realize it again. */
3746 unit_invalidate_cgroup(u, _CGROUP_MASK_ALL);
3747 unit_invalidate_cgroup_bpf(u);
3748
3749 return 0;
3750 }
3751
3752 int unit_deserialize_skip(FILE *f) {
3753 int r;
3754 assert(f);
3755
3756 /* Skip serialized data for this unit. We don't know what it is. */
3757
3758 for (;;) {
3759 _cleanup_free_ char *line = NULL;
3760 char *l;
3761
3762 r = read_line(f, LONG_LINE_MAX, &line);
3763 if (r < 0)
3764 return log_error_errno(r, "Failed to read serialization line: %m");
3765 if (r == 0)
3766 return 0;
3767
3768 l = strstrip(line);
3769
3770 /* End marker */
3771 if (isempty(l))
3772 return 1;
3773 }
3774 }
3775
3776 int unit_add_node_dependency(Unit *u, const char *what, bool wants, UnitDependency dep, UnitDependencyMask mask) {
3777 Unit *device;
3778 _cleanup_free_ char *e = NULL;
3779 int r;
3780
3781 assert(u);
3782
3783 /* Adds in links to the device node that this unit is based on */
3784 if (isempty(what))
3785 return 0;
3786
3787 if (!is_device_path(what))
3788 return 0;
3789
3790 /* When device units aren't supported (such as in a
3791 * container), don't create dependencies on them. */
3792 if (!unit_type_supported(UNIT_DEVICE))
3793 return 0;
3794
3795 r = unit_name_from_path(what, ".device", &e);
3796 if (r < 0)
3797 return r;
3798
3799 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3800 if (r < 0)
3801 return r;
3802
3803 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3804 dep = UNIT_BINDS_TO;
3805
3806 r = unit_add_two_dependencies(u, UNIT_AFTER,
3807 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3808 device, true, mask);
3809 if (r < 0)
3810 return r;
3811
3812 if (wants) {
3813 r = unit_add_dependency(device, UNIT_WANTS, u, false, mask);
3814 if (r < 0)
3815 return r;
3816 }
3817
3818 return 0;
3819 }
3820
3821 int unit_coldplug(Unit *u) {
3822 int r = 0, q;
3823 char **i;
3824
3825 assert(u);
3826
3827 /* Make sure we don't enter a loop, when coldplugging recursively. */
3828 if (u->coldplugged)
3829 return 0;
3830
3831 u->coldplugged = true;
3832
3833 STRV_FOREACH(i, u->deserialized_refs) {
3834 q = bus_unit_track_add_name(u, *i);
3835 if (q < 0 && r >= 0)
3836 r = q;
3837 }
3838 u->deserialized_refs = strv_free(u->deserialized_refs);
3839
3840 if (UNIT_VTABLE(u)->coldplug) {
3841 q = UNIT_VTABLE(u)->coldplug(u);
3842 if (q < 0 && r >= 0)
3843 r = q;
3844 }
3845
3846 if (u->job) {
3847 q = job_coldplug(u->job);
3848 if (q < 0 && r >= 0)
3849 r = q;
3850 }
3851
3852 return r;
3853 }
3854
3855 void unit_catchup(Unit *u) {
3856 assert(u);
3857
3858 if (UNIT_VTABLE(u)->catchup)
3859 UNIT_VTABLE(u)->catchup(u);
3860 }
3861
3862 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
3863 struct stat st;
3864
3865 if (!path)
3866 return false;
3867
3868 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
3869 * are never out-of-date. */
3870 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
3871 return false;
3872
3873 if (stat(path, &st) < 0)
3874 /* What, cannot access this anymore? */
3875 return true;
3876
3877 if (path_masked)
3878 /* For masked files check if they are still so */
3879 return !null_or_empty(&st);
3880 else
3881 /* For non-empty files check the mtime */
3882 return timespec_load(&st.st_mtim) > mtime;
3883
3884 return false;
3885 }
3886
3887 bool unit_need_daemon_reload(Unit *u) {
3888 _cleanup_strv_free_ char **t = NULL;
3889 char **path;
3890
3891 assert(u);
3892
3893 /* For unit files, we allow masking… */
3894 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
3895 u->load_state == UNIT_MASKED))
3896 return true;
3897
3898 /* Source paths should not be masked… */
3899 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
3900 return true;
3901
3902 if (u->load_state == UNIT_LOADED)
3903 (void) unit_find_dropin_paths(u, &t);
3904 if (!strv_equal(u->dropin_paths, t))
3905 return true;
3906
3907 /* … any drop-ins that are masked are simply omitted from the list. */
3908 STRV_FOREACH(path, u->dropin_paths)
3909 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
3910 return true;
3911
3912 return false;
3913 }
3914
3915 void unit_reset_failed(Unit *u) {
3916 assert(u);
3917
3918 if (UNIT_VTABLE(u)->reset_failed)
3919 UNIT_VTABLE(u)->reset_failed(u);
3920
3921 RATELIMIT_RESET(u->start_limit);
3922 u->start_limit_hit = false;
3923 }
3924
3925 Unit *unit_following(Unit *u) {
3926 assert(u);
3927
3928 if (UNIT_VTABLE(u)->following)
3929 return UNIT_VTABLE(u)->following(u);
3930
3931 return NULL;
3932 }
3933
3934 bool unit_stop_pending(Unit *u) {
3935 assert(u);
3936
3937 /* This call does check the current state of the unit. It's
3938 * hence useful to be called from state change calls of the
3939 * unit itself, where the state isn't updated yet. This is
3940 * different from unit_inactive_or_pending() which checks both
3941 * the current state and for a queued job. */
3942
3943 return u->job && u->job->type == JOB_STOP;
3944 }
3945
3946 bool unit_inactive_or_pending(Unit *u) {
3947 assert(u);
3948
3949 /* Returns true if the unit is inactive or going down */
3950
3951 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
3952 return true;
3953
3954 if (unit_stop_pending(u))
3955 return true;
3956
3957 return false;
3958 }
3959
3960 bool unit_active_or_pending(Unit *u) {
3961 assert(u);
3962
3963 /* Returns true if the unit is active or going up */
3964
3965 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
3966 return true;
3967
3968 if (u->job &&
3969 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
3970 return true;
3971
3972 return false;
3973 }
3974
3975 bool unit_will_restart(Unit *u) {
3976 assert(u);
3977
3978 if (!UNIT_VTABLE(u)->will_restart)
3979 return false;
3980
3981 return UNIT_VTABLE(u)->will_restart(u);
3982 }
3983
3984 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
3985 assert(u);
3986 assert(w >= 0 && w < _KILL_WHO_MAX);
3987 assert(SIGNAL_VALID(signo));
3988
3989 if (!UNIT_VTABLE(u)->kill)
3990 return -EOPNOTSUPP;
3991
3992 return UNIT_VTABLE(u)->kill(u, w, signo, error);
