]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
Merge pull request #15762 from keszybz/gcc-10-build
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bus-common-errors.h"
15 #include "bus-util.h"
16 #include "cgroup-setup.h"
17 #include "cgroup-util.h"
18 #include "dbus-unit.h"
19 #include "dbus.h"
20 #include "dropin.h"
21 #include "escape.h"
22 #include "execute.h"
23 #include "fd-util.h"
24 #include "fileio-label.h"
25 #include "fileio.h"
26 #include "format-util.h"
27 #include "fs-util.h"
28 #include "id128-util.h"
29 #include "io-util.h"
30 #include "install.h"
31 #include "load-dropin.h"
32 #include "load-fragment.h"
33 #include "log.h"
34 #include "macro.h"
35 #include "missing_audit.h"
36 #include "mkdir.h"
37 #include "parse-util.h"
38 #include "path-util.h"
39 #include "process-util.h"
40 #include "rm-rf.h"
41 #include "serialize.h"
42 #include "set.h"
43 #include "signal-util.h"
44 #include "sparse-endian.h"
45 #include "special.h"
46 #include "specifier.h"
47 #include "stat-util.h"
48 #include "stdio-util.h"
49 #include "string-table.h"
50 #include "string-util.h"
51 #include "strv.h"
52 #include "terminal-util.h"
53 #include "tmpfile-util.h"
54 #include "umask-util.h"
55 #include "unit-name.h"
56 #include "unit.h"
57 #include "user-util.h"
58 #include "virt.h"
59
60 /* Thresholds for logging at INFO level about resource consumption */
61 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
62 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
63 #define MENTIONWORTHY_IP_BYTES (0ULL)
64
65 /* Thresholds for logging at INFO level about resource consumption */
66 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
67 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
68 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
69
70 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
71 [UNIT_SERVICE] = &service_vtable,
72 [UNIT_SOCKET] = &socket_vtable,
73 [UNIT_TARGET] = &target_vtable,
74 [UNIT_DEVICE] = &device_vtable,
75 [UNIT_MOUNT] = &mount_vtable,
76 [UNIT_AUTOMOUNT] = &automount_vtable,
77 [UNIT_SWAP] = &swap_vtable,
78 [UNIT_TIMER] = &timer_vtable,
79 [UNIT_PATH] = &path_vtable,
80 [UNIT_SLICE] = &slice_vtable,
81 [UNIT_SCOPE] = &scope_vtable,
82 };
83
84 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
85
86 Unit *unit_new(Manager *m, size_t size) {
87 Unit *u;
88
89 assert(m);
90 assert(size >= sizeof(Unit));
91
92 u = malloc0(size);
93 if (!u)
94 return NULL;
95
96 u->names = set_new(&string_hash_ops);
97 if (!u->names)
98 return mfree(u);
99
100 u->manager = m;
101 u->type = _UNIT_TYPE_INVALID;
102 u->default_dependencies = true;
103 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
104 u->unit_file_preset = -1;
105 u->on_failure_job_mode = JOB_REPLACE;
106 u->cgroup_control_inotify_wd = -1;
107 u->cgroup_memory_inotify_wd = -1;
108 u->job_timeout = USEC_INFINITY;
109 u->job_running_timeout = USEC_INFINITY;
110 u->ref_uid = UID_INVALID;
111 u->ref_gid = GID_INVALID;
112 u->cpu_usage_last = NSEC_INFINITY;
113 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
114 u->failure_action_exit_status = u->success_action_exit_status = -1;
115
116 u->ip_accounting_ingress_map_fd = -1;
117 u->ip_accounting_egress_map_fd = -1;
118 u->ipv4_allow_map_fd = -1;
119 u->ipv6_allow_map_fd = -1;
120 u->ipv4_deny_map_fd = -1;
121 u->ipv6_deny_map_fd = -1;
122
123 u->last_section_private = -1;
124
125 u->start_ratelimit = (RateLimit) { m->default_start_limit_interval, m->default_start_limit_burst };
126 u->auto_stop_ratelimit = (RateLimit) { 10 * USEC_PER_SEC, 16 };
127
128 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
129 u->io_accounting_last[i] = UINT64_MAX;
130
131 return u;
132 }
133
134 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
135 _cleanup_(unit_freep) Unit *u = NULL;
136 int r;
137
138 u = unit_new(m, size);
139 if (!u)
140 return -ENOMEM;
141
142 r = unit_add_name(u, name);
143 if (r < 0)
144 return r;
145
146 *ret = TAKE_PTR(u);
147
148 return r;
149 }
150
151 bool unit_has_name(const Unit *u, const char *name) {
152 assert(u);
153 assert(name);
154
155 return set_contains(u->names, (char*) name);
156 }
157
158 static void unit_init(Unit *u) {
159 CGroupContext *cc;
160 ExecContext *ec;
161 KillContext *kc;
162
163 assert(u);
164 assert(u->manager);
165 assert(u->type >= 0);
166
167 cc = unit_get_cgroup_context(u);
168 if (cc) {
169 cgroup_context_init(cc);
170
171 /* Copy in the manager defaults into the cgroup
172 * context, _before_ the rest of the settings have
173 * been initialized */
174
175 cc->cpu_accounting = u->manager->default_cpu_accounting;
176 cc->io_accounting = u->manager->default_io_accounting;
177 cc->blockio_accounting = u->manager->default_blockio_accounting;
178 cc->memory_accounting = u->manager->default_memory_accounting;
179 cc->tasks_accounting = u->manager->default_tasks_accounting;
180 cc->ip_accounting = u->manager->default_ip_accounting;
181
182 if (u->type != UNIT_SLICE)
183 cc->tasks_max = u->manager->default_tasks_max;
184 }
185
186 ec = unit_get_exec_context(u);
187 if (ec) {
188 exec_context_init(ec);
189
190 if (MANAGER_IS_SYSTEM(u->manager))
191 ec->keyring_mode = EXEC_KEYRING_SHARED;
192 else {
193 ec->keyring_mode = EXEC_KEYRING_INHERIT;
194
195 /* User manager might have its umask redefined by PAM or UMask=. In this
196 * case let the units it manages inherit this value by default. They can
197 * still tune this value through their own unit file */
198 (void) get_process_umask(getpid_cached(), &ec->umask);
199 }
200 }
201
202 kc = unit_get_kill_context(u);
203 if (kc)
204 kill_context_init(kc);
205
206 if (UNIT_VTABLE(u)->init)
207 UNIT_VTABLE(u)->init(u);
208 }
209
210 int unit_add_name(Unit *u, const char *text) {
211 _cleanup_free_ char *s = NULL, *i = NULL;
212 UnitType t;
213 int r;
214
215 assert(u);
216 assert(text);
217
218 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
219
220 if (!u->instance)
221 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
222 "instance is not set when adding name '%s': %m", text);
223
224 r = unit_name_replace_instance(text, u->instance, &s);
225 if (r < 0)
226 return log_unit_debug_errno(u, r,
227 "failed to build instance name from '%s': %m", text);
228 } else {
229 s = strdup(text);
230 if (!s)
231 return -ENOMEM;
232 }
233
234 if (set_contains(u->names, s))
235 return 0;
236 if (hashmap_contains(u->manager->units, s))
237 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
238 "unit already exist when adding name '%s': %m", text);
239
240 if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
241 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
242 "name '%s' is invalid: %m", text);
243
244 t = unit_name_to_type(s);
245 if (t < 0)
246 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
247 "failed to to derive unit type from name '%s': %m", text);
248
249 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
250 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
251 "unit type is illegal: u->type(%d) and t(%d) for name '%s': %m",
252 u->type, t, text);
253
254 r = unit_name_to_instance(s, &i);
255 if (r < 0)
256 return log_unit_debug_errno(u, r, "failed to extract instance from name '%s': %m", text);
257
258 if (i && !unit_type_may_template(t))
259 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "templates are not allowed for name '%s': %m", text);
260
261 /* Ensure that this unit is either instanced or not instanced,
262 * but not both. Note that we do allow names with different
263 * instance names however! */
264 if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i)
265 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
266 "instance is illegal: u->type(%d), u->instance(%s) and i(%s) for name '%s': %m",
267 u->type, u->instance, i, text);
268
269 if (!unit_type_may_alias(t) && !set_isempty(u->names))
270 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST), "symlinks are not allowed for name '%s': %m", text);
271
272 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
273 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(E2BIG), "too many units: %m");
274
275 r = set_put(u->names, s);
276 if (r < 0)
277 return r;
278 assert(r > 0);
279
280 r = hashmap_put(u->manager->units, s, u);
281 if (r < 0) {
282 (void) set_remove(u->names, s);
283 return log_unit_debug_errno(u, r, "add unit to hashmap failed for name '%s': %m", text);
284 }
285
286 if (u->type == _UNIT_TYPE_INVALID) {
287 u->type = t;
288 u->id = s;
289 u->instance = TAKE_PTR(i);
290
291 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
292
293 unit_init(u);
294 }
295
296 s = NULL;
297
298 unit_add_to_dbus_queue(u);
299 return 0;
300 }
301
302 int unit_choose_id(Unit *u, const char *name) {
303 _cleanup_free_ char *t = NULL;
304 char *s, *i;
305 int r;
306
307 assert(u);
308 assert(name);
309
310 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
311
312 if (!u->instance)
313 return -EINVAL;
314
315 r = unit_name_replace_instance(name, u->instance, &t);
316 if (r < 0)
317 return r;
318
319 name = t;
320 }
321
322 /* Selects one of the names of this unit as the id */
323 s = set_get(u->names, (char*) name);
324 if (!s)
325 return -ENOENT;
326
327 /* Determine the new instance from the new id */
328 r = unit_name_to_instance(s, &i);
329 if (r < 0)
330 return r;
331
332 u->id = s;
333
334 free(u->instance);
335 u->instance = i;
336
337 unit_add_to_dbus_queue(u);
338
339 return 0;
340 }
341
342 int unit_set_description(Unit *u, const char *description) {
343 int r;
344
345 assert(u);
346
347 r = free_and_strdup(&u->description, empty_to_null(description));
348 if (r < 0)
349 return r;
350 if (r > 0)
351 unit_add_to_dbus_queue(u);
352
353 return 0;
354 }
355
356 bool unit_may_gc(Unit *u) {
357 UnitActiveState state;
358 int r;
359
360 assert(u);
361
362 /* Checks whether the unit is ready to be unloaded for garbage collection.
363 * Returns true when the unit may be collected, and false if there's some
364 * reason to keep it loaded.
365 *
366 * References from other units are *not* checked here. Instead, this is done
367 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
368 */
369
370 if (u->job)
371 return false;
372
373 if (u->nop_job)
374 return false;
375
376 state = unit_active_state(u);
377
378 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
379 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
380 UNIT_VTABLE(u)->release_resources)
381 UNIT_VTABLE(u)->release_resources(u);
382
383 if (u->perpetual)
384 return false;
385
386 if (sd_bus_track_count(u->bus_track) > 0)
387 return false;
388
389 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
390 switch (u->collect_mode) {
391
392 case COLLECT_INACTIVE:
393 if (state != UNIT_INACTIVE)
394 return false;
395
396 break;
397
398 case COLLECT_INACTIVE_OR_FAILED:
399 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
400 return false;
401
402 break;
403
404 default:
405 assert_not_reached("Unknown garbage collection mode");
406 }
407
408 if (u->cgroup_path) {
409 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
410 * around. Units with active processes should never be collected. */
411
412 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
413 if (r < 0)
414 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
415 if (r <= 0)
416 return false;
417 }
418
419 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
420 return false;
421
422 return true;
423 }
424
425 void unit_add_to_load_queue(Unit *u) {
426 assert(u);
427 assert(u->type != _UNIT_TYPE_INVALID);
428
429 if (u->load_state != UNIT_STUB || u->in_load_queue)
430 return;
431
432 LIST_PREPEND(load_queue, u->manager->load_queue, u);
433 u->in_load_queue = true;
434 }
435
436 void unit_add_to_cleanup_queue(Unit *u) {
437 assert(u);
438
439 if (u->in_cleanup_queue)
440 return;
441
442 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
443 u->in_cleanup_queue = true;
444 }
445
446 void unit_add_to_gc_queue(Unit *u) {
447 assert(u);
448
449 if (u->in_gc_queue || u->in_cleanup_queue)
450 return;
451
452 if (!unit_may_gc(u))
453 return;
454
455 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
456 u->in_gc_queue = true;
457 }
458
459 void unit_add_to_dbus_queue(Unit *u) {
460 assert(u);
461 assert(u->type != _UNIT_TYPE_INVALID);
462
463 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
464 return;
465
466 /* Shortcut things if nobody cares */
467 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
468 sd_bus_track_count(u->bus_track) <= 0 &&
469 set_isempty(u->manager->private_buses)) {
470 u->sent_dbus_new_signal = true;
471 return;
472 }
473
474 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
475 u->in_dbus_queue = true;
476 }
477
478 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
479 assert(u);
480
481 if (u->in_stop_when_unneeded_queue)
482 return;
483
484 if (!u->stop_when_unneeded)
485 return;
486
487 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
488 return;
489
490 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
491 u->in_stop_when_unneeded_queue = true;
492 }
493
494 static void bidi_set_free(Unit *u, Hashmap *h) {
495 Unit *other;
496 Iterator i;
497 void *v;
498
499 assert(u);
500
501 /* Frees the hashmap and makes sure we are dropped from the inverse pointers */
502
503 HASHMAP_FOREACH_KEY(v, other, h, i) {
504 UnitDependency d;
505
506 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
507 hashmap_remove(other->dependencies[d], u);
508
509 unit_add_to_gc_queue(other);
510 }
511
512 hashmap_free(h);
513 }
514
515 static void unit_remove_transient(Unit *u) {
516 char **i;
517
518 assert(u);
519
520 if (!u->transient)
521 return;
522
523 if (u->fragment_path)
524 (void) unlink(u->fragment_path);
525
526 STRV_FOREACH(i, u->dropin_paths) {
527 _cleanup_free_ char *p = NULL, *pp = NULL;
528
529 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
530 if (!p)
531 continue;
532
533 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
534 if (!pp)
535 continue;
536
537 /* Only drop transient drop-ins */
538 if (!path_equal(u->manager->lookup_paths.transient, pp))
539 continue;
540
541 (void) unlink(*i);
542 (void) rmdir(p);
543 }
544 }
545
546 static void unit_free_requires_mounts_for(Unit *u) {
547 assert(u);
548
549 for (;;) {
550 _cleanup_free_ char *path;
551
552 path = hashmap_steal_first_key(u->requires_mounts_for);
553 if (!path)
554 break;
555 else {
556 char s[strlen(path) + 1];
557
558 PATH_FOREACH_PREFIX_MORE(s, path) {
559 char *y;
560 Set *x;
561
562 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
563 if (!x)
564 continue;
565
566 (void) set_remove(x, u);
567
568 if (set_isempty(x)) {
569 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
570 free(y);
571 set_free(x);
572 }
573 }
574 }
575 }
576
577 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
578 }
579
580 static void unit_done(Unit *u) {
581 ExecContext *ec;
582 CGroupContext *cc;
583
584 assert(u);
585
586 if (u->type < 0)
587 return;
588
589 if (UNIT_VTABLE(u)->done)
590 UNIT_VTABLE(u)->done(u);
591
592 ec = unit_get_exec_context(u);
593 if (ec)
594 exec_context_done(ec);
595
596 cc = unit_get_cgroup_context(u);
597 if (cc)
598 cgroup_context_done(cc);
599 }
600
601 void unit_free(Unit *u) {
602 UnitDependency d;
603 Iterator i;
604 char *t;
605
606 if (!u)
607 return;
608
609 if (UNIT_ISSET(u->slice)) {
610 /* A unit is being dropped from the tree, make sure our parent slice recalculates the member mask */
611 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
612
613 /* And make sure the parent is realized again, updating cgroup memberships */
614 unit_add_to_cgroup_realize_queue(UNIT_DEREF(u->slice));
615 }
616
617 u->transient_file = safe_fclose(u->transient_file);
618
619 if (!MANAGER_IS_RELOADING(u->manager))
620 unit_remove_transient(u);
621
622 bus_unit_send_removed_signal(u);
623
624 unit_done(u);
625
626 unit_dequeue_rewatch_pids(u);
627
628 sd_bus_slot_unref(u->match_bus_slot);
629 sd_bus_track_unref(u->bus_track);
630 u->deserialized_refs = strv_free(u->deserialized_refs);
631 u->pending_freezer_message = sd_bus_message_unref(u->pending_freezer_message);
632
633 unit_free_requires_mounts_for(u);
634
635 SET_FOREACH(t, u->names, i)
636 hashmap_remove_value(u->manager->units, t, u);
637
638 if (!sd_id128_is_null(u->invocation_id))
639 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
640
641 if (u->job) {
642 Job *j = u->job;
643 job_uninstall(j);
644 job_free(j);
645 }
646
647 if (u->nop_job) {
648 Job *j = u->nop_job;
649 job_uninstall(j);
650 job_free(j);
651 }
652
653 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
654 bidi_set_free(u, u->dependencies[d]);
655
656 if (u->on_console)
657 manager_unref_console(u->manager);
658
659 unit_release_cgroup(u);
660
661 if (!MANAGER_IS_RELOADING(u->manager))
662 unit_unlink_state_files(u);
663
664 unit_unref_uid_gid(u, false);
665
666 (void) manager_update_failed_units(u->manager, u, false);
667 set_remove(u->manager->startup_units, u);
668
669 unit_unwatch_all_pids(u);
670
671 unit_ref_unset(&u->slice);
672 while (u->refs_by_target)
673 unit_ref_unset(u->refs_by_target);
674
675 if (u->type != _UNIT_TYPE_INVALID)
676 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
677
678 if (u->in_load_queue)
679 LIST_REMOVE(load_queue, u->manager->load_queue, u);
680
681 if (u->in_dbus_queue)
682 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
683
684 if (u->in_gc_queue)
685 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
686
687 if (u->in_cgroup_realize_queue)
688 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
689
690 if (u->in_cgroup_empty_queue)
691 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
692
693 if (u->in_cleanup_queue)
694 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
695
696 if (u->in_target_deps_queue)
697 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
698
699 if (u->in_stop_when_unneeded_queue)
700 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
701
702 safe_close(u->ip_accounting_ingress_map_fd);
703 safe_close(u->ip_accounting_egress_map_fd);
704
705 safe_close(u->ipv4_allow_map_fd);
706 safe_close(u->ipv6_allow_map_fd);
707 safe_close(u->ipv4_deny_map_fd);
708 safe_close(u->ipv6_deny_map_fd);
709
710 bpf_program_unref(u->ip_bpf_ingress);
711 bpf_program_unref(u->ip_bpf_ingress_installed);
712 bpf_program_unref(u->ip_bpf_egress);
713 bpf_program_unref(u->ip_bpf_egress_installed);
714
715 set_free(u->ip_bpf_custom_ingress);
716 set_free(u->ip_bpf_custom_egress);
717 set_free(u->ip_bpf_custom_ingress_installed);
718 set_free(u->ip_bpf_custom_egress_installed);
719
720 bpf_program_unref(u->bpf_device_control_installed);
721
722 condition_free_list(u->conditions);
723 condition_free_list(u->asserts);
724
725 free(u->description);
726 strv_free(u->documentation);
727 free(u->fragment_path);
728 free(u->source_path);
729 strv_free(u->dropin_paths);
730 free(u->instance);
731
732 free(u->job_timeout_reboot_arg);
733
734 set_free_free(u->names);
735
736 free(u->reboot_arg);
737
738 free(u);
739 }
740
741 FreezerState unit_freezer_state(Unit *u) {
742 assert(u);
743
744 return u->freezer_state;
745 }
746
747 int unit_freezer_state_kernel(Unit *u, FreezerState *ret) {
748 char *values[1] = {};
749 int r;
750
751 assert(u);
752
753 r = cg_get_keyed_attribute(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
754 STRV_MAKE("frozen"), values);
755 if (r < 0)
756 return r;
757
758 r = _FREEZER_STATE_INVALID;
759
760 if (values[0]) {
761 if (streq(values[0], "0"))
762 r = FREEZER_RUNNING;
763 else if (streq(values[0], "1"))
764 r = FREEZER_FROZEN;
765 }
766
767 free(values[0]);
768 *ret = r;
769
770 return 0;
771 }
772
773 UnitActiveState unit_active_state(Unit *u) {
774 assert(u);
775
776 if (u->load_state == UNIT_MERGED)
777 return unit_active_state(unit_follow_merge(u));
778
779 /* After a reload it might happen that a unit is not correctly
780 * loaded but still has a process around. That's why we won't
781 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
782
783 return UNIT_VTABLE(u)->active_state(u);
784 }
785
786 const char* unit_sub_state_to_string(Unit *u) {
787 assert(u);
788
789 return UNIT_VTABLE(u)->sub_state_to_string(u);
790 }
791
792 static int set_complete_move(Set **s, Set **other) {
793 assert(s);
794 assert(other);
795
796 if (!other)
797 return 0;
798
799 if (*s)
800 return set_move(*s, *other);
801 else
802 *s = TAKE_PTR(*other);
803
804 return 0;
805 }
806
807 static int hashmap_complete_move(Hashmap **s, Hashmap **other) {
808 assert(s);
809 assert(other);
810
811 if (!*other)
812 return 0;
813
814 if (*s)
815 return hashmap_move(*s, *other);
816 else
817 *s = TAKE_PTR(*other);
818
819 return 0;
820 }
821
822 static int merge_names(Unit *u, Unit *other) {
823 char *t;
824 Iterator i;
825 int r;
826
827 assert(u);
828 assert(other);
829
830 r = set_complete_move(&u->names, &other->names);
831 if (r < 0)
832 return r;
833
834 set_free_free(other->names);
835 other->names = NULL;
836 other->id = NULL;
837
838 SET_FOREACH(t, u->names, i)
839 assert_se(hashmap_replace(u->manager->units, t, u) == 0);
840
841 return 0;
842 }
843
844 static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
845 unsigned n_reserve;
846
847 assert(u);
848 assert(other);
849 assert(d < _UNIT_DEPENDENCY_MAX);
850
851 /*
852 * If u does not have this dependency set allocated, there is no need
853 * to reserve anything. In that case other's set will be transferred
854 * as a whole to u by complete_move().
