]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
Merge pull request #17297 from keszybz/tmpfiles-sysusers-disable-standalone-image
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bus-common-errors.h"
15 #include "bus-util.h"
16 #include "cgroup-setup.h"
17 #include "cgroup-util.h"
18 #include "core-varlink.h"
19 #include "dbus-unit.h"
20 #include "dbus.h"
21 #include "dropin.h"
22 #include "escape.h"
23 #include "execute.h"
24 #include "fd-util.h"
25 #include "fileio-label.h"
26 #include "fileio.h"
27 #include "format-util.h"
28 #include "id128-util.h"
29 #include "io-util.h"
30 #include "install.h"
31 #include "label.h"
32 #include "load-dropin.h"
33 #include "load-fragment.h"
34 #include "log.h"
35 #include "macro.h"
36 #include "missing_audit.h"
37 #include "mkdir.h"
38 #include "parse-util.h"
39 #include "path-util.h"
40 #include "process-util.h"
41 #include "rm-rf.h"
42 #include "serialize.h"
43 #include "set.h"
44 #include "signal-util.h"
45 #include "sparse-endian.h"
46 #include "special.h"
47 #include "specifier.h"
48 #include "stat-util.h"
49 #include "stdio-util.h"
50 #include "string-table.h"
51 #include "string-util.h"
52 #include "strv.h"
53 #include "terminal-util.h"
54 #include "tmpfile-util.h"
55 #include "umask-util.h"
56 #include "unit-name.h"
57 #include "unit.h"
58 #include "user-util.h"
59 #include "virt.h"
60
61 /* Thresholds for logging at INFO level about resource consumption */
62 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
63 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
64 #define MENTIONWORTHY_IP_BYTES (0ULL)
65
66 /* Thresholds for logging at INFO level about resource consumption */
67 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
68 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
69 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
70
71 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
72 [UNIT_SERVICE] = &service_vtable,
73 [UNIT_SOCKET] = &socket_vtable,
74 [UNIT_TARGET] = &target_vtable,
75 [UNIT_DEVICE] = &device_vtable,
76 [UNIT_MOUNT] = &mount_vtable,
77 [UNIT_AUTOMOUNT] = &automount_vtable,
78 [UNIT_SWAP] = &swap_vtable,
79 [UNIT_TIMER] = &timer_vtable,
80 [UNIT_PATH] = &path_vtable,
81 [UNIT_SLICE] = &slice_vtable,
82 [UNIT_SCOPE] = &scope_vtable,
83 };
84
85 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
86
87 Unit *unit_new(Manager *m, size_t size) {
88 Unit *u;
89
90 assert(m);
91 assert(size >= sizeof(Unit));
92
93 u = malloc0(size);
94 if (!u)
95 return NULL;
96
97 u->manager = m;
98 u->type = _UNIT_TYPE_INVALID;
99 u->default_dependencies = true;
100 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
101 u->unit_file_preset = -1;
102 u->on_failure_job_mode = JOB_REPLACE;
103 u->cgroup_control_inotify_wd = -1;
104 u->cgroup_memory_inotify_wd = -1;
105 u->job_timeout = USEC_INFINITY;
106 u->job_running_timeout = USEC_INFINITY;
107 u->ref_uid = UID_INVALID;
108 u->ref_gid = GID_INVALID;
109 u->cpu_usage_last = NSEC_INFINITY;
110 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
111 u->failure_action_exit_status = u->success_action_exit_status = -1;
112
113 u->ip_accounting_ingress_map_fd = -1;
114 u->ip_accounting_egress_map_fd = -1;
115 u->ipv4_allow_map_fd = -1;
116 u->ipv6_allow_map_fd = -1;
117 u->ipv4_deny_map_fd = -1;
118 u->ipv6_deny_map_fd = -1;
119
120 u->last_section_private = -1;
121
122 u->start_ratelimit = (RateLimit) { m->default_start_limit_interval, m->default_start_limit_burst };
123 u->auto_stop_ratelimit = (RateLimit) { 10 * USEC_PER_SEC, 16 };
124
125 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
126 u->io_accounting_last[i] = UINT64_MAX;
127
128 return u;
129 }
130
131 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
132 _cleanup_(unit_freep) Unit *u = NULL;
133 int r;
134
135 u = unit_new(m, size);
136 if (!u)
137 return -ENOMEM;
138
139 r = unit_add_name(u, name);
140 if (r < 0)
141 return r;
142
143 *ret = TAKE_PTR(u);
144
145 return r;
146 }
147
148 bool unit_has_name(const Unit *u, const char *name) {
149 assert(u);
150 assert(name);
151
152 return streq_ptr(name, u->id) ||
153 set_contains(u->aliases, name);
154 }
155
156 static void unit_init(Unit *u) {
157 CGroupContext *cc;
158 ExecContext *ec;
159 KillContext *kc;
160
161 assert(u);
162 assert(u->manager);
163 assert(u->type >= 0);
164
165 cc = unit_get_cgroup_context(u);
166 if (cc) {
167 cgroup_context_init(cc);
168
169 /* Copy in the manager defaults into the cgroup
170 * context, _before_ the rest of the settings have
171 * been initialized */
172
173 cc->cpu_accounting = u->manager->default_cpu_accounting;
174 cc->io_accounting = u->manager->default_io_accounting;
175 cc->blockio_accounting = u->manager->default_blockio_accounting;
176 cc->memory_accounting = u->manager->default_memory_accounting;
177 cc->tasks_accounting = u->manager->default_tasks_accounting;
178 cc->ip_accounting = u->manager->default_ip_accounting;
179
180 if (u->type != UNIT_SLICE)
181 cc->tasks_max = u->manager->default_tasks_max;
182 }
183
184 ec = unit_get_exec_context(u);
185 if (ec) {
186 exec_context_init(ec);
187
188 if (MANAGER_IS_SYSTEM(u->manager))
189 ec->keyring_mode = EXEC_KEYRING_SHARED;
190 else {
191 ec->keyring_mode = EXEC_KEYRING_INHERIT;
192
193 /* User manager might have its umask redefined by PAM or UMask=. In this
194 * case let the units it manages inherit this value by default. They can
195 * still tune this value through their own unit file */
196 (void) get_process_umask(getpid_cached(), &ec->umask);
197 }
198 }
199
200 kc = unit_get_kill_context(u);
201 if (kc)
202 kill_context_init(kc);
203
204 if (UNIT_VTABLE(u)->init)
205 UNIT_VTABLE(u)->init(u);
206 }
207
208 static int unit_add_alias(Unit *u, char *donated_name) {
209 int r;
210
211 /* Make sure that u->names is allocated. We may leave u->names
212 * empty if we fail later, but this is not a problem. */
213 r = set_ensure_put(&u->aliases, &string_hash_ops, donated_name);
214 if (r < 0)
215 return r;
216 assert(r > 0);
217
218 return 0;
219 }
220
221 int unit_add_name(Unit *u, const char *text) {
222 _cleanup_free_ char *name = NULL, *instance = NULL;
223 UnitType t;
224 int r;
225
226 assert(u);
227 assert(text);
228
229 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
230 if (!u->instance)
231 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
232 "instance is not set when adding name '%s': %m", text);
233
234 r = unit_name_replace_instance(text, u->instance, &name);
235 if (r < 0)
236 return log_unit_debug_errno(u, r,
237 "failed to build instance name from '%s': %m", text);
238 } else {
239 name = strdup(text);
240 if (!name)
241 return -ENOMEM;
242 }
243
244 if (unit_has_name(u, name))
245 return 0;
246
247 if (hashmap_contains(u->manager->units, name))
248 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
249 "unit already exist when adding name '%s': %m", name);
250
251 if (!unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
252 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
253 "name '%s' is invalid: %m", name);
254
255 t = unit_name_to_type(name);
256 if (t < 0)
257 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
258 "failed to derive unit type from name '%s': %m", name);
259
260 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
261 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
262 "unit type is illegal: u->type(%d) and t(%d) for name '%s': %m",
263 u->type, t, name);
264
265 r = unit_name_to_instance(name, &instance);
266 if (r < 0)
267 return log_unit_debug_errno(u, r, "failed to extract instance from name '%s': %m", name);
268
269 if (instance && !unit_type_may_template(t))
270 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "templates are not allowed for name '%s': %m", name);
271
272 /* Ensure that this unit either has no instance, or that the instance matches. */
273 if (u->type != _UNIT_TYPE_INVALID && !streq_ptr(u->instance, instance))
274 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
275 "cannot add name %s, the instances don't match (\"%s\" != \"%s\").",
276 name, instance, u->instance);
277
278 if (u->id && !unit_type_may_alias(t))
279 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
280 "cannot add name %s, aliases are not allowed for %s units.",
281 name, unit_type_to_string(t));
282
283 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
284 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(E2BIG), "cannot add name, manager has too many units: %m");
285
286 /* Add name to the global hashmap first, because that's easier to undo */
287 r = hashmap_put(u->manager->units, name, u);
288 if (r < 0)
289 return log_unit_debug_errno(u, r, "add unit to hashmap failed for name '%s': %m", text);
290
291 if (u->id) {
292 r = unit_add_alias(u, name); /* unit_add_alias() takes ownership of the name on success */
293 if (r < 0) {
294 hashmap_remove(u->manager->units, name);
295 return r;
296 }
297 TAKE_PTR(name);
298
299 } else {
300 /* A new name, we don't need the set yet. */
301 assert(u->type == _UNIT_TYPE_INVALID);
302 assert(!u->instance);
303
304 u->type = t;
305 u->id = TAKE_PTR(name);
306 u->instance = TAKE_PTR(instance);
307
308 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
309 unit_init(u);
310 }
311
312 unit_add_to_dbus_queue(u);
313 return 0;
314 }
315
316 int unit_choose_id(Unit *u, const char *name) {
317 _cleanup_free_ char *t = NULL;
318 char *s;
319 int r;
320
321 assert(u);
322 assert(name);
323
324 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
325 if (!u->instance)
326 return -EINVAL;
327
328 r = unit_name_replace_instance(name, u->instance, &t);
329 if (r < 0)
330 return r;
331
332 name = t;
333 }
334
335 if (streq_ptr(u->id, name))
336 return 0; /* Nothing to do. */
337
338 /* Selects one of the aliases of this unit as the id */
339 s = set_get(u->aliases, (char*) name);
340 if (!s)
341 return -ENOENT;
342
343 if (u->id) {
344 r = set_remove_and_put(u->aliases, name, u->id);
345 if (r < 0)
346 return r;
347 } else
348 assert_se(set_remove(u->aliases, name)); /* see set_get() above… */
349
350 u->id = s; /* Old u->id is now stored in the set, and s is not stored anywhere */
351 unit_add_to_dbus_queue(u);
352
353 return 0;
354 }
355
356 int unit_set_description(Unit *u, const char *description) {
357 int r;
358
359 assert(u);
360
361 r = free_and_strdup(&u->description, empty_to_null(description));
362 if (r < 0)
363 return r;
364 if (r > 0)
365 unit_add_to_dbus_queue(u);
366
367 return 0;
368 }
369
370 bool unit_may_gc(Unit *u) {
371 UnitActiveState state;
372 int r;
373
374 assert(u);
375
376 /* Checks whether the unit is ready to be unloaded for garbage collection.
377 * Returns true when the unit may be collected, and false if there's some
378 * reason to keep it loaded.
379 *
380 * References from other units are *not* checked here. Instead, this is done
381 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
382 */
383
384 if (u->job)
385 return false;
386
387 if (u->nop_job)
388 return false;
389
390 state = unit_active_state(u);
391
392 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
393 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
394 UNIT_VTABLE(u)->release_resources)
395 UNIT_VTABLE(u)->release_resources(u);
396
397 if (u->perpetual)
398 return false;
399
400 if (sd_bus_track_count(u->bus_track) > 0)
401 return false;
402
403 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
404 switch (u->collect_mode) {
405
406 case COLLECT_INACTIVE:
407 if (state != UNIT_INACTIVE)
408 return false;
409
410 break;
411
412 case COLLECT_INACTIVE_OR_FAILED:
413 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
414 return false;
415
416 break;
417
418 default:
419 assert_not_reached("Unknown garbage collection mode");
420 }
421
422 if (u->cgroup_path) {
423 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
424 * around. Units with active processes should never be collected. */
425
426 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
427 if (r < 0)
428 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
429 if (r <= 0)
430 return false;
431 }
432
433 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
434 return false;
435
436 return true;
437 }
438
439 void unit_add_to_load_queue(Unit *u) {
440 assert(u);
441 assert(u->type != _UNIT_TYPE_INVALID);
442
443 if (u->load_state != UNIT_STUB || u->in_load_queue)
444 return;
445
446 LIST_PREPEND(load_queue, u->manager->load_queue, u);
447 u->in_load_queue = true;
448 }
449
450 void unit_add_to_cleanup_queue(Unit *u) {
451 assert(u);
452
453 if (u->in_cleanup_queue)
454 return;
455
456 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
457 u->in_cleanup_queue = true;
458 }
459
460 void unit_add_to_gc_queue(Unit *u) {
461 assert(u);
462
463 if (u->in_gc_queue || u->in_cleanup_queue)
464 return;
465
466 if (!unit_may_gc(u))
467 return;
468
469 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
470 u->in_gc_queue = true;
471 }
472
473 void unit_add_to_dbus_queue(Unit *u) {
474 assert(u);
475 assert(u->type != _UNIT_TYPE_INVALID);
476
477 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
478 return;
479
480 /* Shortcut things if nobody cares */
481 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
482 sd_bus_track_count(u->bus_track) <= 0 &&
483 set_isempty(u->manager->private_buses)) {
484 u->sent_dbus_new_signal = true;
485 return;
486 }
487
488 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
489 u->in_dbus_queue = true;
490 }
491
492 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
493 assert(u);
494
495 if (u->in_stop_when_unneeded_queue)
496 return;
497
498 if (!u->stop_when_unneeded)
499 return;
500
501 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
502 return;
503
504 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
505 u->in_stop_when_unneeded_queue = true;
506 }
507
508 static void bidi_set_free(Unit *u, Hashmap *h) {
509 Unit *other;
510 void *v;
511
512 assert(u);
513
514 /* Frees the hashmap and makes sure we are dropped from the inverse pointers */
515
516 HASHMAP_FOREACH_KEY(v, other, h) {
517 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
518 hashmap_remove(other->dependencies[d], u);
519
520 unit_add_to_gc_queue(other);
521 }
522
523 hashmap_free(h);
524 }
525
526 static void unit_remove_transient(Unit *u) {
527 char **i;
528
529 assert(u);
530
531 if (!u->transient)
532 return;
533
534 if (u->fragment_path)
535 (void) unlink(u->fragment_path);
536
537 STRV_FOREACH(i, u->dropin_paths) {
538 _cleanup_free_ char *p = NULL, *pp = NULL;
539
540 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
541 if (!p)
542 continue;
543
544 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
545 if (!pp)
546 continue;
547
548 /* Only drop transient drop-ins */
549 if (!path_equal(u->manager->lookup_paths.transient, pp))
550 continue;
551
552 (void) unlink(*i);
553 (void) rmdir(p);
554 }
555 }
556
557 static void unit_free_requires_mounts_for(Unit *u) {
558 assert(u);
559
560 for (;;) {
561 _cleanup_free_ char *path;
562
563 path = hashmap_steal_first_key(u->requires_mounts_for);
564 if (!path)
565 break;
566 else {
567 char s[strlen(path) + 1];
568
569 PATH_FOREACH_PREFIX_MORE(s, path) {
570 char *y;
571 Set *x;
572
573 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
574 if (!x)
575 continue;
576
577 (void) set_remove(x, u);
578
579 if (set_isempty(x)) {
580 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
581 free(y);
582 set_free(x);
583 }
584 }
585 }
586 }
587
588 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
589 }
590
591 static void unit_done(Unit *u) {
592 ExecContext *ec;
593 CGroupContext *cc;
594
595 assert(u);
596
597 if (u->type < 0)
598 return;
599
600 if (UNIT_VTABLE(u)->done)
601 UNIT_VTABLE(u)->done(u);
602
603 ec = unit_get_exec_context(u);
604 if (ec)
605 exec_context_done(ec);
606
607 cc = unit_get_cgroup_context(u);
608 if (cc)
609 cgroup_context_done(cc);
610 }
611
612 void unit_free(Unit *u) {
613 char *t;
614
615 if (!u)
616 return;
617
618 u->transient_file = safe_fclose(u->transient_file);
619
620 if (!MANAGER_IS_RELOADING(u->manager))
621 unit_remove_transient(u);
622
623 bus_unit_send_removed_signal(u);
624
625 unit_done(u);
626
627 unit_dequeue_rewatch_pids(u);
628
629 sd_bus_slot_unref(u->match_bus_slot);
630 sd_bus_track_unref(u->bus_track);
631 u->deserialized_refs = strv_free(u->deserialized_refs);
632 u->pending_freezer_message = sd_bus_message_unref(u->pending_freezer_message);
633
634 unit_free_requires_mounts_for(u);
635
636 SET_FOREACH(t, u->aliases)
637 hashmap_remove_value(u->manager->units, t, u);
638 if (u->id)
639 hashmap_remove_value(u->manager->units, u->id, u);
640
641 if (!sd_id128_is_null(u->invocation_id))
642 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
643
644 if (u->job) {
645 Job *j = u->job;
646 job_uninstall(j);
647 job_free(j);
648 }
649
650 if (u->nop_job) {
651 Job *j = u->nop_job;
652 job_uninstall(j);
653 job_free(j);
654 }
655
656 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
657 bidi_set_free(u, u->dependencies[d]);
658
659 /* A unit is being dropped from the tree, make sure our family is realized properly. Do this after we
660 * detach the unit from slice tree in order to eliminate its effect on controller masks. */
661 if (UNIT_ISSET(u->slice))
662 unit_add_family_to_cgroup_realize_queue(UNIT_DEREF(u->slice));
663
664 if (u->on_console)
665 manager_unref_console(u->manager);
666
667 unit_release_cgroup(u);
668
669 if (!MANAGER_IS_RELOADING(u->manager))
670 unit_unlink_state_files(u);
671
672 unit_unref_uid_gid(u, false);
673
674 (void) manager_update_failed_units(u->manager, u, false);
675 set_remove(u->manager->startup_units, u);
676
677 unit_unwatch_all_pids(u);
678
679 unit_ref_unset(&u->slice);
680 while (u->refs_by_target)
681 unit_ref_unset(u->refs_by_target);
682
683 if (u->type != _UNIT_TYPE_INVALID)
684 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
685
686 if (u->in_load_queue)
687 LIST_REMOVE(load_queue, u->manager->load_queue, u);
688
689 if (u->in_dbus_queue)
690 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
691
692 if (u->in_gc_queue)
693 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
694
695 if (u->in_cgroup_realize_queue)
696 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
697
698 if (u->in_cgroup_empty_queue)
699 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
700
701 if (u->in_cleanup_queue)
702 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
703
704 if (u->in_target_deps_queue)
705 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
706
707 if (u->in_stop_when_unneeded_queue)
708 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
709
710 safe_close(u->ip_accounting_ingress_map_fd);
711 safe_close(u->ip_accounting_egress_map_fd);
712
713 safe_close(u->ipv4_allow_map_fd);
714 safe_close(u->ipv6_allow_map_fd);
715 safe_close(u->ipv4_deny_map_fd);
716 safe_close(u->ipv6_deny_map_fd);
717
718 bpf_program_unref(u->ip_bpf_ingress);
719 bpf_program_unref(u->ip_bpf_ingress_installed);
720 bpf_program_unref(u->ip_bpf_egress);
721 bpf_program_unref(u->ip_bpf_egress_installed);
722
723 set_free(u->ip_bpf_custom_ingress);
724 set_free(u->ip_bpf_custom_egress);
725 set_free(u->ip_bpf_custom_ingress_installed);
726 set_free(u->ip_bpf_custom_egress_installed);
727
728 bpf_program_unref(u->bpf_device_control_installed);
729
730 condition_free_list(u->conditions);
731 condition_free_list(u->asserts);
732
733 free(u->description);
734 strv_free(u->documentation);
735 free(u->fragment_path);
736 free(u->source_path);
737 strv_free(u->dropin_paths);
738 free(u->instance);
739
740 free(u->job_timeout_reboot_arg);
741 free(u->reboot_arg);
742
743 set_free_free(u->aliases);
744 free(u->id);
745
746 free(u);
747 }
748
749 FreezerState unit_freezer_state(Unit *u) {
750 assert(u);
751
752 return u->freezer_state;
753 }
754
755 int unit_freezer_state_kernel(Unit *u, FreezerState *ret) {
756 char *values[1] = {};
757 int r;
758
759 assert(u);
760
761 r = cg_get_keyed_attribute(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
762 STRV_MAKE("frozen"), values);
763 if (r < 0)
764 return r;
765
766 r = _FREEZER_STATE_INVALID;
767
768 if (values[0]) {
769 if (streq(values[0], "0"))
770 r = FREEZER_RUNNING;
771 else if (streq(values[0], "1"))
772 r = FREEZER_FROZEN;
773 }
774
775 free(values[0]);
776 *ret = r;
777
778 return 0;
779 }
780
781 UnitActiveState unit_active_state(Unit *u) {
782 assert(u);
783
784 if (u->load_state == UNIT_MERGED)
785 return unit_active_state(unit_follow_merge(u));
786
787 /* After a reload it might happen that a unit is not correctly
788 * loaded but still has a process around. That's why we won't
789 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
790
791 return UNIT_VTABLE(u)->active_state(u);
792 }
793
794 const char* unit_sub_state_to_string(Unit *u) {
795 assert(u);
796
797 return UNIT_VTABLE(u)->sub_state_to_string(u);
798 }
799
800 static int hashmap_complete_move(Hashmap **s, Hashmap **other) {
801 assert(s);
802 assert(other);
803
804 if (!*other)
805 return 0;
806
807 if (*s)
808 return hashmap_move(*s, *other);
809 else
810 *s = TAKE_PTR(*other);
811
812 return 0;
813 }
814
815 static int merge_names(Unit *u, Unit *other) {
816 char *name;
817 int r;
818
819 assert(u);
820 assert(other);
821
822 r = unit_add_alias(u, other->id);
823 if (r < 0)
824 return r;
825
826 r = set_move(u->aliases, other->aliases);
827 if (r < 0) {
828 set_remove(u->aliases, other->id);
829 return r;
830 }
831
832 TAKE_PTR(other->id);
833 other->aliases = set_free_free(other->aliases);
834
835 SET_FOREACH(name, u->aliases)
836 assert_se(hashmap_replace(u->manager->units, name, u) == 0);
837
838 return 0;
839 }
840
841 static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
842 unsigned n_reserve;
843
844 assert(u);
845 assert(other);
846 assert(d < _UNIT_DEPENDENCY_MAX);
847
848 /*
849 * If u does not have this dependency set allocated, there is no need
850 * to reserve anything. In that case other's set will be transferred
851 * as a whole to u by complete_move().