3993 }
3994
3995 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
3996 _cleanup_set_free_ Set *pid_set = NULL;
3997 int r;
3998
3999 pid_set = set_new(NULL);
4000 if (!pid_set)
4001 return NULL;
4002
4003 /* Exclude the main/control pids from being killed via the cgroup */
4004 if (main_pid > 0) {
4005 r = set_put(pid_set, PID_TO_PTR(main_pid));
4006 if (r < 0)
4007 return NULL;
4008 }
4009
4010 if (control_pid > 0) {
4011 r = set_put(pid_set, PID_TO_PTR(control_pid));
4012 if (r < 0)
4013 return NULL;
4014 }
4015
4016 return TAKE_PTR(pid_set);
4017 }
4018
4019 int unit_kill_common(
4020 Unit *u,
4021 KillWho who,
4022 int signo,
4023 pid_t main_pid,
4024 pid_t control_pid,
4025 sd_bus_error *error) {
4026
4027 int r = 0;
4028 bool killed = false;
4029
4030 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4031 if (main_pid < 0)
4032 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4033 else if (main_pid == 0)
4034 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4035 }
4036
4037 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4038 if (control_pid < 0)
4039 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4040 else if (control_pid == 0)
4041 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4042 }
4043
4044 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
4045 if (control_pid > 0) {
4046 if (kill(control_pid, signo) < 0)
4047 r = -errno;
4048 else
4049 killed = true;
4050 }
4051
4052 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
4053 if (main_pid > 0) {
4054 if (kill(main_pid, signo) < 0)
4055 r = -errno;
4056 else
4057 killed = true;
4058 }
4059
4060 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
4061 _cleanup_set_free_ Set *pid_set = NULL;
4062 int q;
4063
4064 /* Exclude the main/control pids from being killed via the cgroup */
4065 pid_set = unit_pid_set(main_pid, control_pid);
4066 if (!pid_set)
4067 return -ENOMEM;
4068
4069 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, NULL, NULL);
4070 if (q < 0 && !IN_SET(q, -EAGAIN, -ESRCH, -ENOENT))
4071 r = q;
4072 else
4073 killed = true;
4074 }
4075
4076 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL))
4077 return -ESRCH;
4078
4079 return r;
4080 }
4081
4082 int unit_following_set(Unit *u, Set **s) {
4083 assert(u);
4084 assert(s);
4085
4086 if (UNIT_VTABLE(u)->following_set)
4087 return UNIT_VTABLE(u)->following_set(u, s);
4088
4089 *s = NULL;
4090 return 0;
4091 }
4092
4093 UnitFileState unit_get_unit_file_state(Unit *u) {
4094 int r;
4095
4096 assert(u);
4097
4098 if (u->unit_file_state < 0 && u->fragment_path) {
4099 r = unit_file_get_state(
4100 u->manager->unit_file_scope,
4101 NULL,
4102 u->id,
4103 &u->unit_file_state);
4104 if (r < 0)
4105 u->unit_file_state = UNIT_FILE_BAD;
4106 }
4107
4108 return u->unit_file_state;
4109 }
4110
4111 int unit_get_unit_file_preset(Unit *u) {
4112 assert(u);
4113
4114 if (u->unit_file_preset < 0 && u->fragment_path)
4115 u->unit_file_preset = unit_file_query_preset(
4116 u->manager->unit_file_scope,
4117 NULL,
4118 basename(u->fragment_path));
4119
4120 return u->unit_file_preset;
4121 }
4122
4123 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4124 assert(ref);
4125 assert(source);
4126 assert(target);
4127
4128 if (ref->target)
4129 unit_ref_unset(ref);
4130
4131 ref->source = source;
4132 ref->target = target;
4133 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4134 return target;
4135 }
4136
4137 void unit_ref_unset(UnitRef *ref) {
4138 assert(ref);
4139
4140 if (!ref->target)
4141 return;
4142
4143 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4144 * be unreferenced now. */
4145 unit_add_to_gc_queue(ref->target);
4146
4147 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4148 ref->source = ref->target = NULL;
4149 }
4150
4151 static int user_from_unit_name(Unit *u, char **ret) {
4152
4153 static const uint8_t hash_key[] = {
4154 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4155 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4156 };
4157
4158 _cleanup_free_ char *n = NULL;
4159 int r;
4160
4161 r = unit_name_to_prefix(u->id, &n);
4162 if (r < 0)
4163 return r;
4164
4165 if (valid_user_group_name(n)) {
4166 *ret = TAKE_PTR(n);
4167 return 0;
4168 }
4169
4170 /* If we can't use the unit name as a user name, then let's hash it and use that */
4171 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4172 return -ENOMEM;
4173
4174 return 0;
4175 }
4176
4177 int unit_patch_contexts(Unit *u) {
4178 CGroupContext *cc;
4179 ExecContext *ec;
4180 unsigned i;
4181 int r;
4182
4183 assert(u);
4184
4185 /* Patch in the manager defaults into the exec and cgroup
4186 * contexts, _after_ the rest of the settings have been
4187 * initialized */
4188
4189 ec = unit_get_exec_context(u);
4190 if (ec) {
4191 /* This only copies in the ones that need memory */
4192 for (i = 0; i < _RLIMIT_MAX; i++)
4193 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4194 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4195 if (!ec->rlimit[i])
4196 return -ENOMEM;
4197 }
4198
4199 if (MANAGER_IS_USER(u->manager) &&
4200 !ec->working_directory) {
4201
4202 r = get_home_dir(&ec->working_directory);
4203 if (r < 0)
4204 return r;
4205
4206 /* Allow user services to run, even if the
4207 * home directory is missing */
4208 ec->working_directory_missing_ok = true;
4209 }
4210
4211 if (ec->private_devices)
4212 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4213
4214 if (ec->protect_kernel_modules)
4215 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4216
4217 if (ec->dynamic_user) {
4218 if (!ec->user) {
4219 r = user_from_unit_name(u, &ec->user);
4220 if (r < 0)
4221 return r;
4222 }
4223
4224 if (!ec->group) {
4225 ec->group = strdup(ec->user);
4226 if (!ec->group)
4227 return -ENOMEM;
4228 }
4229
4230 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4231 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4232 * sandbox. */
4233
4234 ec->private_tmp = true;
4235 ec->remove_ipc = true;