855 */
856 if (!u->dependencies[d])
857 return 0;
858
859 /* merge_dependencies() will skip a u-on-u dependency */
860 n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u);
861
862 return hashmap_reserve(u->dependencies[d], n_reserve);
863 }
864
865 static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
866 Iterator i;
867 Unit *back;
868 void *v;
869 int r;
870
871 /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */
872
873 assert(u);
874 assert(other);
875 assert(d < _UNIT_DEPENDENCY_MAX);
876
877 /* Fix backwards pointers. Let's iterate through all dependent units of the other unit. */
878 HASHMAP_FOREACH_KEY(v, back, other->dependencies[d], i) {
879 UnitDependency k;
880
881 /* Let's now iterate through the dependencies of that dependencies of the other units, looking for
882 * pointers back, and let's fix them up, to instead point to 'u'. */
883
884 for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) {
885 if (back == u) {
886 /* Do not add dependencies between u and itself. */
887 if (hashmap_remove(back->dependencies[k], other))
888 maybe_warn_about_dependency(u, other_id, k);
889 } else {
890 UnitDependencyInfo di_u, di_other, di_merged;
891
892 /* Let's drop this dependency between "back" and "other", and let's create it between
893 * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving,
894 * and any such dependency which might already exist */
895
896 di_other.data = hashmap_get(back->dependencies[k], other);
897 if (!di_other.data)
898 continue; /* dependency isn't set, let's try the next one */
899
900 di_u.data = hashmap_get(back->dependencies[k], u);
901
902 di_merged = (UnitDependencyInfo) {
903 .origin_mask = di_u.origin_mask | di_other.origin_mask,
904 .destination_mask = di_u.destination_mask | di_other.destination_mask,
905 };
906
907 r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data);
908 if (r < 0)
909 log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id);
910 assert(r >= 0);
911
912 /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */
913 }
914 }
915
916 }
917
918 /* Also do not move dependencies on u to itself */
919 back = hashmap_remove(other->dependencies[d], u);
920 if (back)
921 maybe_warn_about_dependency(u, other_id, d);
922
923 /* The move cannot fail. The caller must have performed a reservation. */
924 assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
925
926 other->dependencies[d] = hashmap_free(other->dependencies[d]);
927 }
928
929 int unit_merge(Unit *u, Unit *other) {
930 UnitDependency d;
931 const char *other_id = NULL;
932 int r;
933
934 assert(u);
935 assert(other);
936 assert(u->manager == other->manager);
937 assert(u->type != _UNIT_TYPE_INVALID);
938
939 other = unit_follow_merge(other);
940
941 if (other == u)
942 return 0;
943
944 if (u->type != other->type)
945 return -EINVAL;
946
947 if (!u->instance != !other->instance)
948 return -EINVAL;
949
950 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
951 return -EEXIST;
952
953 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
954 return -EEXIST;
955
956 if (other->job)
957 return -EEXIST;
958
959 if (other->nop_job)
960 return -EEXIST;
961
962 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
963 return -EEXIST;
964
965 if (other->id)
966 other_id = strdupa(other->id);
967
968 /* Make reservations to ensure merge_dependencies() won't fail */
969 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
970 r = reserve_dependencies(u, other, d);
971 /*
972 * We don't rollback reservations if we fail. We don't have
973 * a way to undo reservations. A reservation is not a leak.
974 */
975 if (r < 0)
976 return r;
977 }
978
979 /* Merge names */
980 r = merge_names(u, other);
981 if (r < 0)
982 return r;
983
984 /* Redirect all references */
985 while (other->refs_by_target)
986 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
987
988 /* Merge dependencies */
989 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
990 merge_dependencies(u, other, other_id, d);
991
992 other->load_state = UNIT_MERGED;
993 other->merged_into = u;
994
995 /* If there is still some data attached to the other node, we
996 * don't need it anymore, and can free it. */
997 if (other->load_state != UNIT_STUB)
998 if (UNIT_VTABLE(other)->done)
999 UNIT_VTABLE(other)->done(other);
1000
1001 unit_add_to_dbus_queue(u);
1002 unit_add_to_cleanup_queue(other);
1003
1004 return 0;
1005 }
1006
1007 int unit_merge_by_name(Unit *u, const char *name) {
1008 _cleanup_free_ char *s = NULL;
1009 Unit *other;
1010 int r;
1011
1012 /* Either add name to u, or if a unit with name already exists, merge it with u.
1013 * If name is a template, do the same for name@instance, where instance is u's instance. */
1014
1015 assert(u);
1016 assert(name);
1017
1018 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
1019 if (!u->instance)
1020 return -EINVAL;
1021
1022 r = unit_name_replace_instance(name, u->instance, &s);
1023 if (r < 0)
1024 return r;
1025
1026 name = s;
1027 }
1028
1029 other = manager_get_unit(u->manager, name);
1030 if (other)
1031 return unit_merge(u, other);
1032
1033 return unit_add_name(u, name);
1034 }
1035
1036 Unit* unit_follow_merge(Unit *u) {
1037 assert(u);
1038
1039 while (u->load_state == UNIT_MERGED)
1040 assert_se(u = u->merged_into);
1041
1042 return u;
1043 }
1044
1045 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
1046 ExecDirectoryType dt;
1047 char **dp;
1048 int r;
1049
1050 assert(u);
1051 assert(c);
1052
1053 if (c->working_directory && !c->working_directory_missing_ok) {
1054 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1055 if (r < 0)
1056 return r;
1057 }
1058
1059 if (c->root_directory) {
1060 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1061 if (r < 0)
1062 return r;
1063 }
1064
1065 if (c->root_image) {
1066 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1067 if (r < 0)
1068 return r;
1069 }
1070
1071 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1072 if (!u->manager->prefix[dt])
1073 continue;
1074
1075 STRV_FOREACH(dp, c->directories[dt].paths) {
1076 _cleanup_free_ char *p;
1077
1078 p = path_join(u->manager->prefix[dt], *dp);
1079 if (!p)
1080 return -ENOMEM;
1081
1082 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1083 if (r < 0)
1084 return r;
1085 }
1086 }
1087
1088 if (!MANAGER_IS_SYSTEM(u->manager))
1089 return 0;
1090
1091 /* For the following three directory types we need write access, and /var/ is possibly on the root
1092 * fs. Hence order after systemd-remount-fs.service, to ensure things are writable. */
1093 if (!strv_isempty(c->directories[EXEC_DIRECTORY_STATE].paths) ||
1094 !strv_isempty(c->directories[EXEC_DIRECTORY_CACHE].paths) ||
1095 !strv_isempty(c->directories[EXEC_DIRECTORY_LOGS].paths)) {
1096 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_REMOUNT_FS_SERVICE, true, UNIT_DEPENDENCY_FILE);
1097 if (r < 0)
1098 return r;
1099 }
1100
1101 if (c->private_tmp) {
1102 const char *p;
1103
1104 FOREACH_STRING(p, "/tmp", "/var/tmp") {
1105 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1106 if (r < 0)
1107 return r;
1108 }
1109
1110 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1111 if (r < 0)
1112 return r;
1113 }
1114
1115 if (c->root_image) {
1116 /* We need to wait for /dev/loopX to appear when doing RootImage=, hence let's add an
1117 * implicit dependency on udev */
1118
1119 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_UDEVD_SERVICE, true, UNIT_DEPENDENCY_FILE);
1120 if (r < 0)
1121 return r;
1122 }
1123
1124 if (!IN_SET(c->std_output,
1125 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1126 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1127 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE) &&
1128 !IN_SET(c->std_error,
1129 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1130 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1131 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE) &&
1132 !c->log_namespace)
1133 return 0;
1134
1135 /* If syslog or kernel logging is requested (or log namespacing is), make sure our own logging daemon
1136 * is run first. */
1137
1138 if (c->log_namespace) {
1139 _cleanup_free_ char *socket_unit = NULL, *varlink_socket_unit = NULL;
1140
1141 r = unit_name_build_from_type("systemd-journald", c->log_namespace, UNIT_SOCKET, &socket_unit);
1142 if (r < 0)
1143 return r;
1144
1145 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, socket_unit, true, UNIT_DEPENDENCY_FILE);
1146 if (r < 0)
1147 return r;
1148
1149 r = unit_name_build_from_type("systemd-journald-varlink", c->log_namespace, UNIT_SOCKET, &varlink_socket_unit);
1150 if (r < 0)
1151 return r;
1152
1153 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, varlink_socket_unit, true, UNIT_DEPENDENCY_FILE);
1154 if (r < 0)
1155 return r;
1156 } else
1157 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1158 if (r < 0)
1159 return r;
1160
1161 return 0;
1162 }
1163
1164 const char *unit_description(Unit *u) {
1165 assert(u);
1166
1167 if (u->description)
1168 return u->description;
1169
1170 return strna(u->id);
1171 }
1172
1173 const char *unit_status_string(Unit *u) {
1174 assert(u);
1175
1176 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME && u->id)
1177 return u->id;
1178
1179 return unit_description(u);
1180 }
1181
1182 static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) {
1183 const struct {
1184 UnitDependencyMask mask;
1185 const char *name;
1186 } table[] = {
1187 { UNIT_DEPENDENCY_FILE, "file" },
1188 { UNIT_DEPENDENCY_IMPLICIT, "implicit" },
1189 { UNIT_DEPENDENCY_DEFAULT, "default" },
1190 { UNIT_DEPENDENCY_UDEV, "udev" },
1191 { UNIT_DEPENDENCY_PATH, "path" },
1192 { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" },
1193 { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" },
1194 { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" },
1195 };
1196 size_t i;
1197
1198 assert(f);
1199 assert(kind);
1200 assert(space);
1201
1202 for (i = 0; i < ELEMENTSOF(table); i++) {
1203
1204 if (mask == 0)
1205 break;
1206
1207 if (FLAGS_SET(mask, table[i].mask)) {
1208 if (*space)
1209 fputc(' ', f);
1210 else
1211 *space = true;
1212
1213 fputs(kind, f);
1214 fputs("-", f);
1215 fputs(table[i].name, f);
1216
1217 mask &= ~table[i].mask;
1218 }
1219 }
1220
1221 assert(mask == 0);
1222 }
1223
1224 void unit_dump(Unit *u, FILE *f, const char *prefix) {
1225 char *t, **j;
1226 UnitDependency d;
1227 Iterator i;
1228 const char *prefix2;
1229 char timestamp[5][FORMAT_TIMESTAMP_MAX], timespan[FORMAT_TIMESPAN_MAX];
1230 Unit *following;
1231 _cleanup_set_free_ Set *following_set = NULL;
1232 const char *n;
1233 CGroupMask m;
1234 int r;
1235
1236 assert(u);
1237 assert(u->type >= 0);
1238
1239 prefix = strempty(prefix);
1240 prefix2 = strjoina(prefix, "\t");
1241
1242 fprintf(f,
1243 "%s-> Unit %s:\n",
1244 prefix, u->id);
1245
1246 SET_FOREACH(t, u->names, i)
1247 if (!streq(t, u->id))
1248 fprintf(f, "%s\tAlias: %s\n", prefix, t);
1249
1250 fprintf(f,
1251 "%s\tDescription: %s\n"
1252 "%s\tInstance: %s\n"
1253 "%s\tUnit Load State: %s\n"
1254 "%s\tUnit Active State: %s\n"
1255 "%s\tState Change Timestamp: %s\n"
1256 "%s\tInactive Exit Timestamp: %s\n"
1257 "%s\tActive Enter Timestamp: %s\n"
1258 "%s\tActive Exit Timestamp: %s\n"
1259 "%s\tInactive Enter Timestamp: %s\n"
1260 "%s\tMay GC: %s\n"
1261 "%s\tNeed Daemon Reload: %s\n"
1262 "%s\tTransient: %s\n"
1263 "%s\tPerpetual: %s\n"
1264 "%s\tGarbage Collection Mode: %s\n"
1265 "%s\tSlice: %s\n"
1266 "%s\tCGroup: %s\n"
1267 "%s\tCGroup realized: %s\n",
1268 prefix, unit_description(u),
1269 prefix, strna(u->instance),
1270 prefix, unit_load_state_to_string(u->load_state),
1271 prefix, unit_active_state_to_string(unit_active_state(u)),
1272 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->state_change_timestamp.realtime)),
1273 prefix, strna(format_timestamp(timestamp[1], sizeof(timestamp[1]), u->inactive_exit_timestamp.realtime)),
1274 prefix, strna(format_timestamp(timestamp[2], sizeof(timestamp[2]), u->active_enter_timestamp.realtime)),
1275 prefix, strna(format_timestamp(timestamp[3], sizeof(timestamp[3]), u->active_exit_timestamp.realtime)),
1276 prefix, strna(format_timestamp(timestamp[4], sizeof(timestamp[4]), u->inactive_enter_timestamp.realtime)),
1277 prefix, yes_no(unit_may_gc(u)),
1278 prefix, yes_no(unit_need_daemon_reload(u)),
1279 prefix, yes_no(u->transient),
1280 prefix, yes_no(u->perpetual),
1281 prefix, collect_mode_to_string(u->collect_mode),
1282 prefix, strna(unit_slice_name(u)),
1283 prefix, strna(u->cgroup_path),
1284 prefix, yes_no(u->cgroup_realized));
1285
1286 if (u->cgroup_realized_mask != 0) {
1287 _cleanup_free_ char *s = NULL;
1288 (void) cg_mask_to_string(u->cgroup_realized_mask, &s);
1289 fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s));
1290 }
1291
1292 if (u->cgroup_enabled_mask != 0) {
1293 _cleanup_free_ char *s = NULL;
1294 (void) cg_mask_to_string(u->cgroup_enabled_mask, &s);
1295 fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s));
1296 }
1297
1298 m = unit_get_own_mask(u);
1299 if (m != 0) {
1300 _cleanup_free_ char *s = NULL;
1301 (void) cg_mask_to_string(m, &s);
1302 fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s));
1303 }
1304
1305 m = unit_get_members_mask(u);
1306 if (m != 0) {
1307 _cleanup_free_ char *s = NULL;
1308 (void) cg_mask_to_string(m, &s);
1309 fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s));
1310 }
1311
1312 m = unit_get_delegate_mask(u);
1313 if (m != 0) {
1314 _cleanup_free_ char *s = NULL;
1315 (void) cg_mask_to_string(m, &s);
1316 fprintf(f, "%s\tCGroup delegate mask: %s\n", prefix, strnull(s));
1317 }
1318
1319 if (!sd_id128_is_null(u->invocation_id))
1320 fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n",
1321 prefix, SD_ID128_FORMAT_VAL(u->invocation_id));
1322
1323 STRV_FOREACH(j, u->documentation)
1324 fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
1325
1326 following = unit_following(u);
1327 if (following)
1328 fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
1329
1330 r = unit_following_set(u, &following_set);
1331 if (r >= 0) {
1332 Unit *other;
1333
1334 SET_FOREACH(other, following_set, i)
1335 fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
1336 }
1337
1338 if (u->fragment_path)
1339 fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
1340
1341 if (u->source_path)
1342 fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
1343
1344 STRV_FOREACH(j, u->dropin_paths)
1345 fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
1346
1347 if (u->failure_action != EMERGENCY_ACTION_NONE)
1348 fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action));
1349 if (u->failure_action_exit_status >= 0)
1350 fprintf(f, "%s\tFailure Action Exit Status: %i\n", prefix, u->failure_action_exit_status);
1351 if (u->success_action != EMERGENCY_ACTION_NONE)
1352 fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action));
1353 if (u->success_action_exit_status >= 0)
1354 fprintf(f, "%s\tSuccess Action Exit Status: %i\n", prefix, u->success_action_exit_status);
1355
1356 if (u->job_timeout != USEC_INFINITY)
1357 fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
1358
1359 if (u->job_timeout_action != EMERGENCY_ACTION_NONE)
1360 fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action));
1361
1362 if (u->job_timeout_reboot_arg)
1363 fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
1364
1365 condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
1366 condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
1367
1368 if (dual_timestamp_is_set(&u->condition_timestamp))
1369 fprintf(f,
1370 "%s\tCondition Timestamp: %s\n"
1371 "%s\tCondition Result: %s\n",
1372 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->condition_timestamp.realtime)),
1373 prefix, yes_no(u->condition_result));
1374
1375 if (dual_timestamp_is_set(&u->assert_timestamp))
1376 fprintf(f,
1377 "%s\tAssert Timestamp: %s\n"
1378 "%s\tAssert Result: %s\n",
1379 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->assert_timestamp.realtime)),
1380 prefix, yes_no(u->assert_result));
1381
1382 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
1383 UnitDependencyInfo di;
1384 Unit *other;
1385
1386 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
1387 bool space = false;
1388
1389 fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id);
1390
1391 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1392 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1393
1394 fputs(")\n", f);
1395 }
1396 }
1397
1398 if (!hashmap_isempty(u->requires_mounts_for)) {
1399 UnitDependencyInfo di;
1400 const char *path;
1401
1402 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1403 bool space = false;
1404
1405 fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path);
1406
1407 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1408 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1409
1410 fputs(")\n", f);
1411 }
1412 }
1413
1414 if (u->load_state == UNIT_LOADED) {
1415
1416 fprintf(f,
1417 "%s\tStopWhenUnneeded: %s\n"
1418 "%s\tRefuseManualStart: %s\n"
1419 "%s\tRefuseManualStop: %s\n"
1420 "%s\tDefaultDependencies: %s\n"
1421 "%s\tOnFailureJobMode: %s\n"
1422 "%s\tIgnoreOnIsolate: %s\n",
1423 prefix, yes_no(u->stop_when_unneeded),
1424 prefix, yes_no(u->refuse_manual_start),
1425 prefix, yes_no(u->refuse_manual_stop),
1426 prefix, yes_no(u->default_dependencies),
1427 prefix, job_mode_to_string(u->on_failure_job_mode),
1428 prefix, yes_no(u->ignore_on_isolate));
1429
1430 if (UNIT_VTABLE(u)->dump)
1431 UNIT_VTABLE(u)->dump(u, f, prefix2);
1432
1433 } else if (u->load_state == UNIT_MERGED)
1434 fprintf(f,
1435 "%s\tMerged into: %s\n",
1436 prefix, u->merged_into->id);
1437 else if (u->load_state == UNIT_ERROR)
1438 fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror_safe(u->load_error));
1439
1440 for (n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track))
1441 fprintf(f, "%s\tBus Ref: %s\n", prefix, n);
1442
1443 if (u->job)
1444 job_dump(u->job, f, prefix2);
1445
1446 if (u->nop_job)
1447 job_dump(u->nop_job, f, prefix2);
1448 }
1449
1450 /* Common implementation for multiple backends */
1451 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1452 int r;
1453
1454 assert(u);
1455
1456 /* Load a .{service,socket,...} file */
1457 r = unit_load_fragment(u);
1458 if (r < 0)
1459 return r;
1460
1461 if (u->load_state == UNIT_STUB) {
1462 if (fragment_required)
1463 return -ENOENT;
1464
1465 u->load_state = UNIT_LOADED;
1466 }
1467
1468 /* Load drop-in directory data. If u is an alias, we might be reloading the
1469 * target unit needlessly. But we cannot be sure which drops-ins have already
1470 * been loaded and which not, at least without doing complicated book-keeping,
1471 * so let's always reread all drop-ins. */
1472 return unit_load_dropin(unit_follow_merge(u));
1473 }
1474
1475 void unit_add_to_target_deps_queue(Unit *u) {
1476 Manager *m = u->manager;
1477
1478 assert(u);
1479
1480 if (u->in_target_deps_queue)
1481 return;
1482
1483 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1484 u->in_target_deps_queue = true;
1485 }
1486
1487 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1488 assert(u);
1489 assert(target);
1490
1491 if (target->type != UNIT_TARGET)
1492 return 0;
1493
1494 /* Only add the dependency if both units are loaded, so that
1495 * that loop check below is reliable */
1496 if (u->load_state != UNIT_LOADED ||
1497 target->load_state != UNIT_LOADED)
1498 return 0;
1499
1500 /* If either side wants no automatic dependencies, then let's
1501 * skip this */
1502 if (!u->default_dependencies ||
1503 !target->default_dependencies)
1504 return 0;
1505
1506 /* Don't create loops */
1507 if (hashmap_get(target->dependencies[UNIT_BEFORE], u))
1508 return 0;
1509
1510 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1511 }
1512
1513 static int unit_add_slice_dependencies(Unit *u) {
1514 UnitDependencyMask mask;
1515 assert(u);
1516
1517 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1518 return 0;
1519
1520 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1521 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1522 relationship). */