852 */
853 if (!u->dependencies[d])
854 return 0;
855
856 /* merge_dependencies() will skip a u-on-u dependency */
857 n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u);
858
859 return hashmap_reserve(u->dependencies[d], n_reserve);
860 }
861
862 static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
863 Unit *back;
864 void *v;
865 int r;
866
867 /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */
868
869 assert(u);
870 assert(other);
871 assert(d < _UNIT_DEPENDENCY_MAX);
872
873 /* Fix backwards pointers. Let's iterate through all dependent units of the other unit. */
874 HASHMAP_FOREACH_KEY(v, back, other->dependencies[d])
875
876 /* Let's now iterate through the dependencies of that dependencies of the other units,
877 * looking for pointers back, and let's fix them up, to instead point to 'u'. */
878 for (UnitDependency k = 0; k < _UNIT_DEPENDENCY_MAX; k++)
879 if (back == u) {
880 /* Do not add dependencies between u and itself. */
881 if (hashmap_remove(back->dependencies[k], other))
882 maybe_warn_about_dependency(u, other_id, k);
883 } else {
884 UnitDependencyInfo di_u, di_other;
885
886 /* Let's drop this dependency between "back" and "other", and let's create it between
887 * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving,
888 * and any such dependency which might already exist */
889
890 di_other.data = hashmap_get(back->dependencies[k], other);
891 if (!di_other.data)
892 continue; /* dependency isn't set, let's try the next one */
893
894 di_u.data = hashmap_get(back->dependencies[k], u);
895
896 UnitDependencyInfo di_merged = {
897 .origin_mask = di_u.origin_mask | di_other.origin_mask,
898 .destination_mask = di_u.destination_mask | di_other.destination_mask,
899 };
900
901 r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data);
902 if (r < 0)
903 log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id);
904 assert(r >= 0);
905
906 /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */
907 }
908
909 /* Also do not move dependencies on u to itself */
910 back = hashmap_remove(other->dependencies[d], u);
911 if (back)
912 maybe_warn_about_dependency(u, other_id, d);
913
914 /* The move cannot fail. The caller must have performed a reservation. */
915 assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
916
917 other->dependencies[d] = hashmap_free(other->dependencies[d]);
918 }
919
920 int unit_merge(Unit *u, Unit *other) {
921 const char *other_id = NULL;
922 int r;
923
924 assert(u);
925 assert(other);
926 assert(u->manager == other->manager);
927 assert(u->type != _UNIT_TYPE_INVALID);
928
929 other = unit_follow_merge(other);
930
931 if (other == u)
932 return 0;
933
934 if (u->type != other->type)
935 return -EINVAL;
936
937 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
938 return -EEXIST;
939
940 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
941 return -EEXIST;
942
943 if (!streq_ptr(u->instance, other->instance))
944 return -EINVAL;
945
946 if (other->job)
947 return -EEXIST;
948
949 if (other->nop_job)
950 return -EEXIST;
951
952 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
953 return -EEXIST;
954
955 if (other->id)
956 other_id = strdupa(other->id);
957
958 /* Make reservations to ensure merge_dependencies() won't fail */
959 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
960 r = reserve_dependencies(u, other, d);
961 /*
962 * We don't rollback reservations if we fail. We don't have
963 * a way to undo reservations. A reservation is not a leak.
964 */
965 if (r < 0)
966 return r;
967 }
968
969 /* Merge names */
970 r = merge_names(u, other);
971 if (r < 0)
972 return r;
973
974 /* Redirect all references */
975 while (other->refs_by_target)
976 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
977
978 /* Merge dependencies */
979 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
980 merge_dependencies(u, other, other_id, d);
981
982 other->load_state = UNIT_MERGED;
983 other->merged_into = u;
984
985 /* If there is still some data attached to the other node, we
986 * don't need it anymore, and can free it. */
987 if (other->load_state != UNIT_STUB)
988 if (UNIT_VTABLE(other)->done)
989 UNIT_VTABLE(other)->done(other);
990
991 unit_add_to_dbus_queue(u);
992 unit_add_to_cleanup_queue(other);
993
994 return 0;
995 }
996
997 int unit_merge_by_name(Unit *u, const char *name) {
998 _cleanup_free_ char *s = NULL;
999 Unit *other;
1000 int r;
1001
1002 /* Either add name to u, or if a unit with name already exists, merge it with u.
1003 * If name is a template, do the same for name@instance, where instance is u's instance. */
1004
1005 assert(u);
1006 assert(name);
1007
1008 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
1009 if (!u->instance)
1010 return -EINVAL;
1011
1012 r = unit_name_replace_instance(name, u->instance, &s);
1013 if (r < 0)
1014 return r;
1015
1016 name = s;
1017 }
1018
1019 other = manager_get_unit(u->manager, name);
1020 if (other)
1021 return unit_merge(u, other);
1022
1023 return unit_add_name(u, name);
1024 }
1025
1026 Unit* unit_follow_merge(Unit *u) {
1027 assert(u);
1028
1029 while (u->load_state == UNIT_MERGED)
1030 assert_se(u = u->merged_into);
1031
1032 return u;
1033 }
1034
1035 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
1036 int r;
1037
1038 assert(u);
1039 assert(c);
1040
1041 if (c->working_directory && !c->working_directory_missing_ok) {
1042 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1043 if (r < 0)
1044 return r;
1045 }
1046
1047 if (c->root_directory) {
1048 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1049 if (r < 0)
1050 return r;
1051 }
1052
1053 if (c->root_image) {
1054 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1055 if (r < 0)
1056 return r;
1057 }
1058
1059 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1060 if (!u->manager->prefix[dt])
1061 continue;
1062
1063 char **dp;
1064 STRV_FOREACH(dp, c->directories[dt].paths) {
1065 _cleanup_free_ char *p;
1066
1067 p = path_join(u->manager->prefix[dt], *dp);
1068 if (!p)
1069 return -ENOMEM;
1070
1071 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1072 if (r < 0)
1073 return r;
1074 }
1075 }
1076
1077 if (!MANAGER_IS_SYSTEM(u->manager))
1078 return 0;
1079
1080 /* For the following three directory types we need write access, and /var/ is possibly on the root
1081 * fs. Hence order after systemd-remount-fs.service, to ensure things are writable. */
1082 if (!strv_isempty(c->directories[EXEC_DIRECTORY_STATE].paths) ||
1083 !strv_isempty(c->directories[EXEC_DIRECTORY_CACHE].paths) ||
1084 !strv_isempty(c->directories[EXEC_DIRECTORY_LOGS].paths)) {
1085 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_REMOUNT_FS_SERVICE, true, UNIT_DEPENDENCY_FILE);
1086 if (r < 0)
1087 return r;
1088 }
1089
1090 if (c->private_tmp) {
1091 const char *p;
1092
1093 FOREACH_STRING(p, "/tmp", "/var/tmp") {
1094 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1095 if (r < 0)
1096 return r;
1097 }
1098
1099 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1100 if (r < 0)
1101 return r;
1102 }
1103
1104 if (c->root_image) {
1105 /* We need to wait for /dev/loopX to appear when doing RootImage=, hence let's add an
1106 * implicit dependency on udev */
1107
1108 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_UDEVD_SERVICE, true, UNIT_DEPENDENCY_FILE);
1109 if (r < 0)
1110 return r;
1111 }
1112
1113 if (!IN_SET(c->std_output,
1114 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1115 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1116 !IN_SET(c->std_error,
1117 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1118 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1119 !c->log_namespace)
1120 return 0;
1121
1122 /* If syslog or kernel logging is requested (or log namespacing is), make sure our own logging daemon
1123 * is run first. */
1124
1125 if (c->log_namespace) {
1126 _cleanup_free_ char *socket_unit = NULL, *varlink_socket_unit = NULL;
1127
1128 r = unit_name_build_from_type("systemd-journald", c->log_namespace, UNIT_SOCKET, &socket_unit);
1129 if (r < 0)
1130 return r;
1131
1132 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, socket_unit, true, UNIT_DEPENDENCY_FILE);
1133 if (r < 0)
1134 return r;
1135
1136 r = unit_name_build_from_type("systemd-journald-varlink", c->log_namespace, UNIT_SOCKET, &varlink_socket_unit);
1137 if (r < 0)
1138 return r;
1139
1140 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, varlink_socket_unit, true, UNIT_DEPENDENCY_FILE);
1141 if (r < 0)
1142 return r;
1143 } else
1144 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1145 if (r < 0)
1146 return r;
1147
1148 return 0;
1149 }
1150
1151 const char *unit_description(Unit *u) {
1152 assert(u);
1153
1154 if (u->description)
1155 return u->description;
1156
1157 return strna(u->id);
1158 }
1159
1160 const char *unit_status_string(Unit *u) {
1161 assert(u);
1162
1163 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME && u->id)
1164 return u->id;
1165
1166 return unit_description(u);
1167 }
1168
1169 static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) {
1170 const struct {
1171 UnitDependencyMask mask;
1172 const char *name;
1173 } table[] = {
1174 { UNIT_DEPENDENCY_FILE, "file" },
1175 { UNIT_DEPENDENCY_IMPLICIT, "implicit" },
1176 { UNIT_DEPENDENCY_DEFAULT, "default" },
1177 { UNIT_DEPENDENCY_UDEV, "udev" },
1178 { UNIT_DEPENDENCY_PATH, "path" },
1179 { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" },
1180 { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" },
1181 { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" },
1182 };
1183
1184 assert(f);
1185 assert(kind);
1186 assert(space);
1187
1188 for (size_t i = 0; i < ELEMENTSOF(table); i++) {
1189
1190 if (mask == 0)
1191 break;
1192
1193 if (FLAGS_SET(mask, table[i].mask)) {
1194 if (*space)
1195 fputc(' ', f);
1196 else
1197 *space = true;
1198
1199 fputs(kind, f);
1200 fputs("-", f);
1201 fputs(table[i].name, f);
1202
1203 mask &= ~table[i].mask;
1204 }
1205 }
1206
1207 assert(mask == 0);
1208 }
1209
1210 void unit_dump(Unit *u, FILE *f, const char *prefix) {
1211 char *t, **j;
1212 const char *prefix2;
1213 char timestamp[5][FORMAT_TIMESTAMP_MAX], timespan[FORMAT_TIMESPAN_MAX];
1214 Unit *following;
1215 _cleanup_set_free_ Set *following_set = NULL;
1216 CGroupMask m;
1217 int r;
1218
1219 assert(u);
1220 assert(u->type >= 0);
1221
1222 prefix = strempty(prefix);
1223 prefix2 = strjoina(prefix, "\t");
1224
1225 fprintf(f,
1226 "%s-> Unit %s:\n",
1227 prefix, u->id);
1228
1229 SET_FOREACH(t, u->aliases)
1230 fprintf(f, "%s\tAlias: %s\n", prefix, t);
1231
1232 fprintf(f,
1233 "%s\tDescription: %s\n"
1234 "%s\tInstance: %s\n"
1235 "%s\tUnit Load State: %s\n"
1236 "%s\tUnit Active State: %s\n"
1237 "%s\tState Change Timestamp: %s\n"
1238 "%s\tInactive Exit Timestamp: %s\n"
1239 "%s\tActive Enter Timestamp: %s\n"
1240 "%s\tActive Exit Timestamp: %s\n"
1241 "%s\tInactive Enter Timestamp: %s\n"
1242 "%s\tMay GC: %s\n"
1243 "%s\tNeed Daemon Reload: %s\n"
1244 "%s\tTransient: %s\n"
1245 "%s\tPerpetual: %s\n"
1246 "%s\tGarbage Collection Mode: %s\n"
1247 "%s\tSlice: %s\n"
1248 "%s\tCGroup: %s\n"
1249 "%s\tCGroup realized: %s\n",
1250 prefix, unit_description(u),
1251 prefix, strna(u->instance),
1252 prefix, unit_load_state_to_string(u->load_state),
1253 prefix, unit_active_state_to_string(unit_active_state(u)),
1254 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->state_change_timestamp.realtime)),
1255 prefix, strna(format_timestamp(timestamp[1], sizeof(timestamp[1]), u->inactive_exit_timestamp.realtime)),
1256 prefix, strna(format_timestamp(timestamp[2], sizeof(timestamp[2]), u->active_enter_timestamp.realtime)),
1257 prefix, strna(format_timestamp(timestamp[3], sizeof(timestamp[3]), u->active_exit_timestamp.realtime)),
1258 prefix, strna(format_timestamp(timestamp[4], sizeof(timestamp[4]), u->inactive_enter_timestamp.realtime)),
1259 prefix, yes_no(unit_may_gc(u)),
1260 prefix, yes_no(unit_need_daemon_reload(u)),
1261 prefix, yes_no(u->transient),
1262 prefix, yes_no(u->perpetual),
1263 prefix, collect_mode_to_string(u->collect_mode),
1264 prefix, strna(unit_slice_name(u)),
1265 prefix, strna(u->cgroup_path),
1266 prefix, yes_no(u->cgroup_realized));
1267
1268 if (u->cgroup_realized_mask != 0) {
1269 _cleanup_free_ char *s = NULL;
1270 (void) cg_mask_to_string(u->cgroup_realized_mask, &s);
1271 fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s));
1272 }
1273
1274 if (u->cgroup_enabled_mask != 0) {
1275 _cleanup_free_ char *s = NULL;
1276 (void) cg_mask_to_string(u->cgroup_enabled_mask, &s);
1277 fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s));
1278 }
1279
1280 m = unit_get_own_mask(u);
1281 if (m != 0) {
1282 _cleanup_free_ char *s = NULL;
1283 (void) cg_mask_to_string(m, &s);
1284 fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s));
1285 }
1286
1287 m = unit_get_members_mask(u);
1288 if (m != 0) {
1289 _cleanup_free_ char *s = NULL;
1290 (void) cg_mask_to_string(m, &s);
1291 fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s));
1292 }
1293
1294 m = unit_get_delegate_mask(u);
1295 if (m != 0) {
1296 _cleanup_free_ char *s = NULL;
1297 (void) cg_mask_to_string(m, &s);
1298 fprintf(f, "%s\tCGroup delegate mask: %s\n", prefix, strnull(s));
1299 }
1300
1301 if (!sd_id128_is_null(u->invocation_id))
1302 fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n",
1303 prefix, SD_ID128_FORMAT_VAL(u->invocation_id));
1304
1305 STRV_FOREACH(j, u->documentation)
1306 fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
1307
1308 following = unit_following(u);
1309 if (following)
1310 fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
1311
1312 r = unit_following_set(u, &following_set);
1313 if (r >= 0) {
1314 Unit *other;
1315
1316 SET_FOREACH(other, following_set)
1317 fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
1318 }
1319
1320 if (u->fragment_path)
1321 fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
1322
1323 if (u->source_path)
1324 fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
1325
1326 STRV_FOREACH(j, u->dropin_paths)
1327 fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
1328
1329 if (u->failure_action != EMERGENCY_ACTION_NONE)
1330 fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action));
1331 if (u->failure_action_exit_status >= 0)
1332 fprintf(f, "%s\tFailure Action Exit Status: %i\n", prefix, u->failure_action_exit_status);
1333 if (u->success_action != EMERGENCY_ACTION_NONE)
1334 fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action));
1335 if (u->success_action_exit_status >= 0)
1336 fprintf(f, "%s\tSuccess Action Exit Status: %i\n", prefix, u->success_action_exit_status);
1337
1338 if (u->job_timeout != USEC_INFINITY)
1339 fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
1340
1341 if (u->job_timeout_action != EMERGENCY_ACTION_NONE)
1342 fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action));
1343
1344 if (u->job_timeout_reboot_arg)
1345 fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
1346
1347 condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
1348 condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
1349
1350 if (dual_timestamp_is_set(&u->condition_timestamp))
1351 fprintf(f,
1352 "%s\tCondition Timestamp: %s\n"
1353 "%s\tCondition Result: %s\n",
1354 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->condition_timestamp.realtime)),
1355 prefix, yes_no(u->condition_result));
1356
1357 if (dual_timestamp_is_set(&u->assert_timestamp))
1358 fprintf(f,
1359 "%s\tAssert Timestamp: %s\n"
1360 "%s\tAssert Result: %s\n",
1361 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->assert_timestamp.realtime)),
1362 prefix, yes_no(u->assert_result));
1363
1364 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
1365 UnitDependencyInfo di;
1366 Unit *other;
1367
1368 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d]) {
1369 bool space = false;
1370
1371 fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id);
1372
1373 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1374 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1375
1376 fputs(")\n", f);
1377 }
1378 }
1379
1380 if (!hashmap_isempty(u->requires_mounts_for)) {
1381 UnitDependencyInfo di;
1382 const char *path;
1383
1384 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1385 bool space = false;
1386
1387 fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path);
1388
1389 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1390 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1391
1392 fputs(")\n", f);
1393 }
1394 }
1395
1396 if (u->load_state == UNIT_LOADED) {
1397
1398 fprintf(f,
1399 "%s\tStopWhenUnneeded: %s\n"
1400 "%s\tRefuseManualStart: %s\n"
1401 "%s\tRefuseManualStop: %s\n"
1402 "%s\tDefaultDependencies: %s\n"
1403 "%s\tOnFailureJobMode: %s\n"
1404 "%s\tIgnoreOnIsolate: %s\n",
1405 prefix, yes_no(u->stop_when_unneeded),
1406 prefix, yes_no(u->refuse_manual_start),
1407 prefix, yes_no(u->refuse_manual_stop),
1408 prefix, yes_no(u->default_dependencies),
1409 prefix, job_mode_to_string(u->on_failure_job_mode),
1410 prefix, yes_no(u->ignore_on_isolate));
1411
1412 if (UNIT_VTABLE(u)->dump)
1413 UNIT_VTABLE(u)->dump(u, f, prefix2);
1414
1415 } else if (u->load_state == UNIT_MERGED)
1416 fprintf(f,
1417 "%s\tMerged into: %s\n",
1418 prefix, u->merged_into->id);
1419 else if (u->load_state == UNIT_ERROR)
1420 fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror_safe(u->load_error));
1421
1422 for (const char *n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track))
1423 fprintf(f, "%s\tBus Ref: %s\n", prefix, n);
1424
1425 if (u->job)
1426 job_dump(u->job, f, prefix2);
1427
1428 if (u->nop_job)
1429 job_dump(u->nop_job, f, prefix2);
1430 }
1431
1432 /* Common implementation for multiple backends */
1433 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1434 int r;
1435
1436 assert(u);
1437
1438 /* Load a .{service,socket,...} file */
1439 r = unit_load_fragment(u);
1440 if (r < 0)
1441 return r;
1442
1443 if (u->load_state == UNIT_STUB) {
1444 if (fragment_required)
1445 return -ENOENT;
1446
1447 u->load_state = UNIT_LOADED;
1448 }
1449
1450 /* Load drop-in directory data. If u is an alias, we might be reloading the
1451 * target unit needlessly. But we cannot be sure which drops-ins have already
1452 * been loaded and which not, at least without doing complicated book-keeping,
1453 * so let's always reread all drop-ins. */
1454 r = unit_load_dropin(unit_follow_merge(u));
1455 if (r < 0)
1456 return r;
1457
1458 if (u->source_path) {
1459 struct stat st;
1460
1461 if (stat(u->source_path, &st) >= 0)
1462 u->source_mtime = timespec_load(&st.st_mtim);
1463 else
1464 u->source_mtime = 0;
1465 }
1466
1467 return 0;
1468 }
1469
1470 void unit_add_to_target_deps_queue(Unit *u) {
1471 Manager *m = u->manager;
1472
1473 assert(u);
1474
1475 if (u->in_target_deps_queue)
1476 return;
1477
1478 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1479 u->in_target_deps_queue = true;
1480 }
1481
1482 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1483 assert(u);
1484 assert(target);
1485
1486 if (target->type != UNIT_TARGET)
1487 return 0;
1488
1489 /* Only add the dependency if both units are loaded, so that
1490 * that loop check below is reliable */
1491 if (u->load_state != UNIT_LOADED ||
1492 target->load_state != UNIT_LOADED)
1493 return 0;
1494
1495 /* If either side wants no automatic dependencies, then let's
1496 * skip this */
1497 if (!u->default_dependencies ||
1498 !target->default_dependencies)
1499 return 0;
1500
1501 /* Don't create loops */
1502 if (hashmap_get(target->dependencies[UNIT_BEFORE], u))
1503 return 0;
1504
1505 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1506 }
1507
1508 static int unit_add_slice_dependencies(Unit *u) {
1509 assert(u);
1510
1511 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1512 return 0;
1513
1514 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1515 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1516 relationship). */
1517 UnitDependencyMask mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1518
1519 if (UNIT_ISSET(u->slice))
1520 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask);
1521
1522 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1523 return 0;
1524
1525 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1526 }
1527
1528 static int unit_add_mount_dependencies(Unit *u) {
1529 UnitDependencyInfo di;
1530 const char *path;
1531 int r;
1532
1533 assert(u);
1534
1535 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1536 char prefix[strlen(path) + 1];
1537
1538 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1539 _cleanup_free_ char *p = NULL;
1540 Unit *m;
1541
1542 r = unit_name_from_path(prefix, ".mount", &p);
1543 if (r < 0)
1544 return r;
1545
1546 m = manager_get_unit(u->manager, p);
1547 if (!m) {
1548 /* Make sure to load the mount unit if
1549 * it exists. If so the dependencies
1550 * on this unit will be added later
1551 * during the loading of the mount
1552 * unit. */
1553 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1554 continue;
1555 }
1556 if (m == u)
1557 continue;
1558
1559 if (m->load_state != UNIT_LOADED)
1560 continue;
1561
1562 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1563 if (r < 0)
1564 return r;
1565
1566 if (m->fragment_path) {
1567 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1568 if (r < 0)
1569 return r;
1570 }
1571 }
1572 }
1573
1574 return 0;
1575 }
1576
1577 static int unit_add_oomd_dependencies(Unit *u) {