4236 ec->protect_system = PROTECT_SYSTEM_STRICT;
4237 if (ec->protect_home == PROTECT_HOME_NO)
4238 ec->protect_home = PROTECT_HOME_READ_ONLY;
4239
4240 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4241 * them. */
4242 ec->no_new_privileges = true;
4243 ec->restrict_suid_sgid = true;
4244 }
4245 }
4246
4247 cc = unit_get_cgroup_context(u);
4248 if (cc && ec) {
4249
4250 if (ec->private_devices &&
4251 cc->device_policy == CGROUP_AUTO)
4252 cc->device_policy = CGROUP_CLOSED;
4253
4254 if (ec->root_image &&
4255 (cc->device_policy != CGROUP_AUTO || cc->device_allow)) {
4256
4257 /* When RootImage= is specified, the following devices are touched. */
4258 r = cgroup_add_device_allow(cc, "/dev/loop-control", "rw");
4259 if (r < 0)
4260 return r;
4261
4262 r = cgroup_add_device_allow(cc, "block-loop", "rwm");
4263 if (r < 0)
4264 return r;
4265
4266 r = cgroup_add_device_allow(cc, "block-blkext", "rwm");
4267 if (r < 0)
4268 return r;
4269 }
4270 }
4271
4272 return 0;
4273 }
4274
4275 ExecContext *unit_get_exec_context(Unit *u) {
4276 size_t offset;
4277 assert(u);
4278
4279 if (u->type < 0)
4280 return NULL;
4281
4282 offset = UNIT_VTABLE(u)->exec_context_offset;
4283 if (offset <= 0)
4284 return NULL;
4285
4286 return (ExecContext*) ((uint8_t*) u + offset);
4287 }
4288
4289 KillContext *unit_get_kill_context(Unit *u) {
4290 size_t offset;
4291 assert(u);
4292
4293 if (u->type < 0)
4294 return NULL;
4295
4296 offset = UNIT_VTABLE(u)->kill_context_offset;
4297 if (offset <= 0)
4298 return NULL;
4299
4300 return (KillContext*) ((uint8_t*) u + offset);
4301 }
4302
4303 CGroupContext *unit_get_cgroup_context(Unit *u) {
4304 size_t offset;
4305
4306 if (u->type < 0)
4307 return NULL;
4308
4309 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4310 if (offset <= 0)
4311 return NULL;
4312
4313 return (CGroupContext*) ((uint8_t*) u + offset);
4314 }
4315
4316 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4317 size_t offset;
4318
4319 if (u->type < 0)
4320 return NULL;
4321
4322 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4323 if (offset <= 0)
4324 return NULL;
4325
4326 return *(ExecRuntime**) ((uint8_t*) u + offset);
4327 }
4328
4329 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4330 assert(u);
4331
4332 if (UNIT_WRITE_FLAGS_NOOP(flags))
4333 return NULL;
4334
4335 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4336 return u->manager->lookup_paths.transient;
4337
4338 if (flags & UNIT_PERSISTENT)
4339 return u->manager->lookup_paths.persistent_control;
4340
4341 if (flags & UNIT_RUNTIME)
4342 return u->manager->lookup_paths.runtime_control;
4343
4344 return NULL;
4345 }
4346
4347 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4348 char *ret = NULL;
4349
4350 if (!s)
4351 return NULL;
4352
4353 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4354 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4355 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4356 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4357 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4358 * allocations. */
4359
4360 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4361 ret = specifier_escape(s);
4362 if (!ret)
4363 return NULL;
4364
4365 s = ret;
4366 }
4367
4368 if (flags & UNIT_ESCAPE_C) {
4369 char *a;
4370
4371 a = cescape(s);
4372 free(ret);
4373 if (!a)
4374 return NULL;
4375
4376 ret = a;
4377 }
4378
4379 if (buf) {
4380 *buf = ret;
4381 return ret ?: (char*) s;
4382 }
4383
4384 return ret ?: strdup(s);
4385 }
4386
4387 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4388 _cleanup_free_ char *result = NULL;
4389 size_t n = 0, allocated = 0;
4390 char **i;
4391
4392 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4393 * way suitable for ExecStart= stanzas */
4394
4395 STRV_FOREACH(i, l) {
4396 _cleanup_free_ char *buf = NULL;
4397 const char *p;
4398 size_t a;
4399 char *q;
4400
4401 p = unit_escape_setting(*i, flags, &buf);
4402 if (!p)
4403 return NULL;
4404
4405 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4406 if (!GREEDY_REALLOC(result, allocated, n + a + 1))
4407 return NULL;
4408
4409 q = result + n;
4410 if (n > 0)
4411 *(q++) = ' ';
4412
4413 *(q++) = '"';
4414 q = stpcpy(q, p);
4415 *(q++) = '"';
4416
4417 n += a;
4418 }
4419
4420 if (!GREEDY_REALLOC(result, allocated, n + 1))
4421 return NULL;
4422
4423 result[n] = 0;
4424
4425 return TAKE_PTR(result);
4426 }
4427
4428 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4429 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4430 const char *dir, *wrapped;
4431 int r;
4432
4433 assert(u);
4434 assert(name);
4435 assert(data);
4436
4437 if (UNIT_WRITE_FLAGS_NOOP(flags))
4438 return 0;
4439
4440 data = unit_escape_setting(data, flags, &escaped);
4441 if (!data)
4442 return -ENOMEM;
4443
4444 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4445 * previous section header is the same */
4446
4447 if (flags & UNIT_PRIVATE) {
4448 if (!UNIT_VTABLE(u)->private_section)
4449 return -EINVAL;
4450
4451 if (!u->transient_file || u->last_section_private < 0)
4452 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4453 else if (u->last_section_private == 0)
4454 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4455 } else {
4456 if (!u->transient_file || u->last_section_private < 0)
4457 data = strjoina("[Unit]\n", data);
4458 else if (u->last_section_private > 0)
4459 data = strjoina("\n[Unit]\n", data);
4460 }
4461
4462 if (u->transient_file) {
4463 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4464 * write to the transient unit file. */
4465 fputs(data, u->transient_file);
4466
4467 if (!endswith(data, "\n"))
4468 fputc('\n', u->transient_file);
4469
4470 /* Remember which section we wrote this entry to */
4471 u->last_section_private = !!(flags & UNIT_PRIVATE);
4472 return 0;
4473 }
4474
4475 dir = unit_drop_in_dir(u, flags);
4476 if (!dir)
4477 return -EINVAL;
4478
4479 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4480 "# or an equivalent operation. Do not edit.\n",