1523 mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1524
1525 if (UNIT_ISSET(u->slice))
1526 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask);
1527
1528 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1529 return 0;
1530
1531 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1532 }
1533
1534 static int unit_add_mount_dependencies(Unit *u) {
1535 UnitDependencyInfo di;
1536 const char *path;
1537 Iterator i;
1538 int r;
1539
1540 assert(u);
1541
1542 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1543 char prefix[strlen(path) + 1];
1544
1545 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1546 _cleanup_free_ char *p = NULL;
1547 Unit *m;
1548
1549 r = unit_name_from_path(prefix, ".mount", &p);
1550 if (r < 0)
1551 return r;
1552
1553 m = manager_get_unit(u->manager, p);
1554 if (!m) {
1555 /* Make sure to load the mount unit if
1556 * it exists. If so the dependencies
1557 * on this unit will be added later
1558 * during the loading of the mount
1559 * unit. */
1560 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1561 continue;
1562 }
1563 if (m == u)
1564 continue;
1565
1566 if (m->load_state != UNIT_LOADED)
1567 continue;
1568
1569 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1570 if (r < 0)
1571 return r;
1572
1573 if (m->fragment_path) {
1574 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1575 if (r < 0)
1576 return r;
1577 }
1578 }
1579 }
1580
1581 return 0;
1582 }
1583
1584 static int unit_add_startup_units(Unit *u) {
1585 CGroupContext *c;
1586 int r;
1587
1588 c = unit_get_cgroup_context(u);
1589 if (!c)
1590 return 0;
1591
1592 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1593 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1594 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1595 return 0;
1596
1597 r = set_ensure_allocated(&u->manager->startup_units, NULL);
1598 if (r < 0)
1599 return r;
1600
1601 return set_put(u->manager->startup_units, u);
1602 }
1603
1604 int unit_load(Unit *u) {
1605 int r;
1606
1607 assert(u);
1608
1609 if (u->in_load_queue) {
1610 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1611 u->in_load_queue = false;
1612 }
1613
1614 if (u->type == _UNIT_TYPE_INVALID)
1615 return -EINVAL;
1616
1617 if (u->load_state != UNIT_STUB)
1618 return 0;
1619
1620 if (u->transient_file) {
1621 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1622 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1623
1624 r = fflush_and_check(u->transient_file);
1625 if (r < 0)
1626 goto fail;
1627
1628 u->transient_file = safe_fclose(u->transient_file);
1629 u->fragment_mtime = now(CLOCK_REALTIME);
1630 }
1631
1632 r = UNIT_VTABLE(u)->load(u);
1633 if (r < 0)
1634 goto fail;
1635
1636 assert(u->load_state != UNIT_STUB);
1637
1638 if (u->load_state == UNIT_LOADED) {
1639 unit_add_to_target_deps_queue(u);
1640
1641 r = unit_add_slice_dependencies(u);
1642 if (r < 0)
1643 goto fail;
1644
1645 r = unit_add_mount_dependencies(u);
1646 if (r < 0)
1647 goto fail;
1648
1649 r = unit_add_startup_units(u);
1650 if (r < 0)
1651 goto fail;
1652
1653 if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
1654 log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
1655 r = -ENOEXEC;
1656 goto fail;
1657 }
1658
1659 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1660 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1661
1662 /* We finished loading, let's ensure our parents recalculate the members mask */
1663 unit_invalidate_cgroup_members_masks(u);
1664 }
1665
1666 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1667
1668 unit_add_to_dbus_queue(unit_follow_merge(u));
1669 unit_add_to_gc_queue(u);
1670
1671 return 0;
1672
1673 fail:
1674 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code should hence
1675 * return ENOEXEC to ensure units are placed in this state after loading */
1676
1677 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1678 r == -ENOEXEC ? UNIT_BAD_SETTING :
1679 UNIT_ERROR;
1680 u->load_error = r;
1681
1682 unit_add_to_dbus_queue(u);
1683 unit_add_to_gc_queue(u);
1684
1685 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1686 }
1687
1688 _printf_(7, 8)
1689 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1690 Unit *u = userdata;
1691 va_list ap;
1692 int r;
1693
1694 va_start(ap, format);
1695 if (u)
1696 r = log_object_internalv(level, error, file, line, func,
1697 u->manager->unit_log_field,
1698 u->id,
1699 u->manager->invocation_log_field,
1700 u->invocation_id_string,
1701 format, ap);
1702 else
1703 r = log_internalv(level, error, file, line, func, format, ap);
1704 va_end(ap);
1705
1706 return r;
1707 }
1708
1709 static bool unit_test_condition(Unit *u) {
1710 assert(u);
1711
1712 dual_timestamp_get(&u->condition_timestamp);
1713 u->condition_result = condition_test_list(u->conditions, condition_type_to_string, log_unit_internal, u);
1714
1715 unit_add_to_dbus_queue(u);
1716
1717 return u->condition_result;
1718 }
1719
1720 static bool unit_test_assert(Unit *u) {
1721 assert(u);
1722
1723 dual_timestamp_get(&u->assert_timestamp);
1724 u->assert_result = condition_test_list(u->asserts, assert_type_to_string, log_unit_internal, u);
1725
1726 unit_add_to_dbus_queue(u);
1727
1728 return u->assert_result;
1729 }
1730
1731 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *unit_status_msg_format) {
1732 const char *d;
1733
1734 d = unit_status_string(u);
1735 if (log_get_show_color())
1736 d = strjoina(ANSI_HIGHLIGHT, d, ANSI_NORMAL);
1737
1738 DISABLE_WARNING_FORMAT_NONLITERAL;
1739 manager_status_printf(u->manager, status_type, status, unit_status_msg_format, d);
1740 REENABLE_WARNING;
1741 }
1742
1743 int unit_test_start_limit(Unit *u) {
1744 const char *reason;
1745
1746 assert(u);
1747
1748 if (ratelimit_below(&u->start_ratelimit)) {
1749 u->start_limit_hit = false;
1750 return 0;
1751 }
1752
1753 log_unit_warning(u, "Start request repeated too quickly.");
1754 u->start_limit_hit = true;
1755
1756 reason = strjoina("unit ", u->id, " failed");
1757
1758 emergency_action(u->manager, u->start_limit_action,
1759 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1760 u->reboot_arg, -1, reason);
1761
1762 return -ECANCELED;
1763 }
1764
1765 bool unit_shall_confirm_spawn(Unit *u) {
1766 assert(u);
1767
1768 if (manager_is_confirm_spawn_disabled(u->manager))
1769 return false;
1770
1771 /* For some reasons units remaining in the same process group
1772 * as PID 1 fail to acquire the console even if it's not used
1773 * by any process. So skip the confirmation question for them. */
1774 return !unit_get_exec_context(u)->same_pgrp;
1775 }
1776
1777 static bool unit_verify_deps(Unit *u) {
1778 Unit *other;
1779 Iterator j;
1780 void *v;
1781
1782 assert(u);
1783
1784 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with
1785 * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job
1786 * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in
1787 * conjunction with After= as for them any such check would make things entirely racy. */
1788
1789 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], j) {
1790
1791 if (!hashmap_contains(u->dependencies[UNIT_AFTER], other))
1792 continue;
1793
1794 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1795 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1796 return false;
1797 }
1798 }
1799
1800 return true;
1801 }
1802
1803 /* Errors that aren't really errors:
1804 * -EALREADY: Unit is already started.
1805 * -ECOMM: Condition failed
1806 * -EAGAIN: An operation is already in progress. Retry later.
1807 *
1808 * Errors that are real errors:
1809 * -EBADR: This unit type does not support starting.
1810 * -ECANCELED: Start limit hit, too many requests for now
1811 * -EPROTO: Assert failed
1812 * -EINVAL: Unit not loaded
1813 * -EOPNOTSUPP: Unit type not supported
1814 * -ENOLINK: The necessary dependencies are not fulfilled.
1815 * -ESTALE: This unit has been started before and can't be started a second time
1816 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1817 */
1818 int unit_start(Unit *u) {
1819 UnitActiveState state;
1820 Unit *following;
1821
1822 assert(u);
1823
1824 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1825 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1826 * waiting is finished. */
1827 state = unit_active_state(u);
1828 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1829 return -EALREADY;
1830 if (state == UNIT_MAINTENANCE)
1831 return -EAGAIN;
1832
1833 /* Units that aren't loaded cannot be started */
1834 if (u->load_state != UNIT_LOADED)
1835 return -EINVAL;
1836
1837 /* Refuse starting scope units more than once */
1838 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1839 return -ESTALE;
1840
1841 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1842 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1843 * recheck the condition in that case. */
1844 if (state != UNIT_ACTIVATING &&
1845 !unit_test_condition(u))
1846 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1847
1848 /* If the asserts failed, fail the entire job */
1849 if (state != UNIT_ACTIVATING &&
1850 !unit_test_assert(u))
1851 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1852
1853 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1854 * condition checks, so that we rather return condition check errors (which are usually not
1855 * considered a true failure) than "not supported" errors (which are considered a failure).
1856 */
1857 if (!unit_type_supported(u->type))
1858 return -EOPNOTSUPP;
1859
1860 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1861 * should have taken care of this already, but let's check this here again. After all, our
1862 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1863 if (!unit_verify_deps(u))
1864 return -ENOLINK;
1865
1866 /* Forward to the main object, if we aren't it. */
1867 following = unit_following(u);
1868 if (following) {
1869 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1870 return unit_start(following);
1871 }
1872
1873 /* If it is stopped, but we cannot start it, then fail */
1874 if (!UNIT_VTABLE(u)->start)
1875 return -EBADR;
1876
1877 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1878 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1879 * waits for a holdoff timer to elapse before it will start again. */
1880
1881 unit_add_to_dbus_queue(u);
1882 unit_cgroup_freezer_action(u, FREEZER_THAW);
1883
1884 return UNIT_VTABLE(u)->start(u);
1885 }
1886
1887 bool unit_can_start(Unit *u) {
1888 assert(u);
1889
1890 if (u->load_state != UNIT_LOADED)
1891 return false;
1892
1893 if (!unit_type_supported(u->type))
1894 return false;
1895
1896 /* Scope units may be started only once */
1897 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1898 return false;
1899
1900 return !!UNIT_VTABLE(u)->start;
1901 }
1902
1903 bool unit_can_isolate(Unit *u) {
1904 assert(u);
1905
1906 return unit_can_start(u) &&
1907 u->allow_isolate;
1908 }
1909
1910 /* Errors:
1911 * -EBADR: This unit type does not support stopping.
1912 * -EALREADY: Unit is already stopped.
1913 * -EAGAIN: An operation is already in progress. Retry later.
1914 */
1915 int unit_stop(Unit *u) {
1916 UnitActiveState state;
1917 Unit *following;
1918
1919 assert(u);
1920
1921 state = unit_active_state(u);
1922 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1923 return -EALREADY;
1924
1925 following = unit_following(u);
1926 if (following) {
1927 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1928 return unit_stop(following);
1929 }
1930
1931 if (!UNIT_VTABLE(u)->stop)
1932 return -EBADR;
1933
1934 unit_add_to_dbus_queue(u);
1935 unit_cgroup_freezer_action(u, FREEZER_THAW);
1936
1937 return UNIT_VTABLE(u)->stop(u);
1938 }
1939
1940 bool unit_can_stop(Unit *u) {
1941 assert(u);
1942
1943 if (!unit_type_supported(u->type))
1944 return false;
1945
1946 if (u->perpetual)
1947 return false;
1948
1949 return !!UNIT_VTABLE(u)->stop;
1950 }
1951
1952 /* Errors:
1953 * -EBADR: This unit type does not support reloading.
1954 * -ENOEXEC: Unit is not started.
1955 * -EAGAIN: An operation is already in progress. Retry later.
1956 */
1957 int unit_reload(Unit *u) {
1958 UnitActiveState state;
1959 Unit *following;
1960
1961 assert(u);
1962
1963 if (u->load_state != UNIT_LOADED)
1964 return -EINVAL;
1965
1966 if (!unit_can_reload(u))
1967 return -EBADR;
1968
1969 state = unit_active_state(u);
1970 if (state == UNIT_RELOADING)
1971 return -EAGAIN;
1972
1973 if (state != UNIT_ACTIVE) {
1974 log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
1975 return -ENOEXEC;
1976 }
1977
1978 following = unit_following(u);
1979 if (following) {
1980 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
1981 return unit_reload(following);
1982 }
1983
1984 unit_add_to_dbus_queue(u);
1985
1986 if (!UNIT_VTABLE(u)->reload) {
1987 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
1988 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
1989 return 0;
1990 }
1991
1992 unit_cgroup_freezer_action(u, FREEZER_THAW);
1993
1994 return UNIT_VTABLE(u)->reload(u);
1995 }
1996
1997 bool unit_can_reload(Unit *u) {
1998 assert(u);
1999
2000 if (UNIT_VTABLE(u)->can_reload)
2001 return UNIT_VTABLE(u)->can_reload(u);
2002
2003 if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO]))
2004 return true;
2005
2006 return UNIT_VTABLE(u)->reload;
2007 }
2008
2009 bool unit_is_unneeded(Unit *u) {
2010 static const UnitDependency deps[] = {
2011 UNIT_REQUIRED_BY,
2012 UNIT_REQUISITE_OF,
2013 UNIT_WANTED_BY,
2014 UNIT_BOUND_BY,
2015 };
2016 size_t j;
2017
2018 assert(u);
2019
2020 if (!u->stop_when_unneeded)
2021 return false;
2022
2023 /* Don't clean up while the unit is transitioning or is even inactive. */
2024 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
2025 return false;
2026 if (u->job)
2027 return false;
2028
2029 for (j = 0; j < ELEMENTSOF(deps); j++) {
2030 Unit *other;
2031 Iterator i;
2032 void *v;
2033
2034 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
2035 * restart, then don't clean this one up. */
2036
2037 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i) {
2038 if (other->job)
2039 return false;
2040
2041 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2042 return false;
2043
2044 if (unit_will_restart(other))
2045 return false;
2046 }
2047 }
2048
2049 return true;
2050 }
2051
2052 static void check_unneeded_dependencies(Unit *u) {
2053
2054 static const UnitDependency deps[] = {
2055 UNIT_REQUIRES,
2056 UNIT_REQUISITE,
2057 UNIT_WANTS,
2058 UNIT_BINDS_TO,
2059 };
2060 size_t j;
2061
2062 assert(u);
2063
2064 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2065
2066 for (j = 0; j < ELEMENTSOF(deps); j++) {
2067 Unit *other;
2068 Iterator i;
2069 void *v;
2070
2071 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i)
2072 unit_submit_to_stop_when_unneeded_queue(other);
2073 }
2074 }
2075
2076 static void unit_check_binds_to(Unit *u) {
2077 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2078 bool stop = false;
2079 Unit *other;
2080 Iterator i;
2081 void *v;
2082 int r;
2083
2084 assert(u);
2085
2086 if (u->job)
2087 return;
2088
2089 if (unit_active_state(u) != UNIT_ACTIVE)
2090 return;
2091
2092 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) {
2093 if (other->job)
2094 continue;
2095
2096 if (!other->coldplugged)
2097 /* We might yet create a job for the other unit… */
2098 continue;
2099
2100 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2101 continue;
2102
2103 stop = true;
2104 break;
2105 }
2106
2107 if (!stop)
2108 return;
2109
2110 /* If stopping a unit fails continuously we might enter a stop
2111 * loop here, hence stop acting on the service being
2112 * unnecessary after a while. */
2113 if (!ratelimit_below(&u->auto_stop_ratelimit)) {
2114 log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
2115 return;
2116 }
2117
2118 assert(other);
2119 log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
2120
2121 /* A unit we need to run is gone. Sniff. Let's stop this. */
2122 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
2123 if (r < 0)
2124 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
2125 }
2126
2127 static void retroactively_start_dependencies(Unit *u) {
2128 Iterator i;
2129 Unit *other;
2130 void *v;
2131
2132 assert(u);
2133 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2134
2135 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES], i)
2136 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2137 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2138 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2139
2140 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i)
2141 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2142 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2143 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2144
2145 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS], i)
2146 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2147 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2148 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2149
2150 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS], i)
2151 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2152 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2153
2154 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY], i)
2155 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2156 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2157 }
2158
2159 static void retroactively_stop_dependencies(Unit *u) {
2160 Unit *other;
2161 Iterator i;
2162 void *v;
2163
2164 assert(u);
2165 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2166
2167 /* Pull down units which are bound to us recursively if enabled */
2168 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY], i)
2169 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2170 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2171 }
2172
2173 void unit_start_on_failure(Unit *u) {
2174 Unit *other;
2175 Iterator i;
2176 void *v;
2177 int r;
2178
2179 assert(u);
2180
2181 if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2182 return;
2183
2184 log_unit_info(u, "Triggering OnFailure= dependencies.");
2185
2186 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE], i) {
2187 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2188
2189 r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, NULL, &error, NULL);
2190 if (r < 0)
2191 log_unit_warning_errno(u, r, "Failed to enqueue OnFailure= job, ignoring: %s", bus_error_message(&error, r));
2192 }
2193 }
2194
2195 void unit_trigger_notify(Unit *u) {
2196 Unit *other;
2197 Iterator i;
2198 void *v;
2199
2200 assert(u);
2201
2202 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY], i)
2203 if (UNIT_VTABLE(other)->trigger_notify)
2204 UNIT_VTABLE(other)->trigger_notify(other, u);
2205 }
2206
2207 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2208 if (condition_notice && log_level > LOG_NOTICE)
2209 return LOG_NOTICE;
2210 if (condition_info && log_level > LOG_INFO)
2211 return LOG_INFO;
2212 return log_level;
2213 }
2214
2215 static int unit_log_resources(Unit *u) {
2216 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2217 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2218 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2219 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a threshold */
2220 size_t n_message_parts = 0, n_iovec = 0;
2221 char* message_parts[1 + 2 + 2 + 1], *t;
2222 nsec_t nsec = NSEC_INFINITY;
2223 CGroupIPAccountingMetric m;
2224 size_t i;
2225 int r;
2226 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2227 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2228 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2229 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2230 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2231 };
2232 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2233 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2234 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2235 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2236 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2237 };