1578 CGroupContext *c;
1579 bool wants_oomd;
1580 int r;
1581
1582 assert(u);
1583
1584 if (!u->default_dependencies)
1585 return 0;
1586
1587 c = unit_get_cgroup_context(u);
1588 if (!c)
1589 return 0;
1590
1591 wants_oomd = (c->moom_swap == MANAGED_OOM_KILL || c->moom_mem_pressure == MANAGED_OOM_KILL);
1592 if (!wants_oomd)
1593 return 0;
1594
1595 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "systemd-oomd.service", true, UNIT_DEPENDENCY_FILE);
1596 if (r < 0)
1597 return r;
1598
1599 return 0;
1600 }
1601
1602 static int unit_add_startup_units(Unit *u) {
1603 CGroupContext *c;
1604
1605 c = unit_get_cgroup_context(u);
1606 if (!c)
1607 return 0;
1608
1609 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1610 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1611 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1612 return 0;
1613
1614 return set_ensure_put(&u->manager->startup_units, NULL, u);
1615 }
1616
1617 int unit_load(Unit *u) {
1618 int r;
1619
1620 assert(u);
1621
1622 if (u->in_load_queue) {
1623 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1624 u->in_load_queue = false;
1625 }
1626
1627 if (u->type == _UNIT_TYPE_INVALID)
1628 return -EINVAL;
1629
1630 if (u->load_state != UNIT_STUB)
1631 return 0;
1632
1633 if (u->transient_file) {
1634 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1635 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1636
1637 r = fflush_and_check(u->transient_file);
1638 if (r < 0)
1639 goto fail;
1640
1641 u->transient_file = safe_fclose(u->transient_file);
1642 u->fragment_mtime = now(CLOCK_REALTIME);
1643 }
1644
1645 r = UNIT_VTABLE(u)->load(u);
1646 if (r < 0)
1647 goto fail;
1648
1649 assert(u->load_state != UNIT_STUB);
1650
1651 if (u->load_state == UNIT_LOADED) {
1652 unit_add_to_target_deps_queue(u);
1653
1654 r = unit_add_slice_dependencies(u);
1655 if (r < 0)
1656 goto fail;
1657
1658 r = unit_add_mount_dependencies(u);
1659 if (r < 0)
1660 goto fail;
1661
1662 r = unit_add_oomd_dependencies(u);
1663 if (r < 0)
1664 goto fail;
1665
1666 r = unit_add_startup_units(u);
1667 if (r < 0)
1668 goto fail;
1669
1670 if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
1671 log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
1672 r = -ENOEXEC;
1673 goto fail;
1674 }
1675
1676 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1677 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1678
1679 /* We finished loading, let's ensure our parents recalculate the members mask */
1680 unit_invalidate_cgroup_members_masks(u);
1681 }
1682
1683 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1684
1685 unit_add_to_dbus_queue(unit_follow_merge(u));
1686 unit_add_to_gc_queue(u);
1687 (void) manager_varlink_send_managed_oom_update(u);
1688
1689 return 0;
1690
1691 fail:
1692 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code
1693 * should hence return ENOEXEC to ensure units are placed in this state after loading. */
1694
1695 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1696 r == -ENOEXEC ? UNIT_BAD_SETTING :
1697 UNIT_ERROR;
1698 u->load_error = r;
1699
1700 /* Record the timestamp on the cache, so that if the cache gets updated between now and the next time
1701 * an attempt is made to load this unit, we know we need to check again. */
1702 if (u->load_state == UNIT_NOT_FOUND)
1703 u->fragment_not_found_timestamp_hash = u->manager->unit_cache_timestamp_hash;
1704
1705 unit_add_to_dbus_queue(u);
1706 unit_add_to_gc_queue(u);
1707
1708 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1709 }
1710
1711 _printf_(7, 8)
1712 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1713 Unit *u = userdata;
1714 va_list ap;
1715 int r;
1716
1717 va_start(ap, format);
1718 if (u)
1719 r = log_object_internalv(level, error, file, line, func,
1720 u->manager->unit_log_field,
1721 u->id,
1722 u->manager->invocation_log_field,
1723 u->invocation_id_string,
1724 format, ap);
1725 else
1726 r = log_internalv(level, error, file, line, func, format, ap);
1727 va_end(ap);
1728
1729 return r;
1730 }
1731
1732 static bool unit_test_condition(Unit *u) {
1733 _cleanup_strv_free_ char **env = NULL;
1734 int r;
1735
1736 assert(u);
1737
1738 dual_timestamp_get(&u->condition_timestamp);
1739
1740 r = manager_get_effective_environment(u->manager, &env);
1741 if (r < 0) {
1742 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1743 u->condition_result = CONDITION_ERROR;
1744 } else
1745 u->condition_result = condition_test_list(
1746 u->conditions,
1747 env,
1748 condition_type_to_string,
1749 log_unit_internal,
1750 u);
1751
1752 unit_add_to_dbus_queue(u);
1753 return u->condition_result;
1754 }
1755
1756 static bool unit_test_assert(Unit *u) {
1757 _cleanup_strv_free_ char **env = NULL;
1758 int r;
1759
1760 assert(u);
1761
1762 dual_timestamp_get(&u->assert_timestamp);
1763
1764 r = manager_get_effective_environment(u->manager, &env);
1765 if (r < 0) {
1766 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1767 u->assert_result = CONDITION_ERROR;
1768 } else
1769 u->assert_result = condition_test_list(
1770 u->asserts,
1771 env,
1772 assert_type_to_string,
1773 log_unit_internal,
1774 u);
1775
1776 unit_add_to_dbus_queue(u);
1777 return u->assert_result;
1778 }
1779
1780 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *unit_status_msg_format) {
1781 const char *d;
1782
1783 d = unit_status_string(u);
1784 if (log_get_show_color())
1785 d = strjoina(ANSI_HIGHLIGHT, d, ANSI_NORMAL);
1786
1787 DISABLE_WARNING_FORMAT_NONLITERAL;
1788 manager_status_printf(u->manager, status_type, status, unit_status_msg_format, d);
1789 REENABLE_WARNING;
1790 }
1791
1792 int unit_test_start_limit(Unit *u) {
1793 const char *reason;
1794
1795 assert(u);
1796
1797 if (ratelimit_below(&u->start_ratelimit)) {
1798 u->start_limit_hit = false;
1799 return 0;
1800 }
1801
1802 log_unit_warning(u, "Start request repeated too quickly.");
1803 u->start_limit_hit = true;
1804
1805 reason = strjoina("unit ", u->id, " failed");
1806
1807 emergency_action(u->manager, u->start_limit_action,
1808 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1809 u->reboot_arg, -1, reason);
1810
1811 return -ECANCELED;
1812 }
1813
1814 bool unit_shall_confirm_spawn(Unit *u) {
1815 assert(u);
1816
1817 if (manager_is_confirm_spawn_disabled(u->manager))
1818 return false;
1819
1820 /* For some reasons units remaining in the same process group
1821 * as PID 1 fail to acquire the console even if it's not used
1822 * by any process. So skip the confirmation question for them. */
1823 return !unit_get_exec_context(u)->same_pgrp;
1824 }
1825
1826 static bool unit_verify_deps(Unit *u) {
1827 Unit *other;
1828 void *v;
1829
1830 assert(u);
1831
1832 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with
1833 * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job
1834 * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in
1835 * conjunction with After= as for them any such check would make things entirely racy. */
1836
1837 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO]) {
1838
1839 if (!hashmap_contains(u->dependencies[UNIT_AFTER], other))
1840 continue;
1841
1842 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1843 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1844 return false;
1845 }
1846 }
1847
1848 return true;
1849 }
1850
1851 /* Errors that aren't really errors:
1852 * -EALREADY: Unit is already started.
1853 * -ECOMM: Condition failed
1854 * -EAGAIN: An operation is already in progress. Retry later.
1855 *
1856 * Errors that are real errors:
1857 * -EBADR: This unit type does not support starting.
1858 * -ECANCELED: Start limit hit, too many requests for now
1859 * -EPROTO: Assert failed
1860 * -EINVAL: Unit not loaded
1861 * -EOPNOTSUPP: Unit type not supported
1862 * -ENOLINK: The necessary dependencies are not fulfilled.
1863 * -ESTALE: This unit has been started before and can't be started a second time
1864 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1865 */
1866 int unit_start(Unit *u) {
1867 UnitActiveState state;
1868 Unit *following;
1869
1870 assert(u);
1871
1872 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1873 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1874 * waiting is finished. */
1875 state = unit_active_state(u);
1876 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1877 return -EALREADY;
1878 if (state == UNIT_MAINTENANCE)
1879 return -EAGAIN;
1880
1881 /* Units that aren't loaded cannot be started */
1882 if (u->load_state != UNIT_LOADED)
1883 return -EINVAL;
1884
1885 /* Refuse starting scope units more than once */
1886 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1887 return -ESTALE;
1888
1889 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1890 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1891 * recheck the condition in that case. */
1892 if (state != UNIT_ACTIVATING &&
1893 !unit_test_condition(u))
1894 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1895
1896 /* If the asserts failed, fail the entire job */
1897 if (state != UNIT_ACTIVATING &&
1898 !unit_test_assert(u))
1899 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1900
1901 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1902 * condition checks, so that we rather return condition check errors (which are usually not
1903 * considered a true failure) than "not supported" errors (which are considered a failure).
1904 */
1905 if (!unit_type_supported(u->type))
1906 return -EOPNOTSUPP;
1907
1908 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1909 * should have taken care of this already, but let's check this here again. After all, our
1910 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1911 if (!unit_verify_deps(u))
1912 return -ENOLINK;
1913
1914 /* Forward to the main object, if we aren't it. */
1915 following = unit_following(u);
1916 if (following) {
1917 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1918 return unit_start(following);
1919 }
1920
1921 /* If it is stopped, but we cannot start it, then fail */
1922 if (!UNIT_VTABLE(u)->start)
1923 return -EBADR;
1924
1925 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1926 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1927 * waits for a holdoff timer to elapse before it will start again. */
1928
1929 unit_add_to_dbus_queue(u);
1930 unit_cgroup_freezer_action(u, FREEZER_THAW);
1931
1932 return UNIT_VTABLE(u)->start(u);
1933 }
1934
1935 bool unit_can_start(Unit *u) {
1936 assert(u);
1937
1938 if (u->load_state != UNIT_LOADED)
1939 return false;
1940
1941 if (!unit_type_supported(u->type))
1942 return false;
1943
1944 /* Scope units may be started only once */
1945 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1946 return false;
1947
1948 return !!UNIT_VTABLE(u)->start;
1949 }
1950
1951 bool unit_can_isolate(Unit *u) {
1952 assert(u);
1953
1954 return unit_can_start(u) &&
1955 u->allow_isolate;
1956 }
1957
1958 /* Errors:
1959 * -EBADR: This unit type does not support stopping.
1960 * -EALREADY: Unit is already stopped.
1961 * -EAGAIN: An operation is already in progress. Retry later.
1962 */
1963 int unit_stop(Unit *u) {
1964 UnitActiveState state;
1965 Unit *following;
1966
1967 assert(u);
1968
1969 state = unit_active_state(u);
1970 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1971 return -EALREADY;
1972
1973 following = unit_following(u);
1974 if (following) {
1975 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1976 return unit_stop(following);
1977 }
1978
1979 if (!UNIT_VTABLE(u)->stop)
1980 return -EBADR;
1981
1982 unit_add_to_dbus_queue(u);
1983 unit_cgroup_freezer_action(u, FREEZER_THAW);
1984
1985 return UNIT_VTABLE(u)->stop(u);
1986 }
1987
1988 bool unit_can_stop(Unit *u) {
1989 assert(u);
1990
1991 if (!unit_type_supported(u->type))
1992 return false;
1993
1994 if (u->perpetual)
1995 return false;
1996
1997 return !!UNIT_VTABLE(u)->stop;
1998 }
1999
2000 /* Errors:
2001 * -EBADR: This unit type does not support reloading.
2002 * -ENOEXEC: Unit is not started.
2003 * -EAGAIN: An operation is already in progress. Retry later.
2004 */
2005 int unit_reload(Unit *u) {
2006 UnitActiveState state;
2007 Unit *following;
2008
2009 assert(u);
2010
2011 if (u->load_state != UNIT_LOADED)
2012 return -EINVAL;
2013
2014 if (!unit_can_reload(u))
2015 return -EBADR;
2016
2017 state = unit_active_state(u);
2018 if (state == UNIT_RELOADING)
2019 return -EAGAIN;
2020
2021 if (state != UNIT_ACTIVE) {
2022 log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
2023 return -ENOEXEC;
2024 }
2025
2026 following = unit_following(u);
2027 if (following) {
2028 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
2029 return unit_reload(following);
2030 }
2031
2032 unit_add_to_dbus_queue(u);
2033
2034 if (!UNIT_VTABLE(u)->reload) {
2035 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
2036 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
2037 return 0;
2038 }
2039
2040 unit_cgroup_freezer_action(u, FREEZER_THAW);
2041
2042 return UNIT_VTABLE(u)->reload(u);
2043 }
2044
2045 bool unit_can_reload(Unit *u) {
2046 assert(u);
2047
2048 if (UNIT_VTABLE(u)->can_reload)
2049 return UNIT_VTABLE(u)->can_reload(u);
2050
2051 if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO]))
2052 return true;
2053
2054 return UNIT_VTABLE(u)->reload;
2055 }
2056
2057 bool unit_is_unneeded(Unit *u) {
2058 static const UnitDependency deps[] = {
2059 UNIT_REQUIRED_BY,
2060 UNIT_REQUISITE_OF,
2061 UNIT_WANTED_BY,
2062 UNIT_BOUND_BY,
2063 };
2064
2065 assert(u);
2066
2067 if (!u->stop_when_unneeded)
2068 return false;
2069
2070 /* Don't clean up while the unit is transitioning or is even inactive. */
2071 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
2072 return false;
2073 if (u->job)
2074 return false;
2075
2076 for (size_t j = 0; j < ELEMENTSOF(deps); j++) {
2077 Unit *other;
2078 void *v;
2079
2080 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
2081 * restart, then don't clean this one up. */
2082
2083 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]]) {
2084 if (other->job)
2085 return false;
2086
2087 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2088 return false;
2089
2090 if (unit_will_restart(other))
2091 return false;
2092 }
2093 }
2094
2095 return true;
2096 }
2097
2098 static void check_unneeded_dependencies(Unit *u) {
2099
2100 static const UnitDependency deps[] = {
2101 UNIT_REQUIRES,
2102 UNIT_REQUISITE,
2103 UNIT_WANTS,
2104 UNIT_BINDS_TO,
2105 };
2106
2107 assert(u);
2108
2109 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2110
2111 for (size_t j = 0; j < ELEMENTSOF(deps); j++) {
2112 Unit *other;
2113 void *v;
2114
2115 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]])
2116 unit_submit_to_stop_when_unneeded_queue(other);
2117 }
2118 }
2119
2120 static void unit_check_binds_to(Unit *u) {
2121 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2122 bool stop = false;
2123 Unit *other;
2124 void *v;
2125 int r;
2126
2127 assert(u);
2128
2129 if (u->job)
2130 return;
2131
2132 if (unit_active_state(u) != UNIT_ACTIVE)
2133 return;
2134
2135 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO]) {
2136 if (other->job)
2137 continue;
2138
2139 if (!other->coldplugged)
2140 /* We might yet create a job for the other unit… */
2141 continue;
2142
2143 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2144 continue;
2145
2146 stop = true;
2147 break;
2148 }
2149
2150 if (!stop)
2151 return;
2152
2153 /* If stopping a unit fails continuously we might enter a stop
2154 * loop here, hence stop acting on the service being
2155 * unnecessary after a while. */
2156 if (!ratelimit_below(&u->auto_stop_ratelimit)) {
2157 log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
2158 return;
2159 }
2160
2161 assert(other);
2162 log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
2163
2164 /* A unit we need to run is gone. Sniff. Let's stop this. */
2165 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
2166 if (r < 0)
2167 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
2168 }
2169
2170 static void retroactively_start_dependencies(Unit *u) {
2171 Unit *other;
2172 void *v;
2173
2174 assert(u);
2175 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2176
2177 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES])
2178 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2179 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2180 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2181
2182 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO])
2183 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2184 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2185 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2186
2187 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS])
2188 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2189 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2190 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2191
2192 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS])
2193 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2194 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2195
2196 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY])
2197 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2198 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2199 }
2200
2201 static void retroactively_stop_dependencies(Unit *u) {
2202 Unit *other;
2203 void *v;
2204
2205 assert(u);
2206 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2207
2208 /* Pull down units which are bound to us recursively if enabled */
2209 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY])
2210 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2211 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2212 }
2213
2214 void unit_start_on_failure(Unit *u) {
2215 Unit *other;
2216 void *v;
2217 int r;
2218
2219 assert(u);
2220
2221 if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2222 return;
2223
2224 log_unit_info(u, "Triggering OnFailure= dependencies.");
2225
2226 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE]) {
2227 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2228
2229 r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, NULL, &error, NULL);
2230 if (r < 0)
2231 log_unit_warning_errno(u, r, "Failed to enqueue OnFailure= job, ignoring: %s", bus_error_message(&error, r));
2232 }
2233 }
2234
2235 void unit_trigger_notify(Unit *u) {
2236 Unit *other;
2237 void *v;
2238
2239 assert(u);
2240
2241 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY])
2242 if (UNIT_VTABLE(other)->trigger_notify)
2243 UNIT_VTABLE(other)->trigger_notify(other, u);
2244 }
2245
2246 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2247 if (condition_notice && log_level > LOG_NOTICE)
2248 return LOG_NOTICE;
2249 if (condition_info && log_level > LOG_INFO)
2250 return LOG_INFO;
2251 return log_level;
2252 }
2253
2254 static int unit_log_resources(Unit *u) {
2255 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2256 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2257 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2258 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a threshold */
2259 size_t n_message_parts = 0, n_iovec = 0;
2260 char* message_parts[1 + 2 + 2 + 1], *t;
2261 nsec_t nsec = NSEC_INFINITY;
2262 int r;
2263 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2264 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2265 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2266 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2267 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2268 };
2269 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2270 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2271 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2272 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2273 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2274 };
2275
2276 assert(u);
2277
2278 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2279 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2280 * information and the complete data in structured fields. */
2281
2282 (void) unit_get_cpu_usage(u, &nsec);
2283 if (nsec != NSEC_INFINITY) {
2284 char buf[FORMAT_TIMESPAN_MAX] = "";
2285
2286 /* Format the CPU time for inclusion in the structured log message */
2287 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2288 r = log_oom();
2289 goto finish;
2290 }
2291 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2292
2293 /* Format the CPU time for inclusion in the human language message string */
2294 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2295 t = strjoin("consumed ", buf, " CPU time");
2296 if (!t) {
2297 r = log_oom();
2298 goto finish;
2299 }
2300
2301 message_parts[n_message_parts++] = t;
2302
2303 log_level = raise_level(log_level,
2304 nsec > NOTICEWORTHY_CPU_NSEC,
2305 nsec > MENTIONWORTHY_CPU_NSEC);
2306 }
2307
2308 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2309 char buf[FORMAT_BYTES_MAX] = "";
2310 uint64_t value = UINT64_MAX;
2311
2312 assert(io_fields[k]);
2313
2314 (void) unit_get_io_accounting(u, k, k > 0, &value);
2315 if (value == UINT64_MAX)
2316 continue;
2317
2318 have_io_accounting = true;
2319 if (value > 0)
2320 any_io = true;
2321
2322 /* Format IO accounting data for inclusion in the structured log message */
2323 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2324 r = log_oom();
2325 goto finish;
2326 }
2327 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2328