4481 data,
4482 "\n");
4483
4484 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4485 if (r < 0)
4486 return r;
4487
4488 (void) mkdir_p_label(p, 0755);
4489 r = write_string_file_atomic_label(q, wrapped);
4490 if (r < 0)
4491 return r;
4492
4493 r = strv_push(&u->dropin_paths, q);
4494 if (r < 0)
4495 return r;
4496 q = NULL;
4497
4498 strv_uniq(u->dropin_paths);
4499
4500 u->dropin_mtime = now(CLOCK_REALTIME);
4501
4502 return 0;
4503 }
4504
4505 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4506 _cleanup_free_ char *p = NULL;
4507 va_list ap;
4508 int r;
4509
4510 assert(u);
4511 assert(name);
4512 assert(format);
4513
4514 if (UNIT_WRITE_FLAGS_NOOP(flags))
4515 return 0;
4516
4517 va_start(ap, format);
4518 r = vasprintf(&p, format, ap);
4519 va_end(ap);
4520
4521 if (r < 0)
4522 return -ENOMEM;
4523
4524 return unit_write_setting(u, flags, name, p);
4525 }
4526
4527 int unit_make_transient(Unit *u) {
4528 _cleanup_free_ char *path = NULL;
4529 FILE *f;
4530
4531 assert(u);
4532
4533 if (!UNIT_VTABLE(u)->can_transient)
4534 return -EOPNOTSUPP;
4535
4536 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4537
4538 path = path_join(u->manager->lookup_paths.transient, u->id);
4539 if (!path)
4540 return -ENOMEM;
4541
4542 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4543 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4544
4545 RUN_WITH_UMASK(0022) {
4546 f = fopen(path, "we");
4547 if (!f)
4548 return -errno;
4549 }
4550
4551 safe_fclose(u->transient_file);
4552 u->transient_file = f;
4553
4554 free_and_replace(u->fragment_path, path);
4555
4556 u->source_path = mfree(u->source_path);
4557 u->dropin_paths = strv_free(u->dropin_paths);
4558 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4559
4560 u->load_state = UNIT_STUB;
4561 u->load_error = 0;
4562 u->transient = true;
4563
4564 unit_add_to_dbus_queue(u);
4565 unit_add_to_gc_queue(u);
4566
4567 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4568 u->transient_file);
4569
4570 return 0;
4571 }
4572
4573 static int log_kill(pid_t pid, int sig, void *userdata) {
4574 _cleanup_free_ char *comm = NULL;
4575
4576 (void) get_process_comm(pid, &comm);
4577
4578 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4579 only, like for example systemd's own PAM stub process. */
4580 if (comm && comm[0] == '(')
4581 return 0;
4582
4583 log_unit_notice(userdata,
4584 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4585 pid,
4586 strna(comm),
4587 signal_to_string(sig));
4588
4589 return 1;
4590 }
4591
4592 static int operation_to_signal(KillContext *c, KillOperation k) {
4593 assert(c);
4594
4595 switch (k) {
4596
4597 case KILL_TERMINATE:
4598 case KILL_TERMINATE_AND_LOG:
4599 return c->kill_signal;
4600
4601 case KILL_KILL:
4602 return c->final_kill_signal;
4603
4604 case KILL_WATCHDOG:
4605 return c->watchdog_signal;
4606
4607 default:
4608 assert_not_reached("KillOperation unknown");
4609 }
4610 }
4611
4612 int unit_kill_context(
4613 Unit *u,
4614 KillContext *c,
4615 KillOperation k,
4616 pid_t main_pid,
4617 pid_t control_pid,
4618 bool main_pid_alien) {
4619
4620 bool wait_for_exit = false, send_sighup;
4621 cg_kill_log_func_t log_func = NULL;
4622 int sig, r;
4623
4624 assert(u);
4625 assert(c);
4626
4627 /* Kill the processes belonging to this unit, in preparation for shutting the unit down.
4628 * Returns > 0 if we killed something worth waiting for, 0 otherwise. */
4629
4630 if (c->kill_mode == KILL_NONE)
4631 return 0;
4632
4633 sig = operation_to_signal(c, k);
4634
4635 send_sighup =
4636 c->send_sighup &&
4637 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4638 sig != SIGHUP;
4639
4640 if (k != KILL_TERMINATE || IN_SET(sig, SIGKILL, SIGABRT))
4641 log_func = log_kill;
4642
4643 if (main_pid > 0) {
4644 if (log_func)
4645 log_func(main_pid, sig, u);
4646
4647 r = kill_and_sigcont(main_pid, sig);
4648 if (r < 0 && r != -ESRCH) {
4649 _cleanup_free_ char *comm = NULL;
4650 (void) get_process_comm(main_pid, &comm);
4651
4652 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
4653 } else {
4654 if (!main_pid_alien)
4655 wait_for_exit = true;
4656
4657 if (r != -ESRCH && send_sighup)
4658 (void) kill(main_pid, SIGHUP);
4659 }
4660 }
4661
4662 if (control_pid > 0) {
4663 if (log_func)
4664 log_func(control_pid, sig, u);
4665
4666 r = kill_and_sigcont(control_pid, sig);
4667 if (r < 0 && r != -ESRCH) {
4668 _cleanup_free_ char *comm = NULL;
4669 (void) get_process_comm(control_pid, &comm);
4670
4671 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
4672 } else {
4673 wait_for_exit = true;
4674
4675 if (r != -ESRCH && send_sighup)
4676 (void) kill(control_pid, SIGHUP);
4677 }
4678 }
4679
4680 if (u->cgroup_path &&
4681 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4682 _cleanup_set_free_ Set *pid_set = NULL;
4683
4684 /* Exclude the main/control pids from being killed via the cgroup */
4685 pid_set = unit_pid_set(main_pid, control_pid);
4686 if (!pid_set)
4687 return -ENOMEM;
4688
4689 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4690 sig,
4691 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4692 pid_set,
4693 log_func, u);
4694 if (r < 0) {
4695 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4696 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
4697
4698 } else if (r > 0) {
4699
4700 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4701 * we are running in a container or if this is a delegation unit, simply because cgroup
4702 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4703 * of containers it can be confused easily by left-over directories in the cgroup — which
4704 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4705 * there we get proper events. Hence rely on them. */
4706
4707 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4708 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4709 wait_for_exit = true;
4710
4711 if (send_sighup) {
4712 set_free(pid_set);
4713
4714 pid_set = unit_pid_set(main_pid, control_pid);