2238
2239 assert(u);
2240
2241 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2242 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2243 * information and the complete data in structured fields. */
2244
2245 (void) unit_get_cpu_usage(u, &nsec);
2246 if (nsec != NSEC_INFINITY) {
2247 char buf[FORMAT_TIMESPAN_MAX] = "";
2248
2249 /* Format the CPU time for inclusion in the structured log message */
2250 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2251 r = log_oom();
2252 goto finish;
2253 }
2254 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2255
2256 /* Format the CPU time for inclusion in the human language message string */
2257 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2258 t = strjoin("consumed ", buf, " CPU time");
2259 if (!t) {
2260 r = log_oom();
2261 goto finish;
2262 }
2263
2264 message_parts[n_message_parts++] = t;
2265
2266 log_level = raise_level(log_level,
2267 nsec > NOTICEWORTHY_CPU_NSEC,
2268 nsec > MENTIONWORTHY_CPU_NSEC);
2269 }
2270
2271 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2272 char buf[FORMAT_BYTES_MAX] = "";
2273 uint64_t value = UINT64_MAX;
2274
2275 assert(io_fields[k]);
2276
2277 (void) unit_get_io_accounting(u, k, k > 0, &value);
2278 if (value == UINT64_MAX)
2279 continue;
2280
2281 have_io_accounting = true;
2282 if (value > 0)
2283 any_io = true;
2284
2285 /* Format IO accounting data for inclusion in the structured log message */
2286 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2287 r = log_oom();
2288 goto finish;
2289 }
2290 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2291
2292 /* Format the IO accounting data for inclusion in the human language message string, but only
2293 * for the bytes counters (and not for the operations counters) */
2294 if (k == CGROUP_IO_READ_BYTES) {
2295 assert(!rr);
2296 rr = strjoin("read ", format_bytes(buf, sizeof(buf), value), " from disk");
2297 if (!rr) {
2298 r = log_oom();
2299 goto finish;
2300 }
2301 } else if (k == CGROUP_IO_WRITE_BYTES) {
2302 assert(!wr);
2303 wr = strjoin("written ", format_bytes(buf, sizeof(buf), value), " to disk");
2304 if (!wr) {
2305 r = log_oom();
2306 goto finish;
2307 }
2308 }
2309
2310 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2311 log_level = raise_level(log_level,
2312 value > MENTIONWORTHY_IO_BYTES,
2313 value > NOTICEWORTHY_IO_BYTES);
2314 }
2315
2316 if (have_io_accounting) {
2317 if (any_io) {
2318 if (rr)
2319 message_parts[n_message_parts++] = TAKE_PTR(rr);
2320 if (wr)
2321 message_parts[n_message_parts++] = TAKE_PTR(wr);
2322
2323 } else {
2324 char *k;
2325
2326 k = strdup("no IO");
2327 if (!k) {
2328 r = log_oom();
2329 goto finish;
2330 }
2331
2332 message_parts[n_message_parts++] = k;
2333 }
2334 }
2335
2336 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2337 char buf[FORMAT_BYTES_MAX] = "";
2338 uint64_t value = UINT64_MAX;
2339
2340 assert(ip_fields[m]);
2341
2342 (void) unit_get_ip_accounting(u, m, &value);
2343 if (value == UINT64_MAX)
2344 continue;
2345
2346 have_ip_accounting = true;
2347 if (value > 0)
2348 any_traffic = true;
2349
2350 /* Format IP accounting data for inclusion in the structured log message */
2351 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2352 r = log_oom();
2353 goto finish;
2354 }
2355 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2356
2357 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2358 * bytes counters (and not for the packets counters) */
2359 if (m == CGROUP_IP_INGRESS_BYTES) {
2360 assert(!igress);
2361 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2362 if (!igress) {
2363 r = log_oom();
2364 goto finish;
2365 }
2366 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2367 assert(!egress);
2368 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2369 if (!egress) {
2370 r = log_oom();
2371 goto finish;
2372 }
2373 }
2374
2375 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2376 log_level = raise_level(log_level,
2377 value > MENTIONWORTHY_IP_BYTES,
2378 value > NOTICEWORTHY_IP_BYTES);
2379 }
2380
2381 if (have_ip_accounting) {
2382 if (any_traffic) {
2383 if (igress)
2384 message_parts[n_message_parts++] = TAKE_PTR(igress);
2385 if (egress)
2386 message_parts[n_message_parts++] = TAKE_PTR(egress);
2387
2388 } else {
2389 char *k;
2390
2391 k = strdup("no IP traffic");
2392 if (!k) {
2393 r = log_oom();
2394 goto finish;
2395 }
2396
2397 message_parts[n_message_parts++] = k;
2398 }
2399 }
2400
2401 /* Is there any accounting data available at all? */
2402 if (n_iovec == 0) {
2403 r = 0;
2404 goto finish;
2405 }
2406
2407 if (n_message_parts == 0)
2408 t = strjoina("MESSAGE=", u->id, ": Completed.");
2409 else {
2410 _cleanup_free_ char *joined;
2411
2412 message_parts[n_message_parts] = NULL;
2413
2414 joined = strv_join(message_parts, ", ");
2415 if (!joined) {
2416 r = log_oom();
2417 goto finish;
2418 }
2419
2420 joined[0] = ascii_toupper(joined[0]);
2421 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2422 }
2423
2424 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2425 * and hence don't increase n_iovec for them */
2426 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2427 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2428
2429 t = strjoina(u->manager->unit_log_field, u->id);
2430 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2431
2432 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2433 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2434
2435 log_struct_iovec(log_level, iovec, n_iovec + 4);
2436 r = 0;
2437
2438 finish:
2439 for (i = 0; i < n_message_parts; i++)
2440 free(message_parts[i]);
2441
2442 for (i = 0; i < n_iovec; i++)
2443 free(iovec[i].iov_base);
2444
2445 return r;
2446
2447 }
2448
2449 static void unit_update_on_console(Unit *u) {
2450 bool b;
2451
2452 assert(u);
2453
2454 b = unit_needs_console(u);
2455 if (u->on_console == b)
2456 return;
2457
2458 u->on_console = b;
2459 if (b)
2460 manager_ref_console(u->manager);
2461 else
2462 manager_unref_console(u->manager);
2463 }
2464
2465 static void unit_emit_audit_start(Unit *u) {
2466 assert(u);
2467
2468 if (u->type != UNIT_SERVICE)
2469 return;
2470
2471 /* Write audit record if we have just finished starting up */
2472 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2473 u->in_audit = true;
2474 }
2475
2476 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2477 assert(u);
2478
2479 if (u->type != UNIT_SERVICE)
2480 return;
2481
2482 if (u->in_audit) {
2483 /* Write audit record if we have just finished shutting down */
2484 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2485 u->in_audit = false;
2486 } else {
2487 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2488 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2489
2490 if (state == UNIT_INACTIVE)
2491 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2492 }
2493 }
2494
2495 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2496 bool unexpected = false;
2497 JobResult result;
2498
2499 assert(j);
2500
2501 if (j->state == JOB_WAITING)
2502
2503 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2504 * due to EAGAIN. */
2505 job_add_to_run_queue(j);
2506
2507 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2508 * hence needs to invalidate jobs. */
2509
2510 switch (j->type) {
2511
2512 case JOB_START:
2513 case JOB_VERIFY_ACTIVE:
2514
2515 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2516 job_finish_and_invalidate(j, JOB_DONE, true, false);
2517 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2518 unexpected = true;
2519
2520 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2521 if (ns == UNIT_FAILED)
2522 result = JOB_FAILED;
2523 else if (FLAGS_SET(flags, UNIT_NOTIFY_SKIP_CONDITION))
2524 result = JOB_SKIPPED;
2525 else
2526 result = JOB_DONE;
2527
2528 job_finish_and_invalidate(j, result, true, false);
2529 }
2530 }
2531
2532 break;
2533
2534 case JOB_RELOAD:
2535 case JOB_RELOAD_OR_START:
2536 case JOB_TRY_RELOAD:
2537
2538 if (j->state == JOB_RUNNING) {
2539 if (ns == UNIT_ACTIVE)
2540 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2541 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2542 unexpected = true;
2543
2544 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2545 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2546 }
2547 }
2548
2549 break;
2550
2551 case JOB_STOP:
2552 case JOB_RESTART:
2553 case JOB_TRY_RESTART:
2554
2555 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2556 job_finish_and_invalidate(j, JOB_DONE, true, false);
2557 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2558 unexpected = true;
2559 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2560 }
2561
2562 break;
2563
2564 default:
2565 assert_not_reached("Job type unknown");
2566 }
2567
2568 return unexpected;
2569 }
2570
2571 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2572 const char *reason;
2573 Manager *m;
2574
2575 assert(u);
2576 assert(os < _UNIT_ACTIVE_STATE_MAX);
2577 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2578
2579 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2580 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2581 * remounted this function will be called too! */
2582
2583 m = u->manager;
2584
2585 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2586 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2587 unit_add_to_dbus_queue(u);
2588
2589 /* Update timestamps for state changes */
2590 if (!MANAGER_IS_RELOADING(m)) {
2591 dual_timestamp_get(&u->state_change_timestamp);
2592
2593 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2594 u->inactive_exit_timestamp = u->state_change_timestamp;
2595 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2596 u->inactive_enter_timestamp = u->state_change_timestamp;
2597
2598 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2599 u->active_enter_timestamp = u->state_change_timestamp;
2600 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2601 u->active_exit_timestamp = u->state_change_timestamp;
2602 }
2603
2604 /* Keep track of failed units */
2605 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2606
2607 /* Make sure the cgroup and state files are always removed when we become inactive */
2608 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2609 unit_prune_cgroup(u);
2610 unit_unlink_state_files(u);
2611 }
2612
2613 unit_update_on_console(u);
2614
2615 if (!MANAGER_IS_RELOADING(m)) {
2616 bool unexpected;
2617
2618 /* Let's propagate state changes to the job */
2619 if (u->job)
2620 unexpected = unit_process_job(u->job, ns, flags);
2621 else
2622 unexpected = true;
2623
2624 /* If this state change happened without being requested by a job, then let's retroactively start or
2625 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2626 * additional jobs just because something is already activated. */
2627
2628 if (unexpected) {
2629 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2630 retroactively_start_dependencies(u);
2631 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2632 retroactively_stop_dependencies(u);
2633 }
2634
2635 /* stop unneeded units regardless if going down was expected or not */
2636 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2637 check_unneeded_dependencies(u);
2638
2639 if (ns != os && ns == UNIT_FAILED) {
2640 log_unit_debug(u, "Unit entered failed state.");
2641
2642 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2643 unit_start_on_failure(u);
2644 }
2645
2646 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2647 /* This unit just finished starting up */
2648
2649 unit_emit_audit_start(u);
2650 manager_send_unit_plymouth(m, u);
2651 }
2652
2653 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2654 /* This unit just stopped/failed. */
2655
2656 unit_emit_audit_stop(u, ns);
2657 unit_log_resources(u);
2658 }
2659 }
2660
2661 manager_recheck_journal(m);
2662 manager_recheck_dbus(m);
2663
2664 unit_trigger_notify(u);
2665
2666 if (!MANAGER_IS_RELOADING(m)) {
2667 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2668 unit_submit_to_stop_when_unneeded_queue(u);
2669
2670 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens when
2671 * something BindsTo= to a Type=oneshot unit, as these units go directly from starting to inactive,
2672 * without ever entering started.) */
2673 unit_check_binds_to(u);
2674
2675 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2676 reason = strjoina("unit ", u->id, " failed");
2677 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2678 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2679 reason = strjoina("unit ", u->id, " succeeded");
2680 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2681 }
2682 }
2683
2684 unit_add_to_gc_queue(u);
2685 }
2686
2687 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2688 int r;
2689
2690 assert(u);
2691 assert(pid_is_valid(pid));
2692
2693 /* Watch a specific PID */
2694
2695 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2696 * opportunity to remove any stalled references to this PID as they can be created
2697 * easily (when watching a process which is not our direct child). */
2698 if (exclusive)
2699 manager_unwatch_pid(u->manager, pid);
2700
2701 r = set_ensure_allocated(&u->pids, NULL);
2702 if (r < 0)
2703 return r;
2704
2705 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2706 if (r < 0)
2707 return r;
2708
2709 /* First try, let's add the unit keyed by "pid". */
2710 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2711 if (r == -EEXIST) {
2712 Unit **array;
2713 bool found = false;
2714 size_t n = 0;
2715
2716 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2717 * to an array of Units rather than just a Unit), lists us already. */
2718
2719 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2720 if (array)
2721 for (; array[n]; n++)
2722 if (array[n] == u)
2723 found = true;
2724
2725 if (found) /* Found it already? if so, do nothing */
2726 r = 0;
2727 else {
2728 Unit **new_array;
2729
2730 /* Allocate a new array */
2731 new_array = new(Unit*, n + 2);
2732 if (!new_array)
2733 return -ENOMEM;
2734
2735 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2736 new_array[n] = u;
2737 new_array[n+1] = NULL;
2738
2739 /* Add or replace the old array */
2740 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2741 if (r < 0) {
2742 free(new_array);
2743 return r;
2744 }
2745
2746 free(array);
2747 }
2748 } else if (r < 0)
2749 return r;
2750
2751 r = set_put(u->pids, PID_TO_PTR(pid));
2752 if (r < 0)
2753 return r;
2754
2755 return 0;
2756 }
2757
2758 void unit_unwatch_pid(Unit *u, pid_t pid) {
2759 Unit **array;
2760
2761 assert(u);
2762 assert(pid_is_valid(pid));
2763
2764 /* First let's drop the unit in case it's keyed as "pid". */
2765 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2766
2767 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2768 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2769 if (array) {
2770 size_t n, m = 0;
2771
2772 /* Let's iterate through the array, dropping our own entry */
2773 for (n = 0; array[n]; n++)
2774 if (array[n] != u)
2775 array[m++] = array[n];
2776 array[m] = NULL;
2777
2778 if (m == 0) {
2779 /* The array is now empty, remove the entire entry */
2780 assert_se(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2781 free(array);
2782 }
2783 }
2784
2785 (void) set_remove(u->pids, PID_TO_PTR(pid));
2786 }
2787
2788 void unit_unwatch_all_pids(Unit *u) {
2789 assert(u);
2790
2791 while (!set_isempty(u->pids))
2792 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2793
2794 u->pids = set_free(u->pids);
2795 }
2796
2797 static void unit_tidy_watch_pids(Unit *u) {
2798 pid_t except1, except2;
2799 Iterator i;
2800 void *e;
2801
2802 assert(u);
2803
2804 /* Cleans dead PIDs from our list */
2805
2806 except1 = unit_main_pid(u);
2807 except2 = unit_control_pid(u);
2808
2809 SET_FOREACH(e, u->pids, i) {
2810 pid_t pid = PTR_TO_PID(e);
2811
2812 if (pid == except1 || pid == except2)
2813 continue;
2814
2815 if (!pid_is_unwaited(pid))
2816 unit_unwatch_pid(u, pid);
2817 }
2818 }
2819
2820 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2821 Unit *u = userdata;
2822
2823 assert(s);
2824 assert(u);
2825
2826 unit_tidy_watch_pids(u);
2827 unit_watch_all_pids(u);
2828
2829 /* If the PID set is empty now, then let's finish this off. */
2830 unit_synthesize_cgroup_empty_event(u);
2831
2832 return 0;
2833 }
2834
2835 int unit_enqueue_rewatch_pids(Unit *u) {
2836 int r;
2837
2838 assert(u);
2839
2840 if (!u->cgroup_path)
2841 return -ENOENT;
2842
2843 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2844 if (r < 0)
2845 return r;
2846 if (r > 0) /* On unified we can use proper notifications */
2847 return 0;
2848
2849 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2850 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2851 * involves issuing kill(pid, 0) on all processes we watch. */
2852
2853 if (!u->rewatch_pids_event_source) {
2854 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2855
2856 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2857 if (r < 0)
2858 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2859
2860 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2861 if (r < 0)
2862 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
2863
2864 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2865
2866 u->rewatch_pids_event_source = TAKE_PTR(s);
2867 }
2868
2869 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2870 if (r < 0)
2871 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2872
2873 return 0;
2874 }
2875
2876 void unit_dequeue_rewatch_pids(Unit *u) {
2877 int r;
2878 assert(u);
2879
2880 if (!u->rewatch_pids_event_source)
2881 return;
2882
2883 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2884 if (r < 0)
2885 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2886
2887 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2888 }
2889
2890 bool unit_job_is_applicable(Unit *u, JobType j) {
2891 assert(u);
2892 assert(j >= 0 && j < _JOB_TYPE_MAX);
2893
2894 switch (j) {
2895
2896 case JOB_VERIFY_ACTIVE:
2897 case JOB_START:
2898 case JOB_NOP:
2899 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2900 * startable by us but may appear due to external events, and it thus makes sense to permit enqueuing
2901 * jobs for it. */
2902 return true;
2903
2904 case JOB_STOP:
2905 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2906 * external events), hence it makes no sense to permit enqueuing such a request either. */
2907 return !u->perpetual;
2908
2909 case JOB_RESTART:
2910 case JOB_TRY_RESTART:
2911 return unit_can_stop(u) && unit_can_start(u);
2912
2913 case JOB_RELOAD:
2914 case JOB_TRY_RELOAD:
2915 return unit_can_reload(u);
2916
2917 case JOB_RELOAD_OR_START:
2918 return unit_can_reload(u) && unit_can_start(u);
2919
2920 default:
2921 assert_not_reached("Invalid job type");
2922 }
2923 }
2924
2925 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
2926 assert(u);
2927
2928 /* Only warn about some unit types */
2929 if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
2930 return;
2931
2932 if (streq_ptr(u->id, other))
2933 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
2934 else
2935 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
2936 }
2937
2938 static int unit_add_dependency_hashmap(
2939 Hashmap **h,
2940 Unit *other,
2941 UnitDependencyMask origin_mask,
2942 UnitDependencyMask destination_mask) {
2943
2944 UnitDependencyInfo info;
2945 int r;
2946
2947 assert(h);
2948 assert(other);
2949 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
2950 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
2951 assert(origin_mask > 0 || destination_mask > 0);
2952
2953 r = hashmap_ensure_allocated(h, NULL);
2954 if (r < 0)
2955 return r;
2956
2957 assert_cc(sizeof(void*) == sizeof(info));
2958
2959 info.data = hashmap_get(*h, other);
2960 if (info.data) {
2961 /* Entry already exists. Add in our mask. */
2962
2963 if (FLAGS_SET(origin_mask, info.origin_mask) &&
2964 FLAGS_SET(destination_mask, info.destination_mask))
2965 return 0; /* NOP */