2329 /* Format the IO accounting data for inclusion in the human language message string, but only
2330 * for the bytes counters (and not for the operations counters) */
2331 if (k == CGROUP_IO_READ_BYTES) {
2332 assert(!rr);
2333 rr = strjoin("read ", format_bytes(buf, sizeof(buf), value), " from disk");
2334 if (!rr) {
2335 r = log_oom();
2336 goto finish;
2337 }
2338 } else if (k == CGROUP_IO_WRITE_BYTES) {
2339 assert(!wr);
2340 wr = strjoin("written ", format_bytes(buf, sizeof(buf), value), " to disk");
2341 if (!wr) {
2342 r = log_oom();
2343 goto finish;
2344 }
2345 }
2346
2347 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2348 log_level = raise_level(log_level,
2349 value > MENTIONWORTHY_IO_BYTES,
2350 value > NOTICEWORTHY_IO_BYTES);
2351 }
2352
2353 if (have_io_accounting) {
2354 if (any_io) {
2355 if (rr)
2356 message_parts[n_message_parts++] = TAKE_PTR(rr);
2357 if (wr)
2358 message_parts[n_message_parts++] = TAKE_PTR(wr);
2359
2360 } else {
2361 char *k;
2362
2363 k = strdup("no IO");
2364 if (!k) {
2365 r = log_oom();
2366 goto finish;
2367 }
2368
2369 message_parts[n_message_parts++] = k;
2370 }
2371 }
2372
2373 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2374 char buf[FORMAT_BYTES_MAX] = "";
2375 uint64_t value = UINT64_MAX;
2376
2377 assert(ip_fields[m]);
2378
2379 (void) unit_get_ip_accounting(u, m, &value);
2380 if (value == UINT64_MAX)
2381 continue;
2382
2383 have_ip_accounting = true;
2384 if (value > 0)
2385 any_traffic = true;
2386
2387 /* Format IP accounting data for inclusion in the structured log message */
2388 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2389 r = log_oom();
2390 goto finish;
2391 }
2392 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2393
2394 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2395 * bytes counters (and not for the packets counters) */
2396 if (m == CGROUP_IP_INGRESS_BYTES) {
2397 assert(!igress);
2398 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2399 if (!igress) {
2400 r = log_oom();
2401 goto finish;
2402 }
2403 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2404 assert(!egress);
2405 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2406 if (!egress) {
2407 r = log_oom();
2408 goto finish;
2409 }
2410 }
2411
2412 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2413 log_level = raise_level(log_level,
2414 value > MENTIONWORTHY_IP_BYTES,
2415 value > NOTICEWORTHY_IP_BYTES);
2416 }
2417
2418 if (have_ip_accounting) {
2419 if (any_traffic) {
2420 if (igress)
2421 message_parts[n_message_parts++] = TAKE_PTR(igress);
2422 if (egress)
2423 message_parts[n_message_parts++] = TAKE_PTR(egress);
2424
2425 } else {
2426 char *k;
2427
2428 k = strdup("no IP traffic");
2429 if (!k) {
2430 r = log_oom();
2431 goto finish;
2432 }
2433
2434 message_parts[n_message_parts++] = k;
2435 }
2436 }
2437
2438 /* Is there any accounting data available at all? */
2439 if (n_iovec == 0) {
2440 r = 0;
2441 goto finish;
2442 }
2443
2444 if (n_message_parts == 0)
2445 t = strjoina("MESSAGE=", u->id, ": Completed.");
2446 else {
2447 _cleanup_free_ char *joined;
2448
2449 message_parts[n_message_parts] = NULL;
2450
2451 joined = strv_join(message_parts, ", ");
2452 if (!joined) {
2453 r = log_oom();
2454 goto finish;
2455 }
2456
2457 joined[0] = ascii_toupper(joined[0]);
2458 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2459 }
2460
2461 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2462 * and hence don't increase n_iovec for them */
2463 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2464 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2465
2466 t = strjoina(u->manager->unit_log_field, u->id);
2467 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2468
2469 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2470 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2471
2472 log_struct_iovec(log_level, iovec, n_iovec + 4);
2473 r = 0;
2474
2475 finish:
2476 for (size_t i = 0; i < n_message_parts; i++)
2477 free(message_parts[i]);
2478
2479 for (size_t i = 0; i < n_iovec; i++)
2480 free(iovec[i].iov_base);
2481
2482 return r;
2483
2484 }
2485
2486 static void unit_update_on_console(Unit *u) {
2487 bool b;
2488
2489 assert(u);
2490
2491 b = unit_needs_console(u);
2492 if (u->on_console == b)
2493 return;
2494
2495 u->on_console = b;
2496 if (b)
2497 manager_ref_console(u->manager);
2498 else
2499 manager_unref_console(u->manager);
2500 }
2501
2502 static void unit_emit_audit_start(Unit *u) {
2503 assert(u);
2504
2505 if (u->type != UNIT_SERVICE)
2506 return;
2507
2508 /* Write audit record if we have just finished starting up */
2509 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2510 u->in_audit = true;
2511 }
2512
2513 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2514 assert(u);
2515
2516 if (u->type != UNIT_SERVICE)
2517 return;
2518
2519 if (u->in_audit) {
2520 /* Write audit record if we have just finished shutting down */
2521 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2522 u->in_audit = false;
2523 } else {
2524 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2525 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2526
2527 if (state == UNIT_INACTIVE)
2528 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2529 }
2530 }
2531
2532 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2533 bool unexpected = false;
2534 JobResult result;
2535
2536 assert(j);
2537
2538 if (j->state == JOB_WAITING)
2539
2540 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2541 * due to EAGAIN. */
2542 job_add_to_run_queue(j);
2543
2544 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2545 * hence needs to invalidate jobs. */
2546
2547 switch (j->type) {
2548
2549 case JOB_START:
2550 case JOB_VERIFY_ACTIVE:
2551
2552 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2553 job_finish_and_invalidate(j, JOB_DONE, true, false);
2554 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2555 unexpected = true;
2556
2557 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2558 if (ns == UNIT_FAILED)
2559 result = JOB_FAILED;
2560 else if (FLAGS_SET(flags, UNIT_NOTIFY_SKIP_CONDITION))
2561 result = JOB_SKIPPED;
2562 else
2563 result = JOB_DONE;
2564
2565 job_finish_and_invalidate(j, result, true, false);
2566 }
2567 }
2568
2569 break;
2570
2571 case JOB_RELOAD:
2572 case JOB_RELOAD_OR_START:
2573 case JOB_TRY_RELOAD:
2574
2575 if (j->state == JOB_RUNNING) {
2576 if (ns == UNIT_ACTIVE)
2577 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2578 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2579 unexpected = true;
2580
2581 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2582 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2583 }
2584 }
2585
2586 break;
2587
2588 case JOB_STOP:
2589 case JOB_RESTART:
2590 case JOB_TRY_RESTART:
2591
2592 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2593 job_finish_and_invalidate(j, JOB_DONE, true, false);
2594 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2595 unexpected = true;
2596 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2597 }
2598
2599 break;
2600
2601 default:
2602 assert_not_reached("Job type unknown");
2603 }
2604
2605 return unexpected;
2606 }
2607
2608 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2609 const char *reason;
2610 Manager *m;
2611
2612 assert(u);
2613 assert(os < _UNIT_ACTIVE_STATE_MAX);
2614 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2615
2616 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2617 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2618 * remounted this function will be called too! */
2619
2620 m = u->manager;
2621
2622 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2623 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2624 unit_add_to_dbus_queue(u);
2625
2626 /* Update systemd-oomd on the property/state change */
2627 if (os != ns) {
2628 /* Always send an update if the unit is going into an inactive state so systemd-oomd knows to stop
2629 * monitoring.
2630 * Also send an update whenever the unit goes active; this is to handle a case where an override file
2631 * sets one of the ManagedOOM*= properties to "kill", then later removes it. systemd-oomd needs to
2632 * know to stop monitoring when the unit changes from "kill" -> "auto" on daemon-reload, but we don't
2633 * have the information on the property. Thus, indiscriminately send an update. */
2634 if (UNIT_IS_INACTIVE_OR_FAILED(ns) || UNIT_IS_ACTIVE_OR_RELOADING(ns))
2635 (void) manager_varlink_send_managed_oom_update(u);
2636 }
2637
2638 /* Update timestamps for state changes */
2639 if (!MANAGER_IS_RELOADING(m)) {
2640 dual_timestamp_get(&u->state_change_timestamp);
2641
2642 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2643 u->inactive_exit_timestamp = u->state_change_timestamp;
2644 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2645 u->inactive_enter_timestamp = u->state_change_timestamp;
2646
2647 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2648 u->active_enter_timestamp = u->state_change_timestamp;
2649 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2650 u->active_exit_timestamp = u->state_change_timestamp;
2651 }
2652
2653 /* Keep track of failed units */
2654 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2655
2656 /* Make sure the cgroup and state files are always removed when we become inactive */
2657 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2658 unit_prune_cgroup(u);
2659 unit_unlink_state_files(u);
2660 }
2661
2662 unit_update_on_console(u);
2663
2664 if (!MANAGER_IS_RELOADING(m)) {
2665 bool unexpected;
2666
2667 /* Let's propagate state changes to the job */
2668 if (u->job)
2669 unexpected = unit_process_job(u->job, ns, flags);
2670 else
2671 unexpected = true;
2672
2673 /* If this state change happened without being requested by a job, then let's retroactively start or
2674 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2675 * additional jobs just because something is already activated. */
2676
2677 if (unexpected) {
2678 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2679 retroactively_start_dependencies(u);
2680 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2681 retroactively_stop_dependencies(u);
2682 }
2683
2684 /* stop unneeded units regardless if going down was expected or not */
2685 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2686 check_unneeded_dependencies(u);
2687
2688 if (ns != os && ns == UNIT_FAILED) {
2689 log_unit_debug(u, "Unit entered failed state.");
2690
2691 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2692 unit_start_on_failure(u);
2693 }
2694
2695 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2696 /* This unit just finished starting up */
2697
2698 unit_emit_audit_start(u);
2699 manager_send_unit_plymouth(m, u);
2700 }
2701
2702 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2703 /* This unit just stopped/failed. */
2704
2705 unit_emit_audit_stop(u, ns);
2706 unit_log_resources(u);
2707 }
2708 }
2709
2710 manager_recheck_journal(m);
2711 manager_recheck_dbus(m);
2712
2713 unit_trigger_notify(u);
2714
2715 if (!MANAGER_IS_RELOADING(m)) {
2716 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2717 unit_submit_to_stop_when_unneeded_queue(u);
2718
2719 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens when
2720 * something BindsTo= to a Type=oneshot unit, as these units go directly from starting to inactive,
2721 * without ever entering started.) */
2722 unit_check_binds_to(u);
2723
2724 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2725 reason = strjoina("unit ", u->id, " failed");
2726 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2727 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2728 reason = strjoina("unit ", u->id, " succeeded");
2729 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2730 }
2731 }
2732
2733 unit_add_to_gc_queue(u);
2734 }
2735
2736 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2737 int r;
2738
2739 assert(u);
2740 assert(pid_is_valid(pid));
2741
2742 /* Watch a specific PID */
2743
2744 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2745 * opportunity to remove any stalled references to this PID as they can be created
2746 * easily (when watching a process which is not our direct child). */
2747 if (exclusive)
2748 manager_unwatch_pid(u->manager, pid);
2749
2750 r = set_ensure_allocated(&u->pids, NULL);
2751 if (r < 0)
2752 return r;
2753
2754 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2755 if (r < 0)
2756 return r;
2757
2758 /* First try, let's add the unit keyed by "pid". */
2759 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2760 if (r == -EEXIST) {
2761 Unit **array;
2762 bool found = false;
2763 size_t n = 0;
2764
2765 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2766 * to an array of Units rather than just a Unit), lists us already. */
2767
2768 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2769 if (array)
2770 for (; array[n]; n++)
2771 if (array[n] == u)
2772 found = true;
2773
2774 if (found) /* Found it already? if so, do nothing */
2775 r = 0;
2776 else {
2777 Unit **new_array;
2778
2779 /* Allocate a new array */
2780 new_array = new(Unit*, n + 2);
2781 if (!new_array)
2782 return -ENOMEM;
2783
2784 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2785 new_array[n] = u;
2786 new_array[n+1] = NULL;
2787
2788 /* Add or replace the old array */
2789 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2790 if (r < 0) {
2791 free(new_array);
2792 return r;
2793 }
2794
2795 free(array);
2796 }
2797 } else if (r < 0)
2798 return r;
2799
2800 r = set_put(u->pids, PID_TO_PTR(pid));
2801 if (r < 0)
2802 return r;
2803
2804 return 0;
2805 }
2806
2807 void unit_unwatch_pid(Unit *u, pid_t pid) {
2808 Unit **array;
2809
2810 assert(u);
2811 assert(pid_is_valid(pid));
2812
2813 /* First let's drop the unit in case it's keyed as "pid". */
2814 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2815
2816 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2817 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2818 if (array) {
2819 /* Let's iterate through the array, dropping our own entry */
2820
2821 size_t m = 0;
2822 for (size_t n = 0; array[n]; n++)
2823 if (array[n] != u)
2824 array[m++] = array[n];
2825 array[m] = NULL;
2826
2827 if (m == 0) {
2828 /* The array is now empty, remove the entire entry */
2829 assert_se(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2830 free(array);
2831 }
2832 }
2833
2834 (void) set_remove(u->pids, PID_TO_PTR(pid));
2835 }
2836
2837 void unit_unwatch_all_pids(Unit *u) {
2838 assert(u);
2839
2840 while (!set_isempty(u->pids))
2841 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2842
2843 u->pids = set_free(u->pids);
2844 }
2845
2846 static void unit_tidy_watch_pids(Unit *u) {
2847 pid_t except1, except2;
2848 void *e;
2849
2850 assert(u);
2851
2852 /* Cleans dead PIDs from our list */
2853
2854 except1 = unit_main_pid(u);
2855 except2 = unit_control_pid(u);
2856
2857 SET_FOREACH(e, u->pids) {
2858 pid_t pid = PTR_TO_PID(e);
2859
2860 if (pid == except1 || pid == except2)
2861 continue;
2862
2863 if (!pid_is_unwaited(pid))
2864 unit_unwatch_pid(u, pid);
2865 }
2866 }
2867
2868 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2869 Unit *u = userdata;
2870
2871 assert(s);
2872 assert(u);
2873
2874 unit_tidy_watch_pids(u);
2875 unit_watch_all_pids(u);
2876
2877 /* If the PID set is empty now, then let's finish this off. */
2878 unit_synthesize_cgroup_empty_event(u);
2879
2880 return 0;
2881 }
2882
2883 int unit_enqueue_rewatch_pids(Unit *u) {
2884 int r;
2885
2886 assert(u);
2887
2888 if (!u->cgroup_path)
2889 return -ENOENT;
2890
2891 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2892 if (r < 0)
2893 return r;
2894 if (r > 0) /* On unified we can use proper notifications */
2895 return 0;
2896
2897 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2898 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2899 * involves issuing kill(pid, 0) on all processes we watch. */
2900
2901 if (!u->rewatch_pids_event_source) {
2902 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2903
2904 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2905 if (r < 0)
2906 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2907
2908 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2909 if (r < 0)
2910 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
2911
2912 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2913
2914 u->rewatch_pids_event_source = TAKE_PTR(s);
2915 }
2916
2917 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2918 if (r < 0)
2919 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2920
2921 return 0;
2922 }
2923
2924 void unit_dequeue_rewatch_pids(Unit *u) {
2925 int r;
2926 assert(u);
2927
2928 if (!u->rewatch_pids_event_source)
2929 return;
2930
2931 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2932 if (r < 0)
2933 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2934
2935 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2936 }
2937
2938 bool unit_job_is_applicable(Unit *u, JobType j) {
2939 assert(u);
2940 assert(j >= 0 && j < _JOB_TYPE_MAX);
2941
2942 switch (j) {
2943
2944 case JOB_VERIFY_ACTIVE:
2945 case JOB_START:
2946 case JOB_NOP:
2947 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2948 * startable by us but may appear due to external events, and it thus makes sense to permit enqueuing
2949 * jobs for it. */
2950 return true;
2951
2952 case JOB_STOP:
2953 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2954 * external events), hence it makes no sense to permit enqueuing such a request either. */
2955 return !u->perpetual;
2956
2957 case JOB_RESTART:
2958 case JOB_TRY_RESTART:
2959 return unit_can_stop(u) && unit_can_start(u);
2960
2961 case JOB_RELOAD:
2962 case JOB_TRY_RELOAD:
2963 return unit_can_reload(u);
2964
2965 case JOB_RELOAD_OR_START:
2966 return unit_can_reload(u) && unit_can_start(u);
2967
2968 default:
2969 assert_not_reached("Invalid job type");
2970 }
2971 }
2972
2973 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
2974 assert(u);
2975
2976 /* Only warn about some unit types */
2977 if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
2978 return;
2979
2980 if (streq_ptr(u->id, other))
2981 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
2982 else
2983 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
2984 }
2985
2986 static int unit_add_dependency_hashmap(
2987 Hashmap **h,
2988 Unit *other,
2989 UnitDependencyMask origin_mask,
2990 UnitDependencyMask destination_mask) {
2991
2992 UnitDependencyInfo info;
2993 int r;
2994
2995 assert(h);
2996 assert(other);
2997 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
2998 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
2999 assert(origin_mask > 0 || destination_mask > 0);
3000
3001 r = hashmap_ensure_allocated(h, NULL);
3002 if (r < 0)
3003 return r;
3004
3005 assert_cc(sizeof(void*) == sizeof(info));
3006
3007 info.data = hashmap_get(*h, other);
3008 if (info.data) {
3009 /* Entry already exists. Add in our mask. */
3010
3011 if (FLAGS_SET(origin_mask, info.origin_mask) &&
3012 FLAGS_SET(destination_mask, info.destination_mask))
3013 return 0; /* NOP */
3014
3015 info.origin_mask |= origin_mask;
3016 info.destination_mask |= destination_mask;
3017
3018 r = hashmap_update(*h, other, info.data);
3019 } else {
3020 info = (UnitDependencyInfo) {
3021 .origin_mask = origin_mask,
3022 .destination_mask = destination_mask,
3023 };
3024
3025 r = hashmap_put(*h, other, info.data);
3026 }
3027 if (r < 0)
3028 return r;
3029
3030 return 1;
3031 }
3032
3033 int unit_add_dependency(
3034 Unit *u,
3035 UnitDependency d,
3036 Unit *other,
3037 bool add_reference,
3038 UnitDependencyMask mask) {
3039
3040 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
3041 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
3042 [UNIT_WANTS] = UNIT_WANTED_BY,
3043 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
3044 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
3045 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
3046 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
3047 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
3048 [UNIT_WANTED_BY] = UNIT_WANTS,
3049 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
3050 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
3051 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
3052 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
3053 [UNIT_BEFORE] = UNIT_AFTER,
3054 [UNIT_AFTER] = UNIT_BEFORE,
3055 [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
3056 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
3057 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
3058 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
3059 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
3060 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
3061 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
3062 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
3063 };
3064 Unit *original_u = u, *original_other = other;
3065 int r;
3066 /* Helper to know whether sending a notification is necessary or not:
3067 * if the dependency is already there, no need to notify! */
3068 bool noop = true;
3069
3070 assert(u);
3071 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3072 assert(other);
3073
3074 u = unit_follow_merge(u);
3075 other = unit_follow_merge(other);
3076
3077 /* We won't allow dependencies on ourselves. We will not