4715 if (!pid_set)
4716 return -ENOMEM;
4717
4718 cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4719 SIGHUP,
4720 CGROUP_IGNORE_SELF,
4721 pid_set,
4722 NULL, NULL);
4723 }
4724 }
4725 }
4726
4727 return wait_for_exit;
4728 }
4729
4730 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4731 _cleanup_free_ char *p = NULL;
4732 UnitDependencyInfo di;
4733 int r;
4734
4735 assert(u);
4736 assert(path);
4737
4738 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in
4739 * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to
4740 * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily
4741 * determine which units to make themselves a dependency of. */
4742
4743 if (!path_is_absolute(path))
4744 return -EINVAL;
4745
4746 r = hashmap_ensure_allocated(&u->requires_mounts_for, &path_hash_ops);
4747 if (r < 0)
4748 return r;
4749
4750 p = strdup(path);
4751 if (!p)
4752 return -ENOMEM;
4753
4754 path = path_simplify(p, true);
4755
4756 if (!path_is_normalized(path))
4757 return -EPERM;
4758
4759 if (hashmap_contains(u->requires_mounts_for, path))
4760 return 0;
4761
4762 di = (UnitDependencyInfo) {
4763 .origin_mask = mask
4764 };
4765
4766 r = hashmap_put(u->requires_mounts_for, path, di.data);
4767 if (r < 0)
4768 return r;
4769 p = NULL;
4770
4771 char prefix[strlen(path) + 1];
4772 PATH_FOREACH_PREFIX_MORE(prefix, path) {
4773 Set *x;
4774
4775 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
4776 if (!x) {
4777 _cleanup_free_ char *q = NULL;
4778
4779 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
4780 if (r < 0)
4781 return r;
4782
4783 q = strdup(prefix);
4784 if (!q)
4785 return -ENOMEM;
4786
4787 x = set_new(NULL);
4788 if (!x)
4789 return -ENOMEM;
4790
4791 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
4792 if (r < 0) {
4793 set_free(x);
4794 return r;
4795 }
4796 q = NULL;
4797 }
4798
4799 r = set_put(x, u);
4800 if (r < 0)
4801 return r;
4802 }
4803
4804 return 0;
4805 }
4806
4807 int unit_setup_exec_runtime(Unit *u) {
4808 ExecRuntime **rt;
4809 size_t offset;
4810 Unit *other;
4811 Iterator i;
4812 void *v;
4813 int r;
4814
4815 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4816 assert(offset > 0);
4817
4818 /* Check if there already is an ExecRuntime for this unit? */
4819 rt = (ExecRuntime**) ((uint8_t*) u + offset);
4820 if (*rt)
4821 return 0;
4822
4823 /* Try to get it from somebody else */
4824 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) {
4825 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
4826 if (r == 1)
4827 return 1;
4828 }
4829
4830 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
4831 }
4832
4833 int unit_setup_dynamic_creds(Unit *u) {
4834 ExecContext *ec;
4835 DynamicCreds *dcreds;
4836 size_t offset;
4837
4838 assert(u);
4839
4840 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
4841 assert(offset > 0);
4842 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
4843
4844 ec = unit_get_exec_context(u);
4845 assert(ec);
4846
4847 if (!ec->dynamic_user)
4848 return 0;
4849
4850 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
4851 }
4852
4853 bool unit_type_supported(UnitType t) {
4854 if (_unlikely_(t < 0))
4855 return false;
4856 if (_unlikely_(t >= _UNIT_TYPE_MAX))
4857 return false;
4858
4859 if (!unit_vtable[t]->supported)
4860 return true;
4861
4862 return unit_vtable[t]->supported();
4863 }
4864
4865 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
4866 int r;
4867
4868 assert(u);
4869 assert(where);
4870
4871 r = dir_is_empty(where);
4872 if (r > 0 || r == -ENOTDIR)
4873 return;
4874 if (r < 0) {
4875 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
4876 return;
4877 }
4878
4879 log_struct(LOG_NOTICE,
4880 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4881 LOG_UNIT_ID(u),
4882 LOG_UNIT_INVOCATION_ID(u),
4883 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
4884 "WHERE=%s", where);
4885 }
4886
4887 int unit_fail_if_noncanonical(Unit *u, const char* where) {
4888 _cleanup_free_ char *canonical_where = NULL;
4889 int r;
4890
4891 assert(u);
4892 assert(where);
4893
4894 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where);
4895 if (r < 0) {
4896 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
4897 return 0;
4898 }
4899
4900 /* We will happily ignore a trailing slash (or any redundant slashes) */
4901 if (path_equal(where, canonical_where))
4902 return 0;
4903
4904 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
4905 log_struct(LOG_ERR,
4906 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4907 LOG_UNIT_ID(u),
4908 LOG_UNIT_INVOCATION_ID(u),
4909 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
4910 "WHERE=%s", where);
4911
4912 return -ELOOP;
4913 }
4914
4915 bool unit_is_pristine(Unit *u) {
4916 assert(u);
4917
4918 /* Check if the unit already exists or is already around,
4919 * in a number of different ways. Note that to cater for unit
4920 * types such as slice, we are generally fine with units that
4921 * are marked UNIT_LOADED even though nothing was actually
4922 * loaded, as those unit types don't require a file on disk. */
4923
4924 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
4925 u->fragment_path ||
4926 u->source_path ||
4927 !strv_isempty(u->dropin_paths) ||
4928 u->job ||
4929 u->merged_into);
4930 }
4931
4932 pid_t unit_control_pid(Unit *u) {
4933 assert(u);
4934
4935 if (UNIT_VTABLE(u)->control_pid)
4936 return UNIT_VTABLE(u)->control_pid(u);
4937
4938 return 0;
4939 }
4940
4941 pid_t unit_main_pid(Unit *u) {
4942 assert(u);
4943
4944 if (UNIT_VTABLE(u)->main_pid)
4945 return UNIT_VTABLE(u)->main_pid(u);
4946
4947 return 0;
4948 }
4949
4950 static void unit_unref_uid_internal(
4951 Unit *u,
4952 uid_t *ref_uid,
4953 bool destroy_now,
4954 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
4955
4956 assert(u);
4957 assert(ref_uid);
4958 assert(_manager_unref_uid);
4959
4960 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
4961 * gid_t are actually the same time, with the same validity rules.