2966
2967 info.origin_mask |= origin_mask;
2968 info.destination_mask |= destination_mask;
2969
2970 r = hashmap_update(*h, other, info.data);
2971 } else {
2972 info = (UnitDependencyInfo) {
2973 .origin_mask = origin_mask,
2974 .destination_mask = destination_mask,
2975 };
2976
2977 r = hashmap_put(*h, other, info.data);
2978 }
2979 if (r < 0)
2980 return r;
2981
2982 return 1;
2983 }
2984
2985 int unit_add_dependency(
2986 Unit *u,
2987 UnitDependency d,
2988 Unit *other,
2989 bool add_reference,
2990 UnitDependencyMask mask) {
2991
2992 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
2993 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
2994 [UNIT_WANTS] = UNIT_WANTED_BY,
2995 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
2996 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
2997 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
2998 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
2999 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
3000 [UNIT_WANTED_BY] = UNIT_WANTS,
3001 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
3002 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
3003 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
3004 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
3005 [UNIT_BEFORE] = UNIT_AFTER,
3006 [UNIT_AFTER] = UNIT_BEFORE,
3007 [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
3008 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
3009 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
3010 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
3011 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
3012 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
3013 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
3014 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
3015 };
3016 Unit *original_u = u, *original_other = other;
3017 int r;
3018
3019 assert(u);
3020 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3021 assert(other);
3022
3023 u = unit_follow_merge(u);
3024 other = unit_follow_merge(other);
3025
3026 /* We won't allow dependencies on ourselves. We will not
3027 * consider them an error however. */
3028 if (u == other) {
3029 maybe_warn_about_dependency(original_u, original_other->id, d);
3030 return 0;
3031 }
3032
3033 if (d == UNIT_AFTER && UNIT_VTABLE(u)->refuse_after) {
3034 log_unit_warning(u, "Requested dependency After=%s ignored (%s units cannot be delayed).", other->id, unit_type_to_string(u->type));
3035 return 0;
3036 }
3037
3038 if (d == UNIT_BEFORE && UNIT_VTABLE(other)->refuse_after) {
3039 log_unit_warning(u, "Requested dependency Before=%s ignored (%s units cannot be delayed).", other->id, unit_type_to_string(other->type));
3040 return 0;
3041 }
3042
3043 if (d == UNIT_ON_FAILURE && !UNIT_VTABLE(u)->can_fail) {
3044 log_unit_warning(u, "Requested dependency OnFailure=%s ignored (%s units cannot fail).", other->id, unit_type_to_string(u->type));
3045 return 0;
3046 }
3047
3048 if (d == UNIT_TRIGGERS && !UNIT_VTABLE(u)->can_trigger)
3049 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3050 "Requested dependency Triggers=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(u->type));
3051 if (d == UNIT_TRIGGERED_BY && !UNIT_VTABLE(other)->can_trigger)
3052 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3053 "Requested dependency TriggeredBy=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(other->type));
3054
3055 r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0);
3056 if (r < 0)
3057 return r;
3058
3059 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
3060 r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask);
3061 if (r < 0)
3062 return r;
3063 }
3064
3065 if (add_reference) {
3066 r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0);
3067 if (r < 0)
3068 return r;
3069
3070 r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask);
3071 if (r < 0)
3072 return r;
3073 }
3074
3075 unit_add_to_dbus_queue(u);
3076 return 0;
3077 }
3078
3079 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
3080 int r;
3081
3082 assert(u);
3083
3084 r = unit_add_dependency(u, d, other, add_reference, mask);
3085 if (r < 0)
3086 return r;
3087
3088 return unit_add_dependency(u, e, other, add_reference, mask);
3089 }
3090
3091 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
3092 int r;
3093
3094 assert(u);
3095 assert(name);
3096 assert(buf);
3097 assert(ret);
3098
3099 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
3100 *buf = NULL;
3101 *ret = name;
3102 return 0;
3103 }
3104
3105 if (u->instance)
3106 r = unit_name_replace_instance(name, u->instance, buf);
3107 else {
3108 _cleanup_free_ char *i = NULL;
3109
3110 r = unit_name_to_prefix(u->id, &i);
3111 if (r < 0)
3112 return r;
3113
3114 r = unit_name_replace_instance(name, i, buf);
3115 }
3116 if (r < 0)
3117 return r;
3118
3119 *ret = *buf;
3120 return 0;
3121 }
3122
3123 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3124 _cleanup_free_ char *buf = NULL;
3125 Unit *other;
3126 int r;
3127
3128 assert(u);
3129 assert(name);
3130
3131 r = resolve_template(u, name, &buf, &name);
3132 if (r < 0)
3133 return r;
3134
3135 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3136 if (r < 0)
3137 return r;
3138
3139 return unit_add_dependency(u, d, other, add_reference, mask);
3140 }
3141
3142 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3143 _cleanup_free_ char *buf = NULL;
3144 Unit *other;
3145 int r;
3146
3147 assert(u);
3148 assert(name);
3149
3150 r = resolve_template(u, name, &buf, &name);
3151 if (r < 0)
3152 return r;
3153
3154 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3155 if (r < 0)
3156 return r;
3157
3158 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3159 }
3160
3161 int set_unit_path(const char *p) {
3162 /* This is mostly for debug purposes */
3163 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
3164 return -errno;
3165
3166 return 0;
3167 }
3168
3169 char *unit_dbus_path(Unit *u) {
3170 assert(u);
3171
3172 if (!u->id)
3173 return NULL;
3174
3175 return unit_dbus_path_from_name(u->id);
3176 }
3177
3178 char *unit_dbus_path_invocation_id(Unit *u) {
3179 assert(u);
3180
3181 if (sd_id128_is_null(u->invocation_id))
3182 return NULL;
3183
3184 return unit_dbus_path_from_name(u->invocation_id_string);
3185 }
3186
3187 int unit_set_slice(Unit *u, Unit *slice) {
3188 assert(u);
3189 assert(slice);
3190
3191 /* Sets the unit slice if it has not been set before. Is extra
3192 * careful, to only allow this for units that actually have a
3193 * cgroup context. Also, we don't allow to set this for slices
3194 * (since the parent slice is derived from the name). Make
3195 * sure the unit we set is actually a slice. */
3196
3197 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3198 return -EOPNOTSUPP;
3199
3200 if (u->type == UNIT_SLICE)
3201 return -EINVAL;
3202
3203 if (unit_active_state(u) != UNIT_INACTIVE)
3204 return -EBUSY;
3205
3206 if (slice->type != UNIT_SLICE)
3207 return -EINVAL;
3208
3209 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3210 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3211 return -EPERM;
3212
3213 if (UNIT_DEREF(u->slice) == slice)
3214 return 0;
3215
3216 /* Disallow slice changes if @u is already bound to cgroups */
3217 if (UNIT_ISSET(u->slice) && u->cgroup_realized)
3218 return -EBUSY;
3219
3220 unit_ref_set(&u->slice, u, slice);
3221 return 1;
3222 }
3223
3224 int unit_set_default_slice(Unit *u) {
3225 const char *slice_name;
3226 Unit *slice;
3227 int r;
3228
3229 assert(u);
3230
3231 if (UNIT_ISSET(u->slice))
3232 return 0;
3233
3234 if (u->instance) {
3235 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3236
3237 /* Implicitly place all instantiated units in their
3238 * own per-template slice */
3239
3240 r = unit_name_to_prefix(u->id, &prefix);
3241 if (r < 0)
3242 return r;
3243
3244 /* The prefix is already escaped, but it might include
3245 * "-" which has a special meaning for slice units,
3246 * hence escape it here extra. */
3247 escaped = unit_name_escape(prefix);
3248 if (!escaped)
3249 return -ENOMEM;
3250
3251 if (MANAGER_IS_SYSTEM(u->manager))
3252 slice_name = strjoina("system-", escaped, ".slice");
3253 else
3254 slice_name = strjoina(escaped, ".slice");
3255 } else
3256 slice_name =
3257 MANAGER_IS_SYSTEM(u->manager) && !unit_has_name(u, SPECIAL_INIT_SCOPE)
3258 ? SPECIAL_SYSTEM_SLICE
3259 : SPECIAL_ROOT_SLICE;
3260
3261 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3262 if (r < 0)
3263 return r;
3264
3265 return unit_set_slice(u, slice);
3266 }
3267
3268 const char *unit_slice_name(Unit *u) {
3269 assert(u);
3270
3271 if (!UNIT_ISSET(u->slice))
3272 return NULL;
3273
3274 return UNIT_DEREF(u->slice)->id;
3275 }
3276
3277 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3278 _cleanup_free_ char *t = NULL;
3279 int r;
3280
3281 assert(u);
3282 assert(type);
3283 assert(_found);
3284
3285 r = unit_name_change_suffix(u->id, type, &t);
3286 if (r < 0)
3287 return r;
3288 if (unit_has_name(u, t))
3289 return -EINVAL;
3290
3291 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3292 assert(r < 0 || *_found != u);
3293 return r;
3294 }
3295
3296 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3297 const char *new_owner;
3298 Unit *u = userdata;
3299 int r;
3300
3301 assert(message);
3302 assert(u);
3303
3304 r = sd_bus_message_read(message, "sss", NULL, NULL, &new_owner);
3305 if (r < 0) {
3306 bus_log_parse_error(r);
3307 return 0;
3308 }
3309
3310 if (UNIT_VTABLE(u)->bus_name_owner_change)
3311 UNIT_VTABLE(u)->bus_name_owner_change(u, empty_to_null(new_owner));
3312
3313 return 0;
3314 }
3315
3316 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3317 const sd_bus_error *e;
3318 const char *new_owner;
3319 Unit *u = userdata;
3320 int r;
3321
3322 assert(message);
3323 assert(u);
3324
3325 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3326
3327 e = sd_bus_message_get_error(message);
3328 if (e) {
3329 if (!sd_bus_error_has_name(e, "org.freedesktop.DBus.Error.NameHasNoOwner"))
3330 log_unit_error(u, "Unexpected error response from GetNameOwner(): %s", e->message);
3331
3332 new_owner = NULL;
3333 } else {
3334 r = sd_bus_message_read(message, "s", &new_owner);
3335 if (r < 0)
3336 return bus_log_parse_error(r);
3337
3338 assert(!isempty(new_owner));
3339 }
3340
3341 if (UNIT_VTABLE(u)->bus_name_owner_change)
3342 UNIT_VTABLE(u)->bus_name_owner_change(u, new_owner);
3343
3344 return 0;
3345 }
3346
3347 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3348 const char *match;
3349 int r;
3350
3351 assert(u);
3352 assert(bus);
3353 assert(name);
3354
3355 if (u->match_bus_slot || u->get_name_owner_slot)
3356 return -EBUSY;
3357
3358 match = strjoina("type='signal',"
3359 "sender='org.freedesktop.DBus',"
3360 "path='/org/freedesktop/DBus',"
3361 "interface='org.freedesktop.DBus',"
3362 "member='NameOwnerChanged',"
3363 "arg0='", name, "'");
3364
3365 r = sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3366 if (r < 0)
3367 return r;
3368
3369 r = sd_bus_call_method_async(
3370 bus,
3371 &u->get_name_owner_slot,
3372 "org.freedesktop.DBus",
3373 "/org/freedesktop/DBus",
3374 "org.freedesktop.DBus",
3375 "GetNameOwner",
3376 get_name_owner_handler,
3377 u,
3378 "s", name);
3379 if (r < 0) {
3380 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3381 return r;
3382 }
3383
3384 log_unit_debug(u, "Watching D-Bus name '%s'.", name);
3385 return 0;
3386 }
3387
3388 int unit_watch_bus_name(Unit *u, const char *name) {
3389 int r;
3390
3391 assert(u);
3392 assert(name);
3393
3394 /* Watch a specific name on the bus. We only support one unit
3395 * watching each name for now. */
3396
3397 if (u->manager->api_bus) {
3398 /* If the bus is already available, install the match directly.
3399 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3400 r = unit_install_bus_match(u, u->manager->api_bus, name);
3401 if (r < 0)
3402 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3403 }
3404
3405 r = hashmap_put(u->manager->watch_bus, name, u);
3406 if (r < 0) {
3407 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3408 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3409 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3410 }
3411
3412 return 0;
3413 }
3414
3415 void unit_unwatch_bus_name(Unit *u, const char *name) {
3416 assert(u);
3417 assert(name);
3418
3419 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3420 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3421 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3422 }
3423
3424 bool unit_can_serialize(Unit *u) {
3425 assert(u);
3426
3427 return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
3428 }
3429
3430 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
3431 _cleanup_free_ char *s = NULL;
3432 int r;
3433
3434 assert(f);
3435 assert(key);
3436
3437 if (mask == 0)
3438 return 0;
3439
3440 r = cg_mask_to_string(mask, &s);
3441 if (r < 0)
3442 return log_error_errno(r, "Failed to format cgroup mask: %m");
3443
3444 return serialize_item(f, key, s);
3445 }
3446
3447 static const char *const ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
3448 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
3449 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
3450 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
3451 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
3452 };
3453
3454 static const char *const io_accounting_metric_field_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3455 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
3456 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
3457 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
3458 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
3459 };
3460
3461 static const char *const io_accounting_metric_field_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3462 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
3463 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
3464 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
3465 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
3466 };
3467
3468 int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
3469 CGroupIPAccountingMetric m;
3470 int r;
3471
3472 assert(u);
3473 assert(f);
3474 assert(fds);
3475
3476 if (unit_can_serialize(u)) {
3477 r = UNIT_VTABLE(u)->serialize(u, f, fds);
3478 if (r < 0)
3479 return r;
3480 }
3481
3482 (void) serialize_dual_timestamp(f, "state-change-timestamp", &u->state_change_timestamp);
3483
3484 (void) serialize_dual_timestamp(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
3485 (void) serialize_dual_timestamp(f, "active-enter-timestamp", &u->active_enter_timestamp);
3486 (void) serialize_dual_timestamp(f, "active-exit-timestamp", &u->active_exit_timestamp);
3487 (void) serialize_dual_timestamp(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
3488
3489 (void) serialize_dual_timestamp(f, "condition-timestamp", &u->condition_timestamp);
3490 (void) serialize_dual_timestamp(f, "assert-timestamp", &u->assert_timestamp);
3491
3492 if (dual_timestamp_is_set(&u->condition_timestamp))
3493 (void) serialize_bool(f, "condition-result", u->condition_result);
3494
3495 if (dual_timestamp_is_set(&u->assert_timestamp))
3496 (void) serialize_bool(f, "assert-result", u->assert_result);
3497
3498 (void) serialize_bool(f, "transient", u->transient);
3499 (void) serialize_bool(f, "in-audit", u->in_audit);
3500
3501 (void) serialize_bool(f, "exported-invocation-id", u->exported_invocation_id);
3502 (void) serialize_bool(f, "exported-log-level-max", u->exported_log_level_max);
3503 (void) serialize_bool(f, "exported-log-extra-fields", u->exported_log_extra_fields);
3504 (void) serialize_bool(f, "exported-log-rate-limit-interval", u->exported_log_ratelimit_interval);
3505 (void) serialize_bool(f, "exported-log-rate-limit-burst", u->exported_log_ratelimit_burst);
3506
3507 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base);
3508 if (u->cpu_usage_last != NSEC_INFINITY)
3509 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last);
3510
3511 if (u->oom_kill_last > 0)
3512 (void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, u->oom_kill_last);
3513
3514 for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
3515 (void) serialize_item_format(f, io_accounting_metric_field_base[im], "%" PRIu64, u->io_accounting_base[im]);
3516
3517 if (u->io_accounting_last[im] != UINT64_MAX)
3518 (void) serialize_item_format(f, io_accounting_metric_field_last[im], "%" PRIu64, u->io_accounting_last[im]);
3519 }
3520
3521 if (u->cgroup_path)
3522 (void) serialize_item(f, "cgroup", u->cgroup_path);
3523
3524 (void) serialize_bool(f, "cgroup-realized", u->cgroup_realized);
3525 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask);
3526 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask);
3527 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", u->cgroup_invalidated_mask);
3528
3529 if (uid_is_valid(u->ref_uid))
3530 (void) serialize_item_format(f, "ref-uid", UID_FMT, u->ref_uid);
3531 if (gid_is_valid(u->ref_gid))
3532 (void) serialize_item_format(f, "ref-gid", GID_FMT, u->ref_gid);
3533
3534 if (!sd_id128_is_null(u->invocation_id))
3535 (void) serialize_item_format(f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id));
3536
3537 (void) serialize_item_format(f, "freezer-state", "%s", freezer_state_to_string(unit_freezer_state(u)));
3538
3539 bus_track_serialize(u->bus_track, f, "ref");
3540
3541 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
3542 uint64_t v;
3543
3544 r = unit_get_ip_accounting(u, m, &v);
3545 if (r >= 0)
3546 (void) serialize_item_format(f, ip_accounting_metric_field[m], "%" PRIu64, v);
3547 }
3548
3549 if (serialize_jobs) {
3550 if (u->job) {
3551 fputs("job\n", f);
3552 job_serialize(u->job, f);
3553 }
3554
3555 if (u->nop_job) {
3556 fputs("job\n", f);
3557 job_serialize(u->nop_job, f);
3558 }
3559 }
3560
3561 /* End marker */
3562 fputc('\n', f);
3563 return 0;
3564 }
3565
3566 static int unit_deserialize_job(Unit *u, FILE *f) {
3567 _cleanup_(job_freep) Job *j = NULL;
3568 int r;
3569
3570 assert(u);
3571 assert(f);
3572
3573 j = job_new_raw(u);
3574 if (!j)
3575 return log_oom();
3576
3577 r = job_deserialize(j, f);
3578 if (r < 0)
3579 return r;
3580
3581 r = job_install_deserialized(j);
3582 if (r < 0)
3583 return r;
3584
3585 TAKE_PTR(j);
3586 return 0;
3587 }
3588
3589 int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
3590 int r;
3591
3592 assert(u);
3593 assert(f);
3594 assert(fds);
3595
3596 for (;;) {
3597 _cleanup_free_ char *line = NULL;
3598 char *l, *v;
3599 ssize_t m;
3600 size_t k;
3601
3602 r = read_line(f, LONG_LINE_MAX, &line);
3603 if (r < 0)
3604 return log_error_errno(r, "Failed to read serialization line: %m");
3605 if (r == 0) /* eof */
3606 break;
3607
3608 l = strstrip(line);
3609 if (isempty(l)) /* End marker */
3610 break;
3611
3612 k = strcspn(l, "=");
3613
3614 if (l[k] == '=') {
3615 l[k] = 0;
3616 v = l+k+1;
3617 } else
3618 v = l+k;
3619
3620 if (streq(l, "job")) {
3621 if (v[0] == '\0') {
3622 /* New-style serialized job */
3623 r = unit_deserialize_job(u, f);
3624 if (r < 0)
3625 return r;
3626 } else /* Legacy for pre-44 */
3627 log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
3628 continue;
3629 } else if (streq(l, "state-change-timestamp")) {
3630 (void) deserialize_dual_timestamp(v, &u->state_change_timestamp);
3631 continue;
3632 } else if (streq(l, "inactive-exit-timestamp")) {
3633 (void) deserialize_dual_timestamp(v, &u->inactive_exit_timestamp);
3634 continue;
3635 } else if (streq(l, "active-enter-timestamp")) {
3636 (void) deserialize_dual_timestamp(v, &u->active_enter_timestamp);
3637 continue;
3638 } else if (streq(l, "active-exit-timestamp")) {
3639 (void) deserialize_dual_timestamp(v, &u->active_exit_timestamp);
3640 continue;
3641 } else if (streq(l, "inactive-enter-timestamp")) {
3642 (void) deserialize_dual_timestamp(v, &u->inactive_enter_timestamp);
3643 continue;
3644 } else if (streq(l, "condition-timestamp")) {
3645 (void) deserialize_dual_timestamp(v, &u->condition_timestamp);
3646 continue;