3078 * consider them an error however. */
3079 if (u == other) {
3080 maybe_warn_about_dependency(original_u, original_other->id, d);
3081 return 0;
3082 }
3083
3084 /* Note that ordering a device unit after a unit is permitted since it
3085 * allows to start its job running timeout at a specific time. */
3086 if (d == UNIT_BEFORE && other->type == UNIT_DEVICE) {
3087 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
3088 return 0;
3089 }
3090
3091 if (d == UNIT_ON_FAILURE && !UNIT_VTABLE(u)->can_fail) {
3092 log_unit_warning(u, "Requested dependency OnFailure=%s ignored (%s units cannot fail).", other->id, unit_type_to_string(u->type));
3093 return 0;
3094 }
3095
3096 if (d == UNIT_TRIGGERS && !UNIT_VTABLE(u)->can_trigger)
3097 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3098 "Requested dependency Triggers=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(u->type));
3099 if (d == UNIT_TRIGGERED_BY && !UNIT_VTABLE(other)->can_trigger)
3100 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3101 "Requested dependency TriggeredBy=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(other->type));
3102
3103 r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0);
3104 if (r < 0)
3105 return r;
3106 else if (r > 0)
3107 noop = false;
3108
3109 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
3110 r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask);
3111 if (r < 0)
3112 return r;
3113 else if (r > 0)
3114 noop = false;
3115 }
3116
3117 if (add_reference) {
3118 r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0);
3119 if (r < 0)
3120 return r;
3121 else if (r > 0)
3122 noop = false;
3123
3124 r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask);
3125 if (r < 0)
3126 return r;
3127 else if (r > 0)
3128 noop = false;
3129 }
3130
3131 if (!noop)
3132 unit_add_to_dbus_queue(u);
3133 return 0;
3134 }
3135
3136 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
3137 int r;
3138
3139 assert(u);
3140
3141 r = unit_add_dependency(u, d, other, add_reference, mask);
3142 if (r < 0)
3143 return r;
3144
3145 return unit_add_dependency(u, e, other, add_reference, mask);
3146 }
3147
3148 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
3149 int r;
3150
3151 assert(u);
3152 assert(name);
3153 assert(buf);
3154 assert(ret);
3155
3156 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
3157 *buf = NULL;
3158 *ret = name;
3159 return 0;
3160 }
3161
3162 if (u->instance)
3163 r = unit_name_replace_instance(name, u->instance, buf);
3164 else {
3165 _cleanup_free_ char *i = NULL;
3166
3167 r = unit_name_to_prefix(u->id, &i);
3168 if (r < 0)
3169 return r;
3170
3171 r = unit_name_replace_instance(name, i, buf);
3172 }
3173 if (r < 0)
3174 return r;
3175
3176 *ret = *buf;
3177 return 0;
3178 }
3179
3180 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3181 _cleanup_free_ char *buf = NULL;
3182 Unit *other;
3183 int r;
3184
3185 assert(u);
3186 assert(name);
3187
3188 r = resolve_template(u, name, &buf, &name);
3189 if (r < 0)
3190 return r;
3191
3192 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3193 if (r < 0)
3194 return r;
3195
3196 return unit_add_dependency(u, d, other, add_reference, mask);
3197 }
3198
3199 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3200 _cleanup_free_ char *buf = NULL;
3201 Unit *other;
3202 int r;
3203
3204 assert(u);
3205 assert(name);
3206
3207 r = resolve_template(u, name, &buf, &name);
3208 if (r < 0)
3209 return r;
3210
3211 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3212 if (r < 0)
3213 return r;
3214
3215 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3216 }
3217
3218 int set_unit_path(const char *p) {
3219 /* This is mostly for debug purposes */
3220 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
3221 return -errno;
3222
3223 return 0;
3224 }
3225
3226 char *unit_dbus_path(Unit *u) {
3227 assert(u);
3228
3229 if (!u->id)
3230 return NULL;
3231
3232 return unit_dbus_path_from_name(u->id);
3233 }
3234
3235 char *unit_dbus_path_invocation_id(Unit *u) {
3236 assert(u);
3237
3238 if (sd_id128_is_null(u->invocation_id))
3239 return NULL;
3240
3241 return unit_dbus_path_from_name(u->invocation_id_string);
3242 }
3243
3244 static int unit_set_invocation_id(Unit *u, sd_id128_t id) {
3245 int r;
3246
3247 assert(u);
3248
3249 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
3250
3251 if (sd_id128_equal(u->invocation_id, id))
3252 return 0;
3253
3254 if (!sd_id128_is_null(u->invocation_id))
3255 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
3256
3257 if (sd_id128_is_null(id)) {
3258 r = 0;
3259 goto reset;
3260 }
3261
3262 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
3263 if (r < 0)
3264 goto reset;
3265
3266 u->invocation_id = id;
3267 sd_id128_to_string(id, u->invocation_id_string);
3268
3269 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
3270 if (r < 0)
3271 goto reset;
3272
3273 return 0;
3274
3275 reset:
3276 u->invocation_id = SD_ID128_NULL;
3277 u->invocation_id_string[0] = 0;
3278 return r;
3279 }
3280
3281 int unit_set_slice(Unit *u, Unit *slice) {
3282 assert(u);
3283 assert(slice);
3284
3285 /* Sets the unit slice if it has not been set before. Is extra
3286 * careful, to only allow this for units that actually have a
3287 * cgroup context. Also, we don't allow to set this for slices
3288 * (since the parent slice is derived from the name). Make
3289 * sure the unit we set is actually a slice. */
3290
3291 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3292 return -EOPNOTSUPP;
3293
3294 if (u->type == UNIT_SLICE)
3295 return -EINVAL;
3296
3297 if (unit_active_state(u) != UNIT_INACTIVE)
3298 return -EBUSY;
3299
3300 if (slice->type != UNIT_SLICE)
3301 return -EINVAL;
3302
3303 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3304 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3305 return -EPERM;
3306
3307 if (UNIT_DEREF(u->slice) == slice)
3308 return 0;
3309
3310 /* Disallow slice changes if @u is already bound to cgroups */
3311 if (UNIT_ISSET(u->slice) && u->cgroup_realized)
3312 return -EBUSY;
3313
3314 unit_ref_set(&u->slice, u, slice);
3315 return 1;
3316 }
3317
3318 int unit_set_default_slice(Unit *u) {
3319 const char *slice_name;
3320 Unit *slice;
3321 int r;
3322
3323 assert(u);
3324
3325 if (UNIT_ISSET(u->slice))
3326 return 0;
3327
3328 if (u->instance) {
3329 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3330
3331 /* Implicitly place all instantiated units in their
3332 * own per-template slice */
3333
3334 r = unit_name_to_prefix(u->id, &prefix);
3335 if (r < 0)
3336 return r;
3337
3338 /* The prefix is already escaped, but it might include
3339 * "-" which has a special meaning for slice units,
3340 * hence escape it here extra. */
3341 escaped = unit_name_escape(prefix);
3342 if (!escaped)
3343 return -ENOMEM;
3344
3345 if (MANAGER_IS_SYSTEM(u->manager))
3346 slice_name = strjoina("system-", escaped, ".slice");
3347 else
3348 slice_name = strjoina(escaped, ".slice");
3349 } else
3350 slice_name =
3351 MANAGER_IS_SYSTEM(u->manager) && !unit_has_name(u, SPECIAL_INIT_SCOPE)
3352 ? SPECIAL_SYSTEM_SLICE
3353 : SPECIAL_ROOT_SLICE;
3354
3355 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3356 if (r < 0)
3357 return r;
3358
3359 return unit_set_slice(u, slice);
3360 }
3361
3362 const char *unit_slice_name(Unit *u) {
3363 assert(u);
3364
3365 if (!UNIT_ISSET(u->slice))
3366 return NULL;
3367
3368 return UNIT_DEREF(u->slice)->id;
3369 }
3370
3371 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3372 _cleanup_free_ char *t = NULL;
3373 int r;
3374
3375 assert(u);
3376 assert(type);
3377 assert(_found);
3378
3379 r = unit_name_change_suffix(u->id, type, &t);
3380 if (r < 0)
3381 return r;
3382 if (unit_has_name(u, t))
3383 return -EINVAL;
3384
3385 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3386 assert(r < 0 || *_found != u);
3387 return r;
3388 }
3389
3390 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3391 const char *new_owner;
3392 Unit *u = userdata;
3393 int r;
3394
3395 assert(message);
3396 assert(u);
3397
3398 r = sd_bus_message_read(message, "sss", NULL, NULL, &new_owner);
3399 if (r < 0) {
3400 bus_log_parse_error(r);
3401 return 0;
3402 }
3403
3404 if (UNIT_VTABLE(u)->bus_name_owner_change)
3405 UNIT_VTABLE(u)->bus_name_owner_change(u, empty_to_null(new_owner));
3406
3407 return 0;
3408 }
3409
3410 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3411 const sd_bus_error *e;
3412 const char *new_owner;
3413 Unit *u = userdata;
3414 int r;
3415
3416 assert(message);
3417 assert(u);
3418
3419 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3420
3421 e = sd_bus_message_get_error(message);
3422 if (e) {
3423 if (!sd_bus_error_has_name(e, "org.freedesktop.DBus.Error.NameHasNoOwner"))
3424 log_unit_error(u, "Unexpected error response from GetNameOwner(): %s", e->message);
3425
3426 new_owner = NULL;
3427 } else {
3428 r = sd_bus_message_read(message, "s", &new_owner);
3429 if (r < 0)
3430 return bus_log_parse_error(r);
3431
3432 assert(!isempty(new_owner));
3433 }
3434
3435 if (UNIT_VTABLE(u)->bus_name_owner_change)
3436 UNIT_VTABLE(u)->bus_name_owner_change(u, new_owner);
3437
3438 return 0;
3439 }
3440
3441 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3442 const char *match;
3443 int r;
3444
3445 assert(u);
3446 assert(bus);
3447 assert(name);
3448
3449 if (u->match_bus_slot || u->get_name_owner_slot)
3450 return -EBUSY;
3451
3452 match = strjoina("type='signal',"
3453 "sender='org.freedesktop.DBus',"
3454 "path='/org/freedesktop/DBus',"
3455 "interface='org.freedesktop.DBus',"
3456 "member='NameOwnerChanged',"
3457 "arg0='", name, "'");
3458
3459 r = sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3460 if (r < 0)
3461 return r;
3462
3463 r = sd_bus_call_method_async(
3464 bus,
3465 &u->get_name_owner_slot,
3466 "org.freedesktop.DBus",
3467 "/org/freedesktop/DBus",
3468 "org.freedesktop.DBus",
3469 "GetNameOwner",
3470 get_name_owner_handler,
3471 u,
3472 "s", name);
3473 if (r < 0) {
3474 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3475 return r;
3476 }
3477
3478 log_unit_debug(u, "Watching D-Bus name '%s'.", name);
3479 return 0;
3480 }
3481
3482 int unit_watch_bus_name(Unit *u, const char *name) {
3483 int r;
3484
3485 assert(u);
3486 assert(name);
3487
3488 /* Watch a specific name on the bus. We only support one unit
3489 * watching each name for now. */
3490
3491 if (u->manager->api_bus) {
3492 /* If the bus is already available, install the match directly.
3493 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3494 r = unit_install_bus_match(u, u->manager->api_bus, name);
3495 if (r < 0)
3496 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3497 }
3498
3499 r = hashmap_put(u->manager->watch_bus, name, u);
3500 if (r < 0) {
3501 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3502 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3503 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3504 }
3505
3506 return 0;
3507 }
3508
3509 void unit_unwatch_bus_name(Unit *u, const char *name) {
3510 assert(u);
3511 assert(name);
3512
3513 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3514 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3515 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3516 }
3517
3518 bool unit_can_serialize(Unit *u) {
3519 assert(u);
3520
3521 return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
3522 }
3523
3524 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
3525 _cleanup_free_ char *s = NULL;
3526 int r;
3527
3528 assert(f);
3529 assert(key);
3530
3531 if (mask == 0)
3532 return 0;
3533
3534 r = cg_mask_to_string(mask, &s);
3535 if (r < 0)
3536 return log_error_errno(r, "Failed to format cgroup mask: %m");
3537
3538 return serialize_item(f, key, s);
3539 }
3540
3541 static const char *const ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
3542 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
3543 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
3544 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
3545 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
3546 };
3547
3548 static const char *const io_accounting_metric_field_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3549 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
3550 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
3551 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
3552 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
3553 };
3554
3555 static const char *const io_accounting_metric_field_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3556 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
3557 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
3558 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
3559 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
3560 };
3561
3562 int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
3563 int r;
3564
3565 assert(u);
3566 assert(f);
3567 assert(fds);
3568
3569 if (unit_can_serialize(u)) {
3570 r = UNIT_VTABLE(u)->serialize(u, f, fds);
3571 if (r < 0)
3572 return r;
3573 }
3574
3575 (void) serialize_dual_timestamp(f, "state-change-timestamp", &u->state_change_timestamp);
3576
3577 (void) serialize_dual_timestamp(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
3578 (void) serialize_dual_timestamp(f, "active-enter-timestamp", &u->active_enter_timestamp);
3579 (void) serialize_dual_timestamp(f, "active-exit-timestamp", &u->active_exit_timestamp);
3580 (void) serialize_dual_timestamp(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
3581
3582 (void) serialize_dual_timestamp(f, "condition-timestamp", &u->condition_timestamp);
3583 (void) serialize_dual_timestamp(f, "assert-timestamp", &u->assert_timestamp);
3584
3585 if (dual_timestamp_is_set(&u->condition_timestamp))
3586 (void) serialize_bool(f, "condition-result", u->condition_result);
3587
3588 if (dual_timestamp_is_set(&u->assert_timestamp))
3589 (void) serialize_bool(f, "assert-result", u->assert_result);
3590
3591 (void) serialize_bool(f, "transient", u->transient);
3592 (void) serialize_bool(f, "in-audit", u->in_audit);
3593
3594 (void) serialize_bool(f, "exported-invocation-id", u->exported_invocation_id);
3595 (void) serialize_bool(f, "exported-log-level-max", u->exported_log_level_max);
3596 (void) serialize_bool(f, "exported-log-extra-fields", u->exported_log_extra_fields);
3597 (void) serialize_bool(f, "exported-log-rate-limit-interval", u->exported_log_ratelimit_interval);
3598 (void) serialize_bool(f, "exported-log-rate-limit-burst", u->exported_log_ratelimit_burst);
3599
3600 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base);
3601 if (u->cpu_usage_last != NSEC_INFINITY)
3602 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last);
3603
3604 if (u->managed_oom_kill_last > 0)
3605 (void) serialize_item_format(f, "managed-oom-kill-last", "%" PRIu64, u->managed_oom_kill_last);
3606
3607 if (u->oom_kill_last > 0)
3608 (void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, u->oom_kill_last);
3609
3610 for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
3611 (void) serialize_item_format(f, io_accounting_metric_field_base[im], "%" PRIu64, u->io_accounting_base[im]);
3612
3613 if (u->io_accounting_last[im] != UINT64_MAX)
3614 (void) serialize_item_format(f, io_accounting_metric_field_last[im], "%" PRIu64, u->io_accounting_last[im]);
3615 }
3616
3617 if (u->cgroup_path)
3618 (void) serialize_item(f, "cgroup", u->cgroup_path);
3619
3620 (void) serialize_bool(f, "cgroup-realized", u->cgroup_realized);
3621 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask);
3622 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask);
3623 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", u->cgroup_invalidated_mask);
3624
3625 if (uid_is_valid(u->ref_uid))
3626 (void) serialize_item_format(f, "ref-uid", UID_FMT, u->ref_uid);
3627 if (gid_is_valid(u->ref_gid))
3628 (void) serialize_item_format(f, "ref-gid", GID_FMT, u->ref_gid);
3629
3630 if (!sd_id128_is_null(u->invocation_id))
3631 (void) serialize_item_format(f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id));
3632
3633 (void) serialize_item_format(f, "freezer-state", "%s", freezer_state_to_string(unit_freezer_state(u)));
3634
3635 bus_track_serialize(u->bus_track, f, "ref");
3636
3637 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
3638 uint64_t v;
3639
3640 r = unit_get_ip_accounting(u, m, &v);
3641 if (r >= 0)
3642 (void) serialize_item_format(f, ip_accounting_metric_field[m], "%" PRIu64, v);
3643 }
3644
3645 if (serialize_jobs) {
3646 if (u->job) {
3647 fputs("job\n", f);
3648 job_serialize(u->job, f);
3649 }
3650
3651 if (u->nop_job) {
3652 fputs("job\n", f);
3653 job_serialize(u->nop_job, f);
3654 }
3655 }
3656
3657 /* End marker */
3658 fputc('\n', f);
3659 return 0;
3660 }
3661
3662 static int unit_deserialize_job(Unit *u, FILE *f) {
3663 _cleanup_(job_freep) Job *j = NULL;
3664 int r;
3665
3666 assert(u);
3667 assert(f);
3668
3669 j = job_new_raw(u);
3670 if (!j)
3671 return log_oom();
3672
3673 r = job_deserialize(j, f);
3674 if (r < 0)
3675 return r;
3676
3677 r = job_install_deserialized(j);
3678 if (r < 0)
3679 return r;
3680
3681 TAKE_PTR(j);
3682 return 0;
3683 }
3684
3685 int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
3686 int r;
3687
3688 assert(u);
3689 assert(f);
3690 assert(fds);
3691
3692 for (;;) {
3693 _cleanup_free_ char *line = NULL;
3694 char *l, *v;
3695 ssize_t m;
3696 size_t k;
3697
3698 r = read_line(f, LONG_LINE_MAX, &line);
3699 if (r < 0)
3700 return log_error_errno(r, "Failed to read serialization line: %m");
3701 if (r == 0) /* eof */
3702 break;
3703
3704 l = strstrip(line);
3705 if (isempty(l)) /* End marker */
3706 break;
3707
3708 k = strcspn(l, "=");
3709
3710 if (l[k] == '=') {
3711 l[k] = 0;
3712 v = l+k+1;
3713 } else
3714 v = l+k;
3715
3716 if (streq(l, "job")) {
3717 if (v[0] == '\0') {
3718 /* New-style serialized job */
3719 r = unit_deserialize_job(u, f);
3720 if (r < 0)
3721 return r;
3722 } else /* Legacy for pre-44 */
3723 log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
3724 continue;
3725 } else if (streq(l, "state-change-timestamp")) {
3726 (void) deserialize_dual_timestamp(v, &u->state_change_timestamp);
3727 continue;
3728 } else if (streq(l, "inactive-exit-timestamp")) {
3729 (void) deserialize_dual_timestamp(v, &u->inactive_exit_timestamp);
3730 continue;
3731 } else if (streq(l, "active-enter-timestamp")) {
3732 (void) deserialize_dual_timestamp(v, &u->active_enter_timestamp);
3733 continue;
3734 } else if (streq(l, "active-exit-timestamp")) {
3735 (void) deserialize_dual_timestamp(v, &u->active_exit_timestamp);
3736 continue;
3737 } else if (streq(l, "inactive-enter-timestamp")) {
3738 (void) deserialize_dual_timestamp(v, &u->inactive_enter_timestamp);
3739 continue;
3740 } else if (streq(l, "condition-timestamp")) {
3741 (void) deserialize_dual_timestamp(v, &u->condition_timestamp);
3742 continue;
3743 } else if (streq(l, "assert-timestamp")) {
3744 (void) deserialize_dual_timestamp(v, &u->assert_timestamp);
3745 continue;
3746 } else if (streq(l, "condition-result")) {
3747
3748 r = parse_boolean(v);
3749 if (r < 0)
3750 log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
3751 else
3752 u->condition_result = r;
3753
3754 continue;
3755
3756 } else if (streq(l, "assert-result")) {
3757
3758 r = parse_boolean(v);
3759 if (r < 0)
3760 log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
3761 else
3762 u->assert_result = r;
3763
3764 continue;
3765
3766 } else if (streq(l, "transient")) {
3767
3768 r = parse_boolean(v);
3769 if (r < 0)
3770 log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
3771 else
3772 u->transient = r;
3773
3774 continue;
3775
3776 } else if (streq(l, "in-audit")) {
3777
3778 r = parse_boolean(v);
3779 if (r < 0)
3780 log_unit_debug(u, "Failed to parse in-audit bool %s, ignoring.", v);
3781 else
3782 u->in_audit = r;
3783
3784 continue;
3785
3786 } else if (streq(l, "exported-invocation-id")) {
3787
3788 r = parse_boolean(v);
3789 if (r < 0)
3790 log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v);
3791 else
3792 u->exported_invocation_id = r;
3793
3794 continue;
3795
3796 } else if (streq(l, "exported-log-level-max")) {
3797
3798 r = parse_boolean(v);
3799 if (r < 0)
3800 log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v);
3801 else
3802 u->exported_log_level_max = r;
3803
3804 continue;
3805
3806 } else if (streq(l, "exported-log-extra-fields")) {
3807
3808 r = parse_boolean(v);
3809 if (r < 0)
3810 log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v);
3811 else
3812 u->exported_log_extra_fields = r;
3813
3814 continue;
3815
3816 } else if (streq(l, "exported-log-rate-limit-interval")) {
3817
3818 r = parse_boolean(v);
3819 if (r < 0)
3820 log_unit_debug(u, "Failed to parse exported log rate limit interval %s, ignoring.", v);
3821 else
3822 u->exported_log_ratelimit_interval = r;
3823
3824 continue;
3825
3826 } else if (streq(l, "exported-log-rate-limit-burst")) {
3827
3828 r = parse_boolean(v);
3829 if (r < 0)
3830 log_unit_debug(u, "Failed to parse exported log rate limit burst %s, ignoring.", v);
3831 else
3832 u->exported_log_ratelimit_burst = r;
3833
3834 continue;
3835
3836 } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) {
3837
3838 r = safe_atou64(v, &u->cpu_usage_base);
3839 if (r < 0)
3840 log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v);
3841
3842 continue;
3843
3844 } else if (streq(l, "cpu-usage-last")) {
3845
3846 r = safe_atou64(v, &u->cpu_usage_last);