4962 *
4963 * Drops a reference to UID/GID from a unit. */
4964
4965 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4966 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4967
4968 if (!uid_is_valid(*ref_uid))
4969 return;
4970
4971 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
4972 *ref_uid = UID_INVALID;
4973 }
4974
4975 void unit_unref_uid(Unit *u, bool destroy_now) {
4976 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
4977 }
4978
4979 void unit_unref_gid(Unit *u, bool destroy_now) {
4980 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
4981 }
4982
4983 static int unit_ref_uid_internal(
4984 Unit *u,
4985 uid_t *ref_uid,
4986 uid_t uid,
4987 bool clean_ipc,
4988 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
4989
4990 int r;
4991
4992 assert(u);
4993 assert(ref_uid);
4994 assert(uid_is_valid(uid));
4995 assert(_manager_ref_uid);
4996
4997 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
4998 * are actually the same type, and have the same validity rules.
4999 *
5000 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5001 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5002 * drops to zero. */
5003
5004 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5005 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5006
5007 if (*ref_uid == uid)
5008 return 0;
5009
5010 if (uid_is_valid(*ref_uid)) /* Already set? */
5011 return -EBUSY;
5012
5013 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5014 if (r < 0)
5015 return r;
5016
5017 *ref_uid = uid;
5018 return 1;
5019 }
5020
5021 int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5022 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5023 }
5024
5025 int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5026 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5027 }
5028
5029 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5030 int r = 0, q = 0;
5031
5032 assert(u);
5033
5034 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5035
5036 if (uid_is_valid(uid)) {
5037 r = unit_ref_uid(u, uid, clean_ipc);
5038 if (r < 0)
5039 return r;
5040 }
5041
5042 if (gid_is_valid(gid)) {
5043 q = unit_ref_gid(u, gid, clean_ipc);
5044 if (q < 0) {
5045 if (r > 0)
5046 unit_unref_uid(u, false);
5047
5048 return q;
5049 }
5050 }
5051
5052 return r > 0 || q > 0;
5053 }
5054
5055 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5056 ExecContext *c;
5057 int r;
5058
5059 assert(u);
5060
5061 c = unit_get_exec_context(u);
5062
5063 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5064 if (r < 0)
5065 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5066
5067 return r;
5068 }
5069
5070 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5071 assert(u);
5072
5073 unit_unref_uid(u, destroy_now);
5074 unit_unref_gid(u, destroy_now);
5075 }
5076
5077 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5078 int r;
5079
5080 assert(u);
5081
5082 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5083 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5084 * objects when no service references the UID/GID anymore. */
5085
5086 r = unit_ref_uid_gid(u, uid, gid);
5087 if (r > 0)
5088 unit_add_to_dbus_queue(u);
5089 }
5090
5091 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
5092 int r;
5093
5094 assert(u);
5095
5096 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
5097
5098 if (sd_id128_equal(u->invocation_id, id))
5099 return 0;
5100
5101 if (!sd_id128_is_null(u->invocation_id))
5102 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
5103
5104 if (sd_id128_is_null(id)) {
5105 r = 0;
5106 goto reset;
5107 }
5108
5109 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
5110 if (r < 0)
5111 goto reset;
5112
5113 u->invocation_id = id;
5114 sd_id128_to_string(id, u->invocation_id_string);
5115
5116 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
5117 if (r < 0)
5118 goto reset;
5119
5120 return 0;
5121
5122 reset:
5123 u->invocation_id = SD_ID128_NULL;
5124 u->invocation_id_string[0] = 0;
5125 return r;
5126 }
5127
5128 int unit_acquire_invocation_id(Unit *u) {
5129 sd_id128_t id;
5130 int r;
5131
5132 assert(u);
5133
5134 r = sd_id128_randomize(&id);
5135 if (r < 0)
5136 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5137
5138 r = unit_set_invocation_id(u, id);
5139 if (r < 0)
5140 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5141
5142 unit_add_to_dbus_queue(u);
5143 return 0;
5144 }
5145
5146 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5147 int r;
5148
5149 assert(u);
5150 assert(p);
5151
5152 /* Copy parameters from manager */
5153 r = manager_get_effective_environment(u->manager, &p->environment);
5154 if (r < 0)
5155 return r;
5156
5157 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5158 p->cgroup_supported = u->manager->cgroup_supported;
5159 p->prefix = u->manager->prefix;
5160 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5161
5162 /* Copy parameters from unit */
5163 p->cgroup_path = u->cgroup_path;
5164 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5165
5166 return 0;
5167 }
5168
5169 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5170 int r;
5171
5172 assert(u);
5173 assert(ret);
5174
5175 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5176 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5177
5178 (void) unit_realize_cgroup(u);
5179
5180 r = safe_fork(name, FORK_REOPEN_LOG, ret);
5181 if (r != 0)
5182 return r;
5183
5184 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1);
5185 (void) ignore_signals(SIGPIPE, -1);
5186
5187 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5188
5189 if (u->cgroup_path) {
5190 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5191 if (r < 0) {
5192 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5193 _exit(EXIT_CGROUP);
5194 }
5195 }
5196
5197 return 0;
5198 }
5199
5200 static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) {
5201 assert(u);
5202 assert(d >= 0);
5203 assert(d < _UNIT_DEPENDENCY_MAX);
5204 assert(other);
5205
5206 if (di.origin_mask == 0 && di.destination_mask == 0) {
5207 /* No bit set anymore, let's drop the whole entry */