3647 } else if (streq(l, "assert-timestamp")) {
3648 (void) deserialize_dual_timestamp(v, &u->assert_timestamp);
3649 continue;
3650 } else if (streq(l, "condition-result")) {
3651
3652 r = parse_boolean(v);
3653 if (r < 0)
3654 log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
3655 else
3656 u->condition_result = r;
3657
3658 continue;
3659
3660 } else if (streq(l, "assert-result")) {
3661
3662 r = parse_boolean(v);
3663 if (r < 0)
3664 log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
3665 else
3666 u->assert_result = r;
3667
3668 continue;
3669
3670 } else if (streq(l, "transient")) {
3671
3672 r = parse_boolean(v);
3673 if (r < 0)
3674 log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
3675 else
3676 u->transient = r;
3677
3678 continue;
3679
3680 } else if (streq(l, "in-audit")) {
3681
3682 r = parse_boolean(v);
3683 if (r < 0)
3684 log_unit_debug(u, "Failed to parse in-audit bool %s, ignoring.", v);
3685 else
3686 u->in_audit = r;
3687
3688 continue;
3689
3690 } else if (streq(l, "exported-invocation-id")) {
3691
3692 r = parse_boolean(v);
3693 if (r < 0)
3694 log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v);
3695 else
3696 u->exported_invocation_id = r;
3697
3698 continue;
3699
3700 } else if (streq(l, "exported-log-level-max")) {
3701
3702 r = parse_boolean(v);
3703 if (r < 0)
3704 log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v);
3705 else
3706 u->exported_log_level_max = r;
3707
3708 continue;
3709
3710 } else if (streq(l, "exported-log-extra-fields")) {
3711
3712 r = parse_boolean(v);
3713 if (r < 0)
3714 log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v);
3715 else
3716 u->exported_log_extra_fields = r;
3717
3718 continue;
3719
3720 } else if (streq(l, "exported-log-rate-limit-interval")) {
3721
3722 r = parse_boolean(v);
3723 if (r < 0)
3724 log_unit_debug(u, "Failed to parse exported log rate limit interval %s, ignoring.", v);
3725 else
3726 u->exported_log_ratelimit_interval = r;
3727
3728 continue;
3729
3730 } else if (streq(l, "exported-log-rate-limit-burst")) {
3731
3732 r = parse_boolean(v);
3733 if (r < 0)
3734 log_unit_debug(u, "Failed to parse exported log rate limit burst %s, ignoring.", v);
3735 else
3736 u->exported_log_ratelimit_burst = r;
3737
3738 continue;
3739
3740 } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) {
3741
3742 r = safe_atou64(v, &u->cpu_usage_base);
3743 if (r < 0)
3744 log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v);
3745
3746 continue;
3747
3748 } else if (streq(l, "cpu-usage-last")) {
3749
3750 r = safe_atou64(v, &u->cpu_usage_last);
3751 if (r < 0)
3752 log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v);
3753
3754 continue;
3755
3756 } else if (streq(l, "oom-kill-last")) {
3757
3758 r = safe_atou64(v, &u->oom_kill_last);
3759 if (r < 0)
3760 log_unit_debug(u, "Failed to read OOM kill last %s, ignoring.", v);
3761
3762 continue;
3763
3764 } else if (streq(l, "cgroup")) {
3765
3766 r = unit_set_cgroup_path(u, v);
3767 if (r < 0)
3768 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
3769
3770 (void) unit_watch_cgroup(u);
3771 (void) unit_watch_cgroup_memory(u);
3772
3773 continue;
3774 } else if (streq(l, "cgroup-realized")) {
3775 int b;
3776
3777 b = parse_boolean(v);
3778 if (b < 0)
3779 log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
3780 else
3781 u->cgroup_realized = b;
3782
3783 continue;
3784
3785 } else if (streq(l, "cgroup-realized-mask")) {
3786
3787 r = cg_mask_from_string(v, &u->cgroup_realized_mask);
3788 if (r < 0)
3789 log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v);
3790 continue;
3791
3792 } else if (streq(l, "cgroup-enabled-mask")) {
3793
3794 r = cg_mask_from_string(v, &u->cgroup_enabled_mask);
3795 if (r < 0)
3796 log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v);
3797 continue;
3798
3799 } else if (streq(l, "cgroup-invalidated-mask")) {
3800
3801 r = cg_mask_from_string(v, &u->cgroup_invalidated_mask);
3802 if (r < 0)
3803 log_unit_debug(u, "Failed to parse cgroup-invalidated-mask %s, ignoring.", v);
3804 continue;
3805
3806 } else if (streq(l, "ref-uid")) {
3807 uid_t uid;
3808
3809 r = parse_uid(v, &uid);
3810 if (r < 0)
3811 log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v);
3812 else
3813 unit_ref_uid_gid(u, uid, GID_INVALID);
3814
3815 continue;
3816
3817 } else if (streq(l, "ref-gid")) {
3818 gid_t gid;
3819
3820 r = parse_gid(v, &gid);
3821 if (r < 0)
3822 log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v);
3823 else
3824 unit_ref_uid_gid(u, UID_INVALID, gid);
3825
3826 continue;
3827
3828 } else if (streq(l, "ref")) {
3829
3830 r = strv_extend(&u->deserialized_refs, v);
3831 if (r < 0)
3832 return log_oom();
3833
3834 continue;
3835 } else if (streq(l, "invocation-id")) {
3836 sd_id128_t id;
3837
3838 r = sd_id128_from_string(v, &id);
3839 if (r < 0)
3840 log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v);
3841 else {
3842 r = unit_set_invocation_id(u, id);
3843 if (r < 0)
3844 log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m");
3845 }
3846
3847 continue;
3848 } else if (streq(l, "freezer-state")) {
3849 FreezerState s;
3850
3851 s = freezer_state_from_string(v);
3852 if (s < 0)
3853 log_unit_debug(u, "Failed to deserialize freezer-state '%s', ignoring.", v);
3854 else
3855 u->freezer_state = s;
3856
3857 continue;
3858 }
3859
3860 /* Check if this is an IP accounting metric serialization field */
3861 m = string_table_lookup(ip_accounting_metric_field, ELEMENTSOF(ip_accounting_metric_field), l);
3862 if (m >= 0) {
3863 uint64_t c;
3864
3865 r = safe_atou64(v, &c);
3866 if (r < 0)
3867 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v);
3868 else
3869 u->ip_accounting_extra[m] = c;
3870 continue;
3871 }
3872
3873 m = string_table_lookup(io_accounting_metric_field_base, ELEMENTSOF(io_accounting_metric_field_base), l);
3874 if (m >= 0) {
3875 uint64_t c;
3876
3877 r = safe_atou64(v, &c);
3878 if (r < 0)
3879 log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", v);
3880 else
3881 u->io_accounting_base[m] = c;
3882 continue;
3883 }
3884
3885 m = string_table_lookup(io_accounting_metric_field_last, ELEMENTSOF(io_accounting_metric_field_last), l);
3886 if (m >= 0) {
3887 uint64_t c;
3888
3889 r = safe_atou64(v, &c);
3890 if (r < 0)
3891 log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", v);
3892 else
3893 u->io_accounting_last[m] = c;
3894 continue;
3895 }
3896
3897 if (unit_can_serialize(u)) {
3898 r = exec_runtime_deserialize_compat(u, l, v, fds);
3899 if (r < 0) {
3900 log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
3901 continue;
3902 }
3903
3904 /* Returns positive if key was handled by the call */
3905 if (r > 0)
3906 continue;
3907
3908 r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
3909 if (r < 0)
3910 log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
3911 }
3912 }
3913
3914 /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is
3915 * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from
3916 * before 228 where the base for timeouts was not persistent across reboots. */
3917
3918 if (!dual_timestamp_is_set(&u->state_change_timestamp))
3919 dual_timestamp_get(&u->state_change_timestamp);
3920
3921 /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied
3922 * after we are done. For that we invalidate anything already realized, so that we can realize it again. */
3923 unit_invalidate_cgroup(u, _CGROUP_MASK_ALL);
3924 unit_invalidate_cgroup_bpf(u);
3925
3926 return 0;
3927 }
3928
3929 int unit_deserialize_skip(FILE *f) {
3930 int r;
3931 assert(f);
3932
3933 /* Skip serialized data for this unit. We don't know what it is. */
3934
3935 for (;;) {
3936 _cleanup_free_ char *line = NULL;
3937 char *l;
3938
3939 r = read_line(f, LONG_LINE_MAX, &line);
3940 if (r < 0)
3941 return log_error_errno(r, "Failed to read serialization line: %m");
3942 if (r == 0)
3943 return 0;
3944
3945 l = strstrip(line);
3946
3947 /* End marker */
3948 if (isempty(l))
3949 return 1;
3950 }
3951 }
3952
3953 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
3954 _cleanup_free_ char *e = NULL;
3955 Unit *device;
3956 int r;
3957
3958 assert(u);
3959
3960 /* Adds in links to the device node that this unit is based on */
3961 if (isempty(what))
3962 return 0;
3963
3964 if (!is_device_path(what))
3965 return 0;
3966
3967 /* When device units aren't supported (such as in a container), don't create dependencies on them. */
3968 if (!unit_type_supported(UNIT_DEVICE))
3969 return 0;
3970
3971 r = unit_name_from_path(what, ".device", &e);
3972 if (r < 0)
3973 return r;
3974
3975 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3976 if (r < 0)
3977 return r;
3978
3979 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3980 dep = UNIT_BINDS_TO;
3981
3982 return unit_add_two_dependencies(u, UNIT_AFTER,
3983 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3984 device, true, mask);
3985 }
3986
3987 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask) {
3988 _cleanup_free_ char *escaped = NULL, *target = NULL;
3989 int r;
3990
3991 assert(u);
3992
3993 if (isempty(what))
3994 return 0;
3995
3996 if (!path_startswith(what, "/dev/"))
3997 return 0;
3998
3999 /* If we don't support devices, then also don't bother with blockdev@.target */
4000 if (!unit_type_supported(UNIT_DEVICE))
4001 return 0;
4002
4003 r = unit_name_path_escape(what, &escaped);
4004 if (r < 0)
4005 return r;
4006
4007 r = unit_name_build("blockdev", escaped, ".target", &target);
4008 if (r < 0)
4009 return r;
4010
4011 return unit_add_dependency_by_name(u, UNIT_AFTER, target, true, mask);
4012 }
4013
4014 int unit_coldplug(Unit *u) {
4015 int r = 0, q;
4016 char **i;
4017 Job *uj;
4018
4019 assert(u);
4020
4021 /* Make sure we don't enter a loop, when coldplugging recursively. */
4022 if (u->coldplugged)
4023 return 0;
4024
4025 u->coldplugged = true;
4026
4027 STRV_FOREACH(i, u->deserialized_refs) {
4028 q = bus_unit_track_add_name(u, *i);
4029 if (q < 0 && r >= 0)
4030 r = q;
4031 }
4032 u->deserialized_refs = strv_free(u->deserialized_refs);
4033
4034 if (UNIT_VTABLE(u)->coldplug) {
4035 q = UNIT_VTABLE(u)->coldplug(u);
4036 if (q < 0 && r >= 0)
4037 r = q;
4038 }
4039
4040 uj = u->job ?: u->nop_job;
4041 if (uj) {
4042 q = job_coldplug(uj);
4043 if (q < 0 && r >= 0)
4044 r = q;
4045 }
4046
4047 return r;
4048 }
4049
4050 void unit_catchup(Unit *u) {
4051 assert(u);
4052
4053 if (UNIT_VTABLE(u)->catchup)
4054 UNIT_VTABLE(u)->catchup(u);
4055 }
4056
4057 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
4058 struct stat st;
4059
4060 if (!path)
4061 return false;
4062
4063 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
4064 * are never out-of-date. */
4065 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
4066 return false;
4067
4068 if (stat(path, &st) < 0)
4069 /* What, cannot access this anymore? */
4070 return true;
4071
4072 if (path_masked)
4073 /* For masked files check if they are still so */
4074 return !null_or_empty(&st);
4075 else
4076 /* For non-empty files check the mtime */
4077 return timespec_load(&st.st_mtim) > mtime;
4078
4079 return false;
4080 }
4081
4082 bool unit_need_daemon_reload(Unit *u) {
4083 _cleanup_strv_free_ char **t = NULL;
4084 char **path;
4085
4086 assert(u);
4087
4088 /* For unit files, we allow masking… */
4089 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
4090 u->load_state == UNIT_MASKED))
4091 return true;
4092
4093 /* Source paths should not be masked… */
4094 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
4095 return true;
4096
4097 if (u->load_state == UNIT_LOADED)
4098 (void) unit_find_dropin_paths(u, &t);
4099 if (!strv_equal(u->dropin_paths, t))
4100 return true;
4101
4102 /* … any drop-ins that are masked are simply omitted from the list. */
4103 STRV_FOREACH(path, u->dropin_paths)
4104 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
4105 return true;
4106
4107 return false;
4108 }
4109
4110 void unit_reset_failed(Unit *u) {
4111 assert(u);
4112
4113 if (UNIT_VTABLE(u)->reset_failed)
4114 UNIT_VTABLE(u)->reset_failed(u);
4115
4116 ratelimit_reset(&u->start_ratelimit);
4117 u->start_limit_hit = false;
4118 }
4119
4120 Unit *unit_following(Unit *u) {
4121 assert(u);
4122
4123 if (UNIT_VTABLE(u)->following)
4124 return UNIT_VTABLE(u)->following(u);
4125
4126 return NULL;
4127 }
4128
4129 bool unit_stop_pending(Unit *u) {
4130 assert(u);
4131
4132 /* This call does check the current state of the unit. It's
4133 * hence useful to be called from state change calls of the
4134 * unit itself, where the state isn't updated yet. This is
4135 * different from unit_inactive_or_pending() which checks both
4136 * the current state and for a queued job. */
4137
4138 return unit_has_job_type(u, JOB_STOP);
4139 }
4140
4141 bool unit_inactive_or_pending(Unit *u) {
4142 assert(u);
4143
4144 /* Returns true if the unit is inactive or going down */
4145
4146 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
4147 return true;
4148
4149 if (unit_stop_pending(u))
4150 return true;
4151
4152 return false;
4153 }
4154
4155 bool unit_active_or_pending(Unit *u) {
4156 assert(u);
4157
4158 /* Returns true if the unit is active or going up */
4159
4160 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
4161 return true;
4162
4163 if (u->job &&
4164 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
4165 return true;
4166
4167 return false;
4168 }
4169
4170 bool unit_will_restart_default(Unit *u) {
4171 assert(u);
4172
4173 return unit_has_job_type(u, JOB_START);
4174 }
4175
4176 bool unit_will_restart(Unit *u) {
4177 assert(u);
4178
4179 if (!UNIT_VTABLE(u)->will_restart)
4180 return false;
4181
4182 return UNIT_VTABLE(u)->will_restart(u);
4183 }
4184
4185 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
4186 assert(u);
4187 assert(w >= 0 && w < _KILL_WHO_MAX);
4188 assert(SIGNAL_VALID(signo));
4189
4190 if (!UNIT_VTABLE(u)->kill)
4191 return -EOPNOTSUPP;
4192
4193 return UNIT_VTABLE(u)->kill(u, w, signo, error);
4194 }
4195
4196 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
4197 _cleanup_set_free_ Set *pid_set = NULL;
4198 int r;
4199
4200 pid_set = set_new(NULL);
4201 if (!pid_set)
4202 return NULL;
4203
4204 /* Exclude the main/control pids from being killed via the cgroup */
4205 if (main_pid > 0) {
4206 r = set_put(pid_set, PID_TO_PTR(main_pid));
4207 if (r < 0)
4208 return NULL;
4209 }
4210
4211 if (control_pid > 0) {
4212 r = set_put(pid_set, PID_TO_PTR(control_pid));
4213 if (r < 0)
4214 return NULL;
4215 }
4216
4217 return TAKE_PTR(pid_set);
4218 }
4219
4220 int unit_kill_common(
4221 Unit *u,
4222 KillWho who,
4223 int signo,
4224 pid_t main_pid,
4225 pid_t control_pid,
4226 sd_bus_error *error) {
4227
4228 int r = 0;
4229 bool killed = false;
4230
4231 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4232 if (main_pid < 0)
4233 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4234 else if (main_pid == 0)
4235 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4236 }
4237
4238 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4239 if (control_pid < 0)
4240 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4241 else if (control_pid == 0)
4242 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4243 }
4244
4245 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
4246 if (control_pid > 0) {
4247 if (kill(control_pid, signo) < 0)
4248 r = -errno;
4249 else
4250 killed = true;
4251 }
4252
4253 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
4254 if (main_pid > 0) {
4255 if (kill(main_pid, signo) < 0)
4256 r = -errno;
4257 else
4258 killed = true;
4259 }
4260
4261 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
4262 _cleanup_set_free_ Set *pid_set = NULL;
4263 int q;
4264
4265 /* Exclude the main/control pids from being killed via the cgroup */
4266 pid_set = unit_pid_set(main_pid, control_pid);
4267 if (!pid_set)
4268 return -ENOMEM;
4269
4270 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, NULL, NULL);
4271 if (q < 0 && !IN_SET(q, -EAGAIN, -ESRCH, -ENOENT))
4272 r = q;
4273 else
4274 killed = true;
4275 }
4276
4277 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL))
4278 return -ESRCH;
4279
4280 return r;
4281 }
4282
4283 int unit_following_set(Unit *u, Set **s) {
4284 assert(u);
4285 assert(s);
4286
4287 if (UNIT_VTABLE(u)->following_set)
4288 return UNIT_VTABLE(u)->following_set(u, s);
4289
4290 *s = NULL;
4291 return 0;
4292 }
4293
4294 UnitFileState unit_get_unit_file_state(Unit *u) {
4295 int r;
4296
4297 assert(u);
4298
4299 if (u->unit_file_state < 0 && u->fragment_path) {
4300 r = unit_file_get_state(
4301 u->manager->unit_file_scope,
4302 NULL,
4303 u->id,
4304 &u->unit_file_state);
4305 if (r < 0)
4306 u->unit_file_state = UNIT_FILE_BAD;
4307 }
4308
4309 return u->unit_file_state;
4310 }
4311
4312 int unit_get_unit_file_preset(Unit *u) {
4313 assert(u);
4314
4315 if (u->unit_file_preset < 0 && u->fragment_path)
4316 u->unit_file_preset = unit_file_query_preset(
4317 u->manager->unit_file_scope,
4318 NULL,
4319 basename(u->fragment_path),
4320 NULL);
4321
4322 return u->unit_file_preset;
4323 }
4324
4325 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4326 assert(ref);
4327 assert(source);
4328 assert(target);
4329
4330 if (ref->target)
4331 unit_ref_unset(ref);
4332
4333 ref->source = source;
4334 ref->target = target;
4335 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4336 return target;
4337 }
4338
4339 void unit_ref_unset(UnitRef *ref) {
4340 assert(ref);
4341
4342 if (!ref->target)
4343 return;
4344
4345 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4346 * be unreferenced now. */
4347 unit_add_to_gc_queue(ref->target);
4348
4349 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4350 ref->source = ref->target = NULL;
4351 }
4352
4353 static int user_from_unit_name(Unit *u, char **ret) {
4354
4355 static const uint8_t hash_key[] = {
4356 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4357 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4358 };
4359
4360 _cleanup_free_ char *n = NULL;
4361 int r;
4362
4363 r = unit_name_to_prefix(u->id, &n);
4364 if (r < 0)
4365 return r;
4366
4367 if (valid_user_group_name(n, 0)) {
4368 *ret = TAKE_PTR(n);
4369 return 0;
4370 }
4371
4372 /* If we can't use the unit name as a user name, then let's hash it and use that */
4373 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4374 return -ENOMEM;
4375
4376 return 0;
4377 }
4378
4379 int unit_patch_contexts(Unit *u) {
4380 CGroupContext *cc;
4381 ExecContext *ec;
4382 unsigned i;
4383 int r;
4384
4385 assert(u);
4386
4387 /* Patch in the manager defaults into the exec and cgroup
4388 * contexts, _after_ the rest of the settings have been
4389 * initialized */
4390
4391 ec = unit_get_exec_context(u);
4392 if (ec) {
4393 /* This only copies in the ones that need memory */
4394 for (i = 0; i < _RLIMIT_MAX; i++)
4395 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4396 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4397 if (!ec->rlimit[i])
4398 return -ENOMEM;
4399 }
4400
4401 if (MANAGER_IS_USER(u->manager) &&
4402 !ec->working_directory) {
4403
4404 r = get_home_dir(&ec->working_directory);
4405 if (r < 0)
4406 return r;
4407
4408 /* Allow user services to run, even if the
4409 * home directory is missing */
4410 ec->working_directory_missing_ok = true;
4411 }
4412
4413 if (ec->private_devices)
4414 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4415
4416 if (ec->protect_kernel_modules)
4417 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4418
4419 if (ec->protect_kernel_logs)
4420 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4421
4422 if (ec->protect_clock)
4423 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_SYS_TIME) | (UINT64_C(1) << CAP_WAKE_ALARM));
4424
4425 if (ec->dynamic_user) {
4426 if (!ec->user) {
4427 r = user_from_unit_name(u, &ec->user);
4428 if (r < 0)
4429 return r;
4430 }
4431
4432 if (!ec->group) {
4433 ec->group = strdup(ec->user);
4434 if (!ec->group)
4435 return -ENOMEM;
4436 }
4437
4438 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4439 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4440 * sandbox. */