3847 if (r < 0)
3848 log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v);
3849
3850 continue;
3851
3852 } else if (streq(l, "managed-oom-kill-last")) {
3853
3854 r = safe_atou64(v, &u->managed_oom_kill_last);
3855 if (r < 0)
3856 log_unit_debug(u, "Failed to read managed OOM kill last %s, ignoring.", v);
3857
3858 continue;
3859
3860 } else if (streq(l, "oom-kill-last")) {
3861
3862 r = safe_atou64(v, &u->oom_kill_last);
3863 if (r < 0)
3864 log_unit_debug(u, "Failed to read OOM kill last %s, ignoring.", v);
3865
3866 continue;
3867
3868 } else if (streq(l, "cgroup")) {
3869
3870 r = unit_set_cgroup_path(u, v);
3871 if (r < 0)
3872 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
3873
3874 (void) unit_watch_cgroup(u);
3875 (void) unit_watch_cgroup_memory(u);
3876
3877 continue;
3878 } else if (streq(l, "cgroup-realized")) {
3879 int b;
3880
3881 b = parse_boolean(v);
3882 if (b < 0)
3883 log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
3884 else
3885 u->cgroup_realized = b;
3886
3887 continue;
3888
3889 } else if (streq(l, "cgroup-realized-mask")) {
3890
3891 r = cg_mask_from_string(v, &u->cgroup_realized_mask);
3892 if (r < 0)
3893 log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v);
3894 continue;
3895
3896 } else if (streq(l, "cgroup-enabled-mask")) {
3897
3898 r = cg_mask_from_string(v, &u->cgroup_enabled_mask);
3899 if (r < 0)
3900 log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v);
3901 continue;
3902
3903 } else if (streq(l, "cgroup-invalidated-mask")) {
3904
3905 r = cg_mask_from_string(v, &u->cgroup_invalidated_mask);
3906 if (r < 0)
3907 log_unit_debug(u, "Failed to parse cgroup-invalidated-mask %s, ignoring.", v);
3908 continue;
3909
3910 } else if (streq(l, "ref-uid")) {
3911 uid_t uid;
3912
3913 r = parse_uid(v, &uid);
3914 if (r < 0)
3915 log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v);
3916 else
3917 unit_ref_uid_gid(u, uid, GID_INVALID);
3918
3919 continue;
3920
3921 } else if (streq(l, "ref-gid")) {
3922 gid_t gid;
3923
3924 r = parse_gid(v, &gid);
3925 if (r < 0)
3926 log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v);
3927 else
3928 unit_ref_uid_gid(u, UID_INVALID, gid);
3929
3930 continue;
3931
3932 } else if (streq(l, "ref")) {
3933
3934 r = strv_extend(&u->deserialized_refs, v);
3935 if (r < 0)
3936 return log_oom();
3937
3938 continue;
3939 } else if (streq(l, "invocation-id")) {
3940 sd_id128_t id;
3941
3942 r = sd_id128_from_string(v, &id);
3943 if (r < 0)
3944 log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v);
3945 else {
3946 r = unit_set_invocation_id(u, id);
3947 if (r < 0)
3948 log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m");
3949 }
3950
3951 continue;
3952 } else if (streq(l, "freezer-state")) {
3953 FreezerState s;
3954
3955 s = freezer_state_from_string(v);
3956 if (s < 0)
3957 log_unit_debug(u, "Failed to deserialize freezer-state '%s', ignoring.", v);
3958 else
3959 u->freezer_state = s;
3960
3961 continue;
3962 }
3963
3964 /* Check if this is an IP accounting metric serialization field */
3965 m = string_table_lookup(ip_accounting_metric_field, ELEMENTSOF(ip_accounting_metric_field), l);
3966 if (m >= 0) {
3967 uint64_t c;
3968
3969 r = safe_atou64(v, &c);
3970 if (r < 0)
3971 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v);
3972 else
3973 u->ip_accounting_extra[m] = c;
3974 continue;
3975 }
3976
3977 m = string_table_lookup(io_accounting_metric_field_base, ELEMENTSOF(io_accounting_metric_field_base), l);
3978 if (m >= 0) {
3979 uint64_t c;
3980
3981 r = safe_atou64(v, &c);
3982 if (r < 0)
3983 log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", v);
3984 else
3985 u->io_accounting_base[m] = c;
3986 continue;
3987 }
3988
3989 m = string_table_lookup(io_accounting_metric_field_last, ELEMENTSOF(io_accounting_metric_field_last), l);
3990 if (m >= 0) {
3991 uint64_t c;
3992
3993 r = safe_atou64(v, &c);
3994 if (r < 0)
3995 log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", v);
3996 else
3997 u->io_accounting_last[m] = c;
3998 continue;
3999 }
4000
4001 if (unit_can_serialize(u)) {
4002 r = exec_runtime_deserialize_compat(u, l, v, fds);
4003 if (r < 0) {
4004 log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
4005 continue;
4006 }
4007
4008 /* Returns positive if key was handled by the call */
4009 if (r > 0)
4010 continue;
4011
4012 r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
4013 if (r < 0)
4014 log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
4015 }
4016 }
4017
4018 /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is
4019 * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from
4020 * before 228 where the base for timeouts was not persistent across reboots. */
4021
4022 if (!dual_timestamp_is_set(&u->state_change_timestamp))
4023 dual_timestamp_get(&u->state_change_timestamp);
4024
4025 /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied
4026 * after we are done. For that we invalidate anything already realized, so that we can realize it again. */
4027 unit_invalidate_cgroup(u, _CGROUP_MASK_ALL);
4028 unit_invalidate_cgroup_bpf(u);
4029
4030 return 0;
4031 }
4032
4033 int unit_deserialize_skip(FILE *f) {
4034 int r;
4035 assert(f);
4036
4037 /* Skip serialized data for this unit. We don't know what it is. */
4038
4039 for (;;) {
4040 _cleanup_free_ char *line = NULL;
4041 char *l;
4042
4043 r = read_line(f, LONG_LINE_MAX, &line);
4044 if (r < 0)
4045 return log_error_errno(r, "Failed to read serialization line: %m");
4046 if (r == 0)
4047 return 0;
4048
4049 l = strstrip(line);
4050
4051 /* End marker */
4052 if (isempty(l))
4053 return 1;
4054 }
4055 }
4056
4057 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
4058 _cleanup_free_ char *e = NULL;
4059 Unit *device;
4060 int r;
4061
4062 assert(u);
4063
4064 /* Adds in links to the device node that this unit is based on */
4065 if (isempty(what))
4066 return 0;
4067
4068 if (!is_device_path(what))
4069 return 0;
4070
4071 /* When device units aren't supported (such as in a container), don't create dependencies on them. */
4072 if (!unit_type_supported(UNIT_DEVICE))
4073 return 0;
4074
4075 r = unit_name_from_path(what, ".device", &e);
4076 if (r < 0)
4077 return r;
4078
4079 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
4080 if (r < 0)
4081 return r;
4082
4083 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
4084 dep = UNIT_BINDS_TO;
4085
4086 return unit_add_two_dependencies(u, UNIT_AFTER,
4087 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
4088 device, true, mask);
4089 }
4090
4091 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask) {
4092 _cleanup_free_ char *escaped = NULL, *target = NULL;
4093 int r;
4094
4095 assert(u);
4096
4097 if (isempty(what))
4098 return 0;
4099
4100 if (!path_startswith(what, "/dev/"))
4101 return 0;
4102
4103 /* If we don't support devices, then also don't bother with blockdev@.target */
4104 if (!unit_type_supported(UNIT_DEVICE))
4105 return 0;
4106
4107 r = unit_name_path_escape(what, &escaped);
4108 if (r < 0)
4109 return r;
4110
4111 r = unit_name_build("blockdev", escaped, ".target", &target);
4112 if (r < 0)
4113 return r;
4114
4115 return unit_add_dependency_by_name(u, UNIT_AFTER, target, true, mask);
4116 }
4117
4118 int unit_coldplug(Unit *u) {
4119 int r = 0, q;
4120 char **i;
4121 Job *uj;
4122
4123 assert(u);
4124
4125 /* Make sure we don't enter a loop, when coldplugging recursively. */
4126 if (u->coldplugged)
4127 return 0;
4128
4129 u->coldplugged = true;
4130
4131 STRV_FOREACH(i, u->deserialized_refs) {
4132 q = bus_unit_track_add_name(u, *i);
4133 if (q < 0 && r >= 0)
4134 r = q;
4135 }
4136 u->deserialized_refs = strv_free(u->deserialized_refs);
4137
4138 if (UNIT_VTABLE(u)->coldplug) {
4139 q = UNIT_VTABLE(u)->coldplug(u);
4140 if (q < 0 && r >= 0)
4141 r = q;
4142 }
4143
4144 uj = u->job ?: u->nop_job;
4145 if (uj) {
4146 q = job_coldplug(uj);
4147 if (q < 0 && r >= 0)
4148 r = q;
4149 }
4150
4151 return r;
4152 }
4153
4154 void unit_catchup(Unit *u) {
4155 assert(u);
4156
4157 if (UNIT_VTABLE(u)->catchup)
4158 UNIT_VTABLE(u)->catchup(u);
4159 }
4160
4161 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
4162 struct stat st;
4163
4164 if (!path)
4165 return false;
4166
4167 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
4168 * are never out-of-date. */
4169 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
4170 return false;
4171
4172 if (stat(path, &st) < 0)
4173 /* What, cannot access this anymore? */
4174 return true;
4175
4176 if (path_masked)
4177 /* For masked files check if they are still so */
4178 return !null_or_empty(&st);
4179 else
4180 /* For non-empty files check the mtime */
4181 return timespec_load(&st.st_mtim) > mtime;
4182
4183 return false;
4184 }
4185
4186 bool unit_need_daemon_reload(Unit *u) {
4187 _cleanup_strv_free_ char **t = NULL;
4188 char **path;
4189
4190 assert(u);
4191
4192 /* For unit files, we allow masking… */
4193 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
4194 u->load_state == UNIT_MASKED))
4195 return true;
4196
4197 /* Source paths should not be masked… */
4198 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
4199 return true;
4200
4201 if (u->load_state == UNIT_LOADED)
4202 (void) unit_find_dropin_paths(u, &t);
4203 if (!strv_equal(u->dropin_paths, t))
4204 return true;
4205
4206 /* … any drop-ins that are masked are simply omitted from the list. */
4207 STRV_FOREACH(path, u->dropin_paths)
4208 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
4209 return true;
4210
4211 return false;
4212 }
4213
4214 void unit_reset_failed(Unit *u) {
4215 assert(u);
4216
4217 if (UNIT_VTABLE(u)->reset_failed)
4218 UNIT_VTABLE(u)->reset_failed(u);
4219
4220 ratelimit_reset(&u->start_ratelimit);
4221 u->start_limit_hit = false;
4222 }
4223
4224 Unit *unit_following(Unit *u) {
4225 assert(u);
4226
4227 if (UNIT_VTABLE(u)->following)
4228 return UNIT_VTABLE(u)->following(u);
4229
4230 return NULL;
4231 }
4232
4233 bool unit_stop_pending(Unit *u) {
4234 assert(u);
4235
4236 /* This call does check the current state of the unit. It's
4237 * hence useful to be called from state change calls of the
4238 * unit itself, where the state isn't updated yet. This is
4239 * different from unit_inactive_or_pending() which checks both
4240 * the current state and for a queued job. */
4241
4242 return unit_has_job_type(u, JOB_STOP);
4243 }
4244
4245 bool unit_inactive_or_pending(Unit *u) {
4246 assert(u);
4247
4248 /* Returns true if the unit is inactive or going down */
4249
4250 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
4251 return true;
4252
4253 if (unit_stop_pending(u))
4254 return true;
4255
4256 return false;
4257 }
4258
4259 bool unit_active_or_pending(Unit *u) {
4260 assert(u);
4261
4262 /* Returns true if the unit is active or going up */
4263
4264 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
4265 return true;
4266
4267 if (u->job &&
4268 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
4269 return true;
4270
4271 return false;
4272 }
4273
4274 bool unit_will_restart_default(Unit *u) {
4275 assert(u);
4276
4277 return unit_has_job_type(u, JOB_START);
4278 }
4279
4280 bool unit_will_restart(Unit *u) {
4281 assert(u);
4282
4283 if (!UNIT_VTABLE(u)->will_restart)
4284 return false;
4285
4286 return UNIT_VTABLE(u)->will_restart(u);
4287 }
4288
4289 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
4290 assert(u);
4291 assert(w >= 0 && w < _KILL_WHO_MAX);
4292 assert(SIGNAL_VALID(signo));
4293
4294 if (!UNIT_VTABLE(u)->kill)
4295 return -EOPNOTSUPP;
4296
4297 return UNIT_VTABLE(u)->kill(u, w, signo, error);
4298 }
4299
4300 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
4301 _cleanup_set_free_ Set *pid_set = NULL;
4302 int r;
4303
4304 pid_set = set_new(NULL);
4305 if (!pid_set)
4306 return NULL;
4307
4308 /* Exclude the main/control pids from being killed via the cgroup */
4309 if (main_pid > 0) {
4310 r = set_put(pid_set, PID_TO_PTR(main_pid));
4311 if (r < 0)
4312 return NULL;
4313 }
4314
4315 if (control_pid > 0) {
4316 r = set_put(pid_set, PID_TO_PTR(control_pid));
4317 if (r < 0)
4318 return NULL;
4319 }
4320
4321 return TAKE_PTR(pid_set);
4322 }
4323
4324 static int kill_common_log(pid_t pid, int signo, void *userdata) {
4325 _cleanup_free_ char *comm = NULL;
4326 Unit *u = userdata;
4327
4328 assert(u);
4329
4330 (void) get_process_comm(pid, &comm);
4331 log_unit_info(u, "Sending signal SIG%s to process " PID_FMT " (%s) on client request.",
4332 signal_to_string(signo), pid, strna(comm));
4333
4334 return 1;
4335 }
4336
4337 int unit_kill_common(
4338 Unit *u,
4339 KillWho who,
4340 int signo,
4341 pid_t main_pid,
4342 pid_t control_pid,
4343 sd_bus_error *error) {
4344
4345 int r = 0;
4346 bool killed = false;
4347
4348 /* This is the common implementation for explicit user-requested killing of unit processes, shared by
4349 * various unit types. Do not confuse with unit_kill_context(), which is what we use when we want to
4350 * stop a service ourselves. */
4351
4352 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4353 if (main_pid < 0)
4354 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4355 if (main_pid == 0)
4356 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4357 }
4358
4359 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4360 if (control_pid < 0)
4361 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4362 if (control_pid == 0)
4363 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4364 }
4365
4366 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
4367 if (control_pid > 0) {
4368 _cleanup_free_ char *comm = NULL;
4369 (void) get_process_comm(control_pid, &comm);
4370
4371 if (kill(control_pid, signo) < 0) {
4372 /* Report this failure both to the logs and to the client */
4373 sd_bus_error_set_errnof(
4374 error, errno,
4375 "Failed to send signal SIG%s to control process " PID_FMT " (%s): %m",
4376 signal_to_string(signo), control_pid, strna(comm));
4377 r = log_unit_warning_errno(
4378 u, errno,
4379 "Failed to send signal SIG%s to control process " PID_FMT " (%s) on client request: %m",
4380 signal_to_string(signo), control_pid, strna(comm));
4381 } else {
4382 log_unit_info(u, "Sent signal SIG%s to control process " PID_FMT " (%s) on client request.",
4383 signal_to_string(signo), control_pid, strna(comm));
4384 killed = true;
4385 }
4386 }
4387
4388 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
4389 if (main_pid > 0) {
4390 _cleanup_free_ char *comm = NULL;
4391 (void) get_process_comm(main_pid, &comm);
4392
4393 if (kill(main_pid, signo) < 0) {
4394 if (r == 0)
4395 sd_bus_error_set_errnof(
4396 error, errno,
4397 "Failed to send signal SIG%s to main process " PID_FMT " (%s): %m",
4398 signal_to_string(signo), main_pid, strna(comm));
4399
4400 r = log_unit_warning_errno(
4401 u, errno,
4402 "Failed to send signal SIG%s to main process " PID_FMT " (%s) on client request: %m",
4403 signal_to_string(signo), main_pid, strna(comm));
4404 } else {
4405 log_unit_info(u, "Sent signal SIG%s to main process " PID_FMT " (%s) on client request.",
4406 signal_to_string(signo), main_pid, strna(comm));
4407 killed = true;
4408 }
4409 }
4410
4411 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
4412 _cleanup_set_free_ Set *pid_set = NULL;
4413 int q;
4414
4415 /* Exclude the main/control pids from being killed via the cgroup */
4416 pid_set = unit_pid_set(main_pid, control_pid);
4417 if (!pid_set)
4418 return log_oom();
4419
4420 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, kill_common_log, u);
4421 if (q < 0) {
4422 if (!IN_SET(q, -ESRCH, -ENOENT)) {
4423 if (r == 0)
4424 sd_bus_error_set_errnof(
4425 error, q,
4426 "Failed to send signal SIG%s to auxiliary processes: %m",
4427 signal_to_string(signo));
4428
4429 r = log_unit_warning_errno(
4430 u, q,
4431 "Failed to send signal SIG%s to auxiliary processes on client request: %m",
4432 signal_to_string(signo));
4433 }
4434 } else
4435 killed = true;
4436 }
4437
4438 /* If the "fail" versions of the operation are requested, then complain if the set of processes we killed is empty */
4439 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL, KILL_MAIN_FAIL))
4440 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No matching processes to kill");
4441
4442 return r;
4443 }
4444
4445 int unit_following_set(Unit *u, Set **s) {
4446 assert(u);
4447 assert(s);
4448
4449 if (UNIT_VTABLE(u)->following_set)
4450 return UNIT_VTABLE(u)->following_set(u, s);
4451
4452 *s = NULL;
4453 return 0;
4454 }
4455
4456 UnitFileState unit_get_unit_file_state(Unit *u) {
4457 int r;
4458
4459 assert(u);
4460
4461 if (u->unit_file_state < 0 && u->fragment_path) {
4462 r = unit_file_get_state(
4463 u->manager->unit_file_scope,
4464 NULL,
4465 u->id,
4466 &u->unit_file_state);
4467 if (r < 0)
4468 u->unit_file_state = UNIT_FILE_BAD;
4469 }
4470
4471 return u->unit_file_state;
4472 }
4473
4474 int unit_get_unit_file_preset(Unit *u) {
4475 assert(u);
4476
4477 if (u->unit_file_preset < 0 && u->fragment_path)
4478 u->unit_file_preset = unit_file_query_preset(
4479 u->manager->unit_file_scope,
4480 NULL,
4481 basename(u->fragment_path),
4482 NULL);
4483
4484 return u->unit_file_preset;
4485 }
4486
4487 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4488 assert(ref);
4489 assert(source);
4490 assert(target);
4491
4492 if (ref->target)
4493 unit_ref_unset(ref);
4494
4495 ref->source = source;
4496 ref->target = target;
4497 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4498 return target;
4499 }
4500
4501 void unit_ref_unset(UnitRef *ref) {
4502 assert(ref);
4503
4504 if (!ref->target)
4505 return;
4506
4507 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4508 * be unreferenced now. */
4509 unit_add_to_gc_queue(ref->target);
4510
4511 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4512 ref->source = ref->target = NULL;
4513 }
4514
4515 static int user_from_unit_name(Unit *u, char **ret) {
4516
4517 static const uint8_t hash_key[] = {
4518 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4519 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4520 };
4521
4522 _cleanup_free_ char *n = NULL;
4523 int r;
4524
4525 r = unit_name_to_prefix(u->id, &n);
4526 if (r < 0)
4527 return r;
4528
4529 if (valid_user_group_name(n, 0)) {
4530 *ret = TAKE_PTR(n);
4531 return 0;
4532 }
4533
4534 /* If we can't use the unit name as a user name, then let's hash it and use that */
4535 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4536 return -ENOMEM;
4537
4538 return 0;
4539 }
4540
4541 int unit_patch_contexts(Unit *u) {
4542 CGroupContext *cc;
4543 ExecContext *ec;
4544 int r;
4545
4546 assert(u);
4547
4548 /* Patch in the manager defaults into the exec and cgroup
4549 * contexts, _after_ the rest of the settings have been
4550 * initialized */
4551
4552 ec = unit_get_exec_context(u);
4553 if (ec) {
4554 /* This only copies in the ones that need memory */
4555 for (unsigned i = 0; i < _RLIMIT_MAX; i++)
4556 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4557 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4558 if (!ec->rlimit[i])
4559 return -ENOMEM;
4560 }
4561
4562 if (MANAGER_IS_USER(u->manager) &&
4563 !ec->working_directory) {
4564
4565 r = get_home_dir(&ec->working_directory);
4566 if (r < 0)
4567 return r;
4568
4569 /* Allow user services to run, even if the
4570 * home directory is missing */
4571 ec->working_directory_missing_ok = true;
4572 }
4573
4574 if (ec->private_devices)
4575 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4576
4577 if (ec->protect_kernel_modules)
4578 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4579
4580 if (ec->protect_kernel_logs)
4581 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4582
4583 if (ec->protect_clock)
4584 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_SYS_TIME) | (UINT64_C(1) << CAP_WAKE_ALARM));
4585
4586 if (ec->dynamic_user) {
4587 if (!ec->user) {
4588 r = user_from_unit_name(u, &ec->user);
4589 if (r < 0)
4590 return r;
4591 }
4592
4593 if (!ec->group) {
4594 ec->group = strdup(ec->user);
4595 if (!ec->group)
4596 return -ENOMEM;
4597 }
4598
4599 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4600 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4601 * sandbox. */
4602
4603 ec->private_tmp = true;
4604 ec->remove_ipc = true;
4605 ec->protect_system = PROTECT_SYSTEM_STRICT;
4606 if (ec->protect_home == PROTECT_HOME_NO)
4607 ec->protect_home = PROTECT_HOME_READ_ONLY;
4608
4609 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4610 * them. */
4611 ec->no_new_privileges = true;
4612 ec->restrict_suid_sgid = true;
4613 }
4614 }
4615
4616 cc = unit_get_cgroup_context(u);
4617 if (cc && ec) {
4618
4619 if (ec->private_devices &&
4620 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4621 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4622
4623 if ((ec->root_image || !LIST_IS_EMPTY(ec->mount_images)) &&
4624 (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow)) {
4625 const char *p;
4626
4627 /* When RootImage= or MountImages= is specified, the following devices are touched. */
4628 FOREACH_STRING(p, "/dev/loop-control", "/dev/mapper/control") {
4629 r = cgroup_add_device_allow(cc, p, "rw");
4630 if (r < 0)
4631 return r;
4632 }
4633 FOREACH_STRING(p, "block-loop", "block-blkext", "block-device-mapper") {
4634 r = cgroup_add_device_allow(cc, p, "rwm");
4635 if (r < 0)
4636 return r;
4637 }
4638
4639 /* Make sure "block-loop" can be resolved, i.e. make sure "loop" shows up in /proc/devices.