5208 assert_se(hashmap_remove(u->dependencies[d], other));
5209 log_unit_debug(u, "%s lost dependency %s=%s", u->id, unit_dependency_to_string(d), other->id);
5210 } else
5211 /* Mask was reduced, let's update the entry */
5212 assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0);
5213 }
5214
5215 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5216 UnitDependency d;
5217
5218 assert(u);
5219
5220 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5221
5222 if (mask == 0)
5223 return;
5224
5225 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
5226 bool done;
5227
5228 do {
5229 UnitDependencyInfo di;
5230 Unit *other;
5231 Iterator i;
5232
5233 done = true;
5234
5235 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
5236 UnitDependency q;
5237
5238 if ((di.origin_mask & ~mask) == di.origin_mask)
5239 continue;
5240 di.origin_mask &= ~mask;
5241 unit_update_dependency_mask(u, d, other, di);
5242
5243 /* We updated the dependency from our unit to the other unit now. But most dependencies
5244 * imply a reverse dependency. Hence, let's delete that one too. For that we go through
5245 * all dependency types on the other unit and delete all those which point to us and
5246 * have the right mask set. */
5247
5248 for (q = 0; q < _UNIT_DEPENDENCY_MAX; q++) {
5249 UnitDependencyInfo dj;
5250
5251 dj.data = hashmap_get(other->dependencies[q], u);
5252 if ((dj.destination_mask & ~mask) == dj.destination_mask)
5253 continue;
5254 dj.destination_mask &= ~mask;
5255
5256 unit_update_dependency_mask(other, q, u, dj);
5257 }
5258
5259 unit_add_to_gc_queue(other);
5260
5261 done = false;
5262 break;
5263 }
5264
5265 } while (!done);
5266 }
5267 }
5268
5269 static int unit_export_invocation_id(Unit *u) {
5270 const char *p;
5271 int r;
5272
5273 assert(u);
5274
5275 if (u->exported_invocation_id)
5276 return 0;
5277
5278 if (sd_id128_is_null(u->invocation_id))
5279 return 0;
5280
5281 p = strjoina("/run/systemd/units/invocation:", u->id);
5282 r = symlink_atomic(u->invocation_id_string, p);
5283 if (r < 0)
5284 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5285
5286 u->exported_invocation_id = true;
5287 return 0;
5288 }
5289
5290 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5291 const char *p;
5292 char buf[2];
5293 int r;
5294
5295 assert(u);
5296 assert(c);
5297
5298 if (u->exported_log_level_max)
5299 return 0;
5300
5301 if (c->log_level_max < 0)
5302 return 0;
5303
5304 assert(c->log_level_max <= 7);
5305
5306 buf[0] = '0' + c->log_level_max;
5307 buf[1] = 0;
5308
5309 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5310 r = symlink_atomic(buf, p);
5311 if (r < 0)
5312 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5313
5314 u->exported_log_level_max = true;
5315 return 0;
5316 }
5317
5318 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5319 _cleanup_close_ int fd = -1;
5320 struct iovec *iovec;
5321 const char *p;
5322 char *pattern;
5323 le64_t *sizes;
5324 ssize_t n;
5325 size_t i;
5326 int r;
5327
5328 if (u->exported_log_extra_fields)
5329 return 0;
5330
5331 if (c->n_log_extra_fields <= 0)
5332 return 0;
5333
5334 sizes = newa(le64_t, c->n_log_extra_fields);
5335 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5336
5337 for (i = 0; i < c->n_log_extra_fields; i++) {
5338 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5339
5340 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5341 iovec[i*2+1] = c->log_extra_fields[i];
5342 }
5343
5344 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5345 pattern = strjoina(p, ".XXXXXX");
5346
5347 fd = mkostemp_safe(pattern);
5348 if (fd < 0)
5349 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5350
5351 n = writev(fd, iovec, c->n_log_extra_fields*2);
5352 if (n < 0) {
5353 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5354 goto fail;
5355 }
5356
5357 (void) fchmod(fd, 0644);
5358
5359 if (rename(pattern, p) < 0) {
5360 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5361 goto fail;
5362 }
5363
5364 u->exported_log_extra_fields = true;
5365 return 0;
5366
5367 fail:
5368 (void) unlink(pattern);
5369 return r;
5370 }
5371
5372 static int unit_export_log_rate_limit_interval(Unit *u, const ExecContext *c) {
5373 _cleanup_free_ char *buf = NULL;
5374 const char *p;
5375 int r;
5376
5377 assert(u);
5378 assert(c);
5379
5380 if (u->exported_log_rate_limit_interval)
5381 return 0;
5382
5383 if (c->log_rate_limit_interval_usec == 0)
5384 return 0;
5385
5386 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5387
5388 if (asprintf(&buf, "%" PRIu64, c->log_rate_limit_interval_usec) < 0)
5389 return log_oom();
5390
5391 r = symlink_atomic(buf, p);
5392 if (r < 0)
5393 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5394
5395 u->exported_log_rate_limit_interval = true;
5396 return 0;
5397 }
5398
5399 static int unit_export_log_rate_limit_burst(Unit *u, const ExecContext *c) {
5400 _cleanup_free_ char *buf = NULL;
5401 const char *p;
5402 int r;
5403
5404 assert(u);
5405 assert(c);
5406
5407 if (u->exported_log_rate_limit_burst)
5408 return 0;
5409
5410 if (c->log_rate_limit_burst == 0)
5411 return 0;
5412
5413 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5414
5415 if (asprintf(&buf, "%u", c->log_rate_limit_burst) < 0)
5416 return log_oom();
5417
5418 r = symlink_atomic(buf, p);
5419 if (r < 0)
5420 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5421
5422 u->exported_log_rate_limit_burst = true;
5423 return 0;
5424 }
5425
5426 void unit_export_state_files(Unit *u) {
5427 const ExecContext *c;
5428
5429 assert(u);
5430
5431 if (!u->id)
5432 return;
5433
5434 if (!MANAGER_IS_SYSTEM(u->manager))
5435 return;
5436
5437 if (MANAGER_IS_TEST_RUN(u->manager))
5438 return;
5439
5440 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5441 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5442 * the IPC system itself and PID 1 also log to the journal.
5443 *
5444 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5445 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5446 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5447 * namespace at least.