4441
4442 ec->private_tmp = true;
4443 ec->remove_ipc = true;
4444 ec->protect_system = PROTECT_SYSTEM_STRICT;
4445 if (ec->protect_home == PROTECT_HOME_NO)
4446 ec->protect_home = PROTECT_HOME_READ_ONLY;
4447
4448 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4449 * them. */
4450 ec->no_new_privileges = true;
4451 ec->restrict_suid_sgid = true;
4452 }
4453 }
4454
4455 cc = unit_get_cgroup_context(u);
4456 if (cc && ec) {
4457
4458 if (ec->private_devices &&
4459 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4460 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4461
4462 if (ec->root_image &&
4463 (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow)) {
4464
4465 /* When RootImage= is specified, the following devices are touched. */
4466 r = cgroup_add_device_allow(cc, "/dev/loop-control", "rw");
4467 if (r < 0)
4468 return r;
4469
4470 r = cgroup_add_device_allow(cc, "block-loop", "rwm");
4471 if (r < 0)
4472 return r;
4473
4474 r = cgroup_add_device_allow(cc, "block-blkext", "rwm");
4475 if (r < 0)
4476 return r;
4477
4478 /* Make sure "block-loop" can be resolved, i.e. make sure "loop" shows up in /proc/devices */
4479 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "modprobe@loop.service", true, UNIT_DEPENDENCY_FILE);
4480 if (r < 0)
4481 return r;
4482 }
4483
4484 if (ec->protect_clock) {
4485 r = cgroup_add_device_allow(cc, "char-rtc", "r");
4486 if (r < 0)
4487 return r;
4488 }
4489 }
4490
4491 return 0;
4492 }
4493
4494 ExecContext *unit_get_exec_context(Unit *u) {
4495 size_t offset;
4496 assert(u);
4497
4498 if (u->type < 0)
4499 return NULL;
4500
4501 offset = UNIT_VTABLE(u)->exec_context_offset;
4502 if (offset <= 0)
4503 return NULL;
4504
4505 return (ExecContext*) ((uint8_t*) u + offset);
4506 }
4507
4508 KillContext *unit_get_kill_context(Unit *u) {
4509 size_t offset;
4510 assert(u);
4511
4512 if (u->type < 0)
4513 return NULL;
4514
4515 offset = UNIT_VTABLE(u)->kill_context_offset;
4516 if (offset <= 0)
4517 return NULL;
4518
4519 return (KillContext*) ((uint8_t*) u + offset);
4520 }
4521
4522 CGroupContext *unit_get_cgroup_context(Unit *u) {
4523 size_t offset;
4524
4525 if (u->type < 0)
4526 return NULL;
4527
4528 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4529 if (offset <= 0)
4530 return NULL;
4531
4532 return (CGroupContext*) ((uint8_t*) u + offset);
4533 }
4534
4535 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4536 size_t offset;
4537
4538 if (u->type < 0)
4539 return NULL;
4540
4541 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4542 if (offset <= 0)
4543 return NULL;
4544
4545 return *(ExecRuntime**) ((uint8_t*) u + offset);
4546 }
4547
4548 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4549 assert(u);
4550
4551 if (UNIT_WRITE_FLAGS_NOOP(flags))
4552 return NULL;
4553
4554 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4555 return u->manager->lookup_paths.transient;
4556
4557 if (flags & UNIT_PERSISTENT)
4558 return u->manager->lookup_paths.persistent_control;
4559
4560 if (flags & UNIT_RUNTIME)
4561 return u->manager->lookup_paths.runtime_control;
4562
4563 return NULL;
4564 }
4565
4566 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4567 char *ret = NULL;
4568
4569 if (!s)
4570 return NULL;
4571
4572 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4573 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4574 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4575 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4576 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4577 * allocations. */
4578
4579 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4580 ret = specifier_escape(s);
4581 if (!ret)
4582 return NULL;
4583
4584 s = ret;
4585 }
4586
4587 if (flags & UNIT_ESCAPE_C) {
4588 char *a;
4589
4590 a = cescape(s);
4591 free(ret);
4592 if (!a)
4593 return NULL;
4594
4595 ret = a;
4596 }
4597
4598 if (buf) {
4599 *buf = ret;
4600 return ret ?: (char*) s;
4601 }
4602
4603 return ret ?: strdup(s);
4604 }
4605
4606 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4607 _cleanup_free_ char *result = NULL;
4608 size_t n = 0, allocated = 0;
4609 char **i;
4610
4611 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4612 * way suitable for ExecStart= stanzas */
4613
4614 STRV_FOREACH(i, l) {
4615 _cleanup_free_ char *buf = NULL;
4616 const char *p;
4617 size_t a;
4618 char *q;
4619
4620 p = unit_escape_setting(*i, flags, &buf);
4621 if (!p)
4622 return NULL;
4623
4624 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4625 if (!GREEDY_REALLOC(result, allocated, n + a + 1))
4626 return NULL;
4627
4628 q = result + n;
4629 if (n > 0)
4630 *(q++) = ' ';
4631
4632 *(q++) = '"';
4633 q = stpcpy(q, p);
4634 *(q++) = '"';
4635
4636 n += a;
4637 }
4638
4639 if (!GREEDY_REALLOC(result, allocated, n + 1))
4640 return NULL;
4641
4642 result[n] = 0;
4643
4644 return TAKE_PTR(result);
4645 }
4646
4647 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4648 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4649 const char *dir, *wrapped;
4650 int r;
4651
4652 assert(u);
4653 assert(name);
4654 assert(data);
4655
4656 if (UNIT_WRITE_FLAGS_NOOP(flags))
4657 return 0;
4658
4659 data = unit_escape_setting(data, flags, &escaped);
4660 if (!data)
4661 return -ENOMEM;
4662
4663 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4664 * previous section header is the same */
4665
4666 if (flags & UNIT_PRIVATE) {
4667 if (!UNIT_VTABLE(u)->private_section)
4668 return -EINVAL;
4669
4670 if (!u->transient_file || u->last_section_private < 0)
4671 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4672 else if (u->last_section_private == 0)
4673 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4674 } else {
4675 if (!u->transient_file || u->last_section_private < 0)
4676 data = strjoina("[Unit]\n", data);
4677 else if (u->last_section_private > 0)
4678 data = strjoina("\n[Unit]\n", data);
4679 }
4680
4681 if (u->transient_file) {
4682 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4683 * write to the transient unit file. */
4684 fputs(data, u->transient_file);
4685
4686 if (!endswith(data, "\n"))
4687 fputc('\n', u->transient_file);
4688
4689 /* Remember which section we wrote this entry to */
4690 u->last_section_private = !!(flags & UNIT_PRIVATE);
4691 return 0;
4692 }
4693
4694 dir = unit_drop_in_dir(u, flags);
4695 if (!dir)
4696 return -EINVAL;
4697
4698 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4699 "# or an equivalent operation. Do not edit.\n",
4700 data,
4701 "\n");
4702
4703 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4704 if (r < 0)
4705 return r;
4706
4707 (void) mkdir_p_label(p, 0755);
4708
4709 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4710 * recreate the cache after every drop-in we write. */
4711 if (u->manager->unit_path_cache) {
4712 r = set_put_strdup(&u->manager->unit_path_cache, p);
4713 if (r < 0)
4714 return r;
4715 }
4716
4717 r = write_string_file_atomic_label(q, wrapped);
4718 if (r < 0)
4719 return r;
4720
4721 r = strv_push(&u->dropin_paths, q);
4722 if (r < 0)
4723 return r;
4724 q = NULL;
4725
4726 strv_uniq(u->dropin_paths);
4727
4728 u->dropin_mtime = now(CLOCK_REALTIME);
4729
4730 return 0;
4731 }
4732
4733 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4734 _cleanup_free_ char *p = NULL;
4735 va_list ap;
4736 int r;
4737
4738 assert(u);
4739 assert(name);
4740 assert(format);
4741
4742 if (UNIT_WRITE_FLAGS_NOOP(flags))
4743 return 0;
4744
4745 va_start(ap, format);
4746 r = vasprintf(&p, format, ap);
4747 va_end(ap);
4748
4749 if (r < 0)
4750 return -ENOMEM;
4751
4752 return unit_write_setting(u, flags, name, p);
4753 }
4754
4755 int unit_make_transient(Unit *u) {
4756 _cleanup_free_ char *path = NULL;
4757 FILE *f;
4758
4759 assert(u);
4760
4761 if (!UNIT_VTABLE(u)->can_transient)
4762 return -EOPNOTSUPP;
4763
4764 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4765
4766 path = path_join(u->manager->lookup_paths.transient, u->id);
4767 if (!path)
4768 return -ENOMEM;
4769
4770 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4771 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4772
4773 RUN_WITH_UMASK(0022) {
4774 f = fopen(path, "we");
4775 if (!f)
4776 return -errno;
4777 }
4778
4779 safe_fclose(u->transient_file);
4780 u->transient_file = f;
4781
4782 free_and_replace(u->fragment_path, path);
4783
4784 u->source_path = mfree(u->source_path);
4785 u->dropin_paths = strv_free(u->dropin_paths);
4786 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4787
4788 u->load_state = UNIT_STUB;
4789 u->load_error = 0;
4790 u->transient = true;
4791
4792 unit_add_to_dbus_queue(u);
4793 unit_add_to_gc_queue(u);
4794
4795 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4796 u->transient_file);
4797
4798 return 0;
4799 }
4800
4801 static int log_kill(pid_t pid, int sig, void *userdata) {
4802 _cleanup_free_ char *comm = NULL;
4803
4804 (void) get_process_comm(pid, &comm);
4805
4806 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4807 only, like for example systemd's own PAM stub process. */
4808 if (comm && comm[0] == '(')
4809 return 0;
4810
4811 log_unit_notice(userdata,
4812 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4813 pid,
4814 strna(comm),
4815 signal_to_string(sig));
4816
4817 return 1;
4818 }
4819
4820 static int operation_to_signal(const KillContext *c, KillOperation k, bool *noteworthy) {
4821 assert(c);
4822
4823 switch (k) {
4824
4825 case KILL_TERMINATE:
4826 case KILL_TERMINATE_AND_LOG:
4827 *noteworthy = false;
4828 return c->kill_signal;
4829
4830 case KILL_RESTART:
4831 *noteworthy = false;
4832 return restart_kill_signal(c);
4833
4834 case KILL_KILL:
4835 *noteworthy = true;
4836 return c->final_kill_signal;
4837
4838 case KILL_WATCHDOG:
4839 *noteworthy = true;
4840 return c->watchdog_signal;
4841
4842 default:
4843 assert_not_reached("KillOperation unknown");
4844 }
4845 }
4846
4847 int unit_kill_context(
4848 Unit *u,
4849 KillContext *c,
4850 KillOperation k,
4851 pid_t main_pid,
4852 pid_t control_pid,
4853 bool main_pid_alien) {
4854
4855 bool wait_for_exit = false, send_sighup;
4856 cg_kill_log_func_t log_func = NULL;
4857 int sig, r;
4858
4859 assert(u);
4860 assert(c);
4861
4862 /* Kill the processes belonging to this unit, in preparation for shutting the unit down.
4863 * Returns > 0 if we killed something worth waiting for, 0 otherwise. */
4864
4865 if (c->kill_mode == KILL_NONE)
4866 return 0;
4867
4868 bool noteworthy;
4869 sig = operation_to_signal(c, k, &noteworthy);
4870 if (noteworthy)
4871 log_func = log_kill;
4872
4873 send_sighup =
4874 c->send_sighup &&
4875 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4876 sig != SIGHUP;
4877
4878 if (main_pid > 0) {
4879 if (log_func)
4880 log_func(main_pid, sig, u);
4881
4882 r = kill_and_sigcont(main_pid, sig);
4883 if (r < 0 && r != -ESRCH) {
4884 _cleanup_free_ char *comm = NULL;
4885 (void) get_process_comm(main_pid, &comm);
4886
4887 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
4888 } else {
4889 if (!main_pid_alien)
4890 wait_for_exit = true;
4891
4892 if (r != -ESRCH && send_sighup)
4893 (void) kill(main_pid, SIGHUP);
4894 }
4895 }
4896
4897 if (control_pid > 0) {
4898 if (log_func)
4899 log_func(control_pid, sig, u);
4900
4901 r = kill_and_sigcont(control_pid, sig);
4902 if (r < 0 && r != -ESRCH) {
4903 _cleanup_free_ char *comm = NULL;
4904 (void) get_process_comm(control_pid, &comm);
4905
4906 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
4907 } else {
4908 wait_for_exit = true;
4909
4910 if (r != -ESRCH && send_sighup)
4911 (void) kill(control_pid, SIGHUP);
4912 }
4913 }
4914
4915 if (u->cgroup_path &&
4916 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4917 _cleanup_set_free_ Set *pid_set = NULL;
4918
4919 /* Exclude the main/control pids from being killed via the cgroup */
4920 pid_set = unit_pid_set(main_pid, control_pid);
4921 if (!pid_set)
4922 return -ENOMEM;
4923
4924 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4925 sig,
4926 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4927 pid_set,
4928 log_func, u);
4929 if (r < 0) {
4930 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4931 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
4932
4933 } else if (r > 0) {
4934
4935 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4936 * we are running in a container or if this is a delegation unit, simply because cgroup
4937 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4938 * of containers it can be confused easily by left-over directories in the cgroup — which
4939 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4940 * there we get proper events. Hence rely on them. */
4941
4942 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4943 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4944 wait_for_exit = true;
4945
4946 if (send_sighup) {
4947 set_free(pid_set);
4948
4949 pid_set = unit_pid_set(main_pid, control_pid);
4950 if (!pid_set)
4951 return -ENOMEM;
4952
4953 cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4954 SIGHUP,
4955 CGROUP_IGNORE_SELF,
4956 pid_set,
4957 NULL, NULL);
4958 }
4959 }
4960 }
4961
4962 return wait_for_exit;
4963 }
4964
4965 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4966 _cleanup_free_ char *p = NULL;
4967 UnitDependencyInfo di;
4968 int r;
4969
4970 assert(u);
4971 assert(path);
4972
4973 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in
4974 * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to
4975 * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily
4976 * determine which units to make themselves a dependency of. */
4977
4978 if (!path_is_absolute(path))
4979 return -EINVAL;
4980
4981 r = hashmap_ensure_allocated(&u->requires_mounts_for, &path_hash_ops);
4982 if (r < 0)
4983 return r;
4984
4985 p = strdup(path);
4986 if (!p)
4987 return -ENOMEM;
4988
4989 path = path_simplify(p, true);
4990
4991 if (!path_is_normalized(path))
4992 return -EPERM;
4993
4994 if (hashmap_contains(u->requires_mounts_for, path))
4995 return 0;
4996
4997 di = (UnitDependencyInfo) {
4998 .origin_mask = mask
4999 };
5000
5001 r = hashmap_put(u->requires_mounts_for, path, di.data);
5002 if (r < 0)
5003 return r;
5004 p = NULL;
5005
5006 char prefix[strlen(path) + 1];
5007 PATH_FOREACH_PREFIX_MORE(prefix, path) {
5008 Set *x;
5009
5010 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
5011 if (!x) {
5012 _cleanup_free_ char *q = NULL;
5013
5014 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
5015 if (r < 0)
5016 return r;
5017
5018 q = strdup(prefix);
5019 if (!q)
5020 return -ENOMEM;
5021
5022 x = set_new(NULL);
5023 if (!x)
5024 return -ENOMEM;
5025
5026 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
5027 if (r < 0) {
5028 set_free(x);
5029 return r;
5030 }
5031 q = NULL;
5032 }
5033
5034 r = set_put(x, u);
5035 if (r < 0)
5036 return r;
5037 }
5038
5039 return 0;
5040 }
5041
5042 int unit_setup_exec_runtime(Unit *u) {
5043 ExecRuntime **rt;
5044 size_t offset;
5045 Unit *other;
5046 Iterator i;
5047 void *v;
5048 int r;
5049
5050 offset = UNIT_VTABLE(u)->exec_runtime_offset;
5051 assert(offset > 0);
5052
5053 /* Check if there already is an ExecRuntime for this unit? */
5054 rt = (ExecRuntime**) ((uint8_t*) u + offset);
5055 if (*rt)
5056 return 0;
5057
5058 /* Try to get it from somebody else */
5059 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) {
5060 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
5061 if (r == 1)
5062 return 1;
5063 }
5064
5065 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
5066 }
5067
5068 int unit_setup_dynamic_creds(Unit *u) {
5069 ExecContext *ec;
5070 DynamicCreds *dcreds;
5071 size_t offset;
5072
5073 assert(u);
5074
5075 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
5076 assert(offset > 0);
5077 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
5078
5079 ec = unit_get_exec_context(u);
5080 assert(ec);
5081
5082 if (!ec->dynamic_user)
5083 return 0;
5084
5085 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
5086 }
5087
5088 bool unit_type_supported(UnitType t) {
5089 if (_unlikely_(t < 0))
5090 return false;
5091 if (_unlikely_(t >= _UNIT_TYPE_MAX))
5092 return false;
5093
5094 if (!unit_vtable[t]->supported)
5095 return true;
5096
5097 return unit_vtable[t]->supported();
5098 }
5099
5100 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
5101 int r;
5102
5103 assert(u);
5104 assert(where);
5105
5106 r = dir_is_empty(where);
5107 if (r > 0 || r == -ENOTDIR)
5108 return;
5109 if (r < 0) {
5110 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
5111 return;
5112 }
5113
5114 log_struct(LOG_NOTICE,
5115 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5116 LOG_UNIT_ID(u),
5117 LOG_UNIT_INVOCATION_ID(u),
5118 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
5119 "WHERE=%s", where);
5120 }
5121
5122 int unit_fail_if_noncanonical(Unit *u, const char* where) {
5123 _cleanup_free_ char *canonical_where = NULL;
5124 int r;
5125
5126 assert(u);
5127 assert(where);
5128
5129 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
5130 if (r < 0) {
5131 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
5132 return 0;
5133 }
5134
5135 /* We will happily ignore a trailing slash (or any redundant slashes) */
5136 if (path_equal(where, canonical_where))
5137 return 0;
5138
5139 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
5140 log_struct(LOG_ERR,
5141 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5142 LOG_UNIT_ID(u),
5143 LOG_UNIT_INVOCATION_ID(u),
5144 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
5145 "WHERE=%s", where);
5146
5147 return -ELOOP;
5148 }
5149
5150 bool unit_is_pristine(Unit *u) {
5151 assert(u);
5152
5153 /* Check if the unit already exists or is already around,
5154 * in a number of different ways. Note that to cater for unit
5155 * types such as slice, we are generally fine with units that
5156 * are marked UNIT_LOADED even though nothing was actually
5157 * loaded, as those unit types don't require a file on disk. */
5158
5159 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
5160 u->fragment_path ||
5161 u->source_path ||
5162 !strv_isempty(u->dropin_paths) ||
5163 u->job ||
5164 u->merged_into);
5165 }
5166
5167 pid_t unit_control_pid(Unit *u) {
5168 assert(u);
5169
5170 if (UNIT_VTABLE(u)->control_pid)
5171 return UNIT_VTABLE(u)->control_pid(u);
5172
5173 return 0;
5174 }
5175
5176 pid_t unit_main_pid(Unit *u) {
5177 assert(u);
5178
5179 if (UNIT_VTABLE(u)->main_pid)
5180 return UNIT_VTABLE(u)->main_pid(u);
5181
5182 return 0;
5183 }
5184
5185 static void unit_unref_uid_internal(
5186 Unit *u,
5187 uid_t *ref_uid,
5188 bool destroy_now,
5189 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
5190
5191 assert(u);
5192 assert(ref_uid);
5193 assert(_manager_unref_uid);
5194
5195 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
5196 * gid_t are actually the same time, with the same validity rules.
5197 *
5198 * Drops a reference to UID/GID from a unit. */
5199
5200 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5201 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5202
5203 if (!uid_is_valid(*ref_uid))
5204 return;
5205
5206 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
5207 *ref_uid = UID_INVALID;
5208 }
5209
5210 static void unit_unref_uid(Unit *u, bool destroy_now) {
5211 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
5212 }
5213
5214 static void unit_unref_gid(Unit *u, bool destroy_now) {
5215 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
5216 }
5217
5218 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5219 assert(u);
5220
5221 unit_unref_uid(u, destroy_now);
5222 unit_unref_gid(u, destroy_now);
5223 }
5224
5225 static int unit_ref_uid_internal(
5226 Unit *u,
5227 uid_t *ref_uid,
5228 uid_t uid,
5229 bool clean_ipc,
5230 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
5231
5232 int r;
5233
5234 assert(u);
5235 assert(ref_uid);
5236 assert(uid_is_valid(uid));
5237 assert(_manager_ref_uid);
5238
5239 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
5240 * are actually the same type, and have the same validity rules.