4640 * Same for mapper and verity. */
4641 FOREACH_STRING(p, "modprobe@loop.service", "modprobe@dm_mod.service", "modprobe@dm_verity.service") {
4642 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, p, true, UNIT_DEPENDENCY_FILE);
4643 if (r < 0)
4644 return r;
4645 }
4646 }
4647
4648 if (ec->protect_clock) {
4649 r = cgroup_add_device_allow(cc, "char-rtc", "r");
4650 if (r < 0)
4651 return r;
4652 }
4653 }
4654
4655 return 0;
4656 }
4657
4658 ExecContext *unit_get_exec_context(Unit *u) {
4659 size_t offset;
4660 assert(u);
4661
4662 if (u->type < 0)
4663 return NULL;
4664
4665 offset = UNIT_VTABLE(u)->exec_context_offset;
4666 if (offset <= 0)
4667 return NULL;
4668
4669 return (ExecContext*) ((uint8_t*) u + offset);
4670 }
4671
4672 KillContext *unit_get_kill_context(Unit *u) {
4673 size_t offset;
4674 assert(u);
4675
4676 if (u->type < 0)
4677 return NULL;
4678
4679 offset = UNIT_VTABLE(u)->kill_context_offset;
4680 if (offset <= 0)
4681 return NULL;
4682
4683 return (KillContext*) ((uint8_t*) u + offset);
4684 }
4685
4686 CGroupContext *unit_get_cgroup_context(Unit *u) {
4687 size_t offset;
4688
4689 if (u->type < 0)
4690 return NULL;
4691
4692 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4693 if (offset <= 0)
4694 return NULL;
4695
4696 return (CGroupContext*) ((uint8_t*) u + offset);
4697 }
4698
4699 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4700 size_t offset;
4701
4702 if (u->type < 0)
4703 return NULL;
4704
4705 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4706 if (offset <= 0)
4707 return NULL;
4708
4709 return *(ExecRuntime**) ((uint8_t*) u + offset);
4710 }
4711
4712 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4713 assert(u);
4714
4715 if (UNIT_WRITE_FLAGS_NOOP(flags))
4716 return NULL;
4717
4718 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4719 return u->manager->lookup_paths.transient;
4720
4721 if (flags & UNIT_PERSISTENT)
4722 return u->manager->lookup_paths.persistent_control;
4723
4724 if (flags & UNIT_RUNTIME)
4725 return u->manager->lookup_paths.runtime_control;
4726
4727 return NULL;
4728 }
4729
4730 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4731 char *ret = NULL;
4732
4733 if (!s)
4734 return NULL;
4735
4736 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4737 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4738 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4739 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4740 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4741 * allocations. */
4742
4743 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4744 ret = specifier_escape(s);
4745 if (!ret)
4746 return NULL;
4747
4748 s = ret;
4749 }
4750
4751 if (flags & UNIT_ESCAPE_C) {
4752 char *a;
4753
4754 a = cescape(s);
4755 free(ret);
4756 if (!a)
4757 return NULL;
4758
4759 ret = a;
4760 }
4761
4762 if (buf) {
4763 *buf = ret;
4764 return ret ?: (char*) s;
4765 }
4766
4767 return ret ?: strdup(s);
4768 }
4769
4770 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4771 _cleanup_free_ char *result = NULL;
4772 size_t n = 0, allocated = 0;
4773 char **i;
4774
4775 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4776 * way suitable for ExecStart= stanzas */
4777
4778 STRV_FOREACH(i, l) {
4779 _cleanup_free_ char *buf = NULL;
4780 const char *p;
4781 size_t a;
4782 char *q;
4783
4784 p = unit_escape_setting(*i, flags, &buf);
4785 if (!p)
4786 return NULL;
4787
4788 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4789 if (!GREEDY_REALLOC(result, allocated, n + a + 1))
4790 return NULL;
4791
4792 q = result + n;
4793 if (n > 0)
4794 *(q++) = ' ';
4795
4796 *(q++) = '"';
4797 q = stpcpy(q, p);
4798 *(q++) = '"';
4799
4800 n += a;
4801 }
4802
4803 if (!GREEDY_REALLOC(result, allocated, n + 1))
4804 return NULL;
4805
4806 result[n] = 0;
4807
4808 return TAKE_PTR(result);
4809 }
4810
4811 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4812 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4813 const char *dir, *wrapped;
4814 int r;
4815
4816 assert(u);
4817 assert(name);
4818 assert(data);
4819
4820 if (UNIT_WRITE_FLAGS_NOOP(flags))
4821 return 0;
4822
4823 data = unit_escape_setting(data, flags, &escaped);
4824 if (!data)
4825 return -ENOMEM;
4826
4827 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4828 * previous section header is the same */
4829
4830 if (flags & UNIT_PRIVATE) {
4831 if (!UNIT_VTABLE(u)->private_section)
4832 return -EINVAL;
4833
4834 if (!u->transient_file || u->last_section_private < 0)
4835 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4836 else if (u->last_section_private == 0)
4837 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4838 } else {
4839 if (!u->transient_file || u->last_section_private < 0)
4840 data = strjoina("[Unit]\n", data);
4841 else if (u->last_section_private > 0)
4842 data = strjoina("\n[Unit]\n", data);
4843 }
4844
4845 if (u->transient_file) {
4846 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4847 * write to the transient unit file. */
4848 fputs(data, u->transient_file);
4849
4850 if (!endswith(data, "\n"))
4851 fputc('\n', u->transient_file);
4852
4853 /* Remember which section we wrote this entry to */
4854 u->last_section_private = !!(flags & UNIT_PRIVATE);
4855 return 0;
4856 }
4857
4858 dir = unit_drop_in_dir(u, flags);
4859 if (!dir)
4860 return -EINVAL;
4861
4862 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4863 "# or an equivalent operation. Do not edit.\n",
4864 data,
4865 "\n");
4866
4867 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4868 if (r < 0)
4869 return r;
4870
4871 (void) mkdir_p_label(p, 0755);
4872
4873 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4874 * recreate the cache after every drop-in we write. */
4875 if (u->manager->unit_path_cache) {
4876 r = set_put_strdup(&u->manager->unit_path_cache, p);
4877 if (r < 0)
4878 return r;
4879 }
4880
4881 r = write_string_file_atomic_label(q, wrapped);
4882 if (r < 0)
4883 return r;
4884
4885 r = strv_push(&u->dropin_paths, q);
4886 if (r < 0)
4887 return r;
4888 q = NULL;
4889
4890 strv_uniq(u->dropin_paths);
4891
4892 u->dropin_mtime = now(CLOCK_REALTIME);
4893
4894 return 0;
4895 }
4896
4897 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4898 _cleanup_free_ char *p = NULL;
4899 va_list ap;
4900 int r;
4901
4902 assert(u);
4903 assert(name);
4904 assert(format);
4905
4906 if (UNIT_WRITE_FLAGS_NOOP(flags))
4907 return 0;
4908
4909 va_start(ap, format);
4910 r = vasprintf(&p, format, ap);
4911 va_end(ap);
4912
4913 if (r < 0)
4914 return -ENOMEM;
4915
4916 return unit_write_setting(u, flags, name, p);
4917 }
4918
4919 int unit_make_transient(Unit *u) {
4920 _cleanup_free_ char *path = NULL;
4921 FILE *f;
4922
4923 assert(u);
4924
4925 if (!UNIT_VTABLE(u)->can_transient)
4926 return -EOPNOTSUPP;
4927
4928 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4929
4930 path = path_join(u->manager->lookup_paths.transient, u->id);
4931 if (!path)
4932 return -ENOMEM;
4933
4934 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4935 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4936
4937 RUN_WITH_UMASK(0022) {
4938 f = fopen(path, "we");
4939 if (!f)
4940 return -errno;
4941 }
4942
4943 safe_fclose(u->transient_file);
4944 u->transient_file = f;
4945
4946 free_and_replace(u->fragment_path, path);
4947
4948 u->source_path = mfree(u->source_path);
4949 u->dropin_paths = strv_free(u->dropin_paths);
4950 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4951
4952 u->load_state = UNIT_STUB;
4953 u->load_error = 0;
4954 u->transient = true;
4955
4956 unit_add_to_dbus_queue(u);
4957 unit_add_to_gc_queue(u);
4958
4959 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4960 u->transient_file);
4961
4962 return 0;
4963 }
4964
4965 static int log_kill(pid_t pid, int sig, void *userdata) {
4966 _cleanup_free_ char *comm = NULL;
4967
4968 (void) get_process_comm(pid, &comm);
4969
4970 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4971 only, like for example systemd's own PAM stub process. */
4972 if (comm && comm[0] == '(')
4973 return 0;
4974
4975 log_unit_notice(userdata,
4976 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4977 pid,
4978 strna(comm),
4979 signal_to_string(sig));
4980
4981 return 1;
4982 }
4983
4984 static int operation_to_signal(const KillContext *c, KillOperation k, bool *noteworthy) {
4985 assert(c);
4986
4987 switch (k) {
4988
4989 case KILL_TERMINATE:
4990 case KILL_TERMINATE_AND_LOG:
4991 *noteworthy = false;
4992 return c->kill_signal;
4993
4994 case KILL_RESTART:
4995 *noteworthy = false;
4996 return restart_kill_signal(c);
4997
4998 case KILL_KILL:
4999 *noteworthy = true;
5000 return c->final_kill_signal;
5001
5002 case KILL_WATCHDOG:
5003 *noteworthy = true;
5004 return c->watchdog_signal;
5005
5006 default:
5007 assert_not_reached("KillOperation unknown");
5008 }
5009 }
5010
5011 int unit_kill_context(
5012 Unit *u,
5013 KillContext *c,
5014 KillOperation k,
5015 pid_t main_pid,
5016 pid_t control_pid,
5017 bool main_pid_alien) {
5018
5019 bool wait_for_exit = false, send_sighup;
5020 cg_kill_log_func_t log_func = NULL;
5021 int sig, r;
5022
5023 assert(u);
5024 assert(c);
5025
5026 /* Kill the processes belonging to this unit, in preparation for shutting the unit down. Returns > 0
5027 * if we killed something worth waiting for, 0 otherwise. Do not confuse with unit_kill_common()
5028 * which is used for user-requested killing of unit processes. */
5029
5030 if (c->kill_mode == KILL_NONE)
5031 return 0;
5032
5033 bool noteworthy;
5034 sig = operation_to_signal(c, k, &noteworthy);
5035 if (noteworthy)
5036 log_func = log_kill;
5037
5038 send_sighup =
5039 c->send_sighup &&
5040 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
5041 sig != SIGHUP;
5042
5043 if (main_pid > 0) {
5044 if (log_func)
5045 log_func(main_pid, sig, u);
5046
5047 r = kill_and_sigcont(main_pid, sig);
5048 if (r < 0 && r != -ESRCH) {
5049 _cleanup_free_ char *comm = NULL;
5050 (void) get_process_comm(main_pid, &comm);
5051
5052 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
5053 } else {
5054 if (!main_pid_alien)
5055 wait_for_exit = true;
5056
5057 if (r != -ESRCH && send_sighup)
5058 (void) kill(main_pid, SIGHUP);
5059 }
5060 }
5061
5062 if (control_pid > 0) {
5063 if (log_func)
5064 log_func(control_pid, sig, u);
5065
5066 r = kill_and_sigcont(control_pid, sig);
5067 if (r < 0 && r != -ESRCH) {
5068 _cleanup_free_ char *comm = NULL;
5069 (void) get_process_comm(control_pid, &comm);
5070
5071 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
5072 } else {
5073 wait_for_exit = true;
5074
5075 if (r != -ESRCH && send_sighup)
5076 (void) kill(control_pid, SIGHUP);
5077 }
5078 }
5079
5080 if (u->cgroup_path &&
5081 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
5082 _cleanup_set_free_ Set *pid_set = NULL;
5083
5084 /* Exclude the main/control pids from being killed via the cgroup */
5085 pid_set = unit_pid_set(main_pid, control_pid);
5086 if (!pid_set)
5087 return -ENOMEM;
5088
5089 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
5090 sig,
5091 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
5092 pid_set,
5093 log_func, u);
5094 if (r < 0) {
5095 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
5096 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
5097
5098 } else if (r > 0) {
5099
5100 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
5101 * we are running in a container or if this is a delegation unit, simply because cgroup
5102 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
5103 * of containers it can be confused easily by left-over directories in the cgroup — which
5104 * however should not exist in non-delegated units. On the unified hierarchy that's different,
5105 * there we get proper events. Hence rely on them. */
5106
5107 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
5108 (detect_container() == 0 && !unit_cgroup_delegate(u)))
5109 wait_for_exit = true;
5110
5111 if (send_sighup) {
5112 set_free(pid_set);
5113
5114 pid_set = unit_pid_set(main_pid, control_pid);
5115 if (!pid_set)
5116 return -ENOMEM;
5117
5118 (void) cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
5119 SIGHUP,
5120 CGROUP_IGNORE_SELF,
5121 pid_set,
5122 NULL, NULL);
5123 }
5124 }
5125 }
5126
5127 return wait_for_exit;
5128 }
5129
5130 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
5131 _cleanup_free_ char *p = NULL;
5132 UnitDependencyInfo di;
5133 int r;
5134
5135 assert(u);
5136 assert(path);
5137
5138 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in
5139 * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to
5140 * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily
5141 * determine which units to make themselves a dependency of. */
5142
5143 if (!path_is_absolute(path))
5144 return -EINVAL;
5145
5146 r = hashmap_ensure_allocated(&u->requires_mounts_for, &path_hash_ops);
5147 if (r < 0)
5148 return r;
5149
5150 p = strdup(path);
5151 if (!p)
5152 return -ENOMEM;
5153
5154 path = path_simplify(p, true);
5155
5156 if (!path_is_normalized(path))
5157 return -EPERM;
5158
5159 if (hashmap_contains(u->requires_mounts_for, path))
5160 return 0;
5161
5162 di = (UnitDependencyInfo) {
5163 .origin_mask = mask
5164 };
5165
5166 r = hashmap_put(u->requires_mounts_for, path, di.data);
5167 if (r < 0)
5168 return r;
5169 p = NULL;
5170
5171 char prefix[strlen(path) + 1];
5172 PATH_FOREACH_PREFIX_MORE(prefix, path) {
5173 Set *x;
5174
5175 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
5176 if (!x) {
5177 _cleanup_free_ char *q = NULL;
5178
5179 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
5180 if (r < 0)
5181 return r;
5182
5183 q = strdup(prefix);
5184 if (!q)
5185 return -ENOMEM;
5186
5187 x = set_new(NULL);
5188 if (!x)
5189 return -ENOMEM;
5190
5191 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
5192 if (r < 0) {
5193 set_free(x);
5194 return r;
5195 }
5196 q = NULL;
5197 }
5198
5199 r = set_put(x, u);
5200 if (r < 0)
5201 return r;
5202 }
5203
5204 return 0;
5205 }
5206
5207 int unit_setup_exec_runtime(Unit *u) {
5208 ExecRuntime **rt;
5209 size_t offset;
5210 Unit *other;
5211 void *v;
5212 int r;
5213
5214 offset = UNIT_VTABLE(u)->exec_runtime_offset;
5215 assert(offset > 0);
5216
5217 /* Check if there already is an ExecRuntime for this unit? */
5218 rt = (ExecRuntime**) ((uint8_t*) u + offset);
5219 if (*rt)
5220 return 0;
5221
5222 /* Try to get it from somebody else */
5223 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF]) {
5224 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
5225 if (r == 1)
5226 return 1;
5227 }
5228
5229 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
5230 }
5231
5232 int unit_setup_dynamic_creds(Unit *u) {
5233 ExecContext *ec;
5234 DynamicCreds *dcreds;
5235 size_t offset;
5236
5237 assert(u);
5238
5239 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
5240 assert(offset > 0);
5241 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
5242
5243 ec = unit_get_exec_context(u);
5244 assert(ec);
5245
5246 if (!ec->dynamic_user)
5247 return 0;
5248
5249 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
5250 }
5251
5252 bool unit_type_supported(UnitType t) {
5253 if (_unlikely_(t < 0))
5254 return false;
5255 if (_unlikely_(t >= _UNIT_TYPE_MAX))
5256 return false;
5257
5258 if (!unit_vtable[t]->supported)
5259 return true;
5260
5261 return unit_vtable[t]->supported();
5262 }
5263
5264 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
5265 int r;
5266
5267 assert(u);
5268 assert(where);
5269
5270 r = dir_is_empty(where);
5271 if (r > 0 || r == -ENOTDIR)
5272 return;
5273 if (r < 0) {
5274 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
5275 return;
5276 }
5277
5278 log_struct(LOG_NOTICE,
5279 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5280 LOG_UNIT_ID(u),
5281 LOG_UNIT_INVOCATION_ID(u),
5282 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
5283 "WHERE=%s", where);
5284 }
5285
5286 int unit_fail_if_noncanonical(Unit *u, const char* where) {
5287 _cleanup_free_ char *canonical_where = NULL;
5288 int r;
5289
5290 assert(u);
5291 assert(where);
5292
5293 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
5294 if (r < 0) {
5295 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
5296 return 0;
5297 }
5298
5299 /* We will happily ignore a trailing slash (or any redundant slashes) */
5300 if (path_equal(where, canonical_where))
5301 return 0;
5302
5303 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
5304 log_struct(LOG_ERR,
5305 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5306 LOG_UNIT_ID(u),
5307 LOG_UNIT_INVOCATION_ID(u),
5308 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
5309 "WHERE=%s", where);
5310
5311 return -ELOOP;
5312 }
5313
5314 bool unit_is_pristine(Unit *u) {
5315 assert(u);
5316
5317 /* Check if the unit already exists or is already around,
5318 * in a number of different ways. Note that to cater for unit
5319 * types such as slice, we are generally fine with units that
5320 * are marked UNIT_LOADED even though nothing was actually
5321 * loaded, as those unit types don't require a file on disk. */
5322
5323 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
5324 u->fragment_path ||
5325 u->source_path ||
5326 !strv_isempty(u->dropin_paths) ||
5327 u->job ||
5328 u->merged_into);
5329 }
5330
5331 pid_t unit_control_pid(Unit *u) {
5332 assert(u);
5333
5334 if (UNIT_VTABLE(u)->control_pid)
5335 return UNIT_VTABLE(u)->control_pid(u);
5336
5337 return 0;
5338 }
5339
5340 pid_t unit_main_pid(Unit *u) {
5341 assert(u);
5342
5343 if (UNIT_VTABLE(u)->main_pid)
5344 return UNIT_VTABLE(u)->main_pid(u);
5345
5346 return 0;
5347 }
5348
5349 static void unit_unref_uid_internal(
5350 Unit *u,
5351 uid_t *ref_uid,
5352 bool destroy_now,
5353 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
5354
5355 assert(u);
5356 assert(ref_uid);
5357 assert(_manager_unref_uid);
5358
5359 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
5360 * gid_t are actually the same time, with the same validity rules.
5361 *
5362 * Drops a reference to UID/GID from a unit. */
5363
5364 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5365 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5366
5367 if (!uid_is_valid(*ref_uid))
5368 return;
5369
5370 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
5371 *ref_uid = UID_INVALID;
5372 }
5373
5374 static void unit_unref_uid(Unit *u, bool destroy_now) {
5375 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
5376 }
5377
5378 static void unit_unref_gid(Unit *u, bool destroy_now) {
5379 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
5380 }
5381
5382 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5383 assert(u);
5384
5385 unit_unref_uid(u, destroy_now);
5386 unit_unref_gid(u, destroy_now);
5387 }
5388
5389 static int unit_ref_uid_internal(
5390 Unit *u,
5391 uid_t *ref_uid,
5392 uid_t uid,
5393 bool clean_ipc,
5394 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
5395
5396 int r;
5397
5398 assert(u);
5399 assert(ref_uid);
5400 assert(uid_is_valid(uid));
5401 assert(_manager_ref_uid);
5402
5403 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
5404 * are actually the same type, and have the same validity rules.