5448 *
5449 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5450 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5451 * them with one. */
5452
5453 (void) unit_export_invocation_id(u);
5454
5455 c = unit_get_exec_context(u);
5456 if (c) {
5457 (void) unit_export_log_level_max(u, c);
5458 (void) unit_export_log_extra_fields(u, c);
5459 (void) unit_export_log_rate_limit_interval(u, c);
5460 (void) unit_export_log_rate_limit_burst(u, c);
5461 }
5462 }
5463
5464 void unit_unlink_state_files(Unit *u) {
5465 const char *p;
5466
5467 assert(u);
5468
5469 if (!u->id)
5470 return;
5471
5472 if (!MANAGER_IS_SYSTEM(u->manager))
5473 return;
5474
5475 /* Undoes the effect of unit_export_state() */
5476
5477 if (u->exported_invocation_id) {
5478 p = strjoina("/run/systemd/units/invocation:", u->id);
5479 (void) unlink(p);
5480
5481 u->exported_invocation_id = false;
5482 }
5483
5484 if (u->exported_log_level_max) {
5485 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5486 (void) unlink(p);
5487
5488 u->exported_log_level_max = false;
5489 }
5490
5491 if (u->exported_log_extra_fields) {
5492 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5493 (void) unlink(p);
5494
5495 u->exported_log_extra_fields = false;
5496 }
5497
5498 if (u->exported_log_rate_limit_interval) {
5499 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5500 (void) unlink(p);
5501
5502 u->exported_log_rate_limit_interval = false;
5503 }
5504
5505 if (u->exported_log_rate_limit_burst) {
5506 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5507 (void) unlink(p);
5508
5509 u->exported_log_rate_limit_burst = false;
5510 }
5511 }
5512
5513 int unit_prepare_exec(Unit *u) {
5514 int r;
5515
5516 assert(u);
5517
5518 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5519 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5520 r = bpf_firewall_load_custom(u);
5521 if (r < 0)
5522 return r;
5523
5524 /* Prepares everything so that we can fork of a process for this unit */
5525
5526 (void) unit_realize_cgroup(u);
5527
5528 if (u->reset_accounting) {
5529 (void) unit_reset_accounting(u);
5530 u->reset_accounting = false;
5531 }
5532
5533 unit_export_state_files(u);
5534
5535 r = unit_setup_exec_runtime(u);
5536 if (r < 0)
5537 return r;
5538
5539 r = unit_setup_dynamic_creds(u);
5540 if (r < 0)
5541 return r;
5542
5543 return 0;
5544 }
5545
5546 static int log_leftover(pid_t pid, int sig, void *userdata) {
5547 _cleanup_free_ char *comm = NULL;
5548
5549 (void) get_process_comm(pid, &comm);
5550
5551 if (comm && comm[0] == '(') /* Most likely our own helper process (PAM?), ignore */
5552 return 0;
5553
5554 log_unit_warning(userdata,
5555 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5556 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5557 pid, strna(comm));
5558
5559 return 1;
5560 }
5561
5562 int unit_warn_leftover_processes(Unit *u) {
5563 assert(u);
5564
5565 (void) unit_pick_cgroup_path(u);
5566
5567 if (!u->cgroup_path)
5568 return 0;
5569
5570 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_leftover, u);
5571 }
5572
5573 bool unit_needs_console(Unit *u) {
5574 ExecContext *ec;
5575 UnitActiveState state;
5576
5577 assert(u);
5578
5579 state = unit_active_state(u);
5580
5581 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5582 return false;
5583
5584 if (UNIT_VTABLE(u)->needs_console)
5585 return UNIT_VTABLE(u)->needs_console(u);
5586
5587 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5588 ec = unit_get_exec_context(u);
5589 if (!ec)
5590 return false;
5591
5592 return exec_context_may_touch_console(ec);
5593 }
5594
5595 const char *unit_label_path(Unit *u) {
5596 const char *p;
5597
5598 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
5599 * when validating access checks. */
5600
5601 p = u->source_path ?: u->fragment_path;
5602 if (!p)
5603 return NULL;
5604
5605 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
5606 if (path_equal(p, "/dev/null"))
5607 return NULL;
5608
5609 return p;
5610 }
5611
5612 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
5613 int r;
5614
5615 assert(u);
5616
5617 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5618 * and not a kernel thread either */
5619
5620 /* First, a simple range check */
5621 if (!pid_is_valid(pid))
5622 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
5623
5624 /* Some extra safety check */
5625 if (pid == 1 || pid == getpid_cached())
5626 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
5627
5628 /* Don't even begin to bother with kernel threads */
5629 r = is_kernel_thread(pid);
5630 if (r == -ESRCH)
5631 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
5632 if (r < 0)
5633 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
5634 if (r > 0)
5635 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
5636
5637 return 0;
5638 }
5639
5640 void unit_log_success(Unit *u) {
5641 assert(u);
5642
5643 log_struct(LOG_INFO,
5644 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5645 LOG_UNIT_ID(u),
5646 LOG_UNIT_INVOCATION_ID(u),
5647 LOG_UNIT_MESSAGE(u, "Succeeded."));
5648 }
5649
5650 void unit_log_failure(Unit *u, const char *result) {
5651 assert(u);
5652 assert(result);
5653
5654 log_struct(LOG_WARNING,
5655 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5656 LOG_UNIT_ID(u),
5657 LOG_UNIT_INVOCATION_ID(u),
5658 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5659 "UNIT_RESULT=%s", result);
5660 }
5661
5662 void unit_log_process_exit(
5663 Unit *u,
5664 int level,
5665 const char *kind,
5666 const char *command,
5667 int code,
5668 int status) {
5669
5670 assert(u);
5671 assert(kind);
5672
5673 if (code != CLD_EXITED)
5674 level = LOG_WARNING;
5675
5676 log_struct(level,
5677 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
5678 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
5679 kind,
5680 sigchld_code_to_string(code), status,
5681 strna(code == CLD_EXITED
5682 ? exit_status_to_string(status, EXIT_STATUS_FULL)
5683 : signal_to_string(status))),
5684 "EXIT_CODE=%s", sigchld_code_to_string(code),
5685 "EXIT_STATUS=%i", status,
5686 "COMMAND=%s", strna(command),
5687 LOG_UNIT_ID(u),
5688 LOG_UNIT_INVOCATION_ID(u));
5689 }
5690
5691 int unit_exit_status(Unit *u) {
5692 assert(u);
5693
5694 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
5695 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
5696 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
5697 * service process has exited abnormally (signal/coredump). */
5698
5699 if (!UNIT_VTABLE(u)->exit_status)
5700 return -EOPNOTSUPP;
5701
5702 return UNIT_VTABLE(u)->exit_status(u);
5703 }
5704
5705 int unit_failure_action_exit_status(Unit *u) {
5706 int r;
5707
5708 assert(u);
5709
5710 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
5711
5712 if (u->failure_action_exit_status >= 0)
5713 return u->failure_action_exit_status;
5714
5715 r = unit_exit_status(u);
5716 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5717 return 255;
5718
5719 return r;
5720 }
5721
5722 int unit_success_action_exit_status(Unit *u) {
5723 int r;
5724
5725 assert(u);
5726
5727 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
5728
5729 if (u->success_action_exit_status >= 0)
5730 return u->success_action_exit_status;
5731
5732 r = unit_exit_status(u);
5733 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5734 return 255;
5735
5736 return r;
5737 }
5738
5739 int unit_test_trigger_loaded(Unit *u) {
5740 Unit *trigger;
5741
5742 /* Tests whether the unit to trigger is loaded */
5743
5744 trigger = UNIT_TRIGGER(u);
5745 if (!trigger)
5746 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT), "Refusing to start, unit to trigger not loaded.");
5747 if (trigger->load_state != UNIT_LOADED)
5748 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT), "Refusing to start, unit %s to trigger not loaded.", u->id);
5749
5750 return 0;
5751 }
5752
5753 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
5754 [COLLECT_INACTIVE] = "inactive",
5755 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
5756 };
5757
5758 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);