5241 *
5242 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5243 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5244 * drops to zero. */
5245
5246 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5247 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5248
5249 if (*ref_uid == uid)
5250 return 0;
5251
5252 if (uid_is_valid(*ref_uid)) /* Already set? */
5253 return -EBUSY;
5254
5255 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5256 if (r < 0)
5257 return r;
5258
5259 *ref_uid = uid;
5260 return 1;
5261 }
5262
5263 static int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5264 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5265 }
5266
5267 static int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5268 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5269 }
5270
5271 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5272 int r = 0, q = 0;
5273
5274 assert(u);
5275
5276 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5277
5278 if (uid_is_valid(uid)) {
5279 r = unit_ref_uid(u, uid, clean_ipc);
5280 if (r < 0)
5281 return r;
5282 }
5283
5284 if (gid_is_valid(gid)) {
5285 q = unit_ref_gid(u, gid, clean_ipc);
5286 if (q < 0) {
5287 if (r > 0)
5288 unit_unref_uid(u, false);
5289
5290 return q;
5291 }
5292 }
5293
5294 return r > 0 || q > 0;
5295 }
5296
5297 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5298 ExecContext *c;
5299 int r;
5300
5301 assert(u);
5302
5303 c = unit_get_exec_context(u);
5304
5305 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5306 if (r < 0)
5307 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5308
5309 return r;
5310 }
5311
5312 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5313 int r;
5314
5315 assert(u);
5316
5317 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5318 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5319 * objects when no service references the UID/GID anymore. */
5320
5321 r = unit_ref_uid_gid(u, uid, gid);
5322 if (r > 0)
5323 unit_add_to_dbus_queue(u);
5324 }
5325
5326 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
5327 int r;
5328
5329 assert(u);
5330
5331 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
5332
5333 if (sd_id128_equal(u->invocation_id, id))
5334 return 0;
5335
5336 if (!sd_id128_is_null(u->invocation_id))
5337 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
5338
5339 if (sd_id128_is_null(id)) {
5340 r = 0;
5341 goto reset;
5342 }
5343
5344 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
5345 if (r < 0)
5346 goto reset;
5347
5348 u->invocation_id = id;
5349 sd_id128_to_string(id, u->invocation_id_string);
5350
5351 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
5352 if (r < 0)
5353 goto reset;
5354
5355 return 0;
5356
5357 reset:
5358 u->invocation_id = SD_ID128_NULL;
5359 u->invocation_id_string[0] = 0;
5360 return r;
5361 }
5362
5363 int unit_acquire_invocation_id(Unit *u) {
5364 sd_id128_t id;
5365 int r;
5366
5367 assert(u);
5368
5369 r = sd_id128_randomize(&id);
5370 if (r < 0)
5371 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5372
5373 r = unit_set_invocation_id(u, id);
5374 if (r < 0)
5375 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5376
5377 unit_add_to_dbus_queue(u);
5378 return 0;
5379 }
5380
5381 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5382 int r;
5383
5384 assert(u);
5385 assert(p);
5386
5387 /* Copy parameters from manager */
5388 r = manager_get_effective_environment(u->manager, &p->environment);
5389 if (r < 0)
5390 return r;
5391
5392 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5393 p->cgroup_supported = u->manager->cgroup_supported;
5394 p->prefix = u->manager->prefix;
5395 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5396
5397 /* Copy parameters from unit */
5398 p->cgroup_path = u->cgroup_path;
5399 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5400
5401 return 0;
5402 }
5403
5404 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5405 int r;
5406
5407 assert(u);
5408 assert(ret);
5409
5410 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5411 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5412
5413 (void) unit_realize_cgroup(u);
5414
5415 r = safe_fork(name, FORK_REOPEN_LOG, ret);
5416 if (r != 0)
5417 return r;
5418
5419 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1);
5420 (void) ignore_signals(SIGPIPE, -1);
5421
5422 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5423
5424 if (u->cgroup_path) {
5425 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5426 if (r < 0) {
5427 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5428 _exit(EXIT_CGROUP);
5429 }
5430 }
5431
5432 return 0;
5433 }
5434
5435 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid) {
5436 pid_t pid;
5437 int r;
5438
5439 assert(u);
5440 assert(ret_pid);
5441
5442 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5443 if (r < 0)
5444 return r;
5445 if (r == 0) {
5446 int ret = EXIT_SUCCESS;
5447 char **i;
5448
5449 STRV_FOREACH(i, paths) {
5450 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5451 if (r < 0) {
5452 log_error_errno(r, "Failed to remove '%s': %m", *i);
5453 ret = EXIT_FAILURE;
5454 }
5455 }
5456
5457 _exit(ret);
5458 }
5459
5460 r = unit_watch_pid(u, pid, true);
5461 if (r < 0)
5462 return r;
5463
5464 *ret_pid = pid;
5465 return 0;
5466 }
5467
5468 static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) {
5469 assert(u);
5470 assert(d >= 0);
5471 assert(d < _UNIT_DEPENDENCY_MAX);
5472 assert(other);
5473
5474 if (di.origin_mask == 0 && di.destination_mask == 0) {
5475 /* No bit set anymore, let's drop the whole entry */
5476 assert_se(hashmap_remove(u->dependencies[d], other));
5477 log_unit_debug(u, "lost dependency %s=%s", unit_dependency_to_string(d), other->id);
5478 } else
5479 /* Mask was reduced, let's update the entry */
5480 assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0);
5481 }
5482
5483 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5484 UnitDependency d;
5485
5486 assert(u);
5487
5488 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5489
5490 if (mask == 0)
5491 return;
5492
5493 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
5494 bool done;
5495
5496 do {
5497 UnitDependencyInfo di;
5498 Unit *other;
5499 Iterator i;
5500
5501 done = true;
5502
5503 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
5504 UnitDependency q;
5505
5506 if ((di.origin_mask & ~mask) == di.origin_mask)
5507 continue;
5508 di.origin_mask &= ~mask;
5509 unit_update_dependency_mask(u, d, other, di);
5510
5511 /* We updated the dependency from our unit to the other unit now. But most dependencies
5512 * imply a reverse dependency. Hence, let's delete that one too. For that we go through
5513 * all dependency types on the other unit and delete all those which point to us and
5514 * have the right mask set. */
5515
5516 for (q = 0; q < _UNIT_DEPENDENCY_MAX; q++) {
5517 UnitDependencyInfo dj;
5518
5519 dj.data = hashmap_get(other->dependencies[q], u);
5520 if ((dj.destination_mask & ~mask) == dj.destination_mask)
5521 continue;
5522 dj.destination_mask &= ~mask;
5523
5524 unit_update_dependency_mask(other, q, u, dj);
5525 }
5526
5527 unit_add_to_gc_queue(other);
5528
5529 done = false;
5530 break;
5531 }
5532
5533 } while (!done);
5534 }
5535 }
5536
5537 static int unit_get_invocation_path(Unit *u, char **ret) {
5538 char *p;
5539 int r;
5540
5541 assert(u);
5542 assert(ret);
5543
5544 if (MANAGER_IS_SYSTEM(u->manager))
5545 p = strjoin("/run/systemd/units/invocation:", u->id);
5546 else {
5547 _cleanup_free_ char *user_path = NULL;
5548 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5549 if (r < 0)
5550 return r;
5551 p = strjoin(user_path, u->id);
5552 }
5553
5554 if (!p)
5555 return -ENOMEM;
5556
5557 *ret = p;
5558 return 0;
5559 }
5560
5561 static int unit_export_invocation_id(Unit *u) {
5562 _cleanup_free_ char *p = NULL;
5563 int r;
5564
5565 assert(u);
5566
5567 if (u->exported_invocation_id)
5568 return 0;
5569
5570 if (sd_id128_is_null(u->invocation_id))
5571 return 0;
5572
5573 r = unit_get_invocation_path(u, &p);
5574 if (r < 0)
5575 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5576
5577 r = symlink_atomic(u->invocation_id_string, p);
5578 if (r < 0)
5579 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5580
5581 u->exported_invocation_id = true;
5582 return 0;
5583 }
5584
5585 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5586 const char *p;
5587 char buf[2];
5588 int r;
5589
5590 assert(u);
5591 assert(c);
5592
5593 if (u->exported_log_level_max)
5594 return 0;
5595
5596 if (c->log_level_max < 0)
5597 return 0;
5598
5599 assert(c->log_level_max <= 7);
5600
5601 buf[0] = '0' + c->log_level_max;
5602 buf[1] = 0;
5603
5604 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5605 r = symlink_atomic(buf, p);
5606 if (r < 0)
5607 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5608
5609 u->exported_log_level_max = true;
5610 return 0;
5611 }
5612
5613 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5614 _cleanup_close_ int fd = -1;
5615 struct iovec *iovec;
5616 const char *p;
5617 char *pattern;
5618 le64_t *sizes;
5619 ssize_t n;
5620 size_t i;
5621 int r;
5622
5623 if (u->exported_log_extra_fields)
5624 return 0;
5625
5626 if (c->n_log_extra_fields <= 0)
5627 return 0;
5628
5629 sizes = newa(le64_t, c->n_log_extra_fields);
5630 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5631
5632 for (i = 0; i < c->n_log_extra_fields; i++) {
5633 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5634
5635 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5636 iovec[i*2+1] = c->log_extra_fields[i];
5637 }
5638
5639 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5640 pattern = strjoina(p, ".XXXXXX");
5641
5642 fd = mkostemp_safe(pattern);
5643 if (fd < 0)
5644 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5645
5646 n = writev(fd, iovec, c->n_log_extra_fields*2);
5647 if (n < 0) {
5648 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5649 goto fail;
5650 }
5651
5652 (void) fchmod(fd, 0644);
5653
5654 if (rename(pattern, p) < 0) {
5655 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5656 goto fail;
5657 }
5658
5659 u->exported_log_extra_fields = true;
5660 return 0;
5661
5662 fail:
5663 (void) unlink(pattern);
5664 return r;
5665 }
5666
5667 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5668 _cleanup_free_ char *buf = NULL;
5669 const char *p;
5670 int r;
5671
5672 assert(u);
5673 assert(c);
5674
5675 if (u->exported_log_ratelimit_interval)
5676 return 0;
5677
5678 if (c->log_ratelimit_interval_usec == 0)
5679 return 0;
5680
5681 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5682
5683 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5684 return log_oom();
5685
5686 r = symlink_atomic(buf, p);
5687 if (r < 0)
5688 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5689
5690 u->exported_log_ratelimit_interval = true;
5691 return 0;
5692 }
5693
5694 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5695 _cleanup_free_ char *buf = NULL;
5696 const char *p;
5697 int r;
5698
5699 assert(u);
5700 assert(c);
5701
5702 if (u->exported_log_ratelimit_burst)
5703 return 0;
5704
5705 if (c->log_ratelimit_burst == 0)
5706 return 0;
5707
5708 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5709
5710 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5711 return log_oom();
5712
5713 r = symlink_atomic(buf, p);
5714 if (r < 0)
5715 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5716
5717 u->exported_log_ratelimit_burst = true;
5718 return 0;
5719 }
5720
5721 void unit_export_state_files(Unit *u) {
5722 const ExecContext *c;
5723
5724 assert(u);
5725
5726 if (!u->id)
5727 return;
5728
5729 if (MANAGER_IS_TEST_RUN(u->manager))
5730 return;
5731
5732 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5733 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5734 * the IPC system itself and PID 1 also log to the journal.
5735 *
5736 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5737 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5738 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5739 * namespace at least.
5740 *
5741 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5742 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5743 * them with one. */
5744
5745 (void) unit_export_invocation_id(u);
5746
5747 if (!MANAGER_IS_SYSTEM(u->manager))
5748 return;
5749
5750 c = unit_get_exec_context(u);
5751 if (c) {
5752 (void) unit_export_log_level_max(u, c);
5753 (void) unit_export_log_extra_fields(u, c);
5754 (void) unit_export_log_ratelimit_interval(u, c);
5755 (void) unit_export_log_ratelimit_burst(u, c);
5756 }
5757 }
5758
5759 void unit_unlink_state_files(Unit *u) {
5760 const char *p;
5761
5762 assert(u);
5763
5764 if (!u->id)
5765 return;
5766
5767 /* Undoes the effect of unit_export_state() */
5768
5769 if (u->exported_invocation_id) {
5770 _cleanup_free_ char *invocation_path = NULL;
5771 int r = unit_get_invocation_path(u, &invocation_path);
5772 if (r >= 0) {
5773 (void) unlink(invocation_path);
5774 u->exported_invocation_id = false;
5775 }
5776 }
5777
5778 if (!MANAGER_IS_SYSTEM(u->manager))
5779 return;
5780
5781 if (u->exported_log_level_max) {
5782 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5783 (void) unlink(p);
5784
5785 u->exported_log_level_max = false;
5786 }
5787
5788 if (u->exported_log_extra_fields) {
5789 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5790 (void) unlink(p);
5791
5792 u->exported_log_extra_fields = false;
5793 }
5794
5795 if (u->exported_log_ratelimit_interval) {
5796 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5797 (void) unlink(p);
5798
5799 u->exported_log_ratelimit_interval = false;
5800 }
5801
5802 if (u->exported_log_ratelimit_burst) {
5803 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5804 (void) unlink(p);
5805
5806 u->exported_log_ratelimit_burst = false;
5807 }
5808 }
5809
5810 int unit_prepare_exec(Unit *u) {
5811 int r;
5812
5813 assert(u);
5814
5815 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5816 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5817 r = bpf_firewall_load_custom(u);
5818 if (r < 0)
5819 return r;
5820
5821 /* Prepares everything so that we can fork of a process for this unit */
5822
5823 (void) unit_realize_cgroup(u);
5824
5825 if (u->reset_accounting) {
5826 (void) unit_reset_accounting(u);
5827 u->reset_accounting = false;
5828 }
5829
5830 unit_export_state_files(u);
5831
5832 r = unit_setup_exec_runtime(u);
5833 if (r < 0)
5834 return r;
5835
5836 r = unit_setup_dynamic_creds(u);
5837 if (r < 0)
5838 return r;
5839
5840 return 0;
5841 }
5842
5843 static int log_leftover(pid_t pid, int sig, void *userdata) {
5844 _cleanup_free_ char *comm = NULL;
5845
5846 (void) get_process_comm(pid, &comm);
5847
5848 if (comm && comm[0] == '(') /* Most likely our own helper process (PAM?), ignore */
5849 return 0;
5850
5851 log_unit_warning(userdata,
5852 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5853 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5854 pid, strna(comm));
5855
5856 return 1;
5857 }
5858
5859 int unit_warn_leftover_processes(Unit *u) {
5860 assert(u);
5861
5862 (void) unit_pick_cgroup_path(u);
5863
5864 if (!u->cgroup_path)
5865 return 0;
5866
5867 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_leftover, u);
5868 }
5869
5870 bool unit_needs_console(Unit *u) {
5871 ExecContext *ec;
5872 UnitActiveState state;
5873
5874 assert(u);
5875
5876 state = unit_active_state(u);
5877
5878 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5879 return false;
5880
5881 if (UNIT_VTABLE(u)->needs_console)
5882 return UNIT_VTABLE(u)->needs_console(u);
5883
5884 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5885 ec = unit_get_exec_context(u);
5886 if (!ec)
5887 return false;
5888
5889 return exec_context_may_touch_console(ec);
5890 }
5891
5892 const char *unit_label_path(const Unit *u) {
5893 const char *p;
5894
5895 assert(u);
5896
5897 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
5898 * when validating access checks. */
5899
5900 p = u->source_path ?: u->fragment_path;
5901 if (!p)
5902 return NULL;
5903
5904 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
5905 if (path_equal(p, "/dev/null"))
5906 return NULL;
5907
5908 return p;
5909 }
5910
5911 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
5912 int r;
5913
5914 assert(u);
5915
5916 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5917 * and not a kernel thread either */
5918
5919 /* First, a simple range check */
5920 if (!pid_is_valid(pid))
5921 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
5922
5923 /* Some extra safety check */
5924 if (pid == 1 || pid == getpid_cached())
5925 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
5926
5927 /* Don't even begin to bother with kernel threads */
5928 r = is_kernel_thread(pid);
5929 if (r == -ESRCH)
5930 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
5931 if (r < 0)
5932 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
5933 if (r > 0)
5934 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
5935
5936 return 0;
5937 }
5938
5939 void unit_log_success(Unit *u) {
5940 assert(u);
5941
5942 log_struct(LOG_INFO,
5943 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5944 LOG_UNIT_ID(u),
5945 LOG_UNIT_INVOCATION_ID(u),
5946 LOG_UNIT_MESSAGE(u, "Succeeded."));
5947 }
5948
5949 void unit_log_failure(Unit *u, const char *result) {
5950 assert(u);
5951 assert(result);
5952
5953 log_struct(LOG_WARNING,
5954 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5955 LOG_UNIT_ID(u),
5956 LOG_UNIT_INVOCATION_ID(u),
5957 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5958 "UNIT_RESULT=%s", result);
5959 }
5960
5961 void unit_log_skip(Unit *u, const char *result) {
5962 assert(u);
5963 assert(result);
5964
5965 log_struct(LOG_INFO,
5966 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
5967 LOG_UNIT_ID(u),
5968 LOG_UNIT_INVOCATION_ID(u),
5969 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
5970 "UNIT_RESULT=%s", result);
5971 }
5972
5973 void unit_log_process_exit(
5974 Unit *u,
5975 const char *kind,
5976 const char *command,
5977 bool success,
5978 int code,
5979 int status) {
5980
5981 int level;
5982
5983 assert(u);
5984 assert(kind);
5985
5986 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
5987 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
5988 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
5989 * WARNING. */
5990 if (success)
5991 level = LOG_DEBUG;
5992 else if (code == CLD_EXITED)
5993 level = LOG_NOTICE;
5994 else
5995 level = LOG_WARNING;
5996
5997 log_struct(level,
5998 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
5999 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
6000 kind,
6001 sigchld_code_to_string(code), status,
6002 strna(code == CLD_EXITED
6003 ? exit_status_to_string(status, EXIT_STATUS_FULL)
6004 : signal_to_string(status))),
6005 "EXIT_CODE=%s", sigchld_code_to_string(code),
6006 "EXIT_STATUS=%i", status,
6007 "COMMAND=%s", strna(command),
6008 LOG_UNIT_ID(u),
6009 LOG_UNIT_INVOCATION_ID(u));
6010 }
6011
6012 int unit_exit_status(Unit *u) {
6013 assert(u);
6014
6015 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
6016 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
6017 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
6018 * service process has exited abnormally (signal/coredump). */
6019
6020 if (!UNIT_VTABLE(u)->exit_status)
6021 return -EOPNOTSUPP;
6022
6023 return UNIT_VTABLE(u)->exit_status(u);
6024 }
6025
6026 int unit_failure_action_exit_status(Unit *u) {
6027 int r;
6028
6029 assert(u);
6030
6031 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
6032
6033 if (u->failure_action_exit_status >= 0)
6034 return u->failure_action_exit_status;
6035
6036 r = unit_exit_status(u);
6037 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6038 return 255;
6039
6040 return r;
6041 }
6042
6043 int unit_success_action_exit_status(Unit *u) {
6044 int r;
6045
6046 assert(u);
6047
6048 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
6049
6050 if (u->success_action_exit_status >= 0)
6051 return u->success_action_exit_status;
6052
6053 r = unit_exit_status(u);
6054 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
6055 return 255;
6056
6057 return r;
6058 }
6059
6060 int unit_test_trigger_loaded(Unit *u) {
6061 Unit *trigger;
6062
6063 /* Tests whether the unit to trigger is loaded */
6064
6065 trigger = UNIT_TRIGGER(u);
6066 if (!trigger)
6067 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6068 "Refusing to start, no unit to trigger.");
6069 if (trigger->load_state != UNIT_LOADED)
6070 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
6071 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
6072
6073 return 0;
6074 }
6075
6076 void unit_destroy_runtime_directory(Unit *u, const ExecContext *context) {
6077 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO ||
6078 (context->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART && !unit_will_restart(u)))
6079 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
6080 }
6081
6082 int unit_clean(Unit *u, ExecCleanMask mask) {
6083 UnitActiveState state;
6084
6085 assert(u);
6086
6087 /* Special return values:
6088 *
6089 * -EOPNOTSUPP → cleaning not supported for this unit type
6090 * -EUNATCH → cleaning not defined for this resource type
6091 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
6092 * a job queued or similar
6093 */
6094
6095 if (!UNIT_VTABLE(u)->clean)
6096 return -EOPNOTSUPP;
6097
6098 if (mask == 0)
6099 return -EUNATCH;
6100
6101 if (u->load_state != UNIT_LOADED)
6102 return -EBUSY;
6103
6104 if (u->job)
6105 return -EBUSY;
6106
6107 state = unit_active_state(u);
6108 if (!IN_SET(state, UNIT_INACTIVE))
6109 return -EBUSY;
6110
6111 return UNIT_VTABLE(u)->clean(u, mask);
6112 }
6113
6114 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
6115 assert(u);
6116
6117 if (!UNIT_VTABLE(u)->clean ||
6118 u->load_state != UNIT_LOADED) {
6119 *ret = 0;
6120 return 0;
6121 }
6122
6123 /* When the clean() method is set, can_clean() really should be set too */
6124 assert(UNIT_VTABLE(u)->can_clean);
6125
6126 return UNIT_VTABLE(u)->can_clean(u, ret);
6127 }
6128
6129 bool unit_can_freeze(Unit *u) {
6130 assert(u);
6131
6132 if (UNIT_VTABLE(u)->can_freeze)
6133 return UNIT_VTABLE(u)->can_freeze(u);
6134
6135 return UNIT_VTABLE(u)->freeze;
6136 }
6137
6138 void unit_frozen(Unit *u) {
6139 assert(u);
6140
6141 u->freezer_state = FREEZER_FROZEN;
6142
6143 bus_unit_send_pending_freezer_message(u);
6144 }
6145
6146 void unit_thawed(Unit *u) {
6147 assert(u);
6148
6149 u->freezer_state = FREEZER_RUNNING;
6150
6151 bus_unit_send_pending_freezer_message(u);
6152 }
6153
6154 static int unit_freezer_action(Unit *u, FreezerAction action) {
6155 UnitActiveState s;
6156 int (*method)(Unit*);
6157 int r;
6158
6159 assert(u);
6160 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
6161
6162 method = action == FREEZER_FREEZE ? UNIT_VTABLE(u)->freeze : UNIT_VTABLE(u)->thaw;
6163 if (!method || !cg_freezer_supported())
6164 return -EOPNOTSUPP;
6165
6166 if (u->job)
6167 return -EBUSY;
6168
6169 if (u->load_state != UNIT_LOADED)
6170 return -EHOSTDOWN;
6171
6172 s = unit_active_state(u);
6173 if (s != UNIT_ACTIVE)
6174 return -EHOSTDOWN;
6175
6176 if (IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING))
6177 return -EALREADY;
6178
6179 r = method(u);
6180 if (r <= 0)
6181 return r;
6182
6183 return 1;
6184 }
6185
6186 int unit_freeze(Unit *u) {
6187 return unit_freezer_action(u, FREEZER_FREEZE);
6188 }
6189
6190 int unit_thaw(Unit *u) {
6191 return unit_freezer_action(u, FREEZER_THAW);
6192 }
6193
6194 /* Wrappers around low-level cgroup freezer operations common for service and scope units */
6195 int unit_freeze_vtable_common(Unit *u) {
6196 return unit_cgroup_freezer_action(u, FREEZER_FREEZE);
6197 }
6198
6199 int unit_thaw_vtable_common(Unit *u) {
6200 return unit_cgroup_freezer_action(u, FREEZER_THAW);
6201 }
6202
6203 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
6204 [COLLECT_INACTIVE] = "inactive",
6205 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
6206 };
6207
6208 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);