5405 *
5406 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5407 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5408 * drops to zero. */
5409
5410 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5411 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5412
5413 if (*ref_uid == uid)
5414 return 0;
5415
5416 if (uid_is_valid(*ref_uid)) /* Already set? */
5417 return -EBUSY;
5418
5419 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5420 if (r < 0)
5421 return r;
5422
5423 *ref_uid = uid;
5424 return 1;
5425 }
5426
5427 static int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5428 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5429 }
5430
5431 static int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5432 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5433 }
5434
5435 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5436 int r = 0, q = 0;
5437
5438 assert(u);
5439
5440 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5441
5442 if (uid_is_valid(uid)) {
5443 r = unit_ref_uid(u, uid, clean_ipc);
5444 if (r < 0)
5445 return r;
5446 }
5447
5448 if (gid_is_valid(gid)) {
5449 q = unit_ref_gid(u, gid, clean_ipc);
5450 if (q < 0) {
5451 if (r > 0)
5452 unit_unref_uid(u, false);
5453
5454 return q;
5455 }
5456 }
5457
5458 return r > 0 || q > 0;
5459 }
5460
5461 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5462 ExecContext *c;
5463 int r;
5464
5465 assert(u);
5466
5467 c = unit_get_exec_context(u);
5468
5469 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5470 if (r < 0)
5471 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5472
5473 return r;
5474 }
5475
5476 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5477 int r;
5478
5479 assert(u);
5480
5481 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5482 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5483 * objects when no service references the UID/GID anymore. */
5484
5485 r = unit_ref_uid_gid(u, uid, gid);
5486 if (r > 0)
5487 unit_add_to_dbus_queue(u);
5488 }
5489
5490 int unit_acquire_invocation_id(Unit *u) {
5491 sd_id128_t id;
5492 int r;
5493
5494 assert(u);
5495
5496 r = sd_id128_randomize(&id);
5497 if (r < 0)
5498 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5499
5500 r = unit_set_invocation_id(u, id);
5501 if (r < 0)
5502 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5503
5504 unit_add_to_dbus_queue(u);
5505 return 0;
5506 }
5507
5508 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5509 int r;
5510
5511 assert(u);
5512 assert(p);
5513
5514 /* Copy parameters from manager */
5515 r = manager_get_effective_environment(u->manager, &p->environment);
5516 if (r < 0)
5517 return r;
5518
5519 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5520 p->cgroup_supported = u->manager->cgroup_supported;
5521 p->prefix = u->manager->prefix;
5522 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5523
5524 /* Copy parameters from unit */
5525 p->cgroup_path = u->cgroup_path;
5526 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5527
5528 p->received_credentials = u->manager->received_credentials;
5529
5530 return 0;
5531 }
5532
5533 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5534 int r;
5535
5536 assert(u);
5537 assert(ret);
5538
5539 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5540 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5541
5542 (void) unit_realize_cgroup(u);
5543
5544 r = safe_fork(name, FORK_REOPEN_LOG, ret);
5545 if (r != 0)
5546 return r;
5547
5548 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1);
5549 (void) ignore_signals(SIGPIPE, -1);
5550
5551 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5552
5553 if (u->cgroup_path) {
5554 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5555 if (r < 0) {
5556 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5557 _exit(EXIT_CGROUP);
5558 }
5559 }
5560
5561 return 0;
5562 }
5563
5564 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid) {
5565 pid_t pid;
5566 int r;
5567
5568 assert(u);
5569 assert(ret_pid);
5570
5571 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5572 if (r < 0)
5573 return r;
5574 if (r == 0) {
5575 int ret = EXIT_SUCCESS;
5576 char **i;
5577
5578 STRV_FOREACH(i, paths) {
5579 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5580 if (r < 0) {
5581 log_error_errno(r, "Failed to remove '%s': %m", *i);
5582 ret = EXIT_FAILURE;
5583 }
5584 }
5585
5586 _exit(ret);
5587 }
5588
5589 r = unit_watch_pid(u, pid, true);
5590 if (r < 0)
5591 return r;
5592
5593 *ret_pid = pid;
5594 return 0;
5595 }
5596
5597 static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) {
5598 assert(u);
5599 assert(d >= 0);
5600 assert(d < _UNIT_DEPENDENCY_MAX);
5601 assert(other);
5602
5603 if (di.origin_mask == 0 && di.destination_mask == 0) {
5604 /* No bit set anymore, let's drop the whole entry */
5605 assert_se(hashmap_remove(u->dependencies[d], other));
5606 log_unit_debug(u, "lost dependency %s=%s", unit_dependency_to_string(d), other->id);
5607 } else
5608 /* Mask was reduced, let's update the entry */
5609 assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0);
5610 }
5611
5612 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5613 assert(u);
5614
5615 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5616
5617 if (mask == 0)
5618 return;
5619
5620 for (UnitDependency d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
5621 bool done;
5622
5623 do {
5624 UnitDependencyInfo di;
5625 Unit *other;
5626
5627 done = true;
5628
5629 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d]) {
5630 if (FLAGS_SET(~mask, di.origin_mask))
5631 continue;
5632 di.origin_mask &= ~mask;
5633 unit_update_dependency_mask(u, d, other, di);
5634
5635 /* We updated the dependency from our unit to the other unit now. But most dependencies
5636 * imply a reverse dependency. Hence, let's delete that one too. For that we go through
5637 * all dependency types on the other unit and delete all those which point to us and
5638 * have the right mask set. */
5639
5640 for (UnitDependency q = 0; q < _UNIT_DEPENDENCY_MAX; q++) {
5641 UnitDependencyInfo dj;
5642
5643 dj.data = hashmap_get(other->dependencies[q], u);
5644 if (FLAGS_SET(~mask, dj.destination_mask))
5645 continue;
5646 dj.destination_mask &= ~mask;
5647
5648 unit_update_dependency_mask(other, q, u, dj);
5649 }
5650
5651 unit_add_to_gc_queue(other);
5652
5653 done = false;
5654 break;
5655 }
5656
5657 } while (!done);
5658 }
5659 }
5660
5661 static int unit_get_invocation_path(Unit *u, char **ret) {
5662 char *p;
5663 int r;
5664
5665 assert(u);
5666 assert(ret);
5667
5668 if (MANAGER_IS_SYSTEM(u->manager))
5669 p = strjoin("/run/systemd/units/invocation:", u->id);
5670 else {
5671 _cleanup_free_ char *user_path = NULL;
5672 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5673 if (r < 0)
5674 return r;
5675 p = strjoin(user_path, u->id);
5676 }
5677
5678 if (!p)
5679 return -ENOMEM;
5680
5681 *ret = p;
5682 return 0;
5683 }
5684
5685 static int unit_export_invocation_id(Unit *u) {
5686 _cleanup_free_ char *p = NULL;
5687 int r;
5688
5689 assert(u);
5690
5691 if (u->exported_invocation_id)
5692 return 0;
5693
5694 if (sd_id128_is_null(u->invocation_id))
5695 return 0;
5696
5697 r = unit_get_invocation_path(u, &p);
5698 if (r < 0)
5699 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5700
5701 r = symlink_atomic_label(u->invocation_id_string, p);
5702 if (r < 0)
5703 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5704
5705 u->exported_invocation_id = true;
5706 return 0;
5707 }
5708
5709 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5710 const char *p;
5711 char buf[2];
5712 int r;
5713
5714 assert(u);
5715 assert(c);
5716
5717 if (u->exported_log_level_max)
5718 return 0;
5719
5720 if (c->log_level_max < 0)
5721 return 0;
5722
5723 assert(c->log_level_max <= 7);
5724
5725 buf[0] = '0' + c->log_level_max;
5726 buf[1] = 0;
5727
5728 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5729 r = symlink_atomic(buf, p);
5730 if (r < 0)
5731 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5732
5733 u->exported_log_level_max = true;
5734 return 0;
5735 }
5736
5737 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5738 _cleanup_close_ int fd = -1;
5739 struct iovec *iovec;
5740 const char *p;
5741 char *pattern;
5742 le64_t *sizes;
5743 ssize_t n;
5744 int r;
5745
5746 if (u->exported_log_extra_fields)
5747 return 0;
5748
5749 if (c->n_log_extra_fields <= 0)
5750 return 0;
5751
5752 sizes = newa(le64_t, c->n_log_extra_fields);
5753 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5754
5755 for (size_t i = 0; i < c->n_log_extra_fields; i++) {
5756 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5757
5758 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5759 iovec[i*2+1] = c->log_extra_fields[i];
5760 }
5761
5762 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5763 pattern = strjoina(p, ".XXXXXX");
5764
5765 fd = mkostemp_safe(pattern);
5766 if (fd < 0)
5767 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5768
5769 n = writev(fd, iovec, c->n_log_extra_fields*2);
5770 if (n < 0) {
5771 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5772 goto fail;
5773 }
5774
5775 (void) fchmod(fd, 0644);
5776
5777 if (rename(pattern, p) < 0) {
5778 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5779 goto fail;
5780 }
5781
5782 u->exported_log_extra_fields = true;
5783 return 0;
5784
5785 fail:
5786 (void) unlink(pattern);
5787 return r;
5788 }
5789
5790 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5791 _cleanup_free_ char *buf = NULL;
5792 const char *p;
5793 int r;
5794
5795 assert(u);
5796 assert(c);
5797
5798 if (u->exported_log_ratelimit_interval)
5799 return 0;
5800
5801 if (c->log_ratelimit_interval_usec == 0)
5802 return 0;
5803
5804 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5805
5806 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5807 return log_oom();
5808
5809 r = symlink_atomic(buf, p);
5810 if (r < 0)
5811 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5812
5813 u->exported_log_ratelimit_interval = true;
5814 return 0;
5815 }
5816
5817 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5818 _cleanup_free_ char *buf = NULL;
5819 const char *p;
5820 int r;
5821
5822 assert(u);
5823 assert(c);
5824
5825 if (u->exported_log_ratelimit_burst)
5826 return 0;
5827
5828 if (c->log_ratelimit_burst == 0)
5829 return 0;
5830
5831 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5832
5833 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5834 return log_oom();
5835
5836 r = symlink_atomic(buf, p);
5837 if (r < 0)
5838 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5839
5840 u->exported_log_ratelimit_burst = true;
5841 return 0;
5842 }
5843
5844 void unit_export_state_files(Unit *u) {
5845 const ExecContext *c;
5846
5847 assert(u);
5848
5849 if (!u->id)
5850 return;
5851
5852 if (MANAGER_IS_TEST_RUN(u->manager))
5853 return;
5854
5855 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5856 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5857 * the IPC system itself and PID 1 also log to the journal.
5858 *
5859 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5860 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5861 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5862 * namespace at least.
5863 *
5864 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5865 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5866 * them with one. */
5867
5868 (void) unit_export_invocation_id(u);
5869
5870 if (!MANAGER_IS_SYSTEM(u->manager))
5871 return;
5872
5873 c = unit_get_exec_context(u);
5874 if (c) {
5875 (void) unit_export_log_level_max(u, c);
5876 (void) unit_export_log_extra_fields(u, c);
5877 (void) unit_export_log_ratelimit_interval(u, c);
5878 (void) unit_export_log_ratelimit_burst(u, c);
5879 }
5880 }
5881
5882 void unit_unlink_state_files(Unit *u) {
5883 const char *p;
5884
5885 assert(u);
5886
5887 if (!u->id)
5888 return;
5889
5890 /* Undoes the effect of unit_export_state() */
5891
5892 if (u->exported_invocation_id) {
5893 _cleanup_free_ char *invocation_path = NULL;
5894 int r = unit_get_invocation_path(u, &invocation_path);
5895 if (r >= 0) {
5896 (void) unlink(invocation_path);
5897 u->exported_invocation_id = false;
5898 }
5899 }
5900
5901 if (!MANAGER_IS_SYSTEM(u->manager))
5902 return;
5903
5904 if (u->exported_log_level_max) {
5905 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5906 (void) unlink(p);
5907
5908 u->exported_log_level_max = false;
5909 }
5910
5911 if (u->exported_log_extra_fields) {
5912 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5913 (void) unlink(p);
5914
5915 u->exported_log_extra_fields = false;
5916 }
5917
5918 if (u->exported_log_ratelimit_interval) {
5919 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5920 (void) unlink(p);
5921
5922 u->exported_log_ratelimit_interval = false;
5923 }
5924
5925 if (u->exported_log_ratelimit_burst) {
5926 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5927 (void) unlink(p);
5928
5929 u->exported_log_ratelimit_burst = false;
5930 }
5931 }
5932
5933 int unit_prepare_exec(Unit *u) {
5934 int r;
5935
5936 assert(u);
5937
5938 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5939 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5940 r = bpf_firewall_load_custom(u);
5941 if (r < 0)
5942 return r;
5943
5944 /* Prepares everything so that we can fork of a process for this unit */
5945
5946 (void) unit_realize_cgroup(u);
5947
5948 if (u->reset_accounting) {
5949 (void) unit_reset_accounting(u);
5950 u->reset_accounting = false;
5951 }
5952
5953 unit_export_state_files(u);
5954
5955 r = unit_setup_exec_runtime(u);
5956 if (r < 0)
5957 return r;
5958
5959 r = unit_setup_dynamic_creds(u);
5960 if (r < 0)
5961 return r;
5962
5963 return 0;
5964 }
5965
5966 static bool ignore_leftover_process(const char *comm) {
5967 return comm && comm[0] == '('; /* Most likely our own helper process (PAM?), ignore */
5968 }
5969
5970 int unit_log_leftover_process_start(pid_t pid, int sig, void *userdata) {
5971 _cleanup_free_ char *comm = NULL;
5972
5973 (void) get_process_comm(pid, &comm);
5974
5975 if (ignore_leftover_process(comm))
5976 return 0;
5977
5978 /* During start we print a warning */
5979
5980 log_unit_warning(userdata,
5981 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5982 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5983 pid, strna(comm));
5984
5985 return 1;
5986 }
5987
5988 int unit_log_leftover_process_stop(pid_t pid, int sig, void *userdata) {
5989 _cleanup_free_ char *comm = NULL;
5990
5991 (void) get_process_comm(pid, &comm);
5992
5993 if (ignore_leftover_process(comm))
5994 return 0;
5995
5996 /* During stop we only print an informational message */
5997
5998 log_unit_info(userdata,
5999 "Unit process " PID_FMT " (%s) remains running after unit stopped.",
6000 pid, strna(comm));
6001
6002 return 1;
6003 }
6004
6005 int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func) {
6006 assert(u);
6007
6008 (void) unit_pick_cgroup_path(u);
6009
6010 if (!u->cgroup_path)
6011 return 0;
6012
6013 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_func, u);
6014 }
6015
6016 bool unit_needs_console(Unit *u) {
6017 ExecContext *ec;
6018 UnitActiveState state;
6019
6020 assert(u);
6021
6022 state = unit_active_state(u);
6023
6024 if (UNIT_IS_INACTIVE_OR_FAILED(state))
6025 return false;
6026
6027 if (UNIT_VTABLE(u)->needs_console)
6028 return UNIT_VTABLE(u)->needs_console(u);
6029
6030 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
6031 ec = unit_get_exec_context(u);
6032 if (!ec)
6033 return false;
6034
6035 return exec_context_may_touch_console(ec);
6036 }
6037
6038 const char *unit_label_path(const Unit *u) {
6039 const char *p;
6040
6041 assert(u);
6042
6043 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
6044 * when validating access checks. */
6045
6046 p = u->source_path ?: u->fragment_path;
6047 if (!p)
6048 return NULL;
6049
6050 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
6051 if (null_or_empty_path(p) > 0)
6052 return NULL;
6053
6054 return p;
6055 }
6056
6057 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
6058 int r;
6059
6060 assert(u);
6061
6062 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
6063 * and not a kernel thread either */
6064
6065 /* First, a simple range check */
6066 if (!pid_is_valid(pid))
6067 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
6068
6069 /* Some extra safety check */
6070 if (pid == 1 || pid == getpid_cached())
6071 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
6072
6073 /* Don't even begin to bother with kernel threads */
6074 r = is_kernel_thread(pid);
6075 if (r == -ESRCH)
6076 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
6077 if (r < 0)
6078 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
6079 if (r > 0)
6080 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
6081
6082 return 0;
6083 }
6084
6085 void unit_log_success(Unit *u) {
6086 assert(u);
6087
6088 log_struct(LOG_INFO,
6089 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
6090 LOG_UNIT_ID(u),
6091 LOG_UNIT_INVOCATION_ID(u),
6092 LOG_UNIT_MESSAGE(u, "Succeeded."));
6093 }
6094
6095 void unit_log_failure(Unit *u, const char *result) {
6096 assert(u);
6097 assert(result);
6098
6099 log_struct(LOG_WARNING,
6100 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
6101 LOG_UNIT_ID(u),
6102 LOG_UNIT_INVOCATION_ID(u),
6103 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
6104 "UNIT_RESULT=%s", result);
6105 }
6106
6107 void unit_log_skip(Unit *u, const char *result) {
6108 assert(u);
6109 assert(result);
6110
6111 log_struct(LOG_INFO,
6112 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
6113 LOG_UNIT_ID(u),
6114 LOG_UNIT_INVOCATION_ID(u),
6115 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
6116 "UNIT_RESULT=%s", result);
6117 }
6118
6119 void unit_log_process_exit(
6120 Unit *u,
6121 const char *kind,
6122 const char *command,
6123 bool success,
6124 int code,
6125 int status) {
6126
6127 int level;
6128
6129 assert(u);
6130 assert(kind);
6131
6132 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
6133 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
6134 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
6135 * WARNING. */
6136 if (success)
6137 level = LOG_DEBUG;
6138 else if (code == CLD_EXITED)
6139 level = LOG_NOTICE;
6140 else
6141 level = LOG_WARNING;
6142
6143 log_struct(level,
6144 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
6145 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
6146 kind,
6147 sigchld_code_to_string(code), status,
6148 strna(code == CLD_EXITED
6149 ? exit_status_to_string(status, EXIT_STATUS_FULL)
6150 : signal_to_string(status))),
6151 "EXIT_CODE=%s", sigchld_code_to_string(code),
6152 "EXIT_STATUS=%i", status,
6153 "COMMAND=%s", strna(command),
6154 LOG_UNIT_ID(u),
6155 LOG_UNIT_INVOCATION_ID(u));
6156 }
6157
6158 int unit_exit_status(Unit *u) {
6159 assert(u);
6160
6161 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
6162 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
6163 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
6164 * service process has exited abnormally (signal/coredump). */
6165
6166 if (!UNIT_VTABLE(u)->exit_status)
6167 return -EOPNOTSUPP;
6168
6169 return UNIT_VTABLE(u)->exit_status(u);
6170 }
6171
6172 int unit_failure_action_exit_status(Unit *u) {
6173 int r;
6174
6175 assert(u);
6176
6177 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
6178
6179 if (u->failure_action_exit_status >= 0)
6180 return u->failure_action_exit_status;
6181
6182 r = unit_exit_status(u);
6183 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6184 return 255;
6185
6186 return r;
6187 }
6188
6189 int unit_success_action_exit_status(Unit *u) {
6190 int r;
6191
6192 assert(u);
6193
6194 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
6195
6196 if (u->success_action_exit_status >= 0)
6197 return u->success_action_exit_status;
6198
6199 r = unit_exit_status(u);
6200 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6201 return 255;
6202
6203 return r;
6204 }
6205
6206 int unit_test_trigger_loaded(Unit *u) {
6207 Unit *trigger;
6208
6209 /* Tests whether the unit to trigger is loaded */
6210
6211 trigger = UNIT_TRIGGER(u);
6212 if (!trigger)
6213 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6214 "Refusing to start, no unit to trigger.");
6215 if (trigger->load_state != UNIT_LOADED)
6216 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6217 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
6218
6219 return 0;
6220 }
6221
6222 void unit_destroy_runtime_data(Unit *u, const ExecContext *context) {
6223 assert(u);
6224 assert(context);
6225
6226 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO ||
6227 (context->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART && !unit_will_restart(u)))
6228 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
6229
6230 exec_context_destroy_credentials(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME], u->id);
6231 }
6232
6233 int unit_clean(Unit *u, ExecCleanMask mask) {
6234 UnitActiveState state;
6235
6236 assert(u);
6237
6238 /* Special return values:
6239 *
6240 * -EOPNOTSUPP → cleaning not supported for this unit type
6241 * -EUNATCH → cleaning not defined for this resource type
6242 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
6243 * a job queued or similar
6244 */
6245
6246 if (!UNIT_VTABLE(u)->clean)
6247 return -EOPNOTSUPP;
6248
6249 if (mask == 0)
6250 return -EUNATCH;
6251
6252 if (u->load_state != UNIT_LOADED)
6253 return -EBUSY;
6254
6255 if (u->job)
6256 return -EBUSY;
6257
6258 state = unit_active_state(u);
6259 if (!IN_SET(state, UNIT_INACTIVE))
6260 return -EBUSY;
6261
6262 return UNIT_VTABLE(u)->clean(u, mask);
6263 }
6264
6265 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
6266 assert(u);
6267
6268 if (!UNIT_VTABLE(u)->clean ||
6269 u->load_state != UNIT_LOADED) {
6270 *ret = 0;
6271 return 0;
6272 }
6273
6274 /* When the clean() method is set, can_clean() really should be set too */
6275 assert(UNIT_VTABLE(u)->can_clean);
6276
6277 return UNIT_VTABLE(u)->can_clean(u, ret);
6278 }
6279
6280 bool unit_can_freeze(Unit *u) {
6281 assert(u);
6282
6283 if (UNIT_VTABLE(u)->can_freeze)
6284 return UNIT_VTABLE(u)->can_freeze(u);
6285
6286 return UNIT_VTABLE(u)->freeze;
6287 }
6288
6289 void unit_frozen(Unit *u) {
6290 assert(u);
6291
6292 u->freezer_state = FREEZER_FROZEN;
6293
6294 bus_unit_send_pending_freezer_message(u);
6295 }
6296
6297 void unit_thawed(Unit *u) {
6298 assert(u);
6299
6300 u->freezer_state = FREEZER_RUNNING;
6301
6302 bus_unit_send_pending_freezer_message(u);
6303 }
6304
6305 static int unit_freezer_action(Unit *u, FreezerAction action) {
6306 UnitActiveState s;
6307 int (*method)(Unit*);
6308 int r;
6309
6310 assert(u);
6311 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
6312
6313 method = action == FREEZER_FREEZE ? UNIT_VTABLE(u)->freeze : UNIT_VTABLE(u)->thaw;
6314 if (!method || !cg_freezer_supported())
6315 return -EOPNOTSUPP;
6316
6317 if (u->job)
6318 return -EBUSY;
6319
6320 if (u->load_state != UNIT_LOADED)
6321 return -EHOSTDOWN;
6322
6323 s = unit_active_state(u);
6324 if (s != UNIT_ACTIVE)
6325 return -EHOSTDOWN;
6326
6327 if (IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING))
6328 return -EALREADY;
6329
6330 r = method(u);
6331 if (r <= 0)
6332 return r;
6333
6334 return 1;
6335 }
6336
6337 int unit_freeze(Unit *u) {
6338 return unit_freezer_action(u, FREEZER_FREEZE);
6339 }
6340
6341 int unit_thaw(Unit *u) {
6342 return unit_freezer_action(u, FREEZER_THAW);
6343 }
6344
6345 /* Wrappers around low-level cgroup freezer operations common for service and scope units */
6346 int unit_freeze_vtable_common(Unit *u) {
6347 return unit_cgroup_freezer_action(u, FREEZER_FREEZE);
6348 }
6349
6350 int unit_thaw_vtable_common(Unit *u) {
6351 return unit_cgroup_freezer_action(u, FREEZER_THAW);
6352 }
6353
6354 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
6355 [COLLECT_INACTIVE] = "inactive",
6356 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
6357 };
6358
6359 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);